public class Double2CharLinkedOpenHashMap extends AbstractDouble2CharSortedMap implements Serializable, Cloneable, Hash
Instances of this class use a hash table to represent a map. The table is
enlarged as needed by doubling its size when new entries are created, but it is never made
smaller (even on a clear()
). A family of trimming
methods lets you control the size of the table; this is particularly useful
if you reuse instances of this class.
Iterators generated by this map will enumerate pairs in the same order in which they have been added to the map (addition of pairs whose key is already present in the set does not change the iteration order). Note that this order has nothing in common with the natural order of the keys. The order is kept by means of a doubly linked list, represented via an array of longs parallel to the table.
This class implements the interface of a sorted map, so to allow easy
access of the iteration order: for instance, you can get the first key
in iteration order with AbstractDouble2CharSortedMap.firstKey()
without having to create an
iterator; however, this class partially violates the SortedMap
contract because all submap methods throw an exception and comparator()
returns always null
.
Additional methods, such as getAndMoveToFirst()
, make it easy
to use instances of this class as a cache (e.g., with LRU policy).
The iterators provided by the views of this class using are type-specific
list iterators, and can be started at any
element which is a key of the map, or
a NoSuchElementException
exception will be thrown.
If, however, the provided element is not the first or last key in the
set, the first access to the list index will require linear time, as in the worst case
the entire key set must be scanned in iteration order to retrieve the positional
index of the starting key. If you use just the methods of a type-specific BidirectionalIterator
,
however, all operations will be performed in constant time.
Hash
,
HashCommon
,
Serialized FormAbstractDouble2CharMap.BasicEntry
Hash.Strategy<K>
Double2CharSortedMap.FastSortedEntrySet
Double2CharMap.Entry, Double2CharMap.FastEntrySet
DEFAULT_GROWTH_FACTOR, DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR, FAST_LOAD_FACTOR, FREE, OCCUPIED, PRIMES, REMOVED, VERY_FAST_LOAD_FACTOR
Constructor and Description |
---|
Double2CharLinkedOpenHashMap()
Creates a new hash map with initial expected
Hash.DEFAULT_INITIAL_SIZE entries
and Hash.DEFAULT_LOAD_FACTOR as load factor. |
Double2CharLinkedOpenHashMap(double[] k,
char[] v)
Creates a new hash map with
Hash.DEFAULT_LOAD_FACTOR as load factor using the elements of two parallel arrays. |
Double2CharLinkedOpenHashMap(double[] k,
char[] v,
float f)
Creates a new hash map using the elements of two parallel arrays.
|
Double2CharLinkedOpenHashMap(Double2CharMap m)
Creates a new hash map with
Hash.DEFAULT_LOAD_FACTOR as load factor copying a given type-specific one. |
Double2CharLinkedOpenHashMap(Double2CharMap m,
float f)
Creates a new hash map copying a given type-specific one.
|
Double2CharLinkedOpenHashMap(int expected)
Creates a new hash map with
Hash.DEFAULT_LOAD_FACTOR as load factor. |
Double2CharLinkedOpenHashMap(int expected,
float f)
Creates a new hash map.
|
Double2CharLinkedOpenHashMap(Map<? extends Double,? extends Character> m)
Creates a new hash map with
Hash.DEFAULT_LOAD_FACTOR as load factor copying a given one. |
Double2CharLinkedOpenHashMap(Map<? extends Double,? extends Character> m,
float f)
Creates a new hash map copying a given one.
|
Modifier and Type | Method and Description |
---|---|
void |
clear()
Removes all associations from this function (optional operation).
|
Double2CharLinkedOpenHashMap |
clone()
Returns a deep copy of this map.
|
DoubleComparator |
comparator()
Returns the comparator associated with this sorted set, or null if it uses its keys' natural ordering.
|
boolean |
containsKey(double k)
Checks whether the given value is contained in
AbstractDouble2CharMap.keySet() . |
boolean |
containsValue(char v)
Checks whether the given value is contained in
AbstractDouble2CharMap.values() . |
Double2CharSortedMap.FastSortedEntrySet |
double2CharEntrySet()
Returns a type-specific sorted-set view of the mappings contained in this map.
|
double |
firstDoubleKey()
Returns the first key of this map in iteration order.
|
char |
get(double k)
Returns the value to which the given key is mapped.
|
Character |
get(Double ok) |
char |
getAndMoveToFirst(double k)
Returns the value to which the given key is mapped; if the key is present, it is moved to the first position of the iteration order.
|
char |
getAndMoveToLast(double k)
Returns the value to which the given key is mapped; if the key is present, it is moved to the last position of the iteration order.
|
int |
growthFactor()
Deprecated.
Since
fastutil 6.1.0, hash tables are doubled when they are too full. |
void |
growthFactor(int growthFactor)
Deprecated.
Since
fastutil 6.1.0, hash tables are doubled when they are too full. |
int |
hashCode()
Returns a hash code for this map.
|
Double2CharSortedMap |
headMap(double to)
Returns a view of the portion of this sorted map whose keys are strictly less than
toKey . |
boolean |
isEmpty() |
DoubleSortedSet |
keySet()
Returns a type-specific-sorted-set view of the keys of this map.
|
double |
lastDoubleKey()
Returns the last key of this map in iteration order.
|
char |
put(double k,
char v)
Adds a pair to the map.
|
Character |
put(Double ok,
Character ov)
Delegates to the corresponding type-specific method, taking care of returning
null on a missing key. |
char |
putAndMoveToFirst(double k,
char v)
Adds a pair to the map; if the key is already present, it is moved to the first position of the iteration order.
|
char |
putAndMoveToLast(double k,
char v)
Adds a pair to the map; if the key is already present, it is moved to the last position of the iteration order.
|
boolean |
rehash()
Deprecated.
A no-op.
|
char |
remove(double k)
Removes the mapping with the given key.
|
Character |
remove(Object ok)
Delegates to the corresponding type-specific method, taking care of returning
null on a missing key. |
char |
removeFirstChar()
Removes the mapping associated with the first key in iteration order.
|
char |
removeLastChar()
Removes the mapping associated with the last key in iteration order.
|
int |
size()
Returns the intended number of keys in this function, or -1 if no such number exists.
|
Double2CharSortedMap |
subMap(double from,
double to)
Returns a view of the portion of this sorted map whose keys range from
fromKey , inclusive, to toKey , exclusive. |
Double2CharSortedMap |
tailMap(double from)
Returns a view of the portion of this sorted map whose keys are greater than or equal to
fromKey . |
boolean |
trim()
Rehashes the map, making the table as small as possible.
|
boolean |
trim(int n)
Rehashes this map if the table is too large.
|
CharCollection |
values()
Returns a type-specific collection view of the values contained in this map.
|
entrySet, firstKey, headMap, lastKey, subMap, tailMap
containsValue, equals, putAll, toString
containsKey, defaultReturnValue, defaultReturnValue, get
defaultReturnValue, defaultReturnValue
containsKey, get
containsKey, containsValue, equals, get, putAll
public Double2CharLinkedOpenHashMap(int expected, float f)
The actual table size will be the least power of two greater than expected
/f
.
expected
- the expected number of elements in the hash set.f
- the load factor.public Double2CharLinkedOpenHashMap(int expected)
Hash.DEFAULT_LOAD_FACTOR
as load factor.expected
- the expected number of elements in the hash map.public Double2CharLinkedOpenHashMap()
Hash.DEFAULT_INITIAL_SIZE
entries
and Hash.DEFAULT_LOAD_FACTOR
as load factor.public Double2CharLinkedOpenHashMap(Map<? extends Double,? extends Character> m, float f)
m
- a Map
to be copied into the new hash map.f
- the load factor.public Double2CharLinkedOpenHashMap(Map<? extends Double,? extends Character> m)
Hash.DEFAULT_LOAD_FACTOR
as load factor copying a given one.m
- a Map
to be copied into the new hash map.public Double2CharLinkedOpenHashMap(Double2CharMap m, float f)
m
- a type-specific map to be copied into the new hash map.f
- the load factor.public Double2CharLinkedOpenHashMap(Double2CharMap m)
Hash.DEFAULT_LOAD_FACTOR
as load factor copying a given type-specific one.m
- a type-specific map to be copied into the new hash map.public Double2CharLinkedOpenHashMap(double[] k, char[] v, float f)
k
- the array of keys of the new hash map.v
- the array of corresponding values in the new hash map.f
- the load factor.IllegalArgumentException
- if k
and v
have different lengths.public Double2CharLinkedOpenHashMap(double[] k, char[] v)
Hash.DEFAULT_LOAD_FACTOR
as load factor using the elements of two parallel arrays.k
- the array of keys of the new hash map.v
- the array of corresponding values in the new hash map.IllegalArgumentException
- if k
and v
have different lengths.public char put(double k, char v)
Double2CharFunction
put
in interface Double2CharFunction
put
in class AbstractDouble2CharFunction
k
- the key.v
- the value.Function.put(Object,Object)
public Character put(Double ok, Character ov)
AbstractDouble2CharFunction
null
on a missing key.
This method must check whether the provided key is in the map using containsKey()
. Thus,
it probes the map twice. Implementors of subclasses should override it with a more efficient method.
put
in interface Function<Double,Character>
put
in interface Map<Double,Character>
put
in class AbstractDouble2CharFunction
ok
- the key.ov
- the value.null
if no value was present for the given key.Map.put(Object,Object)
public char remove(double k)
Double2CharFunction
remove
in interface Double2CharFunction
remove
in class AbstractDouble2CharFunction
Function.remove(Object)
public Character remove(Object ok)
AbstractDouble2CharFunction
null
on a missing key.
This method must check whether the provided key is in the map using containsKey()
. Thus,
it probes the map twice. Implementors of subclasses should override it with a more efficient method.
public char removeFirstChar()
NoSuchElementException
- is this map is empty.public char removeLastChar()
NoSuchElementException
- is this map is empty.public char getAndMoveToFirst(double k)
k
- the key.public char getAndMoveToLast(double k)
k
- the key.public char putAndMoveToFirst(double k, char v)
k
- the key.v
- the value.public char putAndMoveToLast(double k, char v)
k
- the key.v
- the value.public char get(double k)
Double2CharFunction
get
in interface Double2CharFunction
k
- the key.Function.get(Object)
public boolean containsKey(double k)
AbstractDouble2CharMap
AbstractDouble2CharMap.keySet()
.containsKey
in interface Double2CharFunction
containsKey
in class AbstractDouble2CharMap
Function.containsKey(Object)
public boolean containsValue(char v)
AbstractDouble2CharMap
AbstractDouble2CharMap.values()
.containsValue
in interface Double2CharMap
containsValue
in class AbstractDouble2CharMap
Map.containsValue(Object)
public void clear()
Function
public int size()
Function
Most function implementations will have some knowledge of the intended number of keys in their domain. In some cases, however, this might not be possible.
public boolean isEmpty()
@Deprecated public void growthFactor(int growthFactor)
fastutil
6.1.0, hash tables are doubled when they are too full.growthFactor
- unused.@Deprecated public int growthFactor()
fastutil
6.1.0, hash tables are doubled when they are too full.growthFactor(int)
public double firstDoubleKey()
firstDoubleKey
in interface Double2CharSortedMap
SortedMap.firstKey()
public double lastDoubleKey()
lastDoubleKey
in interface Double2CharSortedMap
SortedMap.lastKey()
public DoubleComparator comparator()
Double2CharSortedMap
Note that this specification strengthens the one given in SortedMap.comparator()
.
comparator
in interface Double2CharSortedMap
comparator
in interface SortedMap<Double,Character>
SortedMap.comparator()
public Double2CharSortedMap tailMap(double from)
Double2CharSortedMap
fromKey
.tailMap
in interface Double2CharSortedMap
SortedMap.tailMap(Object)
public Double2CharSortedMap headMap(double to)
Double2CharSortedMap
toKey
.headMap
in interface Double2CharSortedMap
SortedMap.headMap(Object)
public Double2CharSortedMap subMap(double from, double to)
Double2CharSortedMap
fromKey
, inclusive, to toKey
, exclusive.subMap
in interface Double2CharSortedMap
SortedMap.subMap(Object,Object)
public Double2CharSortedMap.FastSortedEntrySet double2CharEntrySet()
Double2CharSortedMap
double2CharEntrySet
in interface Double2CharMap
double2CharEntrySet
in interface Double2CharSortedMap
Double2CharSortedMap.entrySet()
public DoubleSortedSet keySet()
AbstractDouble2CharSortedMap
The view is backed by the sorted set returned by AbstractDouble2CharSortedMap.entrySet()
. Note that
no attempt is made at caching the result of this method, as this would
require adding some attributes that lightweight implementations would
not need. Subclasses may easily override this policy by calling
this method and caching the result, but implementors are encouraged to
write more efficient ad-hoc implementations.
keySet
in interface Double2CharMap
keySet
in interface Double2CharSortedMap
keySet
in interface Map<Double,Character>
keySet
in interface SortedMap<Double,Character>
keySet
in class AbstractDouble2CharSortedMap
Map.keySet()
public CharCollection values()
AbstractDouble2CharSortedMap
The view is backed by the sorted set returned by AbstractDouble2CharSortedMap.entrySet()
. Note that
no attempt is made at caching the result of this method, as this would
require adding some attributes that lightweight implementations would
not need. Subclasses may easily override this policy by calling
this method and caching the result, but implementors are encouraged to
write more efficient ad-hoc implementations.
values
in interface Double2CharMap
values
in interface Double2CharSortedMap
values
in interface Map<Double,Character>
values
in interface SortedMap<Double,Character>
values
in class AbstractDouble2CharSortedMap
Map.values()
@Deprecated public boolean rehash()
If you need to reduce the table size to fit exactly
this set, use trim()
.
trim()
public boolean trim()
This method rehashes the table to the smallest size satisfying the load factor. It can be used when the set will not be changed anymore, so to optimize access speed and size.
If the table size is already the minimum possible, this method does nothing.
trim(int)
public boolean trim(int n)
Let N be the smallest table size that can hold
max(n,
entries, still satisfying the load factor. If the current
table size is smaller than or equal to N, this method does
nothing. Otherwise, it rehashes this map in a table of size
N.
size()
)
This method is useful when reusing maps. Clearing a map leaves the table size untouched. If you are reusing a map many times, you can call this method with a typical size to avoid keeping around a very large table just because of a few large transient maps.
n
- the threshold for the trimming.trim()
public Double2CharLinkedOpenHashMap clone()
This method performs a deep copy of this hash map; the data stored in the map, however, is not cloned. Note that this makes a difference only for object keys.
public int hashCode()
equals()
is not overriden, it is important
that the value returned by this method is the same value as
the one returned by the overriden method.