
Floating-point
numbers

Version 1.0.3

15/02/2023

Laurent Bartholdi

Integration of mpfr, mpfi, mpc, fplll and cxsc in GAP

Laurent Bartholdi Email: laurent.bartholdi@gmail.com
Homepage: https://www.math.uni-sb.de/ag/bartholdi/

Address: FR Mathematik
D-66041 Saarbrücken
Germany

mailto:// laurent.bartholdi@gmail.com
https://www.math.uni-sb.de/ag/bartholdi/

Floating-point numbers 2

Abstract
This document describes the package Float, which implements in GAP arbitrary-precision floating-point num-
bers.

For comments or questions on Float please contact the author.

Copyright
© 2011-2021 by Laurent Bartholdi

Acknowledgements

Part of this work was supported by the "Swiss National Fund for Scientific Research (SNF)", the "German
National Science Foundation (DFG)", and the Courant Research Centre "Higher Order Structures" of the
University of Göttingen.

Contents

1 Licensing 4

2 Float package 5
2.1 A sample run . 5

3 Polynomials 7
3.1 The Floats pseudo-field . 7
3.2 Roots of polynomials . 7
3.3 Finding integer relations . 7
3.4 LLL lattice reduction . 8

4 Implemented packages 9
4.1 MPFR . 9
4.2 MPFI . 9
4.3 MPC . 9
4.4 CXSC . 10
4.5 FPLLL . 10

References 11

Index 12

3

Chapter 1

Licensing

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License,
or any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program, in
the file COPYING. If not, see https://www.gnu.org/licenses/.

4

https://www.gnu.org/licenses/

Chapter 2

Float package

2.1 A sample run

The extended floating-point capabilities of GAP are installed by loading the package via
LoadPackage("float"); and selecting new floating-point handlers via SetFloats(MPFR),
SetFloats(MPFI), SetFloats(MPC) orSetFloats(CXSC), depending on whether high-precision
real, interval or complex arithmetic are desired, or whether a fast package containing all four
real/complex element/interval arithmetic is desired:

Example
gap> LoadPackage("float");
Loading FLOAT 0.7.0 ...
true
gap> SetFloats(MPFR); # floating-point
gap> x := 4*Atan(1.0);
.314159e1
gap> Sin(x);
.169569e-30
gap> SetFloats(MPFR,1000); # 1000 bits
gap> x := 4*Atan(1.0);
.314159e1
gap> Sin(x);
.125154e-300
gap> String(x,300);
".3141592653589793238462643383279502884197169399375105820974944592307816406286\
208998628034825342117067982148086513282306647093844609550582231725359408128481\
117450284102701938521105559644622948954930381964428810975665933446128475648233\
78678316527120190914564856692346034861045432664821339360726024914127e1"
gap>
gap> SetFloats(MPFI); # intervals
gap> x := 4*Atan(1.0);
.314159e1(99)
gap> AbsoluteDiameter(x); Sup(x); Inf(x);
.100441e-29
.314159e1
.314159e1
gap> Sin(x);
-.140815e-29(97)
gap> 0.0 in last;

5

Floating-point numbers 6

true
gap> 1.0; # exact representation
.1e1(inf)
gap> IncreaseInterval(last,0.001); # now only 8 significant bits
.1e1(8)
gap> IncreaseInterval(last,-0.002); # now becomes empty
\emptyset
gap> r2 := Sqrt(2.0);
.141421e1(99)
gap> MinimalPolynomial(Rationals,r2);
-2*x_1^2+1
gap> Cyc(r2);
E(8)-E(8)^3
gap>
gap> SetFloats(MPC); # complex numbers
gap> z := 5.0-1.0i;
.5e1-.1e1i
gap> (1+1.0i)*last^4*(239+1.0i);
.228488e6
gap> Exp(6.2835i);
.1e1+.314693e-3i

Chapter 3

Polynomials

3.1 The Floats pseudo-field

Polynomials with floating-point coefficients may be manipulated in GAP; though they behave, in
subtle ways, quite differently than polynomials over rings. A "pseudo-field" of floating-point numbers
is available to create them using the standard GAP syntax.

3.1.1 FLOAT_PSEUDOFIELD

▷ FLOAT_PSEUDOFIELD (global variable)

The "pseudo-field" of floating-point numbers, containing all floating-point numbers in the current
implementation.

Note that it is not really a field, e.g. because addition of floating-point numbers is not associative.
It is mainly used to create indeterminates, as in the following example:

Example
gap> x := Indeterminate(FLOAT_PSEUDOFIELD,"x");
x
gap> 2*x^2+3;
2.0*x^2+3.0
gap> Value(last,10);
203.0

3.2 Roots of polynomials

The Jenkins-Traub algorithm has been implemented, in arbitrary precision for MPFR and MPC.
Furthermore, CXSC can provide complex enclosures for the roots of a complex polynomial.

3.3 Finding integer relations

The PSLQ algorithm has been implemented by Steve A. Linton, as an external contribution to Float.
This algorithm receives as input a vector of floats x and a required precision ε , and seeks an integer
vector v such that |x · v|< ε . The implementation follows quite closely the original article [BB01].

7

Floating-point numbers 8

3.3.1 PSLQ

▷ PSLQ(x, epsilon[, gamma]) (function)

▷ PSLQ_MP(x, epsilon[, gamma[, beta]]) (function)

Returns: An integer vector v with |x · v|< ε .
The PSLQ algorithm by Bailey and Broadhurst (see [BB01]) searches for an integer relation be-

tween the entries in x.
β and γ are algorithm tuning parameters, and default to 4/10 and 2/

√
(3) respectively.

The second form implements the "Multi-pair" variant of the algorithm, which is better suited to
parallelization.

Example
gap> PSLQ([1.0,(1+Sqrt(5.0))/2],1.e-2);
[55, -34] # Fibonacci numbers
gap> RootsFloat([1,-4,2]*1.0);
[0.292893, 1.70711] # roots of 2x^2-4x+1
gap> PSLQ(List([0..2],i->last[1]^i),1.e-7);
[1, -4, 2] # a degree-2 polynomial fitting well

3.4 LLL lattice reduction

A faster implementation of the LLL lattice reduction algorithm has also been implemented. It is
accessible via the commands FPLLLReducedBasis(m) and FPLLLShortestVector(m).

Chapter 4

Implemented packages

4.1 MPFR

4.1.1 IsMPFRFloat

▷ IsMPFRFloat (filter)

▷ TYPE_MPFR (global variable)

The category of floating-point numbers.
Note that they are treated as commutative and scalar, but are not necessarily associative.

4.2 MPFI

4.2.1 IsMPFIFloat

▷ IsMPFIFloat (filter)

▷ TYPE_MPFI (global variable)

The category of intervals of floating-point numbers.
Note that they are treated as commutative and scalar, but are not necessarily associative.

4.3 MPC

4.3.1 IsMPCFloat

▷ IsMPCFloat (filter)

▷ TYPE_MPC (global variable)

The category of intervals of floating-point numbers.
Note that they are treated as commutative and scalar, but are not necessarily associative.

9

Floating-point numbers 10

4.4 CXSC

4.4.1 IsCXSCReal

▷ IsCXSCReal (filter)

▷ IsCXSCComplex (filter)

▷ IsCXSCInterval (filter)

▷ IsCXSCBox (filter)

▷ TYPE_CXSC_RP (global variable)

▷ TYPE_CXSC_CP (global variable)

▷ TYPE_CXSC_RI (global variable)

▷ TYPE_CXSC_CI (global variable)

The category of floating-point numbers.
Note that they are treated as commutative and scalar, but are not necessarily associative.

4.5 FPLLL

4.5.1 FPLLLReducedBasis

▷ FPLLLReducedBasis(m) (operation)

Returns: A matrix spanning the same lattice as m .
This function implements the LLL (Lenstra-Lenstra-Lovász) lattice reduction algorithm via the

external library fplll.
The result is guaranteed to be optimal up to 1%.

4.5.2 FPLLLShortestVector

▷ FPLLLShortestVector(m) (operation)

Returns: A short vector in the lattice spanned by m .
This function implements the LLL (Lenstra-Lenstra-Lovász) lattice reduction algorithm via the

external library fplll, and then computes a short vector in this lattice.
The result is guaranteed to be optimal up to 1%.

References

[BB01] D. H. Bailey and D. J. Broadhurst. Parallel integer relation detection: techniques and appli-
cations. Math. Comp., 70(236):1719–1736 (electronic), 2001. 7, 8

11

Index

FLOAT_PSEUDOFIELD, 7
FPLLLReducedBasis, 10
FPLLLShortestVector, 10

IsCXSCBox, 10
IsCXSCComplex, 10
IsCXSCInterval, 10
IsCXSCReal, 10
IsMPCFloat, 9
IsMPFIFloat, 9
IsMPFRFloat, 9

PSLQ, 8
PSLQ_MP, 8

TYPE_CXSC_CI, 10
TYPE_CXSC_CP, 10
TYPE_CXSC_RI, 10
TYPE_CXSC_RP, 10
TYPE_MPC, 9
TYPE_MPFI, 9
TYPE_MPFR, 9

12

	Licensing
	Float package
	A sample run

	Polynomials
	The Floats pseudo-field
	Roots of polynomials
	Finding integer relations
	LLL lattice reduction

	Implemented packages
	MPFR
	MPFI
	MPC
	CXSC
	FPLLL

	References
	Index

