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Abstract
This document describes the package Float, which implements in GAP arbitrary-precision floating-point num-
bers.

For comments or questions on Float please contact the author.
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Chapter 1

Licensing

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License,
or any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program, in
the file COPYING. If not, see https://www.gnu.org/licenses/.
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Chapter 2

Float package

2.1 A sample run

The extended floating-point capabilities of GAP are installed by loading the package via
LoadPackage("float"); and selecting new floating-point handlers via SetFloats(MPFR),
SetFloats(MPFI), SetFloats(MPC) orSetFloats(CXSC), depending on whether high-precision
real, interval or complex arithmetic are desired, or whether a fast package containing all four
real/complex element/interval arithmetic is desired:

Example
gap> LoadPackage("float");
Loading FLOAT 0.7.0 ...
true
gap> SetFloats(MPFR); # floating-point
gap> x := 4*Atan(1.0);
.314159e1
gap> Sin(x);
.169569e-30
gap> SetFloats(MPFR,1000); # 1000 bits
gap> x := 4*Atan(1.0);
.314159e1
gap> Sin(x);
.125154e-300
gap> String(x,300);
".3141592653589793238462643383279502884197169399375105820974944592307816406286\
208998628034825342117067982148086513282306647093844609550582231725359408128481\
117450284102701938521105559644622948954930381964428810975665933446128475648233\
78678316527120190914564856692346034861045432664821339360726024914127e1"
gap>
gap> SetFloats(MPFI); # intervals
gap> x := 4*Atan(1.0);
.314159e1(99)
gap> AbsoluteDiameter(x); Sup(x); Inf(x);
.100441e-29
.314159e1
.314159e1
gap> Sin(x);
-.140815e-29(97)
gap> 0.0 in last;
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true
gap> 1.0; # exact representation
.1e1(inf)
gap> IncreaseInterval(last,0.001); # now only 8 significant bits
.1e1(8)
gap> IncreaseInterval(last,-0.002); # now becomes empty
\emptyset
gap> r2 := Sqrt(2.0);
.141421e1(99)
gap> MinimalPolynomial(Rationals,r2);
-2*x_1^2+1
gap> Cyc(r2);
E(8)-E(8)^3
gap>
gap> SetFloats(MPC); # complex numbers
gap> z := 5.0-1.0i;
.5e1-.1e1i
gap> (1+1.0i)*last^4*(239+1.0i);
.228488e6
gap> Exp(6.2835i);
.1e1+.314693e-3i



Chapter 3

Polynomials

3.1 The Floats pseudo-field

Polynomials with floating-point coefficients may be manipulated in GAP; though they behave, in
subtle ways, quite differently than polynomials over rings. A "pseudo-field" of floating-point numbers
is available to create them using the standard GAP syntax.

3.1.1 FLOAT_PSEUDOFIELD

▷ FLOAT_PSEUDOFIELD (global variable)

The "pseudo-field" of floating-point numbers, containing all floating-point numbers in the current
implementation.

Note that it is not really a field, e.g. because addition of floating-point numbers is not associative.
It is mainly used to create indeterminates, as in the following example:

Example
gap> x := Indeterminate(FLOAT_PSEUDOFIELD,"x");
x
gap> 2*x^2+3;
2.0*x^2+3.0
gap> Value(last,10);
203.0

3.2 Roots of polynomials

The Jenkins-Traub algorithm has been implemented, in arbitrary precision for MPFR and MPC.
Furthermore, CXSC can provide complex enclosures for the roots of a complex polynomial.

3.3 Finding integer relations

The PSLQ algorithm has been implemented by Steve A. Linton, as an external contribution to Float.
This algorithm receives as input a vector of floats x and a required precision ε , and seeks an integer
vector v such that |x · v|< ε . The implementation follows quite closely the original article [BB01].
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3.3.1 PSLQ

▷ PSLQ(x, epsilon[, gamma]) (function)

▷ PSLQ_MP(x, epsilon[, gamma[, beta]]) (function)

Returns: An integer vector v with |x · v|< ε .
The PSLQ algorithm by Bailey and Broadhurst (see [BB01]) searches for an integer relation be-

tween the entries in x.
β and γ are algorithm tuning parameters, and default to 4/10 and 2/

√
(3) respectively.

The second form implements the "Multi-pair" variant of the algorithm, which is better suited to
parallelization.

Example
gap> PSLQ([1.0,(1+Sqrt(5.0))/2],1.e-2);
[ 55, -34 ] # Fibonacci numbers
gap> RootsFloat([1,-4,2]*1.0);
[ 0.292893, 1.70711 ] # roots of 2x^2-4x+1
gap> PSLQ(List([0..2],i->last[1]^i),1.e-7);
[ 1, -4, 2 ] # a degree-2 polynomial fitting well

3.4 LLL lattice reduction

A faster implementation of the LLL lattice reduction algorithm has also been implemented. It is
accessible via the commands FPLLLReducedBasis(m) and FPLLLShortestVector(m).



Chapter 4

Implemented packages

4.1 MPFR

4.1.1 IsMPFRFloat

▷ IsMPFRFloat (filter)

▷ TYPE_MPFR (global variable)

The category of floating-point numbers.
Note that they are treated as commutative and scalar, but are not necessarily associative.

4.2 MPFI

4.2.1 IsMPFIFloat

▷ IsMPFIFloat (filter)

▷ TYPE_MPFI (global variable)

The category of intervals of floating-point numbers.
Note that they are treated as commutative and scalar, but are not necessarily associative.

4.3 MPC

4.3.1 IsMPCFloat

▷ IsMPCFloat (filter)

▷ TYPE_MPC (global variable)

The category of intervals of floating-point numbers.
Note that they are treated as commutative and scalar, but are not necessarily associative.
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4.4 CXSC

4.4.1 IsCXSCReal

▷ IsCXSCReal (filter)

▷ IsCXSCComplex (filter)

▷ IsCXSCInterval (filter)

▷ IsCXSCBox (filter)

▷ TYPE_CXSC_RP (global variable)

▷ TYPE_CXSC_CP (global variable)

▷ TYPE_CXSC_RI (global variable)

▷ TYPE_CXSC_CI (global variable)

The category of floating-point numbers.
Note that they are treated as commutative and scalar, but are not necessarily associative.

4.5 FPLLL

4.5.1 FPLLLReducedBasis

▷ FPLLLReducedBasis(m) (operation)

Returns: A matrix spanning the same lattice as m .
This function implements the LLL (Lenstra-Lenstra-Lovász) lattice reduction algorithm via the

external library fplll.
The result is guaranteed to be optimal up to 1%.

4.5.2 FPLLLShortestVector

▷ FPLLLShortestVector(m) (operation)

Returns: A short vector in the lattice spanned by m .
This function implements the LLL (Lenstra-Lenstra-Lovász) lattice reduction algorithm via the

external library fplll, and then computes a short vector in this lattice.
The result is guaranteed to be optimal up to 1%.
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