CIL: Infrastructure for C Program Analysis and Transformation

January 24, 2023

1 Introduction

CIL has a Source Forge page: http://sourceforge.net/projects/cil.

CIL (C Intermediate Language) is a high-level representation along with a set of tools that permit easy
analysis and source-to-source transformation of C programs.

CIL is both lower-level than abstract-syntax trees, by clarifying ambiguous constructs and removing
redundant ones, and also higher-level than typical intermediate languages designed for compilation, by
maintaining types and a close relationship with the source program. The main advantage of CIL is that
it compiles all valid C programs into a few core constructs with a very clean semantics. Also CIL has a
syntax-directed type system that makes it easy to analyze and manipulate C programs. Furthermore, the
CIL front-end is able to process not only ANSI-C programs but also those using Microsoft C or GNU C
extensions. If you do not use CIL and want instead to use just a C parser and analyze programs expressed
as abstract-syntax trees then your analysis will have to handle a lot of ugly corners of the language (let
alone the fact that parsing C itself is not a trivial task). See Section 16 for some examples of such extreme
programs that CIL simplifies for you.

In essence, CIL is a highly-structured, “clean” subset of C. CIL features a reduced number of syntactic
and conceptual forms. For example, all looping constructs are reduced to a single form, all function bodies
are given explicit return statements, syntactic sugar like "->" is eliminated and function arguments with
array types become pointers. (For an extensive list of how CIL simplifies C programs, see Section 4.) This
reduces the number of cases that must be considered when manipulating a C program. CIL also separates
type declarations from code and flattens scopes within function bodies. This structures the program in
a manner more amenable to rapid analysis and transformation. CIL computes the types of all program
expressions, and makes all type promotions and casts explicit. CIL supports all GCC and MSVC extensions
except for nested functions and complex numbers. Finally, CIL organizes C’s imperative features into
expressions, instructions and statements based on the presence and absence of side-effects and control-flow.
Every statement can be annotated with successor and predecessor information. Thus CIL provides an
integrated program representation that can be used with routines that require an AST (e.g. type-based
analyses and pretty-printers), as well as with routines that require a CFG (e.g., dataflow analyses). CIL also
supports even lower-level representations (e.g., three-address code), see Section 8.

CIL comes accompanied by a number of Perl scripts that perform generally useful operations on code:

e A driver which behaves as either the gcc or Microsoft VC compiler and can invoke the preprocessor
followed by the CIL application. The advantage of this script is that you can easily use CIL and the
analyses written for CIL with existing make files.

e A whole-program merger that you can use as a replacement for your compiler and it learns all the files
you compile when you make a project and merges all of the preprocessed source files into a single one.
This makes it easy to do whole-program analysis.

e A patcher makes it easy to create modified copies of the system include files. The CIL driver can then
be told to use these patched copies instead of the standard ones.

CIL has been tested very extensively. It is able to process the SPECINT95 benchmarks, the Linux kernel,
GIMP and other open-source projects. All of these programs are compiled to the simple CIL and then passed

to gce and they still run! We consider the compilation of Linux a major feat especially since Linux contains
many of the ugly GCC extensions (see Section 16.2). This adds to about 1,000,000 lines of code that we
tested it on. It is also able to process the few Microsoft NT device drivers that we have had access to. CIL
was tested against GCC’s c-torture testsuite and (except for the tests involving complex numbers and inner
functions, which CIL does not currently implement) CIL passes most of the tests. Specifically CIL fails 23
tests out of the 904 c-torture tests that it should pass. GCC itself fails 19 tests. A total of 1400 regression
test cases are run automatically on each change to the CIL sources.

CIL is relatively independent on the underlying machine and compiler. When you build it CIL will
configure itself according to the underlying compiler. However, CIL has only been tested on Intel x86 using
the gee compiler on Linux and cygwin and using the MS Visual C compiler. (See below for specific versions
of these compilers that we have used CIL for.)

The largest application we have used CIL for is CCured, a compiler that compiles C code into type-safe
code by analyzing your pointer usage and inserting runtime checks in the places that cannot be guaranteed
statically to be type safe.

You can also use CIL to “compile” code that uses GCC extensions (e.g. the Linux kernel) into standard
C code.

CIL also comes accompanies by a growing library of extensions (see Section 8). You can use these for
your projects or as examples of using CIL.

PDF versions of this manual and the CIL API are available. However, we recommend the HTML versions
because the postprocessed code examples are easier to view.

If you use CIL in your project, we would appreciate letting us know. If you want to cite CIL in your
research writings, please refer to the paper “CIL: Intermediate Language and Tools for Analysis and Transfor-
mation of C Programs” by George C. Necula, Scott McPeak, S.P. Rahul and Westley Weimer, in “Proceedings
of Conference on Compilier Construction”, 2002.

2 Installation

You need the following tools to build CIL:

e A Unix-like shell environment (with bash, perl, make, mv, cp, etc.). On Windows, you will need cygwin
with those packages.

e An ocaml compiler. You will need OCaml release 3.08 or higher to build CIL. CIL has been tested on
Linux and on Windows (where it can behave as either Microsoft Visual C or gec). On Windows, you
can build CIL both with the cygwin version of ocaml (preferred) and with the Win32 version of ocaml.

e An underlying C compiler, which can be either gcc or Microsoft Visual C.

1. Get the source code.

o Official distribution (Recommended):

(a) Download the CIL distribution (latest version is http://sourceforge.net/projects/cil/files/cil/cil-1
See the Section 77 for recent changes to the CIL distribution.

(b) Unzip and untar the source distribution. This will create a directory called cil whose struc-
ture is explained below.
tar xvfz cil-1.7.3.tar.gz

e (it Repository:
Alternately, you can download an up to the minute version of CIL from our Subversion repository
at:

git clone git://git.code.sf.net/p/cil/code cil-code
There is also a Github mirror:

git clone git://github.com/kerneis/cil.git

However, the Git version may be less stable than the released version.

2. Enter the cil directory and run the configure script and then GNU make to build the distribution.
If you are on Windows, at least the configure step must be run from within bash.
cd cil
./configure
make
make quicktest

3. You should now find cilly.asm.exe in a subdirectory of obj. The name of the subdirectory is either
x86_WIN32 if you are using cygwin on Windows or x86_LINUX if you are using Linux (although you
should be using instead the Perl wrapper bin/cilly). Note that we do not have an install make
target and you should use Cil from the development directory.

The configure script tries to find appropriate defaults for your system. You can control its actions by
passing the following arguments:

e CC=foo Specifies the path for the gcc executable. By default whichever version is in the PATH is used.
If CC specifies the Microsoft c1 compiler, then that compiler will be set as the default one. Otherwise,
the gcc compiler will be the default.

CIL requires an underlying C compiler and preprocessor. CIL depends on the underlying compiler
and machine for the sizes and alignment of types. The installation procedure for CIL queries the underlying
compiler for architecture and compiler dependent configuration parameters, such as the size of a pointer or the
particular alignment rules for structure fields. (This means, of course, that you should re-run ./configure
when you move CIL to another machine.)

We have tested CIL on the following compilers:

e On Windows, cl compiler version 12.00.8168 (MSVC 6), 13.00.9466 (MSVC .Net), and 13.10.3077
(MSVC .Net 2003). Run cl with no arguments to get the compiler version.

e On Windows, using cygwin and gcc version 2.95.3, 3.0, 3.2, 3.3, and 3.4.
e On Linux, using gcc version 2.95.3, 3.0, 3.2, 3.3, 4.0, and 4.1.

Others have successfully used CIL on x86 processors with Mac OS X, FreeBSD and OpenBSD; on amd64
processors with FreeBSD; on SPARC processors with Solaris; and on PowerPC processors with Mac OS X.
If you make any changes to the build system in order to run CIL on your platform, please send us a patch.

2.1 Building CIL on Windows with Microsoft Visual C

Some users might want to build a standalone CIL executable on Windows (an executable that does not
require cygwin.dll to run). You will need cygwin for the build process only. Here is how we do it

1. Start with a clean CIL directory

2. Start a command-line window setup with the environment variables for Microsoft Visual Studio. You
can do this by choosing Programs/Microsoft Visual Studio/Tools/Command Prompt. Check that you
can run cl.

3. Ensure that ocamlc refers to a Win32 version of ocaml. Run ocamlc -v and look at the path to the
standard library. If you have several versions of ocaml, you must set the following variables:

set OCAMLWIN=C:/Programs/ocaml-win

set OCAMLLIB=}0CAMLWINY/1lib

set PATH=Y,0CAMLWINY/bin;%PATHY,
set INCLUDE=Y,INCLUDEY;%0CAMLWINY/inc
set LIB=YLIBY;%0CAMLWINY,/1ib;o0bj/x86_WIN32

4. Run bash -c "./configure CC=cl".

5. Run bash -c "make WIN32=1 quickbuild"

6. Run bash -c "make WIN32=1 NATIVECAML=1 cilly
7. Run bash -c "make WIN32=1 doc

8. Run bash -c "make WIN32=1 bindistrib-nocheck

The above steps do not build the CIL library, but just the executable. The last step will create a
subdirectory TEMP_cil-bindistrib that contains everything that you need to run CIL on another machine.
You will have to edit manually some of the files in the bin directory to replace CILHOME. The resulting CIL
can be run with ActiveState Perl also.

3 Distribution Contents

The file distrib/cil-1.7.3.tar.gz contains the complete source CIL distribution, consisting of the fol-
lowing files:

Filename
Makefile.in
configure
configure.in
config.guess
config.sub
install-sh

doc/
obj/

bin/cilly

lib/patcher

src/check.ml,mli
src/cil.ml,mli
src/clist.ml,mli

src/errormsg.ml,mli
src/ext/heapify.ml

src/ext/logcalls.ml,mli
src/ext/sfi.ml
src/frontc/clexer.mll
src/frontc/cparser.mly

Description

configure source for the Makefile that builds CIL/
The configure script.

The autoconf source for configure.

Stuff required by configure.

idem

idem

HTML documentation of the CIL API.

Directory that will contain the compiled CIL modules and executa-
bles.

A Perl script that can be invoked with the same arguments as
either gcc or Microsoft Visual C and will convert the program to
CIL, perform some simple transformations, emit it and compile it
as usual.

A Perl script that applies specified patches to standard include
files.

Checks the well-formedness of a CIL file.

Definition of CIL abstract syntax and utilities for manipulating it.
Utilities for efficiently managing lists that need to be concatenated
often.

Utilities for error reporting.

A CIL transformation that moves array local variables from the
stack to the heap.

A CIL transformation that logs every function call.

A CIL transformation that can log every memory read and write.
The lexer.

The parser.

Filename Description

src/frontc/cabs.ml The abstract syntax.

src/frontc/cprint.ml The pretty printer for CABS.

src/frontc/cabs2cil.ml The elaborator to CIL.

src/main.ml The cilly application.

src/pretty.ml,mli Utilities for pretty printing.

src/rmtmps.ml,mli A CIL tranformation that removes unused types, variables and
inlined functions.

src/stats.ml,mli Utilities for maintaining timing statistics.

src/trace.ml,mli Utilities useful for printing debugging information.

ocamlutil/ Miscellaneous libraries that are not specific to CIL.

ocamlutil/Makefile.ocaml A file that is included by Makefile.

obj/feature_config.ml File generated by the Makefile describing which extra “features”
to compile. See Section 5.

obj/machdep.ml File generated by the Makefile containing information about your
architecture, such as the size of a pointer.

src/machdep-ml.c C program that generates machdep.ml files.

4 Compiling C to CIL

In this section we try to describe a few of the many transformations that are applied to a C program to
convert it to CIL. The module that implements this conversion is about 5000 lines of OCaml code. In contrast
a simple program transformation that instruments all functions to keep a shadow stack of the true return
address (thus preventing stack smashing) is only 70 lines of code. This example shows that the analysis is
so much simpler because it has to handle only a few simple C constructs and also because it can leverage on
CIL infrastructure such as visitors and pretty-printers.

In no particular order these are a few of the most significant ways in which C programs are compiled into
CIL:

1. CIL will eliminate all declarations for unused entities. This means that just because your hello world
program includes stdio.h it does not mean that your analysis has to handle all the ugly stuff from
stdio.h.

2. Type specifiers are interpreted and normalized:

int long signed x;
signed long extern Xx;
long static int long y;

// Some code that uses these declaration, so that CIL does not remove them
int main() { return x + y; }

See the CIL output for this code fragment
3. Anonymous structure and union declarations are given a name.
struct { int x; } s;

See the CIL output for this code fragment

4. Nested structure tag definitions are pulled apart. This means that all structure tag definitions can be
found by a simple scan of the globals.

struct foo {
struct bar {
union baz {
int x1;
double x2;
} ui;
int y;
} st;
int z;

} £

See the CIL output for this code fragment

5. All structure, union, enumeration definitions and the type definitions from inners scopes are moved to
global scope (with appropriate renaming). This facilitates moving around of the references to these
entities.

int main() {
struct foo {
int x; } foo;

{
struct foo {
double d;
}
return foo.x;
}

See the CIL output for this code fragment

6. Prototypes are added for those functions that are called before being defined. Furthermore, if a
prototype exists but does not specify the type of parameters that is fixed. But CIL will not be able to
add prototypes for those functions that are neither declared nor defined (but are used!).

int £(); // Prototype without arguments
int f(double x) {
return g(x);

}

int g(double x) {
return Xx;

}

See the CIL output for this code fragment

7. Array lengths are computed based on the initializers or by constant folding.

int al[] = {1,2,3};
int a2[sizeof(int) >= 4 ? 8 : 16];

See the CIL output for this code fragment

8. Enumeration tags are computed using constant folding:

10.

11.

12.

13.

int main() {

enum {
FIVE = 5,
SIX, SEVEN,

FOUR = FIVE - 1,
EIGHT = sizeof (double)
} x = FIVE;
return Xx;

}

See the CIL output for this code fragment

Initializers are normalized to include specific initialization for the missing elements:

int a1[5] = {1,2,3};
struct foo { int x, y; } s1 = { 4 };

See the CIL output for this code fragment

Initializer designators are interpreted and eliminated. Subobjects are properly marked with braces.
CIL implements the whole ISO C99 specification for initializer (neither GCC nor MSVC do) and a few
GCC extensions.

struct foo {
int x, y;
int a[5];
struct inner {
int z;
} inner;
}s={0, .inner.z = 3, .al[l ... 2] =5, 4, y : 8 };

See the CIL output for this code fragment

String initializers for arrays of characters are processed
char foo[] = "foo plus bar";

See the CIL output for this code fragment

String constants are concatenated
char *foo = "foo " " plus " " bar ";

See the CIL output for this code fragment

Initializers for local variables are turned into assignments. This is in order to separate completely the
declarative part of a function body from the statements. This has the unfortunate effect that we have
to drop the const qualifier from local variables !

int x = 5;
struct foo { int f1, f2; } a [1 = {1, 2, 3, 4, 5 };

See the CIL output for this code fragment

14. Local variables in inner scopes are pulled to function scope (with appropriate renaming). Local scopes
thus disappear. This makes it easy to find and operate on all local variables in a function.

int x = 5;
int main() {
int x = 6;

{
int x = 7;
return Xx;
return Xx;

}

See the CIL output for this code fragment

15. Global declarations in local scopes are moved to global scope:

int x = 5;
int main() {
int x = 6;
{
static int x = 7;
return x;

}

return Xx;

}

See the CIL output for this code fragment

16. Return statements are added for functions that are missing them. If the return type is not a base type
then a return without a value is added. The guaranteed presence of return statements makes it easy
to implement a transformation that inserts some code to be executed immediately before returning
from a function.

int foo() {
int x = 5;

3

See the CIL output for this code fragment

17. One of the most significant transformations is that expressions that contain side-effects are separated
into statements.

int x, f(int);
return (x ++ + f(x));

See the CIL output for this code fragment

Internally, the x ++ statement is turned into an assignment which the pretty-printer prints like the
original. CIL has only three forms of basic statements: assignments, function calls and inline assembly.

18. Shortcut evaluation of boolean expressions and the 7: operator are compiled into explicit conditionals:

19.

20.

21.

22.
23.

24.

int x;

int y =x7 2 : 4;

int z = x || y;

// Here we duplicate the return statement

if(x && y) { return 0; } else { return 1; }

// To avoid excessive duplication, CIL uses goto’s for

// statement that have more than 5 instructions

if(x && y || z) { x ++; y ++; z ++; x ++; y ++; return z; }

See the CIL output for this code fragment

GCC’s conditional expression with missing operands are also compiled into conditionals:

int £(Q);;
return £() 7 : 4;

See the CIL output for this code fragment

All forms of loops (while, for and do) are compiled internally as a single while (1) looping construct
with explicit break statement for termination. For simple while loops the pretty printer is able to
print back the original:

int x, y;

for(int i = 0; i<5; i++) {
if (i == 5) continue;
if(i == 4) break;
i += 2;

}

while(x < 5) {
if(x == 3) continue;
X ++;

}

See the CIL output for this code fragment

GCC’s block expressions are compiled away. (That’s right there is an infinite loop in this code.)
int x = 5, y = Xx;
int z = ({ x++; L: y -= x; y; 1)
return ({ goto L; 0; });

See the CIL output for this code fragment

CIL contains support for both MSVC and GCC inline assembly (both in one internal construct)

CIL compiles away the GCC extension that allows many kinds of constructs to be used as lvalues:

int x, y, 2;
return &(x 7y : z) - & (x ++, x);

See the CIL output for this code fragment

All types are computed and explicit casts are inserted for all promotions and conversions that a compiler
must insert:

25. CIL will turn old-style function definition (without prototype) into new-style definitions. This will
make the compiler less forgiving when checking function calls, and will catch for example cases when
a function is called with too few arguments. This happens in old-style code for the purpose of imple-
menting variable argument functions.

26. Since CIL sees the source after preprocessing the code after CIL does not contain the comments and
the preprocessing directives.

27. CIL will remove from the source file those type declarations, local variables and inline functions that
are not used in the file. This means that your analysis does not have to see all the ugly stuff that
comes from the header files:

#include <stdio.h>
typedef int unused_type;
static char unused_static (void) { return O; }

int main() {

int unused_local;

printf("Hello world\n"); // Only printf will be kept from stdio.h
}

See the CIL output for this code fragment

5 How to Use CIL

There are two predominant ways to use CIL to write a program analysis or transformation. The first is
to phrase your analysis as a module that is called by our existing driver. The second is to use CIL as a
stand-alone library. We highly recommend that you use cilly, our driver.

5.1 Using cilly, the CIL driver

The most common way to use CIL is to write an Ocaml module containing your analysis and transformation,
which you then link into our boilerplate driver application called cilly. cilly is a Perl script that processes
and mimics GCC and MSVC command-line arguments and then calls cilly.byte.exe or cilly.asm.exe (CIL’s
Ocaml executable).

An example of such module is logwrites.ml, a transformation that is distributed with CIL and whose
purpose is to instrument code to print the addresses of memory locations being written. (We plan to release
a C-language interface to CIL so that you can write your analyses in C instead of Ocaml.) See Section 8 for
a survey of other example modules.

Assuming that you have written /home/necula/logwrites.ml, here is how you use it:

1. Modify logwrites.ml so that it includes a CIL “feature descriptor” like this:

let feature : featureDescr =
{ fd_name = "logwrites";

fd_enabled = ref false;

fd_description = "generation of code to log memory writes";

fd_extraopt = [];

fd_doit =

(function (f: file) —>
let lwVisitor = new logWriteVisitor in
visitCilFileSameGlobals lwVisitor f)

10

The fd_name field names the feature and its associated command-line arguments. The fd_enabled field
is a bool ref. “fd_doit” will be invoked if !fd_enabled is true after argument parsing, so initialize
the ref cell to true if you want this feature to be enabled by default.

When the user passes the -—dologwrites command-line option to cilly, the variable associated with
the fd_enabled flag is set and the fd_doit function is called on the Cil.file that represents the
merger (see Section 13) of all C files listed as arguments.

. Invoke configure with the arguments
./configure EXTRASRCDIRS=/home/necula EXTRAFEATURES=logwrites

This step works if each feature is packaged into its own ML file, and the name of the entry point in
the file is feature.

An alternative way to specify the new features is to change the build files yourself, as explained below.
You’ll need to use this method if a single feature is split across multiple files.

(a) Put logwrites.ml in the src or src/ext directory. This will make sure that make can find it.
If you want to put it in some other directory, modify Makefile.in and add to SOURCEDIRS your
directory. Alternately, you can create a symlink from src or src/ext to your file.

(b) Modify the Makefile.in and add your module to the CILLY_MODULES or CILLY_LIBRARY_MODULES
variables. The order of the modules matters. Add your modules somewhere after cil and before
main.

(c) If you have any helper files for your module, add those to the makefile in the same way. e.g.:

CILLY_MODULES = $(CILLY_LIBRARY_MODULES) \
myutilitiesl myutilities2 logwrites \
main

Again, order is important: myutilities2.ml will be able to refer to Myutilitiesl but not Log-
writes. If you have any ocamllex or ocamlyacc files, add them to both CILLY_MODULES and either
MLLS or MLYS.

(d) Modify main.ml so that your new feature descriptor appears in the global list of CIL features.

let features : C.featureDescr list =
[Logcalls.feature;
Oneret.feature;
Heapify.featurel;
Heapify.feature2;
makeCFGFeature;
Partial.feature;
Simplemem.feature;
Logwrites.feature; (* add this line to include the logwrites feature! *)
]

@ Feature_config.features

Features are processed in the order they appear on this list. Put your feature last on the list if
you plan to run any of CIL’s built-in features (such as makeCFGfeature) before your own.

Standard code in cilly takes care of adding command-line arguments, printing the description, and
calling your function automatically. Note: do not worry about introducing new bugs into CIL by
adding a single line to the feature list.

. Now you can invoke the cilly application on a preprocessed file, or instead use the cilly driver
which provides a convenient compiler-like interface to cilly. See Section 7 for details using cilly.
Remember to enable your analysis by passing the right argument (e.g., ——dologwrites).

11

5.2 Using CIL as a library

CIL can also be built as a library that is called from your stand-alone application. Add cil/src, cil/src/frontc,
cil/obj/x86_LINUX (or cil/obj/x86 _WIN32) to your Ocaml project -I include paths. Building CIL will
also build the library cil/obj/*/cil.cma (or cil/obj/*/cil.cmxa). You can then link your application
against that library.

You can call the Frontc.parse: string -> unit -> Cil.file function with the name of a file con-
taining the output of the C preprocessor. The Mergecil.merge: Cil.file list -> string -> Cil.file
function merges multiple files. You can then invoke your analysis function on the resulting Cil.file data
structure. You might want to call Rmtmps.removeUnusedTemps first to clean up the prototypes and vari-
ables that are not used. Then you can call the function Cil.dumpFile: cilPrinter -> out_channel ->
Cil.file -> unit to print the file to a given output channel. A good cilPrinter to useis defaultCilPrinter.

Check out src/main.ml and bin/cilly for other good ideas about high-level file processing. Again, we
highly recommend that you just our cilly driver so that you can avoid spending time re-inventing the wheel
to provide drop-in support for standard makefiles.

Here is a concrete example of compiling and linking your project against CIL. Imagine that your program
analysis or transformation is contained in the single file main.ml.

$ ocamlopt -c -I $(CIL)/obj/x86_LINUX/ main.ml
$ ocamlopt -ccopt -L$(CIL)/obj/x86_LINUX/ -o main unix.cmxa str.cmxa \
$(CIL)/obj/x86_LINUX/cil.cmxa main.cmx

The first line compiles your analysis, the second line links it against CIL (as a library) and the Ocaml
Unix library. For more information about compiling and linking Ocaml programs, see the Ocaml home page
at http://caml.inria.fr /ocaml/.

In the next section we give an overview of the API that you can use to write your analysis and transfor-
mation.

6 CIL API Documentation

The CIL API is documented in the file src/cil.mli. We also have an online documentation extracted from
cil.mli and other useful modules. We index below the main types that are used to represent C programs
in CIL:

e An index of all types

e An index of all values

e (il.file is the representation of a file.

e (il.global is the representation of a global declaration or definitions. Values for operating on globals.
e Cil.typ is the representation of a type. Values for operating on types.

e Cil.compinfo is the representation of a structure or a union type

e (il.fieldinfo is the representation of a field in a structure or a union

e Cil.enuminfo is the representation of an enumeration type.

e Cil.varinfo is the representation of a variable

e Cil.fundec is the representation of a function

e Cil.lval is the representation of an lvalue. Values for operating on lvalues.

e Cil.exp is the representation of an expression without side-effects. Values for operating on expressions.

12

e Cil.instr is the representation of an instruction (with side-effects but without control-flow)
e Cil.stmt is the representation of a control-flow statements. Values for operating on statements.

e Cil.attribute is the representation of attributes. Values for operating on attributes.

6.1 Using the visitor

One of the most useful tools exported by the CIL API is an implementation of the visitor pattern for CIL
programs. The visiting engine scans depth-first the structure of a CIL program and at each node is queries
a user-provided visitor structure whether it should do one of the following operations:

e Ignore this node and all its descendants

Descend into all of the children and when done rebuild the node if any of the children have changed.

Replace the subtree rooted at the node with another tree.

Replace the subtree with another tree, then descend into the children and rebuild the node if necessary
and then invoke a user-specified function.

e In addition to all of the above actions then visitor can specify that some instructions should be queued
to be inserted before the current instruction or statement being visited.

By writing visitors you can customize the program traversal and transformation. One major limitation
of the visiting engine is that it does not propagate information from one node to another. Each visitor must
use its own private data to achieve this effect if necessary.

Each visitor is an object that is an instance of a class of type Cil.cilVisitor.. The most convenient
way to obtain such classes is to specialize the Cil.nopCilVisitor.class (which just traverses the tree doing
nothing). Any given specialization typically overrides only a few of the methods. Take a look for example
at the visitor defined in the module logwrites.ml. Another, more elaborate example of a visitor is the
[copyFunctionVisitor] defined in ¢il.ml.

Once you have defined a visitor you can invoke it with one of the functions:

e Cil.visitCilFile or Cil.visitCilFileSameGlobals - visit a file
e Cil.visitCilGlobal - visit a global

e Cil.visitCilFunction - visit a function definition

e Cil.visitCilExp - visit an expression

e Cil.visitCilLval - visit an lvalue

e Cil.visitCillnstr - visit an instruction

e Cil.visitCilStmt - visit a statement

e Cil.visitCilType - visit a type. Note that this does not visit the files of a composite type. use visitGlobal
to visit the [GCompTag] that defines the fields.

Some transformations may want to use visitors to insert additional instructions before statements and
instructions. To do so, pass a list of instructions to the Cil.queuelnstr method of the specialized ob-
ject. The instructions will automatically be inserted before that instruction in the transformed code. The
Cil.unqueuelnstr method should not normally be called by the user.

13

6.2 Interpreted Constructors and Deconstructors

Interpreted constructors and deconstructors are a facility for constructing and deconstructing CIL constructs
using a pattern with holes that can be filled with a variety of kinds of elements. The pattern is a string that
uses the C syntax to represent C language elements. For example, the following code:

Formatcil.cType "void * comnst (*)(int x)"

is an alternative way to construct the internal representation of the type of pointer to function with an
integer argument and a void * const as result:

TPtr (TFun(TVoid [Attr("comst", [1)],
[("x", TInt(IInt, [1), [1) 1, false, [1), [1)

The advantage of the interpreted constructors is that you can use familiar C syntax to construct CIL
abstract-syntax trees.

You can construct this way types, lvalues, expressions, instructions and statements. The pattern string
can also contain a number of placeholders that are replaced during construction with CIL items passed
as additional argument to the construction function. For example, the %e:id placeholder means that the
argument labeled “id” (expected to be of form Fe exp) will supply the expression to replace the placeholder.
For example, the following code constructs an increment instruction at location loc:

Formatcil.cInstr "/v:x = %v:x + %e:something"
loc
[("something", Fe some_exp);
("x", Fv some_varinfo)]

An alternative way to construct the same CIL instruction is:

Set ((Var some_varinfo, NoOffset),
BinOp(PlusA, Lval (Var some_varinfo, NoOffset),
some_exp, intType),
loc)

See Cil.formatArg for a definition of the placeholders that are understood.
A dual feature is the interpreted deconstructors. This can be used to test whether a CIL construct has
a certain form:

Formatcil.dType "void * comst (%) (int x)" t

will test whether the actual argument t is indeed a function pointer of the required type. If it is then
the result is Some [] otherwise it is None. Furthermore, for the purpose of the interpreted deconstructors
placeholders in patterns match anything of the right type. For example,

Formatcil.dType "void * (*) (4F:t)" t

will match any function pointer type, independent of the type and number of the formals. If the match
succeeds the result is Some [FF forms] where forms is a list of names and types of the formals. Note
that each member in the resulting list corresponds positionally to a placeholder in the pattern.

The interpreted constructors and deconstructors do not support the complete C syntax, but only a
substantial fragment chosen to simplify the parsing. The following is the syntax that is supported:

Expressions:
E ::= %e:ID | %d:ID | %g:ID |
| sizeof E | sizeof (T
&L | (T)E

L| (CE) | Unop E | E Binop E

n
) | alignof E | alignof (T)

Unary operators:
Unop ::=+ | = | 7 | %u:ID

14

Binary operators:

Binop :t:=+ | = | * | / | << | > | & | ““[”2 | ~
= | I=] < | >] <=1 > | %b:ID

Lvalues:

L ::=%1:ID | %v:ID Offset | * E | (x E) Offset | E -> ident Offset
Offsets:

Offset ::= empty | %o0:ID | . ident Offset | [E] Offset
Types:

T ::= Type_spec Attrs Decl

Type specifiers:
Type_spec ::= void | char | unsigned char | short | unsigned short
| int | unsigned int | long | unsigned long | %k:ID | float
| double | struct %c:ID | union %c:ID

Declarators:
Decl ::= * Attrs Decl | Direct_decl

Direct declarators:
Direct_decl ::= empty | ident | (Attrs Decl)
| Direct_decl [Exp_opt]
| (Attrs Decl)(Parameters)

Optional expressions
Exp_opt ::= empty | E | %eo:ID

Formal parameters
Parameters ::= empty | ... | %va:ID | %£:ID | T | T , Parameters

List of attributes

Attrs ::= empty | %A:ID | Attrib Attrs
Attributes
Attrib ::= const | restrict | volatile | __attribute__ ((GAttr))

GCC Attributes
GAttr ::= ident | ident (AttrArg_ List)

Lists of GCC Attribute arguments:
AttrArg List ::= AttrArg | %P:ID | AttrArg , AttrArg_List

GCC Attribute arguments

AttrArg ::= Yp:ID | ident | ident (AttrArg_List)
Instructions
Instr ::= %i:ID ; | L = E ; | L Binop= E | Callres L (Args)

15

Actual arguments
Args ::= empty | %E:ID | E | E , Args

Call destination

Callres ::= empty | L = | %lo:ID
Statements
Stmt ::= %s:ID | if (E) then Stmt ; | if (E) then Stmt else Stmt ;
| return Exp_opt | break ; | continue ; | { Stmt_list }

| while (E) Stmt | Instr_list

Lists of statements
Stmt_list ::= empty | %S:ID | Stmt Stmt_list

| Type_spec Attrs Decl ; Stmt_list
| Type_spec Attrs Decl = E ; Stmt_list
| Type_spec Attrs Decl = L (Args) ; Stmt_list

List of instructions
Instr_list ::= Instr | %I:ID | Instr Instr_list

Notes regarding the syntax:

In the grammar description above non-terminals are written with uppercase initial

%))

All of the patterns consist of the % character followed by one or two letters, followed by and an
indentifier. For each such pattern there is a corresponding constructor of the Cil.formatArg type, whose
name is the letter 'F’ followed by the same one or two letters as in the pattern. That constructor is
used by the user code to pass a Cil.formatArg actual argument to the interpreted constructor and by
the interpreted deconstructor to return what was matched for a pattern.

If the pattern name is uppercase, it designates a list of the elements designated by the corresponding
lowercase pattern. E.g. %E designated lists of expressions (as in the actual arguments of a call).

The two-letter patterns whose second letter is “o” designate an optional element. E.g. %eo designates
an optional expression (as in the length of an array).

Unlike in calls to printf, the pattern %g is used for strings.
The usual precedence and associativity rules as in C apply

The pattern string can contain newlines and comments, using both the /* ... x/ style as well as
the // one.

When matching a “cast” pattern of the form (T) E, the deconstructor will match even expressions
that do not have the actual cast but in that case the type is matched against the type of the expression.
E.g. the patters "(int)%e" will match any expression of type int whether it has an explicit cast or
not.

The %k pattern is used to construct and deconstruct an integer type of any kind.

Notice that the syntax of types and declaration are the same (in order to simplify the parser). This
means that technically you can write a whole declaration instead of a type in the cast. In this case the
name that you declare is ignored.

In lists of formal parameters and lists of attributes, an empty list in the pattern matches any formal
parameters or attributes.

When matching types, uses of named types are unrolled to expose a real type before matching.

16

e The order of the attributes is ignored during matching. The the pattern for a list of attributes contains
%A then the resulting formatArg will be bound to all attributes in the list. For example, the pattern
"const %A" matches any list of attributes that contains const and binds the corresponding placeholder
to the entire list of attributes, including const.

e All instruction-patterns must be terminated by semicolon

e The autoincrement and autodecrement instructions are not supported. Also not supported are complex
expressions, the && and || shortcut operators, and a number of other more complex instructions or
statements. In general, the patterns support only constructs that can be represented directly in CIL.

e The pattern argument identifiers are not used during deconstruction. Instead, the result contains a
sequence of values in the same order as the appearance of pattern arguments in the pattern.

e You can mix statements with declarations. For each declaration a new temporary will be constructed
(using a function you provive). You can then refer to that temporary by name in the rest of the
pattern.

e The %v: pattern specifier is optional.

The following function are defined in the Formatcil module for constructing and deconstructing:
e Formatcil.cExp constructs Cil.exp.

e Formatcil.cType constructs Cil.typ.

e Formatcil.cLval constructs Cil.lval.

e Formatcil.cInstr constructs Cil.instr.

e Formatcil.cStmt and Formatcil.cStmts construct Cil.stmt.
e Formatcil.dExp deconstructs Cil.exp.

e Formatcil.dType deconstructs Cil.typ.

e Formatcil.dLval deconstructs Cil.lval.

e Formatcil.dInstr deconstructs Cil.lval.

Below is an example using interpreted constructors. This example generates the CIL representation of
code that scans an array backwards and initializes every even-index element with an expression:

Formatcil.cStmts
loc
"int idx = sizeof (array) / sizeof(array[0]) - 1;
while(idx >= 0) {
// Some statements to be run for all the elements of the array
%S:init
if (! (ddx & 1))
array[idx] = %e:init_even;
/* Do not forget to decrement the index variable */
idx = idx - 1;
}Il
(fun n t -> makeTempVar myfunc “name:n t)
[("array", Fv myarray);
("init", FS [stmtl; stmt2; stmt3]);
("init_even", Fe init_expr_for_even_elements)]

To write the same CIL statement directly in CIL would take much more effort. Note that the pattern
is parsed only once and the result (a function that takes the arguments and constructs the statement) is
memoized.

17

6.2.1 Performance considerations for interpreted constructors

Parsing the patterns is done with a LALR parser and it takes some time. To improve performance the
constructors and deconstructors memoize the parsed patterns and will only compile a pattern once. Also
all construction and deconstruction functions can be applied partially to the pattern string to produce a
function that can be later used directly to construct or deconstruct. This function appears to be about two
times slower than if the construction is done using the CIL constructors (without memoization the process
would be one order of magnitude slower.) However, the convenience of interpreted constructor might make
them a viable choice in many situations when performance is not paramount (e.g. prototyping).

6.3 Printing and Debugging support

The Modules Pretty and Errormsg contain respectively utilities for pretty printing and reporting errors and
provide a convenient printf-like interface.

Additionally, CIL defines for each major type a pretty-printing function that you can use in conjunction
with the Pretty interface. The following are some of the pretty-printing functions:

e (Cil.d_exp - print an expression

e Cil.d_type - print a type

e Cil.d_lval - print an lvalue

e (il.d_global - print a global

e Cil.d_stmt - print a statment

e (Cil.d_instr - print an instruction

e Cil.d_init - print an initializer

e Cil.d_attr - print an attribute

e (Cil.d_attrlist - print a set of attributes
e Cil.d loc - print a location

e (il.d_ikind - print an integer kind

e Cil.d_fkind - print a floating point kind
e (Cil.d_const - print a constant

e (il.d_storage - print a storage specifier

You can even customize the pretty-printer by creating instances of Cil.cilPrinter.. Typically such an
instance extends Cil.defaultCilPrinter. Once you have a customized pretty-printer you can use the following
printing functions:

e Cil.printExp - print an expression

e Cil.printType - print a type

Cil.printLval - print an lvalue

Cil.printGlobal - print a global

Cil.printStmt - print a statment

Cil.printInstr - print an instruction

Cil.printInit - print an initializer

18

e Cil.printAttr - print an attribute
e Cil.printAttrs - print a set of attributes

CIL has certain internal consistency invariants. For example, all references to a global variable must
point to the same varinfo structure. This ensures that one can rename the variable by changing the name
in the varinfo. These constraints are mentioned in the API documentation. There is also a consistency
checker in file src/check.ml. If you suspect that your transformation is breaking these constraints then
you can pass the ——check option to cilly and this will ensure that the consistency checker is run after each
transformation.

6.4 Attributes

In CIL you can attach attributes to types and to names (variables, functions and fields). Attributes are
represented using the type Cil.attribute. An attribute consists of a name and a number of arguments
(represented using the type Cil.attrparam). Almost any expression can be used as an attribute argument.
Attributes are stored in lists sorted by the name of the attribute. To maintain list ordering, use the functions
Cil.typeAttrs to retrieve the attributes of a type and the functions Cil.addAttribute and Cil.addAttributes
to add attributes. Alternatively you can use Cil.typeAddAttributes to add an attribute to a type (and return
the new type).

GCC already has extensive support for attributes, and CIL extends this support to user-defined attributes.
A GCC attribute has the syntax:

gccattribute ::= __attribute__((attribute)) (Note the double parentheses)

Since GCC and MSVC both support various flavors of each attribute (with or without leading or trailing
_) we first strip ALL leading and trailing _ from the attribute name (but not the identified in [ACons]
parameters in Cil.attrparam). When we print attributes, for GCC we add two leading and two trailing _;
for MSVC we add just two leading _.

There is support in CIL so that you can control the printing of attributes (see Cil.set CustomPrint Attribute
and Cil.setCustomPrintAttributeScope). This custom-printing support is now used to print the ”const”
qualifier as ”const” and not as ”__attribute__((const))”.

The attributes are specified in declarations. This is unfortunate since the C syntax for declarations is
already quite complicated and after writing the parser and elaborator for declarations I am convinced that
few C programmers understand it completely. Anyway, this seems to be the easiest way to support attributes.

Name attributes must be specified at the very end of the declaration, just before the = for the initializer
or before the , that separates a declaration in a group of declarations or just before the ; that terminates
the declaration. A name attribute for a function being defined can be specified just before the brace that
starts the function body.

For example (in the following examples Al,...,An are type attributes and N is a name attribute (each of
these uses the __attribute__ syntax):

int x N;

int x N, * y N =0, z[] N;
extern void exit() N;

int fact(int x) N { ... }

Type attributes can be specified along with the type using the following rules:

1. The type attributes for a base type (int, float, named type, reference to struct or union or enum) must
be specified immediately following the type (actually it is Ok to mix attributes with the specification
of the type, in between unsigned and int for example).

For example:

int A1 x N; /* Al applies to the type int. An example is an attribute
"even" restricting the type int to even values. */
struct foo Al A2 x; // Both Al and A2 apply to the struct foo type

19

2. The type attributes for a pointer type must be specified immediately after the * symbol.

/* A pointer (A1) to an int (A2) */

int A2 * Al x;

/* A pointer (A1) to a pointer (A2) to a float (A3) */
float A3 * A2 * Al x;

Note: The attributes for base types and for pointer types are a strict extension of the ANSI C type
qualifiers (const, volatile and restrict). In fact CIL treats these qualifiers as attributes.

3. The attributes for a function type or for an array type can be specified using parenthesized declarators.

For example:

/* A function (A1) from int (A2) to float (A3) */
float A3 (Al f)(int A2);

/* A pointer (A1) to a function (A2) that returns an int (A3) */
int A3 (A2 * Al pfun) (void);

/* An array (A1) of int (A2) */
int A2 (A1 x0)[]

/* Array (A1) of pointers (A2) to functions (A3) that take an int (A4) and
* return a pointer (A5) to int (A6) */
int A6 * A5 (A3 * A2 (A1l x1)[5]) (int A4);

/* A function (A4) that takes a float (A5) and returns a pointer (A6) to an
* int (A7) */
extern int A7 * A6 (A4 x2) (float A5 x);

/* A function (A1) that takes a int (A2) and that returns a pointer (A3) to
* a function (A4) that takes a float (A5) and returns a pointer (A6) to an
*x int (A7) */

int A7 * A6 (A4 * A3 (A1l x3)(int A2 x)) (float A5) {

return & x2;

}

Note: ANSI C does not allow the specification of type qualifiers for function and array types, although it
allows for the parenthesized declarator. With just a bit of thought (looking at the first few examples above)
I hope that the placement of attributes for function and array types will seem intuitive.

This extension is not without problems however. If you want to refer just to a type (in a cast for example)
then you leave the name out. But this leads to strange conflicts due to the parentheses that we introduce to
scope the attributes. Take for example the type of x0 from above. It should be written as:

int A2 (A1)]

But this will lead most C parsers into deep confusion because the parentheses around Al will be confused
for parentheses of a function designator. To push this problem around (I don’t know a solution) whenever
we are about to print a parenthesized declarator with no name but with attributes, we comment out the
attributes so you can see them (for whatever is worth) without confusing the compiler. For example, here is
how we would print the above type:

int A2 /*(A1)=*/[]

20

Handling of predefined GCC attributes GCC already supports attributes in a lot of places in decla-
rations. The only place where we support attributes and GCC does not is right before the { that starts a
function body.

GCC classifies its attributes in attributes for functions, for variables and for types, although the latter
category is only usable in definition of struct or union types and is not nearly as powerful as the CIL type
attributes. We have made an effort to reclassify GCC attributes as name and type attributes (they only
apply for function types). Here is what we came up with:

e GCC name attributes:

section, constructor, destructor, unused, weak, no_instrument_function, noreturn, alias, no_check_memory_usage,
dllinport, dllexport, exception, model

Note: the "noreturn” attribute would be more appropriately qualified as a function type attribute.
But we classify it as a name attribute to make it easier to support a similarly named MSVC attribute.

e GCC function type attributes:
fconst (printed as ”const”), format, regparm, stdcall, cdecl, longcall

I was not able to completely decipher the position in which these attributes must go. So, the CIL
elaborator knows these names and applies the following rules:

— All of the name attributes that appear in the specifier part (i.e. at the beginning) of a declaration
are associated with all declared names.

— All of the name attributes that appear at the end of a declarator are associated with the particular
name being declared.

— More complicated is the handling of the function type attributes, since there can be more than
one function in a single declaration (a function returning a pointer to a function). Lacking any
real understanding of how GCC handles this, I attach the function type attribute to the "nearest”
function. This means that if a pointer to a function is "nearby” the attribute will be correctly
associated with the function. In truth I pray that nobody uses declarations as that of x3 above.

Handling of predefined MSVC attributes MSVC has two kinds of attributes, declaration modifiers
to be printed before the storage specifier using the notation ”__declspec(...)” and a few function type
attributes, printed almost as our CIL function type attributes.

The following are the name attributes that are printed using __declspec right before the storage desig-
nator of the declaration: thread, naked, dllimport, dllexport, noreturn

The following are the function type attributes supported by MSVC: fastcall, cdecl, stdcall

It is not worth going into the obscure details of where MSVC accepts these type attributes. The parser
thinks it knows these details and it pulls these attributes from wherever they might be placed. The important
thing is that MSVC will accept if we print them according to the rules of the CIL attributes !

7 The CIL Driver

We have packaged CIL as an application cilly that contains certain example modules, such as logwrites.ml
(a module that instruments code to print the addresses of memory locations being written). Normally, you
write another module like that, add command-line options and an invocation of your module in src/main.ml.
Once you compile CIL you will obtain the file obj/cilly.asm.exe.

We wrote a driver for this executable that makes it easy to invoke your analysis on existing C code with
very little manual intervention. This driver is bin/cilly and is quite powerful. Note that the cilly script
is configured during installation with the path where CIL resides. This means that you can move it to any
place you want.

A simple use of the driver is:

bin/cilly --save-temps -D HAPPY_MOOD -I myincludes hello.c -o hello

21

--save-temps tells CIL to save the resulting output files in the current directory. Otherwise, they’ll be
put in /tmp and deleted automatically. Not that this is the only CIL-specific flag in the list — the other flags
use gec’s syntax.

This performs the following actions:

e preprocessing using the -D and -I arguments with the resulting file left in hello.1i,

e the invocation of the cilly.asm application which parses hello.i converts it to CIL and the pretty-
prints it to hello.cil.c

e another round of preprocessing with the result placed in hello.cil.i

e the true compilation with the result in hello.cil.o

e a linking phase with the result in hello

Note that cilly behaves like the gcc compiler. This makes it easy to use it with existing Makefiles:
make CC="bin/cilly" LD="bin/cilly"

cilly can also behave as the Microsoft Visual C compiler, if the first argument is ——-mode=MSVC:
bin/cilly --mode=MSVC /D HAPPY_MOOD /I myincludes hello.c /Fe hello.exe

(This in turn will pass a -=-MSVC flag to the underlying cilly.asm process which will make it understand
the Microsoft Visual C extensions)

cilly can also behave as the archiver ar, if it is passed an argument --mode=AR. Note that only the cr
mode is supported (create a new archive and replace all files in there). Therefore the previous version of the
archive is lost. You will also need to remove any other commands that operate on the generated library (e.g.
ranlib, lorder), as the .a file is no longer an actual binary library.

Furthermore, cilly allows you to pass some arguments on to the underlying cilly.asm process. As a
general rule all arguments that start with —-- and that cilly itself does not process, are passed on. For
example,

bin/cilly --dologwrites -D HAPPY_MOOD -I myincludes hello.c -o hello.exe

will produce a file hello.cil.c that prints all the memory addresses written by the application.

The most powerful feature of cilly is that it can collect all the sources in your project, merge them into
one file and then apply CIL. This makes it a breeze to do whole-program analysis and transformation. All
you have to do is to pass the —-merge flag to cilly:

make CC="bin/cilly --save-temps --dologwrites —-merge"
You can even leave some files untouched:
make CC="bin/cilly --save-temps --dologwrites --merge --leavealone=foo --leavealone=bar"

This will merge all the files except those with the basename foo and bar. Those files will be compiled
as usual and then linked in at the very end.
The sequence of actions performed by cilly depends on whether merging is turned on or not:

e If merging is off

1. For every file file.c to compile

(a) Preprocess the file with the given arguments to produce file.i
(b) Invoke cilly.asm to produce a file.cil.c

(c) Preprocess to file.cil.i

(d) Invoke the underlying compiler to produce file.cil.o

2. Link the resulting objects

22

e If merging is on

1. For every file file.c to compile

(a) Preprocess the file with the given arguments to produce file.i
(b) Save the preprocessed source as file.o

2. When linking executable hello.exe, look at every object file that must be linked and see if
it actually contains preprocessed source. Pass all those files to a special merging application
(described in Section 13) to produce hello.exe_comb.c

. Invoke cilly.asm to produce a hello.exe_comb.cil.c

3

4. Preprocess to hello.exe_comb.cil.i

5. Invoke the underlying compiler to produce hello.exe_comb.cil.o
6

. Invoke the actual linker to produce hello.exe

Note that files that you specify with —-leavealone are not merged and never presented to CIL. They
are compiled as usual and then are linked in at the end.
And a final feature of cilly is that it can substitute copies of the system’s include files:

make CC="bin/cilly --includedir=myinclude"

This will force the preprocessor to use the file myinclude/xxx/stdio.h (if it exists) whenever it en-
counters #include <stdio.h>. The xxx is a string that identifies the compiler version you are using. This
modified include files should be produced with the patcher script (see Section 14).

7.1 cilly Options

Among the options for the cilly you can put anything that can normally go in the command line of the
compiler that cilly is impersonating. cilly will do its best to pass those options along to the appropriate
subprocess. In addition, the following options are supported (a complete and up-to-date list can always be
obtained by running cilly --help):

e ——gcc=command Tell cilly to use command to invoke gcc, e.g. --gcc=arm-elf-gcc to use a cross-
compiler. See also the -—envmachine option below that tells CIL to assume a different machine model.

e —-mode=mode This must be the first argument if present. It makes cilly behave as a given compiled.
The following modes are recognized:

— GNUCC - the GNU C Compiler. This is the default.

— MSVC - the Microsoft Visual C compiler. Of course, you should pass only MSVC valid options
in this case.

— AR - the archiver ar. Only the mode cr is supported and the original version of the archive is
lost.

e —-help Prints a list of the options supported.
e —-verbose Prints lots of messages about what is going on.
e ——stages Less than —--verbose but lets you see what cilly is doing.

e ——merge This tells cilly to first attempt to collect into one source file all of the sources that make
your application, and then to apply cilly.asm on the resulting source. The sequence of actions in this
case is described above and the merger itself is described in Section 13.

e —-leavealone=xxx. Do not merge and do not present to CIL the files whose basename is ”xxx”. These
files are compiled as usual and linked in at the end.

23

e ——includedir=xxx. Override the include files with those in the given directory. The given directory
is the same name that was given an an argument to the patcher (see Section 14). In particular this
means that that directory contains subdirectories named based on the current compiler version. The
patcher creates those directories.

e —-usecabs. Do not CIL, but instead just parse the source and print its AST out. This should looked
like the preprocessed file. This is useful when you suspect that the co