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Chapter 1

Introduction

This manual describes the Smallsemi package (Version 0.6.8) for GAP.
The Smallsemi package is a data library of semigroups of small size. It provides all semigroups

with at most 8 elements as well as various information about these objects. The reason that semigroups
of higher orders are not included is the huge number of such objects. The numbers of semigroups of
sizes 1 to 9 are given in the table below (orders not included in the library are in italics). The number
of semigroups of size 10 is not known at the time of writing.

Size Number of semigroups
1 1
2 4
3 18
4 126
5 1 160
6 15 973
7 836 021
8 1 843 120 128
9 52 989 400 714 478

The initial idea for Smallsemi was developed out of the wish for an extensive number of examples
of semigroups of moderate size. This lead to the idea of an electronical database. As an existing
example the SmallGroups Library [BEO02] was an inspiration on how such a project could be
established. Unfortunately the number of semigroups is so much bigger, and most of them bare so
little structure, that new techniques to store and handle the semigroups had to be developed. Of course,
the first step was to actually construct all the semigroups.

In the remainder of the introduction we explain what you need to do to install and optimize Small-
semi; see Subsections 1.1 and 1.2.

In Chapter 2 we explain how the semigroups where obtained, what exactly is stored and how, and
which additional properties have been precomputed.

The the types of use Smallsemi is intended for and its limitations are described in Chapter 3. The
extensive examples can be used as a quick-start guide and as something to come back to after reading
the technical details about available functionality in the subsequent sections.

Chapter 4 has all the information about available functions.

4
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1.1 Requirements

This software is written for GAP 4. It requires an existing installation of GAP in version 4.5 or higher.
It is recommended but not necessary to have the GAP 4 packages Citrus and sgpviz installed as

well. Citrus provides a wide range of functionality for working with semigroups which is not available
in the GAP core system while sgpviz is recommended for its ability to graphically represent small
semigroups.

1.1.1 Operating System

The current version of Smallsemi was created for use under Unix. It will also work under Windows
but only if all files in the directory smallsemi/data and all of its subdirectories are uncompressed.
See Subsection 1.1.3 for additional comments on working with Smallsemi under Windows.

1.1.2 RAM

Working with Smallsemi can be memory expensive. We recommend to have at least 1 GB of RAM
available. With less than 512 MB not all the semigroups of size 8 can be accessed.

You should be able to use the semigroups of orders 1 through 7 having 128 MB of RAM only. If
you have a system with little memory or want to use as little memory as possible for the GAP process
try using UnloadSmallsemiData (4.1.9) to free memory after every access to the library. This is
likely to slow down computations though.

For further infomation on how GAP uses memory see 1.2.4 or (Reference: Command Line
Options).

1.1.3 Disk Space

As the data in the library is compressed, 30 MB of disk space will be sufficient to install Smallsemi
under Unix. To use the library under Windows the data has to be uncompressed and will then occupy
approx. 1.6 GB.

All data files are compressed using gzip. Under Unix GAP can access the original contents of a
gzipped file without uncompressing it as a whole by using a pipe. On 32-bit systems this might fail
in extreme circumstances. In that case GAP has to be restarted. This functionality is not currently
available under Windows (or for any other compression type).

It should be possible to use Smallsemi under Windows after unzipping all data files. (These are
located in the directory data and its subdirectories and have the file extension .gz.)

1.2 Installation and Setup

1.2.1 Download and Extract Smallsemi

The installation follows standard GAP rules as outlined in the following two steps; see (Reference:
Installing a GAP Package) for further details.

1. Download one of the archives smallsemi-0.6.8.tar.gz or smallsemi-0.6.8.tar.bz2
from
http://www-history.mcs.st-andrews.ac.uk/~jamesm/smallsemi/index.html

http://www-history.mcs.st-andrews.ac.uk/~jamesm/smallsemi/index.html
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2. Move the archive inside a pkg directory. This can be either the main pkg directory in your GAP
installation or your personal pkg directory.

3. Complete the installation by unpacking the archive, e.g. under Linux type tar -xzf
smallsemi-0.6.8.tar.gz at the prompt for the gzipped tar-archive. A subdirectory
smallsemi will be created inside the pkg directory.

1.2.2 Contents

In the subdirectory smallsemi you should find the following files and folders:

CHANGELOG documents changes to previous versions
data contains the data files for semigroups
doc contains the documentation
gap contains the GAP code
GPLv3 version 3 of the GNU General Public License
init.g implementation file of Smallsemi
PackageInfo.g meta information about Smallsemi
read.g declaration file of Smallsemi
README.txt the README file of Smallsemi
tst contains test files

1.2.3 Loading

To use the package, start a GAP session and type LoadPackage("smallsemi"); at the GAP prompt.
You should see the following:

Example
gap> LoadPackage("smallsemi");
-----------------------------------------------------------------------------
Smallsemi - A library of small semigroups
by Andreas Distler & James Mitchell
For contents, type: ?Smallsemi:
Loading Smallsemi 0.6.8 ...
-----------------------------------------------------------------------------
true
gap>

You might want to start GAP with a specified amount of memory; see Subsection 1.2.4.

1.2.4 Memory Issues

As mentioned in Subsection 1.1.2, working with smallsemi can be memory expensive. It is therefore
necessary to either:

1. start GAP with 1 GB of memory (if possible), for example, by typing gap -m 1g; or

2. extend the amount memory used by typing return; in the break-loop whenever GAP runs out
of memory. For example,
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Example
gap> s:=SmallSemigroup(8, 183244314);
#I Loading ’smallsemi’ data. Please be patient.
#I Loading ’smallsemi’ data.
Error, exceeded the permitted memory (‘-o’ command line option)
SplitString( StringFile( file ), "\n" ) called from
READ_3NIL_DATA( diag ); called from
RecoverMultiplicationTable( size, nr ) called from
<function>( <arguments> ) called from read-eval-loop
you can ’return;’
brk>

1.2.5 Testing

You should verify the success of the installation by running the test file. This is done by the following
command and should return a similar output (the number of GAP4stones might differ depending on
the speed of your machine):

Example
gap> ReadPackage( "smallsemi", "tst/testall.g" );
Smallsemi package: small.tst
GAP4stones: 41
Smallsemi package: properties.tst
GAP4stones: 0
Smallsemi package: enums.tst
GAP4stones: 1

1.2.6 Customizing

If you are using Smallsemi regularly you might want to put the command
LoadPackage("smallsemi"); into your .gaprc file; see (Reference: The gap.ini and gaprc
files). Another option is to save a workspace after loading Smallsemi and executing the following
commands

Example
gap> SmallSemigroup(7,1);; MOREDATA2TO8;;
#I smallsemi: loading data for semigroups of size 7.
#I smallsemi: loading data for semigroup properties. Please be patient.
gap> SaveWorkspace( "<filename for the workspace>" );

Doing this will mean that it is not necessary to load the data from the library every time you start a
new GAP session; see (Reference: Saving and Loading a Workspace).

The size of the file containing the saved workspace will be around 76 MB. Loading this workspace
is much quicker than starting a new GAP session and all the data for semigroups of orders 1 through
7 is immediately available. (If you are working under Unix you can make use of the functionality
mentioned in Subsection 1.1.3 and compress the workspace with gzip to roughly 10 MB.)



Chapter 2

The Data in the Library

In this chapter we outline how the semigroups in the library were found, exactly what semigroups
are available, how they are stored, and how further information regarding the properties of these
semigroups is handled.

2.1 Creation of the Semigroups

This section describes which semigroups are contained in the library and how they were determined.
The purpose of the library is to provide one semigroup of every ‘structural type’. The semigroups

are represented by their multiplication table. Usually, say, for groups, ‘stuctural type’ means ’up
to isomorphism’ which corresponds to relabelling the elements. Roughly speaking, transposing the
multiplicationable of a semigroup does not alter its important structure features either. More precisely,
the usual description of the structure of a semigroup using Green’s relations is invariant under these
operations. So, we consider two semigroups to be of the same structure if they are isomorphic or
anti-isomorphic. We will refer to semigroups that are isomorphic or anti-isomorphic as equivalent.
The vast number of non-equivalent semigroups with small numbers of elements (see Table 1) limits
us to providing the semigroups with at most 8 elements.

The problem of constructing semigroups up to isomorphism and anti-isomorphism has been con-
sidered by many authors. For very small orders, that is 1 to 5, all the semigroups up to isomorphism
and anti-isomorphism were computed by hand [THA+55] and [Tam54]. The first instance of the use
of computers to find all semigroups up to isomorphism and anti-isomorphism is described in Forsythe
[For55]. Subsequently, the number of semigroups with 6 elements was found by Plemmons [Ple67],
with 7 elements by Jürgensen and Wick [JW77], with 8 by Satoh, Yama and Tokizawa [SYT94], and
with 9 by Distler, Kelsey, and Mitchell in 2008. Even if the authors could store their results they had
no means to make them publically available. Plemmons, for example, explicitly states that he had all
multiplication tables for semigroups of size 6 on magnetic tape. Jürgensen and Wick back in 1977
did not store the semigroups of size 7 because of their large number. The tables for semigroups with
8 elements use up several gigabytes of disk space (while the compressed library files in Smallsemi
need only 22 MB).

Trying to recreate the results from the existing literature, it quickly becomes obvious that even
some 15 years later, with considerably more computing power available, the task of obtaining all
semigroups with 8 elements is still by no means trivial. Our technique was to find all associative
multiplication tables up to isomorphism and anti-isomorphism using a combination of GAP and the
Contraint Satisfaction Problem (CSP) solver Minion [GJM06]. More specific details on the search

8
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will be available in a later version of Smallsemi.

2.2 Storing the Semigroups

As discussed in the previous section, we store data relating to the multiplication table of one repre-
sentative of every class of equivalent semigroups with 1 to 8 elements.

The tables for semigroups with 2 to 7 elements are stored in the files data2.gl.gz to
data7.gl.gz in the directory data/data2to7.

For semigroups of size 8 the data is contained in the directories data/data8-3nil
and data/data8. The former contains the data relating to 3-nilpotent semigroups (see
NilpotencyDegree (4.2.34)) and the latter the data for all the remaining semigroups of size 8.

The tables of non-3-nilpotent semigroups are partitioned into files 8diag<entries in the
diagonal>.gl.gz with respect to their diagonals. For example, 8diag12345678.gl.gz contains
tables for all the bands of order 8.

Any 3-nilpotent semigroup has a unique minimal generating set containing those elements that do
not appear in the table. We only require the subtable with entries corresponding to the product of two
generators, as all other products are zero. Thus if m is the number of generators, we retain information
regarding the entries of an m×m table. However, we do not store all the tables in this case. The m×m
tables can be sorted into ranges and then the first table and the number of tables in the range are
stored. For every diagonal there is a file diag<entries in the diagonal>.gl.gz containing the
first tables of each range and a separate file named diag<entries in the diagonal>pos.gl.gz
containing the lengths of these ranges.

class file names data size - gzipped compression factor
sizes 2-7 data<size>.gl 39 MB 680 KB 58
size 8, not 3-nilpotent 8diag<diagonal>.gl 613 MB 10 MB 61
size 8, 3-nilpotent diag<diagonal>.gl 974 MB 11 MB 89

All together the GAP library files take just under 22 MB of disk space after compression while
allowing fast recovering of the data. The compression rates demonstrated in the table above were
achieved using gzip with the highest possible compression (-9 switch) as well as careful analysis and
intensive testing of how best to structure the data in the files.

The semigroups in the library satisfying certain standard properties have been identified and this
information is stored in the files info1.g.gz to info8.g.gz. To find out what properties have been
considered see PrecomputedSmallSemisInfo (4.5.19).



Chapter 3

Extended Examples

The main features of the library can be summarized in three points: it provides a complete set of
semigroups up to isomorphism and anti-isomorphism of sizes up to 8; it carries a vast amount of
precomputed information about these semigroups; and there is an identification function which takes
a semigroup with at most 8 elements and returns a map to the equivalent one from the library.

These features lead to different ways of using the library. It is impossible to describe - or even
to anticipate - all possible types of usage. Most problems will admit multiple solutions. We find it
difficult to predict which will be most effective. The examples in this chapter should give an idea of
the differences in the various functions and help you to find an alternative if a computation uses more
time or memory than you have available.

Let us go step by step through some ways to use the library showing which tools are provided.

3.1 Lists, Enumerators and Iterators of Semigroups

At first one could want to search through the stored semigroups for one or all semigroups with a
certain property. Going through all the semigroups can take a long time. Just to create all the 1.8
billion semigroups as objects in GAP takes around a day on a modern PC. Doing a simple test on
all the semigroups in the library might take another day. Performing complicated tests easily takes
weeks. To avoid this, many properties of the semigroups were precomputed. Semigroups with or
without a precomputed property can be accessed as quickly as simply creating the same number of
semigroups. (Note that timings of two calls to the same command may vary and, of course, heavily
depend on your machine.)

Example
gap> # obtain a list of all semigroups with 6 elements
gap> AllSmallSemigroups( 6 );;
gap> time;
2636
gap> # obtain a list of all commutative semigroups with 7 elements
gap> AllSmallSemigroups( 7, IsCommutative, true );;
gap> time;
2957
gap> # compare the numbers of semigroups in the two lists
gap> NrSmallSemigroups( 6 ); NrSmallSemigroups( 7, IsCommutative, true );
15973
17291

10
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(In all the examples in this section the info messages which are given by default when data is loaded
are turned off via SetInfoLevel(InfoSmallSemi,0).)

We provide three commands that can be used if one is interested in all semigroups with some
properties. These are AllSmallSemigroups (4.5.1), EnumeratorOfSmallSemigroups (4.5.2), and
IteratorOfSmallSemigroups (4.5.11). Which one is best to use depends a lot on the situation.
Here we attempt to provide some insight about the essential differences.

3.1.1 Precomputed properties

We start with examples using only precomputed information. In this case there is essentially no
advantage of calling an iterator instead of an enumerator. Thus only AllSmallSemigroups (4.5.1)
and EnumeratorOfSmallSemigroups (4.5.2) will be considered.

We first compare the memory usage and the setup time. Assume we are interested in the commu-
tative semigroups with at most 7 elements.

Example
gap> list := AllSmallSemigroups([1..7],IsCommutativeSemigroup,true);;
gap> time; # the time needed will always depend on your machine
3180
gap> enum := EnumeratorOfSmallSemigroups([1..7],IsCommutativeSemigroup,true);
<enumerator of semigroups of sizes [ 1 .. 7 ]>
gap> time;
8

The enumerator stores the information, which semigroups it contains, but only creates the semigroups
when asked for them explicitly.

Example
gap> # now the semigroups have to be created ...
gap> for sg in enum do
# do nothing, the semigroup will be created anyway
od;
gap> time;
3428
gap> # ... and again if you want to look through them another time ...
gap> for sg in enum do
od;
gap> time;
3437
gap> # ... not so for the list of semigroups though
gap> for sg in list do
od;
gap> time;
4

There are several reasons why one would nevertheless prefer an enumerator, one is the smaller need
for memory. While the number of semigroups in this example is rather moderate (compared with all
the semigroups in the library) the difference is remarkable:

Example
gap> nr := Length(enum);
17291
gap> MemoryUsage(enum);
70507
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gap> MemoryUsage(list); # this will take a while ...
19089280
gap> # ... but you can get a close approximation much faster
gap> sg := OneSmallSemigroup(7,IsCommutativeSemigroup,true);
<small semigroup of size 7>
gap> nr*MemoryUsage(sg);
19020100

As said before the advantage of the enumerator comes from the fact that the members of it are created
anew every time they are called. This means on the other hand that information that is computed is
not stored.

Example
gap> IsZeroSemigroup(list[3]); # a semigroup from the list ...
false
gap> KnownPropertiesOfObject(list[3]); # ... can store new information
[ "IsEmpty", "IsTrivial", "IsNonTrivial", "IsFinite", "IsDuplicateFree",

"IsAssociative", "IsCommutativeSemigroup", "IsZeroSemigroup" ]
gap> IsZeroSemigroup(enum[3]); # semigroups in the enumerator ...
false
gap> KnownPropertiesOfObject(enum[3]); # ... are created anew in every call
[ "IsEmpty", "IsTrivial", "IsNonTrivial", "IsFinite", "IsDuplicateFree",

"IsAssociative", "IsCommutativeSemigroup" ]
gap> # but if it turns out this is the semigroup you want to analyse, just do
gap> sg := enum[3];

Observe that in the last example the semigroup from the enumerator knew about the property that was
used to create the enumerator. The enumerator stores this knowledge and passes it on whenever a
member is called.

Another reason to prefer an enumerator is that one might only be interested in some of the elements
it contains. This could become clear after analysing some of the elements and then there is no time
wasted in creating all semigroups in the enumerator. Or possibly creating the enumerator involving
precomputed properties was just the first step. As described in Section 4.5 enumerators themselves
can be given as argument to get to a more restricted class of semigroups. This leads us to the next part
of this section.

3.1.2 User functions

We now come to examples dealing with properties that are not precomputed - including user defined
functions. This makes IteratorOfSmallSemigroups (4.5.11) interesting again. Assume you want
to work with bands (IsBand (4.2.5)) of order 8 having 1 Green’s D-class (see (Reference: Green’s
Relations)). You might feel tempted to implement a function testing a semigroup for this combination
of properties.

Example
gap> isFascinatingSemigroup := function(sgrp)
local dclasses;
dclasses := GreensDClasses(sgrp);
return IsBand(sgrp) and Length(dclasses) = 1;
end;

But then the precomputed property IsBand (4.2.5) is hidden inside your function and a call like
AllSmallSemigroups(8,isFascinatingSemigroup,true) would take days to complete.
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The following finds the same semigroups more efficiently:
Example

gap> list:=AllSmallSemigroups(8,IsBand,true,x->Size(GreensDClasses(x)),1);
[ <small semigroup of size 8>, <small semigroup of size 8> ]
gap> time;
49211
gap> enum:=EnumeratorOfSmallSemigroups(8,IsBand,true,x->Size(GreensDClasses(x)),1);
<enumerator of semigroups of size 8>
gap> time;
48723

Observe that the enumerator lost its advantage of returning the answer faster because not all properties
are precomputed. Thus all bands have to be constructed to test their number of D-classes. As the num-
ber of such semigroups is small, AllSmallSemigroups (4.5.1) is the better choice in this example -
remember that the semigroups from the enumerator have to be recreated in every call. Often one does
not have this kind of knowledge beforehand. Even for a large number of semigroups the enumerator
still has the advantage of using far less memory as it stores only the IDs of the semigroups. Before
explaining more about this let us for a moment go back to the semigroups from the previous example.
It turns out they are the 2 non-equivalent rectangular bands (IsRectangularBand (4.2.22)) with 8
elements.

Example
gap> ForAll(list,IsRectangularBand);
true

As a last example in this subsection we look at semigroups from the library that are not nilpotent. As
there are quite some of these we will first try an enumerator. The obvious call seems to be

Example
gap> enum1 := EnumeratorOfSmallSemigroups([1..7],IsNilpotentSemigroup,false);
<enumerator of semigroups of sizes [ 2, 3, 4, 5, 6, 7 ]>
gap> time;
103403

However, we would like to include the semigroups of order 8 as well. As IsNilpotentSemigroup
(4.2.20) is not a precomputed property in the current version of Smallsemi this would take a long
time. Here, additional knowledge, about the way the semigroups are stored in the library, is helpful.
The description of NilpotencyDegree (4.2.34) contains information on the IDs of all 3-nilpotent
semigroups of order 8. We can create an enumerator without those semigroups doing the following:

Example
gap> # all 8 element semigroups that are not 3-nilpotent
gap> enum2 := EnumeratorOfSmallSemigroupsByIds([8],[[1..11433106]]);
<enumerator of semigroups of size 8>

Out of this enumerator the subclass of not nilpotent semigroups can be extracted.
Example

gap> enum3 := EnumeratorOfSmallSemigroups(enum2,IsNilpotentSemigroup,false);
gap> # This still takes quite a while though
gap> time;
1931140
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You can avoid the waiting time at setup by using an iterator instead of an enumerator. An iterator does
not know how many elements it contains, one can always just access the next element - if such exists
- and one cannot go back. (Making copies of an iterator can help to circumvent this problem.) On the
other hand one could in the above example start investigating the first couple of elements right away.

Example
gap> iter := IteratorOfSmallSemigroups(enum2,IsNilpotentSemigroup,false);
<iterator of semigroups of size 8>
gap> for i in [1..100000] do
NextIterator(iter);
od;
gap> time;
30785

But even if you know you want to inspect all the semigroups having a property which is not precom-
puted, an iterator has the advantage that it does not create the semigroups before you can actually
work with them. To create an enumerator all semigroups in question will be created and - as said
before - every element is created anew when it is accessed. An iterator on the other hand creates the
semigroups in question one-by-one and returns the next one having the property. This makes a big
difference if the number of semigroups one is interested in is big like in the example of not nilpotent
semigroups of size 8. In the former example with the rectangular bands it would not play a role and
the disadvantages of an iterator would prevail.

As you can see the number of semigroups you are interested in is even more important in the case
of user defined functions than it was in the previous section about precomputed properties. Sometimes
you might have a rough idea about the numbers - or even a very good one - to base your choice on.
Otherwise the best approach seems to consist of two steps. First, create an enumerator involving
all precomputed properties (try to find as many implied properties as possible). Then work with an
iterator, call the semigroups one-by-one and store them in a separate list if you think you might want
to look at them again at a later stage.

3.1.3 Semigroups of order 8

When using enumerators and iterators of semigroups of order 8 there are some limitations. In a 32-
bit system the number of semigroups of order 8 exceeds the maximal length of a list in GAP. The
following will work in a 64-bit system, but not on a 32-bit system.

Example
gap> EnumeratorOfSmallSemigroups(8);

In all other cases there is currently no difference between 32-bit and 64-bit systems. Hence the fol-
lowing will fail in any case.

Example
gap> EnumeratorOfSmallSemigroups(8,IsCommutativeSemigroup,false);

Note though that an enumerator of semigroups of order 8 can be created if one of the required prop-
erties is precomputed and takes true as value. This fact was used in the previous subsection, when
creating the enumerator of all bands of order 8 having 1 Green’s D-class.

One could try to circumvent the described problem by using a iterator. The command
Example

gap> iter := IteratorOfSmallSemigroups(8,IsCommutativeSemigroup,false);
<iterator of semigroups of size 8>
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will succeed. But running through the elements in the iterator can take a long time since the precom-
puted information is not utilized. A better idea in the current version of Smallsemi is to divide the
enumerator into smaller pieces by restricting the range of IDs considered at once to at most 228− 1
(the maximal length of a list in a 32-bit GAP) or possibly by a smaller value, depending on the amount
of memory you have available. For example start with

Example
gap> enum1 := EnumeratorOfSmallSemigroupsByIds([8],[[1..2^24-1]]);
<enumerator of semigroups of size 8>
gap> enum2 := EnumeratorOfSmallSemigroups(enum1, IsCommutativeSemigroup, false);
<enumerator of semigroups of size 8>

Thanks go to Michal Stolorz for the idea of circumventing the current performance issue for enumer-
ators of small semigroups of order 8 by splitting it in the described way.

3.2 Identifying Semigroups

The data in Smallsemi is as a big catalogue of all structural types of semigroups with at most 8
elements making it possible to refer to the types by their catalogue number, that is by their ID. With
IdSmallSemigroup (4.1.6) one can find the ID of the structural type of a particular semigroup with
at most 8 elements.

Example
gap> t1 := RandomTransformation(3);
Transformation( [ 1, 3, 1 ] )
gap> t2 := RandomTransformation(3);
Transformation( [ 1, 2, 3 ] )
gap> sgrp := SemigroupByGenerators([t1,t2]);
<semigroup with 2 generators>
gap> Size(sgrp);
3
gap> IdSmallSemigroup(sgrp);
[ 3, 8 ]

Moreover, one can draw conclusions about a semigroup of size at most 8 using the precomputed
information about the equivalent semigroup from the library. The precomputed properties are all
invariant under isomorphism and anti-isomorphism. This is most useful in the case where there is no
method in GAP to decide the property in the original representation of the semigroup.

Example
gap> # use the semigroup from the previous example
gap> IsCommutative(sgrp); # no need to use the library for this
true
gap> # for the following there exists no method for a trans-
gap> # formation semigroup; access the precomputed information instead
gap> IsMultSemigroupOfNearRing(SmallSemigroup([3,8]));
false

EquivalenceSmallSemigroup (4.1.7) even provides an isomorphism or anti-isomorphism to a semi-
group from the library. This means one can map elements between the semigroups. Remember that
an isomorphism is returned whenever one exists. This allows to distinguish between structure types
up to isomorphism. Note though, that no information about subsets - like the set of idempotents or
a generating set - is precomputed for semigroups in the library. If an operation has a method for the
semigroup in the original representation, it is usually more sensible to simply call this.
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Example
gap> t1 := RandomTransformation(3);
Transformation( [ 2, 2, 1 ] )
gap> t2 := RandomTransformation(3);
Transformation( [ 2, 1, 1 ] )
gap> sgrp := SemigroupByGenerators([t1,t2]);
<semigroup with 2 generators>
gap> Size(sgrp);
6
gap> map := EquivalenceSmallSemigroup(sgrp);
MappingByFunction( <semigroup with 2 generators>, <small semigroup of size
6>, function( x ) ... end )
gap> RespectsMultiplication(map); # verify that this is an anti-isomorphism
false
gap> MinimalGeneratingSet(Range(map));
[ s2, s4 ]
gap> PreImage(map,last); # get a minimal generating set of <sgrp>
[ Transformation( [ 1, 1, 2 ] ), Transformation( [ 2, 1, 1 ] ) ]
gap> Idempotents(Range(map));
[ s1, s3, s5 ]
gap> PreImage(map,last); # in the same way you can get the idempotents ...
[ Transformation( [ 1, 1, 1 ] ), Transformation( [ 1, 2, 2 ] ),

Transformation( [ 2, 2, 2 ] ) ]
gap> Idempotents(sgrp); # ... but this can be done directly instead
[ Transformation( [ 1, 1, 1 ] ), Transformation( [ 1, 2, 2 ] ),

Transformation( [ 2, 2, 2 ] ) ]

If for a certain application you are interested in the semigroups up to isomorphism you can still use
the IDs from Smallsemi. Simply mark the ID with ∗, or however else you denote the dual of a
semigroup, to refer to the semigroup being anti-isomorphic to the one in the library having the same
ID. For all semigroups IsSelfDualSemigroup (4.2.25) is precomputed. This will help to decide
whether a semigroup and its dual are actually non-isomorphic.



Chapter 4

Functionality

4.1 Individual Semigroups

The semigroups of sizes 1 to 8 are available up to isomorphism and anti-isomorphism in Smallsemi.
Every semigroup in the library is identified by its size m and a number n lying between 1 and the
number of semigroups of size m (see Table 1). We call the pair (m,n) the ID of the semigroup.

In this section we give details about the functions relating to individual semigroups in Smallsemi.
This includes how to access semigroups in the library and how to identify the semigroup in the library
equivalent to an arbitrary semigroup (of size 1 to 8).

If you are interested in the properties of a semigroup in the library or would like to find all the
semigroups satisfying a given set of properties please see Section 4.2 or Section 4.5 respectively.

4.1.1 SmallSemigroup

. SmallSemigroup(m, n) (function)

. SmallSemigroupNC(m, n) (function)

returns the semigroup with ID (m,n) from the library, that is the n th semigroup with m elements.
In SmallSemigroupNC no check is performed to verify that m and n are valid arguments.
In SmallSemigroup an error is signalled if the semigroups of size m are not classified or if n is

greater than the number of semigroups with m elements.
Example

gap> SmallSemigroup(8,1353452);
<small semigroup of size 8>
gap> SmallSemigroupNC(5,1);
<small semigroup of size 5>
gap> SmallSemigroupNC(5,1)=SmallSemigroup(5,1);
true

4.1.2 IsSmallSemigroup

. IsSmallSemigroup(sgrp) (filter)

returns true if sgrp is a semigroup from the library, that is if it was created using
SmallSemigroup (4.1.1). Otherwise false is returned.

17
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Example
gap> sgrp:=RandomSmallSemigroup(5);
<small semigroup of size 5>
gap> IsSmallSemigroup(sgrp);
true
gap> sgrp:=Semigroup(Transformation([1]));;
gap> IsSmallSemigroup(sgrp);
false

4.1.3 IsSmallSemigroupElt

. IsSmallSemigroupElt(x) (filter)

returns true if x is an element of a semigroup from the library, and false otherwise.
IsSmallSemigroupElt is a representation satisfying IsPositionalObjectRep

and IsMultiplicativeElement (Reference: IsMultiplicativeElement) and
IsAttributeStoringRep .

Example
gap> IsSmallSemigroupElt(Transformation([1]));
false
gap> sgrp:=RandomSmallSemigroup(5);;
gap> IsSmallSemigroupElt(Random(sgrp));
true

4.1.4 RecoverMultiplicationTable

. RecoverMultiplicationTable(m, n) (function)

. RecoverMultiplicationTableNC(m, n) (function)

return the multiplication table of the n -th semigroup with m elements from the library.
If m is greater than 8 or n greater than the number of semigroups of size m , then fail is returned.

The NC version does not perform any tests on the input and will most likely run into an error in such
a case. Example

gap> RecoverMultiplicationTable(10,2);
fail
gap> RecoverMultiplicationTable(1,2);
fail
gap> RecoverMultiplicationTable(2,1);
[ [ 1, 1 ], [ 1, 1 ] ]
gap> RecoverMultiplicationTable(8,11111111);
[ [ 1, 1, 1, 1, 1, 1, 1, 1 ], [ 1, 1, 1, 1, 1, 1, 1, 3 ],

[ 3, 3, 3, 3, 3, 3, 3, 3 ], [ 1, 1, 1, 4, 4, 4, 4, 1 ],
[ 1, 2, 3, 4, 5, 6, 7, 1 ], [ 1, 2, 3, 4, 5, 6, 7, 1 ],
[ 1, 2, 3, 4, 5, 6, 7, 1 ], [ 8, 8, 8, 8, 8, 8, 8, 8 ] ]

gap> RecoverMultiplicationTable(2,11111111);
fail

Note that no semigroup is created calling this function but just the table is created. This makes it
useful if one wants to perform very simple (i.e. quick in GAP) tests on a large number of semigroups
which can be performed on the multiplication table.
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To create a semigroup with the multiplication table obtained by
RecoverMultiplicationTable(m,n) use the function SmallSemigroup (4.1.1) with argu-
ments m,n .

4.1.5 SemigroupByMultiplicationTableNC

. SemigroupByMultiplicationTableNC(table) (function)

returns an object with IsSemigroup (Reference: IsSemigroup) and multiplication table table
without checking if the multiplication defined by the table is associative.

If table is not associative, this can lead to errors and wrong results or might even crash GAP.
Example

gap> s:=SemigroupByMultiplicationTableNC([[1,2],[2,1]]);
<semigroup with 2 generators>
gap> IsSmallSemigroup(s);
false

Note that this function is not used to create semigroups when SmallSemigroup (4.1.1) is called. It
can be useful in combination with RecoverMultiplicationTable (4.1.4) if one wants to avoid that
a semigroup knows it comes from the library.

4.1.6 IdSmallSemigroup

. IdSmallSemigroup(sgrp) (attribute)

returns a pair [m, n] such that (m,n) is the ID of a semigroup in Smallsemi equivalent to sgrp .
The argument sgrp has to be a semigroup of size 8 or less, otherwise an error is signalled.

Example
gap> sgrp:=Semigroup(Transformation( [ 1, 2, 2 ] ), Transformation( [ 1, 2, 3 ] ));;
gap> IdSmallSemigroup(sgrp);
[ 2, 3 ]

4.1.7 EquivalenceSmallSemigroup

. EquivalenceSmallSemigroup(sgrp) (attribute)

returns a mapping map from sgrp to the semigroup in Smallsemi equivalent to sgrp . The map-
ping is an isomorphism if such exists and an anti-isomorphism otherwise. The argument sgrp has to
be a semigroup of size 8 or less, otherwise an error is signalled.

Example
gap> sgrp:=Semigroup(Transformation( [ 1, 2, 2 ] ),
> Transformation( [ 1, 2, 3 ] ));;
gap> EquivalenceSmallSemigroup(sgrp);
SemigroupHomomorphismByImages ( Monoid(
[ Transformation( [ 1, 2, 2 ] ) ] )-><small semigroup of size 2>)
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4.1.8 InfoSmallsemi

. InfoSmallsemi (info class)

is the info class (see (Reference: Info Functions)) of Smallsemi. The info level is initially set
to 1 which triggers a message whenever data is loaded into GAP.

4.1.9 UnloadSmallsemiData

. UnloadSmallsemiData(use_later) (function)

deletes most or all of the data from the GAP workspace that was loaded by Smallsemi.
If the boolean use_later is false all data loaded by Smallsemi is deleted from the workspace,

in which case Smallsemi is not guaranteed to work properly without restarting your GAP session.
If the boolean use_later is true only the recoverable data is deleted. This leaves roughly 10

MB of data in the workspace.

4.2 Properties of Semigroups

In this section we detail the GAP functions that can be used to determine whether a small semigroup
satisfies a certain property. Let S be a semigroup. Then

• S is a left zero semigroup if xy=x for all x,y in S .

• S is a right zero semigroup if xy=y for all x,y in S .

• S is commutative if xy=yx for all x,y in S .

• S is simple if it has no proper two-sided ideals.

• S is zero simple if the only 2-sided ideals are {0} and S .

• S is regular if for all x in S there exists y in S such that xyx=x .

• S is completely regular if every element of S lies in a subgroup.

• S is an inverse semigroup if every element x in S has a unique semigroup inverse, that is, a
unique element y such that xyx=x and yxy=y .

• S is a Clifford semigroup if it is a regular semigroup whose idempotents are central, that is, for
all e,x in S where e^2=e we have that ex=xe .

• S is a band if every element is an idempotent, that is, x^2=x for all x in S .

• S is a Brandt semigroup if it is inverse and zero simple.

• S is a rectangular band if for all x,y,z in S we have that x^2=x and xyz=xz .

• S is a semiband if it is generated by its idempotent elements, that is, elements satisfying x^2=x .

• S is an orthodox semigroup if it is regular and its idempotents (elements satisfying x^2=x ) form
a subsemigroup.
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• S is a zero semigroup if there exists an element 0 in S such that xy=0 for all x,y in S .

• S is a zero group if there exists an element 0 in S such that S without 0 is a group and for all x
in S we have that x0=0x=0 .

The MONOID package was used to determined which semigroups in the library satisfy the properties
above. All of the resulting information is stored in the library.

4.2.1 Annihilators

. Annihilators(sgrp) (attribute)

returns the set of annihilators of sgrp if sgrp contains a zero element and fail otherwise.
An element x in a semigroup with zero z is an annihilator if xy = yx = z for every element y in the

semigroup.
Example

gap> s := SmallSemigroup(5,6);
<small semigroup of size 5>
gap> Annihilators(s);
[ s1, s2 ]

4.2.2 DiagonalOfMultiplicationTable

. DiagonalOfMultiplicationTable(sgrp) (attribute)

returns the diagonal of the multiplication table of the semigroup sgrp .
Example

gap> s:=SmallSemigroup(8,10101);;
gap> DiagonalOfMultiplicationTable(s);
[ 1, 1, 1, 1, 1, 1, 1, 1 ]
gap> s:=SmallSemigroup(7,10101);;
gap> DiagonalOfMultiplicationTable(s);
[ 1, 1, 1, 1, 1, 1, 1 ]

4.2.3 DisplaySmallSemigroup

. DisplaySmallSemigroup(sgrp) (function)

displays all the information about the small semigroup sgrp that is stored in the library and its
Green’s classes and idempotents.

Example
gap> s:=SmallSemigroup(6, 3838);;
gap> DisplaySmallSemigroup(s);
IsBand: false
IsBrandtSemigroup: false
IsCommutative: false
IsCompletelyRegularSemigroup: false
IsFullTransformationSemigroupCopy: false
IsGroupAsSemigroup: false
IsIdempotentGenerated: false
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IsInverseSemigroup: false
IsMonogenicSemigroup: false
IsMonoidAsSemigroup: false
IsMultSemigroupOfNearRing: false
IsOrthodoxSemigroup: false
IsRectangularBand: false
IsRegularSemigroup: false
IsSelfDualSemigroup: false
IsSemigroupWithClosedIdempotents: true
IsSimpleSemigroup: false
IsSingularSemigroupCopy: false
IsZeroSemigroup: false
IsZeroSimpleSemigroup: false
MinimalGeneratingSet: [ s3, s4, s5, s6 ]
Idempotents: [ s1, s5, s6 ]
GreensRClasses: [ {s1}, {s2}, {s3}, {s4}, {s5}, {\
s6} ]
GreensLClasses: [ {s1}, {s2}, {s3}, {s4}, {s6} ]
GreensHClasses: [ {s1}, {s2}, {s3}, {s4}, {s5}, {\
s6} ]
GreensDClasses: [ {s1}, {s2}, {s3}, {s4}, {s6} ]

4.2.4 IndexPeriod

. IndexPeriod(x) (attribute)

returns the minimum numbers m, r such that x^{m+r}=x^m ; known as the index and period of
the small semigroup element x .

Example
gap> s:=SmallSemigroup(5,116);
<small semigroup of size 5>
gap> x:=Elements(s)[3];
s3
gap> IndexPeriod(x);
[ 2, 1 ]
gap> x^3=x^2;
true
gap> x^2=x^1;
false
gap> x^3=x^1;
false

4.2.5 IsBand

. IsBand(sgrp) (property)

returns true if the small semigroup sgrp is a band and false otherwise.
A semigroup sgrp is a band if every element is an idempotent, that is, x^2=x for all x in sgrp .

Example
gap> s:=SmallSemigroup(5,519);;
gap> IsBand(s);
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false
gap> s:=OneSmallSemigroup(5, IsBand, true);
<small semigroup of size 5>
gap> IsBand(s);
true
gap> IdSmallSemigroup(s);
[ 5, 1010 ]

4.2.6 IsBrandtSemigroup

. IsBrandtSemigroup(sgrp) (property)

returns true if the small semigroup sgrp is a Brandt semigroup and false otherwise.
A finite semigroup sgrp is a Brandt semigroup if it is inverse and zero simple.

Example
gap> s:=SmallSemigroup(5,519);;
gap> IsBrandtSemigroup(s);
false
gap> s:=OneSmallSemigroup(5, IsBrandtSemigroup, true);
<small semigroup of size 5>
gap> IsBrandtSemigroup(s);
true
gap> IdSmallSemigroup(s);
[ 5, 149 ]

4.2.7 IsCliffordSemigroup

. IsCliffordSemigroup(sgrp) (property)

returns true if the small semigroup sgrp is a Clifford semigroup and false otherwise.
A semigroup sgrp is a Clifford semigroup if it is a regular semigroup whose idempotents are

central, that is, for all e,x in sgrp where e^2=e we have that ex=xe .
Example

gap> s:=SmallSemigroup(5,519);;
gap> IsBand(s);
false
gap> s:=OneSmallSemigroup(5, IsBand, true);
<small semigroup of size 5>
gap> IsBand(s);
true
gap> IdSmallSemigroup(s);
[ 5, 1010 ]
gap> s:=SmallSemigroup(5,519);;
gap> IsCliffordSemigroup(s);
false
gap> s:=OneSmallSemigroup(5, IsCliffordSemigroup, true);
<small semigroup of size 5>
gap> IsCliffordSemigroup(s);
true
gap> IdSmallSemigroup(s);
[ 5, 148 ]
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4.2.8 IsCommutativeSemigroup

. IsCommutativeSemigroup(sgrp) (property)

. IsCommutative(sgrp) (property)

return true if the small semigroup sgrp is commutative and false otherwise.
A semigroup sgrp is commutative if xy=yx for all x,y in sgrp .

Example
gap> s:=SmallSemigroup(6,871);;
gap> IsCommutativeSemigroup(s);
false
gap> s:=OneSmallSemigroup(5, IsCommutative, true);
<small semigroup of size 5>
gap> IsCommutativeSemigroup(s);
true
gap> IsCommutative(s);
true
gap> IdSmallSemigroup(s);
[ 5, 1 ]
gap> s:=OneSmallSemigroup(5, IsCommutativeSemigroup, true);
<small semigroup of size 5>
gap> IsCommutativeSemigroup(s);
true
gap> IsCommutative(s);
true

4.2.9 IsCompletelyRegularSemigroup

. IsCompletelyRegularSemigroup(sgrp) (property)

returns true if the semigroup sgrp is completely regular and false otherwise.
A semigroup is completely regular if every element is contained in a subgroup.

Example
gap> s:=SmallSemigroup(6,13131);
<small semigroup of size 6>
gap> IsCompletelyRegularSemigroup(s);
false
gap> s:=OneSmallSemigroup(6, IsCompletelyRegularSemigroup, true);
<small semigroup of size 6>
gap> IsCompletelyRegularSemigroup(s);
true
gap> IdSmallSemigroup(s);
[ 6, 3164 ]

4.2.10 IsFullTransformationSemigroupCopy

. IsFullTransformationSemigroupCopy(sgrp) (property)

returns true if the semigroup sgrp is isomorphic to a full transformation semigroup and false
otherwise.
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The size of the full transformation semigroup on an n element set is nn and so there are only two
semigroup in the library that have this property.

Example
gap> s:=SmallSemigroup(1,1);
<small semigroup of size 1>
gap> IsFullTransformationSemigroupCopy(s);
true
gap> s:=OneSmallSemigroup(4, IsFullTransformationSemigroupCopy, true);
<small semigroup of size 4>
gap> IsFullTransformationSemigroupCopy(s);
true
gap> IdSmallSemigroup(s);
[ 4, 96 ]
gap> s:=OneSmallSemigroup(6, IsFullTransformationSemigroupCopy, true);
fail

4.2.11 IsGroupAsSemigroup

. IsGroupAsSemigroup(sgrp) (property)

returns true if the semigroup sgrp is a group and false otherwise.
Example

gap> s:=SmallSemigroup(7,7);
<small semigroup of size 7>
gap> IsGroupAsSemigroup(s);
false
gap> s:=SmallSemigroup(4,37);;
gap> IsGroupAsSemigroup(s);
true

4.2.12 IsIdempotentGenerated

. IsIdempotentGenerated(sgrp) (property)

. IsSemiband(sgrp) (property)

returns true if the semigroup sgrp is a semiband and false otherwise.
A semigroup sgrp is idempotent generated or equivalently a semiband if it is generated by its

idempotent elements, i.e elements satisfying x^2=x .
Example

gap> s:=SmallSemigroup(3, 13);
<small semigroup of size 3>
gap> IsIdempotentGenerated(s);
true
gap> s:=OneSmallSemigroup(3, IsIdempotentGenerated, false);
<small semigroup of size 3>
gap> IsIdempotentGenerated(s);
false
gap> IdSmallSemigroup(s);
[ 3, 1 ]
gap> s:=OneSmallSemigroup(4, IsIdempotentGenerated, true,
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> IsSingularSemigroupCopy, true);
fail
gap> s:=OneSmallSemigroup(2, IsIdempotentGenerated, true,
> IsSingularSemigroupCopy, true);
<small semigroup of size 2>

4.2.13 IsInverseSemigroup

. IsInverseSemigroup(sgrp) (property)

returns true if the semigroup sgrp is an inverse semigroup and false otherwise.
A semigroup sgrp is an inverse semigroup if every element x in sgrp has a unique semigroup

inverse, that is, a unique element y such that xyx=x and yxy=y .
Example

gap> s:=OneSmallSemigroup(7, IsInverseSemigroup, true);
<small semigroup of size 7>
gap> IsInverseSemigroup(s);
true
gap> s:=SmallSemigroup(7, 101324);
<small semigroup of size 7>
gap> IsInverseSemigroup(s);
false

4.2.14 IsLeftZeroSemigroup

. IsLeftZeroSemigroup(sgrp) (property)

returns true if the semigroup sgrp is a left zero semigroup and false otherwise.
A semigroup sgrp is a left zero semigroup if xy=x for all x,y in sgrp .

Example
gap> s:=SmallSemigroup(5, 438);
<small semigroup of size 5>
gap> IsLeftZeroSemigroup(s);
false
gap> s:=SmallSemigroup(5, 1141);
<small semigroup of size 5>
gap> IsLeftZeroSemigroup(s);
true

4.2.15 IsMonogenicSemigroup

. IsMonogenicSemigroup(sgrp) (property)

returns true if the small semigroup sgrp is generated by a single element and false otherwise.
Example

gap> s:=RandomSmallSemigroup(7);
<small semigroup of size 7>
gap> IsMonogenicSemigroup(s);
false
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gap> s:=OneSmallSemigroup(7, IsMonogenicSemigroup, true);
<small semigroup of size 7>
gap> IsMonogenicSemigroup(s);
true
gap> MinimalGeneratingSet(s);
[ s7 ]
gap> s:=SmallSemigroup( 7, 406945);
<small semigroup of size 7>
gap> IsMonogenicSemigroup(s);
false

4.2.16 IsMonoidAsSemigroup

. IsMonoidAsSemigroup(sgrp) (property)

returns true if the semigroup sgrp is a monoid (i.e. has an identity element) and false other-
wise.

Example
gap> s:=SmallSemigroup(4, 126);
<small semigroup of size 4>
gap> IsMonoidAsSemigroup(s);
false
gap> s:=OneSmallSemigroup(4, IsMonoidAsSemigroup, true);
<small semigroup of size 4>
gap> IsMonoidAsSemigroup(s);
true
gap> One(s);
s1
gap> IdSmallSemigroup(s);
[ 4, 7 ]

4.2.17 IsMultSemigroupOfNearRing

. IsMultSemigroupOfNearRing(sgrp) (property)

returns true if sgrp is isomorphic (or anti-isomorphic?) to the multiplicative semigroup of a
near-ring and false otherwise.

Those semigroups in the library that have this property were identified using the Sonata package.
Example

gap> s:=OneSmallSemigroup(7, IsMultSemigroupOfNearRing, true);
<small semigroup of size 7>
gap> IdSmallSemigroup(s);
[ 7, 1 ]
gap> IsMultSemigroupOfNearRing(s);
true
gap> s:=SmallSemigroup(2,2);
<small semigroup of size 2>
gap> IsMultSemigroupOfNearRing(s);
false
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4.2.18 IsNGeneratedSemigroup

. IsNGeneratedSemigroup(sgrp, n) (operation)

returns true if the least size of a generating set for the small semigroup sgrp is n and false
otherwise.

Example
gap> s:=SmallSemigroup(7, 760041);
<small semigroup of size 7>
gap> IsNGeneratedSemigroup(s, 4);
false
gap> IsNGeneratedSemigroup(s, 3);
true
gap> MinimalGeneratingSet(s);
[ s3, s5, s7 ]
gap> s:=OneSmallSemigroup(4, x-> Length(MinimalGeneratingSet(x)), 4);
<small semigroup of size 4>
gap> IsNGeneratedSemigroup(s, 4);
true

4.2.19 IsNIdempotentSemigroup

. IsNIdempotentSemigroup(sgrp, n) (operation)

returns true if the small semigroup sgrp has n idempotents and false otherwise.
Example

gap> s:=SmallSemigroup(4, 75);;
gap> IsNIdempotentSemigroup(s, 1);
false
gap> IsNIdempotentSemigroup(s, 2);
false
gap> IsNIdempotentSemigroup(s, 3);
true

4.2.20 IsNilpotentSemigroup

. IsNilpotentSemigroup(sgrp) (property)

. IsNilpotent(sgrp) (property)

returns true if the small semigroup sgrp is nilpotent and false otherwise.
A semigroup is nilpotent if it has a zero element and every element to some power equals this

zero.
Example

gap> s:=SmallSemigroup(5,116);
<small semigroup of size 5>
gap> IsNilpotentSemigroup(s);
false
gap> s:=SmallSemigroup(7, 673768);;
gap> IsNilpotentSemigroup(s);
true
gap> s:=SmallSemigroup(7, 657867);;
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gap> IsNilpotent(s);
true

4.2.21 IsOrthodoxSemigroup

. IsOrthodoxSemigroup(sgrp) (property)

returns true if the semigroup sgrp is orthodox and false otherwise.
A semigroup is orthodox if it is regular and its idempotents form a subsemigroup.

Example
gap> s:=SmallSemigroup(6, 15858);;
gap> IsSemigroupWithClosedIdempotents(s);
true
gap> IsRegularSemigroup(s);
true
gap> IsOrthodoxSemigroup(s);
true

4.2.22 IsRectangularBand

. IsRectangularBand(sgrp) (property)

returns true if the small semigroup sgrp is a rectangular band and false otherwise.
A semigroup sgrp is a rectangular band if for all x,y,z in sgrp we have that x^2=x and

xyz=xz .
Example

gap> s:=SmallSemigroup(5, 216);;
gap> IsRectangularBand(s);
false
gap> s:=SmallSemigroup(6, 15854);;
gap> IsRectangularBand(s);
true

4.2.23 IsRegularSemigroup

. IsRegularSemigroup(sgrp) (property)

returns true if the small semigroup sgrp is a regular semigroup and false otherwise.
A semigroup sgrp is regular if for all x in sgrp there exists y in sgrp such that xyx=x .

Example
gap> s:=SmallSemigroup(3, 10);;
gap> IsRegularSemigroup(s);
true
gap> s:=SmallSemigroup(3, 1);;
gap> IsRegularSemigroup(s);
false
gap> s:=OneSmallSemigroup(4, IsFullTransformationSemigroupCopy, true);
<small semigroup of size 4>
gap> IsRegularSemigroup(s);
true
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4.2.24 IsRightZeroSemigroup

. IsRightZeroSemigroup(sgrp) (property)

returns false for any small semigroup sgrp since the library contains only left zero semigroups.
A semigroup sgrp is a right zero semigroup if xy=y for all x,y in sgrp .

Example
gap> s:=SmallSemigroup(5, 438);
<small semigroup of size 5>
gap> IsRightZeroSemigroup(s);
false

4.2.25 IsSelfDualSemigroup

. IsSelfDualSemigroup(sgrp) (property)

returns true if the semigroup sgrp is self dual and false otherwise.
A semigroup is self dual if it is isomorphic to its dual, that is, the semigroup t with multiplication

* defined by x*y=yx where yx denotes the product in sgrp .
Example

gap> s:=SmallSemigroup(5,116);
<small semigroup of size 5>
gap> IsSelfDualSemigroup(s);
false
gap> s:=RandomSmallSemigroup(5, IsSelfDualSemigroup, true);
<small semigroup of size 5>
gap> IsSelfDualSemigroup(s);
true

4.2.26 IsSemigroupWithClosedIdempotents

. IsSemigroupWithClosedIdempotents(sgrp) (property)

returns true if the idempotent elements of the semigroup sgrp form a subsemigroup and false
otherwise.

Example
gap> s:=SmallSemigroup(5, 677);;
gap> IsSemigroupWithClosedIdempotents(s);
true
gap> s:=SmallSemigroup(5, 659);;
gap> IsSemigroupWithClosedIdempotents(s);
true
gap> s:=SmallSemigroup(5, 327);;
gap> IsSemigroupWithClosedIdempotents(s);
false

4.2.27 IsSemigroupWithZero

. IsSemigroupWithZero(sgrp) (property)
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returns true if the semigroup sgrp has a zero element and false otherwise.
An element z is a zero if z∗ x = x∗ z = z for all x in the semigroup.

Example
gap> s:=SmallSemigroup(5,1);
<small semigroup of size 5>
gap> IsSemigroupWithZero(s);
true
gap> s:=SmallSemigroup(4,26);
<small semigroup of size 4>
gap> IsSemigroupWithZero(s);
false

4.2.28 IsSimpleSemigroup

. IsSimpleSemigroup(sgrp) (property)

. IsCompletelySimpleSemigroup(sgrp) (property)

return true if the semigroup sgrp is simple or completely simple and false otherwise.
A semigroup is simple if it has no proper 2-sided ideals. A semigroup is completely simple if it is

simple and possesses minimal left and right ideals.
A finite semigroup is simple if and only if it is completely simple.

Example
gap> s:=SmallSemigroup(7, 835080);;
gap> IsSimpleSemigroup(s);
true
gap> IsCompletelySimpleSemigroup(s);
true
gap> s:=SmallSemigroup(7, 208242);;
gap> IsSimpleSemigroup(s);
false

4.2.29 IsSingularSemigroupCopy

. IsSingularSemigroupCopy(sgrp) (property)

returns true if the semigroup sgrp is isomorphic to a semigroup of singular (i.e. non-invertible)
mappings on a finite set and false otherwise.

The size of this semigroup on an n element set is nn−n! and so there is only one semigroup in the
library that has this property.

Example
gap> s:=SmallSemigroup(1,1);
<small semigroup of size 1>
gap> IsSingularSemigroupCopy(s);
false
gap> s:=OneSmallSemigroup(2, IsSingularSemigroupCopy, true);
<small semigroup of size 2>
gap> IsSingularSemigroupCopy(s);
true
gap> IdSmallSemigroup(s);
[ 2, 4 ]
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gap> s:=OneSmallSemigroup(4, IsSingularSemigroupCopy, true);
fail

4.2.30 IsZeroGroup

. IsZeroGroup(sgrp) (property)

returns true if the semigroup sgrp is a zero group and false otherwise.
The semigroup sgrp is a zero group if there exists an element z in sgrp such that sgrp without

z is a group and for all x in sgrp we have that xz = zx = z.
Example

gap> g:=Group((1,2),(3,4));
Group([ (1,2), (3,4) ])
gap> IdSmallSemigroup(g);
[ 4, 7 ]
gap> s := Range(InjectionZeroMagma(g));
<Group([ (1,2), (3,4) ]) with 0 adjoined>
gap> IdSmallSemigroup(s);
[ 5, 149 ]
gap> IsZeroGroup(s);
true

4.2.31 IsZeroSemigroup

. IsZeroSemigroup(sgrp) (property)

returns true if the semigroup sgrp is a zero semigroup and false otherwise.
The semigroup sgrp is a zero semigroup if there exists an element z in sgrp such that xy = z for

all x,y in sgrp .
Example

gap> s:=OneSmallSemigroup(5, IsZeroSemigroup, true);
<small semigroup of size 5>
gap> IsZeroSemigroup(s);
true
gap> IdSmallSemigroup(s);
[ 5, 1 ]
gap> s:=OneSmallSemigroup(5, IsZeroSemigroup, false);
<small semigroup of size 5>
gap> IdSmallSemigroup(s);
[ 5, 2 ]
gap> IsZeroSemigroup(s);
false

Note that for each size the unique zero semigroup is always the first semigroup of this size in the
library.

Example
gap> IsZeroSemigroup(SmallSemigroup(6,1));
true
gap> IsZeroSemigroup(SmallSemigroup(7,1));
true
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gap> IsZeroSemigroup(SmallSemigroup(8,1));
true

4.2.32 IsZeroSimpleSemigroup

. IsZeroSimpleSemigroup(sgrp) (property)

return true if the semigroup sgrp is zero simple and false otherwise.
A semigroup sgrp is zero simple if the only 2-sided ideals are the zero {0} and sgrp .

Example
gap> s:=SmallSemigroup(7, 519799);
<small semigroup of size 7>
gap> IsZeroSimpleSemigroup(s);
false
gap> s:=RandomSmallSemigroup(7, IsZeroSimpleSemigroup, true);
<small semigroup of size 7>
gap> IsZeroSimpleSemigroup(s);
true

4.2.33 MinimalGeneratingSet

. MinimalGeneratingSet(sgrp) (attribute)

returns a set of generators for sgrp with minimal size.
Example

gap> s:=SmallSemigroup(8, 1478885610);;
gap> MinimalGeneratingSet(s);
[ s4, s5, s6, s7, s8 ]
gap> s:=SmallSemigroup(7, 673768);;
gap> MinimalGeneratingSet(s);
[ s4, s5, s6, s7 ]
gap> s:=SmallSemigroup(4, 4);;
gap> MinimalGeneratingSet(s);
[ s2, s3, s4 ]

4.2.34 NilpotencyDegree

. NilpotencyDegree(sgrp) (attribute)

returns the least n such that every product of n elements in the nilpotent semigroup sgrp equals
the zero element and returns fail if the semigroup sgrp is not nilpotent.

Example
gap> s := SmallSemigroup(5, 1121);;
gap> NilpotencyDegree(s);
fail
gap> s := SmallSemigroup(7, 393450);;
gap> NilpotencyDegree(s);
3
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Note that for size 8 a semigroup in the library with ID (8,n) is nilpotent of rank 3 if and only if n is
greater than 11433106.

Example
gap> s := SmallSemigroup(8, 11433106+1231);;
gap> NilpotencyDegree(s);
3
gap> s := SmallSemigroup(8,NrSmallSemigroups(8));;
gap> NilpotencyDegree(s);
3

4.3 Nilpotent semigroups by coclass

A useful parameter in the classification of nilpotent semigroups is their coclass. For a finite nilpotent
semigroup of order n and nilpotency degree d the coclass is defined as n− d. In [Dis14] lists up to
(anti-)isomorphism are provided for nilpotent semigroups of coclass 0, 1, and 2. The semigroups in
the lists are given by finite presentations. In this section we describe a function that allows to access
such lists in GAP.

A further invariant of a nilpotent semigroup S is the size of its unique minimal generating set
S\S2. The possible sizes for a particular coclass are restricted. Monogenic nilpotent semigroups are
precisely those of coclass 0. For coclass d ≥ 1 the size of the minimal generating set is at least 2 and
at most d +1.

4.3.1 NilpotentSemigroupsByCoclass

. NilpotentSemigroupsByCoclass(n, d[, r]) (function)

returns for a positive integer n and an integer d with value 0, 1, or 2 a list of nilpotent semigroups
of order n and coclass d up to (anti-)isomorphism. If the optional third argument r is given then only
semigroups of rank r are returned. The semigroups in the list are given by finite presentations.

Example
gap> NilpotentSemigroupsByCoclass(5,1);
[ <fp semigroup on the generators [ s1, s2 ]>,

<fp semigroup on the generators [ s1, s2 ]>,
<fp semigroup on the generators [ s1, s2 ]>,
<fp semigroup on the generators [ s1, s2 ]>,
<fp semigroup on the generators [ s1, s2 ]>,
<fp semigroup on the generators [ s1, s2 ]>,
<fp semigroup on the generators [ s1, s2 ]> ]

gap> NilpotentSemigroupsByCoclass(7,0);
[ <fp semigroup on the generators [ s1 ]> ]
gap> NilpotentSemigroupsByCoclass(4,2,3);
[ <fp semigroup on the generators [ s1, s2, s3 ]> ]

4.4 Starred Green’s relations

In this section functionality around the starred Green’s relations is described. The five starred Green’s
relations are R∗, L∗, J∗, H∗, and D∗; two elements a, b from a semigroup S are R∗-related if for all
x,y ∈ S1 : xa = ya if and only if xb = yb; and a and b are L∗-related if for all x,y ∈ S1 : ax = ay if
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and only if bx = by. In parallel to the classical Green’s relations (Reference: Green’s Relations)
H∗ = R∗∧L∗ and D∗ = R∗∨L∗ (but R∗ ◦L∗ = L∗ ◦R∗ does not hold in general). To describe J∗ is a bit
more technical. For a,b ∈ S one can show that b lies in J∗(a), the principal *-ideal of a, if and only if
there exist c0,c1 . . . ,cn ∈ S and x1, . . . ,xn,y1, . . . ,yn ∈ S1 such that a = c0,b = cn and ciD∗xici−1yi for
1≤ i≤ n. Then aJ∗b if and only if both a ∈ J∗(b) and b ∈ J∗(a)

Note that even for finite semigroups J∗ does not always equal D∗ (in contrast to the situation for
classical Green’s relations). Using Smallsemi it was shown that there exist semigroups of order 8
with J∗ 6= D∗ [DMU13].

4.4.1 IsStarRelation

. IsStarRelation(bin-relation) (property)

. IsRStarRelation(equiv-relation) (property)

. IsLStarRelation(equiv-relation) (property)

. IsJStarRelation(equiv-relation) (property)

. IsHStarRelation(equiv-relation) (property)

. IsDStarRelation(equiv-relation) (property)

These functions return true if the argument is the respective type of relation and false other-
wise.

4.4.2 RStarRelation

. RStarRelation(semigroup) (attribute)

. LStarRelation(semigroup) (attribute)

. JStarRelation(semigroup) (attribute)

. DStarRelation(semigroup) (attribute)

. HStarRelation(semigroup) (attribute)

The starred Green’s relations (which are equivalence relations) are attributes of the semigroup
semigroup .

4.4.3 RStarClass (for a semigroup and element)

. RStarClass(S, a) (operation)

. LStarClass(S, a) (operation)

. DStarClass(S, a) (operation)

. JStarClass(S, a) (operation)

. HStarClass(S, a) (operation)

Creates the X∗-class of the element a in the semigroup S where X is one of L, R, D, J, or H.
Example

gap> s := SmallSemigroup(7, 280142);
<small semigroup of size 7>
gap> elm := AsList(s)[5];;
gap> jclass := JStarClass(s, elm);
{s5}
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gap> AsList(jclass);
[ s2, s3, s4, s5 ]

4.4.4 RStarClass (for a Green’s *-class)

. RStarClass(C) (attribute)

. LStarClass(C) (attribute)

. DStarClass(C) (attribute)

. JStarClass(C) (attribute)

are attributes reflecting the natural ordering over the various starred Green’s classes. They return
the respective class in which the given class C is contained, where C must be a class from a strictly
finer relation.

Example
gap> s := SmallSemigroup(7, 280142);
<small semigroup of size 7>
gap> elm := AsList(s)[5];;
gap> hclass := HStarClass(s, elm);
{s5}
gap> AsList(LStarClass(hclass));
[ s5 ]
gap> AsList(RStarClass(hclass));
[ s2, s5 ]
gap> AsList(DStarClass(hclass));
[ s2, s3, s4, s5 ]

4.4.5 IsStarClass

. IsStarClass(equiv-class) (property)

. IsRStarClass(equiv-class) (property)

. IsLStarClass(equiv-class) (property)

. IsJStarClass(equiv-class) (property)

. IsHStarClass(equiv-class) (property)

. IsDStarClass(equiv-class) (property)

return true if the equivalence class equiv-class is a starred Green’s class of any type, or of R,
L, J, H, D type, respectively, or false otherwise.

4.4.6 RStarClasses

. RStarClasses(semigroup) (attribute)

. LStarClasses(semigroup) (attribute)

. JStarClasses(semigroup) (attribute)

. DStarClasses(semigroup) (attribute)

. HStarClasses(semigroup) (attribute)

return the R, L, J, H, or D starred Green’s classes, respectively for semigroup semigroup .
EquivalenceClasses for a Green’s relation lead to one of these functions.
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Example
gap> s := SmallSemigroup(6, 54);
<small semigroup of size 6>
gap> JStarClasses(s);
[ {s1}, {s2}, {s4}, {s5}, {s6} ]

4.5 Families of Semigroups

In this section we describe how to find semigroups in the library satisfying a given set of parameters.
The following functions have the same usage but may return different val-

ues: EnumeratorOfSmallSemigroups (4.5.2), AllSmallSemigroups (4.5.1),
EnumeratorSortedOfSmallSemigroups (4.5.4), IdsOfSmallSemigroups (4.5.7),
IteratorOfSmallSemigroups (4.5.11), NrSmallSemigroups (4.5.15), OneSmallSemigroup
(4.5.16), PositionsOfSmallSemigroups (4.5.17), RandomSmallSemigroup (4.5.20).

The number of arguments should be odd:

• the first argument arg[1] should be a positive integer, a list of positive integers, or an enumer-
ator or iterator of small semigroups satisfying IsEnumeratorOfSmallSemigroups (4.5.8) or
IsIteratorOfSmallSemigroups (4.5.10)

• the even arguments arg[2i], if present, should be a function

• the odd arguments arg[2i+1] argument should be a possible value that can be returned by the
function arg[2i].

In the case that the function is AllSmallSemigroups (4.5.1) and arg[1] is a positive integer, then the
returned value is a list of all semigroups S with arg[1] elements such that arg[2i](S)=arg[2i+1].

For example, to obtain all the commutative semigroups with 3 idempotents of sizes
2 to 5 use one of EnumeratorOfSmallSemigroups (4.5.2), AllSmallSemigroups (4.5.1),
EnumeratorSortedOfSmallSemigroups (4.5.4), IteratorOfSmallSemigroups (4.5.11) with ar-
gument

Example
[2..5], IsCommutative, true, Is3IdempotentGenerated, true

AllSmallSemigroups (4.5.1) returns a list of all such semigroups,
EnumeratorOfSmallSemigroups (4.5.2), EnumeratorSortedOfSmallSemigroups (4.5.4),
and IteratorOfSmallSemigroups (4.5.11) return an enumerator and an iterator of all such
semigroups, respectively. For more information on enumerators and iterators see Enumerator
(Reference: Enumerator), EnumeratorSorted (Reference: EnumeratorSorted), or Iterator
(Reference: Iterator). The following are rules of thumb regarding the different situations when
these functions should be used in order of slowest to fastest and greatest memory use to least:

• AllSmallSemigroups (4.5.1) should be used if the number of semigroups is not too large and
you want to keep the created semigroups in a list.

• EnumeratorOfSmallSemigroups (4.5.2) or EnumeratorSortedOfSmallSemigroups
(4.5.4) should be used when the functions in even indexed positions are those stored in the
library (see PrecomputedSmallSemisInfo (4.5.19)) or you want repeatedly search the same
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set of semigroups and there are too many to store in a list. Note that the enumerator stores the
id numbers of its elements but not the semigroups themselves. Hence every time an element of
the enumerator is required it must be recreated from the multiplication table data.

• IteratorOfSmallSemigroups (4.5.11) should be used if the functions in even indexed posi-
tions are not stored in the library (see PrecomputedSmallSemisInfo (4.5.19)) or if you just
want to run through all the semigroups satisfying the specified parameters once only. Note
that each new call of IteratorOfSmallSemigroups (4.5.11) requires GAP to recompute its
elements which may be slow if the functions are user-defined or not stored in the library.

Further information on the relative virtues of these different commands can be found in Chapter 3.
As a further example, if we want to obtain a single non-simple semigroup with 7 elements and

trivial automorphism group, then we would use one of the functions OneSmallSemigroup (4.5.16) or
RandomSmallSemigroup (4.5.20) with argument

Example
7, IsSimpleSemigroup, false, x-> IsTrivial(AutomorphismGroup(x)), true

OneSmallSemigroup (4.5.16) should return an answer more quickly than RandomSmallSemigroup
(4.5.20). Also note that OneSmallSemigroup (4.5.16) will always return the same semigroup, i.e. the
first semigroup in the library with the given parameters.

4.5.1 AllSmallSemigroups

. AllSmallSemigroups(arg) (function)

the number of argument of this function should be odd. The first argument arg[1] should
be a positive integer, an enumerator of small semigroups with IsEnumeratorOfSmallSemigroups
(4.5.8), or an iterator of small semigroup with IsIteratorOfSmallSemigroups (4.5.10).

The even arguments arg[2i], if present, should be functions, and the odd arguments arg[2i+1]
should be a value that the preceeding function can have. For example, a typical input might be
3, IsRegularSemigroup, true. The functions arg[2i] can be user defined or existing GAP
functions.

Please see Section 4.5 or Chapter 3 for more details.
If arg[1] is a positive integer, then AllSmallSemigroups returns a list of all the small semi-

groups S in the library with Size(S)=arg[1] and arg[2i](S)=arg[2i+1] for all i.
If arg[1] is a list of positive integers, then AllSmallSemigroups returns a list of all the small

semigroups S in the library with Size(S) in arg[1] and arg[2i](S)=arg[2i+1] for all i.
If arg[1] is an enumerator or iterator of small semigroups, then AllSmallSemigroups returns a

list of all the small semigroups S in the library with S in arg[1] and arg[2i](S)=arg[2i+1] for
all i.

Example
gap> AllSmallSemigroups(2);
[ <small semigroup of size 2>, <small semigroup of size 2>,

<small semigroup of size 2>, <small semigroup of size 2> ]
gap> AllSmallSemigroups([2,3], IsRegularSemigroup, true,
> x-> Length(GreensRClasses(x)), 1);
[ <small semigroup of size 2>, <small semigroup of size 2>,

<small semigroup of size 3>, <small semigroup of size 3> ]
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gap> enum:=EnumeratorOfSmallSemigroups(8, IsInverseSemigroup, true,
> IsCommutativeSemigroup, true);;
gap> AllSmallSemigroups(enum, x-> Length(GreensRClasses(x)), 1);
[ <small semigroup of size 8>, <small semigroup of size 8>,

<small semigroup of size 8> ]
gap> iter:=IteratorOfSmallSemigroups(7, x-> Length(GreensRClasses(x)), 1);;
gap> AllSmallSemigroups(iter, IsCommutative, true,
> IsSimpleSemigroup, true);
[ <small semigroup of size 7> ]

4.5.2 EnumeratorOfSmallSemigroups

. EnumeratorOfSmallSemigroups(arg) (function)

the number of argument of this function should be odd. The first argument arg[1] should
be a positive integer, an enumerator of small semigroups with IsEnumeratorOfSmallSemigroups
(4.5.8), or an iterator of small semigroup with IsIteratorOfSmallSemigroups (4.5.10).

The even arguments arg[2i], if present, should be functions, and the odd arguments arg[2i+1]
should be a value that the preceeding function can have. For example, a typical input might be
3, IsRegularSemigroup, true. The functions arg[2i] can be user defined or existing GAP
functions.

Please see Section 4.5 or Chapter 3 for more details.
If arg[1] is a positive integer, then EnumeratorOfSmallSemigroups returns an enumerator of

all the small semigroups S in the library with Size(S)=arg[1] and arg[2i](S)=arg[2i+1] for all
i.

If arg[1] is a list of positive integers, then EnumeratorOfSmallSemigroups returns
an enumerator of all the small semigroups S in the library with Size(S) in arg[1] and
arg[2i](S)=arg[2i+1] for all i.

If arg[1] is an enumerator or iterator of small semigroups, then
EnumeratorOfSmallSemigroups returns an enumerator of all the small semigroups S in the
library with S in arg[1] and arg[2i](S)=arg[2i+1] for all i.

Example
gap> enum:=EnumeratorOfSmallSemigroups(7);
<enumerator of semigroups of size 7>
gap> EnumeratorOfSmallSemigroups([2,3], IsRegularSemigroup, true);
<enumerator of semigroups of sizes [ 2, 3 ]>
gap> enum:=EnumeratorOfSmallSemigroups(8, IsInverseSemigroup, true,
> IsCommutativeSemigroup, true);
<enumerator of semigroups of size 8>
gap> EnumeratorOfSmallSemigroups(enum, IsCommutativeSemigroup, true,
> IsSimpleSemigroup, false);
<enumerator of semigroups of size 8>
gap> iter:=IteratorOfSmallSemigroups(8);
<iterator of semigroups of size 8>
gap> EnumeratorOfSmallSemigroups(iter, IsCommutativeSemigroup, true,
> IsSimpleSemigroup, false);
<enumerator of semigroups of size 8>
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4.5.3 EnumeratorOfSmallSemigroupsByIds

. EnumeratorOfSmallSemigroupsByIds(arg) (operation)

. EnumeratorOfSmallSemigroupsByIdsNC(arg) (operation)

the argument of this function should be one of the following:

• a positive integer arg[1] and a set of positive integers less than NrSmallSemigroups (4.5.15)
with argument arg[1] . For example, the argument 3, [1..10] yields the first 10 semigroups
with 3 elements.

• a set of positive integers arg[1] and a list of sets of positive integers arg[2] such that x is
at most NrSmallSemigroups (4.5.15) with argument arg[1][i] for all x in arg[2][i] . For
example, [2,3], [[1..2],[1..10]] yields the first 2 semigroups of size 2, and the first 10
semigroups of size 3.

• a list of id numbers, for example, [[7,1], [6,1], [5,1]] .

The no check version does not check that the arguments are valid and may return unpredictable results.
Example

gap> enum:=EnumeratorOfSmallSemigroupsByIds([[7,1],[6,1],[5,1]]);
<enumerator of semigroups of sizes [ 5, 6, 7 ]>
gap> enum:=EnumeratorOfSmallSemigroupsByIds(7, [1..1000]);
<enumerator of semigroups of size 7>
gap> enum:=EnumeratorOfSmallSemigroupsByIds([2,3], [[1..2],[1..10]]);
<enumerator of semigroups of sizes [ 2, 3 ]>

4.5.4 EnumeratorSortedOfSmallSemigroups

. EnumeratorSortedOfSmallSemigroups(arg) (function)

accepts the same arguments and returns the same values as EnumeratorOfSmallSemigroups
(4.5.2).

4.5.5 FuncsOfSmallSemisInEnum

. FuncsOfSmallSemisInEnum(enum) (function)

returns a list of the functions and their values that were used to create the enumer-
ator of small semigroups enum . If you only want the names of these functions use
NamesFuncsSmallSemisInEnum (4.5.12).

Example
gap> enum:=EnumeratorOfSmallSemigroups([2..4], IsSimpleSemigroup, false,
> IsRegularSemigroup, true);;
gap> FuncsOfSmallSemisInEnum(enum);
[ <Property "IsRegularSemigroup">, true,

<Property "IsSimpleSemigroup">, false ]
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4.5.6 FuncsOfSmallSemisInIter

. FuncsOfSmallSemisInIter(iter) (function)

returns a list of the functions and their values that were used to create the iterator of small semi-
groups iter . If you only want the names of these functions use NamesFuncsSmallSemisInIter
(4.5.13).

Example
gap> enum:=IteratorOfSmallSemigroups([2..4], IsSimpleSemigroup, false,
> IsRegularSemigroup, true);;
gap> FuncsOfSmallSemisInIter(enum);
[ <Property "IsRegularSemigroup">, true,

<Property "IsSimpleSemigroup">, false ]

4.5.7 IdsOfSmallSemigroups

. IdsOfSmallSemigroups(arg) (function)

the number of argument of this function should be odd. The first argument arg[1] should
be a positive integer, an enumerator of small semigroups with IsEnumeratorOfSmallSemigroups
(4.5.8), or an iterator of small semigroup with IsIteratorOfSmallSemigroups (4.5.10).

The even arguments arg[2i], if present, should be functions, and the odd arguments arg[2i+1]
should be a value that the preceeding function can have. For example, a typical input might be
3, IsRegularSemigroup, true. The functions arg[2i] can be user defined or existing GAP
functions.

Please see Section 4.5 or Chapter 3 for more details.
If arg[1] is a positive integer, then IdsOfSmallSemigroups returns a list of the id numbers of

all the small semigroups S in the library with Size(S)=arg[1] and arg[2i](S)=arg[2i+1] for all
i.

If arg[1] is a list of positive integers, then IdsOfSmallSemigroups returns a list of
the id numbers of all the small semigroups S in the library with Size(S) in arg[1] and
arg[2i](S)=arg[2i+1] for all i.

If arg[1] is an enumerator or iterator of small semigroups, then IdsOfSmallSemigroups re-
turns a list of the id numbers of all the small semigroups S in the library with S in arg[1] and
arg[2i](S)=arg[2i+1] for all i.

Example
gap> enum:=EnumeratorOfSmallSemigroups(5, x-> Length(GreensRClasses(x)), 1);;
gap> IdsOfSmallSemigroups(enum, IsCommutativeSemigroup, true,
> IsSimpleSemigroup, false);
[ ]
gap> IdsOfSmallSemigroups([2,3], IsRegularSemigroup, true);
[ [ 2, 2 ], [ 2, 3 ], [ 2, 4 ], [ 3, 10 ], [ 3, 11 ], [ 3, 12 ],

[ 3, 13 ], [ 3, 14 ], [ 3, 15 ], [ 3, 16 ], [ 3, 17 ], [ 3, 18 ] ]

4.5.8 IsEnumeratorOfSmallSemigroups

. IsEnumeratorOfSmallSemigroups(enum) (property)
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returns true if enum is an enumerator of small semigroups created using
EnumeratorOfSmallSemigroups (4.5.2), EnumeratorOfSmallSemigroupsByIds (4.5.3).

Example
gap> enum:=EnumeratorOfSmallSemigroupsByIds([[2,1], [3,1], [4,1]]);;
gap> IsEnumeratorOfSmallSemigroups(enum);
true

4.5.9 IsIdSmallSemigroup

. IsIdSmallSemigroup(arg) (property)

return true if the arg is the id of a small semigroup or [arg[1], arg[2]] is the id of a small
semigroup.

Example
gap> IsIdSmallSemigroup(8,1);
true
gap> IsIdSmallSemigroup([1,2]);
false
gap> IsIdSmallSemigroup([3,18]);
true

4.5.10 IsIteratorOfSmallSemigroups

. IsIteratorOfSmallSemigroups(iter) (property)

returns true if iter is an iterator of small semigroups created using
IteratorOfSmallSemigroups (4.5.11).

Example
gap> iter:=IteratorOfSmallSemigroups(8);;
gap> IsIteratorOfSmallSemigroups(iter);
true

4.5.11 IteratorOfSmallSemigroups

. IteratorOfSmallSemigroups(arg) (function)

the number of argument of this function should be odd. The first argument arg[1] should
be a positive integer, an enumerator of small semigroups with IsEnumeratorOfSmallSemigroups
(4.5.8), or an iterator of small semigroup with IsIteratorOfSmallSemigroups (4.5.10).

The even arguments arg[2i], if present, should be functions, and the odd arguments arg[2i+1]
should be a value that the preceeding function can have. For example, a typical input might be
3, IsRegularSemigroup, true. The functions arg[2i] can be user defined or existing GAP
functions.

Please see Section 4.5 or Chapter 3 for more details.
If arg[1] is a positive integer, then IteratorOfSmallSemigroups returns an iterator of all the

small semigroups S in the library with Size(S)=arg[1] and arg[2i](S)=arg[2i+1] for all i.
If arg[1] is a list of positive integers, then IteratorOfSmallSemigroups returns an iterator of

all the small semigroups S in the library with Size(S) in arg[1] and arg[2i](S)=arg[2i+1] for
all i.
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If arg[1] is an enumerator or iterator of small semigroups, then IteratorOfSmallSemigroups
returns an iterator of all the small semigroups S in the library with S in arg[1] and
arg[2i](S)=arg[2i+1] for all i.

Example
gap> iter:=IteratorOfSmallSemigroups(8);
<iterator of semigroups of size 8>
gap> NextIterator(iter);
<small semigroup of size 8>
gap> IsDoneIterator(iter);
false
gap> iter:=IteratorOfSmallSemigroups([2,3], IsRegularSemigroup, true,
> x-> Length(Idempotents(x))=1, true);
<iterator of semigroups of sizes [ 2, 3 ]>
gap> NextIterator(iter);
<small semigroup of size 2>
gap> NextIterator(iter);
<small semigroup of size 3>
gap> NextIterator(iter);
fail
gap> enum:=EnumeratorOfSmallSemigroups(5, x-> Length(Idempotents(x))=1, true);
<enumerator of semigroups of size 5>
gap> iter:=IteratorOfSmallSemigroups(enum, x-> Length(GreensRClasses(x))=2, true);
<iterator of semigroups of size 5>

4.5.12 NamesFuncsSmallSemisInEnum

. NamesFuncsSmallSemisInEnum(enum) (function)

returns a list of the names of functions and their values that were used to create the enu-
merator of small semigroups enum . If you only want the actual functions themselves then use
FuncsOfSmallSemisInEnum (4.5.5).

Example
gap> enum:=EnumeratorOfSmallSemigroups([2..4], IsSimpleSemigroup, false,
> IsRegularSemigroup, true);;
gap> NamesFuncsSmallSemisInEnum(enum);
[ "IsRegularSemigroup", true, "IsSimpleSemigroup", false ]

4.5.13 NamesFuncsSmallSemisInIter

. NamesFuncsSmallSemisInIter(iter) (attribute)

returns a list of the names of functions and their values that were used to create the it-
erator of small semigroups iter . If you only want the actual functions themselves then use
FuncsOfSmallSemisInIter (4.5.6).

Example
gap> iter:=IteratorOfSmallSemigroups([2..4], IsSimpleSemigroup, false,
> IsRegularSemigroup, true);;
gap> NamesFuncsSmallSemisInIter(iter);
[ "IsRegularSemigroup", true, "IsSimpleSemigroup", false ]
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4.5.14 Nr3NilpotentSemigroups

. Nr3NilpotentSemigroups(n[, type]) (function)

returns the number of 3-nilpotent semigroups on a set with n elements. If the optional argu-
ment type is given it must be one of "UpToEquivalence", "UpToIsomorphism", "SelfDual",
"Commutative", "Labelled", "Labelled-Commutative". The number will be returned for the
respective type of semigroup. By default type is "UpToEquivalence".

The function implements the formulae calculating the number of 3-nilpotent semigroups devel-
oped in [Dis10]

Example
gap> Nr3NilpotentSemigroups( 4 );
8
gap> Nr3NilpotentSemigroups( 9, "UpToIsomorphism" );
105931872028455
gap> Nr3NilpotentSemigroups( 9, "Labelled" );
38430603831264883632
gap> Nr3NilpotentSemigroups( 16, "SelfDual" );
4975000837941847814744710290469890455985530
gap> Nr3NilpotentSemigroups( 19, "Commutative" );
12094270656160403920767935604624748908993169949317454767617795

4.5.15 NrSmallSemigroups

. NrSmallSemigroups(arg) (function)

the number of argument of this function should be odd. The first argument arg[1] should
be a positive integer, an enumerator of small semigroups with IsEnumeratorOfSmallSemigroups
(4.5.8), or an iterator of small semigroup with IsIteratorOfSmallSemigroups (4.5.10).

The even arguments arg[2i], if present, should be functions, and the odd arguments arg[2i+1]
should be a value that the preceeding function can have. For example, a typical input might be
3, IsRegularSemigroup, true. The functions arg[2i] can be user defined or existing GAP
functions.

Please see Section 4.5 or Chapter 3 for more details.
If arg[1] is a positive integer, then NrSmallSemigroups returns the number of small semigroups

S in the library with Size(S)=arg[1] and arg[2i](S)=arg[2i+1] for all i.
If arg[1] is a list of positive integers, then NrSmallSemigroups returns the number of small

semigroups S in the library with Size(S) in arg[1] and arg[2i](S)=arg[2i+1] for all i.
If arg[1] is an enumerator or iterator of small semigroups, then NrSmallSemigroups returns the

number of small semigroups S in the library with S in arg[1] and arg[2i](S)=arg[2i+1] for all
i.

Example
gap> List([1..8], NrSmallSemigroups);
[ 1, 4, 18, 126, 1160, 15973, 836021, 1843120128 ]
gap> NrSmallSemigroups(8, IsCommutative, true, IsInverseSemigroup, true);
4443
gap> NrSmallSemigroups([1..8], IsCliffordSemigroup, true);
5610
gap> NrSmallSemigroups(8, IsRegularSemigroup, true,
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> IsCompletelyRegularSemigroup, false);
1164
gap> NrSmallSemigroups(5, NilpotencyDegree, 3);
84

4.5.16 OneSmallSemigroup

. OneSmallSemigroup(arg) (function)

the number of argument of this function should be odd. The first argument arg[1] should
be a positive integer, an enumerator of small semigroups with IsEnumeratorOfSmallSemigroups
(4.5.8), or an iterator of small semigroup with IsIteratorOfSmallSemigroups (4.5.10).

The even arguments arg[2i], if present, should be functions, and the odd arguments arg[2i+1]
should be a value that the preceeding function can have. For example, a typical input might be
3, IsRegularSemigroup, true. The functions arg[2i] can be user defined or existing GAP
functions.

Please see Section 4.5 or Chapter 3 for more details.
If arg[1] is a positive integer, then OneSmallSemigroup returns the first small semigroup S in

the library with Size(S)=arg[1] and arg[2i](S)=arg[2i+1] for all i.
If arg[1] is a list of positive integers, then OneSmallSemigroup returns the first small semigroup

S in the library with Size(S) in arg[1] and arg[2i](S)=arg[2i+1] for all i.
If arg[1] is an enumerator or iterator of small semigroups, then OneSmallSemigroup returns the

first small semigroup S in the library with S in arg[1] and arg[2i](S)=arg[2i+1] for all i.
Example

gap> OneSmallSemigroup(8, IsCommutative, true, IsInverseSemigroup, true);
<small semigroup of size 8>
gap> OneSmallSemigroup([1..8], IsCliffordSemigroup, true);
<small semigroup of size 1>
gap> iter:=IteratorOfSmallSemigroups(8, IsCommutative, false);
<iterator of semigroups of size 8>
gap> OneSmallSemigroup(iter);
<small semigroup of size 8>

4.5.17 PositionsOfSmallSemigroups

. PositionsOfSmallSemigroups(arg) (function)

the number of argument of this function should be odd. The first argument arg[1] should
be a positive integer or an enumerator with IsEnumeratorOfSmallSemigroups (4.5.8), the even
arguments arg[2i], if present, should be functions, and the odd arguments arg[2i+1] should
be a value that the preceeding function can have. For example, a typical input might be 3,
IsRegularSemigroup, true. The functions arg[2i] can be user defined or existing GAP func-
tions. The argument can be a list arg with the same components as given above.

The function returns a list of the second components of the IdSmallSemigroup (4.1.6)
of all the small semigroups S in the library satisfying Size(S) in arg[1] or Size(S) in
SizesOfSmallSemisInEnum(arg[1]) and arg[2i](S)=arg[2i+1] for all i partitioned by size
of the semigroups.
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Example
gap> PositionsOfSmallSemigroups(3);
[ [ 1 .. 18 ] ]
gap> PositionsOfSmallSemigroups(3, IsRegularSemigroup, false);
[ [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ] ]
gap> enum:=EnumeratorOfSmallSemigroups(3, IsRegularSemigroup, false);;
gap> PositionsOfSmallSemigroups(enum);
[ [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ] ]
gap> PositionsOfSmallSemigroups([1..4], IsBand, true);
[ [ 1 ], [ 3, 4 ], [ 12 .. 17 ], [ 98 .. 123 ] ]
gap> PositionsOfSmallSemigroups(enum, Is1IdempotentSemigroup, true,
> Is2GeneratedSemigroup, true, IsCliffordSemigroup, false);
[ [ 1, 2 ], [ 2, 3, 5, 6, 8, 9, 10, 12, 34, 35, 36, 97 ],

[ 5, 20, 21, 22, 23, 26, 29, 32, 35, 54, 55, 56, 60, 61, 62, 63, 64, 65,
152, 156, 159, 177, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190,
191, 192, 193, 540, 1009, 1157, 1158 ] ]

4.5.18 PositionsOfSmallSemisInEnum

. PositionsOfSmallSemisInEnum(enum) (function)

returns the second components of the id numbers of the small semigroups in the enumerator of
small semigroups enum in a list partitioned according the size of the semigroup. The same value is
returned by using PositionsOfSmallSemigroups (4.5.17).

Example
gap> enum := EnumeratorOfSmallSemigroups([2..4],IsSimpleSemigroup,true);;
gap> PositionsOfSmallSemisInEnum
> (enum);
[ [ 2, 4 ], [ 17, 18 ], [ 7, 37, 52, 122, 123 ] ]

4.5.19 PrecomputedSmallSemisInfo

. PrecomputedSmallSemisInfo (global variable)

the global variable PrecomputedSmallSemisInfo contains a list of all the names of precomputed
properties stored in the library. The ith element of the list contains the list of properties that have been
precomputed for all semigroups in the library of order i.

Example
gap> PrecomputedSmallSemisInfo[3];
[ "Is1GeneratedSemigroup", "Is2GeneratedSemigroup", "Is3GeneratedSemigroup",

"IsBand", "IsCliffordSemigroup", "IsCommutative",
"IsCompletelyRegularSemigroup", "IsFullTransformationSemigroupCopy",
"IsGroupAsSemigroup", "IsIdempotentGenerated", "IsInverseSemigroup",
"IsMonoidAsSemigroup", "IsMultSemigroupOfNearRing", "IsRegularSemigroup",
"IsSelfDualSemigroup", "IsSemigroupWithoutClosedIdempotents",
"IsSimpleSemigroup", "IsSingularSemigroupCopy", "IsZeroSemigroup",
"IsZeroSimpleSemigroup" ]
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4.5.20 RandomSmallSemigroup

. RandomSmallSemigroup(arg) (function)

the number of argument of this function should be odd. The first argument arg[1] should
be a positive integer, an enumerator of small semigroups with IsEnumeratorOfSmallSemigroups
(4.5.8), or an iterator of small semigroup with IsIteratorOfSmallSemigroups (4.5.10).

The even arguments arg[2i], if present, should be functions, and the odd arguments arg[2i+1]
should be a value that the preceeding function can have. For example, a typical input might be
3, IsRegularSemigroup, true. The functions arg[2i] can be user defined or existing GAP
functions.

Please see Section 4.5 or Chapter 3 for more details.
If arg[1] is a positive integer, then RandomSmallSemigroup returns a random small semigroup

S in the library with Size(S)=arg[1] and arg[2i](S)=arg[2i+1] for all i.
If arg[1] is a list of positive integers, then RandomSmallSemigroup returns the a random small

semigroup S in the library with Size(S) in arg[1] and arg[2i](S)=arg[2i+1] for all i.
If arg[1] is an enumerator or iterator of small semigroups, then RandomSmallSemigroup returns

the a random small semigroup S in the library with S in arg[1] and arg[2i](S)=arg[2i+1] for
all i.

Example
gap> RandomSmallSemigroup(8, IsCommutative, true,
> IsInverseSemigroup, true);
<small semigroup of size 8>
gap> RandomSmallSemigroup([1..8], IsCliffordSemigroup, true);
<small semigroup of size 8>
gap> iter:=IteratorOfSmallSemigroups([1..7]);
<iterator of semigroups of size [ 1 .. 7 ]>
gap> RandomSmallSemigroup(iter);
<small semigroup of size 7>

4.5.21 SizesOfSmallSemisInEnum

. SizesOfSmallSemisInEnum(enum) (function)

returns the sizes of the semigroups in the enumerator of small semigroups enum .
Example

gap> enum:=EnumeratorOfSmallSemigroups([2..4], IsSimpleSemigroup, false);
<enumerator of semigroups of sizes [ 2, 3, 4 ]>
gap> SizesOfSmallSemisInEnum(enum);
[ 2, 3, 4 ]

4.5.22 SizesOfSmallSemisInIter

. SizesOfSmallSemisInIter(iter) (function)

returns the sizes of the semigroups in the iterator iter of small semigroups.
Example

gap> iter:=IteratorOfSmallSemigroups(7, IsCommutative, false);
<iterator of semigroups of size 7>
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gap> SizesOfSmallSemisInIter(iter);
[ 7 ]

4.5.23 UpToIsomorphism

. UpToIsomorphism(sgrps) (operation)

takes a list sgrps of non-equivalent semigroups from the library as input and returns a list of
non-isomorphic semigroups containing an isomorphic semigroup and an anti-isomorphic semigroup
for every semigroup in sgrps .

Example
gap> UpToIsomorphism([SmallSemigroup(5,126),SmallSemigroup(6,2)]);
[ <small semigroup of size 5>, <small semigroup of size 6> ]
gap> UpToIsomorphism([SmallSemigroup(5,126),SmallSemigroup(5,3)]);
[ <small semigroup of size 5>, <small semigroup of size 5>,

<semigroup with 5 generators> ]
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