Hsqgldb User Guide

The HSQLDB Development GroupEdited by Blaine Simpson and Fred
Toussi

Hsqgldb User Guide
by The HSQLDB Development Group, Blaine Simpson, and Fred Toussi

Published $Date: 2005/05/29 09:43:15 $

Copyright 2002-2005 HSQLDB Development Group. Permission is granted to distribute this document without any alteration un-
der the terms of the HSQLDB license.

Table of Contents

10 1 1 o Xi
Available formats for thisdocumentoiiiiiiiii e Xi
1. Running and USING HSOIADcuniiiii e 1
INEFOTUCTION ..ttt et e et et e e et eeea e e ea e 1
0T o 1o 1
RUNNING HSOIAD ... e e e e e e e eaes 2
S Y 1Y oo - 2
HSOIAD SEIVES ..o et 3
HSOIAD WED SEIVEr ..o 3
HSOIAD SEIVIEL ... eeaeas 3
IN-Process (Standalong) MOdecocvuiviiiiiiii e 4
Memory-Only Dat@DaSesccvuuiviiiiiii e 5
GBNEN Al ... e 5
ClosSiNg the Dat@aseoceeeeiiiiii e 5
Using Multiple DatabaseSin ONe JVMooieiiiiiiiie e 5
Creating aNew Databaseovviiii i 6
UsiNg the Database ENQINEcvveiiiiici e e e e e e e e e e e et e ean e eaes 6
Different TYpes of TableScviviie e 6
ConstraiNtS aNA INAEXEScvueeieieeie e e e e e e eanaees 7

SOL SUPPOIT ..ttt ettt e 7
BT O T o o SO SP 8

2. SO ISSUBS .ttt ettt et 9
100 9
SQL Standard SUPPOITceueeeie e eee e e e e e e e e e e et e e e e et e e e e anas 9
ConstraiNtS AN INAEXESueeei et e e e e e e e e annas 9
Primary Key CONSIFAINTScieeeiieiiiiie et 9
UNIQUE CONSEIFBINLS ... eeeieeeieeee ettt e et e e e e et e e e et a e e ean e eeaes 10
UNIQUE TNAEXES ... e e e e e 10
FOREIGN KEY'S ...ttt e e e e e et eeeaae e eees 10
Indexes and QUENY SPEEA ... cevuiii e e e 10
Where Condition OF JOINuveiuniiiiiee e e e e e e e e eeeaees 11
SUDQUENTES BN JOINS ...ttt e e e eaens 12
Typesand Arithmetic OPErationsScveuuiiiiiiiiii e 12
110 o = 1Y - 13
Other NUMEITC TYPES ..ot eeiie it e e e e e e e e et e e e e e e eanaas 13

Bit and BOOIEAN TYPES ..vvueiieeiie et e e e e e e e e e e e eaes 14
Storage and Handling of JaVa ObJECESuviiiiiiiiiiiiiiieeei e 14

Type Size, PreciSion and SCAleovvieiiiiiii e 14
SequUENCES aNd TAENTITYc.uiee e e 15
Identity Auto-Increment COIUMNScoouiiiiiii e 15

=01 0= 15
ISSUES With TranSACHIONSeevviieiiii e 16
New FeatureS and ChanQESuuiiiiiiiieiiiii e e 16
B UNIX QUICK SEA ...iiiiieeeeiie et e e e e e e e e et e e e e e e e et s e e e aaan e e eeenans 17
PUIMPOSE . e e 17
INSEAHTBLION ...ttt e 17
Setting up Database INStance and SEIVErcvvviiiiiiei e 19
ACCESSING YOUr DAtADASEevveeiieiii et e e e e 20
Create additional ACCOUNESuiieiiiiie e e e e e e e e e eees 22
S LU0 (0 1LY o PP 23
Running Hsgldb as a System DaemOnuoiiuniiiieii e 23
Portability of hsgldb init SCriptcoeniii i 23

INit SCIiPt SEIUP ProCEAUIE .. .oevicii e e e e 23

Hsgldb User Guide

Troubleshooting the INIt SCrPLuvveiiiie e 27

/Ao (V7= g oo I o oo 29
PUIMDOSE ... e 29
(000107 ot 1o 1S3 29
CONNECEION PrOPEITIES ... ettt e e e aeas 30
Propertie@S FIlES ... 31
Server and Web Server PrOpErtiesc..uivviiiieii e e e 32
Starting a Server from your appliCationcovvviiiiiiiiiiii e 33
Individual Database Propertiesoovvvuiiiiiii e 33

SQL Commands for Database Propertiesuuvieiiiiiiiiiiieeeii e 36
. DEPIOYMENE ISSUES ...ttt ettt ettt et e et e et ettt e e e e e et e e e e e e e eannas 38
PUIDOSE .. e 38
Mode of Operation and TablESccuviiiiii e 38
Y Koo =T o @] o= (o] o 38

LI 0= 38
Large ODJECES ...ttt ettt et 39
DePloymMENt CONEEXTeuniiii e ea e eees 39
MeMOrY aNd DISK USEcviiiiii it e e e e e een 39
Cache Memory AIOCEHIONiiiiiei e e e 40
Managing Database CONNECLIONScvuuuieeieiii e e e e e e e e e e e e e e 41
UPQrading DataDaseSuuieiiiiiiee et 41
Upgrading Using the SCRIPT COMMANGoeiiiiiiiiiiiiieiiiiieeeeei e 42
Manual Changesto the .SCript File ... 42
Backing Up Databasesoieuiiiiiiii e 43
L SR 1= o] = PRSP 44
The ImpPlEMENtAtioN ... e e e e 44
Definition Of TaIESoeeiiee e 44
Scope and REBSSIGNIMENTcoevuiiiiiiiie e 45

Null Valuesin Columns of Text Tablesooiviiiiiiiiii e, 45
L0001 110U = 1 o o T 45

TEXE FIEISSUES ...t e e e e 47
Text File Global Properti€Socvuuiiiii e e e e e 47
Importing fromaText Tablefile ..., 48
80 PP 49
REQUITEBIMENTS ...ttt ettt e et e et e et e e an e e eb e e ean s 49
Encrypting your IDBC CONNECLIONccuuiiiiiiiiie et e e e e 49
ClIENE-SIAE eeeeeeei e e 49
SEIVEI-SIUE ..ot 51

JO O e 51
Making a Private-Key KEYSIOrecoouuiiiiiiiiiiiii e 51
CA-SIONEA COIT ..t e e aaas 52
NON-CA-SIgNEA CaIt ..o e e e 52
Automatic Server or WebServer startup on UNIX ..o, 52
ST | 1 o 53
PUIMDOSE ... e e 53
RECENE CRANGES ...t 53
TheBare MINIMUM ... e e e e e e e e eees 54
NON-AiSPlayable TYPES ... 56

DS 2] O JF 10 (o U = 56
Loading SAMPIE AEEA ... cevueeiei e 57

RC File AUthentiCation SEUDooiiiiiiieiii e e 57
Using the current version of SglTool with an older HSQLDB distribution. 60
Fp10S = o LY PP 60
COMMENG TYPES ...ttt et e et e e e e e e aaas 61
SpeCial COMMEBNGSeevnieiieei e e e e e e e et r e e e e e e eanaas 62
BUFfer COMMENGSuiiiiiiieee e 65

PL COMMANGS ...ttt e e e e e e e e e e e e e e e eaneeeees 66
Storing and retrieving binary filescooiiiiiiiiii 67

Hsgldb User Guide

S @I 1= (o 68

Shell scripting and command-line PIPINGoveviviiiiiie e 68
Emulating Non-INteractive MOEuviiiiiiiieiiiii e 68
(o g g 1= = o Y PPN 69
Giving SQL onthe Command LiNecccuuiiiiiiiiiieiie e 69

IS I 1= 70
Piping and shell SCIPLING ...cvvvuerice e e e 71
Optimally Compatible SQL FIl€Scvvriii e 72
L0010 01 72
Specia Commands and Buffer Commandsin SQL FleScccoeviviiiiiiiinennnnn. 73
AULOMEBEION ...ttt e et e e e e e et e e et e e ea e ean e 74
Getting Interactive Functionality with SQL FileScoooviiiiiiii, 74
CharaCter ENCOOING ...vvvniii i e e e e e e e e eaaas 75
Generating Text or HTML REPOIMSvvvuiieiiceie e e e e e e e e e e 75
SOITool Procedural LANQUAGEccuuuneiiiiie ettt eeans 76
VaADIES ..o e 77

PL A LIBSES ittt aaa 77
LOGQICAl EXPIESSIONSeviieieieeei ettt et e e e e e et e ean e eaes 78

FLIOW CONLIOL .ot e e e et eees 79

L1 T 011 o 81
Y 2 e 82

H O 2 e 82

RABW MOOE .. et e e e e e 82
[S PPN 83
Using hsgltool.jar and hsgldbutil.jarccoviiiiiiiiii e 84
L Tl =S (a0 TS | 1o P 85
9. SQL SYNEBX . eveeeete e ettt ettt e 86
Notational Conventions Used inthis Chaptercoouviiiiiiiiiiiiiee e 86
SOQL COMMANTS ...euiiiiiiiei et e e e e e e e e e et e et e e e e e e e e e eanaees 86
ALTER INDEX ..oiiiiiiii ettt e et e et e et eeeaa s 86
ALTER SEQUENCE ..ottt 86
ALTER SCHEMA .. 86
ALTER TABLE ..o e e a e 87
ALTERUSER ...ooiiiiii et e e e e s 88

L L 88

L0 | @t = O\ I 89

L0 1Y I PR 89
CONNECT .ottt e e e et e eeenans 89
CREATE AL AS e 89
CREATE INDEX ...ttt e e e e e e e aaans 89
CREATE ROLEouiiiiiii ittt e et e e et e eeaaans 90
CREATE SCHEMA ..t et eeeaens 90
CREATE SEQUENCEiiiiiiiiiiiiii ettt et e et e eeenens 90
CREATE TABLE ..ot 90
CREATE TRIGGER ...t e e 92
CREATE USER ...oiiiiiiiii ittt e e e e et e e e e e eanans 93

L0 N I Y 93

3 I PPN 94
DISCONNERCT ..uiiiitiie ettt e et e e et e e e e et e e e eata e e e eeteaeaee 95
DROP INDEX ...ttt eeea e e 95
DROP ROLE ..ot e e e e e e e e 95
DROP SEQUENCEciiiiiieeiiie e et e e e e a e e et e e e eat e e e eaaanaeaees 95
DROP SCHEMA ..ottt e e e e et e e e et e eaees 95
DROP TABLE ..ottt e e e et e eeeaa e eaees 95
DROP TRIGGERuuiiiiiiiiieiiiie et e et e et eeeean e aees 96
DROP USER ...ttt et e et e e eeaa e eees 96
DROP VIEW oot e e e e e e e e e e e anas 96
EXPLAIN PLAN Lottt e e e e et e e e et e e e eatanaeaees 96

Vi

Hsgldb User Guide

LN | PR 96

IN S E R T ettt e 97

REV OKEE ..ot e e e e e e e e 97

[I I Y A 1 PPN 97
SAVEPOINT Lottt e e e e et e e et e e e b e e aaans 98

RS Ot I 98

S I 4 P 98

SET AUTOCOMMIT .ttt eaens 99

SET DATABASE COLLATION ...iiiiiiiiii e 99

SET CHECKPOINT DEFRAGciiiiiiieeii et e et 100

SET IGNORECASEottt e e aes 100

SET LOGSIZE ..ottt e et eeaaaa e eeees 100

SET PASSWORDuiiiiiiieiiiis ettt et e e et e e e eeaa e e eees 100

SET PROPERTY ittt ettt ettt e et eeeeaa e eees 100

SET REFERENTIAL INTEGRITY ..o 100

SET SCHEMA ..t e e e e e e e aaes 101

SET SCRIPTFORMAT .ottt ettt e e e et e e et eeaeabanaeeees 101

SET TABLE INDEX ..ottt e e e e e 101

SET TABLE READONLY ...ttt 101

SET TABLE SOURCEiiiiiiiieieiie et 101

SET WRITE DEL AY e e 103
SHUTDOWN ..ot e e e e e e et e e e et e e e aatanaeaees 103

UPD AT E ottt 104

(D it Y 0= ST 104

SQL COIMMENESieeiii et ee et e et e e et e e e e e e e et e e e e e e e e e e e eaneenaeanaaenns 105
Stored ProcedureS/ FUNCLIONScccuutiieiiiiiiee et e e 105
Built-in Functions and Stored Proceduresocuoviviiiiviiiiiiieeeeee e 106

SQL EXPIESSION ...cettieiiiiie ettt ettt e et ettt e et e et et e e e e e e e e 110
A.BUIIAING HSQLDBciiiiiiiiiiie et e e e e e e et e e e e atn e e e eaan s 113
PUIMDOSE ..ot 113
BUITAING WIth ANt .o e s 113

L@ o] =1 oo 1A o | 113

Building Hsgldb With ANt ..o 113

Building with DOS BatCh FilEScoiiiiiiiii e 115
HSQIAb COESWITCNEr ... e 115
Building documentationcouiiiniiiiiii e 116

B. First IDBC CHent EXAMPIEuveiiiii e e e e e 118
C. Hsgldb Database Files and RECOVENYuvvviniiiiiieiie e e e e e e e e e 122
... 122

RS (=< TSP 122
... 122
... 122
... 123

PrOCEOUNES ...ttt e et e e et e e e et e e e et s 123
ClEan SNULAOWN ...t e e e e eeees 123

SEAITUD ettt 124

L 7 1| S S SPPT 124

D. Running Hsgldb with OpenOffiCe.org L.1.X .c...oieuuiiiiiiiieeiee e e 126
T g1 (8ot (o o K PSP 126
S = | 126
Setting UP OPENOFfICEOIG . .civeveieeiiii e 126
ONWINAOWS ...ttt ettt e et e e e e et e ean e eeees 126

L0 0 T I T 126

S o s | o | o I~ U] 1 P 128
[DT =0 7= S Y= = (= 130
Brief INrOQUCLIONuuiiieie et 130
AULO tTEE-UPALE ...ttt ettt e e 130
AULOMELIC CONNECTION ...evtiiii et e e e e e e e e e e ean e eees 130

Vii

Hsgldb User Guide

R I et 131
Using the current DatabaseM anagers with an older HSQLDB distribution. 131
T N =0 (= g I o PSPPSR 133
Brief INtrOQUCTION e e e e 133

viii

List of Tables

1. Alternate formats of thiSAOCUMENLuiiiiiiiiiiii e Xi
4.1, HSQIAb URL COMPONENESevveeieieeitieeeieeeieeeiseeeasesanseeeaeeatsesanseeannesanneeennaennnaees 29
4.2. CONNECLION PrOPEITIES ..eeveeiiiii et et eeaa s 30
4.3. Hsgldb Server Properti@S FileScoeuueiiiiiie e 32
4.4, Property FIlE PrOPErTiESt e e 32
4.5, Server Property File PrOpertieSocvuiiiiii e 33
4.6. WebServer Property File Propertiesc..oveiiiiiiiici e 33
4.7. Database-specific Property File Propertiescovvieiiiiiiiiii e 34
4.8. SQL cOMMAN PIrOPEITIESeeeeieee ettt e e e et eeaaa s 36
S BT =T Y = PP 104

List of Examples

1.1. Java code to connect to the local Server aboveoovvveviiiiiiiiiii 4
2.1. Column values which satisfy a 2-column UNIQUE constraintccccocevvviviievinnennnnn. 10
2.2, QUENY COMPBIISON ..eevieeiiti ettt ettt e et ettt e e e et e e e et e e e etb e e e eaan e e eenans 12
2.3. Numbering returned rows of a SELECT in sequential ordercccoevvviiiiiniiiiiineeeennn, 15
3.1, server.propertieS Fragment 26
3.2. eXample SOItO0L.IC SEANZA ... ceuieiei e 26
7.1. Exporting certificate from the server'skeystorecoovvviveiiiiciiii e, 50
7.2. Adding a certificate to the client KeyStoreoveuiveiiiiii i 50
7.3. Specifying your own trust storeto aJDBC clientovviiiiiiiiiiiiii e, 50
7.4. Running an Hsgldb server with TLS encryplioncoeuueviiiiiiiiiiiiieecei e 51
7.5. Getting a pem-style private key into a IKSKEYSLOrec.uviiviiiiiiiiiiiiiieieeeeeeeeaen 52
8.1 SAMPIE RC FlE .. i e 57
8.2. Defining and using aPL alias (PL variable)cccvvveiiiiiiicii e 67
8.3. Inserting binary datainto database from afilecccoiviiiiiiiiiii 68
8.4. Downloading binary data from database to afileccoooviiiiiiiiiiin e, 68
8.5. Piping iNPut iNtO SOITOOIcieiiiieiiii et 71
8.6. Valid comment XamMPIEoeeiiiiii e 72
8.7. Invalid commENt EXaMPIEiiiiiii e 72
8.8. SIMPIE SOL filleUSING PL ...uiiiiiciii e e e e e 78
8.9. SQL File showing use of MOst PL fEAIUIESccvvviviiiiiiie e 80
8.10. Single-line chunKing &XampPleuuiiiiii e 81
8.11. Multi-line chunking eXampPleoouuiiiiiii e 82
8.12. RaW MOE EXAMPIE ...t et 82
8.13. PL/SQL EXAMPIE .etuiieeiiiiiie ettt e e et aaann 83
A.1. Buiding the standard Hsgldb jar fileWith Ant ..., 114
A.2. Example source code before CodeSWiItCher iSTuNcc.vvivieiiiieiiircce e, 115
A.3. CodeSwitcher command liNeiNVOCEHIONcouuiiiiiiiiiiiee e 115
A.4. Source code after CodeSWItCNEr PrOCESSINGvvuneverriieeiiiii et e e e e e e e 116
A.5. BUIlAiNg HTML USEr GUITESccevviiiiiiii ettt e e e e e 116
A.6. Building User Guidesinall formatsccouiiiiiiiiiiiiii e 117
B.1. IDBC Client source code EXampPleuieiuuiiii e eeeieeie e e e e e e e e e e e e e aaneees 118

Introduction

If you notice any mistakes in this document, please email the author listed at the beginning of the
chapter. If you have problems with the procedures themselves, please use the HSQLDB support facilit-
ieswhich are listed at http://hsgldb.org/web/hsgl Support.html.

Available formats for this document

This document is available in severa formats.

You may be reading this document right now at http://hsgldb.org/doc/guide, or in a distribution some-
where else. | hereby call the document distribution from which you are reading this, your current distro.

http://hsgldb.org/doc/guide hosts the latest production versions of al available formats. If you want a
different format of the same version of the document you are reading now, then you should try your cur-
rent distro. If you want the latest productoin version, you should try http://hsgldb.org/doc/guide.

Sometimes, distributions other than http://hsgldb.org/doc/guide do not host al available formats. So, if

you can't access the format that you want in your current distro, you have no choice but to use the new-
est production version at http://hsgldb.org/doc/guide.

Table 1. Alternate for mats of this document

format your distro at http://hsgldb.org/doc/guide

Chunked HTML index.html ht-
tp://hsgldb.org/doc/guide/index.h
tml

All-in-one HTML doc/guide.html ht-
tp://hsgldb.org/doc/guide/doc/gui
de.html

PDF doc/guide.pdf ht-
tp://hsgldb.org/doc/guide/doc/gui
de.pdf

Xi

http://hsqldb.org/web/hsqlSupport.html
index.html
http://hsqldb.org/doc/guide/index.html
http://hsqldb.org/doc/guide/index.html
http://hsqldb.org/doc/guide/index.html
doc/guide.html
http://hsqldb.org/doc/guide/doc/guide.html
http://hsqldb.org/doc/guide/doc/guide.html
http://hsqldb.org/doc/guide/doc/guide.html

Chapter 1. Running and Using Hsqldb

Fred Toussi, HSQLDB Development Group <f t @l uedup. con®

Copyright 2002-2005 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQLDB Development
Group to distribute this document with or without alterations under the terms of the HSQLDB license.
$Date: 2005/07/01 17:06:32 $

Introduction

The HSQLDB jar package is located in the /lib directory and contains several components and pro-
grams. Different commands are used to run each program.

Components of the Hsgldb jar package

e HSQLDB RDBMS

 HSQLDB JDBC Driver

» Database Manager (Swing and AWT versions)
e Query Tool (AWT)

* Sqgl Tool (command line)

The HSQLDB RDBMS and JDBC Driver provide the core functionality. The rest are general-purpose
database tools that can be used with any database engine that has a JDBC driver.

Running Tools

All tools can be run in the standard way for archived Java classes. In the following example the AWT
version of the Database Manager, the hsql db. j ar islocated in the directory . . / | i b relative to the
current directory.

java -cp ../lib/hsqgldb.jar org. hsqldb.util.DatabaseManager
If hsql db. j ar isinthe current directory, the command would change to:

java -cp hsqgldb.jar org. hsql db. util. DatabaseManager

Main classes for the Hsgldb tools

 org. hsql db. util.DatabaseManager

* org. hsgldb. util.DatabaseManager Swi ng

Running and Using Hsgldb

e org.hsqgldb.util.Transfer
 org. hsqldb.util.QeryTool
« org.hsqgldb.util.Sql Tool

Some tools, such as the Database Manager or SQL Tool, can use command line arguments or entirely
rely on them. You can add the command line argument -? to get a list of available arguments for these
tools. Database Manager features a graphical user interface and can be explored interactively.

Running Hsqgldb

HSQLDB can be run in a number of different ways. In general these are divided into Server Modes and
In-Process Mode (also caled Standalone Mode). A different sub-program from the jar is used to run
HSQLDB in each mode.

Each HSQLDB database consists of between 2 to 5 files, all named the same but with different exten-
sions, located in the same directory. For example, the database named "test" consists of the following
files:

e test.properties
e test.script

e test.log

» test.data

e test. backup

The properties files contains general settings about the database. The script file contains the definition of
tables and other database objects, plus the data for non-cached tables. The log file contains recent
changes to the database. The data file contains the data for cached tables and the backup file is a zipped
backup of the last known consistent state of the datafile. All these files are essential and should never be
deleted. If the database has no cached tables, the t est . dat a and t est . backup files will not be
present. In addition to those files, HSQLDB database may link to any formatted text files, such as CSV
lists, anywhere on the disk.

While the "test" database is operational, at est . | og file is used to write the changes made to data.
Thisfileis removed at a normal SHUTDOWN. Otherwise (with abnormal shutdown) this file is used at
the next startup to redo the changes. A t est . | ck fileisalso used to record the fact that the database
isopen. Thisis deleted at a normal SHUTDOWN. In some circumstances, at est . dat a. ol d is cre-
ated and deleted afterwards.

Note

When the engine closes the database at a shutdown, it creates temporary files with the exten-
sion . newwhich it then renames to those listed above.

Server Modes

Server modes provide the maximum accessibility. The database engine runs in a VM and listens for
connections from programs on the same computer or other computers on the network. Several different
programs can connect to the server and retrieve or update information. Applications programs (clients)

2

Running and Using Hsgldb

connect to the server using the HSQLDB JDBC driver. In most server modes, the server can serve up to
10 databases that are specified at the time of running the server.

Server modes can use preset properties or command line arguments as detailed in the Advanced Topics
chapter. There are three server modes, based on the protocol used for communications between the cli-
ent and server.

Hsqldb Server

Thisisthe preferred way of running a database server and the fastest one. A proprietary communications
protocol is used for this mode. A command similar to those used for running tools and described above
is used for running the server. The following example of the command for starting the server starts the
server with one (default) database with files named "mydb.*".

java -cp ../lib/hsqgldb.jar org. hsql db. Server -database.0 nydb -dbnane. 0 xdb

The command line argument - ? can be used to get alist of available arguments.

Hsqgldb Web Server

This mode is used when access to the computer hosting the database server is restricted to the HTTP
protocol. The only reason for using the Web Server mode is restrictions imposed by firewalls on the cli-
ent or server machines and it should not be used where there are no such restrictions. The HSQLDB
Web Server is a special web server that allows JDBC clients to connect viaHTTP. From 1.7.2 this mode
also supports transactions.

To run aweb server, replace the main class for the server in the example command line above with the
following:

org. hsqgl db. WebSer ver

The command line argument - ? can be used to get alist of available arguments.

Hsqgldb Servlet

This uses the same protocol as the Web Server. It is used when a separate servlet engine (or application
server) such as Tomcat or Resin provides access to the database. The Servlet Mode cannot be started in-
dependently from the servlet engine. The hsql Ser vl et class, in the HSQLDB jar, should be installed
on the application server to provide the connection. The database is specified using an application server
property. Refer to the sourcefilehsql Ser vl et . j ava to seethe details.

Both Web Server and Servlet modes can only be accessed using the JDBC driver at the client end. They
do not provide aweb front end to the database. The Servlet mode can serve only a single database.

Please note that you do not normally use this mode if you are using the database engine in an application
server.

Connecting to a Database running as a Server

Once an HSQL DB server is running, client programs can connect to it using the HSQLDB JDBC Driver
contained in hsql db. j ar . Full information on how to connect to a server is provided in the Java Doc-
umentation for j dbcConnecti on [../src/org/hsgldb/jdbe/jdbcConnection.html] (located in the /
doc/ src directory of HSQLDB distribution. A common example is connection to the default port

3

../src/org/hsqldb/jdbc/jdbcConnection.html

Running and Using Hsgldb

(9001) used for the hsgl protocol on the same machine;

Example 1.1. Java code to connect to thelocal Server above

try {
O ass. forName("org. hsqgl db. j dbcDriver™);

} catch (Exception e) {
Systemout.println("ERROR failed to | oad HSQ.DB JDBC driver.");
e.printStackTrace();
return;

Connection ¢ = DriverMnager. get Connection("jdbc: hsql db: hsqgl : //I ocal host/xdb",

In some circumstances, you may have to use the following line to get the driver.
O ass. forName("org. hsgl db. j dbcDriver").new nstance();

Note in the above connection URL, there is no mention of the database file, as this was specified when
running the server. Instead, the value defined for dbname.O is used. Also, see the Advanced Topics
chapter for the connection URL when there is more than one database per server instance.

Security Considerations

When HSQLDB is run as a server, network access should be adequately protected. Source |P addresses
may be restricted by use of TCP filtering or firewall programs, or standalone firewalls. If the traffic will
cross an unprotected network (such as the Internet), the stream should be encrypted (for example by
VPN, ssh tunneling, or TLS using the SSL enabled HSQL S and HTTPS variants of the server and web
server modes). Only secure passwords should be used-- most importantly, the password for the default
system user should be changed from the default empty string. If you are purposefully providing data to
the public, then the wide-open public network connection should be used exclusively to access the pub-
lic data via read-only accounts. (l.e., neither secure data nor privileged accounts should use this connec-
tion). These considerations also apply to HSQL DB servers run with the HTTP protocol.

In-Process (Standalone) Mode

This mode runs the database engine as part of your application program in the same Java Virtual Ma
chine. For most applications this mode can be faster, as the data is not converted and sent over the net-
work. The main drawback is that it is not possible by default to connect to the database from outside
your application. As a result you cannot check the contents of the database with external tools such as
Database Manager while your application is running. In 1.8.0, you can run a server instance in a thread
from the same virtual machine as your application and provide external access to your in-process data-
base.

The recommended way of using the in-process mode in an application is to use an HSQLDB Server in-
stance for the database while developing the application and then switch to In-Process mode for deploy-
ment.

An In-Process Mode database is started from JDBC, with the database file path specified in the connec-
tion URL. For example, if the database name is testdb and its files are located in the same directory as
where the command to run your application was issued, the following code is used for the connection:

Running and Using Hsgldb

Connection ¢ = DriverManager. get Connecti on("j dbc: hsql db: file:testdb", "sa",

The database file path format can be specified using forward slashes in Windows hosts as well as Linux
hosts. So relative paths or paths that refer to the same directory on the same drive can be identical. For
example if your database path in Linux is/ opt/ db/t est db and you create an identica directory
structure on the C. drive of a Windows host, you can use the same URL in both Windows and Linux:

Connection ¢ = DriverManager. get Connecti on("j dbc: hsql db: file:/opt/db/testdb",

When using relative paths, these paths will be taken relative to the directory in which the shell command
to start the Java Virtua Machine was executed. Refer to Javadoc for j dbcConnecti on
[../src/org/hsgldb/jdbe/jdbcConnection.html] for more details.

Memory-Only Databases

It is possible to run HSQLDB in a way that the database is not persistent and exists entirely in random
access memory. As no information is written to disk, this mode should be used only for internal pro-
cessing of application data, in applets or certain specia applications. This mode is specified by the mem:
protocol.

Connection ¢ = DriverManager. get Connecti on("j dbc: hsql db: nem anane", "sa", "");

You can also run a memory-only server instance by specifying the same URL in the serv-
er. properties. Thisusageisnot common and is limited to special applications where the database
server isused only for exchanging information between clients, or for non-persistent data.

General

Closing the Database

All databases running in different modes can be closed with the SHUTDOWN command, issued as an
SQL query. From version 1.7.2, in-process databases are no longer closed when the last connection to
the database is explicitly closed via JDBC, a SHUTDOWN is required. In 1.8.0, a connection property,
shutdown=true, can be specified on the first connection to the database (the connection that opens the
database) to force a shutdown when the last connection closes.

When SHUTDOWN isissued, all active transactions are rolled back. A special form of closing the data-
base is via the SHUTDOWN COMPACT command. This command rewrites the . dat a file that con-
tains the information stored in CACHED tables and compacts it to size. This command should be issued
periodicaly, especially when lots of inserts, updates or deletes have been performed on the cached
tables. Changes to the structure of the database, such as dropping or modifying populated CACHED
tables or indexes aso create large amounts of unused file space that can be reclaimed using this com-
mand.

Using Multiple Databases in One JVM

In the above examples each server serves only one database and only one in-memory database can be
created. However, from version 1.7.2, HSQLDB can serve several databases in multiple server modes
and allow simultaneous access to multiple in-process and memory-only databases. These capabilities are
covered in the Advanced Topics chapter.

../src/org/hsqldb/jdbc/jdbcConnection.html

Running and Using Hsgldb

Creating a New Database

When a server instance is started, or when a connection is made to an in-process database, a new, empty
database is created if no database exists at the given path.

This feature has a side effect that can confuse new users. If a mistake is made in specifying the path for
connecting to an existing database, a connection is nevertheless established to a new database. For
troubleshooting purposes, you can specify a connection property ifexists=t r ue to alow connection to
an existing database only and avoid creating a new database. In this case, if the database does not exist,
theget Connect i on() method will throw an exception.

Using the Database Engine

Once a connection is established to a database in any mode, JDBC methods are used to interact with the
database. The Javadoc for j dbcConnecti on [../src/org/hsgldb/jdbe/jdbcConnection.html], j db-

cDriver [../srclorg/hsgldb/jdbeDriver.html], j dbcDat abaseMet adat a
[../src/org/hsgldb/jdbe/jdbcDatabaseM etaData.html], j dbcResul t Set
[../srclorg/hsgldb/jdbce/jdbcResul tSet.html], j dbc St at enrent
[../src/org/hsgldb/jdbe/jdbcStatement.html], and j dbcPr epar edSt at enrent

[../src/org/hsgldb/jdbc/jdbcPreparedStatement.html] list al the supported JDBC methods together with
information that is specific to HSQLDB. JDBC methods are broadly divided into: connection related
methods, metadata methods and database access methods. The database access methods use SQL com-
mands to perform actions on the database and return the results either as a Java primitive type or as an
instance of thej ava. sql . Resul t Set class.

You can use Database Manager or other Java database access tools to explore your database and update
it with SQL commands. These programs use JDBC internally to submit your commands to the database
engine and to display the resultsin a human readable format.

The SQL diaect used in HSQLDB is as close to the SQL92 and SQL 200n standards as it has been pos-
sible to achieve so far in a small-footprint database engine. The full list of SQL commandsisin the SQL
Syntax chapter.

Different Types of Tables

HSQL DB supports TEMP tables and three types of persistent tables.

TEMP tables are not written to disk and last only for the lifetime of the Connection object. The contents
of each TEMP table is visible only from the Connection that was used to populate it; other concurrent
connections to the database will have access to their own copies of the table. Since 1.8.0 the definition
of TEMP tables conforms to the GLOBAL TEMPORARY type in the SQL standard. The definition of
the table persists but each new connections sees its own copy of the table, which is empty at the begin-
ning. When the connection commits, the contents of the table are cleared by default. If the table defini-
tion statements includes ON COMMIT PRESERVE ROWS, then the contents are kept when a commit
takes place.

The three types of persistent tables are MEMORY tables, CACHED tables and TEXT tables.

Memory tables are the default type when the CREATE TABLE command is used. Their datais held en-
tirely in memory but any change to their structure or contents is written to the <dbnane>. scri pt
file. The script file is read the next time the database is opened, and the MEMORY tables are recreated
with all their contents. So unlike TEMP table, the default, MEMORY tables are persistent.

CACHED tables are created with the CREATE CACHED TABLE command. Only part of their data or
indexes is held in memory, allowing large tables that would otherwise take up to several hundred mega-
bytes of memory. Another advantage of cached tables is that the database engine takes less time to start
up when a cached table is used for large amounts of data. The disadvantage of cached tablesis a reduc-

6

../src/org/hsqldb/jdbc/jdbcConnection.html
../src/org/hsqldb/jdbcDriver.html
../src/org/hsqldb/jdbcDriver.html
../src/org/hsqldb/jdbc/jdbcDatabaseMetaData.html
../src/org/hsqldb/jdbc/jdbcResultSet.html
../src/org/hsqldb/jdbc/jdbcStatement.html
../src/org/hsqldb/jdbc/jdbcPreparedStatement.html

Running and Using Hsgldb

tion in speed. Do not use cached tables if your data set is relatively small. In an application with some
small tables and some large ones, it is better to use the default, MEMORY mode for the small tables.

TEXT tables are supported since version 1.7.0 and use a CSV (Comma Separated Value) or other delim-
ited text file as the source of their data. Y ou can specify an existing CSV file, such as a dump from an-
other database or program, as the source of a TEXT table. Alternatively, you can specify an empty file
to be filled with data by the database engine. TEXT tables are efficient in memory usage as they cache
only part of the text data and all of the indexes. The Text table data source can always be reassigned to a
different file if necessary. Two commands are needed to set up a TEXT table as detailed in the Text
Tables chapter.

With memory-only databases (see above), both MEMORY table and CACHED table declarations are
treated as declarations for non-persistent memory tables. TEXT table declarations are not allowed in this
mode.

Constraints and Indexes

HSQL DB supports PRIMARY KEY, NOT NULL, UNIQUE, CHECK and FOREIGN KEY constraints.
In addition, it supports UNIQUE or ordinary indexes. This support is fairly comprehensive and covers
multi-column constraints and indexes, plus cascading updates and deletes for foreign keys.

HSQLDB creates indexes internally to support PRIMARY KEY, UNIQUE and FOREIGN KEY con-
straints: a unique index is created for each PRIMARY KEY or UNIQUE constraint; an ordinary index is
created for each FOREIGN KEY constraint. Because of this, you should not create duplicate user-
defined indexes on the same column sets covered by these constraints. This would result in unnecessary
memory and speed overheads. See the discussion in the SQL Issues chapter for more information.

Indexes are crucial for adequate query speed. When queries joining multiple tables are used, there must
be an index on each joined column of each table. When range or equality conditions are used e.g. SE-
LECT ... WHERE acol >10 AND bcol = 0, anindexeisrequired on the acol column used in
the condition. Indexes have no effect on ORDER BY clauses or some LIKE conditions.

As arule of thumb, HSQLDB is capable of internal processing of queries at over 100,000 rows per
second. Any query that runs into several seconds should be checked and indexes should be added to the
relevant columns of the tables if necessary.

SQL Support

The SQL syntax supported by HSQLDB is essentially that specified by the SQL Standard (92 and
200n). Not al the features of the Standard are supported and there are some proprietary extensions. In
1.8.0 the behaviour of the engine is far more compliant with the Standards than with older versions. The
main changes are

» correct treatment of NULL column valuesin joins, in UNIQUE constraints and in query conditions
» correct processing of selectswith JOIN and LEFT OUTER JOIN

» correct processing of aggregate functions contained in expressions or containing expression argu-
ments

The supported commands are listed in the SQL Syntax chapter. For a well written basic guide to SQL
with examples you can consult PostgreSQL : Introduction and Concepts
[http://www.postgresgl.org/files/documentation/books/aw_pgsgl/index.html] by Bruce Momjian, which
isavailable on the web. Most of the SQL coverage in the book applies also to HSQLDB. There are some
differences in keywords supported by one and not the other engine (OUTER, OID's, etc.) or used differ-

http://www.postgresql.org/files/documentation/books/aw_pgsql/index.html

Running and Using Hsgldb

ently (IDENTITY/SERIAL, TRIGGER, SEQUENCE, etc.).

JDBC Support

Since 1.7.2, support for JDBC2 has been significantly extended and some features of JDBC3 are also
supported. The relevant classes are thoroughly documented. See the JavaDoc for org.hsgldb.jdbecX XXX
[../srclindex.html] classes.

../src/index.html

Chapter 2. SQL Issues

Fred Toussi, HSQLDB Development Group <f t @l uedup. con®

Copyright 2002-2005 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQLDB Development
Group to distribute this document with or without alterations under the terms of the HSQLDB license.
$Date: 2005/07/01 17:06:32 $

Purpose

SOL

Many questions repestedly asked in Forums and mailing lists are answered in this guide. If you want to
use HSQL DB with your application, you should read this guide.

Standard Support

HSQLDB 1.8.0 supports the dialect of SQL defined by SQL standards 92, 99 and 2003. This means
where afeature of the standard is supported, e.g. left outer join, the syntax is that specified by the stand-
ard text. Many features of SQL92 and 99 up to Advanced Level are supported and there is support for
most of SQL 2003 Foundation and several optional features of this standard. However, certain features
of the Standards are not supported so no claim is made for full support of any level of the standards.

The SQL Syntax chapter of this guide SQL Syntax lists all the keywords and syntax that is supported.
When writing or converting existing SQL DDL (Data Definition Language) and DML (Data Manipula-
tion Language) statements for HSQL DB, you should consult the supported syntax and modify the state-
ments accordingly.

Several words are reserved by the standard and cannot be used as table or column names. For example,
the word POSITION is reserved as it is a function defined by the Standards with a similar role as
String.indexOf() in Java. HSQL DB does not currently prevent you from using a reserved word if it does
not support its use or can distinguish it. For example BEGIN is a reserved words that is not currently
supported by HSQLDB and is allowed as a table or column name. You should avoid the use of such
words as future versions of HSQLDB are likely to support the words and will reject your table defini-
tions or queries. The full list of SQL reserved words is in the source of the or g. hsql db. Token
class.

HSQLDB aso supports some keywords and expressions that are not part of the SQL standard as en-
hancements. Expressions such as SELECT TOP 5 FROM .., SELECT LIMT 0 10 FROM ...
or DROP TABLE nytabl e | F EXI STS are among such constructs.

All keywords, can be used for database objects if they are double quoted.

Constraints and Indexes

Primary Key Constraints

Before 1.7.0, a CONSTRAI NT <nane> PRI MARY KEY was trandated internally to a unique index
and, in addition, a hidden column was added to the table with an extra unique index. From 1.7.0 both
single-column and multi-column PRIMARY KEY constraints are supported. They are supported by a
unique index on the primary key column(s) specified and no extra hidden column is maintained for these
indexes.

SQL Issues

Unigue Constraints

According to the SQL standards, a unique constraint on a single column means no two values are equal
unless one of them is NULL. This means you can have one or more rows where the column value is
NULL.

A unique constraint on multiple columns (c1, c2, ¢3, ..) means that no two sets of values for the columns

are equal unless at lease one of them is NULL. Each single column taken by itself can have repeat val-
ues. The following example satisfies a UNIQUE constraint on the two columns:

Example 2.1. Column values which satisfy a 2-column UNIQUE constraint

1, 2
2, 1
2, 2
NULL, 1
NULL, 1
1, NULL
NULL, NULL
NULL, NULL

Since version 1.7.2 the behaviour of UNIQUE constraints and indexes with respect to NULL values has
changed to conform to SQL standards. A row, in which the value for any of the UNIQUE constraint
columns is NULL, can always be added to the table. So multiple rows can contain the same values for
the UNIQUE columns if one of the valuesis NULL.

Unique Indexes

In 1.8.0, user defined UNIQUE indexes can still be declared but they are deprecated. Y ou should use a
UNIQUE constraint instead.

CONSTRAI NT <nane> UNI QUE aways creates internaly a unique index on the columns, as with
previous versions, so it has exactly the same effect as the deprecated UNIQUE index declaration.

FOREIGN KEYS

From version 1.7.0, HSQL DB features single and multiple column foreign keys. A foreign key can also
be specified to reference atarget table without naming the target column(s). In this case the primary key
column(s) of the target table is used as the referenced column(s). Each pair of referencing and refer-
enced columns in any foreign key should be of identical type. When a foreign key is declared, a unique
constraint (or primary key) must exist on the referenced columns in the primary key table. A non-unique
index is automatically created on the referencing columns. For example:

CREATE TABLE child(cl INTEGER, c2 VARCHAR, FOREIGN KEY (cl1, c2) REFERENCES par

There must be a UNIQUE constraint on columns (p1, p2) in the table named "parent”. A non-unique
index is automatically created on columns (c1, c2) inthetable named "child". Columns pl and c1
must be of the same type (INTEGER). Columns p2 and ¢2 must be of the same type (VARCHAR).

Indexes and Query Speed

HSQLDB does not use indexes to improve sorting of query results. But indexes have a crucia role in

10

SQL Issues

improving query speed. If no index is used in a query on asingle table, such as a DELETE query, then
all the rows of the table must be examined. With an index on one of the columns that is in the WHERE
clause, it is often possible to start directly from the first candidate row and reduce the number of rows
that are examined.

Indexes are even more important in joins between multiple tables. SELECT ... FROM t1 JO N
t2 ONtl.cl = t2.c2 isperformed by taking rows of t1 one by one and finding a matching row
in t2. If there is no index index on t2.c2 then for each row of t1, al the rows of t2 must be checked.
Whereas with an index, a matching row can be found in a fraction of the time. If the query also has a
conditionontl, eg., SELECT ... FROMt1l JON1t2 ONtl.cl = t2.c2 WHERE t1.c3
= 4 then an index on t1.c3 would eliminate the need for checking all the rows of t1 one by one, and will
reduce query time to less than a millisecond per returned row. So if t1 and t2 each contain 10,000 rows,
the query without indexes involves checking 100,000,000 row combinations. With an index on t2.c2,
thisis reduced to 10,000 row checks and index lookups. With the additional index on t2.c2, only about 4
rows are checked to get the first result row.

Indexes are automatically created for primary key and unigue columns. Otherwise you should define an
index using the CREATE INDEX command.

Note that in HSQLDB a unique index on multiple columns can be used internally as a non-unique index
on the first column in the list. For example: CONSTRAI NT nanmel UNIQUE (cl, c2, c¢3);
means there is the equivalent of CREATE | NDEX nanme2 ON at abl e(c1) ;. Soyou do not need to
specify an extraindex if you require one on the first column of the list.

In 1.8.0, a multi-column index will speed up queries that contain joins or values on ALL the columns.
You need NOT declare additional individual indexes on those columns unless you use queries that
search only on a subset of the columns. For example, rows of a table that has a PRIMARY KEY or
UNIQUE constraint on three columns or simply an ordinary index on those columns can be found effi-
ciently when values for al three columns are specified in the WHERE clause. For example, SELECT
... FROMt1 WHERE t1.c1l = 4 AND tl1.c2 = 6 AND t1.c3 = 8 will useanindex on
t1l(cl, c2,c3) ifitexists.

As aresult of the improvements to multiple key indexes, the order of declared columns of the index or
constraint has less affect on the speed of searches than before. If the column that contains more diverse
values appearsfirst, the searches will be dlightly faster.

A multi-column index will not speed up queries on the second or third column only. The first column
must be specified in the JOIN .. ON or WHERE conditions.

Query speed depends a lot on the order of the tables in the JOIN .. ON or FROM clauses. For example
the second query below should be faster with large tables (provided thereis an index on TB. COL3). The
reason is that TB.COL 3 can be evaluated very quickly if it appliesto the first table (and there is an index
on TB.COL3):

(TBis a very large table with only a few rows where TB. COL3 = 4)
SELECT * FROM TA JON TB ON TA COL1

TB. COL2 AND TB. COL3

i
e

SELECT * FROM TB JO N TA ON TA. COL1 = TB. COL2 AND TB. COL3

1
e

The general ruleisto put first the table that has a narrowing condition on one of its columns.

1.7.3 features automatic, on-the-fly indexes for views and subselects that are used in a query. An index
is added to aview when it isjoined to atable or another view.

Where Condition or Join

11

SQL Issues

Using WHERE conditions to join tables is likely to reduce execution speed. For example the following
query will generally be slow, even with indexes:

SELECT ... FROM TA, TB, TC WHERE TC. COL3 = TA. COL1 AND TC. COL3=TB. COL2 AND TC.

The query implies TA. COL1 = TB. COL2 but does not explicitly set this condition. If TA and TB
each contain 100 rows, 10000 combinations will be joined with TC to apply the column conditions, even
though there may be indexes on the joined columns. With the JOIN keyword, the TA. COL1 =
TB. COL2 condition has to be explicit and will narrow down the combination of TA and TB rows before
they are joined with TC, resulting in much faster execution with larger tables:

SELECT ... FROMTA JON TB ON TA.COL1 = TB.COL2 JON TC ON TB. COL2 = TC COL3 W

The query can be speeded up alot more if the order of tables in joins are changed, so that TC. COL1 =
1 isapplied first and asmaller set of rows are joined together:

SELECT ... FROMTC JON TB ON TC. COL3 = TB.COL2 JON TA ON TC. COL3 = TA.COL1 W

In the above example the engine automatically applies TC. COL4 = 1 to TC and joins only the set of
rows that satisfy this condition with other tables. Indexes on TC. COL4, TB. COL2 and TA. COL1 will
be used if present and will speed up the query.

Subqueries and Joins

Using joins and setting up the order of tables for maximum performance applies to al areas. For ex-
ample, the second query below should generally be much faster if there are indexes on TA.COL1 and
TB.COL3:

Example 2.2. Query comparison

SELECT ... FROM TA WHERE TA. COL1 = (SELECT MAX(TB. COL2) FROM TB WHERE TB. COL3
SELECT ... FROM (SELECT MAX(TB.COL2) Cl1 FROM TB WHERE TB. COL3 = 4) T2 JON TA

The second query turns MAX(TB. COL2) into asingle row table then joinsit with TA. With an index on
TA. COL1, thiswill be very fast. Thefirst query will test each row in TA and evaluate MAX(TB. COL2)
again and again.

Types and Arithmetic Operations

Table columns of al types supported by HSQLDB can be indexed and can feature in comparisons.
Types can be explicitly converted using the CONVERT() library function, but in most cases they are
converted automatically. It is recommended not to use indexes on LONGVARBINARY,
LONGVARCHAR and OTHER columns, as these indexes will probably not be allowed in future ver-
sions.

Previous versions of HSQLDB featured poor handling of arithmetic operations. For example, it was not

12

SQL Issues

possible to insert 10/ 2. 5 into any DOUBLE or DECIMAL column. Since 1.7.0, full operations are
possible with the following rules:

TINYINT, SMALLINT, INTEGER, BIGINT, NUMERIC and DECIMAL (without a decimal point) are
supported integral types and map to byte, short, int, long and BigDecimal in Java. The SQL type dictates
the maximum and minimum values that can be held in afield of each type. For example the value range
for TINYINT is -128 to +127, athough the actual Java type used for handling TINYINT is
java.l ang. I nteger.

REAL, FLOAT, DOUBLE are all mapped to double in Java.

DECIMAL and NUMERIC are mapped to j ava. mat h. Bi gDeci mal and can have very large num-
bers of digits.

Integral Types

TINYINT, SMALLINT, INTEGER, BIGINT, NUMERIC and DECIMAL (without a decimal point) are
fully interchangeable internally, and no data narrowing takes place. Depending on the types of the oper-
ands, the result of the operationsis returned in a JDBC Resul t Set in any of related Java types: | n-
t eger, Long or Bi gDeci nal . The Resul t Set . get XXXX() methods can be used to retrieve the
values so long as the returned value can be represented by the resulting type. This type is deterministic-
ally based on the query, not on the actual rows returned. The type does not change when the same query
that returned one row, returns many rows as aresult of adding more data to the tables.

If the SELECT statement refers to a ssmple column or function, then the return type is the type corres-
ponding to the column or the return type of the function. For example:

CREATE TABLE t(a INTEGER b BIG NT); SELECT MAX(a), MAX(b) FROMt;

would return a result set where the type of the first columnisj ava. | ang. | nt eger and the second
columnisj ava. | ang. Long. However,

SELECT MAX(a) + 1, MAX(b) + 1 FROMt;

would return j ava. | ang. Long and Bi gDeci mal values, generated as a result of uniform type pro-
motion for al the return values.

There is no built-in limit on the size of intermediate integral values in expressions. As a result, you
should check for the type of the Resul t Set column and choose an appropriate get XXXX() method
to retrieve it. Alternatively, you can use the get Cbj ect () method, then cast the result to
j ava. |l ang. Number andusethei nt Val ue() orl ongVal ue() methods on the result.

When the result of an expression is stored in a column of a database table, it has to fit in the target
column, otherwise an error is returned. For example when 1234567890123456789012 /

12345687901234567890 is evaluated, the result can be stored in any integral type column, even a
TINYINT column, asit isasmall value.

Other Numeric Types

In SQL statements, numbers with a decimal point are treated as DECIMAL unless they are written with
an exponent. Thus 0. 2 is considered a DECIMAL value but 0. 2EO is considered a DOUBLE value.

When Pr epar edSt at enent . set Doubl e() or set Fl oat () is used, the vaue is treated as a
DOUBLE automatically.

13

SQL Issues

When a REAL, FLOAT or DOUBLE (all synonymous) is part of an expression, the type of the result is
DOUBLE.

Otherwise, when no DOUBLE value exists, if a DECIMAL or NUMERIC value is part an expression,
the type of the result is DECIMAL. The result can be retrieved from aResul t Set in the required type
so long as it can be represented. This means DECIMAL values can be converted to DOUBLE unless
they are beyond the Doubl e. M N_VALUE - Doubl e. MAX_ VALUE range. Similar to integral val-
ues, when the result of an expression is stored in a table column, it has to fit in the target column, other-
wise an error is returned.

The distinction between DOUBLE and DECIMAL is important when a division takes place. When the
terms are DECIMAL, the result is a value with a scale (number of digits to the right of the decimal
point) equal to the larger of the scales of the two terms. With a DOUBLE term, the scale will reflect the
actual result of the operation. For example, 10. 0/ 8. 0 (DECIMAL) equals 1. 2 but 10. OEO/ 8. OEO
(DOUBLE) equals 1. 25. Without division operations, DECIMAL values represent exact arithmetic;
the resulting scale is the sum of the scales of the two terms when multiplication is performed.

REAL, FLOAT and DOUBLE values are all stored in the database asj ava. | ang. Doubl e objects.
Specia values such as NaN and +-Infinity are also stored and supported. These values can be submitted
to the database via JDBC PreparedStatement methods and are returned in ResultSet objects.

Bit and Boolean Types

Since 1.7.2, BIT issimply an alias for BOOLEAN. The primary representation of BOOLEAN columnis
"true' or'fal se' ether as the boolean type or as strings when used from JDBC. This type of
column can aso be initialised using values of any numeric type. In this case O is trandated to f al se
and any other valuesuch as 1 istrandatedtot r ue.

Since 1.7.3 the BOOLEAN type conforms to the SQL standards and supports the UNDEFINED state in
addition to TRUE or FALSE. NULL values are treated as undefined. This improvement affects queries
that contain NOT IN. See thetest text file, TestSelfNot.txt, for examples of the queries.

Storage and Handling of Java Objects

Since version 1.7.2 this support has improved and any serializable JAVA Object can be inserted directly
into a column of type OTHER using any variation of Pr epar edSt at enent . set Obj ect () meth-
ods.

For comparison purposes and in indexes, any two Java Objects are considered equal unless one of them
isNULL. You cannot search for a specific object or perform ajoin on a column of type OTHER.

Please note that HSQLDB is not an object-relational database. Java Objects can simply be stored intern-
ally and no operations should be performed on them other than assignment between columns of type
OTHER or tests for NULL. Tests such asWHERE obj ect 1 = obj ect 2, or WHERE obj ectl =
? do not mean what you might expect, as any non-null object would satisfy such a tests. But WHERE
objectl I'S NOT NULL isperfectly acceptable.

The engine does not return errors when normal column values are assigned to Java Object columns (for
example assigning an INTEGER or STRING to such a column with an SQL statement such as UPDATE
nyt abl e SET objectcol = intcol WHERE ...) butthisishighly likely to be disallowed in
future. So please use columns of type OTHER only to store your objects and nothing else.

Type Size, Precision and Scale

Prior to 1.7.2, al table column type definitions with a column size, precision or scale qualifier were ac-
cepted and ignored.

14

SQL Issues

In 1.8.0, such qualifiers must conform to the SQL standards. For example INTEGER(8) is no longer ac-
ceptable. The qualifiers are still ignored unless you set a database property. SET PROPERTY
"sqgl.enforce_strict_size" TRUE will enforce sizes for CHARACTER or VARCHAR
columns and pad any strings when inserting or updating a CHARACTER column. The precision and
scale qualifiers are also enforced for DECIMAL and NUMERIC types. TIMESTAMP can be used with
aprecision of O or 6 only.

Casting a value to a qualified CHARACTER type will result in truncation or padding as you would ex-
pect. So atest such as CAST (mycol AS VARCHAR(2)) = 'xy' will find the values beginning
with 'xy'. Thisisthe equivalent of SUBSTRI NG mycol FROM 1 FOR 2) ='xy"

Sequences and ldentity

The SEQUENCE keyword was introduced in 1.7.2 with a subset of the SQL 200n standard syntax. Cor-
responding SQL 200n syntax for IDENTITY columns has also been introduced.

ldentity Auto-Increment Columns

Each table can contain one auto-increment column, known as the IDENTITY column. An IDENTITY
column is always treated as the primary key for the table (as a result, multi-column primary keys are not
possible with an IDENTITY column present). Support has been added for CREATE TABLE
<t abl enane>(<col name> | DENTI TY, ...) asashortcut.

Since 1.7.2, the SQL standard syntax is used by default, which allows the initial value to be specified.
The supported form is(<col nane> | NTEGER GENERATED BY DEFAULT AS | DEN
TITY(START WTH n, [INCREMENT BY nj) PRI MARY KEY, ...). Support has aso been
added for Bl G NT identity columns. As aresult, an IDENTITY column is simply an INTEGER or BI-
GINT column with its default value generated by a sequence generator.

When you add a new row to such atableusingan | NSERT | NTO <t abl ename> ...; statement,
you can use the NULL value for the IDENTITY column, which results in an auto-generated value for
the column. The | DENTI TY() function returns the last value inserted into any IDENTITY column by
this connection. Use CALL | DENTI TY(); asan SQL statement to retrieve this value. If you want to
use the value for a field in a child table, you can use | NSERT | NTO <chi | dt abl e> VALUES
(..., DENTITY(),...);.Bothtypesof call to | DENTI TY() must be made before any addition-
al update or insert statements are issued on the database.

The next IDENTITY value to be used can be set with the

ALTER TABLE ALTER COLUWN <col unmm name> RESTART W TH <new val ue>;

Sequences

The SQL 200n syntax and usage is different from what is supported by many existing database engines.
Sequences are created with the CREATE SEQUENCE command and their current value can be modified
at any time with ALTER SEQUENCE. The next value for a segquence is retrieved with the NEXT
VALUE FOR <name> expression. This expression can be used for inserting and updating table rows.
You can also use it in select statements. For example, if you want to number the returned rows of a SE-
LECT in sequentia order, you can use:

Example 2.3. Numbering returned rows of a SELECT in sequential order

15

SQL Issues

SELECT NEXT VALUE FOR nysequence, coll1, col2 FROM nytable WHERE ...

Please note that the semantics of sequences is not exactly the same as defined by SQL 200n. For ex-
ample if you use the same sequence twice in the same row insert query, you will get two different val-
ues, not the same value as required by the standard.

You can query the SYSTEM_SEQUENCES table for the next value that will be returned from any of
the defined sequences. The SEQUENCE_NAME column contains the name and the NEXT_VALUE
column contains the next value to be returned.

Issues with Transactions

New

HSQLDB supports transactions at the READ_UNCOMMITTED level, also known as level 0 transac-
tion isolation. This means that during the lifetime of a transaction, other connections to the database can
see the changes made to the data. Transaction support works well in general. Reported bugs concerning
transactions being committed if the database is abruptly closed have been fixed. However, the following
issues may be encountered only with multiple connections to a database using transactions:

If two transactions modify the same row, no exception is raised when both transactions are committed.
This can be avoided by designing your database in such away that application data consistency does not
depend on exclusive modification of data by one transaction. Y ou can set a database property to cause
an exception when this happens.

SET PROPERTY "sql.tx_no_multi_rewite" TRUE

When an ALTER TABLE .. | NSERT COLUMN or DROP COLUMN command results in changes to
the table structure, the current session is committed. If an uncommitted transaction started by another
connections has changed the data in the affected table, it may not be possible to roll it back after the AL-

TER TABLE command. This may also apply to ADD | NDEX or ADD CONSTRAI NT commands. It is
recommended to use these ALTER commands only when it is known that other connections are not us-
ing transactions.

After a CHECKPOINT command is issued, uncommitted transactions can be continued, committed, or
rolled back. However, if the database is not subsequently closed properly with the SHUTDOWN com-
mand, any such transaction that still remains uncommitted at the time of shutdown, is part committed (to
the state at CHECKPOINT) at the next startup. It is recommended to use the CHECKPOINT command
either when no uncommitted transactions is in progress, or it is known that any such transaction is not
likely to last for such along time that an abnormal shutdown might affect its data.

Features and Changes

In recent versions leading to 1.8.0 many enhancements were made for better SQL support. These are lis-
ted in the SQL Syntax chapter, in ../changelog_1 8 0.txt and ../changelog_1 7 2.txt. Functions and ex-
pressions such as POSITION(), SUBSTRING(), NULLIF(), COALESCE(), CASE ... WHEN .. ELSE,
ANY, ALL etc. are among them. Other enhancements may not be very obvious in the documentation
but can result in changes of behaviour from previous versions. Most significant among these are hand-
ling of NULL valuesin joins (null columns are no longer joined) and OUTER jains (the results are now
correct). Y ou should test your applications with the new version to ensure they do not rely on past incor-
rect behaviour of the engine. The engine will continue to evolve in future versions towards full SQL
standard support, so it is best not to rely on any non-standard feature of the current version.

16

../changelog_1_8_0.txt
../changelog_1_7_2.txt

Chapter 3. UNIX Quick Start

How to quickly get Hsqgldb up and running on UNIX, including Mac
OS X

Blaine Simpson, HSQLDB Development Group
<bl ai ne. si npson@adnt. conp

$Date: 2005/06/01 22:45:26 $

Purpose

This chapter explains how to quickly install, run, and use HSQL DB on UNIX.

HSQLDB has lots of great optional features. | intend to cover very few of them. | do intend to cover
what | think is the most common UNIX setup: To run a multi-user database with permament data per-
sistence. (By the latter | mean that datais stored to disk so that the data will persist across database shut-
downs and startups). | aso cover how to run HSQLDB as a system daemon.

Installation

Go to http://sourceforge.net/projects’hsgldb and click on the "files" link. Y ou want the current version.
This will be the highest numbered version under the plain black "hsgldb" heading. See if there's a distri-
bution for the current HSQL DB version in the format that you want.

If you want an rpm, you should still find out the current version of HSQLDB as described in the previ-
ous paragraph. Then click "hsgldb" in the "free section" of http://www.jpackage.org/ and see if they
have the current HSQL DB version built yet. Hopefully, the JPackage folk will document what JVM ver-
sions their rpm will support (currently they document this neither on their site nor within the package it-
self). (I really can't document how to download from a site that is totally beyond my control).

Note

It could very well happen that some of the file formats which | discuss below are not in fact
offered. If so, then we have not gotten around to building them.

Binary installation depends on the package format that you downl oaded.

Installing from a.pkg.Z file This package is only for use by a Solaris super-user. It's a System
V package. Download then uncompress the package with uncom-
press or gunzip

unconpress fil enane. pkg. Z

Y ou can read about the package by running

pkginfo -1 -d filenane. pkg
Run pkgadd asroot to install.

17

http://sourceforge.net/projects/hsqldb
http://www.jpackage.org/

UNIX Quick Start

pkgadd -d fil enane. pkg

Installing from a.rpm file This is a Linux rpm package. After you download the rpm, you
can read about it by running

rom-qip /path/to/file.rpm
Rpms can be installed or upgraded by running

rpm-Uvh /path/to/file.rpm

as root. Suse users may want to keep Yast aware of installed
packages by running rpm through Yast: yast2 -i /
path/to/file.rpm

Installing from a.zipfile Extract the zip file to the parent directory of the new HSQLDB
home. You don't need to create the HSQLDB_HOME directory
because the extraction will create it for you with the right name)

cd parent/of / new hsql db/ hone
unzip /path/to/file.zip

All the files in the zip archive will be extracted to underneath a
new hsql db directory.

Take alook at the filesyou instaled. (Under hsql db for zip file installations. Otherwise, use the utilit-
ies for your packaging system). The most important file of the hsgldb system is hsql db. j ar, which
residesin the directory | i b.

I mportant

For the purposes of this chapter, | define HSQLDB_HOME to be the parent directory of the
lib directory that contains hsql db.jar. E.g., if your path to hsql db.jar is /
a/ b/ hsqgl db/1'i b/ hsql db. j ar, then your HSQLDB_HOME is/ a/ b/ hsql db.

If the description of your distribution says that the hsgldb.jar file will work for your Java version, then
you are finished with installation. Otherwise you need to build a new hsgldb.jar file.

If you followed the instructions above and you still don't know what Java version your hsql db. j ar
supports, then reead HSQLDB_HOME/ r eadne. t xt and HSQLDB_HOME/ i ndex. ht nl . If that
still doesn't help, then you can just try your hsgldb.jar and seeif it works, or build your own.

To usethe supplied hsql db. j ar, just skip to the next section of this document. Otherwise build a new
hsql db. j ar.

Procedure 3.1. Building hsgldb.jar

1. If you don't already have Ant, download the latest stable binary version from http://ant.apache.org.
cd to where you want Ant to live, and extract from the archive with

18

http://ant.apache.org

UNIX Quick Start

unzip /path/to/file.zip

or

tar -xzf /path/to/file.tar.gz

or

bunzip2 -c /path/to/file.tar.bz2 | tar -xzf -

Everything will be installed into a new subdirectory named apache-ant - + version. You
can rename the directory after the extraction if you wish.

2. Set the environmental variable JAVA HOVE to the base directory of your Java JRE or SDK, like

export JAVA HOVE, JAVA HOVE=/usr/javalj 2sdkl. 4.0

The location is entirely dependent upon your variety of UNIX. Sun's rpm distributions of Java nor-
mally install to /usr/javal/sonethi ng. Sun's System V package distributions of Java
(including those that come with Solaris) normally install to / usr/ somnet hi ng, with a sym-link
from / usr/ j ava to the default version (so for Solaris you will usualy set JAVA HOME to /

usr/java).

3. Removetheexisting fileHSQLDB_HOME/ |1 i b/ hsql db. j ar.
4. cdtoHSQLDB_HOME/ bui | d. Make sure that the bin directory under your Ant homeisin your
search path. Run the following command.
ant hsql db
Thiswill buildanew HSQLDB_HOME/ | i b/ hsql db. j ar.

See the Building HSQLDB appendix if you want to build anything other than hsql db. j ar with all
default settings.

Setting up a Hsqldb Persistent Database In-
stance and a Hsqgldb Server

If you installed from an OS-specific package, you may already have a database instance and server pre-
configured. Seeif your package includes afile named ser ver . pr operti es (make use of your pack-
aging utilities). If you do, then | suggest that you still read this section while you poke around, in order
to understand your setup.

1. Select a UNIX user to run the database as. If this database is for the use of multiple users, or is a
production system (or to emulate a production system), you should dedicate a UNIX user for this
purpose. In my examples, | use the user name hsql db. In this chapter, | refer to this user as the
HSQLDB_OWNER, since that user will own the database instance files and processes.

19

UNIX Quick Start

If the account doesn't exist, then create it. On al system-5 UNIXes and most hybrids (including
Linux), you can run (as root) something like

useradd -m-c ' HSQLDB Dat abase Omer' -s /bin/ksh -m hsql db
(BSD-variant users can useasimilar pw user add hsql db. .. command).

2. Become the HSQLDB_OWNER. Copy the sample file HSQLDB _HOME/
src/ or g/ hsqgl db/ sanpl e/ sanpl e-server. properties to the HSQLDB_OWNER's
home directory and renameittoser ver. properti es.

Hsql db Server cfg file.
See the Advanced Topics chapter of the Hsqgl db User Gui de.

server. dat abase. 0 file:dbO/dbO

Since the value of the first database (server.database.0) begins with f i | e: , the database instance
will be persisted to a set of filesin the specified directory with names beginning with the specified
name. You can read about how to specify other database instances of various types, and how to
make settings for the listen port and many other things, in the Advanced Topics chapter.

3. Set and export the environmental variable CLASSPATH to the value of HSQLDB_HOME (as de-
scribed above) plus "/lib/hsgldb.jar”, like

export CLASSPATH, CLASSPATH=/ path/to/hsgl db/l1ib/hsqldb.jar

In HSQLDB_OWNER's home directory, run
java org. hsqgl db. Server &

This will start the Server process in the background, and will create your new database instance
"db0". Continue on when you see the message containing "HSQLDB server... isonline”.

Accessing your Database

Copy the file HSQLDB HOME/src/org/hsql db/sanple/sqgltool.rc to the
HSQLDB_OWNER's home directory. Use chnod to make the file readable and writable only to
HSQLDB_OWNER.

$l1d: sqgltool.rc,v 1.14 2005/05/22 04:46:16 unsaved Exp $

This is a sanple RC configuration file used by Sqgl Tool, DatabaseManager,
and any other programthat uses the org.hsgldb.util.RCData cl ass.

#

#

You can run Sqgl Tool right now by copying this file to your hone directory
and runni ng

java -jar /path/to/hsqgldb.jar mem

This will access the first urlid definition belowin order to use a

personal Menory-Only dat abase

#

If you have the | east concerns about security, then secure access to

20

UNIX Quick Start

your RC file.
See the docunentation for Sqgl Tool for various ways to use this file.

A personal Menory-Only database
urlid mem

url jdbc: hsgl db: mem nendbi d
username sa

passwor d

This is for a hsqldb Server running with default settings on your |oca
computer (and for which you have not changed the password for "sa").
urlid | ocal host-sa

url jdbc: hsqgl db: hsqgl ://1 ocal host

user name sa

passwor d

Tenplate for a urlid for an Oracl e dat abase.

You will need to put the oracle.jdbc. OracleDriver class into your

cl asspat h.

In the great majority of cases, you want to use the file classesl2.zip
(which you can get fromthe directory $ORACLE HOWVE/ jdbc/lib of any

Oracle installation conpatible with your server).

Since you need to add to the classpath, you can't invoke Sqgl Tool with
the jar switch, like "java -jar .../hsqgldb.jar..." or

"java -jar .../hsglsqgltool.jar...".

Put both the HSQ.DB jar and classesl12.zip in your classpath (and export!)
and run sonething |like "java org. hsqgldb.util.Sql Tool...".

#urlid cardiff2

#url jdbc:oracle:thin: @egir.adnc. com 1522;: TRAFFI C _SI D
#user name bl ai ne

#password secr et password

#driver oracle.jdbc. OracleDriver

Tenpl ate for a TLS-encrypted HSQLDB Server.

Renenmber that the hostname in hsgls (and https) JDBC URLs must nmatch the
CN of the server certificate (the port and instance alias that follows
are not part of the certificate at all).

You only need to set "truststore" if the server cert is not approved by
your systemdefault truststore (which a conmercial certificate probably
woul d be).

HHHFHHFHH

#urlid tls

#url jdbc: hsqgl db: hsqgl s://db. adnc. com 9001/ | n?
#user nane bl ai ne

#password asecr et

#truststore /hone/ bl ai ne/ ca/ db/ db-trust.store

Tenplate for a Postgresgl database

#urlid bl ai nedb

#url jdbc: postgresql://idun.africawork. org/blai nedb
#user name bl ai ne

#password | osungl

#driver org.postgresql.Driver

Tenplate for a MySQL dat abase
#urlid nysql -testdb

#url jdbc:nysql:///test

#user name root

21

UNIX Quick Start

#user nanme bl ai ne
#password hi ddenpwd
#driver com nysql.jdbc.Driver

We will be using the "localhost-sa" sample urlid definition from the config file. The JIDBC URL for this
urlidisj dbc: hsql db: hsql : / /1 ocal host . That isthe URL for the default database instance of a
HSQLDB Server running on the default port of the local host. You can read about URLS to connect to
other instances and other serversin the Advanced Topics chapter.

Run Sql Tool .

java -jar path/to/hsqgldb.jar Iocal host-sa

If you get a prompt, then al is well. If security is of any concern to you at al, then you should change
the privileged password in the database. Use the command SET PASSWORD command to change SA's
password.

set password "newpassword";

When you're finished playing, exit with the command \ q.

If you changed the SA password, then you need to fix the password in the sql t ool . r ¢ file accord-
ingly.

You can, of course, also access the database with any JDBC client program. See the First JDBC Client
Example appendix. You will need to modify your classpath to include hsql db. j ar as well as your
client class(es). You can aso use the other HSQLDB client programs, such as
org. hsql db. uti| . Dat abasManager Swi ng, a graphical client with a similar purpose to
Sql Tool .

Y ou can use any hormal UNIX account to run the JDBC clients, including Sql Tool , aslong as the ac-
count has read access to the hsql db. j ar fileand to an sqgl t ool . r ¢ file. See the SqlTool chapter
about where to put sql t ool . r ¢, how to execute sql files, and other Sgl Tool features.

Create additional Accounts

Connect to the database as SA (or any other Administrative user) and run CREATE USER to create new
accounts for your database instance. HSQLDB accounts are database-instance-specific, not Ser ver -
specific.

For the current version of HSQL DB, only users with Role of DBA may create or own database objects.
DBA members have privileges to do anything. Non-DBAs may be granted some privileges, but may
never create or own database objects. (Before long, non-DBAs will be able to create objects if they have
permission to do so in the target schema). When you first create a hsgldb database, it has only one data-
base user-- SA, a DBA account, with an empty string password. You should set a password (as de-
scribed above). You can create as many additional users as you wish. To make a user a DBA, you can
use the "ADMIN" option to the CREATE USER command, or GRANT the DBA Role to the account
after creating it.

If you create a user without the ADMIN tag (and without granting the DBA role to them) this user will
be able to read the data dictionary tables, but will be able unable to create or own his own objects. He
will have only the rights which the pseudo-user PUBLIC has. To give him more permissions, even rights
to read objects, you can GRANT permissions for specific objects, grant Roles (which encompass a set of
permissions), or grant the DBA Role itself.

22

UNIX Quick Start

Since only people with a database account may do anything at all with the database, it is often useful to
permit other database users to view the data in your tables. To optimize performance, reduce contention,
and minimize administration, it is often best to grant SELECT to PUBLIC on any object that needs to be
accessed by multiple database users (with the significant exception of any data which you want to keep
secret).

Shutdown

Do a clean database shutdown when you are finished with the database instance. Y ou need to connect up
as SA or some other Admin user, of course. With SqglTool, you can run

java -jar path/to/hsqldb.jar --noinput --sql shutdown | ocal host-sa

You don't have to worry about stopping the Ser ver because it shuts down automatically when all
served database instances are shut down.

Running Hsqgldb as a System Daemon

You can, of course, run HSQLDB through inittab on System V UNIXes, but usualy an init script is
more convenient and manageable. This section explains how to set up and use our UNIX init script. Our
init script is only for use by root. (That is not to say that the Server will run as root-- it usually should
not).

The main purpose of the init script is to start up a Server with the database instances specified in your
server . properti es file; and to shut down all of those instances plus additional urlids which you
may (optionally) list in your init script config file. These urlids must all have entries in a sgltool.rc file.
If, due to firewall issues, you want to run a WebServer instead of a Server, then make sure you have a
healthy WebServer with a webserver.properties set up, adjust your URLs in sql t ool . rc, and set
TARGET_CLASS in the config file.

After you have the init script set up, root can use it anytime to start or stop HSQLDB. (I.e., not just at
system bootup or shutdown).

Portability of hsqgl db init script

The primary design criterion of the init script is portabiliity. It does not print pretty color startup/shut-
down messages as is common in late-model Linuxes and HPUX; and it does not keep subsystem state
files or use the startup/shutdown functions supplied by many UNIXes, because these features are all
non-portable.

Offsetting these limitations, this one script does it's intended job great on the UNIX varieties | have
tested, and can easily be modified to accommodate other UNIXes. While you don't have tight integration
with OS-specific daemon administration guis, etc., you do have a well tested and well behaved script
that gives good, utilitarian feedback.

Init script Setup Procedure

The strategy taken here isto get the init script to run your single Server or WebServer first (as specified
by TARGET_CLASS). After that's working, you can customize the JVM that is run by running addi-
tional Serversin it, running your own application in it (embedding), or even overriding HSQLDB beha-
vior with your own overriding classes.

23

UNIX Quick Start

Copy the init script hsqgl db from HSQLDB_HOME/ bi n into the directory where init scripts
live on your variety of UNIX. The most common locations are /etc/init.d or /
etc/rc.d/init.d on System V style UNIXes, /usr/local/etc/rc.d on BSD style
UNIXes, and / Li brary/ Start upltens/ hsql db on OS X (you'll need to create the direct-
ory for the last).

Look at the init script and see what the value of CFGFILE isfor your UNIX platform. Y ou need to
copy the sample config file HSQLDB_HOME/
src/ or g/ hsql db/ sanpl e/ sanpl e- hsql db. cf g to that location. Edit the config file ac-
cording to the instructionsin it.

$l d: sanpl e-hsqgl db. cfg,v 1.14 2005/06/01 22:24:50 unsaved Exp $

Sanpl e configuration file for HSQLDB dat abase server.
See the "UNI X Quick Start" chapter of the Hsgl db User Guide.

N.b.!'I''l You must place this in the right |location for your type of UN X
See the init script "hsqgldb" to see where this nust be placed and
what it should be renaned to.

This file is "sourced" by a Bourne shell, so use Bourne shell syntax.

This file WLL NOT WORK until you set (at |east) the non-conmmented
variables to the appropriate values for your system

Life will be easier if you avoid all filepaths with spaces or any other
funny characters. Don't ask for support 1f you ignore this advice.

H O OHHHHE OHF OHFHFH OHH OH

Thanks to Mei kel Bisping for his contributions. -- Blaine
JAVA EXECUTABLE=/ usr/javal/j2sdkl. 4.2_02/bin/java

Unl ess you copied a hsqldb.jar file fromanother system this typically

resides at $HSQLDB HOWE/ li b/ hsql db. jar, where $HSQLDB HOVE i s your HSQLDB
software base directory.

HSQLDB JAR PATH=/ opt/ hsql db/l'i b/ hsql db. j ar

Where the file "server.properties" resides.
SERVER_HOME=/ hone/ bl ai ne/ db

What UNI X user the server will run as.

(The shutdown client is always run as root or the invoker of the init script)
Runs as root by default, but you should take the tinme to set database file

ownershi ps to another user and set that user nanme here.

HSQLDB_OMNER=DbI ai ne

The HSQLDB jar file specified in HSQDB JAR PATH above will automatically
be in the class path. This arg specifies additional classpath el enents.

To enbed your own application, add your jar file(s) or class base

directories here, and add your main class to the | NVOC_ADDL_ARGS setting
bel ow.

SERVER _ADDL_CLASSPATH=/ usr/ | ocal / di st/ currencybank. j ar

We require all Server/WbServer instances to be accessible within

$MAX_START_SECS from when the Server/WbServer is started.

Defaults to 60.

Raise this is you are running lots of DB instances or have a sl ow server.
#MAX_START _SECS=200

Time to allow for JVUMto die after all HSQ.DB i nstances stopped.
Defaults to 1.
#MAX_TERM NATE_SECS=0

24

UNIX Quick Start

These are "urlid" values froma Sql Tool authentication file

** |N ADDI TION TO THOSE I N YOUR server. properties OR webserver. properties **
file. Al server.urlid. X values fromyour properties file will automatically
be started/stopped/tested. $SHUTDOM URLIDS is for additional urlids which
will stopped. (Therefore, nobst users will not set this at all).

Separate nultiple values with white space. NO OTHER SPECI AL CHARACTERS!

Make sure to quote the entire value if it contains white space separator(s).
Defaults to none (i.e., only urlids set in properties file will be stopped).
#SHUTDOM_URL| DS=' sa nygns'

HHHFEHEHFHEHHR

Sql Tool authentication file used only for shutdown.

The default value will be sqgltool.rc in root's honme directory, since it is
root who runs the init script.

(See the Sqgl Tool chapter of the HSQLDB User Cuide if you don't understand
this).

#AUTH_FI LE=/ hone/ bl ai ne/ sqgl tool . rc

Set this to either 'WbServer' or 'Server'. Defaults to Server.

The JVMthat is started can i nvoke many cl asses (see the following item
about that), but this is the Server that is used (1) to check status,
(2) to shut down the JVM (3) to get urlids for #1 fromthe

server's server/webserver.properties file.

#TARGET_CLASS=WebSer ver

Note that you don't specify the org. hsgl db package, since you have no
choice in the matter (you can only run org. hsql db. Server or

org. hsql db. WebServer). |f you specify additional classes with

| NVOC_ADDL_ARGS (described next), you do need to specify the

full class name with package nane.

This is where you specify exactly what your HSQ.DB JVM wi || run.
The cl ass org. hsql db. util. Minlnvoker wll run the TARGET CLASS
speci fied above with any argunments supplied here + any other cl asses
and argunments. Every additional class (in addition to the TARGET_CLASS)
nmust be preceded with an enpty string, so that Minlnvoker will know
you are giving a class name. Mainlnvoker will invoke the nornal
static main(String[]) nethod of each such cl ass.
By default, Minlnvoker will just run TARGET_CLASS with no args.
Exanpl e that runs just the TARGET _CLASS with the specified argunents:
NVOC_ADDL_ARGS='-sil ent fal se'
Exanpl e that runs the TARGET CLASS plus a WbServer:
#1 NVOC_ADDL_ARGS='"" org. hsgl db. WebSer ver"
Note the enpty string preceding the class nane.
Exanple that starts TARGET _CLASS with an argunent + a WebServer +
your own application with its args (i.e., the HSQLDB Servers are

"enbedded" in your application). (Set SERVER _ADDL_CLASSPATH t 00).
#I NVOC ADDL_ARGS='-silent false "" org. hsqgl db. WebServer "" com acne. St one --env
Exanple to run a non-TLS server in same JVMwith a TLS server. In this
case, TARCET_CLASS is Server which will run in TLS node by virtue of
setting TLS KEYSTO?E and TLS PASSV\(PD above. The "additional" Server
here overrides the 'tls' and 'port' settings:
#1 N\VOC_ADDL_ARGS="'"' org. hsql db. Server -port 9002 -tls fal se"
Not e t hat you use nested quotes to group argunents and to specify the
enpty-string delinmter.

HEHFHHEH®HHE HEHRH

For TLS encryption for your Server, set these two vari abl es.

N.b.: If you set these, then nmake this file unreadable to non-root users!!!!
See the TLS chapter of the HSQLDB User Guide, paying attention to the
security warning(s).

If you are running with a private server cert, then you will also need to
set "truststore" in the your Sql Tool config file (location is set by the
AUTH FI LE variable in this file, or it nust be at the default location for
HSQLDB_OWNER) .

HHHFHFEHHFHETE HH

25

UNIX Quick Start

#TLS_KEYSTORE=/ pat h/ t o/ j ks/ server.store
#TLS PASSWORD=passwor d

Any JVM args for the invocation of the JDBC client used to verify DB
instances and to shut them down (Sql Tool Sprayer).

This exanple specifies the location of a private trust store for TLS
encryption.

For multiple args, put quotes around entire val ue.

#CLI ENT_JVMARGS=- [j avax. net . debug=ssl

Any JVM args for the server.
For multiple args, put quotes around entire val ue.
#SERVER_JVMARGS=- Xnx512m

Either copy HSQLDB_OWNER's sql t ool . r ¢ file into root's home directory, or set the value
of AUTH_FILE to the absolute path of HSQLDB_OWNER'ssql t ool . r c file. Thisfileis read
(for stops) directly by root, even if you run hsgldb as non-root (by setting HSQLDB_OWNER in
the config file). If you copy the file, make sure to use chnod to restrict permissions on the new
copy.

Edit your server. properti es file. For every ser ver . dat abase. X that you have defined,

set aproperty of nameser ver . url i d. Xtotheurlid for an Administrative user for that database
instance.

Example 3.1. server.properties fragment

server. dat abase. O=fil e:// hone/ hsql db/ dat a/ db1l
server.urlid. 0=l ocal hostdbl

Warning

Make sure to add a urlid for each and every database instance. If you don't then the init script
will never know about databases that become inaccessible and will give false diagnostics.

For this example, you would need to define the urlid | ocal host db1 inyour sqgl t ool . r c file.

Example 3.2. example sgltool.rc stanza

urlid | ocal hostdbl

url jdbc: hsql db: hsqgl ://1 ocal host
usernane sa

password secret

Verify that theinit script works.

Just run

26

UNIX Quick Start

/ path/ to/ hsql db

as root to see the arguments you may use. Notice that you can run
/ pat h/to/ hsqgl db status

at any time to see whether your HSQLDB Ser ver isrunning.

Re-run the script with each of the possible arguments to really test it good. If anything doesn't work
right, then see the Troubleshooting the Init Script section.

6. Tell your OSto run theinit script upon system startup and shutdown. If you are using a UNIX vari-
ant that has/ et c/rc. conf or/etc/rc.conf.local (likeBSD variants and Gentoo), you
must set "hsgldb_enable” to "YES" in either of those files. (Justruncd /etc; |Is rc.conf
rc.conf. | ocal toseeif youhaveone of thesefiles). For good UNIXes that use System V style
init, you must set up hard links or soft links either manually or with management tools (such as
chkconfi g ori nsserv) or Gui's (like run level editors).

This paragraph is for Mac OS X users only. If you followed the instructions above, your init script
should reside at / Li brary/ Startupltens/hsqgl db/ hsql db. Now copy the file St ar -
t upPar anet er s. pli st from the directory src/ org. hsql db/ sanpl e of your HSQLDB
distribution to the same directory as the init script. As long as these two files reside in /
Li brary/ Startupltens/ hsql db, your init script is active (for portability reasons, it doesn't
check for asettingin/ et ¢/ host conf i g). You can runit as a Sartup Item by running

Systenttarter {start|stop|restart} Hsql db

Hsqgldb is the service name. See the man page for Syst enftst art er. To disable the init script,
wipe out the / Li brary/ Startupltens/ hsql db directory. Hard to believe, but the Mac
people tell me that during system shutdown the Startup Items don't run at all. Therefore, if you
don't want your data corrupted, make sure to run " SystemStarter stop Hsgldb" before shutting down
your Mac.

Follow the examples in the config file to add additional classes to the server VM's classpath and to ex-
ecute additional classes in your JVM. (See the SERVER_ADDL_CLASSPATH and IN-
VOC_ADDL_ARGS items).

Troubleshooting the Init Script

Do aps to look for processes containing the string hsql db, and try to connect to the database from
any client. If the init script starts up your database successfully, but incorrectly reports that it has not,
then your problem is with specification of urlid(s) or SglTool setup. If your database really did not start,
then skip to the next paragraph. Verify that the urlid(s) listed in the ser ver . properti es or web-
server. properties arecorrect. and verify that you can run Sgl Tool asroot to connect to the in-
stances. (For the latter test, usethe - - r cf i | e switch if you are setting AUTH_FI LE in the init script
config file).

If your database really is not starting, then verify that you can su to the database owner account and start
the database. If these don't pan out, then debug the init script or seek help, as described below.

To debug the init script, run it in verbose mode to see exactly what is happening (and perhaps manually
run the steps that are suspect). To run an init script (in fact, any sh shell script) in verbose mode, use sh

27

UNIX Quick Start

with the - x or - v switch, like

sh -x path/to/ hsql db start
See the man page for sh if you don't know the difference between - v and - x.
If you want troubleshooting help, use the HSQLDB listsforums or email me at
blaine.simpson@admc.com [mailto:blaine.simpson@admc.com?Subject=hsgldb-unix]. If you email me,

make sure to include the revision number from your hsql db init script (it's towards the top in the line
that starts like "# $ld:"), and the output of arun of

sh -x path/to/hsqldb start > /tnp/hstart.|log 2>&1

28

mailto:blaine.simpson@admc.com?Subject=hsqldb-unix

Chapter 4. Advanced Topics

Fred Toussi, HSQLDB Development Group <f t @l uedup. con®

Copyright 2002-2005 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQLDB Development
Group to distribute this document with or without alterations under the terms of the HSQLDB license.
$Date: 2005/06/30 22:38:54 $

Purpose

Many questions repestedly asked in Forums and mailing lists are answered in this guide. If you want to
use HSQLDB with your application, you should read this guide. This document covers system related
issues. For issues related to SQL see the SQL Issues chapter.

Connections

The norma method of accessing an HSQLDB database is via the JIDBC Connection interface. An intro-
duction to different methods of providing database services and accessing them can be found in the SQL
I ssues chapter. Details and examples of how to connect via JDBC are provided in our JavaDoc for j db-

cConnect i on [../src/org/hsgldb/jdbe/jdbcConnection.html].

Version 1.7.2 introduced a uniform method of distinguishing between different types of connection,
alongside new capabilities to provide access to multiple databases. The common driver identifier isj d-

bc: hsql db: followed by a protocol identifier (mem file: res: hsgl: http: hsqls:

ht t ps:) then followed by host and port identifiers in the case of servers, then followed by database
identifier.

Table4.1. Hsgldb URL Components

Driver and Protocol Host and Port Database

not available
j dbc: hsql db: nem account s

Lowercase, single-word identifier creates the in-memory database when the first connection is made.
Subsequent use of the same Connection URL connectsto the existing DB.

The old form for the URL, j dbc: hsql db: . creates or connectsto the same database as the new
form for the URL, j dbc: hsql db: mem .

not available
j dbc: hsql db: file: nydb

/ opt / db/ account s
C:. / dat a/ mydb

Thefile path specifies the database file. In the above examples the first one refersto a set of mydb.*
filesin the directory where the j avacommand for running the application was issued. The second and
third examples refer to absolute paths on the host machine.

not available
j dbc: hsql db: res: / adi rect ory/ dbnane

Database files can be loaded from one of the jars specified as part of the Java command the same way
as resource files are accessed in Java programs. The/ adi r ect or y above stands for adirectory in

29

../src/org/hsqldb/jdbc/jdbcConnection.html
../src/org/hsqldb/jdbc/jdbcConnection.html

Advanced Topics

Driver and Protocol Host and Port Database
one of the jars.
j dbc: hsql db: hsql : /11 ocal host /an_alias
j dbc: hsql db: hsql s: /1192.0.0.10: 9500 /enrol |l ments
j dbc: hsqgl db: htt p: / / qui ckdb
j dbc: hsql db: htt ps: / dbser v-
er. somedomai n. com

The host and port specify the IP address or host name of the server and an optional port number. The
database to connect to is specified by an alias. Thisaiasis alowercase string defined in the ser v-
er. properti es filetorefer to an actual database on the file system of the server or atransient, in-
memory database on the server. The following examplelinesinser ver . properti es orweb-
server. properti es definethe database aliases listed above and accessible to clients to refer to
different file and in-memory databases.

dat abase. O=fil e:/ opt/db/accounts
dbnane. 0=an_al i as

dat abase. 1=fil e:/opt/ db/ mydb
dbnane. 1=enrol | ments

dat abase. 2=nem adat abase
dbnane. 2=qui ckdb

The old form for the server URL, e.g.,j dbc: hsql db: hsqgl / /1 ocal host connectsto the same
database as the new form for the URL, j dbc: hsql db: hsqgl / /1 ocal host/ wherethediasisa
zero length string. In the example below, the database files| i st s. * inthe/ home/ dbmast er/ dir-
ectory are associated with the empty alias:

dat abase. 3=/ hone/ dbnmaster/|ists
dbnane. 3=

Connection properties

Each new JDBC Connection to a database can specify connection properties. The properties user and
password are always required. In 1.8.0 the following optional properties can aso be used.

Connection properties are specified either by establishing the connection via the:

Dri ver Manager . get Connection (String url, Properties info);

method call, or the property can be appended to the full Connection URL.

Table 4.2. Connection Properties

get_column_name ‘t rue column name in ResultSet

This property is used for compatibility with other IDBC driver implementations. When true (the de-
fault), Resul t Set . get Col utmNane(i nt c¢) returnsthe underlying column name

30

Advanced Topics

When false, the above method returns the same value asResul t Set . get Col utmLabel (i nt
col umm) Example below:

j dbc: hsql db: hsqgl : //1 ocal host/enrol | ments; get _col unmm_nane=f al se

When a ResultSet is used inside a user-defined stored procedure, the default, true, is always used for
this property.

ifexists fal se connect only if database already
exists

Has an effect only withnmem andfi | e: database. When true, will not create anew database if one
does not already exist for the URL.

When false (the default), anew mem or fi | e: database will be created if it does not exist.
Setting the property to true is useful when troubleshooting as no database is created if the URL is mal-
formed. Example below:

jdbc: hsql db: file:enroll nents;ifexists=true

shutdown fal se shut down the database when the
last connection is closed

This mimics the behaviour of 1.7.1 and older versions. When the last connection to a database is
closed, the database is automatically shut down. The property takes effect only when the first connec-
tion is made to the database. This means the connection that opens the database. It has no effect if used
with subsequent, simultaneous connections.

This command has two uses. One is for test suites, where connections to the database are made from
one VM context, immediately followed by another context. The other use is for applications where it
is not easy to configure the environment to shutdown the database. Examples reported by users include
web application servers, where the closing of the last connection conisides with the web app being shut
down.

In addition, when a connection to an in-process database creates a new database, or opens an existing
database (i.e. it is the first connection made to the database by the application), al the user-defined data-
base properties can be specified as URL properties. This can be used to specify properties to enforce
more strict SQL adherence, or to change cache scale or similar properties before the database files are
created. However, for new databases, it is recommended to use the SET PROPERTY command for such
settings.

Properties Files

HSQLDB relies on a set of properties files for different settings. Since 1.7.0 property naming has been
streamlined and a number of new properties have been introduced.

In al properties files, values are case-sensitive. All values apart from names of files or pages are re-
quired in lowercase (e.g. server.silent=FALSE will have no effect, but server.silent=f al se will work).

The properties files and the settings stored in them are as follows:

31

Advanced Topics

Table4.3. Hsgldb Server Properties Files

File Name

L ocation

Function

server. properties

the directory where the command
torunthe Ser ver classisissued

settings for running HSQL DB as
a database server communicating
with the HSQL protocol

webserver. properties

the directory where the command
torunthe WebSer ver classis

settings for running HSQLDB as
a database server communicating

issued with the HTTP protocol
<dbnane>. properties the directory where all thefiles | settings for each particular data-
for a database are located base

Properties files for running the servers are not created automatically. Y ou should create your own files
that contain server.property=val ue pairsfor each property.

The properties file for each database is generated by the database engine. This file can be edited after
closing the database. In 1.8.0, most of these properties can be changed via SQL commands.

Server and Web Server Properties

Inboth server. properti es andwebserver. properti es files, supported values and their de-
faults are asfollows:

Table4.4. Property File Properties

Default
t est

Description

the path and file name of the first
database file to use

lowercase server alias for the first
database file

SqlTool urlid used by UNIX init
script. (This property is not used
if your are running Server/
Webserver on a platform other
than UNIX, or of you are not us-
ing our UNIX init script).

no extensive messages displayed
on console

JDBC trace messages displayed
on console

Value
server.database.0

server.dbname.O

server.urlid.O NONE

server.silent true

server.trace fal se

In 1.8.0, each server can serve up to 10 different databases simultaneously. The server.database.0 prop-
erty defines the filename / path whereas the server.dbname.0 defines the lowercase alias used by clients
to connect to that database. The digit 0 is incremented for the second database and so on. Values for the
server.database{ 0-9} property can usethermem ,fil e: orres: prefixesand properties as discussed
above under CONNECTIONS. For example,

dat abase. O=mrem t enp; sqgl . enforce_strict_si ze=true;

32

Advanced Topics

Vaues specifictoser ver . properti es are

Table 4.5. Server Property File Properties

Value Default Description

server.port 9001 TCP/IP port used for talking to
clients. All databases are served
on the same port.

server.no_system_exit true no System exi t () cal when

the database is closed

Vaues specifictowebser ver . properti es are

Table4.6. WebServer Property File Properties

Value Default Description

server.port 80 TCP/IP port used for talking to
clients

server.default_page i ndex. htm the default web page for server

server.root A the location of served pages

.<extension> ? multiple entries such as

.htm =text/htm definethe
mime types of the static files
served by the web server. Seethe
source for WebSer ver . j ava
for alist.

All the above values can be specified on the command line to start the server by omitting the ser ver .

prefix.

Starting a Server from your application

If you want to start the server from within your application, as opposed to the command line or batch
files, you should create an instance of Server or Web Server, then assign the properties in the form of a
String and start the Server. An example of this can be found in the or g. hsgl db. t est . Test Base

source.

Note

Upgrading: If you have existing custom properties files, change the values to the new naming
convention. Note the use of digits at the end of server.database.n and server.dbname.n proper-

ties.

Individual Database Properties

Each database has its own <dbnane>. properti es fileas part of a small group of files which also
includes <dbname>. scri pt and <dbnane>. dat a. The properties files contain key/value pairs for

some important settings.

Inversion 1.8.0 anew SQL command allows most database properties to be modified as follows:

33

Advanced Topics

SET PROPERTY "property_nanme" property_val ue

Properties that can be modified via SET PROPERTY are indicated in the table below. Other properties
are indicated as PROPERTI ES FI LE ONLY and can be modified only by editing the .properties file
after a shutdown and before arestart. Only the user-defined values listed below should ever be modified.
Changing any other value could result in unexpected malfunction in database operations. Most of these
values have been introduced for the new features since 1.7.0:

Table 4.7. Database-specific Property File Properties

Value Default Description
readonly no whole database is read-only

When true, the database cannot be modified in use. This setting can be changed to yes if the database
isto be opened from a CD. Prior to changing this setting, the database should be closed with the
SHUTDOWN COVPACT command to ensure consistency and compactness of the data. (PROPERTI ES
FILE ONLY) but can be used as a connection property to open a nornal
dat abase as readonly.

hsgldb.files_readonly fal se database files will not be written
to

When true, datain MEMORY tables can be modified and new MEMORY tables can be added.
However, these changes are not saved when the database is shutdown. CACHED and TEXT tables are
always readonly when this setting istrue. (PROPERTI ES FI LE ONLY)

hsgldb.cache file _scale 1 Set larger datafile limits. Once
set, the limit will go up to 8GB.

This property can be set to 8 to increase the size limit of the .data file from 2GB to 8GB. To apply the
change to an existing database, SHUTDOWN SCRIPT should be performed first, then the prop-
erty=value line below should be added to the .properties file before reopening the database.

hsql db. cache_fil e_scal e=8

The property can be set with the SQL command (as opposed to changing the value in the properties
file) when the database has no CACHED tables (e.g. anew database). (SET PROPERTY)

sgl.enforce_size fal se trimming and padding string
columns

This property isno longer supported. Use sgl.enforce _sctrict_size

sgl.enforce_strict_size fal se size enforcement and padding
string columns

Conformsto SQL standards for size and precision of datatypes. When true, all CHARACTER,
VARCHAR, NUMERIC and DECIMAL valuesthat arein arow affected by an INSERT INTO or UP-
DATE statement are checked against the size specified in the SQL table definition. An exceptionis
thrown if the valueistoo long. Also all CHARACTER values that are shorter than the specified size
are padded with spaces. TIMESTAMP(0) and TIMESTAMP(6) are also allowed in order to specify the
subsecond resolution of the values. When false (default), stores the exact string that isinserted. (SET
PROPERTY)

sl.tx_no_multi_rewrite false |transaction management

Advanced Topics

Value Default |Description

In the default READ_UNCOMMITED mode, a transaction can write over rows inserted or updated by
another uncommitted transaction. Setting this property to true will raise an
exception when such a wite is attenpted (SET PROPERTY)

hsgldb.cache scale ‘ 14 ‘ memory cache exponent

Indicates the maximum number of rows of cached tables that are held in memory, calculated as 3
*(2**value) (three multiplied by (two to the power valug)). The default resultsin up to 3* 16384 rows
from all cached tables being held in memory at any time.

The value can range between 8-18. (SET PROPERTY) . If thevalueis set via SET PROPERTY then
it becomes effective after the next database SHUTDOWN or CHECKPOINT. (SET PROPERTY)

hsgldb.cache size scale |10 | memory cache exponent

Indicates the average size of each row in the memory cache used with cached tables, calculated as
2**value (two to the power value). Thisresult value is multiplied by the maximum number of rows
defined by hsgldb.cache_scale to form the maximum number of bytes for al the rowsin memory
cache. The default resultsin 1024 bytes per row. This default, combined with the default number of
rows, resultsin approximately 50MB of the .datafile to be stored in the memory cache.

The value can range between 6-20. (SET PROPERTY) . If thevaueis set via SET PROPERTY then
it becomes effective after the next database SHUTDOWN or CHECKPOINT. (SET PROPERTY)

hsgldb.log_size 200 size of log when checkpoint is
performed

The value is the size in megabytes that the . | og file can reach before an automatic checkpoint occurs.
A checkpoint and rewritesthe. scri pt fileand clearsthe. | og file. The value can be changed via
the SET LOGSI ZE nnn SQL command.

runtime.gc_interval |0 forced garbage collection

This setting forces garbage collection each time a set number of result set row or cache row objects are
created. The default, "0" means no garbage collection is forced by the program.

This should not be set when the database engine is acting as a server inside an exclusive VM. The set-
ting can be useful when the database is used in-process with the application with some Java Runtime
Environments (JRE's). Some JRE's increase the size of the memory heap before doing any automatic
garbage collection. This setting would prevent any unnecessary enlargement of the heap. Typical val-
ues for this setting would probably be between 10,000 to 100,000. (PROPERTI ES FI LE ONLY)

hsgldb.nio_data file true use of nio access methods for the
datafile

When HSQLDB is compiled and run in Java 1.4 or higher, setting this property to f al se will avoid
the use of nio access methods, resulting in somewhat reduced speed. If the datafileis larger than
256MB when it isfirst opened, nio access methods are not used. Also, if the file gets larger than the
amount of available computer memory that needs to be allocated for nio access, non-nio access meth-
ods are used.

(SET PROPERTY) . If used before defining any CACHED table, it applies to the current session, oth-
erwiseit comesto effect after a SHUTDOWN and restart or CHECKPOINT.

hsgldb.default_table type menory type of table created with unqual-
ified CREATE TABLE

The CREATE TABLE command resultsinaMEMORY table by default. Setting the value "cached”

35

SQL

Advanced Topics

Value Default Description

for this property will result in a cached table by default. The qualified forms such as CREATE
MEMORY TABLE or CREATE CACHED TABLE are not affected at all by this property. (SET
PROPERTY)

hsgldb.applog 0 application logging level

The default level 0 indicates no logging. Level 1 resultsin events related to persistence to be logged,
including any failures. The events are logged in afile ending with .app.log

textdb.* 0 default properties for new text
tables

Properties that override the database engine defaults for newly created text tables. Settingsin the text
table SET <t abl ename> SOURCE <source string> command override both the engine de-
faults and the database properties defaults. Individual textdb.* properties are listed in the Text Tables

chapter. (SET PROPERTY)

When connecting to an in-process database creates a new database, or opens an existing database (i.e. it
is the first connection made to the database by the application), al the user-defined database properties
listed in this section can be specified as URL properties.

Note

Upgrading: From 1.7.0, the location of the database files can no longer be overridden by paths

defined in the properties file. All files belonging to a database should reside in the same direct-

ory.
The property sgl.compare_in_locale=true is no longer supported. If the line exists in a .propertiesfile, it
will switch the database to the collation for the current default. See the SET DATABASE
COLLATION1 command.

When HSQLDB is used in OpenOffice.org, some property values will have a different default. The
properties and values are:

hsgldb.default_table type=cached hsgldb.cache scale=13 hsgldb.log_size=10;
hsgldb.nio_data file=false sgl.enforce _strict_size=true

Commands for Database Properties

There are some database properties that are set with dedicated SQL commands beginning with SET.

Table 4.8. SQL command properties

SET WRITE_DELAY {{TRUE | FALSE} | <seconds> | <milliseconds> MILLIS

The default is TRUE and indicates that the changes to the database that have been logged are synched
to the file system once every 20 seconds. FAL SE indicates there is no delay and at each commit afile
synch operation is performed. Numeric values from O can also be specified for the synch delay.

The purpose of this command is to control the amount of datalossin case of atotal system crash. A
delay of 1 second means at most the data written to disk during the last second before the crashislost.
All data written prior to this has been synced and should be recoverable

This setting should be specified on the basis of the reliability of the hardware used for running the data-

36

Advanced Topics

base engine, the type of disk system used, the possibility of power failure etc. Also the nature of the
data stored should be considered.

In general, when the system is very reliable, the setting can be left to the default. If it is not very reli-
able, or the dataiis critical asetting of 1 or 2 seconds would suffice. Only in the worst case scenario or
with the most critical data should a setting of 0 or FAL SE be specified as thiswill slow the engine
down to the speed at which the file synch operation can be performed by the disk subsystem.

Values down to 10 millisconds can be specified by adding MILLIS to the command, but in practice a
delay of 100 milliseconds provides 99.99999% reliability with an average one system crash per 6 days.

SET LOG_SIZE <numeric value>

The engine writes out alog of all the changes to the database as they occur. Thislog is synched to the
disk based on the WRITE_DELAY property above. Thelog is never reused unless there is an abnormal
termination, i.e. the database processis terminated without SHUTDOWN, or it was terminated using
SHUTDOWN IMMEDIATELY.

The default maximum size of the .log fileis 200 MB. When the maximum size is reached, a CHECK -
POINT operation is performed. This operation will save the other database filesin a consistent state
and delete the old log. A vaue of O indicates no limit for the .log file.

SET CHECKPOINT DEFRAG <numeric value>

When rows in CACHED tables are updated or deleted, the spaces are mostly reused. However, in time,
some unused spaces are left in the .data file, especially when large tables are dropped or their structure
is modified.

A CHECKPOINT operation does not normally reclaim the empty spaces, whereas CHECKPOINT DE-
FRAG aways does.

This property determines when anormal CHECKPOINT, whether initiated by an administrator or
when the size of the log exceeds its limit.

The numeric value is the number of megabytes of recorded empty spaces in the .data file that would
force aDEFRAG operation. Low values result in more frequent DEFRAG operations. A valueof 0in-
dicates no automatic DEFRAG is performed. The default is 200 megabytes of lost space.

SET REFERENTIAL INTEGRITY { TRUE | FALSE}

Thisis TRUE by default. If bulk data needs to be loaded into the database, this property can be set
FALSE for the duration of bulk load operation. This allows loading data for related tables in any order.
The property should be set TRUE after bulk load. If the loaded data is not guaranteed to conform to the
referential integrity constraints, SQL queries should be run after loading to identify and modify any
non-conforming rows.

37

Chapter 5. Deployment Issues
Fred Toussi, HSQLDB Development Group <f t @l uedup. con®

Copyright 2005 Fred Toussi. Permission is granted to distribute this document without any alteration un-
der the terms of the HSQLDB license. Additional permission is granted to the HSQLDB Development
Group to distribute this document with or without alterations under the terms of the HSQLDB license.
$Date: 2005/06/30 22:39:11 $

Purpose

Many questions repestedly asked in Forums and mailing lists are answered in this guide. If you want to
use HSQLDB with your application, you should read this guide. This document covers system related
issues. For issues related to SQL see the SQL Issues chapter.

Mode of Operation and Tables

HSQLDB has many modes of operation and features that allow it to be used in very different scenarios.
Levels of memory usage, speed and accessibility by different applications are influenced by how
HSQLDB is deployed.

Mode of Operation

The decision to run HSQL DB as a separate server process or as an in-process database should be based
on the following:

* When HSQLDB isrun as a server on a separate machine, it is isolated from hardware failures and
crashes on the hosts running the application.

* When HSQLDB is run as a server on the same machine, it is isolated from application crashes and
memory leaks.

» Server connections are slower than in-process connections due to the overhead of streaming the data
for each JDBC call.

Tables

TEXT tables are designed for special applications where the data has to be in an interchangeable format,
such as CSV. TEXT tables should not be used for routine storage of data.

MEMORY tables and CACHED tables are generally used for data storage. The difference between the
two isasfollows:

» Thedatafor all MEMORY tablesis read from the .script file when the database is started and stored
in memory. In contrast the data for cached tables is not read into memory until the table is accessed.
Furthermore, only part of the data for each CACHED table is held in memory, allowing tables with
more data than can be held in memory.

38

Deployment Issues

» When the database is shutdown in the normal way, al the datafor MEMORY tablesis written out to
the disk. In comparison, the data in CACHED tables that has changed is written out at shutdown,
plus a compressed backup of all the datain all cached tables.

» The size and capacity of the data cache for all the CACHED tables is configurable. This makes it
possible to alow all the datain CACHED tables to be cached in memory. In this case, speed of ac-
cessis good, but slightly slower than MEMORY tables.

e For normal applications it is recommended that MEMORY tables are used for small amounts of
data, leaving CACHED tables for large data sets. For special applications in which speed is para
mount and a large amount of free memory is available, MEMORY tables can be used for large tables
aswell

Large Objects

JDBC Clobs are supported as columns of the type LONGVARCHAR. JDBC Blobs are supported as
columns of the type LONGVARBINARY. When large objects (LONGVARCHAR, LONGVARBIN-
ARY, OBJECT) are stored with table definitions that contain several normal fields, it is better to use two
tables instead. The first table to contain the normal fields and the second table to contain the large object
plus an identity field. Using this method has two benefits. (a) The first table can usually be created as a
MEMORY table while only the second table is a CACHED table. (b) The large objects can be retrieved
individually using their identity, instead of getting loaded into memory for finding the rows during query
processing. An example of two tables and a select query that exploits the separation between the two fol-
lows:

CREATE MEMORY TABLE MAI NTABLE(MAI NI D | NTEGER,);
CREATE CACHED TABLE LOBTABLE(LOBI D | NTEGER, LOBDATA LONGVARBI NARY) ;
SELECT * FROM (SELECT * FROM MAI NTABLE <j oi n any other table> WHERE <vari ous condi

The inner SELECT finds the required rows without reference to the LOBTABLE and when it has found
all the rows, retrieves the required large objects from the LOBTABLE.

Deployment context

Thefiles used for storing HSQLDB database data are al in the same directory. New files are always cre-
ated and deleted by the database engine. Two simple principles must be observed:

* The Java process running HSQLDB must have full privileges on the directory where the files are
stored. Thisinclude create and delete privileges.

e Thefile system must have enough spare room both for the 'permanent’ and ‘temporary’ files. The de-
fault maximum size of the .log file is 200MB. The .data file can grow to up to 8GB. The .backup file
can be up to 50% of the .data file. The temporary file created at the time of a SHUTDOWN COM-
PACT can be equal in sizeto the .datafile.

Memory and Disk Use

Memory used by the program can be thought of as two distinct pools: memory used for table data, and
memory used for building result sets and other internal operations. In addition, when transactions are

39

Deployment Issues

used, memory is utilised for storing the information needed for arollback.

Since version 1.7.1, memory use has been significantly reduced compared to previous versions. The
memory used for aMEMORY table is the sum of memory used by each row. Each MEMORY table row
is a Java object that has 2 int or reference variables. It contains an array of objects for the fields in the
row. Each field is an object such as| nt eger, Long, St ri ng, etc. In addition each index on the table
adds a node object to the row. Each node object has 6 int or reference variables. As aresult, atable with
just one column of type INTEGER will have four objects per row, with atotal of 10 variables of 4 bytes
each - currently taking up 80 bytes per row. Beyond this, each extra column in the table adds at least a
few bytes to the size of each row.

The memory used for a result set row has fewer overheads (fewer variables and no index nodes) but still
uses alot of memory. All the rows in the result set are built in memory, so very large result sets may not
be possible. In server mode databases, the result set memory is released from the server once the data-
base server has returned the result set. In-process databases release the memory when the application
program releases thej ava. sql . Resul t Set object. Server modes require additional memory for re-
turning result sets, as they convert the full result set into an array of bytes which is then transmitted to
the client.

When UPDATE and DELETE queries are performed on CACHED tables, the full set of rows that are
affected, including those affected due to ON UPDATE actions, is held in memory for the duration of the
operation. This means it may not be possible to perform deletes or updates involving very large numbers
of rows of CACHED tables. Such operations should be performed in smaller sets.

When transactions support is enabled with SET AUTOCOMMIT OFF, lists of al insert, delete or up-
date operations are stored in memory so that they can be undone when ROLLBACK isissued. Transac-
tions that span hundreds of modification to data will take up alot of memory until the next COMMIT or
ROLLBACK clearsthelist.

Most VM implementations allocate up to a maximum amount of memory (usually 64 MB by default).
This amount is generally not adegquate when large memory tables are used, or when the average size of
rows in cached tables is larger than a few hundred bytes. The maximum amount of allocated memory
can be set on the java ... command line that is used for running HSQLDB. For example, with Sun VM
version 1.3.0 the parameter -Xmx256m increases the amount to 256 MB.

1.8.0 uses afast cache for immutable objects such as Integer or String that are stored in the database. In
most circumstances, this reduces the memory footprint still further as fewer copies of the most fre-
guently-used objects are kept in memory.

Cache Memory Allocation

With CACHED tables, the data is stored on disk and only up to a maximum number of rows are held in
memory at any time. The default is up to 3*16384 rows. The hsgldb.cache scale database property can
be set to alter this amount. As any random subset of the rows in any of the CACHED tables can be held
in the cache, the amount of memory needed by cached rows can reach the sum of the rows containing
the largest field data. For example if atable with 100,000 rows contains 40,000 rows with 1,000 bytes of
data in each row and 60,000 rows with 100 bytes in each, the cache can grow to contain nearly 50,000
rows, including all the 40,000 larger rows.

An additional property, hsgldb.cache size scale can be used in conjunction with the hsgldb.cache scale
property. This puts a limit in bytes on the total size of rows that are cached. When the default values is
used for both properties, the limit on the total size of rows is approximately 50OMB. (This is the size of
binary images of the rows and indexes. It trandates to more actual memory, typicaly 2-4 times, used for
the cache because the data is represented by Java objects.)

If memory is limited, the hsgldb.cache scale or hsgldb.cache size scale database properties can be re-
duced. In the example above, if the hsgldb.cache size scale is reduced from 10 to 8, then the tota bin-
ary size limit is reduced from 50MB to 12.5 MB. This will alow the number of cached rows to reach

40

Deployment Issues

50,000 small rows, but only 12,500 of the larger rows.

Managing Database Connections

In all running modes (server or in-process) multiple connections to the database engine are supported.
In-process (standalone) mode supports connections from the client in the same Java Virtual Machine,
while server modes support connections over the network from several different clients.

Connection pooling software can be used to connect to the database but it is not generally necessary.
With other database engines, connection pools are used for reasons that may not apply to HSQLDB.

» Toallow new queries to be performed while atime-consuming query is being performed in the back-
ground. This is not possible with HSQLDB 1.8.0 as it blocks while performing the first query and
deals with the next query once it has finished it. This capability is under development and will be in-
troduced in afuture version.

* Tolimit the maximum number of simultaneous connections to the database for performance reasons.
With HSQLDB this can be useful only if your application is designed in away that opens and closes
connections for each small task.

» To control transactions in a multi-threaded application. This can be useful with HSQLDB as well.
For example, in a web application, a transaction may involve some processing between the queries
or user action across web pages. A separate connection should be used for each HTTP session so that
the work can be committed when completed or rolled back otherwise. Although this usage cannot be
applied to most other database engines, HSQLDB is perfectly capable of handling over 100 simul-
taneous HTTP sessions as individual JDBC connections.

An application that is not both multi-threaded and transactional, such as an application for recording
user login and logout actions, does not need more than one connection. The connection can stay open in-
definitely and reopened only when it is dropped due to network problems.

When using an in-process database with versions prior to 1.7.2 the application program had to keep at
least one connection to the database open, otherwise the database would have been closed and further at-
tempits to create connections could fail. This is not necessary since 1.7.2, which does not automatically
close an in-process database that is opened by establishing a connection. An explicit SHUTDOWN com-
mand, with or without an argument, is required to close the database. In version 1.8.0 a connection prop-
erty can be used to revert to the old behaviour.

When using a server database (and to some extent, an in-process database), care must be taken to avoid
creating and dropping JDBC Connections too frequently. Failure to observe this will result in unsuccess-
ful connection attempts when the application is under heavy |oad.

Upgrading Databases

Any database not produced with the release version of HSQLDB 1.8.0 must be upgraded to this version.
This includes databases created with the RC versions of 1.8.0. The instructions under the Upgrading Us-
ing the SCRIPT Command section should be followed in all cases.

Once a database is upgraded to 1.8.0, it can no longer be used with Hypersonic or previous versions of
HSQLDB.

There may be some potential legacy issues in the upgrade which should be resolved by editing the .script
file

41

Deployment Issues

» Version 1.8.0 does not accept duplicate names for indexes that were allowed before 1.7.2.
* Version 1.8.0 does not accept duplicate names for table columns that were allowed before 1.7.0.
* Version 1.8.0 does not create the same type of index for foreign keys as versions before 1.7.2.

* Version 1.8.0 does not accept table or column names that are SQL identifiers without double quot-
ing.

Upgrading Using the SCRIPT Command

To upgrade from 1.7.2 or 1.7.3 to 1.8.0, simply issue the SET SCRIPTFORMAT TEXT and SHUT-
DOWN SCRIPT commands with the old version, then open with the new version of the engine. The up-
grade is then complete.

To upgrade from older version database files (1.7.1 and older) that do not contain CACHED tables,
simple SHUTDOWN with the older version and open with the new version. If there is any error in the
.script file, try again after editing the .script file.

To upgrade from older version database files (1.7.1 and older) that contain CACHED tables, use the
SCRIPT procedure below. In al versions of HSQLDB and Hypersonic 1.43, the SCRI PT 'fil e-

nanme' command (used as an SQL query) alows you to save a full record of your database, including
database object definitions and data, to a file of your choice. You can export a script file using the old
version of the database engine and open the script as a database with 1.8.0.

Procedure5.1. Upgrade Using SCRIPT procedure

1. Opentheorigina databasein the old version of DatabaseM anager

2. Issue the SCRIPT command, for example SCRI PT ' newer si on. scri pt' to create a script
file containing a copy of the database.

3. Usethe 1.8.0 version of DatabaseManager to create a new database, in this example ' newer -
si on' inadifferent directory.

4. SHUTDOWN this database.

5. Copythenewersi on. scri pt filefrom step 2 over the file of the same name for the new data-
base created in 4.

6. Try to open the new database using DatabaseM anager.

7. If thereis any inconsistency in the data, the script line number is reported on the console and the
opening process is aborted. Edit and correct any problems in the newver si on. scri pt before
attempting to open again. Use the guidelines in the next section (Manual Changes to the .script
File). Use a programming editor that is capable of handling very large files and does not wrap long
lines of text.

Manual Changes to the .script File

In 1.8.0 the full range of ALTER TABLE commands is available to change the data structures and their
names. However, if an old database cannot be opened due to data inconsistencies, or the use of index or

42

Deployment Issues

column names that are not compatible with 1.8.0, manual editing of the SCRIPT file can be performed.

The following changes can be applied so long as they do not affect the integrity of existing data.

» Names of tables, columns and indexes can be changed.
e CREATE UNI QUE I NDEX ... toCREATE | NDEX ... andviceversa

A unique index can always be converted into a normal index. A non-unique index can only be con-
verted into a unique index if the table data for the column(s) is unique in each row.

* NOT NULL

A not-null constraint can always be removed. It can only be added if the table data for the column
has no null values.

* PRI MARY KEY

A primary key constraint can be removed or added. It cannot be removed if there is a foreign key
referencing the column(s).

» COLUWN TYPES

Some changes to column types are possible. For example an INTEGER column can be changed to
BIGINT, or DATE, TIME and TIMESTAMP columns can be changed to VARCHAR.

After completing the changes and saving the modified * .script file, you can open the database as normal.

Backing Up Databases

The data for each database consists of up to 5 files in the same directory. The endings are *.properties,
* script, *.data, *.backup and *.log (afile with the *.Ick ending is used for controlling access to the data-
base and should not be backed up). These should be backed up together. The files can be backed up
while the engine is running but care should be taken that a CHECKPOINT or SHUTDOWN operation
does not take place during the backup. It is more efficient to perform the backup immediately after a
CHECKPOINT. The *.data file can be excluded from the backup. In this case, when restoring, a dummy
*.data file is needed which can be an empty, 0 length file. The engine will expand the *.backup file to
replace this dummy file if the backup is restored. If the *.datafile is not backed up, the *.properties file
may have to be modified to ensure it contain modified=yes instead of modified=no prior to restoration.
If a backup immediately follows a checkpoint, then the *.log file can a so be excluded, reducing the sig-
nificant files to *.properties, *.script and *.backup. Normal backup methods, such as archiving the files
in acompressed bundle can be used.

43

Chapter 6. Text Tables

Text Tables as a Standard Feature of Hsqgldb

Bob Preston, HSQLDB Development Group
Fred Toussi, HSQLDB Development Group <f t @l uedup. con®

Copyright 2002-2005 Bob Preston and Fred Toussi. Permission is granted to distribute this document
without any alteration under the terms of the HSQLDB license. Additional permission is granted to the
HSQLDB Development Group to distribute this document with or without alterations under the terms of
the HSQLDB license.

$Date: 2005/06/29 23:15:13 $

Text Table support for HSQLDB was originaly developed by Bob Preston independently from the
Project. Subsequently Bob joined the Project and incorporated this feature into version 1.7.0, with a
number of enhancements, especially the use of conventional SQL commands for specifying the files
used for Text Tables.

In anutshell, Text Tables are CSV or other delimited files treated as SQL tables. Any ordinary CSV or
other delimited file can be used. The full range of SQL queries can be performed on these files, includ-
ing SELECT, INSERT, UPDATE and DELETE. Indexes and unique constraints can be set up, and for-

eign key constraints can be used to enforce referential integrity between Text Tables themselves or with
conventiona tables.

HSQLDB with Text Table support is the only comprehensive solution that employs the power of SQL
and the universal reach of JDBC to handle data stored in text files and will have wide-ranging use way
beyond the currently established Javarealm of HSQLDB.

Goals of the Implementation

1. Weamed to finalise the DDL for Text Tables so that future releases of HSQLDB use the same
DDL scripts.

2. We aimed to support Text Tables as GLOBAL TEMPORARY or GLOBAL BASE tables in the
SQL domain.

The Implementation

Definition of Tables

Text Tables are defined similarly to conventional tables with the added TEXT keyword:
CREATE TEXT TABLE <t abl ename> (<col umm definition> [<constraint definition>])
In addition, a SET command specifies the file and the separator character that the Text table uses:

SET TABLE <t abl ename> SOURCE <quot ed_fil enane_and_opti ons> [DESC]|

Text Tables

Text Tables cannot be created in memory-only databases (databases that have no script file).

Scope and Reassignment

* A Text table without afile assigned to it iSREAD ONLY and EMPTY.
» A Temporary Text table has the scope and the lifetime of the SQL session (a JDBC Connection).

* Reassigning a Text Table definition to anew file hasimplicationsin the following areas:

1. Theuserisrequired to be an administrator.
2. Existing transactions are committed at this point.
3. Consgtraints, including foreign keys referencing this table, are kept intact. It is the responsibility

of the administrator to ensure their integrity.

From version 1.7.2 the new source file is scanned and indexes are built when it is assigned to the ta-
ble. At this point any violation of NOT NULL, UNIQUE or PRIMARY KEY constrainst are caught
and the assignment is aborted. owever, foreign key constraints are not checked at the time of assign-
ment or reassignment of the sourcefile.

Null Values in Columns of Text Tables

This has changed since 1.7.2 to support both null values and empty strings.

« Empty fields are treated as NUL L. These are fields where there is nothing or just spaces between the
separators.

* Quoted empty strings are treated as empty strings.

Configuration

The default field separator is a comma (,). A different field separator can be specified within the SET
TABLE SOURCE statement. For example, to change the field separator for the table mytable to a vertic-
al bar, place the following in the SET TABLE SOURCE statement, for example:

SET TABLE nytabl e SOURCE "nyfile;fs=|"

Since HSQLDB treats CHAR's, VARCHARs, and LONGVARCHARS the same, the ability to assign
different separators to the latter two is provided. When a different separator is assigned to a VARCHAR
or LONGVARCHAR field, it will terminate any CSV field of that type. For example, if the first field is
CHAR, and the second field LONGVARCHAR, and the separator fs has been defined as the pipe () and
vsasthe period (.) then the datain the CSV file for arow will ook like:

First field datal Second field data.Third field data

The following example shows how to change the default separator to the pipe (), VARCHAR separator

45

Text Tables

to the period (.) and the LONGVARCHAR separator to the tilde (~). Place the following within the SET
TABLE SOURCE statement, for example:

SET TABLE mytabl e SOURCE "nyfile;fs=|;vs=.;lvs=~"

HSQL DB also recognises the following special indicators for separators:

special indicatorsfor separators

\semi semicolon
\quote goute
\space space character

\apos apostrophe

\n newline - Used as an end anchor (like $ in regular expressions)
\r carriage return

\t tab

\ backslash

\ut#Ht aUnicode character specified in hexadecimal

Furthermore, HSQLDB provides csv file support with three additional boolean options. i g-
nore first, quoted and all _quoted. The ignore first option (default fase) tells
HSQLDB to ignore the first line in a file. This option is used when the first line of the file contains
column headings. The al | _quot ed option (default false) tells the program that it should use quotes
around all character fields when writing to the source file. The quot ed option (default true) uses quotes
only when necessary to distinguish a field that contains the separator character. It can be set to false to
prevent the use of quoting altogether and treat quote characters as normal characters. These options may
be specified withinthe SET TABLE SOURCE statement:

SET TABLE nytable SOURCE "nyfile;ignore first=true;all _quoted=true"

When the default optionsal | _quot ed=f al se and quot ed=t r ue arein force, fields that are writ-
ten to a line of the csv file will be quoted only if they contain the separator or the quote character. The
guote character is doubled when used inside a string. When al |l _quot ed=fal se and
guot ed=f al se the quote character is not doubled. With this option, it is not possible to insert any
string containing the separator into the table, as it would become impossible to distinguish from a separ-
ator. While reading an existing data source file, the program treats each individual field separately. It de-
termines that afield is quoted only if the first character is the quote character. It interprets the rest of the
field on this basis.

The character encoding for the source fileis ASCI | by default. To support UNICODE or source files
preprared with different encodings this can be changed to UTF- 8 or any other encoding. The default is
encodi ng=ASCl | and the option encodi ng=UTF- 8 or other supported encodings can be used.

Finally, HSQLDB provides the ability to read a text file from the bottom up and making them READ
ONLY, by placing the keyword "DESC" at the end of the SET TABLE SOURCE statement:

46

Text Tables

SET TABLE nytabl e SOURCE "nyfile" DESC

This feature provides functionality similar to the Unix tail command, by re-reading the file each time a
select is executed. Using this feature sets the table to read-only mode. Afterwards, it will no longer be
possible to change the read-only status with SET TABLE <t abl enane> READONLY TRUE.

Text table source files are cached in memory. The maximum number of rows of data that are in memory
a any time is controlled by the textdb. cache_scal e property. The default value for
t ext db. cache_scal e is 10 and can be changed by setting the property in the .properties file for the
database. The number of rows in memory is calculated as 3* (2**scale), which trandates to 3072 rows
for the default textdb.cache _scale setting (10). The property can also be set for individual text tables:

SET TABLE nytabl e SOURCE "nyfile;ignore first=true;all _quoted=true;cache_scale

Text File Issues

Text Filelssues

* File locations are restricted to below the directory that contains the database, unless the
textdb.allow_full_path property is set true in the database propertiesfile.

* Blank lines are alowed anywhere in the text file, and are ignored.

» Thefilelocation for atext table created with
SELECT <select list> | NTO TEXT <t abl enane> FROM

is the directory that contains the database and the file name is based on the table name. The table
name is converted into the file name by replacing all the non-alphanumeric characters with the un-
derscore character, conversion into lowercase, and adding the ".csv" suffix.

» Fromversion 1.7.2 it is possible to define a primay key or identity column for text tables.

* When atable source fileisused with the i gnore_first=true option, thefirst, ignored lineis
replaced with a blank line after a SHUTDOWN COMPACT.

e Anexisting table source file may include CHARACTER fields that do not begin with the quote char-
acter but contain instances of the quote character. These fields are read as literal strings. Alternat-
ively, if any field begins with the quote character, then it is interpreted as a quoted string that should
end with the quote character and any instances of the quote character within the string is doubled.
When any field containing the quote character or the separator is written out to the source file by the
program, the field is enclosed in quote character and any instance of the quote character inside the
field is doubled.

* Inserts or updates of CHARACTER type field values are allowed with strings that contains the line-
feed or the carriage return character. This feature is disabled when both quoted and all_quoted prop-
ertiesarefalse.

Text File Global Properties

47

Text Tables

Complete list of supported global propertiesin *.propertiesfiles

 textdb.fs

+ textdb.lvs

* textdb. quoted

« textdb.all quoted

« textdb.ignore_first
» textdb. encodi ng

« textdb.cache_scal e

e textdb.allow full _path

Importing a Text Table file in to a Traditional
(non-Text Table) Table

The directory src/ or g/ hsgl db/ sanpl e in your HSQLDB distibution contains a file named
| oad_bi ndi ng_I u. sql . Thisis aworking SQL file which imports a pipe-delimited text file from
the database's file directory into an existing normal table. Y ou can edit a copy of thisfile and use it dir-
ectly with SglTool, or you can use the SQL therein asamodel (using any SQL client at al).

48

Chapter 7. TLS

TLS Support (a.k.a. SSL)

Blaine

Simpson, HSQLDB Development Group

<bl ai ne. si npson@adnt. conp
$Date: 2005/05/31 20:59:13 $

The instructions in this document are liable to change at any time. In particular, we will be changing the
method to supply the server-side certificate password.

Requirements

Hsgldb TLS Support Requirements

Sun Java 2.x and up. (This is probably possible with IBM's Java, but | don't think anybody has at-
tempted to run HSQLDB with TLS under IBM's Java, and I'm sure that nobody in the HSQLDB De-
velopment Group has documented how to set up the environment).

If Java 2.x or 3.x, then you will need need to install JSSE. Y our server and/or client will start up
much slower than that of Java 4.x users. Client-side users will not be able to use the https: JDBC
protocol (because the https protocol handler is not implemented in 2.x/3.x Java JSSE; if there is de-
mand, we could work around this).

A JKS keystore containing a private key, in order to run a server.

If you are running the server side, then you'll need to run a HSQLDB Server or WebServer. It
doesn't matter if the underlying database instances are new, and it doesn't matter if you are making a
new Server configuration or encrypting an existing Server configuration. (You can turn encryption
on and off at will).

You need a HSQLDB jar file that was built with JSSE present. If you got your HSQLDB 1.7.2 dis-
tribution from us, you are al set, because we build with Java 1.4 (which contains JSSE). If you build
your own jar file with Java 1.3, make sure to install JSSE first.

Encrypting your JDBC connection

At thistime, only 1-way, server-cert encryption is tested.

Client-Side

Just use one of the following protocol prefixes.

Hsgldb TLSURL Prefixes

j dbc: hsql db: hsql s://
j dbc: hsql db: https://

49

TLS

At thistime, the latter will only work for clients running with Java 1.4.

If the server you wish to connect to is using a certificate approved by your default trust keystores, then
there is nothing else to do. If not, then you need to tell Javato "trust" the server cert. (It's a dight over-
simplification to say that if the server certificate was purchased, then you are al set; if somebody
"signed their own" certificate by self-signing or using a private ca certificate, then you need to set up
trust).

First, you need to obtain the cert (only the "public" part of it). Since this cert is passed to al clients, you
could obtain it by writing a java client that dumps it to file, or perhaps by using openssl s client. Since
in most cases, if you want to trust a non-commercial cert, you probably have access to the server key-
store, I'll show an example of how to get what you need from the server-side JKS keystore.

Y ou may aready have an X509 cert for your server. If you have a server keystore, then you can generate
a X590 cert like this.

Example 7.1. Exporting certificate from the server'skeystore

keyt ool -export -keystore server.store -alias existing alias -file server.cer

Inthisexample, ser ver . cer isthe X509 certificate that you need for the next step.

Now, you need to add this cert to one of the system trust keystores or to a keystore of your own. See the
Customizing Stores section in JSSERef Guide.html
[http://java.sun.com/j2se/1.4.2/docs/gui de/security/j ssel ISSERef Guide.html#CustomizingStores] to see
where your system trust keystores are. Y ou can put private keystores anywhere you want to. The follow-
ing command will add the cert to an existing keystore, or create a new keystore if cl i ent. store
doesn't exist.

Example 7.2. Adding a certificate to the client keystore

keyt ool -inport -trustcacerts -keystore trust.store -alias new alias -file ser

If you are making a new keystore, you probably want to start with a copy of your system default key-
store which you can find somewhere under your JAVA_HOME directory (typically jre/
lib/security/cacerts for a JDK, but | forget exactly whereit isfor a JRE).

Unless your OS can't stop other people from writing to your files, you probably do not want to set a
password on the trust keystore.

If you added the cert to a system trust store, then you are finished. Otherwise you will need to specify
your custom trust keystore to your client program. The generic way to set the trust keystore is to set the

sytem property j avax. net . ssl . t rust St or e every time that you run your client program. For ex-
ample

Example 7.3. Specifying your own trust storeto a JDBC client

java -Dj avax.net.ssl.trust Store=/hone/bl aine/trust.store -jar /path/to/hsqgldb.

50

http://java.sun.com/j2se/1.4.2/docs/guide/security/jsse/JSSERefGuide.html#CustomizingStores
http://java.sun.com/j2se/1.4.2/docs/guide/security/jsse/JSSERefGuide.html#CustomizingStores

TLS

This example runs the program Sgl Tool. SqlTool has built-in TL'S support, however, so, for SglTool you
cansettrust st ore onaper-urlid basisin the SglTool configuration file.

N.b. The hostname in your database URL must match the Common Name of the server's certificate ex-
actly. That means that if a site certificate is adnc.com you can not use jd-
bc: hsql db: hsql s://1 ocal host or jdbc: hsql db: hsql s://ww. adnt. com 1100 to
connect to it.

If you want more detals on anything, see JSSERefGuidehtml on Sun's site

[http://java.sun.com/j2se/1.4.2/docs/guide/security/jsse/JISSERefGuide.html], or in the subdirectory
docs/ gui de/ security/ | sse of your Java SE docs.

Server-Side

Get yoursdf a JKS keystore containing a private key. Then set the system property
javax.net.sdl .keyStore to the path to that file, and j avax. net. ssl . keySt or ePasswor d to the
password of the keystore (and to the private key-- they have to be the same).

Example 7.4. Running an Hsgldb server with TL S encryption

java -Dj avax. net. ssl . keySt orePasswor d=secret -Djavax. net.ssl.keyStore=/usr/hsq
-cp /path/to/ hsqgldb.jar org. hsqgl db. Server

(Thisis asingle command that | have broken into 2 lines using my shell's\ line-continuation feature. In
this example, I'm using a server.properties file so that | don't need to give arguments to specify database
instances or the server endpoint).

Caution

Specifying a password on the command-line is definitely not secure. It's really only appropri-
ate when untrusted users do not have any access to your computer.

If thereis any user demand, we will have amore secure way to supply the password before long.

JSSE

If you are running Java 4.x, then you are al set. Java 1.x users, you are on your own (Sun does not
provide a JSSE that will work with 1.x). Java 2.x and 3.x users continue...

Go to http://java.sun.com/products/jsse/index-103.html. If you agree to the terms and meet the require-
ments, download the domestic or global JSSE software. All you need from the software distro is the
three jar files. If you have a JDK instalation, then move the 3 jar files into the directory
$IJAVA HOVE/ jre/ | i b/ ext.If you have a JRE installation, then move the 3 jar filesinto the direct-
ory $JAVA HOVE/ | i b/ ext .

Pretty painless.

Making a Private-key Keystore

There are two main ways to do this. Either you can use a certificate signed by a certificate authority, or
you can make your own. One thing that you need to know in both cases is, the Common Name of the
cert has to be the exact hostname that JDBC clients will usein their database URL.

51

http://java.sun.com/j2se/1.4.2/docs/guide/security/jsse/JSSERefGuide.html
http://java.sun.com/products/jsse/index-103.html

TLS

CA-Signed Cert

I'm not going to tell you how to get a CA-signed SSL certificate. That is well documented at many other
places.

Assuming that you have a standard pem-style private key certificate, here's how you can use opensd
[http://Iwww.openssl.org] and the program DERI npor t to get it into a JKS keystore.

Because | have spent alot of time on this document already, | am just giving you an example.

Example 7.5. Getting a pem-style private key into a JKS keystore

openssl pkcs8 -topk8 -outform DER -in Xpvk.pem -inform PEM -out Xpvk. pk8 -nocr
openssl x509 -in Xcert.pem -out Xcert.der -outform DER

java DERI mport new. keystore NEWALI AS Xpvk.pk8 Xcert. der

I mportant
Make sure to set the password of the key exactly the same as the password for the keystore!

You need the program DERI nport. cl ass of course. Do some internet searches to find DERI m
port.java or DERI nport. cl ass and download it.

If DERImport has become difficult to obtain, | can write a program to do the same thing-- just let me
know.

Non-CA-Signed Cert

Run man keytool or see the Creating a Keystore section of JSSERefGuidehtml
[http://java.sun.com/j2se/1.4.2/docs/guide/security/j sse/ ISSERef Gui de.html#CreateK eystore].

Automatic Server or WebServer startup on
UNIX

If you are on UNIX and want to automatically start and stop a Server or WebServer running with en-
cryption, follow the instructions in the UNIX Quick Start chapter, and remember to make the init script
configuration file readable only to root and to set the variables TLS _PASSWORD and TLS_KEYSTORE.

If you are using a private server certificate, make sure to also set the trust store filepath as shown in the
sample init script configuration file.

The cautionary warning above still applies. The password will be visible to any minimally competent
local UNIX user who wantsto seeit.

52

http://www.openssl.org
http://java.sun.com/j2se/1.4.2/docs/guide/security/jsse/JSSERefGuide.html#CreateKeystore

Chapter 8. SqlTool

SqlTool Manual

Blaine Simpson, HSQLDB Development Group
<bl ai ne. si npson@adnt. conp

$Date: 2005/06/04 17:43:30 $

Purpose

This document explains how to use SqlTool, the main purpose of which isto read your SQL text file or
stdin, and execute the SQL commands therein against a JDBC database. There are also a great number
of features to facilitate both interactive use (such as command-line editing and PL aliases) and automa-
tion (such as scripting variables and SQL transaction control and error handling).

Some of the examples below use quoting which works exactly as-is for any normal UNIX shell. | have
not yet tested these commands on Windows, and | doubt whether the quoting will work just like this
(thoughiit is possible). Sl Tool is still avery useful tool even if you have no quoting capability at all.

This document is now updated for version 1.46 of SglTool and 1.114 of SqlFile (the latter is the class
which does most of the work for SglTool). The startup banner will report both versions when you run

SqlTool interactively. | expect this version of this document to accurately describe SglTool for some un-
known number of versionsinto the future.

Recent changes

This section lists changes to SqlTool since the last major release of HSQLDB. For this version of this
document, that means, changes since HSQL DB versions 1.7.X.

e Slight adjustments to command-line switch behavior to make them more convenient for the most
common forms of usage.

» Changed PL aias prefix from * to/ (in order to allow for the following improvement).

» Removed the funny whitespace requirements for PL commands.

» Uppercase/lowercase requirements for special commands are relegated to the database. Therefore, in
special commands only, you are safest to key in object names in the case exactly as the real object
name in your database. This is the only way for me to remove ambiguity from case-specific object
names without having to code different rules for every database. (Because, for example, Postgresql
defaults object names to lowercase and Oracle defaults them to uppercase).

* Added special command \dn.

» Added special command \ds (old \ds command is now \dS).

* Added special command \di.

» Renamed special command * to\c. (* still supported for backward compatibility).

* Not so stingy about saving commands in history.

» Allow optional filter substring for many more \d commands, including for "\d TABLENAME".

53

The

SqlTool

Implemented special use of substrings ending with dot. These do not just filter on the string, but
mean to filter to only objects with this exact schema

\da and \ds commands now work for HSQLDB servers, even though HSQLDB Aliases and Se-
guences are not listed in the JDBC Metadata.

Improved exception handling.

Implemented Raw SQL mode, and ability for usersto enter PL/SQL.

Fixed open Statement bug (HSQLDB bug #1191524).

Improved Oracle idiosyncracy work-arounds.

Added support for all non-text type fields, including BLOBSs.

Can download and upload both ASCII and binary column values to/from local files.
Better display of null values occurring in result sets.

RC file functionality isolated into separate class, RCData. Other programs can now use RC files by
using thisclass.

Bare Minimum You Need to Know to Run

SqlTool

Warning

If you are using an Oracle database server, it will commit your current transaction if you
cleanly disconnect, regardless of whether you have set auto-commit or not. This will occur if
you exit SglTool (or any other client) in the normal way (as opposed to killing the process or
using Ctrl-C, etc.). Thisis mentioned in this section only for brevity, so | don't need to mention
it in the main text in the many places where auto-commit is discussed. This behavior has noth-
ing to do with SglTool. It isaquirk of Oracle.

If you want to use SqglTool, then you either have an SQL text file, or you want to interactively type in
SQL commands. If neither case appliesto you, then you are looking at the wrong program.

Procedure8.1. Torun SgiTool...

Copy the file sgl t ool . r ¢ from the directory sr ¢/ or g/ hsql db/ sanpl e of your HSQLDB
distribution to your home directory and secure access to it if your home directory is accessible to
anybody else. This file will work as-is for a Memory Only database instance; or if your target is a
HSQLDB Server running on your local computer with default settings and the password for the
"sa' account is blank (the sa password is blank when new HSQLDB database instances are cre-
ated). Edit the file if you need to change the target Server URL, username, password, character set,
JDBC driver, or TLStrust store as documented in the RC File Authentication Setup section.

Find out where your hsgldb.jar file resides. It typically resides at HSQLDB_HOME/
I'i b/ hsqgl db. j ar where HSQLDB_HOME isthe base directory of your HSQLDB software in-
stallation. For this reason, I'm going to use "$HSQLDB_HOMFE/ib/hsgldb.jar" as the path to
hsql db. j ar for my examples, but understand that you need to use the actual path to your own
hsql db. j ar file.

54

SqlTool

Run

java -jar $HSQLDB_HOVE/l'i b/ hsqgl db.jar --help

to see what command-line arguments are available. Note that you don't need to worry about setting
the CLASSPATH when you use the - j ar switchtoj ava. Assuming that you set up your SglTool
RC file at the default location and you want to use the HSQLDB JDBC driver, you will want to run
something like

java -jar $HSQLDB_HOVE/ | i b/ hsqgl db.jar mem

for interactive use, or

java -jar $HSQ.DB _HOVE/li b/ hsqgl db.jar --sqgl 'SQ statenment' nem

or

java -jar $HSQLDB HOVE/li b/ hsqgl db.jar mem filepathl.sql...

where memis an urlid, and the following arguments are paths to text SQL files. For the filepaths,
you can use whatever wildcards your operating system shell supports.

The urlid nem in these commands is a key into your RC file, as explained in the RC File Authen-
tication Setup section. Since thisis a Memory Only database, you can use SqlTool with this urlid
immediately with no database setup whatsoever (however, you can't persist any changes that you
make to this database). The sample sgltool.rc file also defines the urlid "localhost-sa* for a local
HSQLDB Server. At the end of this section, | explain how you can load some sample data to play
with, if you want to.

I mportant

SglTool does not commit DML changes by default. This leaves it to the user's disgression
whether to commit or rollback their modifications. Remember to either run the command com
m t; beforequitting SglTool, or usethe - - aut oConm t command-line switch.

If you put afile named aut 0. sql into your home directory, this file will be executed automatically
every time that you run SglTool interactively and without the - - noAut oFi | e switch.

To use a JDBC Driver other than the HSQLDB driver, you can't use the - j ar switch because you need
to modify the classpath. You must add the hsgldb.jar file and your JDBC driver classes to your
classpath, and you must tell SqlTool what the JDBC driver class name is. The latter can be accom-
plished by either using the "--driver" switch, or setting "driver" in your config file. The RC File Authen-
tication Setup section. explains the second method. Here's an example of the first method (after you
have set the classpath appropriately).

java org. hsgl db.util.Sqgl Tool --driver oracle.jdbc.OacleDriver urlid

Tip

If the tables of query output on your screen are all messy because of lines wrapping, the best
and easiest solution is usually to resize your terminal emulator window to make it wider. (With

55

SqlTool

some terms you click & drag the frame edges to resize, with others you use a menu system
where you can enter the number of columns).

Non-displayable Types

There are many SQL types which SglTool (being a text-based program) can't display properly. Thisin-
cludes the SQL types BLOB, JAVA_OBJECT, STRUCT, and OTHER. When you run a query that returns
any of these, SglTool will save the very first such value obtained to the binary buffer and will not dis-
play any output from this query. Y ou can then save the binary value to afile, as explained in the Storing
and retrieving binary files section.

There are other types, such as Bl NARY, which JDBC can make displayable (by using Result-
Set.getString()), but which you may very well want to retrieve in raw binary format. Y ou can use the \b
command to retrieve any-column-type-at-all in raw binary format (so you can later store the value to a
binary file).

Another restriction which al text-based database clients have is the practical inability for the user to
type in binary data such as photos, audio streams, and serialized Java objects. You can use SglTool to

load any binary object into a database by telling SglTool to get the insert/update datum from afile. This
isalso explained in the Storing and retrieving binary files section.

Desktop shortcuts

Desktop shortcuts and quick launch icons are useful, especialy if you often run SglTool with the same
set of arguments. It's really easy to set up severa of them-- one for each way that you invoke SqglTool
(i.e., each one would start SglTool with al the arguments for one of your typical startup needs). One
typical setup isto have one shortcut for each database account which you normally use (use a different -
- ur | i d switch in each shortcut's Target specification.

Desktop icon setup varies depending on your Desktop manager, of course. I'll explain how to set up a

SqlTool startup icon in Windows XP. Linux and Mac users should be able to take it from there, sinceit's
easier with the common Linux and Mac desktops.

Procedure 8.2. Creating a Desktop Shortcut for SglT ool

1. Right click in the main Windows background.
New
Shortcut

Browse

a c w BN

Navigate to where your good JRE lives. For recent Sun JRE's, it installs to C:\ Program
Fi | es\ Java\ *\ bi n by default (the * will be aJDK or JRE name and version number).

Selectj ava. exe.
OK

Next

© o N oo

Enter any name

10. Finish

56

SqlTool

11. Right click the new icon.
12. Properties
13. Edit the Target field.

14. Leavethe path to java.exe exactly asit is, including the quotes, but append to what is there. Begin-
ning with a space, enter the command-line that you want run.

15. Change Icon... to apretty icon.

16. If you want a quick-launch icon instead of (or in addition to) a desktop shortcut icon, click and drag
it to your quick launch bar. (You may or may not need to edit the Windows Toolbar properties to
let you add new items).

Loading sample data

If you want some sample database objects and data to play with, execute the sanpl edat a. sql SQL
file. sanpl edat a. sql residesinthesr c/ or g/ hsql db/ sanpl e directory of your HSQLDB dis-
tribution. Run it like this from an Sgl Tool session

\'i HSQLDB_HQOVE/ src/ org/ hsqgl db/ sanpl e/ sanpl edat a. sql
where HSQLDB_HOME isthe base directory of your HSQL DB software installation.

For memory-only databases, you'll need to run this every time that you run SglTool. For other
(persistent) databases, the datawill reside in your database until you drop the tables.

RC File Authentication Setup

Authentication setup is accomplished by creating atext RC configuration file. In this section, when | say
configuration or config file, I mean an RC configuration file. RC files can be used by any JDBC client
program that uses the org.hsgldb.util.RCData class-- this includes Sgl Tool, DatabaseM anager, Database-
ManagerSwing. Y ou can useit for your own JDBC client programs too.

The following sample RC file resides at src/org/ hsql db/ sanpl e/ sql tool.rc in your
HSQLDB distribution.

Example 8.1. Sample RC File

$Id: sqgltool.rc,v 1.14 2005/05/22 04:46: 16 unsaved Exp $

This is a sanmple RC configuration file used by Sqgl Tool, DatabaseManager,
and any other programthat uses the org.hsgldb.util.RCData cl ass.

You can run Sqgl Tool right now by copying this file to your hone directory
and runni ng

java -jar /path/to/ hsqgldb.jar nem
This will access the first urlid definition belowin order to use a
personal Menory-Only dat abase.

If you have the | east concerns about security, then secure access to
your RC file.
See the documentation for Sqgl Tool for various ways to use this file.

HHHFE HHHFHFH OHH O OH

57

SqlTool

A personal Menory-Only dat abase.
urlid mem

url jdbc: hsql db: nem nendbi d

user name sa

passwor d

This is for a hsqldb Server running with default settings on your |oca
conmputer (and for which you have not changed the password for "sa").
urlid | ocal host-sa

url jdbc: hsgl db: hsqgl://1 ocal host

username sa

passwor d

Tenplate for a urlid for an Oracl e dat abase.

You will need to put the oracle.jdbc. OracleDriver class into your

cl asspat h.

In the great majority of cases, you want to use the file classesl2.zip
(which you can get fromthe directory $ORACLE HOVE/ jdbc/lib of any

Oracle installation conpatible with your server).

Since you need to add to the classpath, you can't invoke Sqgl Tool with
the jar switch, like "java -jar .../hsqgldb.jar..." or

"java -jar .../hsglsgltool.jar...".

Put both the HSQLDB jar and cl assesl12.zip in your classpath (and export!)
and run sonething |like "java org. hsqgldb.util.Sql Tool...".

#urlid cardiff2

#url jdbc:oracle:thin: @egir.adnc. com 1522: TRAFFI C_SI D
#user name bl ai ne

#password secr et password

#driver oracle.jdbc. Oracl eDriver

Tenpl ate for a TLS-encrypted HSQLDB Server.

Renember that the hostname in hsgls (and https) JDBC URLs nmust match the
CN of the server certificate (the port and instance alias that follows
are not part of the certificate at all).

You only need to set "truststore" if the server cert is not approved by
your systemdefault truststore (which a conmercial certificate probably
woul d be).

HHHFHHHR

#urlid tls

#url jdbc: hsql db: hsqgl s://db. adnt. com 9001/ | n2
#user name bl ai ne

#password asecr et

#truststore /hone/ bl ai ne/ ca/ db/ db-trust. store

Tenplate for a Postgresgl database

#urlid bl ai nedb

#url jdbc: postgresql://idun.africawork. org/blai nedb
#user name bl ai ne

#password | osungl

#driver org.postgresql.Driver

Tenpl ate for a MySQL dat abase
#urlid nysql -testdb

#url jdbc:nysql:///test

#user name r oot

#user nanme bl ai ne

#password hi ddenpwd

#driver com nysql.jdbc. Driver

58

SqlTool

You can put this file anywhere you want to, and specify the location to SqlTool/DatabaseMan-
ager/DatabaseM anagerSwing by using the - - r cf i | e argument. If there is no reason to not use the de-
fault location (and there are situations where you would not want to), then use the default location and
you won't have to give - - r cfi | e arguments to SqlTool/DatabaseM anager/DatabaseM anager Swing.
The default location is sqgl t ool . rc or dbmanager . r ¢ in your home directory (corresponding to
the program using it). If you have any doubt about where your home directory is, just run SqlTool with a
phony urlid and it will tell you where it expects the configuration file to be.

java -jar $HSQLDB HOVE/li b/ hsqgl db.jar x
The config file consists of stanza(s) like this:

urlid web

url jdbc: hsqgl db: hsql ://1 ocal host
user name web

password webspassword

These four settings are required for every urlid. (There are optional settings also, which are described a
couple paragraphs down). Y ou can have as many blank lines and comments like

Thi s conment

in the file as you like. The whole point is that the urlid that you give in your SglTool/DatabaseM anager
command must match aurlid in your configuration file.

I mportant
Use whatever facilities are at your disposal to protect your configuration file.

It should be readable, both locally and remotely, only to users who run programs that need it. On UNIX,
this is easily accomplished by using chnod/ chown commands and making sure that it is protected
from anonymous remote access (like viaNFS, FTP or Samba).

You can also put the following optional settings into a urlid stanza. The setting will, of course, only ap-
ply to that urlid.

charset Thisis used by the SglTool program, but not by the DatabaseManager programs. See
the Character Encoding section of the Non-Interactive section. Y ou can, alternatively,
set this for one SglTool invocation by setting the system property sglfile.charset . De-
faultsto US- ASCI | .

driver Sets the JDBC driver class name. You can, aternatively, set this for one SqglTool/
DatabaseManager invocation by using the command line switch --driver. Defaults to
org.hsgldb.jdbcDriver.

truststore TLS trust keystore store file path as documented in the TLS chapter. Y ou usualy only

need to set this if the server is using a non-publicly-certified certificate (like a self-
signed self-cad cert).

59

SqlTool

Property and Sgl Tool command-line switches override settings made in the configuration file.

Using the current version of SqglTool with an
older HSQLDB distribution.

This procedure will alow users of a legacy version of HSQLDB to use all of the new features of
SqlTool. You will also get the new versions of the DatabaseManagers! This procedure works for distros
going back to 1.7.3.3 at least, probably much farther.

These instructions assume that you are capable of running an Ant build. See the Building HSQLDB
chapter.

1. Download and extract a current HSQLDB distribution. If you don't want to use the source code,
documentation, etc., you can use atemporary directory and remove it afterwards.

2. Cdtothebuild directory under the root directory where you extracted the distribution to.

3. Runant hsql dbutil. Do not run ant hsqlt ool , because hsglbutil.jar files contain the
HSQLDB JDBC driver, and you can not use a newer JDBC driver with an older HSQLDB data-
base.

4. If you're going to wipe out the build directory, copy hsql dbuti | . j ar to asafelocation first.

5. For now on, whenver you are going to run SglTool, make sure that you have this hsql d-

butil.jar asthefirstiteminyour CLASSPATH. You can't run SglTool with the "-jar" switch
(because the -jar switch doesn't permit setting your own class path).

Here's a UNIX example where somebody wants to use the new SglTool with their older HSQLDB data-
base, as well as with Postgresgl and alocal application.

CLASSPATH=/ pat h/ t o/ hsqgl dbuti | .j ar:/home/ bob/ myapp/ cl asses:/usr/local/lib/pg.jdbc3.
export CLASSPATH
java org. hsgl db.util.Sqgl Tool wurlid

Interactive

Do read the The Bare Minimum section before you read this section.

You run SglTool interactively by specifying no SQL filepaths on the SglTool command line. Like this.

java -jar $HSQ.DB HOVE/li b/ hsqgldb.jar urlid

Procedure 8.4. What happens when SqglTool isrun interactively (using all default
settings)

1. SglTool starts up and connects to the specified database, using your SqglTool configuration file (as

60

SqlTool

explained in the RC File Authentication Setup section).
2. SQL fileaut 0. sql inyour home directory is executed (if thereisone),

3. SglTool displays a banner showing the SglTool and SqlFile version numbers and describes the dif-
ferent command types that you can give, as well as commands to list al of the specific commands
available to you.

Y ou exit your session by using the "\q" special command or ending input (like with Ctrl-D or Ctrl-Z).

I mportant

Every command (regardless of type) and comment must begin at the beginning of aline (or im-
mediately after a comment ends with "*/").

You can't nest commands or comments. You can only start new commands (and comments)
after the preceding statement has been terminated. (Remember that if you're running SglTool
interactively, you can terminate an SQL statement without executing it by entering a blank
line).

(Special Commands, Buffer Commands and PL Commands always consist of just one line.
Any of these commands or comments may be preceded by space characters.)

These rules do not apply at al to Raw Mode. Raw mode is for use by advanced users when
they want to completely bypass SglTool processing in order to enter a chunk of text for direct
transmission to the database engine.

When you are typing into SglTool, you are always typing part of the current command. The buffer isthe
last SQL command. If you're typing an SQL command, then the previous SQL command will be in the
buffer, not the one you are currently typing. The current command could be any type of command, but
only SQL When you type command-editing commands, the current command is the editing command
(like": s/ t bl / t abl e/ "), the result of which isto modify the SQL command in the buffer (which can
thereafter be executed). The ":a' command (with no argument) is special in that it takes a copy of the
SQL command in the buffer and makes that the current command, leaving you in a state where you are
appending to that now current command. The buffer isthe zeroeth item of the SQL command history.

Command Types

Command types

Note

Above, we said that if you enter an SQL command, one SQL command corresponds to one
SqlTool command. Thisisthe most typical usage, however, you can actually put multiple SQL
statements into one SQL command. One example would be

I NSERT I NTO t1 VALUES(0); SELECT * FROM t1;

Thisisone SglTool command containing two SQL statements. See the Chunking section to see
why you may want to chunk SQL commands, how, and the implications.

SQL Statement Any command that you enter which does not begin with "\", ":", or "* " isan
SQL Statement. The command is not terminated when you hit ENTER, like

61

SqlTool

Specia Command

Buffer Command

PL Command

Note

most OS shells. You terminate SQL Statements with either ";" at the end of a
ling, or with a blank line. In the former case, the SQL Statement will be ex-
ecuted against the SQL database and the command will go into the command
buffer and SQL command history for editing or viewing later on. In the former
case, execute against the SQL database means to transmit the SQL text to the
database engine for execution. In the latter case (you end an SQL Statement
with a blank line), the command will go to the buffer and SQL history, but will
not be executed (but you can execute it later from the buffer). (See the note im-
mediately above about multiple SQL statementsin one SglTool command).

(Blank lines are only interpreted this way when SqlTool is run interactively. In
SQL files, blank lines inside of SQL statements remain part of the SQL state-
ment).

As aresult of these termination rules, whenever you are entering text that is not
a Specia Command, Buffer Command, or PL Command, you are always ap-
pending lines to an SQL Statement. (In the case of the first line, you will be ap-
pending to an empty SQL statement. |.e. you will be starting a new SQL State-
ment).

Run the command "\?" to list the Special Commands. All of the Special Com-
mands begin with "\". I'll describe some of the most useful Special Commands
below.

Run the command ":?" to list the Buffer Commands. All of the Buffer Com-
mands begin with ":". Buffer commands operate upon the command "buffer”,
so that you can edit and/or (re-)execute previously entered commands.

Procedural Langage commands. Run the command "*?' to list the PL Com-
mands. All of the PL Commands begin with "*". PL commands are for setting
and using scripting variables and conditional and flow control statements like *
i f and* while. A few PL features (such as PL aiases and updating and se-
lecing data directly from/to files) can be areal convenience for nearly all users,
so these features will be discussed briefly in this section. More detailed explan-
ation of PL variables and the other PL features, with examples, are covered in
the SglTool Procedural Language section.

The requirement for a space after the asterisk has been removed with this version of SglFile. It
is up to you whether to put a space after the *.

Raw Mode

The descriptions of command-types above do not apply to Raw Mode. In raw
mode, SglTool doesn't interpret what you type at all. It al just goes into a buf-
fer which you can send to the database engine. Beginners can safely ignore raw
mode. You will never encounter it unless you run the "\." special command, or
enter aPL/SQL command. See the Raw Mode section for the details.

Special Commands

Essential Special Commands

\?

\q

help

quit

62

SqlTool

\dt [filter_substring]

\dv [filter_substring]

\ds [filter_substring]

\di [table_name]

\dS [filter_substring]

\da [filter_substring]

\dn [filter_substring]

\du [filter_substring]

\d* [filter_substring] Lists available objects of the given type.

et non-system Table#

e Vv:Views

e S Synonyms

e i Indexes

« S Systemtablett

o a Aliases

e n: schemaNames

e u: database Users

e *: 4l table-like objects

If your database supports schemas, then the schema name will also
be listed.

If you supply an optional filter substring, then only items which con-
tain the given substring (in the object name or schema name) will be
listed.

I mportant

The substring test is case-sensitive! Even though in SQL queries and for the "\d objectname”
command object names are usually case-insensitive, for the \dX commands, you must capitalize
the filter substring exactly as it will appear in the specia command output. This is an incon-
venience, since the database engine will change names in SQL to default case unless you
double-quote the name, but that is server-side functionality which cannot (portably) be repro-
duced by SqglTool. You can use spaces and other special charactersin the string.

Note that thisis a change in behavior from SqlFile before about version 1.100, where substring
tests were case-insensitive.

Tip

Beginning with the current version of SqlFile, filter substrings ending with "." are specidl. If a
substring ends with ".", then this means to narrow the search by the exact, case-sensitive
schema name given. For example, if | run "\d* BLAINE.", this will list al table-like database
objectsin the "BLAINE" schema. The capitalization of the schema must be exactly the same as
how the schema name is listed by the "\dn" command. You can use spaces and other special
characters in the string. (l.e., enter the name exactly how you would enter it inside of double-
guotes in an SQL command). This is an inconvenience, since the database engine will change
names in SQL to default case unless you double-quote the name, but that is server-side func-
tionality which cannot (portably) be reproduced by SqlTool.

63

SqlTool

Note

Severa new \dX commands have been added with the current of SqlFile. Be aware that the
meaning of the \s command has changed!

I mportant

Indexes may not be searched for by substring, only by exact target table name. Soif | 1 isan
index on table T1, then you list this index by running "\di T1". In addition, many database
vendors will report on indexes only if atarget table is identified. Therefore, "\di" with no argu-
ment will fail if your database vendor does not support it.

\d objectname [filter] Lists names of columns in the specified table or view. obj ect -
nane may be a base table name or a schema.object name.

If you supply afilter string, then only columns with a name contain-
ing the given filter will be listed. The objectname is nearly always
case-insensitive (depends on your database), but the filter is aways
case-sensitive. You'll find thisfilter is a great convenience compared
to other database utilities, where you haveto list al columns of large
tables when you are only interested in one of them.

Tip

When working with real data (as opposed to learning or playing), | often find it useful to run
two SglTool sessions in two side-by-side terminal emulator windows. | do all of my real work
in one window, and use the other mostly for \d commands. Thisway | can refer to the data dic-
tionary while writing SQL commands, without having to scroll.

\s Shows the SQL command history. The SQL command history will
show a number (a negative number) for each SQL Statement that has
made it into the buffer so fare (by either executing or entering a
blank line). You can then use the "\-" command (which is described
next) to retrieve commands from the SQL history to work with. To
list just the very last command, you would use the ":I" buffer com-
mand to list the buffer contents, instead of this command.

\-[3] Enter "\" followed by the command number from SQL history, like
"\-3". That command will be written to the buffer so that you can ex-
ecuteit or edit it using buffer commands.

(You can append a semicolon to a recall command in order to ex-
ecute the recalled buffer immediately, like "\-3;". Thisis actually just
a shortcut for running the Special Command "\-3" and the Buffer
Command ":;".)

This list here includes only the essential Special Commands, but n.b. that there are other useful Special
Commands which you can list by running \ ?. (You can, for example, execute SQL from external SQL
files, and save your interactive SQL commands to files). Some specifics of these other commands are
specified immediately below, and the Generating Text or HTML Reports section explains how to use the
"\0" and "\H" special commands to generate reports.

Be aware that the\ ! Special Command does not work for external programs that read from standard in-
put. You can invoke non-interactive and graphical interactive programs, but not command-line interact-
ive programs.

SqlTool

SqlTool executes\ ! programs directly, it does not run an operating system shell (thisisto avoid OS-
specific code in SglTool). Because of this, you can give as many command-line arguments as you wish,
but you can't use shell wildcards or redirection.

The \w command can be used to store any command in your SQL history to afile. Just restore the com-
mand to the buffer (which is the Oth element of the history) with a command like "\-4" before you give

the \w command.

Buffer Commands

Buffer Commands

:s/from string/to string/switches

help

Executes the SQL statement in the current buffer against the data-
base. Thisis an extremely useful command. It's easy to remember
because it consists of ":", meaning Buffer Command; plus a line-

terminating ";", which sends the preceding SQL to the database
engine for execution.

(Thisisalower caseL). List the current contents of the buffer.

Enter append mode with the contents of the buffer as the current
SQL Statement. Things will be exactly as if you physically re-
typed the command that is in the buffer. Whatever line you type
next will be appended to the SQL Statement. Y ou can execute the
command by terminating a line with ";", or send it back to the
buffer by entering ablank line.

You can, optionally, put a string after the :a, in which case this
text will be appended and you will remain in append mode.
(Unless the text ends with ';', in which case the resultant statement
will be executed immediately). Note that if you do put text after
the "a", exactly what you type immediately after "a' will be ap-
pended. If your buffer contains SELECT x FROM mnyt ab and
you run a: | e, the resultant command will be SELECT x FROM
myt abl e. If your buffer contains SELECT x FROM myt ab
and you run a: ORDER BY vy, the resultant command will be
SELECT x FROM nytab ORDER BY y. Notice that in the
latter case the append text begins with a space character.

This is the primary command for SglTool command editing-- it
operates upon the current buffer. The "to string" and the
"switches' are both optional. To start with, I'll discuss the use and
behavior if you don't supply any substitution mode switches.

Don't use /" if it occursin either "from string" or "to string”. You

can use any character that you want in place of "/*, but it must not
occur in the from or to strings. Example

:s@romstring@o string@

The to string is substituted for the first occurrence of the
(case-specific)from string. The replacement will consider the en-

65

SqlTool

PL Commands

Essential PL Command

tire SQL statement, even if it isamulti-line statement.

All occurrences of "$" in the from string and the to string are
treated as line breaks. For example, from string of "* $FROM
myt abl e" would actually look for occurrences of

*

FROM nyt abl e
Here is a another meaningful example using $.
:s/e)$/e) WHERE col 1l is not null$/
This command appends "WHERE col 1 is not nul | " tothe
ling(s) which end with "e)".
The to string may be empty, in which case, occurrences of the
from string are just deleted. For example

:s/this//

would remove the first occurrence of "this". (With the "g" substi-
tution mode switch, as explained below, it would remove al oc-
currences of "this").

Don't end ato string with *;" in attempt to make a SQL statement
execute. There is a substitution mode switch to use for that pur-
pose.

Y ou can use any combination of the substitution mode switches.

e Use"i" to make the searches for from string case insensitive.

» Use"g" to substitute globally, i.e., for all occurrences of from
string which are found in the text under consideration.

* Use";" to execute the command immediately after the substi-
tution is performed.

e Useaninteger (from 1 to 9) to narrow the text under consider-
ation to a specific line of a multi-line buffer.

The substitution facility doesn't support any regular expressions at
al. When we stop supporting Java versions older than 1.4, I'll
start supporting regular expressions and other advanced string
manipul ation functions.

66

SqlTool

* VARNAME = value Set the value of a variable. If the variable doesn't exist yet, it will
be created. The most common use for this is so that you can later
use it in SQL statements, print statements, and PL conditionals,
by using the * { VARNANME} construct.

If you set avariable to an SQL statement (without the terminating
":") you can then useit asaPL dias like * VARNAME, as shown in
this example.

Example 8.2. Defining and using a PL alias (PL
variable)

* g = SELECT COUNT(*) FROM nytable
\p The stored query is '*{q}’

/aq;

/9 WHERE mass > 200;

If you put variable definitions into the SQL file aut 0. sql in
your home directory, those aiases/variables will always be avail-
able for interactive use.

* load VARNAME /file/path.txt Sets VARNAME to the content of the specified ASCII file.

* prepare VARNAME Indicate that next command should be a SQL INSERT or UP-
DATE command containing one question mark. The vaue of
VARNAME will be substuted for the ? variable. This does work
for CLOB columns.

* VARNAME _ When next SQL command is run, instead of displaying the rows,
just store the very first column vaue to variable VARNAME.
This works for CLOB columns. It also works with Oracle XML
type columns if you use column labels and the get cl obval
function.

* dump VARNAME /file/path.txt Store the value of VARNAME to the specified ASCII file.

Note that PL commands are used to upload and download column values to/from local ASCII files, but
the corresponding actions for binary files use the special \b commands. This is because PL variables are
used for ASCII values and you can store any number of column valuesin PL variables. Thisis not true
for binary column values. The \b commands work with a single binary byte buffer.

See the SqlTool Procedural Language section below for information on using variables in other ways,
and information on the other PL commands and features.

Storing and retrieving binary files

You can upload binary files such as photographs, audio files, or seridlized Java objects into database
columns. SglTool keeps one binary buffer which you can load from files with the \bl command, or from
a database query by doing a one-row query for any non-displayable type (including BLOB, OBJECT,
and OTHER). In the latter case, the data returned for the first non-displayable column of the first result
row will be stored into the binary buffer.

Once you have data in the binary buffer, you can upload it to a database column (including BLOB, OB-

67

SqlTool

JECT, and OTHER type columns), or save it to afile. The former is accomplished by the special com-
mand \bp followed by a prepared SQL query containing one question mark place-holder to indicate
where the data gets inserted. The latter is accomplished with the \bd command.

You can aso store the output from normal, displayable column into the binary buffer by using the spe-
cial command \b. The very first column value from the first result row of the next SQL command will be
stored to the binary byte buffer.

Example 8.3. Inserting binary data into database from afile

\bl /tnp/favoritesong. np3
\ bp
I NSERT | NTO nusicthbl (id, stream) VALUES(3112, ?);

Example 8.4. Downloading binary data from database to afile

SELECT stream FROM nusi ctbl WHERE id = 3112;
\bd /tnp/favoritesong. np3

You can also store and retrieve text column values to/from ASCII files, as documented in the Essentia
PL Command section.

SQL History

The SQL history shown by the \s command, and used by other commands, is truncated to 20 entries,
since the utility comes from being able to quickly view the history list. You can change the history
length by setting the system property sql t ool . hi st or yLengt h to an integer like

java -Dsqgl tool . historyLength=40 -jar $HSQLDB_HOME/li b/ hsqldb.jar urlid

The SQL history list explicitly does not contain Special, Buffer, or PL commands. It only contains SQL
commands, valid or invalid, successful or unsuccessful. The reason for including bad SQL commandsis
so that you can recall and edit them if you want to. The same applies to the editing buffer (which is ele-
ment O of the history).

Shell scripting and command-line piping

Y ou normally use non-interactive mode for piping. Y ou specify "-" asthe SQL file name. See the Piping
and shell scripting subsection of the Non-Interactive chapter.

Emulating Non-Interactive mode

You can run SglTool interactively, but have SglTool behave exactly asif it were processing an SQL file
(i.e., no command-line prompts, error-handling that defaults to fail-upon-error, etc.). Just specify "-" as
the SQL file name in the command line. Thisis agood way to test what SqlTool will do when it encoun-
ters any specific command in an SQL file. See the Piping and shell scripting subsection of the Non-
Interactive chapter for an example.

68

SqlTool

Non-Interactive

Read the Interactive section if you have not already, because much of what isin this section builds upon
that. Even if your plans are to run SglTool non-interactively, you should realy learn to run it interact-
ively because it's such a powerful debugging tool, and you can use it to prototype sql scripts.

I mportant

If you're doing data updates, remember to issue a commit command or use the -
- aut oConmi t switch.

Asyou'll see, SglTool has many features that are very convenient for scripting. But what really makes it
superior for automation tasks (as compared to SQL tools from other vendors) is the ability to reliably de-
tect errors and to control JDBC transactions.

Giving SQL on the Command Line

If you just have a couple SQL commands to run, you can run them directly from the comand-line or
from a shell script without an SQL file, like this.

java -jar $HSQ.DB HOVE/|i b/ hsgl db.jar --sqgl 'SQ statement' wurlid

Note

With the current version of SglTool, we have changed the default behavior of the - - sql
switch. The- - sql automatically implies- - noi nput , so if you want to execute the specified
SQL before and in addition to an interactive session (or stdin piping), then you must also give
the (new) --stdinput switch. This was changed because it turns out that this is the desired beha-
vior well over 90% of the time that you would want to usethe - - sql switch.

Note

Beginning with the current version of SglTool, SglTool will automatically add a trailing semi-
colon to your - - sgl SQL. You may still give the trailing semicolon if you wish to, and you
must still delimit multiple SQL commands with a simicolon, of course. This was changed be-
cause in the very few sitations where you do not want to execute your SQL by a terminating
semicolon, you would be better off using an SQL file.

Since SqlTool transmits SQL statements to the database engine only when aline is terminated with ;",
if you want feedback from multiple SQL statements in an --sgl expression, you will need to use func-
tionality of your OS shell to include linebreaks after the semicolons in the expression. With any Bourne-
compatible shell, you can include linebreaks in the SQL statements like this.

java -jar $HSQ.DB HOVE/li b/ hsqgl db.jar --sqgql 'SQ statement' wurlid '
SQL statenent nunber one;
SQL st at enent
nunmber two;
SQL statenent three;
urlid

If you don't need feedback, just separate the SQL commands with semicolons and the entire expression
will be chunked.

The --sgl switch isvery useful for setting shell variables to the output of SQL Statements, like this.

69

SqlTool

A shell script
USERCOUNT="j ava -jar $HSQ.DB HOVE/li b/ hsqgl db.jar --sqgl 'select count(*) fromu
Handl e the Sgl Tool error

}

echo "There are $USERCOUNT users registered in the database.”

["SUSECOUNT" -gt 3] && { # If there are nore than 3 users registered
Sonme conditional shell scripting

SQL Files

Just give pathsto sql text file(s) on the command line after the urlid.

Often, you will want to redirect output to afile, like
java -jar $HSQ.DB HOVE/li b/ hsgldb.jar sql... > /tnp/log.sqgl 2>&1

(Skipthe"2>&1" if you're on Windows).

You can also execute SQL files from an interactive session with the "\i"* Special Command, but be
aware that the default behavior in an interactive session is to continue upon errors. If the SQL file was
written without any concern for error handling, then the file will continue to execute after errors occur.
Youcouldrun\c fal se before\i fil ename, butthenyour SglTool session will exit if an error is
encountered in the SQL file. If you have an SQL file without error handling, and you want to abort that
file when an error occurs, but not exit SglTool, the easiest way to accomplish thisis usually to add \ ¢
f al se tothetop of the script.

If you specify multiple SQL files on the command-line, the default behavior isto exit SglToal if any of
the SQL files encounters an error.

SQL files themselves have ultimate control over error handling. Regardless of what command-line
options are set, or what commands you give interactively, if a SQL file gives error handling statements,
they will take precedence.

You can aso use\i in SQL files. Thisresultsin nested SQL files.

You can use the following SQL file, sanple.sql, which resides in the src/
or g/ hsql db/ sanpl e directory of your HSQLDB distribution. It contains SQL as well as Special
Commands making good use of most of the Special Commands documented bel ow.

/*
$ld: sample.sql,v 1.5 2005/05/02 15:07: 27 unsaved Exp $
Exanmplifies use of Sql Tool .
PCTASK Tabl e creation

*/

/* lgnore error for these two statements */
\c true

DROP TABLE pct askli st;

DROP TABLE pct ask;

\c fal se

\p Creating table pctask

CREATE TABLE pctask (
idinteger identity,
nane varchar (40),
descri ption varchar,
url varchar,

70

SqlTool

UNI QUE (nane)
\p Creating table pctasklist
CREATE TABLE pctasklist (
idinteger identity,
host varchar(20) not null,
t asksequence int not null,
pct ask i nteger,
assigndate timestanp default current_timestanp,
conpl et edat e ti nest anp,
show bit default true,
FOREI GN KEY (pctask) REFERENCES pct ask,
UNI QUE (host, tasksequence)

)

\p Granting privileges

GRANT sel ect ON pctask TO public;

GRANT all ON pctask TO tontat;

GRANT sel ect ON pctasklist TO public;

GRANT all ON pctasklist TO tontat;

\p Inserting test records

| NSERT | NTO pct ask (name, description, url) VALUES (
"task one', 'Description for task 1', 'http://cnn.com);

I NSERT | NTO pct asklist (host, tasksequence, pctask) VALUES (
"adnc-masq', 101, SELECT id FROM pctask WHERE name = 'task one');

comit;
Y ou can execute this SQL file with a Memory Only database with a command like
java -jar $HSQ.DB HOVE/li b/ hsqgl db.jar --sql "create user 'tontat' password 'Xx

(The--sqgl "create..." arguments create an account which the script uses).

Piping and shell scripting

Y ou can of course, redirect output from SglTool to afile or another program.

java -jar $HSQDB HOVE/li b/ hsgldb.jar urlid file.sgl > file.txt 2>&1
java -jar $HSQ.DB HOVE/li b/ hsgldb.jar urlid file.sql 2>&1 | someprogram ..

Y ou can type commands in to SglTool while being in non-interactive mode by supplying "-" as the file
name. Thisisagood way to test how SglTool will behave when processing your SQL files.

java -jar $HSQ.DB_HOVE/li b/ hsgl db.jar urlid -

Thisis how you have SqlTool read itsinput from another program:

Example 8.5. Piping input into SglT ool

71

SqlTool

echo "Sonme SQL commmands with ' $VARI ABLES' ;" |
java -jar $HSQ.DB HOVE/li b/ hsqgldb.jar urlid -

Make sure that you also read the Giving SQL on the Command Line section. The - - sgl switch isa
great facility to use with shell scripts.

Optimally Compatible SQL Files

If you want your SQL scripts optimally compatible among other SQL tools, then don't use any Special
or PL Commands. SglTool has default behavior which | think is far superior to the other SQL tools, but
you will have to disable these defaults in order to have optimally compatible behavior.

These switches provide compatihilty at the cost of poor control and error detection.

» --continueOnErr
The output will still contain error messages about everything that Sgl Tool doesn't like (malformatted
commands, SQL command failures, empty SQL commands), but SglTool will continue to run. Er-
rors will not cause rollbacks (but that won't matter because of the following setting).

* --autoCommit

You don't have to worry about accidental expansion of PL variables, since SglTool will never expand

PL variables if you don't set any variables on the command line, or give any "* " PL commands. (And
you could not have"* " commandsin a compatible SQL file).

Comments

SQL comments of the form / *. . . */ must begin where a (SQL/Special/Buffer/PL) Command could
begin, and they end with the very first "*/" (regardless of quotes, nesting, etc. You may have as many
blank lines as you want inside of a comment.

Example 8.6. Valid comment example

SELECT count (*) FROM at abl e;

/* Lots of

conments interspersed anong
several |ines */ SELECT count (*)
FROM bt abl e;

Notice that a command can start immediate after the comment ends.

Example 8.7. Invalid comment example

SELECT count (*) FROM
/* atable */

72

SqlTool

bt abl e;

This comment isinvalid because you could not start another command at the comment location (because
it iswithin an SQL Statement).

Youcantry using/ *...*/ in other locations, and - - style SQL comments, but SglTool will not treat
them as comments. If they occur within an SQL Statment, SglTool will pass them to the database en-
gine, and the DB engine will determine whether to parse them as comments.

Special Commands and Buffer Commands in SQL Files

Don't use Buffer Commands in your sql files, because they won't work. Buffer Commands are for inter-
active use only. (But, see the Raw Mode section for an exception).

\q [abort message] Be aware that the \q command will cause SqlTool to completely exit. If
a script x. sql has a\g command in it, then it doesn't matter if the
script is executed like

java -jar .../hsqgldb.jar urlid a.sql x.sqgl z.sql

or if you use\i to read it in interactively, or if another SQL file uses\i to
nest it. If \q is encountered, SglTool will quit. See the SqlTool Proced-
ural Language section for commands to abort an SQL file (or even parts
of an SQL file) without causing Sgl Tool to exit.

\q takes an optional argument, which is an abort message. If you give an
abort message, the message is displayed to the user and SqglTool will
exit with a failure status. If you give no abort message, then SqlTool
will exit quietly with successful status.

\p [text to print] Print the given string to stdout. Just give "\p" alone to print ablank line.

\i /path/to/file.sql Include another SQL file at this location. Y ou can use this to nest SQL
files. For database installation scripts | often have a master SQL file
which includes all of the other SQL files in the correct sequence. Be
aware that the current continue-upon-error behavior will apply to in-
cluded files until such point as the SQL file runs its own error handling
commands.

\H Toggle HTML output mode. If you redirect output to a file, this can
make a long session log much easier to view. This will HTML-ify the
entire session. For example,

java -jar $HSQ.DB HOVE/ |l i b/ hsqgldb.jar urlid filepathl.sql...

(See the Generating Text or HTML Reports section about how to easily
store just the query output to file.)

\a[trueffalse] This turns on and off SQL transaction autocommits. Auto-commit de-
faults to false, but you can change that behavior by using the -
- aut oComm t command-line switch.

\c [trueffal se] A "true" setting tells SglTool to Continue when errors are encountered.
The current transaction will not be rolled back upon SQL errors, soif \c

73

SqlTool

is true, then run the ROLLCACK; command yourself if that's what you
want to happen. The default for interactive useis to continue upon error,
but the default for non-interactive use is to abort upon error. You can
override this behavior by using the - - conti nueOnErr or the -
- abor t OnErr command-line switch.

With database setup scripts, | usually find it convenient to set "true” be-
fore dropping tables (so that things will continue if the tables aren't
there), then set it back to false so that real errors are caught. DROP TA-
BLE tabl enane | F EXI STS; isamore elegant, but less portable,
way to accomplish the same thing.

Tip

It depends on what you want your SQL files to do, of course, but | usually want my SQL files
to abort when an error is encountered, without necessarily killing the SglTool session. If thisis
the behavior that you want, then put an explicit\ ¢ f al se at thetop of your SQL file and turn
on continue-upon-error only for sections where you really want to permit errors, or where you
are using PL commands to handle errors manually. This will give the desired behavior whether
your script is called by somebody interactively, from the SqlTool command-line, or included in
another SQL file (i.e. nested).

I mportant

The default settings are usually best for people who don't want to put in any explicit \c or error
handling code at all. If you run SQL files from the SglTool command line, then any errors will
cause SqlTool to roll back and abort immediately. If you run SglTool interactively and invoke
SQL files with \i commands, the scripts will continue to run upon errors (and will not roll
back). This behavior was chosen because there are lots of SQL files out there that produce er-
rors which can be ignored; but we don't want to ignore errors that a user won't see. | reiterate
that any and all of this behavior can (and often should) be changed by Special Commands run
in your interactive shell or in the SQL files. Only you know whether errors in your SQL files
can safely beignored.

Note

In previous versions of SglTool, this special command was "*". This usage is still supported,
but is deprecated. It was changed because "*" is a very poor mnemonic. Even the author of the
program had to constantly look up whether "* true" meant to Continue on error or to Abort
upon error. Now, the "c" signifies Continue.

Automation

SqiTool isideal for mission-critical automation because, unlike other SQL tools, SgiTool returns a de-
pendable exit status and gives you control over error handling and SQL transactions. Autocommit is off
by default, so you can build a completely dependable solution by intelligently using \c commands
(Continue upon Errors) and commit statements, and by verifying exit statuses.

Using the SglTool Procedural Language, you have ultimate control over program flow, and you can use

variables for database input and output as well as for many other purposes. See the SqlTool Procedural
Language section.

Getting Interactive Functionality with SQL Files

Some script developers may run into cases where they want to run with sgl files but they alwo want

74

SqlTool

SqlTool's interactive behavior. For example, they may want to do command recall in the sl file, or they

may want to log SglTool's command-line prompts (which are not printed in non-interactive mode). In

this case, do not give the sql file(s) as an argument to SglTool, but pipe them in instead, like

java -jar $HSQ.DB HOVE/li b/ hsqgldb.jar urlid < filepathl.sql > /tnp/log. htm 2>&1

or

cat filepathl.sql... |
java -jar $HSQ.DB HOVE/li b/ hsgldb.jar urlid > /tnp/log. htm 2>&1

Character Encoding

SqlTool defaults to the US-ASCII character set (for reading). You can use another character set by set-
ting the system property sglfile.charset, like

java -Dsqlfile.charset=UTF-8 -jar $HSQLDB HOVE/li b/ hsqgl db.jar urlid filepathl.sql.

You can also set this per urlid in the SglTool configuration file. See the RC File Authentication Setup
section about that.

Generating Text or HTML Reports

This section is about making a file containing the output of database queries. Y ou can generate reports
by using operating system facilities such as redirection, tee, and cutting and pasting. But it is much easi-
er to use the "\o" and "\H" special commands.

Procedure 8.5. Writing query output to an external file

1. By default, everthing will be donein plain text. If you want your report to bein HTML format, then
give the special command \ H. If you do so, you will probably want to use filenames with an suffix
of ".html" or ".htm" instead of ".txt" in the next step.

2. Run the command \o path/to/reportfile.txt. From this point on, output from your
queries will be appended to the specified file. (1.e. another copy of the output is generated.) This
way you can continue to monitor or use output as usual asthe report is generated.

3. When you want SglTool to stop writing to the file, run\ o (or just quit SglTool if you have no other
work to do).

4. If you turned on HTML mode with \ Hbefore, you can run\ Hagain to turn it back off, if you wish.

Itisnot just the output of "SELECT" statements that will make it into the report file, but

Kinds of output that get teed to\o files

75

SqlTool

» Output of SELECT statements.
e Output of all "\d" Specia Commands. (I.e., "\dt", "\dv", etc., and "\d OBJECTNAME").

» Output of "\p" Special Commands. Y ou will want to use this to add titles, and perhaps spacing, for
the output of individual queries.

Other output will go to your screen or stdout, but will not make it into the report file. Be aware that no
error messages will go into the report file. If SglTool is run non-interactively (including if you give any
SQL file(s) on the command line), SglTool will abort with an error status if errors are encountered. The
right way to handle errorsisto check the SglTool exit status. (The described error-handling behavior can
be modified with SglTool command-line switches and Special Commands).

Warning

Remember that \o appends to the named file. If you want a new file, then use a new file name
or remove the targe file ahead of time.

Tip

So that | don't end up with a bunch of junk in my report file, | usualy leave \o off while | per-
fect my SQL. With \o off, | perfect the SQL query until it produces on my screen exactly what |
want saved to file. At this point | turn on\o and run ":;" to repeat the last SQL command. If |
have several complex queriesto run, | turn \o off and repeat until I'm finished. (Every time you
turn\o on, it will append to the file, just like we need).

Usually it doesn't come to mind that | need a wider screen until a query produces lines that are
too long. In this case, stretch your window and repeat the last command with the ":;" Buffer
Command.

SqlTool Procedural Language

Aka PL

Most importantly, run Sql Tool interactively and give the "*?' command to see what PL commands
are available to you.

PL variables will only be expanded after you run a PL command (or set variable(s) from the command-
line). We only want to turn on variable expansion if the user wants variable expansion. People who don't
use PL don't have to worry about strings getting accidentally expanded.

Note

Users of previous versions of SglFile should notice that whitespace is no longer required after
the* (though you may use whitespace there if you wish).

All other PL commands imply the "*" command, so you only need to use the "*" statement if your script
uses PL variables and it is possible that no variables may be set before-hand (and no PL commands have
been run previoudly). In this case, without "*", your script would silently use a literal value like "*{x}"
instead of trying to expand it. With a preceding "*" command, PL will notice that the variable x has not
been set and will generate an error. (If x had been set here will be no issue because setting a variable
automatically turns on PL variable expansion).

PL isaso used to upload and download column values to/from local ASCII files, analogously to the spe-
cial \b commands for binary files. Thisis explained above in the Interactive Essential PL Command sec-
tion above.

76

SqlTool

Variables

e Usethe* |ist commandtolist someor al variables; or * | i st val ue to aso seethe values.
* Youcansetvariablesusingthe* VARNAME = val ue command.

* You can aso set variables using the - - set var command-line switch. | give avery brief but useful
example of thisbelow.

* Variables are always expanded in SQL, Specia, and PL commands if they are written like
*{ VARNAME} (assuming that a PL command has been run previously). Your SQL scripts can give
good feedback by echoing the value of variables with the "\p" special command.

* A variable written like / VARNAME is expanded if it begins an SQL Statement. This usage is called
PL Aliasing. See the PL Aliases section below.

* Variables are normally written like * VARNAME in logical expressions to prevent them from being
evaluated too early. See below about logical expressions.

* You can't do math with expression variables, but you can get functionality like the traditional f or
(i =0; i < x; i++) byappendingto avariable and testing the string length, like

* while (*i < ${x})
o= %},

i will be agrowing line of dots.

» Variable names must not contain white space, or the characters"}" or "=".

PL Aliases

PL Aliasing just means the use of a PL variable as the first thing in an SQL statement, with the shortcut
notation / VARNAME.

/ VARNAME must be followed by whitespace or terminate the Statement, in order for SqlFile to tell
where the variable name ends.

Note

Note that PL aliases are a very different thing from SQL aliases or HSQLDB aliases, which are
features of databases, not SqglFile.

If the value of avariable is an entire SQL command, you generally do not want to include the terminat-
ing";" in the value. There is an example of this above.

PL aliasing may only be used for SQL statements. Y ou can define variables for everything in a Specia
or PL Command, except for the very first character ("\" or "*"). Therefore, you can use variables other
than alias variables in Special and PL Commands. Here is a hyperbolically impractical example to show
the extent to which PL variables can be used in Special commands even though you can not use them as
PL aliases.

sql> * gqq = p Hello Butch
sqgl > *{qq} done now
Hel | o Butch done now

77

SqlTool

(Note that the * here is not the special command "*", but is the special command "\p" because "*{qq}"
resolvesto"p").

Hereisashort SQL file that gives the specified user write permissions on some application tables.

Example 8.8. Simple SQL fileusing PL

/*
grantwite. sql

Run Sqgl Tool Iike this:
java -jar path/to/ hsqldb.jar -setvar USER=debbie grantwite. sql
*/

/* Explicitly turn on PL variable expansion, in case no vari abl es have
been set yet. (Only the case if user did not set USER).
*/

*

GRANT al |l ON book TO *{USER};
GRANT all ON category TO *{USER};

Note that this script will work for any (existing) user just by supplying a different user name on the com-
mand-line. |.e., no need to modify the tested and proven script. There is no need for acomni t state-
ment in this SQL file since no DML is done. If the script is accidentally run without setting the USER
variable, SglTool will give avery clear notificaton of that.

The purpose of the plain "*" command is just so that the *{ USER} variables will be expanded. (This
would not be necessary if the USER variable, or any other variable, were set, but we don't want to de-
pend upon that).

Logical Expressions

Logica expressions occur only inside of logical expression parentheses in PL statements. For example,
if (*varl > astring) andwhile (*checkvar) . (The parentheses after "foreach" do not en-
close alogical expression, they just enclose alist).

There is a critical difference between *{ VARNAME} and * VARNAME inside logical expressions.
*{ VARNAME} is expanded one time when the parser first encounters the logical expression.
* VARNANME is re-expanded every time that the expression is evaluated. So, you would never want to
code* while (*{X} < 5) because the statement will always be true or aways be fase. (l.e. the
following block will loop infinitely or will never run).

Don't use quotes or whitespace of any kind in * { VARNAME} variables in expressions. (They would ex-
pand and then the expression would most likely no longer be a valid expression as listed in the table be-
low). Quotes and whitespace are fine in * VARNAME variables, but it is the entire value that will be used
in evauations, regardless of whether quotes match up, etc. |.e. quotes and whitespace are not special to
the token evauator.

Logical Operators

TOKEN The token may be aliteral, a* { VARNAME} which is expanded early, or
a*VARNAME which is expanded late. (You usually do not want to use

78

SqlTool

*{ VARNAME} in logical expressions). False if the token is not set,
empty, or "0". True otherwise.

TOKEN1 == TOKEN2 Trueif the two tokens are equivalent "strings'.

TOKEN1 <> TOKENZ2 Ditto.

TOKEN1 >< TOKEN2 Ditto.

TOKEN1 > TOKEN2 True if the TOKENL string is longer than TOKEN2 or is the same

length but is greater according to a string sort.
TOKEN1 < TOKEN2 Similarly to TOKEN1 > TOKEN2.

I LOGICAL_EXPRESSION Logica negation of any of the expressions listed above.

*VARNAMEs in logical expressions, where the VARNAME variable is not set, evaluate to an empty
string. Therefore (* UNSETVAR = 0) would be false, even though (* UNSETVAR) by itself is false
and (0) by itself isfalse.

When developing scripts, you definitely use SqlTool interactively to verify that SqlTool evaluates logic-
al expressions as you expect. Just run* i f commands that print something (i.e. \p) if the test expres-
sionistrue.

Flow Control

Flow control works by conditionally executing blocks of Commands according to conditions specified
by logical expressions.

The conditionally executed blocks are called PL Blocks. These PL Blocks always occur between a PL
flow control statement (like* foreach, *while, * if)andacorresponding* end PL Com-
mand (like* end f or each).

Caution

Be aware that the PL block reader is ignorant about SQL statements and comments when |ook-
ing for the end of the block. It just looks for lines beginning with some specific PL commands.
Therefore, if you put a comment line before a PL statement, or if a line of a multi-line SQL
statement has a line beginning with a PL command, things may break.

| am not saying that you shouldn't use PL commands or SQL commands inside of PL blocks--
you definitely should! I'm saying that in PL blocks you should not have lines inside of SQL
statments or comments which could be mistaken for PL commands. (Especially, "commenting
out" PL end statements will not work if you leave* end at the beginning of the line).

(Thislimitation will very likely be removed in afuture version of SglTool).
The values of control variables for foreach and while PL blocks will change as expected.

Thereare* break and* conti nue, which work as any shell scripter would expect them to. The *
br eak command can also be used to quit the current SQL file without triggering any error processing.
(I.e. processing will continue with the next line in the including SQL file or interactive session, or with
the next SQL fileif you supplied multiple on the command-line).

Below is an example SQL File that shows how to use most PL features. If you have a question about
how to use a particular PL feature, check this example before asking for help. This file resides in the
src/ or g/ hsqgl db/ sanpl e directory with the name pl . sql . Definitely giveit arun, like

79

SqlTool

java -jar $HSQ.DB HOVE/ | i b/ hsql db.jar nmem $HSQ.DB _HOVE/ src/ or g/ hsql db/ sanpl e/ pl .| a

Example 8.9. SQL File showing use of most PL features

/*
$Id: pl.sqgl,v 1.4 2005/05/02 15:07: 26 unsaved Exp $
SQL File to illustrate the use of Sql Tool PL features.
I nvoke |ike
java -jar .../hsgldb.jar .../pl.sql nem
-- bl aine
*/

*if (! *MYTABLE)
\p MYTABLE vari abl e not set!
/* You could use \q to Quit Sql Tool, but it's often better to just
break out of the current SQ file.
| f people invoke your script from Sgl Tool interactively (with
\i yourscriptnanme.sql) any \q will kill their Sql Tool session. */
\p Use argunents "--setvar MYTABLE=nyt abl enane" for Sql Too
* break
*end if

/* Turning on Continue-upon-errors so that we can check for errors ourselves. */
\c true

\p
\p Loading up a table naned ' *{ MYTABLE}"' ..

/* This sets the PL variable "retval' to the return status of the foll ow ng
SQL comand */

* retval ~
CREATE TABLE *{ MYTABLE} (
i int,
s varchar
)
\p CREATE status is *{retval}
\p
/* Validate our return status. In logical expressions, unset variables |ike
*unsetvar are equivalent to enpty string, which is not equal to O
(though both do evaluate to false on their own, i.e. (*retval) is false
and (0) is false */
*if (*retval !'= 0)
\'p Qur CREATE TABLE command fail ed.
* break
*end if

/* Default Continue-on-error behavior is what you usually want */
\c fal se

\'p

/* Insert data with a foreach | oop.
These val ues could be froma read of another table or fromvariables
} set on the comand line |ike
*
\p Inserting some data int our new table (you should see 3 row update nessages)
* foreach VALUE (12 22 24 15)
* if (*VALUE > 23)
\'p Skipping *{VALUE} because it is greater than 23
* continue

80

SqlTool

\p YOU WLL NEVER SEE THI S LI NE, because we just 'continued' .
* end if
| NSERT | NTO *{ MYTABLE} VALUES (*{VALUE}, 'String of *{VALUE}');
* end foreach

\'p

* themax ~

/* Can put Special Conmands and conments between "* VARNAME ~'
SQL statenent. */

\p W're saving the max value for later. You'll still see query output here:

SELECT MAX(i) FROM *{ MYTABLE};

and the target

/* This is usually unnecessary because if the SELECT failed, retval would
be undefined and the followi ng print statenment would make Sqgl Tool exit with
a failure status */

*if (! *themax)

\p Failed to get the nax val ue.

/* 1t's possible that the query succeeded but themax is "0".
You can check for that if you need to. */

* break
\'p YOU WLL NEVER SEE THI S LINE, because we just 'broke'.
* end if

\p
\ P HHHHH
\p The results of our work:
SELECT * FROM *{ M\YTABLE};
\'p MAX val ue is *{thenmax}
p
p

Ever yt hi ng wor ked.

Chunking

We hereby call the ability to transmit multiple SQL commands to the database in one transmission
chunking. Unless you are in Raw mode, SglTool only transmits commands to the database engine when
itreadsina";" at the end of aline of an SQL command. Therefore, you normally want to end each and
every SQL command with ;" at the end of aline. Thisis because the database can only send one status
reply to each JDBC transmission. So, while you could run

SELECT * FROM t1l;, SELECT * FROMt 2;

SqlTool can only display the results from the last query. Thisis alimitation of the client/server nature of
JDBC, and applies to any JDBC client. There are, however, situations where you don't need immediate
feedback from every SQL command. For example,

Example 8.10. Single-line chunking example

I NSERT INTO t1 VALUES(0); SELECT * FROM t1;

It's useful because the output of the second SQL command will tell you whether the first SQL command
succeeded. So, you won't miss the status output from the first command.

81

Why?

How?

Raw

SqlTool

The first general reason to chunk SQL commands is performance. For standalone databases, the most
common performance bottleneck is network latency. Chunking SQL commands can dramatically reduce
network traffic.

The second general reason to chunk SQL commands is if your database requires you to send multiple
commands in one transmission. This is often the case when you need to tell the database the SQL or PL/
SQL commands that comprise a stored procedure, function, trigger, etc.

The most simple way is enter as many SQL commands as you want, but just do not end a line with ";"
until you want the chunk to transmit.

Example 8.11. Multi-line chunking example

I NSERT I NTO t1 VALUES (1)
; INSERT INTO t1 VALUES (2)
;. SELECT * FROMt1;

If you list your command history with \s, you will see that all 3 SQL commands in 3 lines are in one
SglTool command. Y ou can recall this SgiTool command from history to re-execute all three SQL com-
mands.

The other method is by using Raw Mode. Go to the Raw Mode section to see how. You can enter any
text at all, exactly how you want it to be sent to the database engine. Therefore, in addition to chunking
SQL commands, you can give commands for non-SQL extensions to the database. For example, you
could enter JavaScript code to be used in a stored procedure.

Mode

You begin raw mode by issuing the Special Command "\.". You can then enter as much text in any
format you want. When you are finished, enter a line consisting of only ".". If you are running Sgl Tool

interactively, you'll notice that your prompt will be the continuation prompt until you enter the "." line.
When you terminate raw entry with the "\." line, the command does not execute, it just goes into the
command buffer. If running interactively, you can look at the buffer with the ":I" Buffer Command.

What you will normally want to do is to enter the Buffer Command ":;" to transmit the buffer to the
database engine.

Example 8.12. Raw M ode example

sql > \.

Enter RAWSQ.. No \, :, * commands. End with a line containing only

raw> |ine one;
+> |ine two;
+> line three;
+>

Raw SQL chunk rmoved into buffer. Run ":;" to execute the chunk.

82

SqlTool

sqgl > :;

Executi ng comand from buffer:
i ne one;

line two;

line three;

SQ Error at 'stdin' line 13:

“l'i ne one;

line two;

line three;"

Unexpected token: LINE in statenent [|ine]
sqgl >

The error message "Unexpected token: LINE in statement [line]" comes from the database engine, not
SqlTool. All three lines were transmitted to the database engine.

Buffer Commands are generally unavailable when runninb SglTool interactively. However, the com-
mand ":;", and the command buffer have been enabled for non-interactive use, because they are required
for using raw mode, and it is definitely useful to be able to use raw mode in SQL files.

PL/SQL

Note

PL/SQL is not the same as PL. PL is the procedural language of SqlFile and is independent of
your back-end database. PL commands always begin with *. PL/SQL is processed on the server
side and you can only useit of your database supportsit. You can not intermix PL and PL/SQL
(except for setting a PL variable to the output of PL/SQL execution), because when you enter
PL/SQL to SqlTool that input is not processed by SqlFile.

Use Raw Mode to send PL/SQL code blocks to the database engine. Y ou do not need to enter the "\."
command to enter raw mode. Just begin a new SglTool command line with "DECLARE" or "BEGIN",
and Sgl Tool will automatically put you into raw mode. See the Raw Mode section for details.

The following sample SQL file resides at src/ org/ hsql db/ sanpl e/ pl sql . sql in your
HSQLDB distribution. This script will only work if your database engine supports standard PL/SQL, if
you have permission to create the table "T1" in the default schema, and if that object does not already
exist.

Example 8.13. PL/SQL Example

$Id: plsqgl.sqgl,v 1.3 2005/05/02 15:09: 11 unsaved Exp $

This exanple is copied fromthe "Sinple Prograns in PL/SQ"
exanpl e by Yu-Muy Chang, Jeff Ul nan, Prof. Jennifer Wdom at

the Standord University Database G oup's page

htt p: //ww+ db. st anf ord. edu/ ~ul | man/ f cdb/ oracl e/ or-plsqgl . htm .

| have only renpved sone bl ank |ines (because you can't use bl ank
lines inside of SQL commands in non-raw node Sql Tool when running
it interactively); and, at the bottom| have replaced the
client-specific, non-standard command "run;" with Sqgl Tool's
correspondi ng command ":;" and added a plain SQ. SELECT comand
/to show whet her the PL/SQL code worked. - Blaine

CREATE TABLE T1(

* Ok X Sk F F 3k X X X F F X %

83

SqlTool

e | NTECER,
f | NTEGER

)

DELETE FROM T1;

| NSERT | NTO T1 VALUES(1, 3);
| NSERT | NTO T1 VALUES(2, 4);

/* Above is plain SQ; belowis the PL/SQ program */
DECLARE

a NUMBER
b NUMBER;
BEG N
SELECT e,f INTO a, b FROM T1 WHERE e>1;
I NSERT I NTO T1 VALUES(b, a);
END;

/**/

/* Remai ni ng Sqgl Tool - specific code added by Bl ai ne Sinpson of the
* HSQ.DB Devel oprment G oup.
*/

/* This should show 3 rows, one containing values 4 and 2 (in this order)...*/
SELECT * FROM t 1;

Note that, inside of raw mode, you can use any kind of formatting you want: Whatever you enter-- blank
lines, comments, everything-- will be transmitted to the database engine.

Using hsqltool.jar and hsqldbutil.jar

This section is only for those users who want to use SglTool but without the overhead of hsgldb.jar.

If you do not need to directly use JDBC URLs like j dbc: hsqgl db: mem + something, j d-
bc: hsqgl db: file: + something, or jdbc: hsql db: res: + something, then you can use
hsql t ool . j ar in place of the much larger hsql db. j ar file. hsql t ool . j ar will work for all
JDBC databases other than HSQLDB Memory-only and In-process databases (the latter are fine if you
access them via a HSQLB Server or WebServer). You will have to supply the JDBC driver for non-
HSQLDB URLS, of course.

hsql t ool . j ar includesthe HSQLDB JDBC driver. If you do not need to connect to HSQLDB data-
bases at al, then hsqgl dbuti | .jar iswhat you need. hsql dbuti | . j ar contains everything you
need to run Sgl Tool and Dat abaseManager Swi ng against non-HSQLDB databases... well, be-
sides the JDBC drivers for the target databases.

The HSQLDB distribution doesn't "come with" a pre-built hsql t ool . j ar and hsql dbutil.j ar
files. You should build the hsgltool or hsgldbutil target, as explained in the Building HSQLDB ap-
pendix.

SqlTool

If you are using the HSQLDB JDBC driver (i.e., you're connecting up to a URL like jdbc:hsgldb:hsgl +
something or jdbc:hsgldb:http + something), you run SglTool exactly as with hsgldb.jar except you use
the file path to your new jar file instead of the path to hsql db. j ar .

If you are using anon-HSQLDB JDBC driver, follow the instructions at the end of the The Bare Minim-
um section, but use your new filein place of hsql db. j ar.

Unit Testing SqlTool

A unit testing framework is in place. This assures the robustness of SqlTool. See the filet est r un/
sql t ool / readme. t xt for instructions on running, modifying, or creating unit tests. To create a new
unit test, you create a SQL file and embed metacommands in the SQL file inside of comments. The
metacommands tell the test harness (or g. hsql db. t est . Sql Tool Har ness) how to run SqglTool
(like with what arguments) and what output to expect (i.e. the test criteria). You can run tests without
JUnit, or you can make a JUnit wrapper in the normal fashion. Any SQL test file can be added to our
JUnit SqlTool test suite by just adding the SQL file name and description to the t estrun/
sqgl tool /*.1i st filefor thedesired JUnit test method.

(The Sl Tool unit testsrequire java 1.4).

85

Chapter 9. SQL Syntax

The Hypersonic SQL Group

Fred Toussi, HSQLDB Development Group <f t @l uedup. con®

Peter Hudson, HSQLDB Development Group

Joe Maher, HSQLDB Development Group
<j rmaher @neritech. net >

Edited by Blaine Simpson

$Date: 2005/06/30 22:39:11 $
HSQL DB version 1.8.0 supports the SQL statements and syntax described in this chapter.

Notational Conventions Used in this Chapter

[A] meansA isoptional.

{ B | C } meanseither B or C must be used.

[{ B| C}] meanseither B or C may optionally be used, or nothing at all.
(and) aretheactual characters'(' and)" used in statements.

UPPERCA SE words are keywords

SQL Commands
ALTER INDEX}

ALTER | NDEX <i ndexname> RENAMVE TO <newnane>;

Index names can be changed so long as they do not conflict with other user-defined or sytem-defined
names.

ALTER SEQUENCE1

ALTER SEQUENCE <sequencenane> RESTART W TH <val ue>;

Resets the next value to be returned from the sequence.

ALTER SCHEMA!

ALTER SCHEMA <schemaname> RENAME TO <newnane>;
Renames schema as specified. All objects of the schema will hereafter be accessible only with the new
schema name.

Requires Administrative privileges.
I These features were added by HSQL Development Group since April 2001

86

SQL Syntax

ALTER TABLE!

ALTER TABLE <t abl ename> ADD [COLUM\] <col ummnane> Dat at ype [(col umsSi ze[, preci sion
[{ DEFAULT <def aul t Val ue> |
GENERATED BY DEFAULT AS | DENTITY (START WTH <n>[, | NCREMENT BY <n®])}] |
[[NOT] NULL] [IDENTITY] [PRI MARY KEY]
[BEFORE <exi stingcol uim>] ;

Adds the column to the end of the column list. The optional BEFORE <existingcolumn> can be used to
specify the name of an existing column so that the new column is inserted in a position just before the
<existingcolumn>.

It accepts a columnDefinition as in a CREATE TABLE command. If NOT NULL is specified and the
table is not empty, then a default value must be specified. In all other respects, this command is the equi-
valent of acolumn definition statement in a CREATE TABLE statement.

If an SQL view includes a SELECT * FROM <tablename> in its select statement, the new column is ad-
ded to the view. Thisisanon-standard feature which is likely to change in the future.

ALTER TABLE <t abl ename> DROP [COLUWMN] <col ummnane>;

Drops the column from the table. Will drop any single-column primary key or unique constraint on the

column as well. The command will not work if there is any multiple key constraint on the column or the

column isreferenced in a check constraint or aforeign key.

It will also fail if an SQL view includes the column.

ALTER TABLE <t abl ename> ALTER COLUWN <col ummnane> { RENAME TO <newnane> | SET DEFAU
Thisform of ALTER TABLE ALTER COLUMN changes a column name, or adds the specified default

value.

ALTER TABLE <t abl enanme> ALTER COLUWN <col umbDefi ni ti on>;

This form of ALTER TABLE ALTER COLUMN accepts a columnDefinition asin a CREATE TABLE
command, with the following restrictions.

Restrictions

» The column must be already be a PK column to accept an IDENTITY definition.

e If the column is aready an IDENTITY column and there is no IDENTITY definition, the existing
IDENTITY attribute is removed.

» The default expression will be that of the new definition, meaning an existing default can be dropped
by ommission, or a new default added.

* The NOT NULL attribute will be that of the new definition (similar to previous item).
» Depending on the type of change, the table may have to be empty for the command to work. It al-

ways works when the type of change is possible in general and the individual existing values can all
be converted.

ALTER TABLE <t abl ename> ALTER COLUWN <col umnanme> RESTART W TH <new sequence val e>

87

SQL Syntax

This form is used exclusively for IDENTITY columns and changes the next automatic value for the
identity sequence.

ALTER TABLE <t abl ename> ADD [CONSTRAI NT <const rai nt nane>] CHECK (<search condition
Adds a check constraint to the table. In the current version, a check constraint can reference only the row

being inserted or updated.

ALTER TABLE <t abl enane> ADD [CONSTRAI NT <constrai nt nane>] UNI QUE (<columm |ist>);
Adds a unique constraint to the table. This will not work if there is already a unique constraint covering

exactly the same <column list>.

This will work only if the values of the column list for the existing rows are unique or include a null
value.

ALTER TABLE <t abl enane> ADD [CONSTRAI NT <const rai nt nane>] PRI MARY KEY (<colum lis

Adds a primary key constraint to the table, using the same constraint syntax as when the primary key is

specified in atable definition.

ALTER TABLE <t abl enane> ADD [CONSTRAI NT <const rai nt nanme>] FORElI GN KEY (<columm lis
[ON { DELETE | UPDATE} {CASCADE | SET DEFAULT | SET NULL}];

Adds a foreign key constraint to the table, using the same constraint syntax as when the foreign key is

specified in atable definition.

This will fail if for each existing row in the referring table, a matching row (with equal values for the
column list) is not found in the referenced tables.

ALTER TABLE <t abl enanme> DROP CONSTRAI NT <constrai nt name>;

Drop a named unique, check or foreign key constraint from the table.

ALTER TABLE <t abl ename> RENAME TO <newnane>;

ALTER USER?

ALTER USER <user nane> SET PASSWORD <passwor d>;

Changes the password for an existing user. Password must be double quoted. Use
word.

for an empty pass-

Only an administrator can do this.

CALL

CALL Expression;

Any expression can be called like a stored procedure, including, but not only Java stored procedures or
functions. This command returns a ResultSet with one column and one row (the result) just like a SE-

88

SQL Syntax

LECT statement with one row and one column.

See also: Stored Procedures / Functions, SQL Expression.

CHECKPOINT

CHECKPOI NT [DEFRAG!] ;

Closes the database files, rewrites the script file, deletes the log file and opens the database.
If DEFRAG is specified, this command a so shrinks the .data file to its minimal size.

See also: SHUTDOWN, SET LOGSIZE.

COMMIT
COW T [WORK] ;

Ends a transaction and makes the changes permanent.

Seealso: ROLLBACK, SET AUTOCOMMIT, SET LOGSIZE.

CONNECT

CONNECT USER <user nane> PASSWORD <passwor d>;

Connects to the database as a different user. Password should be double quoted. Use
password.

for an empty

See also: GRANT, REVOKE.

CREATE ALIAS

CREATE ALI AS <function> FOR <javaFuncti on>;

Creates an dlias for a Java function. The function must be accessible from the VM in which the data-
base runs. Example:

CREATE ALI AS ABS FOR "j ava. |l ang. Mat h. abs";

See also: CALL, Stored Procedures/ Functions.

CREATE INDEX

CREATE [UNI QUE] | NDEX <i ndex> ON <table> (<colum> [DESC] [, ...]) [DESC;

Creates an index on one or more columnsin atable.

Creating an index on searched columns may improve performance. The qualifier DESC can be present
for command compatibility with other databases but it has no effect. Unique indexes can be defined but
this is deprecated. Use UNIQUE congtraints instead. The name of an index must be unique within the

89

SQL Syntax

whole database.

See also: CREATE TABLE, DROP INDEX.

CREATE ROLE?

CREATE ROLE <r ol enane>;

Creates the named role with no members. Requires Administrative privileges.

CREATE SCHEMA1

CREATE SCHENMA <schermananme> AUTHORI ZATI ON DBA [<creat eSt at ement > [<gr ant St at errent <]

Creates the named schema.

Optiona (nested) CREATE and GRANT statements can be given only for new objects in this new
schema. Only the last nested statement should be terminated with a semicolon, because the first semi-
colon encountered after "CREATE SCHEMA" will end the CREATE SCHEMA command. In the ex-
ample below, a new schema, ACCOUNTS, is created, then two tables and a view are added to this
schma and some rights on these objects are granted.

CREATE SCHEMA ACCOUNTS AUTHORI ZATI ON DBA

CREATE TABLE AB(A I NTECGER, ...)

CREATE TABLE CD(C CHAHR, ...

CREATE VIEW VI AS SELECT ...

GRANT SELECT TO PUBLI C ON AB
GRANT SELECT TO JCE ON CD,

Requires Administrative privileges.

CREATESEQUENCE1

CREATE SEQUENCE <sequencename> [AS {INTEGER | BI A NT}] [START WTH <startval ue>] |

Creates a sequence. The default type is INTEGER. The default start value is 0 and the increment 1. Neg-
ative values are not allowed. If a sequence goes beyond Integer. MAXVALUE or Long.MAXVALUE,
the next result is determined by 2's complement arithmetic.

The next value for a sequence can be included in SELECT, INSERT and UPDATE statements as in the
following example:

SELECT [...,] NEXT VALUE FOR <sequencename> [, ...] FROM <t abl enane>

In the proposed SQL 200n and in the current version, there is no way of retreiving the last returned value

of asequence.
CREATE TABLE
CREATE [MEMORY | CACHED | [GLOBAL] TEMPORARY | TEMP 1 [TEXTl] TABLE <nane>
(<columbDefinition> [, ...] [, <constraintDefinition>..]) [ON COW T {DELETE |

90

SQL Syntax

Creates a tables in memory (default) or on disk and only cached in memory. If the database is all-
in-memory, both MEMORY and CACHED forms of CREATE TABLE return a MEMORY table while
the TEXT formis not allowed.

Componentsof a CREATE TABLE command

columnDefinition
col ummnane Dat atype [(col umSi ze[, precision])] [{DEF
GENERATED BY DEFAULT AS | DENTITY (START WTH <n>[, ||
[[NOT] NULL] [IDENTITY] [PRI MARY KEY]

Default values that are allowed are constant values or certain SQL
datetime functions.

Allowed Default Valuesin Column Definitions

e For character column, a single-quoted string or NULL. The
only SQL function that can be used is CURRENT_USER.

e For datetime columns, a single-quoted DATE, TIME or
TIMESTAMP value or NULL. Or a datetime SQL function
such as CURRENT_DATE, CURRENT_TIME, CUR-
RENT_TIMESTAMP, TODAY, NOW. Each function is al-
lowed for a certain datetime type.

e For BOOLEAN columns, the literals FALSE, TRUE, NULL.
¢ For numeric columns, any valid number or NULL.

e For binary columns, any valid hex string or NULL.

Only one identity column is allowed in each table. Identity
columns are autoincrement columns. They must be of INTEGER
or BIGINT type and are automatically primary key columns (as a
result, multi-column primary keys are not possible with an IDEN-
TITY column present). Using the long SQL syntax the (START
WITH <n>) clause specifies the first value that will be used. The
last inserted value into an identity column for a connection is
available using the function IDENTITY(), for example (where Id
isthe identity column):

I NSERT | NTO Test (1d, Name) VALUES (NULL,' Test'):
CALL | DENTI TY():

constraintDefinition
[CONSTRAI NT <namne>]
UNI QUE (<colum> [, <col um>...] |
PRI MARY KEY (<colum> [, <colum>...]) |
FOREI GN KEY (<colum> [, <colum>...]) REFERENCES <i
[ON { DELETE | UPDATE} {CA%CADE | SET DEFAULT | SET N
CHECK(<search conditi on>)

91

SQL Syntax

Both ON DELETE and ON UPDATE clauses can be used in a
single foreign key definition.

search condition A search condition is similar to the set of conditionsin a WHERE
clause. In the current version of HSQLDB, the conditions for a
CHECK constraint can only reference the current row, meaning
there should be no SELECT statement. Sample table definitions
with CHECK congtraints are in Test Sel f CheckCon-
straints.txt. Thisfile isin the /hsgldb/testrun/hsgldb/ dir-
ectory of the zip.

General syntax limitations HSQLDB databases are initially created in a legacy mode that
does not enforce column size and precision. Y ou can set the prop-
erty: sql . enforce_strict_si ze=true to enable this fea
ture. When this property has been set, Any supplied column size
and precision for numeric and character types (CHARACTER
and VARCHAR) are enforced. Use the command, SET PROP-
ERTY "sqgl .enforce_strict_size" TRUE once before
defining the tables.

NOT NULL constraints can be part of the column definition only.
Other constraints cannot be part of the column definition and
must appear at the end of the column definition list.

TEMPORARY TABLE contents for each session (connection)
are emptied by default at each commit or rollback. The optional
qualifier ON COMMIT PRESERVE ROWS can be used to keep
the rows while the session is open. The default is ON COMMIT
DELETE ROWS.

See aso: DROP TABLE.

CREATE TRIGGER?

CREATE TRI GGER <nanme> {BEFORE | AFTER} {INSERT | UPDATE | DELETE} ON <table> [FOR

TriggerClass is an application-supplied class that implements the or g. hsql db. Tri gger interface
e.g. "mypackage.TrigClass". It is the fire method of this class that is invoked when the trigger event oc-
curs. You should provide this class, which can have any name, and ensure that this TriggerClass is
present in the classpath which you use to start hsgldb.

Since 1.7.2 the implementation has been changed and enhanced. When the ‘fire' method is caled, it is
passed the following arguments:

fire (String nanme, String table, Ooject rowl[], Object row2[])

where 'rowl' and 'row2' represent the 'before’ and ‘after' states of the row acted on, with each column be-
ing a member of the array. The mapping of members of the row arrays to database types is specified in
Data Types. For example, BIGINT is represented by aj ava. | ang. Long Cbj ect . Note that the
number of elementsin the row arraysis larger than the number of columns by one or two elements. Nev-
er modify the last elements of the array, which are not part of the actual row.

If the trigger method wants to access the database, it must establish its own JDBC connection. This can
cause data inconsistency and other problems so it is not recommended. The | d-

92

SQL Syntax

bc: def aul t: connecti on: URL isnot currently supported.
Implementation note:

If QUEUE 0 is specified, the fire method is execued in the same thread as the database engine. This al-
lows trigger action to alter the data that is about to be stored in the database. Data can be checked or
modified in BEFORE INSERT / UPDATE + FOR EACH ROW triggers. All table constraints are then
enforced by the database engine and if there is a violation, the action is rejected for the SQL command
that initiated the INSERT or UPDATE. There is an exception to this rule, that is with UPDATE queries,
referential integrity and cascading actions resulting from ON UPDATE CASCASE / SET NULL / SET
DEFAULT areall performed prior to the invocation of the trigger method. If an invalid value that breaks
referential integrity isinserted in the row by the trigger method, this action is not checked and results in
inconsistent datain the table.

Alternatively, if the trigger is used for external communications and not for checking or altering the
data, a queue size larger than zero can be specified. Thisisin the interests of not blocking the database's
main thread as each trigger will run in athread that will wait for its firing event to occur. When this hap-
pens, the trigger's thread calls TriggerClass.fire. There is a queue of events waiting to be run by each
trigger thread. Thisis particularly useful for 'FOR EACH ROW' triggers, when alarge number of trigger
events occur in rapid succession, without the trigger thread getting a chance to run. If the queue becomes
full, subsequent additions to it cause the database engine to suspend awaiting space in the queue. Take
great care to avoid this situation if the trigger action involves accessing the database, as deadlock will
occur. This can be avoided either by ensuring the QUEUE parameter makes a large enough queue, or by
using the NOWAIT parameter, which causes a new trigger event to overwrite the most recent event in
the queue. The default queue size is 1024. Note aso that the timing of trigger method calls is not guar-
anteed, so applications should implement their own synchronization measures if necessary.

With a non-zero QUEUE parameter, if the trigger methods modifies the 'row2' values, these changes
may or may not affect the database and will almost certainly result in data inconsistency.

Please refer to the code for or g. hsql db. sanpl e. Tri gger [../src/org/hsgldb/Trigger.html] and
org. hsql db. sanpl e. Tri gger Sanpl e [../src/org/hsgldb/sample/TriggerSample.html] for more
information on how to write atrigger class.

See also: DROP TRIGGER.

CREATE USER

CREATE USER <user name> PASSWORD <passwor d> [ADM N ;

Creates a new user or new administrator in this database. Password must be double quoted Empty pass-
word can be made using "". Y ou can change a password afterwards using a ALTER USER' command.
Only an administrator can do this.

See also: CONNECT, GRANT, REVOKE. ALTER USERl,

CREATE VIEW!

CREATE VI EW <vi ewnane>[(<vi ewcol utm>, ..) AS SELECT ... FROM ... [WHERE Expression]
[ORDER BY order Expression [,]
[LIMT <limt> [OFFSET <offset>]]

A view can be thought of as either avirtual table or a stored query. The data accessible through aview is
not stored in the database as a distinct object. What is stored in the database is a SELECT statement. The
result set of the SELECT statement forms the virtual table returned by the view. A user can use this vir-
tual table by referencing the view name in SQL statements the same way atable is referenced. A view is

93

../src/org/hsqldb/Trigger.html
../src/org/hsqldb/sample/TriggerSample.html

SQL Syntax

used to do any or al of these functions:

» Restrict a user to specific rows in atable. For example, alow an employee to see only the rows re-
cording his or her work in alabor-tracking table.

* Restrict a user to specific columns. For example, allow employees who do not work in payroll to see
the name, office, work phone, and department columns in an employee table, but do not allow them
to see any columns with salary information or personal information.

» Join columns from multiple tables so that they look like a single table.

» Aggregate information instead of supplying details. For example, present the sum of a column, or the
maximum or minimum value from a column.

Views are created by defining the SELECT statement that retrieves the data to be presented by the view.
The data tables referenced by the SELECT statement are known as the base tables for the view. In this
example, is aview that selects data from three base tables to present a virtual table of commonly needed
data:

CREATE VI EW nreal sjv AS
SELECT mmd nmid, mnane nane, t.nealtype nt, a.aid aid,
a.gname + ' ' + a.snanme author, mdescription description,
m asof asof
FROM neal s m nealtypes t, authors a
WHERE m neal type = t. neal type
AND maid = a.aid;

Y ou can then reference meal§jv in statements in the same way you would reference atable:
SELECT * FROM neal sj v;
A view can reference another view. For example, meal§v presents information that is useful for long de-

scriptions that contain identifiers, but a short list might be all a web page display needs. A view can be
built that selects only specific mealsjv columns:

CREATE VI EW neal swebv AS SELECT nane, aut hor FROM neal sjv;

The SELECT statement in a VIEW definition should return columns with distinct names. If the names
of two columns in the SELECT statement are the same, use a column alias to distinguish between them.
A list of new column names can always be defined for aview.

CREATE VI EW avi ew (new_name, new_aut hor) AS
SELECT nane, aut hor
FROM neal sj v

See also: SQL Expression, SELECTL, DROP VIEWL.

DELETE

DELETE FROM t abl e [WHERE Expression];

Removesrowsin atable.

94

SQL Syntax

See also: SQL Expression, INSERT, SELECTZ.

DISCONNECT

DI SCONNECT;

Closes this connection. It is not required to call this command when using the JDBC interface: it is
called automatically when the connection is closed. After disconnecting, it is not possible to execute oth-
er queries (including CONNECT) with this connection.

See also: CONNECT.

DROP INDEX

DROP | NDEX i ndex [IF EXI STS];

Removes the specified index from the database. Will not work if the index backs a UNIQUE of FOR-
EIGN KEY constraint.

See also: CREATE INDEX.

DROP ROLE!

DROP RCLE <rol enane>;

Removes all members from specified role, then removes the role itself.

DROP SEQUENCE?

DROP SEQUENCE <sequencenane> [| F EXI STS] [RESTRI CT | CASCADE] ;

Removes the specified sequence from the database. When IF EXIST is used, the statement returns
without an error if the sequence does not exist. The RESTRICT option is in effect by default, meaning
that DROP will fail if any view reference the sequence. Specify the CASCADE option to silently drop all
dependent database objects.

DROP SCHEMAL

DROP SCHENMA <schemaname> [RESTRI CT | CASCADE] ;

Removes the specified schema from the database. The RESTRICT option is in effect by default, mean-
ing that DROP will fail if any objects such as tables or sequences have been defined in the schema. Spe-
cify the CASCADE option to silently drop all database objects in the schema.

Requires Administrative privileges.

DROP TABLE

DROP TABLE <tabl e> [IF EXI STS] [RESTRICT | CASCADE];

95

SQL Syntax

Removes atable, the data and indexes from the database. When |F EXIST is used, the statement returns
without an error even if the table does not exist.

The RESTRICT option is in effect by default, meaning that DROP will fail if any tables or views refer
to this table. Specify the CASCADE option to silently drop all dependent views, and to drop any foreign
key constraint that links this table with other tables.

See also:

CREATE TABLE.

DROP TRIGGER

DROP TRI GGER <tri gger >;

Removes atrigger from the database.

See also: CREATE TRIGGER.

DROP USER

DROP USER <user nane>;

Removes a user from the database.
Only an administrator do this.

See also: CREATE USER.

DROP VIEW!

DROP VI EW <vi ewnane> [F EXI STS] [RESTRI CT | CASCADE] ;

Removes aview from the database. When |F EXIST is used, the statement returns without an error if the
view does not exist. The RESTRICT option is in effect by default, meaning that DROP will fail if any
other view refersto this view. Specify the CASCADE option to silently drop all dependent views.

See also: CREATE VIEWL.

EXPLAIN PLAN

EXPLAI N PLAN FOR { SELECT ... | DELETE ... | INSERT ... | UPDATE ..};

EXPLAIN PLAN FOR can be used with any query to get a detailed list of the elements in the execution
plan.

This list includes the indexes used for performing the query and can be used to optimise the query or to
add indexes to tables.

GRANT

GRANT { SELECT | DELETE | INSERT | UPDATE | ALL } [,...]

96

SQL Syntax

ON { table | CLASS "package.class" } TO <grantee>;

GRANT <rol enane> [,...] TO <grant ee>1;

<grantee> is either a user name, arole name, or PUBLI C. PUBLI Cmeans all users.

The first form of the GRANT command assigns privileges to a grantee for atable or for a class. To al-
low auser to call afunction from aclass, the right ALL must be used. Examples:

GRANT SELECT ON Test TO GUEST,
GRANT ALL ON CLASS "java.lang. String" TO PUBLIC,

The second form of the GRANT command gives the specified <grantee> membership in the specified
role.
Require Administrative privileges.

See also: REVOKE, CREATE USER, CREATE ROLEL

INSERT

INSERT INTO table [(colum [,...])]
{ VALUES(Expression [,...]) | SelectStatenent};

Adds one or more new rows of datainto atable.

REVOKE

REVOKE { SELECT | DELETE | |INSERT | UPDATE | ALL } [,...]
ON { table | CLASS "package.class" } FROM <grant ee>;

REVOKE <rol enanme> [,...] FROM <grant ee>1;

<grantee> is either auser name, arole name, or PUBLI C. PUBLI C means all users.
Thefirst form of the REVOKE command withdraws privileges from a grantee for atable or for aclass.

The second form of the REVOKE command withdraws membership of the specified <grantee> from the
specified role.

Both forms require Administrative privileges.

See dso: GRANT.

ROLLBACK

ROLLBACK [TO SAVEPO NT <savepoi nt name>1 | WVORK}];

ROLLBACK used on its own, or with WORK, undoes changes made since the last COMMIT or ROLL-
BACK.

ROLLBACK TO SAVEPO NT <savepoi nt name> undoes the change since the named savepoint.

97

SQL Syntax

It has no effect if the savepoint is not found.

See dso: COMMIT.

SAVEPOINT?

SAVEPO NT <savepoi nt name>;

Setsup a SAVEPOINT for use with ROLLBACK TO SAVEPOINT.

See dso: COMMIT.

SCRIPT

SCRIPT ['file'];

Creates an SQL script describing the database. If the file is not specified, aresult set containing only the
DDL script is returned. If the file is specified then this file is saved with the path relative to the machine
where the database engine is located.

Only an administrator may do this.

SELECT!

SELECT [{LIMT <offset> <limt>] TOP <Iimt>}1][ALL | DI STI NCT]
{ <sel ectExpression> | table.* | * } .

[INTO [CACHED | TEMP | TEX'I']1 newTabl e]

FROM t abl eLi st

[WHERE Expr essi on]

[GROUP BY Expression [, ...]1]

[HAVI NG Expr essi on]

[{ UNTON [ALL | DISTINCT] | {MNUS [DI STINCT] | EXCEPT [DI STINCT] } | INTERSECT [D
[ORDER BY order Expression [,

[LIMT <limt> [OFFSET <offset>]]

Retrieves information from one or more tables in the database.

Componentsof a SELECT command

tablelist

table [{ INNER | LEFT QUTER } JO N table ON Expressi
table

{ (selectStatenent) [AS] |abel | tableNane}
selectExpression

{ Expression | COUNT(*) | {COUNT | MN | MAX | SUM |

If DISTINCT is specified, only one instance of several equivalent
values is used in the aggregate function. Except COUNT(*), all
aggregate functions exclude NULL values. The type of the re-
turned value for SUM is subject to deterministic widenning to en-

98

SQL Syntax

sure lossless results. The returned value type for COUNT is IN-
TEGER, for MIN, MAX and AVG it is the same type as the
column, for SOME and EVERY it isBOOLEAN. For VAR _POP,
VAR_SAMP, STDDEV_POP and STDDEV_SAMP statistical
functions, the typeis always DOUBLE. These statistical functions
do not allow ALL or DISTINCT qualifiers.

orderExpression
{ columNr | columAlias | selectExpression } [ASC |

LIMITnm Creates the result set for the SELECT statement first and then dis-
cards the first n rows (OFFSET) and returns the first m rows of
the remaining result set (LIMIT). Specia cases: LIMIT 0 m is
equivalent to TOP m or FIRST m in other RDBMSSs; LIMIT n 0
discards the first n rows and returns the rest of the result set.

LIMIT m OFFSET n Thisform is used at the end of the SELECT statement. The OFF-
SET termis optional.

TOPm Equivalent to LIMIT O m.

UNION and other set operations Multiple SELECT statements joined with UNION, EXCEPT and
INTERSECT are possible. Each SELECT is then treated as a
term, and the set operation as an operator in an expression. The
expression is evaluated from left to right but INTERSECT takes
precedence over the rest of the operators and is applied first. You
can use parentheses around any number of SELECT statements to
change the evaluation order.

See also: INSERT, UPDATE, DELETE.

SET AUTOCOMMIT

SET AUTOCOMM T { TRUE | FALSE };

Switches on or off the connection's auto-commit mode. If switched on, then all statements will be com-
mitted as individual transactions. Otherwise, the statements are grouped into transactions that are ter-
minated by either COMMIT or ROLLBACK. By default, new connections are in auto-commit mode.
This command should not be used directly. Use the JDBC equivaent method, Connec-
tion.setAutoCommit(boolean autocommit).

SET DATABASE COLLATION?

SET DATABASE COLLATI ON <doubl e quoted col | ati on name>;

Each database can have its own collation. Sets the collation from the set of collations in the source for
org.hsgldb.Collation. Once this command has been issued, the database can be opened in any VM and
will retain its collation.

Once this command has been issued, the database can be opened in any VM and will retain its colla-
tion.

99

SQL Syntax

SET CHECKPOINT DEFRAG?

SET CHECKPO NT DEFRAG <si ze>;

The parameter si ze is the megabytes of abandoned space in the .data file. When a CHECKPOINT is
performed either as aresult of the .log file reaching the limit set by "SET LOGSIZE size", or by the user
issuing a CHECKPOINT command, the amount of space abandoned during the session is checked and if
itislarger than size, a CHECKPOINT DEFRAG is performed instead of a checkpoint.

SET IGNORECASE

SET | GNORECASE { TRUE | FALSE };

Disables (ignorecase = true) or enables (ignorecase = false) the case sensitivity of text comparison and
indexing for new tables. By default, character columnsin new databases are case sensitive. The sensitiv-
ity must be switched before creating tables. Existing tables and their data are not affected. When
switched on, the data type VARCHAR is set to VARCHAR | GNORECASE in new tables. Alternatively,
you can specify the VARCHAR | GNORECASE type for the definition of individual columns. So it is
possible to have some columns case sensitive and some not, even in the same table.

Only an administrator may do this.

SET LOGSIZE

SET LOGSI ZE <si ze>;

Sets the maximum size in MB of the .log file. Default is 200 MB. The database will be closed and
opened (just like using CHECKPOINT) if the .log file gets over this limit, and so the .log file will
shrink. 0 means no limit.

See dso: CHECKPOINT.

SET PASSWORD

SET PASSWORD <passwor d>;

Changes the password of the currently connected user. Password must be double quotedEmpty password
can be set using "".

SET PROPERTY!

SET PROPERTY <doubl e quot ed nane> <val ue>;

Sets a database property. Properties that can be set using this command are either boolean or integral and
are listed in the Advanced Topics chapter.

SET REFERENTIAL INTEGRITY

SET REFERENTI AL_I NTEGRITY { TRUE | FALSE };

This commands enables / disables the referential integrity checking (foreign keys). Normally it should

100

SQL Syntax

be switched on (this is the default) but when importing data (and the data is imported in the 'wrong' or-
der) the checking can be switched off.

Warning
Note that when referential integrity is switched back on, no check is made that the changes to
the data are consistent with the existing referential integrity constraints. Y ou can verify consist-
ency using SQL queries and take appropriate actions.

Only an administrator may do this.

See also: CREATE TABLE.

SET SCHEMAL

SET SCHEMA <schemananme>;

Sets the current JDBC session's schema. The sole purpose for the session schema is to provide a default
schema name for schema objects which do not have the schema name specified explicitly in the SQL
command, or by association with another object of known schema. For example, if you run SELECT *
FROM at bl ; , HSQLDB will look for the table or view named at bl in the session's current schema.

Session schemas last only for the duration of the current session. When anew JDBC session is obtained,
the new session will have the default schema.

SET SCRIPTEORMAT!

SET SCRI PTFORMAT { TEXT | BI NARY | COVPRESSED};

Changes the format of the script file. BINARY and COMPRESSED formats are slightly faster and more
compact than the default TEXT. Recommended only for very large script files.

SET TABLE INDEX

SET TABLE t abl eNane | NDEX 'i ndex1lroot Pos i ndex2rootPos ... ';

This command is only used internally to store the position of index roots in the .datafile. It appears only
in database script files; it should not be used directly.

SET TABLE READONLY?

SET TABLE <t abl enanme> READONLY { TRUE | FALSE};

Setsthe table asread only.

SET TABLE SOURCE!

SET TABLE <t abl enanme> SOURCE <file and options> [DESC];

For details see the Text Tables chapter.

101

SQL Syntax

This command is used exclusively with TEXT tablesto specify which fileis used for storage of the data.
The optional DESC qualifier results in the text file indexed from the end and opened as readonly. The
<file and options> argument is a double quoted string that consists of:

<file and options>::= <doubl equote> <fil epath> [<sem col on> <option>...] <doub

Example:
SET TABLE mytabl e SOURCE "nyfile;fs=|;vs=.;lvs=~"

Supported Properties

quoted ={ true | false} default istrue. If false, treats double quotes as normal characters

all_quoted ={ true | false} default isfalse. If true, adds double quotes around all fields.

encoding = <encoding name> character encoding for text and character fields, for example, en-
coding=UTF-8

ignore first ={ true|false} default isfalse. If trueignores the first line of the file

cache_scale= <numeric value> exponent to calculate rows of the text file in cache. Default is 8,
equivalent to nearly 800 rows

cache size scale = <numeric exponent to calculate average size of each row in cache. Default

value>r is 8, equivalent to 256 bytes per row.

fs = <unquoted character> field separator

Vs = <unquoted character> varchar separator

Ivs = <unquoted character> long varchar separator

Special indicatorsfor Hsgldb Text Table separators

\semi semicolon
\quote quote
\space space character

\apos apostrophe

\n newline - Used as an end anchor (like $ in regular expressions)
\r carriage return

\t tab

\\ backslash

\u#Ht aUnicode character specified in hexadecimal

102

SQL Syntax

Only an administrator may do this.

SET WRITE DELAY?

SET WRI TE_DELAY {{ TRUE | FALSE } | <seconds> | <nilliseconds> M LLIS};

This controls the frequency of file sync for the log file. When WRITE_DELAY is set to FALSE or 0,
the sync takes place immediately at each COMMIT. WRITE_DELAY TRUE performs the sync once
every 20 seconds (which is the default). A numeric value can be specified instead.

The purpose of this command is to control the amount of data loss in case of a total system crash. A
delay of 1 second means at most the data written to disk during the last second before the crash is lost.
All data written prior to this has been synced and should be recoverable.

A write delay of 0 impacts performance in high load situations, as the engine has to wait for the file sys-
tem to catch up.

To avoid this, you can set write delay down to 10 milliseconds. In practice, a write delay of 100 milli-
seconds provides better than 99.9999% reliability with an average one system crash per day, or
99.99999% with an average one system crash per 6 days.

Eachtimea SET WRITE_DELAY isissued with any value, async isimmediately performed.

Only an administrator may do this.

SHUTDOWN

SHUTDOMN [| MVEDI ATELY | COVPACT | SCRI PT1];

Closes the current database.

Varieties of the SHUTDOWN command

SHUTDOWN Performs a checkpoint to creates a new .script file that has the minimum
size and contains the data for memory tables only. It then backs up the
.data file containing the CACHED TABLE datain zipped format to the
.backup file and closes the database.

SHUTDOWN IMMEDI- Just closes the database files (like when the Java process for the data-

ATELY base is terminated); this command is used in tests of the recovery mech-
anism. This command should not be used as the routine method of clos-
ing the database.

SHUTDOWN COMPACT Writes out a new .script file which contains the data for all the tables,
including CACHED and TEXT tables. It then deletes the existing text
table files and the .data file before rewriting them. After this, it backs up
the .data file in the same way as normal SHUTDOWN. This operation
shrinks al files to the minimum size.

SHUTDOWN SCRIPT Similar to SHUTDOWN COMPACT but after writing the script and de-
leting the existing files, it does not rewrite the .data and text table files.
After SHUTDOWN SCRIPT, only the .script and .properties file re-
main. At the next startup, these files are processed and the .data and
.backup files are created. This command in effect performs part of the

103

SQL Syntax

job of SHUTDOWN COMPACT, leaving the other part to be per-
formed automatically at the next startup.

This command produces a full script of the database which can be ed-
ited for special purposes prior to the next startup.

Only an administrator may use the SHUTDOWN command.

UPDATE

UPDATE tabl e SET columm = Expression [, ...] [WHERE Expression];

Modifies data of atable in the database.

See also: SELECTl, INSERT, DELETE.

Data Types

Table9.1. Data Types. Thetypeson the sameline are equivalent.

Name Range Java Type
INTEGER | INT as Javatype int |java.l ang. | nt eger
DOUBLE [PRECISION] | as Javatype doubl e |
FLOAT j ava. | ang. Doubl e
VARCHAR as Integer MAXVALUE java.lang. String
VARCHAR_IGNORECASE as Integer. MAXVALUE java.lang. String
CHAR | CHARACTER as Integer. MAXVALUE java.lang. String
LONGVARCHAR as Integer MAXVALUE java.lang. String
DATE as Javatype java.sql . Date
TIME as Javatype java.sql . Time
TIMESTAMP | DATETIME as Javatype j ava. sql . Ti nest anp
DECIMAL No limit j ava. mat h. Bi gDeci mal
NUMERIC No limit j ava. nat h. Bi gDeci mal
BOOLEAN | BIT as Javatype bool ean |

j ava. | ang. Bool ean
TINYINT as Javatype byt e |java. | ang. Byte
SMALLINT as Javatype short |j ava. | ang. Short
BIGINT as Javatype | ong |j ava. | ang. Long
REAL as Javatype doubl e |

j ava. | ang. Doubl el
BINARY as Integer. MAXVALUE byte[]
VARBINARY as Integer. MAXVALUE byte[]
LONGVARBINARY as Integer MAXVALUE byte[]
OTHER | OBJECT as Integer MAXVALUE j ava. |l ang. Qnj ect

104

SQL

SQL Syntax

The uppercase names are the data types names defined by the SQL standard or commonly used by
RDMSss. The data types in quotes are the Java class names - if these type names are used then they must
be enclosed in quotes because in Java names are case-sensitive. Range indicates the maximum size of
the object that can be stored. Where Integer. MAXVALUE is stated, this is a theoretical limit and in
practice the maximum size of a VARCHAR or BINARY object that can be stored is dictated by the
amount of memory available. In practice, objects of up to a megabyte in size have been successfully
used in production databases.

The recommended Java mapping for the JDBC datatype FLOAT is as a Java type "double". Because of
the potential confusion it is recommended that DOUBLE is used instead of FLOAT.

VARCHAR_IGNORECASE isagpecia case-insensitive type of VARCHAR. Thistypeis not portable.

In table definition statements, HSQLDB accepts size, precision and scale qualifiers only for certain
types: CHAR(s), VARCHAR(s), DOUBLE(p), NUMERIC(p), DECIMAL (p,s) and TIMESTAMP(p).

TIMESTAMP(p) can take only O or 6 as precision. Zero indicates ho subsecond part. Without the preci-
sion, the default is 6.

By default specified precision and scale for the column is simply ignored by the engine. Instead, the val-
ues for the corresponding Java types are always used, which in the case of DECIMAL is an unlimited
precision and scale. If asizeis specified, it is stored in the database definition but is not enforeced by de-
fault. Once you have created the database (before adding data), you can add a database property value to
enforce the sizes:

SET PROPERTY "sql .enforce_strict_size" true

This will enforce the specified size and pad CHAR fields with spaces to fill the size. This complies with
SQL standards by throwing an exception if an attempt is made to insert a string longer than the maxim-
um size. It also resultsin al DECIMAL values conforming to the specified precision and scale.

CHAR and VARCHAR and LONGVARCHAR columns are bX default compared and sorted according
to POSIX standards. See the SET DATABASE COLLATION™ section above to modify this behavior.
The property sqgl . conpar e_i n_I| ocal e isno longer supported. Instead, you can define a collation
to be used for all character comparisons.

Columns of the type OTHER or OBJECT contain the serialized form of a Java Object in binary format.
To insert or update such columns, a binary format string (see below under Expression) should be used.
Using PreparedStatements with JDBC automates this transformation.

Comments

-- SQ style line conmrent
/1 Java style |ine comrent
/* Cstyle |ine coment */

All these types of comments are ignored by the database.

Stored Procedures / Functions

Stored procedures are Java functions that are called directly from the SQL language or using an alias.
Calling Java functions (directly or using the alias) requires that the Java class can be reached by the
database (server). The syntax is:

"java.lang. Math.sqrt" (2. 0)

105

SQL Syntax

This means the package must be provided, and the name must be written as one word, and inside "

cause otherwise it is converted to uppercase (and not found).

An dlias can be created using the command CREATE ALIAS:

CREATE ALI AS SQRT FOR "java.lang. Math.sgrt";

When an dliasis defined, then the function can be called additionally using this alias:

SELECT SQRT(A) , B FROM MYTABLE;

be-

Only static java methods can be used as stored procedures. If, within the same class, there are over-
loaded methods with the same number of arguments, then the first one encountered by the program will
be used. If you want to use Java library methods, it is recommended that you create your own class with
static methods that act as wrappers around the Java library methods. This will allow you to control
which method signature is used to call each Java library method.

Built-in Functions and Stored Procedures

Numerical built-in Functions/ Stored Procedur es

ABS(d)
ACOS(d)
ASIN(d)
ATAN(d)
ATAN2(a,b)
BITAND(ab)
BITOR(ab)
CEILING(d)
Cos(d)
COT(d)
DEGREES(d)
EXP(d)
FLOOR(d)
LOG(d)
LOG10(d)
MOD(a,b)
P10

returns the absolute value of adouble value
returns the arc cosine of an angle

returns the arc sine of an angle

returns the arc tangent of an angle

returns the tangent of a/b

returna& b

returnsa|b

returns the smallest integer that is not lessthan d
returns the cosine of an angle

returns the cotangent of an angle

converts radians to degrees

returns e (2.718...) raised to the power of d
returns the largest integer that is not greater than d
returns the natural logarithm (base €)

returns the logarithm (base 10)

returns amodulo b

returns pi (3.1415...)

106

SQL Syntax

POWER(a,b) returns a raised to the power of b

RADIANS(d) converts degrees to radians

RAND() returns a random number x bigger or equal to 0.0 and smaller than 1.0
ROUND(a,b) rounds ato b digits after the decimal point

ROUNDMA- solves rounding problems such as 3.11-3.1-0.01

gllglgld()d) returns-1if dissmaller than O, 0if d==0and 1 if d isbigger than 0
SIN(d) returns the sine of an angle

SQRT(d) returns the square root

TAN(A) returns the trigonometric tangent of an angle

TRUNCATE(ab) truncatesato b digits after the decimal point

String built-in Functions/ Stored Procedures

ASCII(S)
BIT_LENGTH(str)!
CHAR(c)
CHAR_LENGTH(str)
CONCAT(str1,str2)
DIFFERENCE(sL,s2)
HEXTORAW(s1)!

INSERT (s,start,len,s2)

LCASE(s)

LEFT(s,count)

LENGTH(S)

LOCATE(search,s,[start])

LTRIM(s)

OCTET_LENGTH(str)!

RAWTOHEX (s1)!

REPEAT (s,count)

returns the ASCI| code of the leftmost character of s
returns the length of the string in bits

returns a character that hasthe ASCII code c

returns the length of the string in characters

returns strl + str2

returns the difference between the sound of sl and s2
returns transated string

returns a string where len number of characters beginning at start
has been replaced by s2

converts sto lower case

returns the leftmost count of characters of s) - requires double
quoting - use SUBSTRING() instead

returns the number of charactersins

returns the first index (1=left, O=not found) where search is found
in s, starting at start

removes all leading blanksin s

returns the length of the string in bytes (twice the number of char-
acters)

returns translated string

returns s repeated count times

107

SQL Syntax

REPLACE(sreplace,s2)
RIGHT((s,count)
RTRIM(s)

SOUNDEX(9)
SPACE(count)
SUBSTR(s,start[,len])
SUBSTRING(s,start[,len])
UCASE(s)

LOWER(s)

UPPER(S)

replaces al occurrences of replace in swith 2

returns the rightmost count of characters of s

removes al trailing spaces

returns afour character code representing the sound of s
returns a string consisting of count spaces

aiasfor substring

returns the substring starting at start (1=Ieft) with length len
converts sto upper case

converts sto lower case

converts sto upper case

Date/Time built-in Functions/ Stored Procedur es

CURDATE()
CURTIME()

DATEDIFF(string, datetimel, date-
time2)™

DAY NAME(date)
DAY OFMONTH(date)
DAY OFWEEK (date)
DAY OFY EAR(date)
HOUR(time)
MINUTE(time)
MONTH(date)
MONTHNAME(date)
NOW()

QUARTER(date)
SECOND(time)

WEEK (date)

returns the current date

returns the current time

returns the count of units of time elapsed from datetimel to date-
time2. The string indicates the unit of time and can have the fol-
lowing values 'ms="millisecond,
'ss="second','mi'="minute’,'hh'="nour", 'dd'="day’, 'mm’'="month’, 'yy'
='year'. Both the long and short form of the strings can be used.
returns the name of the day

returns the day of the month (1-31)

returns the day of the week (1 means Sunday)

returns the day of the year (1-366)

return the hour (0-23)

returns the minute (0-59)

returns the month (1-12)

returns the name of the month

returns the current date and time as a timestamp) - use CUR-
RENT_TIMESTAMP instead

returns the quarter (1-4)
returns the second (0-59)

returns the week of thisyear (1-53)

108

SQL Syntax

Y EAR(date) returns the year

CURRENT DATE! returns the current date
CURRENT_TIM gl returns the current time
CURRENT_TIMESTAM pl returns the current timestamp

System/Connection built-in Functions/ Stored Procedures

DATABASE() returns the name of the database of this connection

USER() returns the user name of this connection

CUR- SQL standard function, returns the user name of this connection
RENT_USER

IDENTITY() returns the last identity values that was inserted by this connection

System built-in Functions/ Stored Procedures

IFNULL (exp,value) if exp is null, value is returned else exp) - use COALESCE() in-
stead

CASEWHEN(exp,v1,v2) if expistrue, vlisreturned, elsev2) - use CASE WHEN instead

CONVERT (term,type) converts exp to another data type

CAST(term AS '[ype)1 converts exp to another data type

109

SQL Syntax

1 if exprlisnot null then it is returned else, expr2 is evaluated and
if not null it isreturned and so on

NULLIF(vl,v2)1 if v1 equals v2 return null, otherwise vl

CASE v1 WHEN...! CASE vl WHEN v2 THEN v3 [ELSE v4] END
when v1 equals v2 return v3 [otherwise v4 or null if there is no
ELSE]

CASE WHEN...1 CASE WHEN exprl THEN v1[WHEN expr2 THEN v2]
[ELSE v4] END
when exprl is true return v1 [optionally repeated for more cases)
[otherwise v4 or null if thereis no EL SE]

EXTRACT! EXTRACT ({YEAR | MONTH | DAY | HOUR | M NUTE
| SECOND} FROM <datetine val ue>)

POSITION (... IN ..)1 POSI TI ON(<string expression> |IN <string ex-

pressi on>)

if the first string is a sub-string of the second one, returns the pos-
ition of the sub-string, counting from one; otherwise 0

SUBSTRING(... FROM ... FOR SUBSTRI NG <string expression> FROM <nuneric
)1 expressi on> [FOR <nuneri c expression>])

TRIM(LEDING ... FROM ...)1 TRIM[{LEADING | TRAILING | BOTH}] FROM
<string expression>)

Seeaso: CALL, CREATE ALIAS.

SQL Expression

[NOT] condition [{ OR| AND } condition]

Components of SQL Expressions

condition
{ value []|| val ue]
| value { = | <| <= | >| >=| <> | !=1} value
| value I'S [NOT] NULL
| EXI STS(sel ect St at enent)
| val ue BETWEEN val ue AND val ue
| value [NOT] IN ({value [, ...] | selectStatenent })
| value [NOT] LIKE val ue [ESCAPE] val ue }
value
[+ -1 { term[{ + | - | = | /| || } ternm
| (condition)
| function ([paraneter] [,...])
| sel ectStatement giving one val ue
| {ANY] ALL} (sel ectStatement giving single colum)

110

SQL Syntax

term
{ "string'" | nunber | floatingpoint
| [table.]colum | TRUE | FALSE | NULL }

sequence
NEXT VALUE FOR <sequence>

HSQLDB does not currently enforce the SQL 200n proposed rules on where sequence
generated values are alowed to be used. In genera, these values can be used in insert
and update statements but not in CASE statements, order by clauses, search conditions,
aggregate functions, or grouped queries.

string Strings in HSQLDB are Unicode strings. A string starts and ends with a single '
(singlequote). In a string started with ' (singlequote) use " (two singlequotes) to create a'
(singlequote).

String contatenation should be performed with the standard SQL operator || rather than
the non-standard + operator.

The LIKE keyword uses '%' to match any (including 0) number of characters, and ' ' to
match exactly one character. To search for ‘%' or ' " itself an escape character must also
be specified using the ESCAPE clause. For example, if the backslash is the escaping
character, \%' and "_' can be used to find the ‘%" and ' ' characters themselves. For ex-
ample, SELECT LIKE _%' ESCAPE '\' will find the strings beginning with an un-
derscore.

name The character set for quoted identifiers (names) in HSQLDB is Unicode.

A unguoted identifier (name) starts with a letter and is followed by any number of AS-
ClI letters or digits. When an SQL statement is issued, any lowercase characters in un-
quoted identifiers are converted to uppercase. Because of this, unquoted names are in
fact ALL UPPERCASE when used in SQL statements. An important implication of this
is the for accessing columns names via JDBC DatabaseMetaData: the internal form,
which isthe ALL UPPERCASE must be used if the column name was hot quoted in the
CREATE TABLE statement.

Quoted identifiers can be used as names (for tables, columns, constraints or indexes).
Quoted identifiers start and end with " (one doubleguote). A quoted identifier can con-
tain any Unicode character, including space. In a quoted identifier use "" (two double-
quotes) to create a " (one doublequote). With quoted identifiers it is possible to create
mixed-case table and column names. Example:

CREATE TABLE "Address" ("Nr" | NTEGER, "Name" VARCHAR); SELECT "Nr", '

The equivalent quoted identifier can be used for an unquoted identifer by converting the
identifier to all uppercase and quoting it. For example, if a table name is defined as Ad-
dress2 (unquoted), it can be referred to by its quoted form, "ADDRESS2", as well as ad-
dress2, aDDress2 and ADDRESS2. Quoted identifiers should not be confused with SQL
strings.

Quoting can sometimes be used for identifiers, aliases or functions when there is an am-
biguity. For example:

SELECT COUNT(*) "COUNT" FROM MYTABLE;
SELECT "LEFT"(COL1, 2) FROM MYTABLE;

111

SQL Syntax

password

values

Although HSQLDB 1.8.0 does not force unquoted identifiers to contain only ASCII
characters, the use of non-ASCII characters in these identifiers does not comply with
SQL standards. Portability between different JRE locales could be an issue when accen-
ted characters (or extended unicode characters) are used in unquoted identifiers. Because
native Java methods are used to convert the identifier to uppercase, the result may vary
not be expected in different locales. It is recommended that accented characters are used
only in quoted identifiers.

When using JDBC DatabaseM etaData methods that take table, column, or index identi-
fiers as arguments, treat the names as they are registered in the database. With these
methods, unquoted identifiers should be used in all-uppercase to get the correct result.
Quoted identifiers should be used in the exact case combination as they were defined -
no quote character should be included around the name. JIDBC methods that return ares-
ult set containing such identifiers return unquoted identifiers as all-uppercase and quoted
identifiers in the exact case they are registered in the database (a change from 1.6.1 and
previous versions).

Please also note that the JDBC getXXX(String columnName) methods interpret the
columnName as case-independent. This is a general feature of JDBC and not specific to
HSQLDB.

Passwords must be double quoted and used consistently. Passwords are case insensitive
only for backward compatibility. This may changein future versions.

e A DATE literal starts and ends with ' (singlequote), the format is yyyy-mm-dd (see
j ava. sql . Dat e.

A TIME liteal starts and ends with ' (singlequote), the format is hh:mm:ss (see
j ava. sql . Ti ne).

e A TIMESTAMP or DATETIME literal starts and ends with ' (singlequote), the
format is yyyy-mm-dd hh:mm:ss.SSSSSSSSS (seej ava. sql . Ti mest anp).

When specifying default values for date / time columnsin CREATE TABLE statements,
or in SELECT,INSERT, and UPDATE statements, special SQL functions: NOW, SYS-
DATE, TODAY, CURRENT _TIMESTAMP, CURRENT_TIME and CUR-
RENT_DATE (case independent) can be used. NOW is used for TIME and
TIMESTAMP columns, TODAY is used for DATE columns. The data and time variants
CURRENT _* are SQL standard versions and should be used in preference to others. Ex-
ample:

CREATE TABLE T(D DATE DEFAULT CURRENT_DATE);
CREATE TABLE T1(TS TI MESTAMP DEFAULT CURRENT_TI MESTAMP) ;

Binary data starts and ends with ' (singlequote), the format is hexadecimal. '0004ff' for
exampleis 3 bytes, first 0, second 4 and last 255 (Oxff).

Any number of commands may be combined. With combined commands, ';' (semicolon) must be used at
the end of each command to ensure data integrity, despite the fact that the engine may understand the
end of commands and not return an error when a semicolon is not used.

112

Appendix A. Building HSQLDB

Fred Toussi, HSQLDB Development Group <f t @| uedup. con®
$Date: 2005/05/26 23:22:06 $

Purpose

From 1.8.0, the supplied hsql db. j ar fileis built with Java 1.5. If you want to run the engine under
JDK 1.3 or earlier, you should rebuild the jar with Ant.

Building with Ant, from the Apache Jakarta
Project

Ant (Another Neat Tool) is used for building hsgldb. The version currently used to test the build script is
1.6.1 but versions since 1.5.1 should also be compatible.

Obtaining Ant

Ant is apart of the Jakarta/Apache Project.

» Home of the Apache Ant project [http://ant.apache.org]

* The Instaling Ant [http://ant.apache.org/manual/install.htmi#installing] page of the Ant Manua
[http://ant.apache.org/manual]. Follow the directions for your platform.

Building Hsqgldb with Ant

Once you have unpacked the zip package for hsgldb, under the / hsql db folder, in/ bui | d thereisa
bui | d. xm file that builds the hsql db. j ar with Ant (Ant must be aready instaled). To use it,
changeto/ bui | d then type:

ant -projecthelp

This displays the available ant targets, which you can supply as command line arguments to ant. These

include

hsgldb tomakethehsql db. j ar

explainjars Lists all targets which build jar files, with an explanation of the purposes of the dif-
ferent jars.

clean to clean up the /classes directory that is created

cleanall to remove the old jar as well

javadoc to build javadoc

hsgldbmain to build asmaller jar for HSQLDB that does not contain utilities

hsgljdbc to build an extremely small jar containing only the client-side JDBC driver (does not

113

http://ant.apache.org
http://ant.apache.org/manual/install.html#installing
http://ant.apache.org/manual

Building HSQLDB

support direct connection to HSQLDB URLSs of the form jdbc:hsldb:mem:*, jd-
bc:hsgldb:file*, nor jdbe:hsgldbires:*).

hsgldbmin to build asmall jar that supports HSQLDB URLSs of the form jdbc:hsgldb:mem:*, jd-
bc:hsgld:file*, jdbc:hsgldb:res:*; but not network URLs like jdbc:hsgl* or jdbc:http*.

hsgldbtest to build alarger jar for hsgldb that contains tests

Many more targets are available. Run ant - proj ect hel p andant expl ai n-
jars.

HSQLDB can be built in any combination of three JRE (Java Runtime Environment) versions and many
jar file sizes. The smallest jar size(hsql j dbc. j ar) contains only the HSQLDB JDBC Driver client.
The default size (hsql db. j ar) aso contains server mode support and the utilities. The largest size
(hsql dbt est . j ar)includes some test classes as well. Before building the hsql dbt est . j ar pack-
age, you should download the junit jar from http://www.junit.org and put it in the /| i b directory,
alongsideser vl et . j ar, whichisincluded in the .zip package.

Justrunant expl ai nj ars for aconciselist of all availablejar files.

If you want your code built for debugging, as opposed to high performance, make a file named
bui | d. properti es inyour build directory with the contents

bui | d. debug: true

The resulting Java binaries will be larger and slower, but exception stack traces will contain source code
line numbers, which can be extremely useful for debugging.

The preferred method of rebuilding the jar is with Ant. After installing Ant on your system use the fol-
lowing command from the/ bui | d directory:

ant expl ainjars

The command displays a list of different options for building different sizes of the HSQLDB Jar. The
default is built using:

Example A.1. Buiding the standard Hsgldb jar filewith Ant

ant hsql db

The Ant method always builds a jar with the JDK that is used by Ant and specified in its JAVA_HOME
environment variable. Building with JDK 1.4.x or 1.5.x will result in ajar that is not backward compat-
ible.

From version 1.7.2, use of JDK 1.1.x is not recommended for building the JAR, even for running under
JDK 1.1.x -- use IDK 1.3.1 for compatibility with 1.1.x. This is done in the following way. JDK 1.3.1
should be used as the JAVA_HOME for ant. You then issue the following commands. The first com-
mand will make the sources compatible with JDK 1.3, the second command modifies the sources further
so that the compiled result can run under jdk 1.1 aswell. The third command builds the jar.

ant sw tchtojdkl2
ant switchtojavalt arget
ant hsql db

114

http://www.junit.org

Building HSQLDB

Building with DOS Batch Files

UNIX users must use Ant to build hsgldb.

For DOS/Windows users, a set of MSDOS batch files is provided as an example. These files produce
only the default jar size. The path and classpath variables for the JDK should of course be set before run-
ning any of the batch files. These files are not currently maintained and will probably need some addi-
tions and changes to work correctly. Please see the build.xml file for up-to-date file

If you are compiling for JDK's other than 1.4.x, you should use the appropriate swi t chTo-
JDK11. bat or swi t chToJDK12. bat to adapt the source files to the target JDK before running the
appropriate bui | dJDK11. bat or bui | dJDK12. bat JDK and JRE versions.

Hsqgldb CodeSwitcher

CodeSwitcher is atool to manage different version of Java source code. It allows to compile HSQLDB
for different JDKSs. It is something like a precompiler in C but it works directly on the source code and
does not create intermediate output or extrafiles.

CodeSwitcher is used internally in HSQLDB build scripts. You do not have to use it separately to com-
pile HSQLDB.

CodeSwitcher reads the source code of a file, removes comments where appropriate and comments out
the blocks that are not used for a particular version of the file. This operation is done for al files of a
defined directory, and all subdirectories.

Example A.2. Example sour ce code before CodeSwitcher isrun

[#i fdef JAVA2

properties.store(out, "hsgl db dat abase");
/I #el se
/*

properties. save(out, "hsql db database");
*/
/] #endi f

The next step isto run CodeSwitcher.

Example A.3. CodeSwitcher command line invocation

java org. hsgl db.util.CodeSwi tcher . -JAVA2

115

Building HSQLDB

The'"." means the program works on the current directory (all subdirectories are processed recursively). -
JAVA2 means the code labelled with JAVA2 must be switched off.

Example A.4. Sour ce code after CodeSwitcher processing

[#i fdef JAVA2

| *
pProperties. store(out, "hsql db dat abase");
*/
/I #el se
pProperties. save(out, "hsgl db dat abase");
/1 #endi f
For detailed information on the command line options run j ava

org. hsql db. uti | . CodeSw t cher . Usage examples can be found in the switchtojdk1*.bat files
inthe/ bui | d directory.

Building documentation

To build the User Guide in HTML format, you must have the Docbook stylesheets installed locally. The
Docbook stylesheets are available on the Internet. On Linux, just install the docbook-
xsl - styl esheet s rpm. Then add an entry to bui | d. pr operti es in your build directory with
contents like

docbook. xsl . hone: /usr/sharel/ sgm / docbook/ docbook- xsl - styl esheets

Where you specify your local path to the base directory of your Docbook stylesheet installation. Build
like

Example A.5. Building HTML User Guides

ant docbooks- ht ni
ant docbooks- chunk

To build the User Guide in PDF format, you must also have the Java FOP system installed locally. FOP
isavailable for free download on the Internet. Add an entry to bui | d. properti es inyour build dir-
ectory with contents like

fop. hone /usr/local/fop-0.20.5

Where you specify your local path to the base directory of your FOP installation.

116

Building HSQLDB

Example A.6. Building User Guidesin all formats
ant docbook

Don't pay too much attention to error messages by FOP, because they are really warnings, but do check
the output. If there are problems with the PDF output, try using a newer version of FOP.

I mportant

By default, your docs will fail to build if you do not have Internet connectivity. Thisis because
our primary Docbook source file references the Docbook DTDs via Internet URL. You can
build without Internet connectivity by installing the Docbook DTDs and editing our primary
Docbook source file. Docbook is available on the Internet. On Linux, just install the doc-
book-dtds or docbook rpm. Then make one edit to the file docsrc/
gui de/ gui de. xm inyour HSQLDB distribution. Change the line containing

"http://ww. oasi s-open. or g/ docbook/ xm / 4. 2CR1/ docbookx. dtd" [
to
"file://lusr/share/xm /docbook/schema/ dtd/ 4. 2/ docbookx. dtd" [

where the second filepath is the path to the docbookx. dt d file within your Docbook install-
ation.

117

Appendix B. First JDBC Client Example

There is a copy of Test db. j ava in the directory sr ¢/ or g/ hsql db/ sanpl e of your HSQLDB
distribution.

Example B.1. JDBC Client sour ce code example

Copyright (c) 2001-2005, The HSQ. Devel opnent G oup
Al rights reserved.

Redi stribution and use in source and binary forns, with or without
nodi fication, are permtted provided that the followi ng conditions are net:

Redi stri buti ons of source code nust retain the above copyright notice, this
list of conditions and the follow ng disclainer.

Redi stributions in binary form nust reproduce the above copyright notice,
this list of conditions and the follow ng disclainmer in the docunentation
and/ or other materials provided with the distribution.

Nei t her the nanme of the HSQ. Devel opnent G oup nor the nanes of its
contributors may be used to endorse or pronote products derived fromthis
software wi thout specific prior witten pernission.

TH S SOFTWARE | S PROVI DED BY THE COPYRI GHT HOLDERS AND CONTRI BUTORS "AS | S
AND ANY EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT LIM TED TO, THE

| MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPOSE
ARE DI SCLAI MED. I N NO EVENT SHALL HSQL DEVELOPMENT GROUP, HSQLDB. ORG

OR CONTRI BUTORS BE LI ABLE FOR ANY DI RECT, | NDI RECT, | NCI DENTAL, SPECI AL,
EXEMPLARY, OR CONSEQUENTI AL DAMAGES (| NCLUDI NG, BUT NOT LIM TED TQ,
PROCUREMENT OF SUBSTI TUTE GOODS OR SERVI CES;

LOSS OF USE, DATA, OR PROFITS; OR BUSI NESS | NTERRUPTI ON) HOAEVER CAUSED AND
ON ANY THECORY OF LIABILITY, WHETHER I N CONTRACT, STRICT LIABILITY, OR TORT
(1 NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SING | N ANY WAY QUT OF THE USE OF THI S
SCFTWARE, EVEN | F ADVI SED OF THE PCSSI BI LI TY OF SUCH DAMACE.

F % o 3k X Ok ok 3k X S 3k F 3k X ok 3k X 3k X X 3k X X X F X X *

~

package org. hsqgl db. sanpl e;

i mport java.sql.Connecti on;

i mport java.sql.DriverManager;

i mport java.sql.Result Set;

i mport java. sgl . Result Set Met aDat a;
i mport | ava.sql.SQLException;

i mport | ava.sql. Statenent;

/

*

Title: Test db
Description: sinple hello world db exanple of a
st andal one persistent db application

every time it runs it adds four nmore rows to sanple_table
it does a query and prints the results to standard out

* Ok X X kX Ok X

*

Aut hor: Karl Meissner karl @mei ssnersd. com
*/
public class Testdb {

Connecti on conn; // our connnect

118

First JIDBC Client Example

/1 we dont want this garbage collected until we are done

publ

publ

}

ic Testdb(String db_file_name_prefix) throws Exception { /1 note nore g

/1 Load the HSQ. Dat abase Engi ne JDBC dri ver
/1 hsqldb.jar should be in the class path or nade part of the current jar
Cl ass. forName("org. hsqgl db. j dbcDriver");

/1 connect to the database. This will load the db files and start the

/1l database if it is not alread running.

/1 db_file_nane_prefix is used to open or create files that hold the state
/1 of the db.

/1 1t can contain directory nanmes relative to the

/1 current working directory

conn = DriverManager. get Connecti on("j dbc: hsql db: "

+ db_file_nane_prefix, /1 filenames
"sa", /'l username
") /1 password

ic void shutdown() throws SQLException {
Statement st = conn.createStatenent();

/1 db wites out to files and performs clean shuts down
/1 otherwi se there will be an unclean shut down

/1 when program ends

st . execut e(" SHUTDOWN') ;

conn. cl ose(); /1 if there are no other open connection

/luse for SQ conmand SELECT

publ

}

i c synchroni zed void query(String expression) throws SQ.Exception {
Statement st = null;

ResultSet rs = null;

st = conn.createStatenent(); /] statenment objects can be reused w

/1 repeated calls to execute but we
/1 choose to make a new one each tine

rs = st.executeQuery(expression); /1 run the query

/1 do sonething with the result set.

dunmp(rs);

st.close(); /1 NOTE!'! if you close a statement the associ ated Result Set
/1 closed too

/1 so you should copy the contents to sonme ot her object.

/1 the result set is invalidated also if you recycle an Statenent

/1 and try to execute sone other query before the result set has been

/1 conpletely exani ned.

/luse for SQL commands CREATE, DROP, | NSERT and UPDATE
public synchroni zed void update(String expression) throws SQLException {

Statenent st = null;

st = conn.createStatenent(); /] statenents
int i = st.executeUpdate(expression); /1 run the query
if (i ==-1) {

119

First JIDBC Client Example

publ

publ

Systemout.println("db error

}

st.clos

/1 void update()

e();

+ expression);

ic static void dunp(ResultSet rs) throws SQ.Exception {

/1 the

/1 are inplenmentati on dependent

order of the rows in a cursor

Resul t Set Met aDat a net a

i nt
i nt
nj ect

/
/
/
/
/
f

for

}

the result set

(i =0; i

col max
[

o =null;

rs.get Met aDat a() ;
net a. get Col utmCount () ;

is acursor into the data. You can only

< col max;

0 = rs.getj ect (i

/1 with 1 not O
Systemout.print(o.toString() + " ");

/

/ point to one rowat a tine

/ assunme we are pointing to BEFORE the first row
/ rs.next() points to next
/
o

row and returns true

or false if there is no next row, which breaks the | oop
r(; rs.next();) {

++i)

unl ess you use the SQL ORDER st at enent

+ 1); /1 1s SQL the first columm is indexed

Systemout.printlin(" ");

//void dunp(ResultSet rs)

ic static void main(String[] args) {

Test db

try {

db = null;

db = new Testdb("db_file");
} catch (Exception exl)
ex1l. printStackTrace();

ret

}
try {

[/ make an enpty table

/1

urn;

// could not start db

/1 bye bye

/1 by declaring the id colum IDENTITY, the db will autonatically
/1 generate unique values for new rows- useful for row keys

db.

/1
/e
/1
/1
/1
/1

updat e(

" CREATE TABLE sanple_table (id I NTEGER | DENTITY, str_col
} catch (SQLException ex2) {

i gnore

x2.printStackTrace(); // second time we run program
shoul d throw execption since table
al ready there

this wll

have no effect on the db

120

VARCHAR(

First JIDBC Client Example

/] add sone rows - will create duplicates if run nore then once
/1l the id colum is automatically generated
db. updat e(

"I NSERT | NTO sanpl e_tabl e(str_col, numcol) VALUES(' Ford', 100)");
db. updat e(

"I NSERT | NTO sanpl e_tabl e(str_col,numcol) VALUES(' Toyota', 200)")
db. updat e(

"I NSERT | NTO sanpl e_tabl e(str_col, numcol) VALUES(' Honda', 300)");
db. updat e(

"I NSERT | NTO sanpl e_t abl e(str_col ,numcol) VALUES(' GM, 400)");

/1 do a query
db. query(" SELECT * FROM sanpl e_t abl e WHERE num col < 250");

/] at end of program
db. shut down() ;

} catch (SQLException ex3) {
ex3. printStackTrace();

} /1 main()
} /'l class Testdb

121

Appendix C. Hsqgldb Database Files
and Recovery

This text is based on HypersonicSQL documentation, updated to reflect the latest version 1.8.0 of
HSQLDB.
$Date: 2005/07/01 17:06:32 $

The Standalone and Client/Server modes will in most cases use files to store all data to disk in a persist-
ent and safe way. This document describes the meaning of the files, the states and the procedures fol-
lowed by the engine to recover the data.

A database named 'test’ is used in this description. The database files will be as follows.

Database Files

test.properties Contains the entry 'modified'. If the entry 'modified’ is set to 'yes then the data-
base is either running or was not closed correctly (because the close algorithm
sets 'modified' to 'no' at the end).

test.script This file contains the SQL statements that makes up the database up to the last
checkpoint - itisin synch witht est . backup.

test.data Thisfile contains the (binary) data records for CACHED tables only.

test.backup This is compressed file that contains the complete backup of the old
t est . dat a file at the time of last checkpoint.

test.log This file contains the extra SQL statements that have modified the database
since the last checkpoint (something like the ‘Redo-log’ or "Transaction-log', but
just text).
In the above list, a checkpoint results from both a CHECKPOINT command
and a SHUTDOWN command.

States

Databaseis closed correctly

State after using the command SHUTDOMN

e Thetest. dat a fileisfully updated.
 Thet est. backup containsthe compressedt est . dat a file.

e Thetest.script contains the information in the database, excluding data for CACHED and
TEXT tables.

» Thetest. properti es containsthe entry 'modified' set to 'no'.

 Thereisnotest. | ogfile.

122

Hsqgldb Database Files and Recovery

Database is closed correctly with SHUTDOWN SCRIPT

State after using the command SHUTDOWN SCRI PT

Thet est . dat a file does not exist; all CACHED tabledataisinthet est . scri pt file
Thet est . backup does not exist.

The t est. scri pt contains the information in the database, including data for CACHED and
TEXT tables.

Thet est . properti es containsthe entry 'modified’ set to 'no'.

Thereisnot est. | og file.

Database is aborted

This may happen by sudden power off, Ctrl+C in Windows, but may be simulated using the command
SHUTDOWN IMMEDIATELY.

Aborted Database state

Thet est. properti es still containes 'modified=yes.

Thet est. scri pt contains asnapshot of the database at the last checkpoint and is OK.

Thet est . dat a file may be corrupt because the cache in memory was not written out completely.
Thet est . backup file contains a snapshot of t est . dat a that correspondstot est . scri pt.

Thet est . | og file contain al information to re-do all changes since the snanapshot. As a result of
abnormal termination, this file may be partially corrupt.

Procedures

The database engine performs the following procedures internally in different circumstances.

Clean Shutdown

Procedure C.1. Clean Hsgldb database shutdown

Thet est . dat a fileiswritten completely (all the modified cached table rows are witten out) and
closed.

Thet est . backup. newiscreated (containing the compressed t est . dat a file)

The filet est . scri pt. newis created using the information in the database (and thus shrinks
because no UPDATE and DELETE statements; only INSERT).

The entry 'modified' in the propertiesfileis set to 'yes-new-files

123

Hsqgldb Database Files and Recovery

10.

Startup

Thefilet est . scri pt isdeleted

Thefilet est. scri pt. newisrenamedtot est . scri pt
Thefilet est . backup isdeleted

Thefilet est . backup. newisrenamedtot est . backup
The entry 'modified' in the propertiesfileis set to 'no'

Thefilet est . | og isdeleted

Procedure C.2. Database is opened

Repair

Check if the database files are in use (by checking aspecial t est . | ck file).
Seeif thet est . properti es file exists, otherwise createiit.

If the test.properties did not exist, then this is a new database. Create the empty
t est . | og to append new commands.

If it is an existing database, check in thet est . properti es fileif 'modified=yes. This would
mean last time it was not closed correctly, and thus the t est . dat a file may be corrupted or in-
complete. In this case the 'REPAIR' algorithm is executed (see below), before the database is
opened normally.

Otherwise, if in the test.properties file 'modified=yes-new-files, then the (old)
test. backup andt est. scri pt filesaredeleted andthenew t est . scri pt . newfileisre-
namedtot est. scri pt.

Openthet est . scri pt file and execute the commands.

Create the empty test.log to append new commands.

The current t est . dat a file is corrupt, but with the old t est . dat a (from the t est . backup file
andt est. script)andthecurrentt est . | og, the database is made up-to-date. The database engine
takes these steps:

Procedure C.3. Database Repair

1.

2.

Restorethe old t est . dat a file from the backup (uncompress thet est . backup and overwrite
t est. dat a).

Execute al commandsinthet est . scri pt file.

124

Hsqgldb Database Files and Recovery

3. Execute al commandsinthet est . | og file. If dueto corruption, an exception is thrown, the rest
of thelines of command inthet est . | og file areignored.

4. Closethe database correctly (including a backup).

125

Appendix D. Running Hsqgldb with
OpenOffice.org 1.1.x

Hermann Kienlein, EDV - Systeme Kienlein <her mann@i enl ei n. con»

Copyright 2003-2004 Hermann Kienlein. Permission is granted to distribute this document without any
alteration under the terms of the HSQLDB license. Additional permission is granted to the HSQLDB
Development Group to distribute this document with or without alterations under the terms of the
HSQLDB license.

$Date: 2005/06/08 16:02:34 $

Introduction

HSQLDB can now act as a Database with OpenOffice.org. This document is written to help you con-
necting and running HSQLDB out of OpenOffice.org in a simple way. Without user-managment and
only for your single-system.

If you have problems read the other available documents, because | will not write them here again. If
you need areal DB-System with user-management and different rights for different users, read the other
documents.

HSQLDB is included with OpenOffice.org 2.0 and is used by default. Please refer to standard OpenOf-
fice.org 2.0 documentation on how to use HSQL DB with this version.

Installing

| assume you have a running OpenOffice.org (OO0) and a JavaRuntimeEnvironment. So place the
hsgldb_*.zip file where you want on your disk and unpack it (I assume you have done this already).

Setting up OpenOffice.org

Start OO0 with a text document and go to the Database-Explorer (simply by pressing F4). In the left
frame you see atree-view with all known databases in OOo.

A right mouse-click opens a menu where you can manage your databases. So click on New Dat abase
and choose a name that you want to have inside OOo. | chose HSQL DB as hame.

As connection-type choose JDBC and then switch to the JDBC-tab.

AsDriver-Classinsert or g. hsql db. j dbcDri ver and as URL choose the following:

On Windows

You can specify a directory where HSQLDB should store the info and data. Something like j d-
bc: hsqgl db: file:c:\javasrc\ hsql db-dev\ dat abasenane (where jdbc: is written by
00o0). The string c: \ j avasr ¢\ hsqgl db- dev\ dat abasenane works only on windows, but you
can write this down as linux-path like /j avasrc/ hsql db- dev/ dat abasenane too. Then
HSQL DB takes the c:\ drive as root. This means this works only on c:\ for you.

Thefirst isthe directory-path and the databasename is the identifier for the database.

On Linux

126

Running Hsgldb with OpenOffice.org 1.1.x

Choose a path as said for windows like /opt/db/data

As username take s, thisis the standard-administrator for HSQLDB.

Now click the OK-Button

Now OOQo has to find your hsql db. j ar file. So go to options => security and insert the path to the
Jar file. If you have problems, search the Online-help for JDBC. You then get help in your own lan-
guage (thisis generally quite better than my English, | think ;-)

If you cannot write to your Tables, OOo thinks that you don't have permission to write to HSQLDB.
Then we tell OOo to ignore the DriverPrivileges because on our single-user-system we do not need
them.

Because OOo isworking on this, the next Step is only needed for systems without write - permission.

So we go to http://dba.openoffice.org and look at thel gnor eDri ver Pri vi | eges. ht ml fileinthe
HowTo-section. Y ou find here a macro-code.

Open tools => macro in OO0 to get the Basic-IDE. Here simple copy and paste the code and run the
macro. Y ou see a input-box where you only have to insert the name of your DB, in my example | have
to insert HSQL DB, because | took this as name in OOo.

Note that if you change your OOo0-DB name, you have to run this macro again!

Now we only have to stop and restart OOo. Be sure that you exit Quickstarter and all running processes
too. On next OOo-Start you should have a running Database in OpenOffice.org.

127

Appendix E. Hsqldb Test Utility

$Date: 2005/05/27 12:41:50 $
Theor g. hsgl db. t est package contains a number of tests for various functions of the database en-
gine. Among these, the Test Sel f class performs the tests that are based on scripts. To run the tests,
you should compilethe hsql dbt est . j ar target with Ant.
For Test Sel f, a batch file is provided in the testrun/hsgldb directory, together with a set of Test-
Self* .txt files. To start the application in Windows, change to the directory and type:

runtest Test Sel f
In Unix / Linux, type:

./runTest.sh Test Sel f

The new version of Test Sel f runs multiple SQL test filesto test different SQL operations of the data-
base. All files in the working directory with names matching TestSelf*.txt are processed in alphabetical
order.

Y ou can add your own scripts to test different series of SQL queries. The format of the TestSelf*.txt file
is simple text, with some indentation and prefixes in the form of Java-style comments. The prefixes in-
dicate what the expected result should be.

e Comment lines must start with -- and are ignored

» Lines starting with spaces are the continuation of the previous line

» SQL statementswith no prefix are simply executed.

» Theremaining itemsin this list exemplify use of the available command line-prefixes.

The /*s*/ option stands for silent. It is used for executing quries regardless of results. Used for pre-
paration of tests, not for actual tests.

/*s*/ Any SQ statement - errors are ignored

The /*c<rows>*/ option is for SELECT queries and asserts the number of rows in the result matches
the given count.

[*c<rows>*/ SQL statenent returning count of <rows>

The /*u*/ option isfor queries that return an update count, such as DELETE and UPDATE. It asserts
the update count matches.

[*u<count>*/ SQ. statenment returning an update count equal to <count>

128

Hsgldb Test Utility

The /*e*/ option asserts that the given query resultsin an erros. It is mainly used for testing the error
detection capabilities of the engine. It can also be used with syntactically valid queries to assert a
certain state in the database. For example a CREATE TABLE can be used to assert the table of the
same name aready exists.

[*e*] SQL statenent that should produce an error when executing

The /*r....*/ option asserts the SELECT query returns a single row containing the given set of field
values.

[*r<stringl>, <string2>*/ SQL statenent returning a single row ResultSet equal tc

The extended /*r...*/ option asserts the SELECT query returns the given rows containing the given
set of field values.

I*r
<stringl>, <string2>
<stringl>, <string2>
<stringl>, <string2>
*/ SQL statement returning a nultiple row ResultSet equal to the specified val ue

(note that the result set lines are indented).

» All the options are lowercase |etters. During development, an uppercase can be used for a given test
to exclude a test from the test run. The utility will just report the test blocks that have been excluded
without running them. Once the code has been developed, the option can be turned into lowercase to
perform the actual test.

See the TestSelf*.txt files in the /testrun/hsgldb/ directory for actual examples.

129

Appendix F. Database Manager

Fred Toussi, HSQLDB Development Group <f t @| uedup. con®
Blaine Simpson, HSQL DB Development Group <f t @I uedup. con®
$Date: 2005/06/04 23:46:41 $

Brief Introduction

The Database Manager tool is a simple GUI database query tool with atree display of the tables. Both
AWT and SWING versions of the tool are available and work almost identically. The AWT version
class name is org.hsgldb.util.DatabaseM anager; the SWING version,
org.hsgldb.util.DatabaseM anagerSwing.

The AWT version of the database manager can be deployed as an applet in a browser. A demo HTML
file with an embedded Database Manager is included in the /demo directory.

When the Database Manager is started, a dialogue allows you to enter the JDBC driver, URL, user and
password for the new connection. A drop-down box, Type, offers preset values for JDBC driver and
URL for most popular database engines, including HSQLDB. Once you have selected an item from this
drop-down box, you should edit the URL to specify the details of the database or any additional proper-
tiesto pass. Y ou should also enter the username and password before clicking on the OK button.

The connection dialogue allows you to save the settings for the connection you are about to make. You
can then access the connection in future sessions. To save a connection setting, enter a name in the Set-
ting Name box before clicking on the OK button. Next time the connection dialogue is displayed, the
drop-down box labeled Recent will include the name for all the saved connection settings. When you se-
lect aname, the individual settings are displayed in the appropriate boxes.

The small Clr button next to the drop-down box allows you to clear all the saved settings. If you want to
modify an existing setting, first select it from the drop-down box then modify any of the text boxes be-
fore making the connection. The modified values will be saved.

Most menu items have context-sensitive tool tip help text which will appear if you hold the mouse curs-
or still over the desired menu item. (Assuming that you don't turn Tooltips off under the Help menu.

The DatabaseM anagers do work with HSQL DB servers serving TLS-encrypted JDBC data. Seethe TLS
chapter and the RC File Authentication Setup section of this Guide.

Tip

If you are using DatabaseManagerSwing with Oracle, you will want to make sure that Show
row counts and Show row counts are both off before connecting to the database. Y ou may also
want to turn off Auto tree-update, as described in the next section.

Auto tree-update

By default, the object tree in the left panel is refreshed when you execute DDL which may update those
objects. If you are on a slow network or performance-challenged PC, use the view / Auto-refresh tree
menu item to turn it off. Y ou will then need to use the viewRefresh tree menu item every time that you
want to refresh the tree.

Note

Auto-refresh tree does not automatically show all updates to database objects, it only refreshes
when you submit DDL which may update database objects. (This behavior is a compromise
between utility and performance).

130

Database Manager

Automatic Connection

Y ou can use command-line switches to supply connection information. If you use these switch(es), then
the connection dialog window will be skipped and a JDBC connection will be established immediately.
Assuming that the hsgldb.jar (or an aternative jar) are in your CLASSPATH, this command will list the
available command-line options.

java org. hsql db. util.Dat abaseManager Swi ng --hel p

It's convenient to skip the connection dialog window if you aways work with the same database ac-
count.

Warning

Use of the --password switch is not secure. Everything typed on command-lines is generally
available to other users on the computer. The problem is compounded if you use a network
connection to obtain your command line. The RC File section explains how you can set up
automatic connections without supplying a password on the command line.

RC File

You can skip the connection dialog window securely by putting the connection information into an RC
file and then using the - - ur | i d switch to DatabaseManager or DatabaseM anagerSwing. This strategy
is great for adding launch menu items and/or launch icons to your desktop. Y ou can set up one icon for
each of the database accounts which you regularly use.

The default location for the RC fileisdbrmanager . r ¢ in your home directory. The RC File Authentic-
ation Setup section explains how to put the connection information into this text file. If you also run
Sl Tool, then you can share the RC file with SglTool by using a sym-link (if your operating system sup-
ports sym links), or by using the- - r cf i | e switch for either SqlTool or DatabaseM anagerSwing.

Warning

Use your operating system facilities to prevent others from reading your RC file, since it con-
tains passwords.

To set up launch items/icons, first experiment on your command line to find exactly what command
works. For example,
java -cp /path/to/ hsql db.jar org. hsqgl db.util.DatabaseManagerSwing --urlid mem

Then, use your window manager to add an item that runs this command.

Using the current DatabaseManagers with an
older HSQLDB distribution.

This procedure will allow users of a legacy version of HSQLDB to use all of the new features of the
DatabaseManagers. Y ou will also get the new version of the SglTool! This procedure works for distros
going back to 1.7.3.3 at least, probably much farther.

These instructions assume that you are capable of running an Ant build. See the Building HSQLDB
chapter.

131

Database Manager

1. Download and extract a current HSQLDB distribution. If you don't want to use the source code,
documentation, etc., you can use atemporary directory and remove it afterwards.

2. Cdtothebuild directory under the root directory where you extracted the distribution to.
3. Runant hsgl dbutil.
4. If you're going to wipe out the build directory, copy hsql dbuti | . j ar to asafelocation first.

5. For now on, whenver you are going to run DatabaseManager*, make sure that you have this
hsql dbuti |l .jar asthefirstiteminyour CLASSPATH.

Here's a UNIX example where somebody wants to use the new DatabaseM anager Swing with their older
HSQL DB database, as well as with Postgresql and alocal application.

CLASSPATH=/ pat h/ t o/ hsql dbuti | .| ar:/home/ bob/ myapp/ cl asses:/usr/local/lib/pg.jdbc3.
export CLASSPATH
java org. hsgl db. util.Dat abaseManagerSwing --urlid urlid

132

Appendix G. Transfer Tool

Fred Toussi, HSQLDB Development Group <f t @| uedup. con®
$Date: 2005/06/29 23:15:13 $

Brief Introduction

Transfer Tool isa GUI program for transferring SQL schema and data from one JDBC source to anoth-
er. Source and destination can be different database engines or different databases on the same server.

Transfer Tool works in two different modes. Direct transfer maintains a connection to both source and
destination and performs the transfer. Dump and Restore mode is invoked once to transfer the data from
the source to a text file (Dump), then again to transfer the data from the text file to the destination
(Restore). With Dump and Restore, it is possible to make any changes to database object definitions and
data prior to restoring it to the target.

Dump and Restore modes can be set via the command line with -d (--dump) or -r (--restore) options. Al-
ternatively the Transfer Tool can be started with any of the three modes from the Database Manager's
Tools menu.

The connection dialogue alows you to save the settings for the connection you are about to make. You
can then access the connection in future sessions. These settings are shared with those from the Database
Manager tool. See the appendix on Database Manager for details of the connection dialogue box.

In version 1.8.0 Transfer Tooal is no longer part of the hsgldb.jar. You can build the hsgldbutil.jar using
the Ant command of the same name, to build a jar that includes Transfer Tool and the Database Man-

ager.

When collecting meta-data, Transfer Tool performs SELECT * FROM <table> queries on al the tables
in the source database. This may take a long time with some database engines. When the source data-
base is HSQL DB, this means memory should be available for the result sets returned from the queries.
Therefore, the memory allocation of the java process in which Transfer Tool is executed may have to be
high.

133

	Hsqldb User Guide
	Table of Contents
	Introduction
	Available formats for this document

	Chapter 1. Running and Using Hsqldb
	Introduction
	Running Tools
	Running Hsqldb
	Server Modes
	Hsqldb Server
	Hsqldb Web Server
	Hsqldb Servlet
	Connecting to a Database running as a Server
	Security Considerations

	In-Process (Standalone) Mode
	Memory-Only Databases

	General
	Closing the Database
	Using Multiple Databases in One JVM
	Creating a New Database

	Using the Database Engine
	Different Types of Tables
	Constraints and Indexes
	SQL Support
	JDBC Support

	Chapter 2. SQL Issues
	Purpose
	SQL Standard Support
	Constraints and Indexes
	Primary Key Constraints
	Unique Constraints
	Unique Indexes
	FOREIGN KEYS
	Indexes and Query Speed
	Where Condition or Join
	Subqueries and Joins

	Types and Arithmetic Operations
	Integral Types
	Other Numeric Types
	Bit and Boolean Types
	Storage and Handling of Java Objects
	Type Size, Precision and Scale

	Sequences and Identity
	Identity Auto-Increment Columns
	Sequences

	Issues with Transactions
	New Features and Changes

	Chapter 3. UNIX Quick Start
	Purpose
	Installation
	Setting up a Hsqldb Persistent Database Instance and a Hsqldb Server
	Accessing your Database
	Create additional Accounts
	Shutdown
	Running Hsqldb as a System Daemon
	Portability of hsqldb init script
	Init script Setup Procedure
	Troubleshooting the Init Script

	Chapter 4. Advanced Topics
	Purpose
	Connections
	Connection properties

	Properties Files
	Server and Web Server Properties
	Starting a Server from your application
	Individual Database Properties

	SQL Commands for Database Properties

	Chapter 5. Deployment Issues
	Purpose
	Mode of Operation and Tables
	Mode of Operation
	Tables
	Large Objects
	Deployment context

	Memory and Disk Use
	Cache Memory Allocation

	Managing Database Connections
	Upgrading Databases
	Upgrading Using the SCRIPT Command
	Manual Changes to the .script File

	Backing Up Databases

	Chapter 6. Text Tables
	The Implementation
	Definition of Tables
	Scope and Reassignment
	Null Values in Columns of Text Tables
	Configuration

	Text File Issues
	Text File Global Properties
	Importing a Text Table file in to a Traditional (non-Text Table) Table

	Chapter 7. TLS
	Requirements
	Encrypting your JDBC connection
	Client-Side
	Server-Side

	JSSE
	Making a Private-key Keystore
	CA-Signed Cert
	Non-CA-Signed Cert

	Automatic Server or WebServer startup on UNIX

	Chapter 8. SqlTool
	Purpose
	Recent changes

	The Bare Minimum You Need to Know to Run SqlTool
	Non-displayable Types
	Desktop shortcuts
	Loading sample data

	RC File Authentication Setup
	Using the current version of SqlTool with an older HSQLDB distribution.
	Interactive
	Command Types
	Special Commands
	Buffer Commands
	PL Commands
	Storing and retrieving binary files
	SQL History
	Shell scripting and command-line piping
	Emulating Non-Interactive mode

	Non-Interactive
	Giving SQL on the Command Line
	SQL Files
	Piping and shell scripting
	Optimally Compatible SQL Files
	Comments
	Special Commands and Buffer Commands in SQL Files
	Automation
	Getting Interactive Functionality with SQL Files
	Character Encoding

	Generating Text or HTML Reports
	SqlTool Procedural Language
	Variables
	PL Aliases
	Logical Expressions
	Flow Control

	Chunking
	Why?
	How?

	Raw Mode
	PL/SQL
	Using hsqltool.jar and hsqldbutil.jar
	Unit Testing SqlTool

	Chapter 9. SQL Syntax
	Notational Conventions Used in this Chapter
	SQL Commands
	ALTER INDEX
	ALTER SEQUENCE
	ALTER SCHEMA
	ALTER TABLE
	ALTER USER
	CALL
	CHECKPOINT
	COMMIT
	CONNECT
	CREATE ALIAS
	CREATE INDEX
	CREATE ROLE
	CREATE SCHEMA
	CREATE SEQUENCE
	CREATE TABLE
	CREATE TRIGGER
	CREATE USER
	CREATE VIEW
	DELETE
	DISCONNECT
	DROP INDEX
	DROP ROLE
	DROP SEQUENCE
	DROP SCHEMA
	DROP TABLE
	DROP TRIGGER
	DROP USER
	DROP VIEW
	EXPLAIN PLAN
	GRANT
	INSERT
	REVOKE
	ROLLBACK
	SAVEPOINT
	SCRIPT
	SELECT
	SET AUTOCOMMIT
	SET DATABASE COLLATION
	SET CHECKPOINT DEFRAG
	SET IGNORECASE
	SET LOGSIZE
	SET PASSWORD
	SET PROPERTY
	SET REFERENTIAL INTEGRITY
	SET SCHEMA
	SET SCRIPTFORMAT
	SET TABLE INDEX
	SET TABLE READONLY
	SET TABLE SOURCE
	SET WRITE DELAY
	SHUTDOWN
	UPDATE

	Data Types
	SQL Comments
	Stored Procedures / Functions
	Built-in Functions and Stored Procedures
	SQL Expression

	Appendix A. Building HSQLDB
	Purpose
	Building with Ant, from the Apache Jakarta Project
	Obtaining Ant
	Building Hsqldb with Ant

	Building with DOS Batch Files
	Hsqldb CodeSwitcher
	Building documentation

	Appendix B. First JDBC Client Example
	Appendix C. Hsqldb Database Files and Recovery
	
	States
	
	
	

	Procedures
	Clean Shutdown
	Startup
	Repair

	Appendix D. Running Hsqldb with OpenOffice.org 1.1.x
	Introduction
	Installing
	Setting up OpenOffice.org
	On Windows
	On Linux

	Appendix E. Hsqldb Test Utility
	Appendix F. Database Manager
	Brief Introduction
	Auto tree-update
	Automatic Connection
	RC File
	Using the current DatabaseManagers with an older HSQLDB distribution.

	Appendix G. Transfer Tool
	Brief Introduction

