Go to the first, previous, next, last section, table of contents.
n+1
e'le'ments les valeurs formelles viennent
la completer. Le premier e'le'ment de la liste l donne le cardinal
de l'alphabet si il existe, sinon on le met e'gal a n.
(%i1) comp2pui (3, [4, g]); 2 2 (%o1) [4, g, 2 h2 - g , 3 h3 - g h2 + g (g - 2 h2)]
(%i1) pc: 2*a^3*b*x^4*y + x^5; 3 4 5 (%o1) 2 a b x y + x (%i2) cont2part (pc, [x, y]); 3 (%o2) [[1, 5, 0], [2 a b, 4, 1]]
Autres fonctions de changements de repre'sentations :
contract
, explose
, part2cont
, partpol
, tcontract
, tpartpol
.
explose
re'alise l'ope'ration inverse. La fonction tcontract
teste en plus
la syme'trie du polyno^me.
(%i1) psym: explose (2*a^3*b*x^4*y, [x, y, z]); 3 4 3 4 3 4 3 4 (%o1) 2 a b y z + 2 a b x z + 2 a b y z + 2 a b x z 3 4 3 4 + 2 a b x y + 2 a b x y (%i2) contract (psym, [x, y, z]); 3 4 (%o2) 2 a b x y
Autres fonctions de changements de repre'sentations :
cont2part
, explose
, part2cont
, partpol
, tcontract
, tpartpol
.
(%i1) direct ([z^2 - e1* z + e2, z^2 - f1* z + f2], z, b*v + a*u, [[u, v], [a, b]]); 2 (%o1) y - e1 f1 y 2 2 2 2 - 4 e2 f2 - (e1 - 2 e2) (f1 - 2 f2) + e1 f1 + ----------------------------------------------- 2 (%i2) ratsimp (%); 2 2 2 (%o2) y - e1 f1 y + (e1 - 4 e2) f2 + e2 f1 (%i3) ratsimp (direct ([z^3-e1*z^2+e2*z-e3,z^2 - f1* z + f2], z, b*v + a*u, [[u, v], [a, b]])); 6 5 2 2 2 4 (%o3) y - 2 e1 f1 y + ((2 e1 - 6 e2) f2 + (2 e2 + e1 ) f1 ) y 3 3 3 + ((9 e3 + 5 e1 e2 - 2 e1 ) f1 f2 + (- 2 e3 - 2 e1 e2) f1 ) y 2 2 4 2 + ((9 e2 - 6 e1 e2 + e1 ) f2 2 2 2 2 4 + (- 9 e1 e3 - 6 e2 + 3 e1 e2) f1 f2 + (2 e1 e3 + e2 ) f1 ) 2 2 2 3 2 y + (((9 e1 - 27 e2) e3 + 3 e1 e2 - e1 e2) f1 f2 2 2 3 5 + ((15 e2 - 2 e1 ) e3 - e1 e2 ) f1 f2 - 2 e2 e3 f1 ) y 2 3 3 2 2 3 + (- 27 e3 + (18 e1 e2 - 4 e1 ) e3 - 4 e2 + e1 e2 ) f2 2 3 3 2 2 + (27 e3 + (e1 - 9 e1 e2) e3 + e2 ) f1 f2 2 4 2 6 + (e1 e2 e3 - 9 e3 ) f1 f2 + e3 f1
Recherche du polyno^me dont les racines sont les somme a+u ou a est racine de z^2 - e1* z + e2 et u est racine de z^2 - f1* z + f2
(%i1) ratsimp (direct ([z^2 - e1* z + e2, z^2 - f1* z + f2], z, a + u, [[u], [a]])); 4 3 2 (%o1) y + (- 2 f1 - 2 e1) y + (2 f2 + f1 + 3 e1 f1 + 2 e2 2 2 2 2 + e1 ) y + ((- 2 f1 - 2 e1) f2 - e1 f1 + (- 2 e2 - e1 ) f1 2 2 2 - 2 e1 e2) y + f2 + (e1 f1 - 2 e2 + e1 ) f2 + e2 f1 + e1 e2 f1 2 + e2
direct
peut prendre deux drapeaux possibles : elementaires
et
puissances
(valeur par de'faut) qui permettent de de'composer
les polyno^mes syme'triques apparaissant dans ce calcul par
les fonctions syme'triques e'le'mentaires ou les fonctions puissances
respectivement.
Fonctions de sym
utilis'ees dans cette fonction :
multi_orbit
(donc orbit
), pui_direct
, multi_elem
(donc elem
), multi_pui
(donc pui
), pui2ele
, ele2pui
(si le drapeau direct
est a` puissances
).
comp2ele
et comp2pui
.
Autres fonctions de changements de bases :
comp2ele
, comp2pui
, ele2pui
, elem
, mon2schur
, multi_elem
,
multi_pui
, pui
, pui2comp
, pui2ele
, puireduc
, schur2comp
.
l = [n, e_1, ..., e_n]
ou` n est le degre' du polyno^me
et e_i la i-ie`me
fonction syme'trique e'le'mentaire.
(%i1) ele2polynome ([2, e1, e2], z); 2 (%o1) z - e1 z + e2 (%i2) polynome2ele (x^7 - 14*x^5 + 56*x^3 - 56*x + 22, x); (%o2) [7, 0, - 14, 0, 56, 0, - 56, - 22] (%i3) ele2polynome ([7, 0, -14, 0, 56, 0, -56, -22], x); 7 5 3 (%o3) x - 14 x + 56 x - 56 x + 22
La re'ciproque: polynome2ele (P, z)
Autres fonctions a` voir :
polynome2ele
, pui2polynome
.
comp2ele
et comp2pui
.
Autres fonctions de changements de bases :
comp2ele
, comp2pui
, ele2comp
, elem
, mon2schur
, multi_elem
,
multi_pui
, pui
, pui2comp
, pui2ele
, puireduc
, schur2comp
.
elem
doit alors valoir 1 sa valeur
par de'faut), partitionne'e (elem
doit alors valoir 3) ou e'tendue (i.e. le
polyno^me en entier) (elem
doit alors valoir 2). L'utilsation
de la fonction pui
se re'alise sur le me^me mode`le.
Sur un alphabet de cardinal 3 avec e1, la premie`re fonction syme'trique e'le'mentaire, valant 7, le polyno^me syme'trique en 3 variables dont la forme contracte'e (ne de'pendant ici que de deux de ses variables) est x^4-2*x*y se de'compose ainsi en les fonctions syme'triques e'le'mentaires :
(%i1) elem ([3, 7], x^4 - 2*x*y, [x, y]); (%o1) 7 (e3 - 7 e2 + 7 (49 - e2)) + 21 e3 + (- 2 (49 - e2) - 2) e2 (%i2) ratsimp (%); 2 (%o2) 28 e3 + 2 e2 - 198 e2 + 2401
Autres fonctions de changements de bases :
comp2ele
, comp2pui
, ele2comp
, ele2pui
,
mon2schur
, multi_elem
, multi_pui
,
pui
, pui2comp
, pui2ele
, puireduc
, schur2comp
.
(%i1) explose (a*x + 1, [x, y, z]); (%o1) a z + a y + a x + 1
Autres fonctions de changements de repre'sentations :
contract
, cont2part
, part2cont
, partpol
, tcontract
, tpartpol
.
(%i1) kostka ([3, 3, 3], [2, 2, 2, 1, 1, 1]); (%o1) 6
(%i1) lgtreillis (4, 2); (%o1) [[3, 1], [2, 2]]
Voir e'galement : ltreillis
, treillis
et treinat
.
(%i1) ltreillis (4, 2); (%o1) [[4, 0], [3, 1], [2, 2]]
Voir e'galement : lgtreillis
, treillis
et treinat
.
On e'crit cette fonction de Schur en fonction des
formes monomiales en utilisant les fonctions treinat
et kostka
. La forme
rendue est un polyno^me syme'trique dans une de ses repre'sentations
contracte'es avec les variables x_1, x_2, ....
(%i1) mon2schur ([1, 1, 1]); (%o1) x1 x2 x3 (%i2) mon2schur ([3]); 2 3 (%o2) x1 x2 x3 + x1 x2 + x1 (%i3) mon2schur ([1, 2]); 2 (%o3) 2 x1 x2 x3 + x1 x2
ce qui veut dire que pour 3 variables cela donne :
2 x1 x2 x3 + x1^2 x2 + x2^2 x1 + x1^2 x3 + x3^2 x1 + x2^2 x3 + x3^2 x2
Autres fonctions de changements de bases :
comp2ele
, comp2pui
, ele2comp
, ele2pui
, elem
, multi_elem
,
multi_pui
, pui
, pui2comp
, pui2ele
, puireduc
, schur2comp
.
(%i1) multi_elem ([[2, e1, e2], [2, f1, f2]], a*x + a^2 + x^3, [[x, y], [a, b]]); 3 (%o1) - 2 f2 + f1 (f1 + e1) - 3 e1 e2 + e1 (%i2) ratsimp (%); 2 3 (%o2) - 2 f2 + f1 + e1 f1 - 3 e1 e2 + e1
Autres fonctions de changements de bases :
comp2ele
, comp2pui
, ele2comp
, ele2pui
, elem
,
mon2schur
, multi_pui
, pui
, pui2comp
, pui2ele
,
puireduc
, schur2comp
.
(%i1) multi_orbit (a*x + b*y, [[x, y], [a, b]]); (%o1) [b y + a x, a y + b x] (%i2) multi_orbit (x + y + 2*a, [[x, y], [a, b, c]]); (%o2) [y + x + 2 c, y + x + 2 b, y + x + 2 a]
Voir e'galement : orbit
pour l'action d'un seul groupe syme'trique.
pui
ce que la fonction multi_elem
est
a` la fonction elem
.
(%i1) multi_pui ([[2, p1, p2], [2, t1, t2]], a*x + a^2 + x^3, [[x, y], [a, b]]); 3 3 p1 p2 p1 (%o1) t2 + p1 t1 + ------- - --- 2 2
multinomial
est r!/(i_1! i_2! ... i_k!)
.
Soient les 2 polyno^mes syme'triques en x
, y
: 3*(x + y) + 2*x*y
et 5*(x^2 + y^2)
dont les formes partitionne'es sont respectivement [[3, 1], [2, 1, 1]]
et [[5, 2]]
,
alors leur produit sera donne' par :
(%i1) multsym ([[3, 1], [2, 1, 1]], [[5, 2]], 2); (%o1) [[10, 3, 1], [15, 3, 0], [15, 2, 1]]
soit 10*(x^3*y + y^3*x) + 15*(x^2*y + y^2*x) + 15*(x^3 + y^3)
.
Fonctions de changements de repre'sentations d'un polyno^me syme'trique :
contract
, cont2part
, explose
, part2cont
,
partpol
, tcontract
, tpartpol
.
(%i1) orbit (a*x + b*y, [x, y]); (%o1) [a y + b x, b y + a x] (%i2) orbit (2*x + x^2, [x, y]); 2 2 (%o2) [y + 2 y, x + 2 x]
Voir e'galement : multi_orbit
pour l'action d'un produit de groupes
syme'triques sur un polyno^me.
(%i1) part2cont ([[2*a^3*b, 4, 1]], [x, y]); 3 4 (%o1) 2 a b x y
Autres fonctions de changements de repre'sentations :
contract
, cont2part
, explose
, partpol
, tcontract
, tpartpol
.
(%i1) partpol (-a*(x + y) + 3*x*y, [x, y]); (%o1) [[3, 1, 1], [- a, 1, 0]]
Autres fonctions de changements de repre'sentations :
contract
, cont2part
, explose
, part2cont
, tcontract
, tpartpol
.
l = [n, e_1, ..., e_n]
ou` n est le degre'
du polyno^me P en la variable x et e_i la i-ieme fonction syme'trique
e'le'mentaire des racines de P.
(%i1) polynome2ele (x^7 - 14*x^5 + 56*x^3 - 56*x + 22, x); (%o1) [7, 0, - 14, 0, 56, 0, - 56, - 22] (%i2) ele2polynome ([7, 0, -14, 0, 56, 0, -56, -22], x); 7 5 3 (%o2) x - 14 x + 56 x - 56 x + 22
La re'ciproque : ele2polynome (l, x)
prodrac
rend le polyno^me dont
les racines sont les produits k a` k des e'le'ments de A.
pui
doit alors valoir 1 sa valeur
par de'faut), partitionne'e (pui
doit alors valoir 3) ou e'tendue (i.e. le
polyno^me en entier) (pui
doit alors valoir 2). La fonction elem
s'utilise de la me^me manie`re.
(%i1) pui; (%o1) 1 (%i2) pui ([3, a, b], u*x*y*z, [x, y, z]); 2 a (a - b) u (a b - p3) u (%o2) ------------ - ------------ 6 3 (%i3) ratsimp (%); 3 (2 p3 - 3 a b + a ) u (%o3) --------------------- 6
Autres fonctions de changements de bases :
comp2ele
, comp2pui
, ele2comp
, ele2pui
, elem
, mon2schur
,
multi_elem
, multi_pui
, pui2comp
, pui2ele
, puireduc
,
schur2comp
.
comp2ele
et comp2pui
.
(%i1) pui2comp (2, []); 2 p2 + p1 (%o1) [2, p1, --------] 2 (%i2) pui2comp (3, [2, a1]); 2 a1 (p2 + a1 ) 2 p3 + ------------- + a1 p2 p2 + a1 2 (%o2) [2, a1, --------, --------------------------] 2 3 (%i3) ratsimp (%); 2 3 p2 + a1 2 p3 + 3 a1 p2 + a1 (%o3) [2, a1, --------, --------------------] 2 6
Autres fonctions de changements de bases :
comp2ele
, comp2pui
, ele2comp
, ele2pui
, elem
,
mon2schur
, multi_elem
, multi_pui
, pui
, pui2ele
,
puireduc
, schur2comp
.
pui2ele
est girard
, on re'cupe`re la liste des fonctions
syme'triques e'le'mentaires de 1 a` n, et s'il est e'gal a` close
,
la n-ie`me fonction syme'trique e'le'mentaire.
Autres fonctions de changements de bases :
comp2ele
, comp2pui
, ele2comp
, ele2pui
, elem
,
mon2schur
, multi_elem
, multi_pui
, pui
, pui2comp
,
puireduc
, schur2comp
.
(%i1) pui; (%o1) 1 (%i2) kill(labels); (%o0) done (%i1) polynome2ele (x^3 - 4*x^2 + 5*x - 1, x); (%o1) [3, 4, 5, 1] (%i2) ele2pui (3, %); (%o2) [3, 4, 6, 7] (%i3) pui2polynome (x, %); 3 2 (%o3) x - 4 x + 5 x - 1
Autres fonctions a` voir :
polynome2ele
, ele2polynome
.
Soit f un polynome en n blocs de variables lvar_1, ..., lvar_n.
Soit c_i le nombre de variables dans lvar_i . Et SC le produit des n
groupes syme'triques de degre' c_1, ..., c_n. Ce groupe agit
naturellement sur f.
La liste orbite est l'orbite, note'e SC(f)
, de la fonction f sous
l'action de SC. (Cette liste peut e^tre obtenue avec la fonction :
multi_orbit
).
Les di sont des entiers tels que c_1 <= d_1, c_2 <= d_2, ..., c_n <= d_n.
Soit SD le produit des groupes syme'triques S_d1 x S_d2 x ... x S_dn.
La fonction pui_direct
rame`ne les n premie`res fonctions puissances de SD(f)
de'duites des fonctions puissances de SC(f)
ou` n est le cardinal de SD(f)
.
Le re'sultat est rendue sous forme multi-contracte'e par rapport a SD. i.e. on ne conserve qu'un e'le'ment par orbite sous l'action de SD).
(%i1) l: [[x, y], [a, b]]; (%o1) [[x, y], [a, b]] (%i2) pui_direct (multi_orbit (a*x + b*y, l), l, [2, 2]); 2 2 (%o2) [a x, 4 a b x y + a x ] (%i3) pui_direct (multi_orbit (a*x + b*y, l), l, [3, 2]); 2 2 2 2 3 3 (%o3) [2 a x, 4 a b x y + 2 a x , 3 a b x y + 2 a x , 2 2 2 2 3 3 4 4 12 a b x y + 4 a b x y + 2 a x , 3 2 3 2 4 4 5 5 10 a b x y + 5 a b x y + 2 a x , 3 3 3 3 4 2 4 2 5 5 6 6 40 a b x y + 15 a b x y + 6 a b x y + 2 a x ] (%i4) pui_direct ([y + x + 2*c, y + x + 2*b, y + x + 2*a], [[x, y], [a, b, c]], [2, 3]); 2 2 (%o4) [3 x + 2 a, 6 x y + 3 x + 4 a x + 4 a , 2 3 2 2 3 9 x y + 12 a x y + 3 x + 6 a x + 12 a x + 8 a ]
puireduc
donne les n premie`res fonctions puissances en fonction
des m premie`res.
(%i1) puireduc (3, [2]); 2 p1 (p1 - p2) (%o1) [2, p1, p2, p1 p2 - -------------] 2 (%i2) ratsimp (%); 3 3 p1 p2 - p1 (%o2) [2, p1, p2, -------------] 2
[x_1, ..., x_d]
les variables
n'intervenant pas dans la fonction de transformation f.
Afin de rendre plus efficaces les calculs on peut mettre des drapeaux
a` la variable resolvante
afin que des algorithmes ade'quates soient
utilise's :
Si la fonction f est unitaire :
(x1*x2 + x2*x3 + x3*x4 + x4*x5 + x5*x1 - (x1*x3 + x3*x5 + x5*x2 + x2*x4 + x4*x1))^2
le drapeau de resolvante
pourra e^tre respectivement :
(%i1) resolvante: unitaire$ (%i2) resolvante (x^7 - 14*x^5 + 56*x^3 - 56*x + 22, x, x^3 - 1, [x]); " resolvante unitaire " [7, 0, 28, 0, 168, 0, 1120, - 154, 7840, - 2772, 56448, - 33880, 413952, - 352352, 3076668, - 3363360, 23114112, - 30494464, 175230832, - 267412992, 1338886528, - 2292126760] 3 6 3 9 6 3 [x - 1, x - 2 x + 1, x - 3 x + 3 x - 1, 12 9 6 3 15 12 9 6 3 x - 4 x + 6 x - 4 x + 1, x - 5 x + 10 x - 10 x + 5 x 18 15 12 9 6 3 - 1, x - 6 x + 15 x - 20 x + 15 x - 6 x + 1, 21 18 15 12 9 6 3 x - 7 x + 21 x - 35 x + 35 x - 21 x + 7 x - 1] [- 7, 1127, - 6139, 431767, - 5472047, 201692519, - 3603982011] 7 6 5 4 3 2 (%o2) y + 7 y - 539 y - 1841 y + 51443 y + 315133 y + 376999 y + 125253 (%i3) resolvante: lineaire$ (%i4) resolvante (x^4 - 1, x, x1 + 2*x2 + 3*x3, [x1, x2, x3]); " resolvante lineaire " 24 20 16 12 8 (%o4) y + 80 y + 7520 y + 1107200 y + 49475840 y 4 + 344489984 y + 655360000 (%i5) resolvante: general$ (%i6) resolvante (x^4 - 1, x, x1 + 2*x2 + 3*x3, [x1, x2, x3]); " resolvante generale " 24 20 16 12 8 (%o6) y + 80 y + 7520 y + 1107200 y + 49475840 y 4 + 344489984 y + 655360000 (%i7) resolvante (x^4 - 1, x, x1 + 2*x2 + 3*x3, [x1, x2, x3, x4]); " resolvante generale " 24 20 16 12 8 (%o7) y + 80 y + 7520 y + 1107200 y + 49475840 y 4 + 344489984 y + 655360000 (%i8) direct ([x^4 - 1], x, x1 + 2*x2 + 3*x3, [[x1, x2, x3]]); 24 20 16 12 8 (%o8) y + 80 y + 7520 y + 1107200 y + 49475840 y 4 + 344489984 y + 655360000 (%i9) resolvante :lineaire$ (%i10) resolvante (x^4 - 1, x, x1 + x2 + x3, [x1, x2, x3]); " resolvante lineaire " 4 (%o10) y - 1 (%i11) resolvante: symetrique$ (%i12) resolvante (x^4 - 1, x, x1 + x2 + x3, [x1, x2, x3]); " resolvante symetrique " 4 (%o12) y - 1 (%i13) resolvante (x^4 + x + 1, x, x1 - x2, [x1, x2]); " resolvante symetrique " 6 2 (%o13) y - 4 y - 1 (%i14) resolvante: alternee$ (%i15) resolvante (x^4 + x + 1, x, x1 - x2, [x1, x2]); " resolvante alternee " 12 8 6 4 2 (%o15) y + 8 y + 26 y - 112 y + 216 y + 229 (%i16) resolvante: produit$ (%i17) resolvante (x^7 - 7*x + 3, x, x1*x2*x3, [x1, x2, x3]); " resolvante produit " 35 33 29 28 27 26 (%o17) y - 7 y - 1029 y + 135 y + 7203 y - 756 y 24 23 22 21 20 + 1323 y + 352947 y - 46305 y - 2463339 y + 324135 y 19 18 17 15 - 30618 y - 453789 y - 40246444 y + 282225202 y 14 12 11 10 - 44274492 y + 155098503 y + 12252303 y + 2893401 y 9 8 7 6 - 171532242 y + 6751269 y + 2657205 y - 94517766 y 5 3 - 3720087 y + 26040609 y + 14348907 (%i18) resolvante: symetrique$ (%i19) resolvante (x^7 - 7*x + 3, x, x1*x2*x3, [x1, x2, x3]); " resolvante symetrique " 35 33 29 28 27 26 (%o19) y - 7 y - 1029 y + 135 y + 7203 y - 756 y 24 23 22 21 20 + 1323 y + 352947 y - 46305 y - 2463339 y + 324135 y 19 18 17 15 - 30618 y - 453789 y - 40246444 y + 282225202 y 14 12 11 10 - 44274492 y + 155098503 y + 12252303 y + 2893401 y 9 8 7 6 - 171532242 y + 6751269 y + 2657205 y - 94517766 y 5 3 - 3720087 y + 26040609 y + 14348907 (%i20) resolvante: cayley$ (%i21) resolvante (x^5 - 4*x^2 + x + 1, x, a, []); " resolvante de Cayley " 6 5 4 3 2 (%o21) x - 40 x + 4080 x - 92928 x + 3772160 x + 37880832 x + 93392896
Pour la re'solvante de Cayley, les 2 derniers arguments sont neutres et le polyno^me donne' en entre'e doit ne'cessairement e^tre de degre' 5.
Voir e'galement :
resolvante_bipartite
, resolvante_produit_sym
,
resolvante_unitaire
, resolvante_alternee1
, resolvante_klein
,
resolvante_klein3
, resolvante_vierer
, resolvante_diedrale
.
P(x)
de degre n par la fonction $\prod_{1\leq i<j\leq n-1} (x_i-x_j)$.
Voir e'galement :
resolvante_produit_sym
, resolvante_unitaire
,
resolvante
, resolvante_klein
, resolvante_klein3
,
resolvante_vierer
, resolvante_diedrale
, resolvante_bipartite
.
P(x)
de degre n (n pair) par la fonction
$x_1x_2\ldots x_{n/2}+x_{n/2+1}\ldotsx_n$
Voir e'galement :
resolvante_produit_sym
, resolvante_unitaire
,
resolvante
, resolvante_klein
, resolvante_klein3
,
resolvante_vierer
, resolvante_diedrale
, resolvante_alternee1
.
(%i1) resolvante_bipartite (x^6 + 108, x); 10 8 6 4 (%o1) y - 972 y + 314928 y - 34012224 y
Voir e'galement :
resolvante_produit_sym
, resolvante_unitaire
,
resolvante
, resolvante_klein
, resolvante_klein3
,
resolvante_vierer
, resolvante_diedrale
,
resolvante_alternee1
.
P(x)
par la fonction x_1 x_2 + x_3 x_4
.
(%i1) resolvante_diedrale (x^5 - 3*x^4 + 1, x); 15 12 11 10 9 8 7 (%o1) x - 21 x - 81 x - 21 x + 207 x + 1134 x + 2331 x 6 5 4 3 2 - 945 x - 4970 x - 18333 x - 29079 x - 20745 x - 25326 x - 697
Voir e'galement :
resolvante_produit_sym
, resolvante_unitaire
,
resolvante_alternee1
, resolvante_klein
, resolvante_klein3
,
resolvante_vierer
, resolvante
.
P(x)
par la fonction x_1 x_2 x_4 + x_4
.
Voir e'galement :
resolvante_produit_sym
, resolvante_unitaire
,
resolvante_alternee1
, resolvante
, resolvante_klein3
,
resolvante_vierer
, resolvante_diedrale
.
P(x)
par la fonction x_1 x_2 x_4 + x_4
.
Voir e'galement :
resolvante_produit_sym
, resolvante_unitaire
,
resolvante_alternee1
, resolvante_klein
, resolvante
,
resolvante_vierer
, resolvante_diedrale
.
P(x)
.
(%i1) resolvante_produit_sym (x^5 + 3*x^4 + 2*x - 1, x); 5 4 10 8 7 6 5 (%o1) [y + 3 y + 2 y - 1, y - 2 y - 21 y - 31 y - 14 y 4 3 2 10 8 7 6 5 4 - y + 14 y + 3 y + 1, y + 3 y + 14 y - y - 14 y - 31 y 3 2 5 4 - 21 y - 2 y + 1, y - 2 y - 3 y - 1, y - 1] (%i2) resolvante: produit$ (%i3) resolvante (x^5 + 3*x^4 + 2*x - 1, x, a*b*c, [a, b, c]); " resolvante produit " 10 8 7 6 5 4 3 2 (%o3) y + 3 y + 14 y - y - 14 y - 31 y - 21 y - 2 y + 1
Voir e'galement :
resolvante
, resolvante_unitaire
,
resolvante_alternee1
, resolvante_klein
, resolvante_klein3
,
resolvante_vierer
, resolvante_diedrale
.
P(x)
par le polyn\^ome Q(x)
.
Voir e'galement :
resolvante_produit_sym
, resolvante
,
resolvante_alternee1
, resolvante_klein
, resolvante_klein3
,
resolvante_vierer
, resolvante_diedrale
.
P(x)
par la fonction x_1 x_2 - x_3 x_4
.
Voir e'galement :
resolvante_produit_sym
, resolvante_unitaire
,
resolvante_alternee1
, resolvante_klein
, resolvante_klein3
,
resolvante
, resolvante_diedrale
.
h
avec l'entier i : hi
.
Cette fonction donne l'expression de P en fonction des fonctions
de Schur.
(%i1) schur2comp (h1*h2 - h3, [h1, h2, h3]); (%o1) s 1, 2 (%i2) schur2comp (a*h3, [h3]); (%o2) s a 3
Voir e'galement prodrac
.
contract
.
Autres fonctions de changements de repre'sentations :
contract
, cont2part
, explose
, part2cont
, partpol
, tpartpol
.
partpol
.
Autres fonctions de changements de repre'sentations :
contract
, cont2part
, explose
, part2cont
, partpol
, tcontract
.
(%i1) treillis (4); (%o1) [[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]
Voir e'galement : lgtreillis
, ltreillis
et treinat
.
(%i1) treinat ([5]); (%o1) [[5]] (%i2) treinat ([1, 1, 1, 1, 1]); (%o2) [[5], [4, 1], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1], [1, 1, 1, 1, 1]] (%i3) treinat ([3, 2]); (%o3) [[5], [4, 1], [3, 2]]
Voir e'galement : lgtreillis
, ltreillis
et treillis
.
Go to the first, previous, next, last section, table of contents.