
Security Extension Server DesignDraft Version 3.0David P. WigginsX Consortium, Inc.December 20, 1996AbstractThis paper describes the implementation strategy used to implementvarious pieces of the SECURITY Extension.



Copyright c
1996 X Consortium, Inc. All Rights Reserved.THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OFANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TOTHE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THEX CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHERLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THESOFTWARE OR THE USE OF OR OTHER DEALINGS IN THE SOFT-WARE.Except as contained in this notice, the name of the X Consortium shall not beused in advertising or otherwise to promote the sale, use or other dealings inthis Software without prior written authorization from the X Consortium.

2



1 GenerateAuthorization RequestThe major steps taken to execute this request are as follows.Sanity check arguments. The interesting one is the group, which must bechecked by some other module(s), initially just the embedding extension. Usea new callback for this. The callback functions will be passed a small structurecontaining the group ID and a Boolean value which is initially false. If any ofthe callbacks recognize the ID, they should set the boolean to true. If after thecallbacks have been called the boolean is false, return an error, since nobodyrecognized it.Use the existing Xkey library function XkeyGenerateAuthorization to generatethe new authorization.Use the existing os layer function AddAuthorization to add the new authoriza-tion to the server's internal database.Use the existing os layer function AuthorizationToID to retrieve the authoriza-tion ID that the os layer assigned to the new authorization.Change the os layer to use authorization IDs allocated from the server's ID rangevia FakeClientID(0) instead of using a simple incrementing integer. This lets ususe the resource database to attach additional information to an authorizationwithout needing any changes to os data structures.Add the authorization ID as a server resource. The structure for an authoriza-tion resource will contain the timeout, trust-level, and group sent in the request,a reference count of how many clients are connected with this authorization, atimer pointer, and time-remaining counter.Return the authorization ID and generated auth data to the client.2 Client connectionThe Security extension needs to be aware of new client connections primarilyso that it copy the trust-level of the authorization that was used to the clientstructure. The trust-level is needed in the client structure because it will beaccessed frequently to make access control decisions for the client. We will usethe existing ClientStateCallback to catch new client connections.We also need to copy the authorization ID into the client structure. The autho-rization ID is already stored in an os private hung from the client, and we willadd a new os function AuthorizationIDOfClient to retrieve it. However, whena client disconnects, this os private is already gone before ClientStateCallbacksare called. We need the authorization ID at client disconnect time for reasons3



described below.Now that we know what needs to be done and why, let's walk through thesequnce of events.When a new client connects, get the authorization ID with AuthorizationIDOf-Client, store it in the client, then pass that ID to LookupIDByType to �nd theauthorization. If we get a non-NULL pointer back, this is a generated authoriza-tion, not one of the prede�ned ones in the server's authority �le. In this case,increment the authorization's reference count. If the reference count is now 1,cancel the timer for this authorization using the trivial new os layer functionTimerCancel. Lastly, copy the trust-level of this authorization into the clientstructure so that it can be reached quickly for future access control decisions.The embedding extension can determine the group to use for a new client inthe same way that we determined the trust level: get the authorization ID, lookit up, and if that succeeds, pluck the group out of the returned authorizationstructure.3 Client disconnectionUse the existing ClientStateCallback to catch client disconnections. If the clientwas using a generated authorization, decrement its reference count. If the ref-erence count is now zero, use the existing os layer function TimerSet to starta timer to count down the timeout period for this authorization. Record thetimer ID for this authorization. When the timer �res, the authorization shouldbe freed, removing all traces of it from the server.There is a slight complication regarding the timeout because the timer interfacein the server allows for 32 bits worth of milliseconds, while the timeout speci�edin GenerateAuthorization has 32 bits worth of seconds. To handle this, if thespeci�ed time is more than the timer interface can handle, the maximum possibletimeout will be set, and time-remaining counter for this authorization will beused to track the leftover part. When the timer �res, it should �rst check to seeif there is any leftover time to wait. If there is, it should set another timer tothe minimum of (the maximum possible timeout) and the time remaining, andnot do the revocation yet.4 Resource ID securityTo implement the restriction that untrusted clients cannot access resources oftrusted clients, we add two new functions to dix: SecurityLookupIDByType and4



SecurityLookupIDByClass. Hereafter we will use SecurityLookupID to referto both functions. In addition to the parameters of the existing LookupIDfunctions, these functions also take a pointer to the client doing the lookup,and an access mode that conveys a high-level idea of what the client intendsto do with the resource (currently just read, write, destroy, and unknown).Passing NullClient for the client turns o� access checks. SecurityLookupIDcan return NULL for two reasons: the resource doesn't exist, or it does butthe client isn't allowed to access it. The caller cannot tell the di�erence. Mostplaces in dix call these new lookup functions instead of the old LookupID, whichcontinue to do no access checking. Extension \Proc" functions should probablyuse SecurityLookupID, not LookupID. Ddxen can continue to use LookupID.Inside SecurityLookupID, the function client� >CheckAccess is called passingthe client, resource id, resource type/class, resource value, and access mode.CheckAccess returns the resource value if access is allowed, else it returns NULL.The entire resource ID security policy of the Security extension can be replacedby plugging in your own access decision function here. This in combination withthe access mode parameter should be enough to implement a more traditionalDAC (discretionary access control) policy.Since we need client and access mode information to do access controlled re-source lookups, we add (and use) several other macros and functions that par-allel existing ones with the addition of the missing information. The list in-cludes SECURITY VERIFY GC, SECURITY VERIFY DRAWABLE, SECU-RITY VERIFY GEOMETRABLE, SecurityLookupWindow, SecurityLookup-Drawable, and dixChangeGC. The dixChangeGC interface is worth mentioningbecause in addition to a client parameter, we introduce a pointer-to-union pa-rameter that should let us eliminate the warnings that some compilers give whenyou assign small integers to pointers, as the DoChangeGC interface required.For more details, see the comment preceding dixChangeGC in dix/gc.c.If XCSECURITY is not de�ned (the Security extension is not being built), theserver uses essentially the same code as before for resource lookups.5 Extension securityA new �eld in the ExtensionEntry structure, Bool secure, tells whether theextension is considered secure. It is initialized to FALSE by AddExtension.The following new dix function can be used to set the secure �eld:void DeclareExtensionSecurity(char *extname, Bool secure)The name of the extension and the desired value of the secure �eld are passed. Ifan extension is secure, a call to this function with secure = TRUE will typically5



appear right after the call to AddExtension. DeclareExtensionSecurity shouldbe called during server reset. It should not be called after the �rst client hasconnected. Passing the name of an extension that has not been initialized hasno e�ect (the secure value will not be remembered in case the extension is laterinitialized).For untrusted clients, ProcListExtensions omits extensions that have secure =FALSE, and ProcQueryExtension reports that such extensions don't exist.To prevent untrusted clients from using extensions by guessing their major op-code, one of two new Proc vectors are used by untusted clients, Untrused-ProcVector and SwappedUntrustedProcVector. These have the same contentsas ProcVector and SwappedProcVector respectively for the �rst 128 entries.Entries 128 through 255 are initialized to ProcBadRequest. If DeclareExten-sionSecurity is called with secure = TRUE, that extension's dispatch functionis plugged into the appropriate entry so that the extension can be used. If De-clareExtensionSecurity is called with secure = FALSE, the appropriate entry isreset to ProcBadRequest.Now we can explain why DeclareExtensionSecurity should not be called after the�rst client connects. In some cases, the Record extension gives clients a privatecopy of the proc vector, which it then changes to intercept certain requests.Changing entries in UntrusedProcVector and SwappedUntrustedProcVector willhave no e�ect on these copied proc vectors. If we get to the point of needing anextension request to control which extensions are secure, we'll need to invent away to get those copied proc vectors changed.

6


