The X Font Library

Keith Packard
MIT X Consortium

David Lemke
Network Computing Devices

This document describes the data structures and interfaces for using the X Fontllibrary
is intended as a reference for programmers building X and Foersenbu may want
to refer to the following documents:

. "Definition of the Porting Layer for the X v11 Sample Server" for a discussion on
how this library interacts with the X server

. "Font Server Implementation Overview" which discusses the design of the font
server.

. "Bitmap Distribution Format" which e@rs the contents of the bitmap font files

which this library reads; although the library is capable of reading other formats as
well, including non-bitmap fonts.

. "The X Font Service Protocol" for a description of the constraints placed on the
design by including support for this font service mechanism.

This document assumes the reader is familiar with the X server design, the X protocol as
it relates to fonts and the C programming language. As with most MIT produced docu-
mentation, this relies heavily on the source code, ge adsting handy.

1. Requirementsfor the Font library

To avoid miles of duplicate code in the X servitre font server and the various font
manipulation tools, the font library should provide interfaces appropriate for all of these
tasks. Inparticular the X server and font server should be able to both use the library to
access disk based fonts, and to communicate with a font.s&weroviding a general
library, we hoped to &oid duplicating code between the X server and font server.

Another requirement is that the X server (o@ea font server) be able to continue ser-
vicing requests from other clients whileaiting a response from the font server on

behalf of one client. This is the strongest requirement placed on the font, ldnciyas
warped the design in curiousays. Becausbkoth the X server and font server are single
threaded, the font library must not suspend intern@tier it returns an indication of
suspension to the application which continues processing other things, until the font data
is readyat which time it restarts the suspended request.

Because the code for reading and manipulating bitmap font data is used by the font appli-
cations "mkfontdir" and "bdftopcf”, the font library includes bitmap-font specific inter-
faces which those applications use, instead of the more general interfaces used by the X
and font servers, which are wvexe of the source of the font data. These routines will be
refered to as the bitmap font access methods.

Font Library Interice -1- duly 27, 1991

2. General Font Library Interface details.

To avoid collision between the #define name space for errors, the Font library defines a
new set of return values:

#define Al ocError 80
#define Still Wrking 81
#defi ne Font NaneAl i as 82

#def i ne BadFont Nane 83
#def i ne Suspended 84
#def i ne Successf ul 85
#def i ne BadFont Pat h 86

#def i ne BadChar Range 87
#def i ne BadFont For mat 88
#defi ne FPEReset Failed 89

Wheneer a routine returnssuspended, the font library will notify the caller (via the
ClientSignal interface described below) who should thewokethe same routine again
with the same arguments.

3. Font Path Elements

At the center of the general font access methods used by X and fs is the Font Path Ele-
ment data structure. Lekmost structures in the X serydhis contains a collection of
data and some function pointers for manipulating this data:

/* External view of font paths */
typedef struct _Font Pat hEl ement {

i nt nanme_| engt h;
char *name;

i nt type;

I nt ref count;

poi nt er private;

} Font Pat hEl enent Rec, *Font Pat hEl enent Ptr;

typedef struct _FPEFunctions {

i nt (*nane_check) (/* name */);

i nt (*init_fpe) (/* fpe */);

i nt (*reset _fpe) (/* fpe */);

i nt (*free fpe) (/* fpe */);

i nt (*open_font) (/* client, fpe, flags,

name, nanel en, format,
fid, ppfont, alias */);

i nt (*close font) (/* pfont */);

i nt (*list_fonts) (/* client, fpe, pattern,
patl en, maxnanes, paths */);

i nt (*start _list_fonts_with_info) (

[* client, fpe, nanme, nanelen,
maxnanmes, data */);
i nt (*Iist_next_font_with_info) (
[* client, fpe, nanme, nanelen,
info, num data */);
i nt (*wakeup_fpe) (/* fpe, mask */);
i nt (*client _died) (/* client, fpe */);
} FPEFunctionsRec, FPEFuncti ons;
The function pointers are split out from the data structurevi® samory; additionally,
this avoids ary complications when initializing the data structure as there would not be
ary way to disceer the appropriate function to call (a chicken and egg problem).

Font Library Interice 2 - duly 27, 1991

When a font path type is initialized, it passes the function pointers to the server which are
then stored in an FPEFunctionsRec. Each function is described indlarn.

3.1. (*name_check)

Each nev font path member is passed to this function; if the return value is Successful,
then the FPE recognises the format of the string. This does not guarantee that the FPE
will be able to successfully use this memblesr example, the disk-based font directory

file "fonts.dir" may be corrupted, this will not be detected until the font path is initialized.
This routine neer returnsSuspended.

3.2. (*init_fpe)

Initialize a nev font path element. This function preparesa fant path element for

other requests: the disk font routine reads the "fonts.dir" and "fonts.alias" files into the
internal format, while the font server routine connects to the requested font server and
prepares for using it. This routine returns Successfwifyghing went OK, otherwise

the return value indicates the source of the problem. This routuee neéurnsSus-
pended.

3.3. (*reset_fpe)

When the X font path is reset, and some of tive members are also in the old font path,
this function is called to reinitialize those FPEs. This routine returns Successtilyif e
thing went OK. It returns FPEResetFailed if (for some reason) the reset failed, and the
caller should remee the old FPE and simply create amnene in its place. This is used

by the disk-based fonts routine as resetting the internal directory structures would be
more complicated than simply having destroying the old and creating. a ne

3.4. (*free_fpe)

When the server is finished with an FPE, this function is called to disposyg iotemal
state. Itshould return Successful, unless something terrible happens.

3.5. (*open_font)
This routine requests that a font be opened. The client argument is used by the font

library only in connection with suspending/restarting the request. The flags argument
specifies some behaviour for the library and can gefin

[* OpenFont flags */

#def i ne Font Loadl nfo 0x0001
#def i ne Font LoadPr ops 0x0002
#def i ne Font LoadMetrics 0x0004
#def i ne Font LoadBi t maps 0x0008
#def i ne Font LoadAl | 0x000f
#defi ne Font OQpenSync 0x0010

The various fields specify which portions of the font should be loaded at this time. When
FontOpenSync is specified, this routine will not return until all of the requested portions
are loaded. Otherwise, this routine may retougpended. When the presented font

name is actually an alias for some other font name, FontName Alias is returned, and the
actual font name is stored in the location pointed to bylile argument as a null-termi-
nated string.

3.6. (*close font)

When the server is finished with a font, this routine disposesyahtarnal state and
frees the font data structure.

Font Library Interice -3- duly 27, 1991

3.7. (*list_fonts)

Thepaths argument is a data structure which will be filled with all of the font names from
this directory which match the specified pattern. At mastames will be added. This
routine may returidsuspended.

3.8. (*start_list_fonts with_info)

This routine sets gninternal state for a verbose listing of all fonts matching the specified
pattern. Thigoutine may returisuspended.

3.9. (*list_next_font_with_info)

To avoid storing huge amounts of data, the interface for ListFontsWithinfo allows the
server to get one reply at a time and forward that to the client. When the font name
returned is actually an alias for some other fBohtNameAlias will be returned. The

actual font name is return instead, and the font alias which matched the pattern is returned
in the location pointed to by data as a null-terminated string. The caller can then get the
information by recursely listing that font name with a maxnames of 1. W/iSencess-

ful is returned, the matching font name is returned, and a FontinfoPtr is stored in the
location pointed to bgata. Data must be initialized with a pointer to a FontinfoRec
allocated by the calleWhen the pointer pointed to lokata is not left pointing at that
storage, the caller mustritee the associated property data. This routine may réusn
pended.

3.10. (*wakeup_fpe)
Wheneer an FPE function has returned Suspended, this routine is called wén¢he

application wakes up from waiting for input (from select(2)). This mask argument should
be the value returned from select(2).

3.11. (*client_died)
When an FPE function has returragspended and the associated client is being

destroyed, this function allows the font library to dispose gfstate associated with that
client.

4. Fonts

The data structure which actually contains the font information has changed significantly
since previous releases; itmattempts to hide the actual storage format for the data from
the application, providing accessor functions to get at the data. This allows a range of
internal details for different font sources. The structure is split inbgpigces, so that
ListFontsWithinfo can share information from the font when it has been loaded. The
Fontinfo structure, then, contains only information germane to LFWI.

typedef struct _Fontlnfo {
unsi gned short firstCol; /* range of glyphs for this font
unsi gned short | astCol;
unsi gned short firstRow,
unsi gned short | ast Row,

unsi gned short defaul t Ch; [* default character index */
unsi gned int noOverl ap: 1; /* no conbination of glyphs over
unsigned int term nal Font: 1; [* Character cell font */

unsi gned int constantMetrics: 1; [* all nmetrics are the sanme */
unsi gned int constant Wdth: 1; [* all character widths are the
unsi gned int inklnside:1; [* all i1nk inside character cel
unsigned int inkMetrics:1; [* font has ink nmetrics */
unsigned int allExist:1; /* no mssing chars in range */

Font Library Interice 4 - duly 27, 1991

unsi gned int drawbDirection:

unsi gned i nt cachabl e: 1;
unsi gned int ananorphic:1;

short maxOver | ap;

short pad;

xCharlnfo maxbounds;

xCharlnfo m nbounds;

xCharlnfo i nk_maxbounds;

xCharlnfo i nk_m nbounds;

short f ont Ascent;

short f ont Descent ;

i nt npr ops;

Font PropPtr props;

char *i1sStringProp;
} Font | nf oRec,

* left-to-right/right-to-left*/
* font needn’t be opened each t
* font is strangely scal ed */

* maxi mum overl ap anmount */

* unused */

* glyph netrics maxi nuns */

* glyph netrics mninmunms */

ink netrics maxi nuns */

* ink nmetrics mninmns */

* font ascent anmount */

* font descent amount */

* nunber of font properties */
* font properties */

* bool ean array */

*Font | nf oPtr ;

The font structure, then, contains a font info record, the format of the bits in each bitmap
and the functions which access the font records (which are stored in an opaque format

hung of of fontPrvate).
typedef struct _Font {

I nt refcnt;
Font | nf oRec i nf o;
char bit; [* bit order: LSBFirst/MSBFirst
char byt e; /* byte order: LSBFirst/NMSBFirst
char gl yph; [* glyph pad: 1, 2, 4 or 8 */
char scan; [* glyph scan unit: 1, 2 or 4 */
fsBi t mapFor mat format; /* FS-style format (packed) */
i nt (*get _glyphs) (/* font, count, chars, encoding, count,
i nt (*get _netrics) (/* font, count, chars, encoding, count,
i nt (*get _bitmaps) (/* client, font, flags, format,
fl ags, nranges, ranges, data_sizep,
num gl yphsp, offsetsp, glyph_datap,
free datap */);
i nt (*get _extents) (/* client, font, flags, nranges,
ranges, nextentsp, extentsp */);
voi d (*unload_font) (/* font */);
Font Pat hEl enent Ptr f pe; /* FPE associated with this font

poi nt er svrPrivate;

poi nt er font Private;

poi nt er f pePrivate;

i nt maxPri vat e;

poi nt er *devPri vat es;
} Font Rec, *FontPtr;

[* XI'FS private data */
/[* private to font */

/[* private to FPE */

/* devPrivates (see bel ow)
/* */

*/

Yes, there are seral different prvate pointers in the Font structure; yheere added hap-
hazardly until the devRsate pointers were added. Future releases mayvemme (or
all) of the specific pointers, leaving only the dev&gs mechanism.

There are tw gmilar interfaces implemented - get_glyphs/get_metrics and
get_bitmaps/get xtents. Do little time caused the font-server specific interfaces to be
placed in the font library (and portions duplicated in each renderer) instead of having
them integrated into the font server itself. This may change. The X server uses only
get_glyphs/get_metrics, and those will not change dramatidadigh of the routines is

described below

Font Library Interice

dly 27, 1991

4.1. (*get_glyphs)

This routine returns CharlnfoPtrs for each of the requested characters in the font. If the
character does not exist in the font, the default character will be returned, unless no
default character exists in which case that character is skipped. Thus, the number of
glyphs returned will not alays be the same as the number of characters passed in.

4.2. (*get_metrics)
This is similar to (*get_glyphs) except that pointers to xCharinfo structures are returned,
and, if the font has ink metrics, those are returned instead of the bitmap metrics.

4.3. (*get-bitmaps)
This packs the glyph image data in the requested format and returns it. The
ranges/nranges argument specify the set of glyphs from the font to pack together.

4.4. (*get_extents)
This returns the metrics for the specified font from the specified ranges.

4.5. (*unload_font)

This is called from the FPE routine (*close_font), and so shouldveobe alled from
the application.

4.6. maxPrivate

When initializing a ne font structure, maxRrte should be set to -1 so that the FontSet-
Private() macro works properly with an indef 0. Initializing maxPrvate to O can cause
problems if the server tries to set something atdride

Font Library Interice 6 - duly 27, 1991

