Library Coq.Program.Syntax
Custom notations and implicits for Coq prelude definitions.
Author: Matthieu Sozeau
Institution: LRI, CNRS UMR 8623 - UniversitÃcopyright Paris Sud
91405 Orsay, France
Notations for the unit type and value à la Haskell.
Set maximally inserted implicit arguments for standard definitions.
Implicit Arguments eq [[
A]].
Implicit Arguments Some [[
A]].
Implicit Arguments None [[
A]].
Implicit Arguments inl [[
A] [
B]].
Implicit Arguments inr [[
A] [
B]].
Implicit Arguments left [[
A] [
B]].
Implicit Arguments right [[
A] [
B]].
Require Import Coq.Lists.List.
Implicit Arguments nil [[
A]].
Implicit Arguments cons [[
A]].
Standard notations for lists.
Notation " [ ] " :=
nil :
list_scope.
Notation " [ x ] " := (
cons x nil) :
list_scope.
Notation " [ x ; .. ; y ] " := (
cons x ..
Treating n-ary exists
Notation " 'exists' x y , p" := (
ex (
fun x => (
ex (
fun y =>
p))))
(
at level 200,
x ident,
y ident,
right associativity) :
type_scope.
Notation " 'exists' x y z , p" := (
ex (
fun x => (
ex (
fun y => (
ex (
fun z =>
p))))))
(
at level 200,
x ident,
y ident,
z ident,
right associativity) :
type_scope.
Notation " 'exists' x y z w , p" := (
ex (
fun x => (
ex (
fun y => (
ex (
fun z => (
ex (
fun w =>
p))))))))
(
at level 200,
x ident,
y ident,
z ident,
w ident,
right associativity) :
type_scope.
Tactic Notation "exists"
constr(
x) :=
exists x.
Tactic Notation "exists"
constr(
x)
constr(
y) :=
exists x ;
exists y.
Tactic Notation "exists"
constr(
x)
constr(
y)
constr(
z) :=
exists x ;
exists y ;
exists z.
Tactic Notation "exists"
constr(
x)
constr(
y)
constr(
z)
constr(
w) :=
exists x ;
exists y ;
exists z ;
exists w.