adjacent_difference
Prototype
template <class InputIterator, class OutputIterator>
OutputIterator adjacent_difference(InputIterator first, InputIterator last,
OutputIterator result);
template <class InputIterator, class OutputIterator, class BinaryFunction>
OutputIterator adjacent_difference(InputIterator first, InputIterator last,
OutputIterator result,
BinaryFunction binary_op);
Description
The first version of DefinitionDefined in the standard header numeric, and in the nonstandard backward-compatibility header algo.h. Requirements on typesFor the first version:
For the second version:
Preconditions
ComplexityLinear. Zero applications of the binary operation if Exampleint main()
{
int A[] = {1, 4, 9, 16, 25, 36, 49, 64, 81, 100};
const int N = sizeof(A) / sizeof(int);
int B[N];
cout << "A[]: ";
copy(A, A + N, ostream_iterator<int>(cout, " "));
cout << endl;
adjacent_difference(A, A + N, B);
cout << "Differences: ";
copy(B, B + N, ostream_iterator<int>(cout, " "));
cout << endl;
cout << "Reconstruct: ";
partial_sum(B, B + N, ostream_iterator<int>(cout, " "));
cout << endl;
}
Notes[1] The reason it is useful to store the value of the first element, as well as simply storing the differences, is that this provides enough information to reconstruct the input range. In particular, if addition and subtraction have the usual arithmetic definitions, then [2] Note that See also |