
The ITK Software Guide
Second Edition

Updated for ITK version 2.4

Luis Ibáñez
Will Schroeder

Lydia Ng
Josh Cates

and the Insight Software Consortium

November 21, 2005

http://www.itk.org
Email: insight-users@itk.org

http://www.itk.org

The purpose of computing is Insight, not numbers.

Richard Hamming

Abstract

The Insight Toolkit(ITK) is an open-source software toolkit for performing registration and
segmentation.Segmentationis the process of identifying and classifying data found in adigi-
tally sampled representation. Typically the sampled representation is an image acquired from
such medical instrumentation as CT or MRI scanners.Registrationis the task of aligning or de-
veloping correspondences between data. For example, in themedical environment, a CT scan
may be aligned with a MRI scan in order to combine the information contained in both.

ITK is implemented in C++. It is cross-platform, using a build environment known asCMake
to manage the compilation process in a platform-independent way. In addition, an automated
wrapping process (Cable) generates interfaces between C++ and interpreted programming lan-
guages such as Tcl, Java, andPython. This enables developers to create software using a variety
of programming languages. ITK’s C++ implementation style is referred to as generic program-
ming, which is to say that it uses templates so that the same code can be appliedgenericallyto
any class or type that happens to support the operations used. Such C++ templating means that
the code is highly efficient, and that many software problemsare discovered at compile-time,
rather than at run-time during program execution.

Because ITK is an open-source project, developers from around the world can use, debug, main-
tain, and extend the software. ITK uses a model of software development referred to as Extreme
Programming. Extreme Programming collapses the usual software creation methodology into
a simultaneous and iterative process of design-implement-test-release. The key features of Ex-
treme Programming are communication and testing. Communication among the members of
the ITK community is what helps manage the rapid evolution ofthe software. Testing is what
keeps the software stable. In ITK, an extensive testing process (using a system known asDart)
is in place that measures the quality on a daily basis. The ITKTesting Dashboard is posted
continuously, reflecting the quality of the software at any moment.

This book is a guide to using and developing with ITK. The sample code in thedirectory pro-
vides a companion to the material presented here. The most recent version of this document is
available online athttp://www.itk.org/ItkSoftwareGuide.pdf.

http://www.itk.org
http://www.cmake.org
http://public.kitware.com/Cable/HTML/Index.html
http://www.python.org
http://public.kitware.com/dashboard.php
http://www.itk.org/cgi-bin/viewcvs.cgi/Examples/?root=Insight
http://www.itk.org/ItkSoftwareGuide.pdf

Contributors

The Insight Toolkit(ITK) has been created by the efforts of many talented individualsand
prestigious organizations. It is also due in great part to the vision of the program established by
Dr. Terry Yoo and Dr. Michael Ackerman at the National Library of Medicine.

This book lists a few of these contributors in the following paragraphs. Not all developers of
ITK are credited here, so please visit the Web pages athttp://www.itk.org/HTML/About.htm
for the names of additional contributors, as well as checking the CVS source logs for code
contributions.

The following is a brief description of the contributors to this software guide and their contri-
butions.

Luis Ib áñez is principal author of this text. He assisted in the design and layout of the text,
implemented the bulk of the LATEX and CMake build process, and was responsible for the bulk
of the content. He also developed most of the example code found in theInsight/Examples
directory.

Will Schroeder helped design and establish the organization of this text and the
Insight/Examples directory. He is principal content editor, and has authoredseveral chap-
ters.

Lydia Ng authored the description for the registration framework and its components, the sec-
tion on the multiresolution framework, and the section on deformable registration methods.
She also edited the section on the resampling image filter andthe sections on various level set
segmentation algorithms.

Joshua Catesauthored the iterators chapter and the text and examples describing watershed
segmentation. He also co-authored the level-set segmentation material.

Jisung Kim authored the chapter on the statistics framework.

Julien Jomier contributed the chapter on spatial objects and examples on model-based regis-
tration using spatial objects.

http://www.itk.org
http://www.itk.org/HTML/About.htm

vi

Karthik Krishnan reconfigured the process for automatically generating images from all the
examples. Added a large number of new examples and updated the Filtering and Segmentation
chapters for the second edition.

Stephen Aylwardcontributed material describing spatial objects and theirapplication.

Tessa Sundaramcontributed the section on deformable registration using the finite element
method.

YinPeng Jin contributed the examples on hybrid segmentation methods.

Celina Imielinska authored the section describing the principles of hybrid segmentation meth-
ods.

Mark Foskey contributed the examples on the AutomaticTopologyMeshSource class.

Mathieu Malaterre contributed the entire section on the description and use ofDICOM readers
and writers based on the GDCM library. He also contributed anexample on the use of the
VTKImageIO class.

Gavin Baker contributed the section on how to write composite filters. Also known as minip-
ipeline filters.

CONTENTS

I Introduction 1

1 Welcome 3

1.1 Organization. 3

1.2 How to Learn ITK . 4

1.3 Software Organization. 4

1.3.1 Obtaining the Software. 4

1.4 Downloading ITK . 5

1.4.1 Downloading Packaged Releases. 6

1.4.2 Downloading from CVS. 6

1.4.3 Join the Mailing List . 6

1.4.4 Directory Structure. 7

1.4.5 Documentation. 9

1.4.6 Data. 9

1.5 The Insight Community and Support. 10

1.6 A Brief History of ITK . 10

2 Installation 13

2.1 Configuring ITK . 13

2.1.1 Preparing CMake. 14

2.1.2 Configuring ITK . 15

2.2 Getting Started With ITK . 16

viii Contents

2.2.1 Hello World ! . 17

3 System Overview 19

3.1 System Organization. 19

3.2 Essential System Concepts. 20

3.2.1 Generic Programming. 21

3.2.2 Include Files and Class Definitions. 21

3.2.3 Object Factories. 22

3.2.4 Smart Pointers and Memory Management. 22

3.2.5 Error Handling and Exceptions. 24

3.2.6 Event Handling. 24

3.2.7 Multi-Threading . 25

3.3 Numerics. 25

3.4 Data Representation. 27

3.5 Data Processing Pipeline. 28

3.6 Spatial Objects. 29

3.7 Wrapping. 30

II User’s Guide 33

4 DataRepresentation 35

4.1 Image. 35

4.1.1 Creating an Image. 35

4.1.2 Reading an Image from a File. 37

4.1.3 Accessing Pixel Data. 38

4.1.4 Defining Origin and Spacing. 39

4.1.5 RGB Images . 43

4.1.6 Vector Images. 45

4.1.7 Importing Image Data from a Buffer. 46

4.2 PointSet. 49

4.2.1 Creating a PointSet. 49

4.2.2 Getting Access to Points. 51

4.2.3 Getting Access to Data in Points. 53

Contents ix

4.2.4 RGB as Pixel Type. 56

4.2.5 Vectors as Pixel Type. 57

4.2.6 Normals as Pixel Type. 60

4.3 Mesh . 62

4.3.1 Creating a Mesh. 62

4.3.2 Inserting Cells. 64

4.3.3 Managing Data in Cells. 67

4.3.4 Customizing the Mesh. 70

4.3.5 Topology and the K-Complex. 73

4.3.6 Representing a PolyLine. 81

4.3.7 Simplifying Mesh Creation. 84

4.3.8 Iterating Through Cells. 86

4.3.9 Visiting Cells . 89

4.3.10 More on Visiting Cells. 91

4.4 Path. 95

4.4.1 Creating a PolyLineParametricPath. 95

4.5 Containers . 96

5 Spatial Objects 101

5.1 Introduction . 101

5.2 Hierarchy. 102

5.3 SpatialObject Tree Container. 104

5.4 Transformations. 105

5.5 Types of Spatial Objects. 109

5.5.1 ArrowSpatialObject. 110

5.5.2 BlobSpatialObject. 110

5.5.3 CylinderSpatialObject. 112

5.5.4 EllipseSpatialObject. 113

5.5.5 GaussianSpatialObject. 114

5.5.6 GroupSpatialObject. 115

5.5.7 ImageSpatialObject. 116

5.5.8 ImageMaskSpatialObject. 118

x Contents

5.5.9 LandmarkSpatialObject. 120

5.5.10 LineSpatialObject. 121

5.5.11 MeshSpatialObject. 123

5.5.12 SurfaceSpatialObject. 125

5.5.13 TubeSpatialObject. 127

VesselTubeSpatialObject. 129

DTITubeSpatialObject. 131

5.6 SceneSpatialObject. 133

5.7 Read/Write SpatialObjects. 135

5.8 Statistics Computation via SpatialObjects. 136

6 Filtering 139

6.1 Thresholding. 139

6.1.1 Binary Thresholding. 139

6.1.2 General Thresholding. 142

6.2 Edge Detection. 145

6.2.1 Canny Edge Detection. 145

6.3 Casting and Intensity Mapping. 146

6.3.1 Linear Mappings. 146

6.3.2 Non Linear Mappings. 149

6.4 Gradients. 152

6.4.1 Gradient Magnitude. 152

6.4.2 Gradient Magnitude With Smoothing. 153

6.4.3 Derivative Without Smoothing. 156

6.5 Second Order Derivatives. 158

6.5.1 Second Order Recursive Gaussian. 158

6.5.2 Laplacian Filters . 162

Laplacian Filter Finite Difference. 162

Laplacian Filter Recursive Gaussian. 162

6.6 Neighborhood Filters. 167

6.6.1 Mean Filter . 168

6.6.2 Median Filter . 169

Contents xi

6.6.3 Mathematical Morphology. 171

Binary Filters . 172

Grayscale Filters. 174

6.6.4 Voting Filters . 177

Binary Median Filter . 177

Hole Filling Filter . 179

Iterative Hole Filling Filter. 182

6.7 Smoothing Filters . 185

6.7.1 Blurring . 185

Discrete Gaussian. 185

Binomial Blurring . 189

Recursive Gaussian IIR. 190

6.7.2 Local Blurring . 193

Gaussian Blur Image Function. 193

6.7.3 Edge Preserving Smoothing. 194

Introduction to Anisotropic Diffusion . 194

Gradient Anisotropic Diffusion . 195

Curvature Anisotropic Diffusion. 197

Curvature Flow. 200

MinMaxCurvature Flow . 202

Bilateral Filter . 205

6.7.4 Edge Preserving Smoothing in Vector Images. 207

Vector Gradient Anisotropic Diffusion. 208

Vector Curvature Anisotropic Diffusion. 209

6.7.5 Edge Preserving Smoothing in Color Images. 211

Gradient Anisotropic Diffusion . 211

Curvature Anisotropic Diffusion. 214

6.8 Distance Map. 216

6.9 Geometric Transformations. 220

6.9.1 Filters You Should be Afraid to Use. 220

6.9.2 Change Information Image Filter. 220

6.9.3 Flip Image Filter . 221

xii Contents

6.9.4 Resample Image Filter. 222

Introduction. 222

Importance of Spacing and Origin. 228

A Complete Example. 234

Rotating an Image . 238

Rotating and Scaling an Image. 240

Resampling using a deformation field. 242

Subsampling and image in the same space. 244

Resampling an Anisotropic image to make it Isotropic. 247

6.10 Frequency Domain. 253

6.10.1 Computing a Fast Fourier Transform (FFT). 253

6.10.2 Filtering on the Frequency Domain. 256

6.11 Extracting Surfaces. 259

6.11.1 Surface extraction. 259

7 Reading and Writing Images 263

7.1 Basic Example. 263

7.2 Pluggable Factories. 267

7.3 Using ImageIO Classes Explicitly. 267

7.4 Reading and Writing RGB Images. 269

7.5 Reading, Casting and Writing Images. 270

7.6 Extracting Regions. 272

7.7 Extracting Slices. 274

7.8 Reading and Writing Vector Images. 277

7.8.1 The Minimal Example . 277

7.8.2 Producing and Writing Covariant Images. 279

7.8.3 Reading Covariant Images. 281

7.9 Reading and Writing Complex Images. 283

7.10 Extracting Components from Vector Images. 284

7.11 Reading and Writing Image Series. 287

7.11.1 Reading Image Series. 287

7.11.2 Writing Image Series. 289

Contents xiii

7.11.3 Reading and Writing Series of RGB Images. 291

7.12 Reading and Writing DICOM Images. 294

7.12.1 Foreword . 294

7.12.2 Reading and Writing a 2D Image. 295

7.12.3 Reading a 2D DICOM Series and Writing a Volume. 298

7.12.4 Reading a 2D DICOM Series and Writing a 2D DICOM Series. 302

7.12.5 Printing DICOM Tags From One Slice. 305

7.12.6 Printing DICOM Tags From a Series. 308

7.12.7 Changing a DICOM Header. 311

8 Registration 315

8.1 Registration Framework. 315

8.2 ”Hello World” Registration . 316

8.3 Features of the Registration Framework. 324

8.3.1 Direction of the Transform Mapping. 327

8.3.2 Registration is done in physical space. 328

8.4 Monitoring Registration. 328

8.5 Multi-Modality Registration. 333

8.5.1 Viola-Wells Mutual Information. 333

8.5.2 Mattes Mutual Information. 340

8.5.3 Plotting joint histograms. 345

8.6 Centered Transforms. 348

8.6.1 Rigid Registration in 2D. 349

8.6.2 Initializing with Image Moments. 355

8.6.3 Similarity Transform in 2D. 364

8.6.4 Rigid Transform in 3D. 366

8.6.5 Centered Affine Transform. 374

8.7 Multi-Resolution Registration. 377

8.7.1 Fundamentals. 380

8.7.2 Parameter Tuning. 386

8.8 Transforms. 392

8.8.1 Geometrical Representation. 392

xiv Contents

8.8.2 Transform General Properties. 395

8.8.3 Identity Transform . 395

8.8.4 Translation Transform. 396

8.8.5 Scale Transform. 396

8.8.6 Scale Logarithmic Transform. 398

8.8.7 Euler2DTransform. 398

8.8.8 CenteredRigid2DTransform. 399

8.8.9 Similarity2DTransform. 400

8.8.10 QuaternionRigidTransform. 401

8.8.11 VersorTransform. 402

8.8.12 VersorRigid3DTransform. 403

8.8.13 Euler3DTransform. 404

8.8.14 Similarity3DTransform. 405

8.8.15 Rigid3DPerspectiveTransform. 407

8.8.16 AffineTransform . 407

8.8.17 BSplineDeformableTransform. 409

8.8.18 KernelTransforms. 409

8.9 Interpolators . 410

8.9.1 Nearest Neighbor Interpolation. 411

8.9.2 Linear Interpolation. 411

8.9.3 B-Spline Interpolation . 411

8.9.4 Windowed Sinc Interpolation. 412

8.10 Metrics . 415

8.10.1 Mean Squares Metric. 416

Exploring a Metric . 416

8.10.2 Normalized Correlation Metric. 419

8.10.3 Mean Reciprocal Square Differences. 419

8.10.4 Mutual Information Metric. 420

Parzen Windowing. 420

Viola and Wells Implementation. 421

Mattes et al. Implementation. 422

8.10.5 Kullback-Leibler distance metric. 422

Contents xv

8.10.6 Normalized Mutual Information Metric. 423

8.10.7 Mean Squares Histogram. 423

8.10.8 Correlation Coefficient Histogram. 424

8.10.9 Cardinality Match Metric. 424

8.10.10 Kappa Statistics Metric. 424

8.10.11 Gradient Difference Metric. 425

8.11 Optimizers . 426

8.11.1 Registration using Match Cardinality metric. 429

8.11.2 Registration using the One plus One Evolutionary Optimizer 431

8.11.3 Registration using masks constructed with Spatial objects. 432

8.11.4 Rigid registrations incorporating prior knowledge. 434

8.12 Image Pyramids. 437

8.13 Deformable Registration. 438

8.14 Demons Deformable Registration. 461

8.15 Visualizing Deformation fields. 469

8.15.1 Visualizing 2D deformation fields. 470

8.15.2 Visualizing 3D deformation fields. 470

8.16 Model Based Registration. 476

8.17 Point Set Registration. 488

9 Segmentation 503

9.1 Region Growing . 503

9.1.1 Connected Threshold. 504

9.1.2 Otsu Segmentation. 507

9.1.3 Neighborhood Connected. 510

9.1.4 Confidence Connected. 514

Application of the Confidence Connected filter on the Brain Web Data. 517

9.1.5 Isolated Connected. 518

9.1.6 Confidence Connected in Vector Images. 521

9.2 Segmentation Based on Watersheds. 524

9.2.1 Overview . 524

9.2.2 Using the ITK Watershed Filter. 527

xvi Contents

9.3 Level Set Segmentation. 531

9.3.1 Fast Marching Segmentation. 533

9.3.2 Shape Detection Segmentation. 541

9.3.3 Geodesic Active Contours Segmentation. 550

9.3.4 Threshold Level Set Segmentation. 555

9.3.5 Canny-Edge Level Set Segmentation. 559

9.3.6 Laplacian Level Set Segmentation. 563

9.3.7 Geodesic Active Contours Segmentation With Shape Guidance. 565

9.4 Hybrid Methods . 577

9.4.1 Introduction. 577

9.4.2 Fuzzy Connectedness and Confidence Connectedness. 577

9.4.3 Fuzzy Connectedness and Voronoi Classification. 580

Example of a Hybrid Segmentation Method. 581

9.4.4 Deformable Models and Gibbs Prior. 587

Deformable Model . 587

Gibbs Prior Image Filter. 594

9.5 Feature Extraction. 596

9.5.1 Hough Transform. 596

Line Extraction . 596

Circle Extraction . 600

10 Statistics 605

10.1 Data Containers. 605

10.1.1 Sample Interface. 605

10.1.2 Sample Adaptors. 608

ImageToListAdaptor. 608

PointSetToListAdaptor. 610

10.1.3 Histogram. 613

10.1.4 Subsample. 616

10.1.5 MembershipSample. 619

10.1.6 MembershipSampleGenerator. 622

10.1.7 K-d Tree. 625

Contents xvii

10.2 Algorithms and Functions. 629

10.2.1 Sample Statistics. 630

Mean and Covariance. 630

Weighted Mean and Covariance. 632

10.2.2 Sample Generation. 635

ListSampleToHistogramFilter. 635

ListSampleToHistogramGenerator. 637

NeighborhoodSampler. 639

SampleToHistogramProjectionFilter. 640

10.2.3 Sample Sorting. 643

10.2.4 Probability Density Functions. 646

Gaussian Distribution. 646

10.2.5 Distance Metric. 647

Euclidean Distance. 647

10.2.6 Decision Rules. 649

Maximum Decision Rule. 649

Minimum Decision Rule. 650

Maximum Ratio Decision Rule . 651

10.2.7 Random Variable Generation. 652

Normal (Gaussian) Distribution. 652

10.3 Statistics applied to Images. 652

10.3.1 Image Histograms. 652

Scalar Image Histogram with Adaptor. 652

Scalar Image Histogram with Generator. 655

Color Image Histogram with Generator. 657

Color Image Histogram Writing. 660

10.3.2 Image Information Theory. 663

Computing Image Entropy. 663

Computing Images Mutual Information. 667

10.4 Classification. 672

10.4.1 k-d Tree Based k-Means Clustering. 673

10.4.2 K-Means Classification. 679

xviii Contents

10.4.3 Bayesian Plug-In Classifier. 681

10.4.4 Expectation Maximization Mixture Model Estimation. 688

10.4.5 Classification using Markov Random Field. 691

III Developer’s Guide 699

11 Iterators 701

11.1 Introduction . 701

11.2 Programming Interface. 702

11.2.1 Creating Iterators. 702

11.2.2 Moving Iterators . 702

11.2.3 Accessing Data. 704

11.2.4 Iteration Loops. 705

11.3 Image Iterators. 706

11.3.1 ImageRegionIterator. 706

11.3.2 ImageRegionIteratorWithIndex. 708

11.3.3 ImageLinearIteratorWithIndex. 710

11.3.4 ImageSliceIteratorWithIndex. 715

11.3.5 ImageRandomConstIteratorWithIndex. 719

11.4 Neighborhood Iterators. 720

11.4.1 NeighborhoodIterator. 726

Basic neighborhood techniques: edge detection. 726

Convolution filtering: Sobel operator. 730

Optimizing iteration speed. 731

Separable convolution: Gaussian filtering. 733

Slicing the neighborhood. 735

Random access iteration. 736

11.4.2 ShapedNeighborhoodIterator. 738

Shaped neighborhoods: morphological operations. 739

12 Image Adaptors 745

12.1 Image Casting. 746

12.2 Adapting RGB Images. 748

Contents xix

12.3 Adapting Vector Images. 751

12.4 Adaptors for Simple Computation. 753

12.5 Adaptors and Writers. 755

13 How To Write A Filter 757

13.1 Terminology . 757

13.2 Overview of Filter Creation. 758

13.3 Streaming Large Data. 759

13.3.1 Overview of Pipeline Execution. 760

13.3.2 Details of Pipeline Execution. 762

UpdateOutputInformation() . 762

PropagateRequestedRegion(). 763

UpdateOutputData(). 764

13.4 Threaded Filter Execution. 764

13.5 Filter Conventions. 765

13.5.1 Optional. 766

13.5.2 Useful Macros . 766

13.6 How To Write A Composite Filter. 767

13.6.1 Implementing a Composite Filter. 767

13.6.2 A Simple Example. 768

14 Software Process 773

14.1 CVS Source Code Repository. 773

14.2 DART Regression Testing System. 774

14.3 Working The Process. 776

14.4 The Effectiveness of the Process. 776

Index 785

LIST OF FIGURES

2.1 Cmake user interface. 15

4.1 ITK Image Geometrical Concepts. 40

4.2 PointSet with Vectors as PixelType. 58

5.1 SpatialObject Transformations. 106

5.2 SpatialObject Transform Computations. 109

6.1 BinaryThresholdImageFilter transfer function. 140

6.2 BinaryThresholdImageFilter output. 142

6.3 ThresholdImageFilter using the threshold-below mode.. 143

6.4 ThresholdImageFilter using the threshold-above mode. 143

6.5 ThresholdImageFilter using the threshold-outside mode 143

6.6 Sigmoid Parameters. 150

6.7 Effect of the Sigmoid filter.. 151

6.8 GradientMagnitudeImageFilter output. 154

6.9 GradientMagnitudeRecursiveGaussianImageFilter output 156

6.10 Effect of the Derivative filter.. 157

6.11 Output of the LaplacianRecursiveGaussianImageFilter. 166

6.12 Output of the LaplacianRecursiveGaussianImageFilter. 168

6.13 Effect of the MedianImageFilter. 170

6.14 Effect of the Median filter. 172

xxii List of Figures

6.15 Effect of erosion and dilation in a binary image.. 175

6.16 Effect of erosion and dilation in a grayscale image.. 177

6.17 Effect of the BinaryMedian filter.. 179

6.18 Effect of many iterations on the BinaryMedian filter.. 180

6.19 Effect of the VotingBinaryHoleFilling filter.. 183

6.20 Effect of the VotingBinaryIterativeHoleFilling filter. 186

6.21 DiscreteGaussianImageFilter Gaussian diagram.. 187

6.22 DiscreteGaussianImageFilter output. 188

6.23 BinomialBlurImageFilter output.. 190

6.24 Output of the SmoothingRecursiveGaussianImageFilter. 193

6.25 GradientAnisotropicDiffusionImageFilter output. 197

6.26 CurvatureAnisotropicDiffusionImageFilter output. 199

6.27 CurvatureFlowImageFilter output. 202

6.28 MinMaxCurvatureFlow computation. 203

6.29 MinMaxCurvatureFlowImageFilter output. 205

6.30 BilateralImageFilter output. 208

6.31 VectorGradientAnisotropicDiffusionImageFilter output 210

6.32 VectorCurvatureAnisotropicDiffusionImageFilter output 212

6.33 VectorGradientAnisotropicDiffusionImageFilter onRGB 214

6.34 VectorCurvatureAnisotropicDiffusionImageFilter output on RGB. 216

6.35 Various Anisotropic Diffusion compared. 217

6.36 DanielssonDistanceMapImageFilter output. 218

6.37 SignedDanielssonDistanceMapImageFilter output. 220

6.38 Effect of the MedianImageFilter. 222

6.39 Effect of the Resample filter. 225

6.40 Analysis of resampling in common coordinate system. 226

6.41 ResampleImageFilter with a translation by(−30,−50) 226

6.42 ResampleImageFilter. Analysis of a translation by(−30,−50) 227

6.43 ResampleImageFilter highlighting image borders. 228

6.44 ResampleImageFilter selecting the origin of the output image. 230

6.45 ResampleImageFilter selecting the origin of the output image. 230

6.46 ResampleImageFilter selecting the origin of the inputimage 231

List of Figures xxiii

6.47 ResampleImageFilter use of naive viewers. 232

6.48 ResampleImageFilter and output image spacing. 233

6.49 ResampleImageFilter naive viewers. 233

6.50 ResampleImageFilter with non-unit spacing. 235

6.51 Effect of a rotation on the resampling filter.. 236

6.52 Input and output image placed in a common reference system 236

6.53 Effect of the Resample filter rotating an image. 239

6.54 Effect of the Resample filter rotating and scaling an image 242

7.1 Collaboration diagram of the ImageIO classes. 265

7.2 Use cases of ImageIO factories. 266

7.3 Class diagram of ImageIO factories. 266

8.1 Image Registration Concept. 315

8.2 Registration Framework Components. 316

8.3 Fixed and Moving images in registration framework. 321

8.4 HelloWorld registration output images. 322

8.5 Pipeline structure of the registration example. 323

8.6 Trace of translations and metrics during registration. 325

8.7 Registration Coordinate Systems. 326

8.8 Command/Observer and the Registration Framework. 331

8.9 Multi-Modality Registration Inputs. 338

8.10 Multi-Modality Registration outputs. 338

8.11 Multi-Modality Registration plot of translations. 339

8.12 Multi-Modality Registration plot of metrics. 339

8.13 MattesMutualInformationImageToImageMetric outputimages 343

8.14 MattesMutualInformationImageToImageMetric outputplots 343

8.15 MattesMutualInformationImageToImageMetric numberof bins 344

8.16 Multi-modality joint histograms. 349

8.17 Rigid2D Registration input images. 353

8.18 Rigid2D Registration output images. 353

8.19 Rigid2D Registration output plots. 354

8.20 Rigid2D Registration input images. 356

xxiv List of Figures

8.21 Rigid2D Registration output images. 356

8.22 Rigid2D Registration output plots. 357

8.23 Effect of changing the center of rotation. 361

8.24 CenteredTransformInitializer input images. 362

8.25 CenteredTransformInitializer output images. 362

8.26 CenteredTransformInitializer output plots. 363

8.27 Fixed and Moving image registered with CenteredSimilarity2DTransform 367

8.28 Output of the CenteredSimilarity2DTransform registration 367

8.29 CenteredSimilarity2DTransform registration plots. 368

8.30 CenteredTransformInitializer input images. 372

8.31 CenteredTransformInitializer output images. 373

8.32 CenteredTransformInitializer output plots. 373

8.33 AffineTransform registration. 378

8.34 AffineTransform output images. 378

8.35 AffineTransform output plots. 379

8.36 Multi-Resolution Registration Components. 380

8.37 Conceptual representation of Multi-Resolution registration 381

8.38 Multi-Resolution registration input images. 386

8.39 Multi-Resolution registration output images. 387

8.40 Multi-Resolution Registration Input Images. 390

8.41 Multi-Resolution Registration output plots. 391

8.42 Geometrical representation objects in ITK. 392

8.43 Mapping moving image to fixed image in Registration. 410

8.44 Need for interpolation in Registration. 410

8.45 BSpline Interpolation Concepts. 412

8.46 Mean Squares Metric Plots. 418

8.47 Parzen Windowing in Mutual Information. 421

8.48 Class diagram of the Optimizer hierarchy. 427

8.49 FEM-based deformable registration results. 438

8.50 Demon’s deformable registration output. 447

8.51 Demon’s deformable registration output. 465

8.52 Demon’s deformable registration output. 469

List of Figures xxv

8.53 Deformation field magnitudes. 471

8.54 Calculator. 471

8.55 Visualized Def field. 472

8.56 Visualized Def field4. 473

8.57 Deformation field output. 475

8.58 Difference image. 475

8.59 Model to Image Registration Framework Components. 476

8.60 Model to Image Registration Framework Concept. 477

8.61 SpatialObject to Image Registration results. 487

9.1 ConnectedThreshold segmentation results. 507

9.2 OtsuThresholdImageFilter output. 509

9.3 NeighborhoodConnected segmentation results. 513

9.4 ConfidenceConnected segmentation results. 517

9.5 3DregionGrowingScreenshot1. 518

9.6 3DregionGrowingScreenshot1. 518

9.7 IsolatedConnected segmentation results. 521

9.8 VectorConfidenceConnected segmentation results. 523

9.9 Watershed Catchment Basins. 525

9.10 Watersheds Hierarchy of Regions. 526

9.11 Watersheds filter composition. 526

9.12 Watershed segmentation output. 529

9.13 Zero Set Concept. 531

9.14 Grid position of the embedded level-set surface.. 532

9.15 FastMarchingImageFilter collaboration diagram. 533

9.16 FastMarchingImageFilter intermediate output. 540

9.17 FastMarchingImageFilter segmentations. 541

9.18 ShapeDetectionLevelSetImageFilter collaboration diagram 542

9.19 ShapeDetectionLevelSetImageFilter intermediate output 549

9.20 ShapeDetectionLevelSetImageFilter segmentations. 550

9.21 GeodesicActiveContourLevelSetImageFilter collaboration diagram. 551

9.22 GeodesicActiveContourLevelSetImageFilter intermediate output 554

xxvi List of Figures

9.23 GeodesicActiveContourImageFilter segmentations. 555

9.24 ThresholdSegmentationLevelSetImageFilter collaboration diagram. 556

9.25 Propagation term for threshold-based level set segmentation 556

9.26 ThresholdSegmentationLevelSet segmentations. 558

9.27 CannySegmentationLevelSetImageFilter collaboration diagram. 560

9.28 Segmentation results of CannyLevelSetImageFilter. 562

9.29 LaplacianSegmentationLevelSetImageFilter collaboration diagram. 563

9.30 Segmentation results of LaplacianLevelSetImageFilter 566

9.31 GeodesicActiveContourShapePriorLevelSetImageFilter collaboration diagram. 567

9.32 GeodesicActiveContourShapePriorImageFilter inputimage and initial model 575

9.33 Corpus callosum PCA modes. 576

9.34 GeodesicActiveContourShapePriorImageFilter segmentations. 576

9.35 Hybrid Segmentation Engine. 581

9.36 FuzzyConectedness Filter Diagram. 581

9.37 Fuzzy Connectedness Segmentation Diagram. 582

9.38 Voronoi Filter class diagram. 582

9.39 Voronoi Diagram Filter classes. 582

9.40 Voronoi Diagram Segmentation. 582

9.41 Fuzzy Connectedness and Voronoi Diagram Classification 583

9.42 Fuzzy Connectedness, Voronoi diagram, and DeformableModels. 583

9.43 Segmentation results for the hybrid segmentation approach 585

9.44 Segmentation result for the hybrid segmentation approach. 585

9.45 Deformable model collaboration diagram. 588

10.1 Sample class inheritance tree. 606

10.2 Histogram. 614

10.3 Simple conceptual classifier. 672

10.4 Statistical classification framework. 673

10.5 Two normal distributions plot. 676

10.6 Output of the KMeans classifier. 682

10.7 Bayesian plug-in classifier for two Gaussian classes. 683

10.8 Output of the ScalarImageMarkovRandomField. 697

List of Figures xxvii

11.1 ITK image iteration. 703

11.2 Copying an image subregion using ImageRegionIterator. 709

11.3 Using the ImageRegionIteratorWithIndex. 711

11.4 Maximum intensity projection using ImageSliceIteratorWithIndex 719

11.5 Neighborhood iterator. 721

11.6 Some possible neighborhood iterator shapes. 722

11.7 Sobel edge detection results. 729

11.8 Gaussian blurring by convolution filtering. 734

11.9 Finding local minima. 738

11.10Binary image morphology. 743

12.1 ImageAdaptor concept. 746

12.2 Image Adaptor to RGB Image. 750

12.3 Image Adaptor to Vector Image. 753

12.4 Image Adaptor for performing computations. 755

13.1 Relationship between DataObjects and ProcessObjects. 758

13.2 The Data Pipeline. 760

13.3 Sequence of the Data Pipeline updating mechanism. 761

13.4 Composite Filter Concept. 767

13.5 Composite Filter Example. 768

14.1 Dart Quality Dashboard. 774

LIST OF TABLES

8.1 Geometrical Elementary Objects. 393

8.2 Identity Transform Characteristics. 396

8.3 Translation Transform Characteristics. 396

8.4 Scale Transform Characteristics. 397

8.5 Scale Logarithmic Transform Characteristics. 398

8.6 Euler2D Transform Characteristics. 399

8.7 CenteredRigid2D Transform Characteristics. 400

8.8 Similarity2D Transform Characteristics. 401

8.9 QuaternionRigid Transform Characteristics. 402

8.10 Versor Transform Characteristics. 403

8.11 Versor Rigid3D Transform Characteristics. 403

8.12 Euler3D Transform Characteristics. 404

8.13 Similarity3D Transform Characteristics. 405

8.14 Rigid3DPerspective Transform Characteristics. 406

8.15 Affine Transform Characteristics. 407

8.16 BSpline Deformable Transform Characteristics. 408

8.17 LBFGS Optimizer trace. 474

9.1 ConnectedThreshold example parameters. 506

9.2 IsolatedConnectedImageFilter example parameters. 520

9.3 FastMarching segmentation example parameters. 539

xxx List of Tables

9.4 ShapeDetection example parameters. 548

9.5 GeodesicActiveContour segmentation example parameters 553

9.6 ThresholdSegmentationLevelSet segmentation parameters 558

11.1 ImageRandomConstIteratorWithIndex usage. 720

Part I

Introduction

CHAPTER

ONE

Welcome

Welcome to theInsight Segmentation and Registration Toolkit (ITK) Software Guide. This book
has been updated for ITK 2.4 and later versions of the InsightToolkit software.

ITK is an open-source, object-oriented software system forimage processing, segmentation,
and registration. Although it is large and complex, ITK is designed to be easy to use once
you learn about its basic object-oriented and implementation methodology. The purpose of
this Software Guide is to help you learn just this, plus to familiarize you with the important
algorithms and data representations found throughout the toolkit. The material is taught using
an extensive set of examples that we encourage you to compileand run while you read this
guide.

ITK is a large system. As a result it is not possible to completely document all ITK objects
and their methods in this text. Instead, this guide will introduce you to important system con-
cepts and lead you up the learning curve as fast and efficiently as possible. Once you master
the basics, we suggest that you take advantage of the many resources available including the
Doxygen documentation pages (http://www.itk.org/HTML/Documentation.htm) and the
community of ITK users (see Section1.5on page10.)

The Insight Toolkit is an open-source software system. Whatthis means is that the community
of ITK users and developers has great impact on the evolutionof the software. Users and
developers can make significant contributions to ITK by providing bug reports, bug fixes, tests,
new classes, and other feedback. Please feel free to contribute your ideas to the community (the
ITK user mailing list is the preferred method; a developer’smailing list is also available).

1.1 Organization

This software guide is divided into three parts, each of which is further divided into several
chapters. Part I is a general introduction to ITK, with—in the next chapter—a description of how
to install the Insight Toolkit on your computer. This includes installing pre-compiled libraries
and executables, and compiling the software from the sourcecode. Part I also introduces basic

http://www.itk.org/HTML/Documentation.htm

4 Chapter 1. Welcome

system concepts such as an overview of the system architecture, and how to build applications
in the C++, Tcl, and Python programming languages. Part II describes the system from the user
point of view. Dozens of examples are used to illustrate important system features. Part III is
for the ITK developer. Part III explains how to create your own classes, extend the system, and
interface to various windowing and GUI systems.

1.2 How to Learn ITK

There are two broad categories of users of ITK. First are class developers, those who create
classes in C++. The second, users, employ existing C++ classes to build applications. Class
developers must be proficient in C++, and if they are extending or modifying ITK, they must
also be familiar with ITK’s internal structures and design (material covered in Part III). Users
may or may not use C++, since the compiled C++ class library has beenwrappedwith the
Tcl and Python interpreted languages. However, as a user youmust understand the external
interface to ITK classes and the relationships between them.

The key to learning how to use ITK is to become familiar with its palette of objects and the ways
of combining them. If you are a new Insight Toolkit user, begin by installing the software. If
you are a class developer, you’ll want to install the source code and then compile it. Users may
only need the precompiled binaries and executables. We recommend that you learn the system
by studying the examples and then, if you are a class developer, study the source code. Start
by reading Chapter 3, which provides an overview of some of the key concepts in the system,
and then review the examples in Part II. You may also wish to compile and run the dozens of
examples distributed with the source code found in the directory Insight/Examples. (Please
see the fileInsight/Examples/README.txt for a description of the examples contained in
the various subdirectories.) There are also several hundred tests found in the source distribution
in Insight/Testing/Code, most of which are minimally documented testing code. However,
they may be useful to see how classes are used together in ITK,especially since they are de-
signed to exercise as much of the functionality of each classas possible.

1.3 Software Organization

The following sections describe the directory contents, summarize the software functionality in
each directory, and locate the documentation and data.

1.3.1 Obtaining the Software

There are three different ways to access the ITK source code (see Section1.4on page5).

1. from periodic releases available on the ITK Web site,

1.4. Downloading ITK 5

2. from CD-ROM, and

3. from direct access to the CVS source code repository.

Official releases are available a few times a year and announced on the ITK Web pages and
mailing lists. However, they may not provide the latest and greatest features of the toolkit. In
general, the periodic releases and CD-ROM releases are the same, except that the CD release
typically contains additional resources and data. CVS access provides immediate access to the
latest toolkit additions, but on any given day the source code may not be stable as compared
to the official releases—i.e., the code may not compile, it may crash, or it might even produce
incorrect results.

This software guide assumes that you are working with the official ITK version 2.4 release
(available on the ITK Web site). If you are a new user, we highly recommend that you use
the released version of the software. It is stable, consistent, and better tested than the code
available from the CVS repository. Later, as you gain experience with ITK, you may wish to
work from the CVS repository. However, if you do so, please beaware of the ITK quality
testing dashboard. The Insight Toolkit is heavily tested using the open-source DART regression
testing system (http://public.kitware.com/dashboard.php). Before updating the CVS
repository, make sure that the dashboard isgreenindicating stable code. If not green it is likely
that your software update is unstable. (Learn more about theITK quality dashboard in Section
14.2on page774.)

1.4 Downloading ITK

ITK can be downloaded without cost from the following web site:

http://www.itk.org/HTML/Download.php

In order to track the kind of applications for which ITK is being used, you will be asked to
complete a form prior to downloading the software. The information you provide in this form
will help developers to get a better idea of the interests andskills of the toolkit users. It also
assists in future funding requests to sponsoring agencies.

Once you fill out this form you will have access to the downloadpage where two options for
obtaining the software will be found. (This page can be book marked to facilitate subsequent
visits to the download site without having to complete any form again.) You can get the tarball
of a stable release or you can get the development version through CVS. The release version
is stable and dependable but may lack the latest features of the toolkit. The CVS version will
have the latest additions but is inherently unstable and maycontain components with work in
progress. The following sections describe the details of each one of these two alternatives.

http://public.kitware.com/dashboard.php
http://www.itk.org/HTML/Download.php

6 Chapter 1. Welcome

1.4.1 Downloading Packaged Releases

Please read theGettingStarted.txt1 document first. It will give you an overview of the
download and installation processes. Then choose the tarball that better fits your system. The
options are.zip and.tgz files. The first type is better suited for MS-Windows while the
second one is the preferred format for UNIX systems.

Once you unzip or untar the file a directory calledInsight will be created in your disk and you
will be ready for starting the configuration process described in Section2.1.1on page14.

1.4.2 Downloading from CVS

The Concurrent Versions System (CVS) is a tool for software version control [27]. Generally
only developers should be using CVS, so here we assume that you know what CVS is and how
to use it. For more information about CVS please see Section14.1on page773. (Note: please
make sure that you access the software via CVS only when the ITK Quality Dashboard indicates
that the code is stable. Learn more about the Quality Dashboard at14.2on page774.)

Access ITK via CVS using the following commands (under UNIX and Cygwin):

cvs -d :pserver:anonymous@www.itk.org:/cvsroot/Insight login
(respond with password "insight")

cvs -d :pserver:anonymous@www.itk.org:/cvsroot/Insight co Insight

This will trigger the download of the software into a directory namedInsight. Any time you
want to update your version, it will be enough to change into this directoryInsight and type:

cvs update -d -P

Once you obtain the software you are ready to configure and compile it (see Section2.1.1on
page14). First, however, we recommend that you join the mailing list and read the following
sections describing the organization of the software.

1.4.3 Join the Mailing List

It is strongly recommended that you join the users mailing list. This is one of the primary
resources for guidance and help regarding the use of the toolkit. You can subscribe to the users
list online at

http://www.itk.org/HTML/MailingLists.htm

1http://www.itk.org/HTML/GettingStarted.txt

http://www.itk.org/HTML/MailingLists.htm

1.4. Downloading ITK 7

The insight-users mailing list is also the best mechanism for expressing your opinions about the
toolkit and to let developers know about features that you find useful, desirable or even unneces-
sary. ITK developers are committed to creating a self-sustaining open-source ITK community.
Feedback from users is fundamental to achieving this goal.

1.4.4 Directory Structure

To begin your ITK odyssey, you will first need to know something about ITK’s software orga-
nization and directory structure. Even if you are installing pre-compiled binaries, it is helpful
to know enough to navigate through the code base to find examples, code, and documentation.

ITK is organized into several different modules, or CVS checkouts. If you are using an official
release or CD release, you will see three important modules:theInsight, InsightDocuments
andInsightApplications modules. The source code, examples and applications are found in
theInsight module; documentation, tutorials, and material related tothe design and marketing
of ITK are found inInsightDocuments; and fairly complex applications using ITK (and other
systems such as VTK, Qt, and FLTK) are available fromInsightApplications. Usually you
will work with the Insight module unless you are a developer, are teaching a course, or are
looking at the details of various design documents. TheInsightApplications module should
only be downloaded and compiled once theInsight module is functioning properly.

TheInsight module contains the following subdirectories:

• Insight/Auxiliary—code that interfaces packages to ITK.

• Insight/Code—the heart of the software; the location of the majority of the source code.

• Insight/Documentation—a compact subset of documentation to get users started with
ITK.

• Insight/Examples—a suite of simple, well-documented examples used by this guide
and to illustrate important ITK concepts.

• Insight/Testing—a large number of small programs used to test ITK. These examples
tend to be minimally documented but may be useful to demonstrate various system con-
cepts. These tests are used by DART to produce the ITK QualityDashboard (see Section
14.2on page774.)

• Insight/Utilities—supporting software for the ITK source code. For example,
DART and Doxygen support, as well as libraries such aspng andzlib.

• Insight/Validation—a series of validation case studies including the source code used
to produce the results.

• Insight/Wrapping—support for the CABLE wrapping tool. CABLE is used by ITK to
build interfaces between the C++ library and various interpreted languages (currently Tcl
and Python are supported).

8 Chapter 1. Welcome

The source code directory structure—found inInsight/Code—is important to understand
since other directory structures (such as theTesting andWrapping directories) shadow the
structure of theInsight/Code directory.

• Insight/Code/Common—core classes, macro definitions, typedefs, and other software
constructs central to ITK.

• Insight/Code/Numerics—mathematical library and supporting classes. (Note:
ITK’s mathematical library is based on the VXL/VNL softwarepackage
http://vxl.sourceforge.net.)

• Insight/Code/BasicFilters—basic image processing filters.

• Insight/Code/IO—classes that support the reading and writing of data.

• Insight/Code/Algorithms—the location of most segmentation and registration algo-
rithms.

• Insight/Code/SpatialObject—classes that represent and organize data using spatial
relationships (e.g., the leg bone is connected to the hip bone, etc.)

• Insight/Code/Patented—any patented algorithms are placed here. Using this code in
commercial application requires a patent license.

• Insight/Code/Local—an empty directory used by developers and users to experiment
with new code.

TheInsightDocuments module contains the following subdirectories:

• InsightDocuments/CourseWare—material related to teaching ITK.

• InsightDocuments/Developer—historical documents covering the design and creation
of ITK including progress reports and design documents.

• InsightDocuments/Latex—LATEX styles to produce this work as well as other docu-
ments.

• InsightDocuments/Marketing—marketing flyers and literature used to succinctly de-
scribe ITK.

• InsightDocuments/Papers—papers related to the many algorithms, data representa-
tions, and software tools used in ITK.

• InsightDocuments/SoftwareGuide—LATEX files used to create this guide. (Note that
the code found inInsight/Examples is used in conjunction with these LATEX files.)

• InsightDocuments/Validation—validation case studies using ITK.

http://vxl.sourceforge.net

1.4. Downloading ITK 9

• InsightDocuments/Web—the source HTML and other material used to produce the Web
pages found athttp://www.itk.org.

Similar to theInsight module, access to theInsightDocuments module is also available via
CVS using the following commands (under UNIX and Cygwin):

cvs -d :pserver:anonymous@www.itk.org:/cvsroot/Insight co InsightDocuments

The InsightApplications module contains large, relatively complex examples of ITK us-
age. See the web pages athttp://www.itk.org/HTML/Applications.htm for a description.
Some of these applications require GUI toolkits such as Qt and FLTK or other packages such as
VTK (The Visualization Toolkithttp://www.vtk.org). Do not attempt to compile and build
this module until you have successfully built the coreInsight module.

Similar to theInsight andInsightDocuments module, access to theInsightApplications
module is also available via CVS using the following commands (under UNIX and Cygwin):

cvs -d:pserver:anonymous@www.itk.org:/cvsroot/Insight \
co InsightApplications

1.4.5 Documentation

Besides this text, there are other documentation resourcesthat you should be aware of.

Doxygen Documentation.The Doxygen documentation is an essential resource when working
with ITK. These extensive Web pages describe in detail everyclass and method in the
system. The documentation also contains inheritance and collaboration diagrams, listing
of event invocations, and data members. The documentation is heavily hyper-linked to
other classes and to the source code. The Doxygen documentation is available on the
companion CD, or on-line athttp://www.itk.org. Make sure that you have the right
documentation for your version of the source code.

Header Files. Each ITK class is implemented with a .h and .cxx/.txx file (.txx file for templated
classes). All methods found in the .h header files are documented and provide a quick
way to find documentation for a particular method. (Indeed, Doxygen uses the header
documentation to produces its output.)

1.4.6 Data

The Insight Toolkit was designed to support the Visible Human Project and its as-
sociated data. This data is available from the National Library of Medicine at
http://www.nlm.nih.gov/research/visible/visible_human.html.

Another source of data can be obtained from the ITK Web site ateither of the following:

http://www.itk.org
http://www.itk.org/HTML/Applications.htm
http://www.vtk.org
http://www.itk.org
http://www.nlm.nih.gov/research/visible/visible_human.html

10 Chapter 1. Welcome

http://www.itk.org/HTML/Data.htm
ftp://public.kitware.com/pub/itk/Data/.

1.5 The Insight Community and Support

ITK was created from its inception as a collaborative, community effort. Research, teaching,
and commercial uses of the toolkit are expected. If you wouldlike to participate in the commu-
nity, there are a number of possibilities.

• Users may actively report bugs, defects in the system API, and/or submit feature requests.
Currently the best way to do this is through the ITK users mailing list.

• Developers may contribute classes or improve existing classes. If you are a developer,
you may request permission to join the ITK developers mailing list. Please do so by
sending email to will.schroeder “at” kitware.com. To become a developer you need to
demonstrate both a level of competence as well as trustworthiness. You may wish to
begin by submitting fixes to the ITK users mailing list.

• Research partnerships with members of the Insight SoftwareConsortium are encouraged.
Both NIH and NLM will likely provide limited funding over thenext few years, and will
encourage the use of ITK in proposed work.

• For those developing commercial applications with ITK, support and consulting are avail-
able from Kitware athttp://www.kitware.com. Kitware also offers short ITK courses
either at a site of your choice or periodically at Kitware.

• Educators may wish to use ITK in courses. Materials are beingdeveloped for this pur-
pose, e.g., a one-day, conference course and semester-longgraduate courses. Watch the
ITK web pages or check in theInsightDocuments/CourseWare directory for more in-
formation.

1.6 A Brief History of ITK

In 1999 the US National Library of Medicine of the National Institutes of Health awarded
six three-year contracts to develop an open-source registration and segmentation toolkit, that
eventually came to be known as the Insight Toolkit (ITK) and formed the basis of the Insight
Software Consortium. ITK’s NIH/NLM Project Manager was Dr.Terry Yoo, who coordi-
nated the six prime contractors composing the Insight consortium. These consortium members
included three commercial partners—GE Corporate R&D, Kitware, Inc., and MathSoft (the
company name is now Insightful)—and three academic partners—University of North Carolina
(UNC), University of Tennessee (UT) (Ross Whitaker subsequently moved to University of
Utah), and University of Pennsylvania (UPenn). The Principle Investigators for these partners

http://www.itk.org/HTML/Data.htm
ftp://public.kitware.com/pub/itk/Data/
http://www.kitware.com

1.6. A Brief History of ITK 11

were, respectively, Bill Lorensen at GE CRD, Will Schroederat Kitware, Vikram Chalana at
Insightful, Stephen Aylward with Luis Ibanez at UNC (Luis isnow at Kitware), Ross Whitaker
with Josh Cates at UT (both now at Utah), and Dimitri Metaxas at UPenn (now at Rutgers). In
addition, several subcontractors rounded out the consortium including Peter Raitu at Brigham
& Women’s Hospital, Celina Imielinska and Pat Molholt at Columbia University, Jim Gee at
UPenn’s Grasp Lab, and George Stetten at the University of Pittsburgh.

In 2002 the first official public release of ITK was made available. In addition, the National Li-
brary of Medicine awarded thirteen contracts to several organizations to extend ITK’s capabili-
ties. NLM funding of Insight Toolkit development is continuing through 2003, with additional
application and maintenance support anticipated beyond 2003. If you are interested in potential
funding opportunities, we suggest that you contact Dr. Terry Yoo at the National Library of
Medicine for more information.

CHAPTER

TWO

Installation

This section describes the process for installing ITK on your system. Keep in mind that ITK is
a toolkit, and as such, once it is installed in your computer there will be no application to run.
Rather, you will use ITK to build your own applications. WhatITK does provide—besides the
toolkit proper—is a large set of test files and examples that will introduce you to ITK concepts
and will show you how to use ITK in your own projects.

Some of the examples distributed with ITK require third party libraries that you may have to
download. For an initial installation of ITK you may want to ignore these extra libraries and
just build the toolkit itself. In the past, a large fraction of the traffic on the insight-users mailing
list has originated from difficulties in getting third partylibraries compiled and installed rather
than with actual problems building ITK.

ITK has been developed and tested across different combinations of operating systems, com-
pilers, and hardware platforms including MS-Windows, Linux on Intel-compatible hardware,
Solaris, IRIX, Mac OSX, and Cygwin. It is known to work with the following compilers:

• Visual Studio 6, .NET 2002, .NET 2003

• GCC 2.95.x, 2.96, 3.x

• SGI MIPSpro 7.3x

• Borland 5.5

Given the advanced usage of C++ features in the toolkit, somecompilers may have difficulties
processing the code. If you are currently using an outdated compiler this may be an excellent
excuse for upgrading this old piece of software!

2.1 Configuring ITK

The challenge of supporting ITK across platforms has been solved through the use of CMake,
a cross-platform, open-source build system. CMake is used to control the software compilation

14 Chapter 2. Installation

process using simple platform and compiler independent configuration files. CMake generates
native makefiles and workspaces that can be used in the compiler environment of your choice.
CMake is quite sophisticated—it supports complex environments requiring system configura-
tion, compiler feature testing, and code generation.

CMake generates Makefiles under UNIX and Cygwin systems and generates Visual Studio
workspaces under Windows (and appropriate build files for other compilers like Borland). The
information used by CMake is provided byCMakeLists.txt files that are present in every
directory of the ITK source tree. These files contain information that the user provides to
CMake at configuration time. Typical information includes paths to utilities in the system and
the selection of software options specified by the user.

2.1.1 Preparing CMake

CMake can be downloaded at no cost from

http://www.cmake.org

ITK requires at least CMake version 2.0. You can download binary versions for most of the
popular platforms including Windows, Solaris, IRIX, HP, Mac and Linux. Alternatively you
can download the source code and build CMake on your system. Follow the instructions in the
CMake Web page for downloading and installing the software.

Running CMake initially requires that you provide two pieces of information: where the source
code directory is located (ITKSOURCE DIR), and where the object code is to be produced
(ITK BINARY DIR). These are referred to as thesource directoryand thebinary directory.
We recommend setting the binary directory to be different than the source directory (anout-of-
sourcebuild), but ITK will still build if they are set to the same directory (anin-sourcebuild).
On Unix, the binary directory is created by the user and CMakeis invoked with the path to the
source directory. For example:

mkdir Insight-binary
cd Insight-binary
ccmake ../Insight

On Windows, the CMake GUI is used to specify the source and build directories (Figure2.1).

CMake runs in an interactive mode in that you iteratively select options and configure according
to these options. The iteration proceeds until no more options remain to be selected. At this
point, a generation step produces the appropriate build files for your configuration.

This interactive configuration process can be better understood if you imagine that you are
walking through a decision tree. Every option that you select introduces the possibility that
new, dependent options may become relevant. These new options are presented by CMake at
the top of the options list in its interface. Only when no new options appear after a configuration

http://www.cmake.org

2.1. Configuring ITK 15

iteration can you be sure that the necessary decisions have all been made. At this point build
files are generated for the current configuration.

2.1.2 Configuring ITK

Figure 2.1:CMake interface. Top) ccmake, the UNIX version based on curses. Bottom) CMakeSetup,

the MS-Windows version based on MFC.

Figure2.1 shows the CMake interface for UNIX and MS-Windows. In order to speed up the
build process you may want to disable the compilation of the testing and examples. This is done
with the variablesBUILD TESTING=OFF andBUILD EXAMPLES=OFF. The examples distributed

16 Chapter 2. Installation

with the toolkit are a helpful resource for learning how to use ITK components but are not
essential for the use of the toolkit itself. The testing section includes a large number of small
programs that exercise the capabilities of ITK classes. Dueto the large number of tests, enabling
the testing option will considerably increase the build time. It is not desirable to enable this
option for a first build of the toolkit.

An additional resource is available in theInsightApplications module, which contains mul-
tiple applications incorporating GUIs and different levels of visualization. However, due to the
large number of applications and the fact that some of them rely on third party libraries, building
this module should be postponed until you are familiar with the basic structure of the toolkit
and the building process.

Begin running CMake by using ccmake on Unix, and CMakeSetup on Windows. Remember
to run ccmake from the binary directory on Unix. On Windows, specify the source and binary
directories in the GUI, then begin to set the build variablesin the GUI as necessary. Most
variables should have default values that are sensible. Each time you change a set of variables
in CMake, it is necessary to proceed to another configurationstep. In the Windows version this
is done by clicking on the “Configure” button. In the UNIX version this is done in an interface
using the curses library, where you can configure by hitting the “c” key.

When no new options appear in CMake, you can proceed to generate Makefiles or Visual Studio
projects (or appropriate build file(s) depending on your compiler). This is done in Windows by
clicking on the “Ok” button. In the UNIX version this is done by hitting the “g” key. After the
generation process CMake will quit silently. To initiate the build process on UNIX, simply type
make in the binary directory. Under Windows, load the workspace namedITK.dsw (if using
MSDEV) or ITK.sln (if using the .NET compiler) from the binary directory you specified in
the CMake GUI.

The build process will typically take anywhere from 15 to 30 minutes depending on the perfor-
mance of your system. If you decide to enable testing as part of the normal build process, about
600 small test programs will be compiled. This will verify that the basic components of ITK
have been correctly built on your system.

2.2 Getting Started With ITK

The simplest way to create a new project with ITK is to create anew directory somewhere in
your disk and create two files in it. The first one is aCMakeLists.txt file that will be used by
CMake to generate a Makefile (if you are using UNIX) or a VisualStudio workspace (if you are
using MS-Windows). The second file is an actual C++ program that will exercise some of the
large number of classes available in ITK. The details of these files are described in the following
section.

Once both files are in your directory you can run CMake in orderto configure your project.
Under UNIX, you can cd to your newly created directory and type “ccmake .”. Note the “.”
in the command line for indicating that theCMakeLists.txt file is in the current directory.

2.2. Getting Started With ITK 17

The curses interface will require you to provide the directory where ITK was built. This is
the same path that you indicated for theITK BINARY DIR variable at the time of configuring
ITK. Under Windows you can run CMakeSetup and provide your newly created directory as
being both the source directory and the binary directory foryour new project (i.e., an in-source
build). Then CMake will require you to provide the path to thebinary directory where ITK was
built. The ITK binary directory will contain a file namedITKConfig.cmake generated during
the configuration process at the time ITK was built. From thisfile, CMake will recover all the
information required to configure your new ITK project.

2.2.1 Hello World !

Here is the content of the two files to write in your new project. These two files can be found
in theInsight/Examples/Installation directory. TheCMakeLists.txt file contains the
following lines:

PROJECT(HelloWorld)

FIND_PACKAGE(ITK)
IF(ITK_FOUND)
INCLUDE(${ITK_USE_FILE})

ELSE(ITK_FOUND)
MESSAGE(FATAL_ERROR

"ITK not found. Please set ITK_DIR.")
ENDIF(ITK_FOUND)

ADD_EXECUTABLE(HelloWorld HelloWorld.cxx)

TARGET_LINK_LIBRARIES(HelloWorld ITKCommon)

The first line defines the name of your project as it appears in Visual Studio (it will have no
effect under UNIX). The second line loads a CMake file with a predefined strategy for finding
ITK 1. If the strategy for finding ITK fails, CMake will prompt you for the directory where ITK
is installed in your system. In that case you will write this information in theITK BINARY DIR
variable. The line INCLUDE(${USE ITK FILE}) loads theUseITK.cmake file to set all the
configuration information from ITK. The lineADD EXECUTABLE defines as its first argument the
name of the executable that will be produced as result of thisproject. The remaining arguments
of ADD EXECUTABLE are the names of the source files to be compiled and linked. Finally, the
TARGET LINK LIBRARIES line specifies which ITK libraries will be linked against this project.

The source code for this section can be found in the file
Examples/Installation/HelloWorld.cxx.

The following code is an implementation of a small Insight program. It tests including header
files and linking with ITK libraries.

1Similar files are provided in CMake for other commonly used libraries, all of them namedFind*.cmake

18 Chapter 2. Installation

#include "itkImage.h"
#include <iostream>

int main()
{
typedef itk::Image< unsigned short, 3 > ImageType;

ImageType::Pointer image = ImageType::New();

std::cout << "ITK Hello World !" << std::endl;

return 0;
}

This code instantiates a 3D image2 whose pixels are represented with typeunsigned short.
The image is then constructed and assigned to aitk::SmartPointer. Although later in the
text we will discussSmartPointer’s in detail, for now think of it as a handle on an instance of
an object (see section3.2.4for more information). Theitk::Image class will be described in
Section4.1.

At this point you have successfully installed and compiled ITK, and created your first simple
program. If you have difficulties, please join the insight-users mailing list (Section1.4.3on
page6) and pose questions there.

2Also known as avolume.

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
http://www.itk.org/Doxygen/html/classitk_1_1Image.html

CHAPTER

THREE

System Overview

The purpose of this chapter is to provide you with an overviewof the Insight Toolkitsystem.
We recommend that you read this chapter to gain an appreciation for the breadth and area of
application of ITK.

3.1 System Organization

The Insight Toolkit consists of several subsystems. A briefdescription of these subsys-
tems follows. Later sections in this chapter—and in some cases additional chapters—
cover these concepts in more detail. (Note: in the previous chapter two other modules—
InsightDocumentation andInsightApplications were briefly described.)

Essential System Concepts.Like any software system, ITK is built around some core design
concepts. Some of the more important concepts include generic programming, smart
pointers for memory management, object factories for adaptable object instantiation,
event management using the command/observer design paradigm, and multithreading
support.

Numerics ITK uses VXL’s VNL numerics libraries. These are easy-to-use C++ wrappers
around the Netlib Fortran numerical analysis routines (http://www.netlib.org).

Data Representation and Access.Two principal classes are used to represent data: the
itk::Image and itk::Mesh classes. In addition, various types of iterators and con-
tainers are used to hold and traverse the data. Other important but less popular classes are
also used to represent data such as histograms and BLOX images.

Data Processing Pipeline.The data representation classes (known asdata objects) are oper-
ated on byfilters that in turn may be organized into data flowpipelines. These pipelines
maintain state and therefore execute only when necessary. They also support multi-
threading, and are streaming capable (i.e., can operate on pieces of data to minimize
the memory footprint).

http://www.netlib.org
http://www.itk.org/Doxygen/html/classitk_1_1Image.html
http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html

20 Chapter 3. System Overview

IO Framework. Associated with the data processing pipeline aresources, filters that initiate
the pipeline, andmappers, filters that terminate the pipeline. The standard examplesof
sources and mappers arereadersandwriters respectively. Readers input data (typically
from a file), and writers output data from the pipeline.

Spatial Objects. Geometric shapes are represented in ITK using the spatial object hierarchy.
These classes are intended to support modeling of anatomical structures. Using a com-
mon basic interface, the spatial objects are capable of representing regions of space in a
variety of different ways. For example: mesh structures, image masks, and implicit equa-
tions may be used as the underlying representation scheme. Spatial objects are a natural
data structure for communicating the results of segmentation methods and for introducing
anatomical priors in both segmentation and registration methods.

Registration Framework. A flexible framework for registration supports four different types
of registration: image registration, multiresolution registration, PDE-based registration,
and FEM (finite element method) registration.

FEM Framework. ITK includes a subsystem for solving general FEM problems, in particular
non-rigid registration. The FEM package includes mesh definition (nodes and elements),
loads, and boundary conditions.

Level Set Framework. The level set framework is a set of classes for creating filters to solve
partial differential equations on images using an iterative, finite difference update scheme.
The level set framework consists of finite difference solvers including a sparse level set
solver, a generic level set segmentation filter, and severalspecific subclasses including
threshold, Canny, and Laplacian based methods.

Wrapping. ITK uses a unique, powerful system for producing interfaces(i.e., “wrappers”) to
interpreted languages such as Tcl and Python. The GCCXML tool is used to produce
an XML description of arbitrarily complex C++ code; CSWIG isthen used to transform
the XML description into wrappers using theSWIG package.

Auxiliary / Utilities Several auxiliary subsystems are available to supplement other classes in
the system. For example, calculators are classes that perform specialized operations in
support of filters (e.g., MeanCalculator computes the mean of a sample). Other utilities
include a partial DICOM parser, MetaIO file support, png, zlib, FLTK / Qt image viewers,
and interfaces to the Visualization Toolkit (VTK) system.

3.2 Essential System Concepts

This section describes some of the core concepts and implementation features found in ITK.

http://www.swig.org/

3.2. Essential System Concepts 21

3.2.1 Generic Programming

Generic programming is a method of organizing libraries consisting of generic—or reusable—
software components [58]. The idea is to make software that is capable of “plugging together”
in an efficient, adaptable manner. The essential ideas of generic programming arecontainersto
hold data,iteratorsto access the data, andgeneric algorithmsthat use containers and iterators to
create efficient, fundamental algorithms such as sorting. Generic programming is implemented
in C++ with thetemplateprogramming mechanism and the use of the STL Standard Template
Library [6].

C++ templating is a programming technique allowing users towrite software in terms of one
or more unknown typesT. To create executable code, the user of the software must specify all
typesT (known astemplate instantiation) and successfully process the code with the compiler.
TheT may be a native type such asfloat or int, orT may be a user-defined type (e.g.,class).
At compile-time, the compiler makes sure that the templatedtypes are compatible with the
instantiated code and that the types are supported by the necessary methods and operators.

ITK uses the techniques of generic programming in its implementation. The advantage of this
approach is that an almost unlimited variety of data types are supported simply by defining the
appropriate template types. For example, in ITK it is possible to create images consisting of
almost any type of pixel. In addition, the type resolution isperformed at compile-time, so the
compiler can optimize the code to deliver maximal performance. The disadvantage of generic
programming is that many compilers still do not support these advanced concepts and cannot
compile ITK. And even if they do, they may produce completelyundecipherable error messages
due to even the simplest syntax errors. If you are not familiar with templated code and generic
programming, we recommend the two books cited above.

3.2.2 Include Files and Class Definitions

In ITK classes are defined by a maximum of two files: a header.h file and an implementation
file—.cxx if a non-templated class, and a.txx if a templated class. The header files contain
class declarations and formatted comments that are used by the Doxygen documentation system
to automatically produce HTML manual pages.

In addition to class headers, there are a few other importantheader files.

itkMacro.h is found in theCode/Common directory and defines standard system-wide
macros (such asSet/Get, constants, and other parameters).

itkNumericTraits.h is found in theCode/Common directory and defines numeric char-
acteristics for native types such as its maximum and minimumpossible values.

itkWin32Header.h is found in theCode/Common and is used to define operating system
parameters to control the compilation process.

22 Chapter 3. System Overview

3.2.3 Object Factories

Most classes in ITK are instantiated through anobject factorymechanism. That is, rather than
using the standard C++ class constructor and destructor, instances of an ITK class are created
with the static classNew() method. In fact, the constructor and destructor areprotected:
so it is generally not possible to construct an ITK instance on the heap. (Note: this behavior
pertains to classes that are derived fromitk::LightObject. In some cases the need for speed
or reduced memory footprint dictates that a class not be derived from LightObject and in this
case instances may be created on the heap. An example of such aclass isitk::EventObject.)

The object factory enables users to control run-time instantiation of classes by registering one or
more factories withitk::ObjectFactoryBase. These registered factories support the method
CreateInstance(classname) which takes as input the name of a class to create. The factory
can choose to create the class based on a number of factors including the computer system
configuration and environment variables. For example, in a particular application an ITK user
may wish to deploy their own class implemented using specialized image processing hardware
(i.e., to realize a performance gain). By using the object factory mechanism, it is possible at run-
time to replace the creation of a particular ITK filter with such a custom class. (Of course, the
class must provide the exact same API as the one it is replacing.) To do this, the user compiles
her class (using the same compiler, build options, etc.) andinserts the object code into a shared
library or DLL. The library is then placed in a directory referred to by theITK AUTOLOAD PATH
environment variable. On instantiation, the object factory will locate the library, determine that
it can create a class of a particular name with the factory, and use the factory to create the
instance. (Note: if theCreateInstance() method cannot find a factory that can create the
named class, then the instantiation of the class falls back to the usual constructor.)

In practice object factories are used mainly (and generallytransparently) by the ITK in-
put/output (IO) classes. For most users the greatest impactis on the use of theNew() method
to create a class. Generally theNew() method is declared and implemented via the macro
itkNewMacro() found inCommon/itkMacro.h.

3.2.4 Smart Pointers and Memory Management

By their nature object-oriented systems represent and operate on data through a variety of ob-
ject types, or classes. When a particular class is instantiated to produce an instance of that
class, memory allocation occurs so that the instance can store data attribute values and method
pointers (i.e., the vtable). This object may then be referenced by other classes or data structures
during normal operation of the program. Typically during program execution all references to
the instance may disappear at which point the instance must be deleted to recover memory re-
sources. Knowing when to delete an instance, however, is difficult. Deleting the instance too
soon results in program crashes; deleting it too late and memory leaks (or excessive memory
consumption) will occur. This process of allocating and releasing memory is known as memory
management.

In ITK, memory management is implemented through referencecounting. This compares to an-

http://www.itk.org/Doxygen/html/classitk_1_1LightObject.html
http://www.itk.org/Doxygen/html/classitk_1_1EventObject.html
http://www.itk.org/Doxygen/html/classitk_1_1ObjectFactoryBase.html

3.2. Essential System Concepts 23

other popular approach—garbage collection—used by many systems including Java. In refer-
ence counting, a count of the number of references to each instance is kept. When the reference
goes to zero, the object destroys itself. In garbage collection, a background process sweeps the
system identifying instances no longer referenced in the system and deletes them. The problem
with garbage collection is that the actual point in time at which memory is deleted is variable.
This is unacceptable when an object size may be gigantic (think of a large 3D volume gigabytes
in size). Reference counting deletes memory immediately (once all references to an object
disappear).

Reference counting is implemented through aRegister()/Delete() member function inter-
face. All instances of an ITK object have aRegister() method invoked on them by any other
object that references an them. TheRegister() method increments the instances’ reference
count. When the reference to the instance disappears, aDelete() method is invoked on the
instance that decrements the reference count—this is equivalent to anUnRegister() method.
When the reference count returns to zero, the instance is destroyed.

This protocol is greatly simplified by using a helper class called a itk::SmartPointer. The
smart pointer acts like a regular pointer (e.g. supports operators-> and*) but automagically
performs aRegister() when referring to an instance, and anUnRegister() when it no longer
points to the instance. Unlike most other instances in ITK, SmartPointers can be allocated on
the program stack, and are automatically deleted when the scope that the SmartPointer was
created is closed. As a result, you shouldrarely if ever call Register() or Delete()in ITK. For
example:

MyRegistrationFunction()
{ <----- Start of scope

// here an interpolator is created and associated to the
// SmartPointer "interp".
InterpolatorType::Pointer interp = InterpolatorType::New();

} <------ End of scope

In this example, reference counted objects are created (with theNew() method) with a reference
count of one. Assignment to the SmartPointerinterp does not change the reference count. At
the end of scope,interp is destroyed, the reference count of the actual interpolator object
(referred to byinterp) is decremented, and if it reaches zero, then the interpolator is also
destroyed.

Note that in ITK SmartPointers are always used to refer to instances of classes derived from
itk::LightObject. Method invocations and function calls often return “real”pointers to in-
stances, but they are immediately assigned to a SmartPointer. Raw pointers are used for non-
LightObject classes when the need for speed and/or memory demands a smaller, faster class.

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
http://www.itk.org/Doxygen/html/classitk_1_1LightObject.html

24 Chapter 3. System Overview

3.2.5 Error Handling and Exceptions

In general, ITK uses exception handling to manage errors during program execution. Exception
handling is a standard part of the C++ language and generallytakes the form as illustrated
below:

try
{
//...try executing some code here...
}

catch (itk::ExceptionObject exp)
{
//...if an exception is thrown catch it here
}

where a particular class may throw an exceptions as demonstrated below (this code snippet is
taken fromitk::ByteSwapper:

switch (sizeof(T))
{
//non-error cases go here followed by error case
default:

ByteSwapperError e(__FILE__, __LINE__);
e.SetLocation("SwapBE");
e.SetDescription("Cannot swap number of bytes requested");
throw e;

}

Note that itk::ByteSwapperError is a subclass ofitk::ExceptionObject. (In fact in
ITK all exceptions should be derived from ExceptionObject.) In this example a special con-
structor and C++ preprocessor variablesFILE and LINE are used to instantiate the
exception object and provide additional information to theuser. You can choose to catch a par-
ticular exception and hence a specific ITK error, or you can trapanyITK exception by catching
ExceptionObject.

3.2.6 Event Handling

Event handling in ITK is implemented using the Subject/Observer design pattern [28] (some-
times referred to as the Command/Observer design pattern).In this approach, objects indicate
that they are watching for a particular event—invoked by a particular instance–by register-
ing with the instance that they are watching. For example, filters in ITK periodically invoke
the itk::ProgressEvent. Objects that have registered their interest in this event are notified
when the event occurs. The notification occurs via an invocation of a command (i.e., function
callback, method invocation, etc.) that is specified duringthe registration process. (Note that
events in ITK are subclasses of EventObject; look initkEventObject.h to determine which
events are available.)

http://www.itk.org/Doxygen/html/classitk_1_1ByteSwapper.html
http://www.itk.org/Doxygen/html/classitk_1_1ByteSwapperError.html
http://www.itk.org/Doxygen/html/classitk_1_1ExceptionObject.html
http://www.itk.org/Doxygen/html/classitk_1_1ProgressEvent.html

3.3. Numerics 25

To recap via example: various objects in ITK will invoke specific events as they execute (from
ProcessObject):

this->InvokeEvent(ProgressEvent());

To watch for such an event, registration is required that associates a command (e.g., callback
function) with the event:Object::AddObserver() method:

unsigned long progressTag =
filter->AddObserver(ProgressEvent(), itk::Command*);

When the event occurs, all registered observers are notifiedvia invocation of the associ-
atedCommand::Execute() method. Note that several subclasses of Command are available
supporting const and non-const member functions as well as C-style functions. (Look in
Common/Command.h to find pre-defined subclasses of Command. If nothing suitable is found,
derivation is another possibility.)

3.2.7 Multi-Threading

Multithreading is handled in ITK through a high-level design abstraction. This approach pro-
vides portable multithreading and hides the complexity of differing thread implementations on
the many systems supported by ITK. For example, the classitk::MultiThreader provides
support for multithreaded execution usingsproc() on an SGI, orpthread create on any
platform supporting POSIX threads.

Multithreading is typically employed by an algorithm during its execution phase. MultiThreader
can be used to execute a single method on multiple threads, orto specify a method per thread.
For example, in the classitk::ImageSource (a superclass for most image processing filters)
theGenerateData() method uses the following methods:

multiThreader->SetNumberOfThreads(int);
multiThreader->SetSingleMethod(ThreadFunctionType, void* data);
multiThreader->SingleMethodExecute();

In this example each thread invokes the same method. The multithreaded filter takes care to
divide the image into different regions that do not overlap for write operations.

The general philosophy in ITK regarding thread safety is that accessing different instances of
a class (and its methods) is a thread-safe operation. Invoking methods on the same instance in
different threads is to be avoided.

3.3 Numerics

ITK uses the VNL numerics library to provide resources for numerical programming combining
the ease of use of packages like Mathematica and Matlab with the speed of C and the elegance

http://www.itk.org/Doxygen/html/classitk_1_1MultiThreader.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageSource.html

26 Chapter 3. System Overview

of C++. It provides a C++ interface to the high-quality Fortran routines made available in the
public domain by numerical analysis researchers. ITK extends the functionality of VNL by
including interface classes between VNL and ITK proper.

The VNL numerics library includes classes for

Matrices and vectors. Standard matrix and vector support and operations on these types.

Specialized matrix and vector classes.Several special matrix and vector class with special
numerical properties are available. Classvnl diagonal matrix provides a fast and
convenient diagonal matrix, while fixed size matrices and vectors allow ”fast-as-C” com-
putations (seevnl matrix fixed<T,n,m> and example subclassesvnl double 3x3
andvnl double 3).

Matrix decompositions. Classes vnl svd<T>, vnl symmetric eigensystem<T>, and
vnl generalized eigensystem.

Real polynomials. Classvnl real polynomial stores the coefficients of a real polyno-
mial, and provides methods of evaluation of the polynomial at any x, while class
vnl rpoly roots provides a root finder.

Optimization. Classes vnl levenberg marquardt, vnl amoeba,
vnl conjugate gradient, vnl lbfgs allow optimization of user-supplied func-
tions either with or without user-supplied derivatives.

Standardized functions and constants.Classvnl math defines constants (pi, e, eps...) and
simple functions (sqr, abs, rnd...). Classnumeric limits is from the ISO stan-
dard document, and provides a way to access basic limits of a type. For example
numeric limits<short>::max() returns the maximum value of a short.

Most VNL routines are implemented as wrappers around the high-quality Fortran routines
that have been developed by the numerical analysis community over the last forty years and
placed in the public domain. The central repository for these programs is the ”netlib” server
http://www.netlib.org/. The National Institute of Standards and Technology (NIST)pro-
vides an excellent search interface to this repository in its Guide to Available Mathematical
Software (GAMS)athttp://gams.nist.gov, both as a decision tree and a text search.

ITK also provides additional numerics functionality. A suite of optimizers, that use
VNL under the hood and integrate with the registration framework are available. A
large collection of statistics functions—not available from VNL—are also provided in the
Insight/Numerics/Statistics directory. In addition, a complete finite element (FEM)
package is available, primarily to support the deformable registration in ITK.

http://www.netlib.org/
http://gams.nist.gov

3.4. Data Representation 27

3.4 Data Representation

There are two principle types of data represented in ITK: images and meshes. This func-
tionality is implemented in the classes Image and Mesh, bothof which are subclasses of
itk::DataObject. In ITK, data objects are classes that are meant to be passed around the
system and may participate in data flow pipelines (see Section 3.5 on page28 for more infor-
mation).

itk::Image represents ann-dimensional, regular sampling of data. The sampling direction is
parallel to each of the coordinate axes, and the origin of thesampling, inter-pixel spacing, and
the number of samples in each direction (i.e., image dimension) can be specified. The sample, or
pixel, type in ITK is arbitrary—a template parameterTPixel specifies the type upon template
instantiation. (The dimensionality of the image must also be specified when the image class
is instantiated.) The key is that the pixel type must supportcertain operations (for example,
addition or difference) if the code is to compile in all cases(for example, to be processed by a
particular filter that uses these operations). In practice the ITK user will use a C++ simple type
(e.g.,int, float) or a pre-defined pixel type and will rarely create a new type of pixel class.

One of the important ITK concepts regarding images is that rectangular, continuous pieces of
the image are known asregions. Regions are used to specify which part of an image to process,
for example in multithreading, or which part to hold in memory. In ITK there are three common
types of regions:

1. LargestPossibleRegion—the image in its entirety.

2. BufferedRegion—the portion of the image retained in memory.

3. RequestedRegion—the portion of the region requested by a filter or other classwhen
operating on the image.

The Mesh class represents ann-dimensional, unstructured grid. The topology of the mesh is
represented by a set ofcellsdefined by a type and connectivity list; the connectivity list in turn
refers to points. The geometry of the mesh is defined by then-dimensional points in combi-
nation with associated cell interpolation functions.Mesh is designed as an adaptive represen-
tational structure that changes depending on the operations performed on it. At a minimum,
points and cells are required in order to represent a mesh; but it is possible to add additional
topological information. For example, links from the points to the cells that use each point can
be added; this provides implicit neighborhood informationassuming the implied topology is the
desired one. It is also possible to specify boundary cells explicitly, to indicate different connec-
tivity from the implied neighborhood relationships, or to store information on the boundaries of
cells.

The mesh is defined in terms of three template parameters: 1) apixel type associated with
the points, cells, and cell boundaries; 2) the dimension of the points (which in turn limits the
maximum dimension of the cells); and 3) a “mesh traits” template parameter that specifies the
types of the containers and identifiers used to access the points, cells, and/or boundaries. By

http://www.itk.org/Doxygen/html/classitk_1_1DataObject.html
http://www.itk.org/Doxygen/html/classitk_1_1Image.html

28 Chapter 3. System Overview

using the mesh traits carefully, it is possible to create meshes better suited for editing, or those
better suited for “read-only” operations, allowing a trade-off between representation flexibility,
memory, and speed.

Mesh is a subclass ofitk::PointSet. The PointSet class can be used to represent point clouds
or randomly distributed landmarks, etc. The PointSet classhas no associated topology.

3.5 Data Processing Pipeline

While data objects (e.g., images and meshes) are used to represent data,process objectsare
classes that operate on data objects and may produce new dataobjects. Process objects are
classed assources, filter objects, or mappers. Sources (such as readers) produce data, filter
objects take in data and process it to produce new data, and mappers accept data for output
either to a file or some other system. Sometimes the termfilter is used broadly to refer to all
three types.

The data processing pipeline ties together data objects (e.g., images and meshes) and process
objects. The pipeline supports an automatic updating mechanism that causes a filter to execute
if and only if its input or its internal state changes. Further, the data pipeline supportsstreaming,
the ability to automatically break data into smaller pieces, process the pieces one by one, and
reassemble the processed data into a final result.

Typically data objects and process objects are connected together using theSetInput() and
GetOutput() methods as follows:

typedef itk::Image<float,2> FloatImage2DType;

itk::RandomImageSource<FloatImage2DType>::Pointer random;
random = itk::RandomImageSource<FloatImage2DType>::New();
random->SetMin(0.0);
random->SetMax(1.0);

itk::ShrinkImageFilter<FloatImage2DType,FloatImage2DType>::Pointer shrink;
shrink = itk::ShrinkImageFilter<FloatImage2DType,FloatImage2DType>::New();
shrink->SetInput(random->GetOutput());
shrink->SetShrinkFactors(2);

itk::ImageFileWriter::Pointer<FloatImage2DType> writer;
writer = itk::ImageFileWriter::Pointer<FloatImage2DType>::New();
writer->SetInput (shrink->GetOutput());
writer->SetFileName(‘‘test.raw’’);
writer->Update();

In this example the source object itk::RandomImageSource is connected to
the itk::ShrinkImageFilter, and the shrink filter is connected to the mapper

http://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
http://www.itk.org/Doxygen/html/classitk_1_1RandomImageSource.html
http://www.itk.org/Doxygen/html/classitk_1_1ShrinkImageFilter.html

3.6. Spatial Objects 29

itk::ImageFileWriter. When the Update() method is invoked on the writer, the
data processing pipeline causes each of these filters in order, culminating in writing the final
data to a file on disk.

3.6 Spatial Objects

The ITK spatial object framework supports the philosophy that the task of image segmentation
and registration is actually the task of object processing.The image is but one medium for
representing objects of interest, and much processing and data analysis can and should occur at
the object level and not based on the medium used to representthe object.

ITK spatial objects provide a common interface for accessing the physical location and geo-
metric properties of and the relationship between objects in a scene that is independent of the
form used to represent those objects. That is, the internal representation maintained by a spatial
object may be a list of points internal to an object, the surface mesh of the object, a continuous
or parametric representation of the object’s internal points or surfaces, and so forth.

The capabilities provided by the spatial objects frameworksupports their use in object segmen-
tation, registration, surface/volume rendering, and other display and analysis functions. The
spatial object framework extends the concept of a “scene graph” that is common to computer
rendering packages so as to support these new functions. With the spatial objects framework
you can:

1. Specify a spatial object’s parent and children objects. In this way, a liver may contain
vessels and those vessels can be organized in a tree structure.

2. Query if a physical point is inside an object or (optionally) any of its children.

3. Request the value and derivatives, at a physical point, ofan associated intensity function,
as specified by an object or (optionally) its children.

4. Specify the coordinate transformation that maps a parentobject’s coordinate system into
a child object’s coordinate system.

5. Compute the bounding box of a spatial object and (optionally) its children.

6. Query the resolution at which the object was originally computed. For example, you
can query the resolution (i.e., voxel spacing) of the image used to generate a particular
instance of aitk::BlobSpatialObject.

Currently implemented types of spatial objects include: Blob, Ellipse, Group, Image, Line,
Surface, and Tube. Theitk::Scene object is used to hold a list of spatial objects that may
in turn have children. Each spatial object can be assigned a color property. Each spatial object
type has its own capabilities. For example,itk::TubeSpatialObjects indicate to what point
on their parent tube they connect.

http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
http://www.itk.org/Doxygen/html/classitk_1_1BlobSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1Scene.html
http://www.itk.org/Doxygen/html/classitk_1_1TubeSpatialObject.html

30 Chapter 3. System Overview

There are a limited number of spatial objects and their methods in ITK, but their number is
growing and their potential is huge. Using the nominal spatial object capabilities, methods
such as marching cubes or mutual information registration,can be applied to objects regardless
of their internal representation. By having a common API, the same method can be used to
register a parametric representation of a heart with an individual’s CT data or to register two
hand segmentations of a liver.

3.7 Wrapping

While the core of ITK is implemented in C++, Tcl and Python bindings can be automatically
generated and ITK programs can be created using these programming languages. This capabil-
ity is under active development and is for the advanced user only. However, this brief description
will give you an idea of what is possible and where to look if you are interested in this facility.

The wrapping process in ITK is quite complex due to the use of generic programming (i.e., ex-
tensive use of C++ templates). Systems like VTK that use their own wrapping facility are non-
templated and customized to the coding methodology found inthe system. Even systems like
SWIG that are designed for general wrapper generation have difficulty with ITK code because
general C++ is difficult to parse. As a result, the ITK wrappergenerator uses a combination of
tools to produce language bindings.

1. gccxml is a modified version of the GNU compiler gcc that produces an XML description
of an input C++ program.

2. CABLE processes XML information from gccxml and producesadditional input to the
next tool (i.e., CSWIG indicating what is to be wrapped).

3. CSWIG is a modified version of SWIG that has SWIG’s usual parser replaced with an
XML parser (XML produced from CABLE and gccxml.) CSWIG produces the appropri-
ate language bindings (either Tcl or Python). (Note: since SWIG is capable of producing
language bindings for eleven different interpreted languages including Java, and Perl, it
is expected that support for some of these languages will be added in the future.)

To learn more about the wrapping process, please read the filefound in
Wrapping/CSwig/README. Also note that there are some simple test scripts found in
Wrapping/CSwig/Tests. Additional tests and examples are found in the Testing/Code/*/
directories.

The result of the wrapping process is a set of shared libraries/dll’s that can be used by the
interpreted languages. There is almost a direct translation from C++, with the differences be-
ing the particular syntactical requirements of each language. For example, in the directory
Testing/Code/Algorithms, the testitkCurvatureFlowTestTcl2.tcl has a code fragment
that appears as follows:

set reader [itkImageFileReaderF2_New]

3.7. Wrapping 31

$reader SetFileName "${ITK_TEST_INPUT}/cthead1.png"

set cf [itkCurvatureFlowImageFilterF2F2_New]
$cf SetInput [$reader GetOutput]
$cf SetTimeStep 0.25
$cf SetNumberOfIterations 10

The same code in C++ would appear as follows:

itk::ImageFileReader<ImageType>::Pointer reader =
itk::ImageFileReader<ImageType>::New();

reader->SetFileName("cthead1.png");

itk::CurvatureFlowImageFilter<ImageType,ImageType>::Pointer cf =
itk::CurvatureFlowImageFilter<ImageType,ImageType>::New();

cf->SetInput(reader->GetOutput());
cf->SetTimeStep(0.25);
cf->SetNumberOfIterations(10);

This example demonstrates an important difference betweenC++ and a wrapped language
such as Tcl. Templated classes must be instantiated prior towrapping. That is, the tem-
plate parameters must be specified as part of the wrapping process. In the example above, the
CurvatureFlowImageFilterF2F2 indicates that this filter has been instantiated using an input
and output image type of two-dimensional float values (e.g.,F2). Typically just a few common
types are selected for the wrapping process to avoid an explosion of types and hence, library
size. To add a new type requires rerunning the wrapping process to produce new libraries.

The advantage of interpreted languages is that they do not require the lengthy compile/link cycle
of a compiled language like C++. Moreover, they typically come with a suite of packages that
provide useful functionality. For example, the Tk package (i.e., Tcl/Tk and Python/Tk) provides
tools for creating sophisticated user interfaces. In the future it is likely that more applications
and tests will be implemented in the various interpreted languages supported by ITK.

Part II

User’s Guide

CHAPTER

FOUR

DataRepresentation

This chapter introduces the basic classes responsible for representing data in ITK. The most
common classes are theitk::Image, the itk::Mesh and theitk::PointSet.

4.1 Image

The itk::Image class follows the spirit ofGeneric Programming, where types are separated
from the algorithmic behavior of the class. ITK supports images with any pixel type and any
spatial dimension.

4.1.1 Creating an Image

The source code for this section can be found in the file
Examples/DataRepresentation/Image/Image1.cxx.

This example illustrates how to manually construct anitk::Image class. The following is the
minimal code needed to instantiate, declare and create the image class.

First, the header file of the Image class must be included.

#include "itkImage.h"

Then we must decide with what type to represent the pixels andwhat the dimension of the
image will be. With these two parameters we can instantiate the image class. Here we create a
3D image withunsigned short pixel data.

typedef itk::Image< unsigned short, 3 > ImageType;

The image can then be created by invoking theNew() operator from the corresponding image
type and assigning the result to aitk::SmartPointer.

http://www.itk.org/Doxygen/html/classitk_1_1Image.html
http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
http://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
http://www.itk.org/Doxygen/html/classitk_1_1Image.html
http://www.boost.org/more/generic_programming.html
http://www.itk.org/Doxygen/html/classitk_1_1Image.html
http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

36 Chapter 4. DataRepresentation

ImageType::Pointer image = ImageType::New();

In ITK, images exist in combination with one or moreregions. A region is a subset of the image
and indicates a portion of the image that may be processed by other classes in the system. One of
the most common regions is theLargestPossibleRegion, which defines the image in its entirety.
Other important regions found in ITK are theBufferedRegion, which is the portion of the image
actually maintained in memory, and theRequestedRegion, which is the region requested by a
filter or other class when operating on the image.

In ITK, manually creating an image requires that the image isinstantiated as previously shown,
and that regions describing the image are then associated with it.

A region is defined by two classes: theitk::Index and itk::Size classes. The origin of
the region within the image with which it is associated is defined by Index. The extent, or size,
of the region is defined by Size. Index is represented by a n-dimensional array where each
component is an integer indicating—in topological image coordinates—the initial pixel of the
image. When an image is created manually, the user is responsible for defining the image size
and the index at which the image grid starts. These two parameters make it possible to process
selected regions.

The starting point of the image is defined by an Index class that is an n-dimensional array where
each component is an integer indicating the grid coordinates of the initial pixel of the image.

ImageType::IndexType start;

start[0] = 0; // first index on X
start[1] = 0; // first index on Y
start[2] = 0; // first index on Z

The region size is represented by an array of the same dimension of the image (using the Size
class). The components of the array are unsigned integers indicating the extent in pixels of the
image along every dimension.

ImageType::SizeType size;

size[0] = 200; // size along X
size[1] = 200; // size along Y
size[2] = 200; // size along Z

Having defined the starting index and the image size, these two parameters are used to create an
ImageRegion object which basically encapsulates both concepts. The region is initialized with
the starting index and size of the image.

ImageType::RegionType region;

region.SetSize(size);
region.SetIndex(start);

http://www.itk.org/Doxygen/html/classitk_1_1Index.html
http://www.itk.org/Doxygen/html/classitk_1_1Size.html

4.1. Image 37

Finally, the region is passed to theImage object in order to define its extent and origin. The
SetRegions method sets the LargestPossibleRegion, BufferedRegion, and RequestedRegion
simultaneously. Note that none of the operations performedto this point have allocated memory
for the image pixel data. It is necessary to invoke theAllocate() method to do this. Allocate
does not require any arguments since all the information needed for memory allocation has
already been provided by the region.

image->SetRegions(region);
image->Allocate();

In practice it is rare to allocate and initialize an image directly. Images are typically read from
a source, such a file or data acquisition hardware. The following example illustrates how an
image can be read from a file.

4.1.2 Reading an Image from a File

The source code for this section can be found in the file
Examples/DataRepresentation/Image/Image2.cxx.

The first thing required to read an image from a file is to include the header file of the
itk::ImageFileReader class.

#include "itkImageFileReader.h"

Then, the image type should be defined by specifying the type used to represent pixels and the
dimensions of the image.

typedef unsigned char PixelType;
const unsigned int Dimension = 3;

typedef itk::Image< PixelType, Dimension > ImageType;

Using the image type, it is now possible to instantiate the image reader class. The image type
is used as a template parameter to define how the data will be represented once it is loaded
into memory. This type does not have to correspond exactly tothe type stored in the file.
However, a conversion based on C-style type casting is used,so the type chosen to represent
the data on disk must be sufficient to characterize it accurately. Readers do not apply any
transformation to the pixel data other than casting from thepixel type of the file to the pixel type
of the ImageFileReader. The following illustrates a typical instantiation of the ImageFileReader
type.

typedef itk::ImageFileReader< ImageType > ReaderType;

http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html

38 Chapter 4. DataRepresentation

The reader type can now be used to create one reader object. Aitk::SmartPointer (defined
by the::Pointer notation) is used to receive the reference to the newly created reader. The
New() method is invoked to create an instance of the image reader.

ReaderType::Pointer reader = ReaderType::New();

The minimum information required by the reader is the filename of the image to be loaded in
memory. This is provided through theSetFileName() method. The file format here is inferred
from the filename extension. The user may also explicitly specify the data format explicitly
using theitk::ImageIO (See Chapter7.1 263for more information

const char * filename = argv[1];
reader->SetFileName(filename);

Reader objects are referred to as pipeline source objects; they respond to pipeline update re-
quests and initiate the data flow in the pipeline. The pipeline update mechanism ensures that
the reader only executes when a data request is made to the reader and the reader has not read
any data. In the current example we explicitly invoke theUpdate() method because the output
of the reader is not connected to other filters. In normal application the reader’s output is con-
nected to the input of an image filter and the update invocation on the filter triggers an update
of the reader. The following line illustrates how an explicit update is invoked on the reader.

reader->Update();

Access to the newly read image can be gained by calling theGetOutput() method on the reader.
This method can also be called before the update request is sent to the reader. The reference to
the image will be valid even though the image will be empty until the reader actually executes.

ImageType::Pointer image = reader->GetOutput();

Any attempt to access image data before the reader executes will yield an image with no pixel
data. It is likely that a program crash will result since the image will not have been properly
initialized.

4.1.3 Accessing Pixel Data

The source code for this section can be found in the file
Examples/DataRepresentation/Image/Image3.cxx.

This example illustrates the use of theSetPixel() and GetPixel() methods. These two
methods provide direct access to the pixel data contained inthe image. Note that these two
methods are relatively slow and should not be used in situations where high-performance access

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageIO.html

4.1. Image 39

is required. Image iterators are the appropriate mechanismto efficiently access image pixel data.
(See Chapter11on page701for information about image iterators.)

The individual position of a pixel inside the image is identified by a unique index. An index
is an array of integers that defines the position of the pixel along each coordinate dimension
of the image. The IndexType is automatically defined by the image and can be accessed using
the scope operator likeitk::Index. The length of the array will match the dimensions of the
associated image.

The following code illustrates the declaration of an index variable and the assignment of values
to each of its components. Please note thatIndex does not use SmartPointers to access it. This
is becauseIndex is a light-weight object that is not intended to be shared between objects. It
is more efficient to produce multiple copies of these small objects than to share them using the
SmartPointer mechanism.

The following lines declare an instance of the index type andinitialize its content in order to
associate it with a pixel position in the image.

ImageType::IndexType pixelIndex;

pixelIndex[0] = 27; // x position
pixelIndex[1] = 29; // y position
pixelIndex[2] = 37; // z position

Having defined a pixel position with an index, it is then possible to access the content of the
pixel in the image. TheGetPixel() method allows us to get the value of the pixels.

ImageType::PixelType pixelValue = image->GetPixel(pixelIndex);

TheSetPixel() method allows us to set the value of the pixel.

image->SetPixel(pixelIndex, pixelValue+1);

Please note thatGetPixel() returns the pixel value using copy and not reference semantics.
Hence, the method cannot be used to modify image data values.

Remember that bothSetPixel() andGetPixel() are inefficient and should only be used for
debugging or for supporting interactions like querying pixel values by clicking with the mouse.

4.1.4 Defining Origin and Spacing

The source code for this section can be found in the file
Examples/DataRepresentation/Image/Image4.cxx.

http://www.itk.org/Doxygen/html/classitk_1_1Index.html

40 Chapter 4. DataRepresentation

0 10050 150 200

0

50

100

150

200

250

300

30.0

20.0

Size=7x6

Spacing=(20.0, 30.0)

Physical extent=(140.0, 180.0)

Origin=(60.0,70.0)

Image Origin

Voronoi Region
Pixel Coverage

Delaunay Region
Linear Interpolation Region

Pixel Coordinates

Spacing[0]

S
pa

ci
ng

[1
]

Figure 4.1:Geometrical concepts associated with the ITK image.

Even thoughITK can be used to perform general image processing tasks, the primary purpose
of the toolkit is the processing of medical image data. In that respect, additional information
about the images is considered mandatory. In particular theinformation associated with the
physical spacing between pixels and the position of the image in space with respect to some
world coordinate system are extremely important.

Image origin and spacing are fundamental to many applications. Registration, for example,
is performed in physical coordinates. Improperly defined spacing and origins will result in
inconsistent results in such processes. Medical images with no spatial information should not
be used for medical diagnosis, image analysis, feature extraction, assisted radiation therapy or
image guided surgery. In other words, medical images lacking spatial information are not only
useless but also hazardous.

Figure4.1 illustrates the main geometrical concepts associated withthe itk::Image. In this
figure, circles are used to represent the center of pixels. The value of the pixel is assumed to
exist as a Dirac Delta Function located at the pixel center. Pixel spacing is measured between
the pixel centers and can be different along each dimension.The image origin is associated with
the coordinates of the first pixel in the image. Apixel is considered to be the rectangular region
surrounding the pixel center holding the data value. This can be viewed as the Voronoi region
of the image grid, as illustrated in the right side of the figure. Linear interpolation of image
values is performed inside the Delaunay region whose corners are pixel centers.

Image spacing is represented in aFixedArray whose size matches the dimension of the image.
In order to manually set the spacing of the image, an array of the corresponding type must
be created. The elements of the array should then be initialized with the spacing between the
centers of adjacent pixels. The following code illustratesthe methods available in the Image

http://www.itk.org
http://www.itk.org/Doxygen/html/classitk_1_1Image.html

4.1. Image 41

class for dealing with spacing and origin.

ImageType::SpacingType spacing;

// Note: measurement units (e.g., mm, inches, etc.) are defined by the application.
spacing[0] = 0.33; // spacing along X
spacing[1] = 0.33; // spacing along Y
spacing[2] = 1.20; // spacing along Z

The array can be assigned to the image using theSetSpacing() method.

image->SetSpacing(spacing);

The spacing information can be retrieved from an image by using theGetSpacing() method.
This method returns a reference to aFixedArray. The returned object can then be used to read
the contents of the array. Note the use of theconst keyword to indicate that the array will not
be modified.

const ImageType::SpacingType& sp = image->GetSpacing();

std::cout << "Spacing = ";
std::cout << sp[0] << ", " << sp[1] << ", " << sp[2] << std::endl;

The image origin is managed in a similar way to the spacing. APoint of the appropriate
dimension must first be allocated. The coordinates of the origin can then be assigned to every
component. These coordinates correspond to the position ofthe first pixel of the image with
respect to an arbitrary reference system in physical space.It is the user’s responsibility to make
sure that multiple images used in the same application are using a consistent reference system.
This is extremely important in image registration applications.

The following code illustrates the creation and assignmentof a variable suitable for initializing
the image origin.

ImageType::PointType origin;

origin[0] = 0.0; // coordinates of the
origin[1] = 0.0; // first pixel in N-D
origin[2] = 0.0;

image->SetOrigin(origin);

The origin can also be retrieved from an image by using theGetOrigin() method. This will
return a reference to aPoint. The reference can be used to read the contents of the array. Note
again the use of theconst keyword to indicate that the array contents will not be modified.

42 Chapter 4. DataRepresentation

const ImageType::PointType& orgn = image->GetOrigin();

std::cout << "Origin = ";
std::cout << orgn[0] << ", " << orgn[1] << ", " << orgn[2] << std::endl;

Once the spacing and origin of the image have been initialized, the image will correctly map
pixel indices to and from physical space coordinates. The following code illustrates how a point
in physical space can be mapped into an image index for the purpose of reading the content of
the closest pixel.

First, a itk::Point type must be declared. The point type is templated over the type used to
represent coordinates and over the dimension of the space. In this particular case, the dimension
of the point must match the dimension of the image.

typedef itk::Point< double, ImageType::ImageDimension > PointType;

The Point class, like anitk::Index, is a relatively small and simple object. For this reason,
it is not reference-counted like the large data objects in ITK. Consequently, it is also not ma-
nipulated with itk::SmartPointers. Point objects are simply declared as instances of any
other C++ class. Once the point is declared, its components can be accessed using traditional
array notation. In particular, the[] operator is available. For efficiency reasons, no bounds
checking is performed on the index used to access a particular point component. It is the user’s
responsibility to make sure that the index is in the range{0,Dimension−1}.

PointType point;

point[0] = 1.45; // x coordinate
point[1] = 7.21; // y coordinate
point[2] = 9.28; // z coordinate

The image will map the point to an index using the values of thecurrent spacing and origin. An
index object must be provided to receive the results of the mapping. The index object can be
instantiated by using theIndexType defined in the Image type.

ImageType::IndexType pixelIndex;

TheTransformPhysicalPointToIndex() method of the image class will compute the pixel
index closest to the point provided. The method checks for this index to be contained inside
the current buffered pixel data. The method returns a boolean indicating whether the resulting
index falls inside the buffered region or not. The output index should not be used when the
returned value of the method isfalse.

The following lines illustrate the point to index mapping and the subsequent use of the pixel
index for accessing pixel data from the image.

http://www.itk.org/Doxygen/html/classitk_1_1Point.html
http://www.itk.org/Doxygen/html/classitk_1_1Index.html
http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

4.1. Image 43

bool isInside = image->TransformPhysicalPointToIndex(point, pixelIndex);

if (isInside)
{
ImageType::PixelType pixelValue = image->GetPixel(pixelIndex);

pixelValue += 5;

image->SetPixel(pixelIndex, pixelValue);
}

Remember thatGetPixel() andSetPixel() are very inefficient methods for accessing pixel
data. Image iterators should be used when massive access to pixel data is required.

4.1.5 RGB Images

The term RGB (Red, Green, Blue) stands for a color representation commonly used in digital
imaging. RGB is a representation of the human physiologicalcapability to analyze visual light
using three spectral-selective sensors [53, 94]. The human retina possess different types of light
sensitive cells. Three of them, known ascones, are sensitive to color [31] and their regions
of sensitivity loosely match regions of the spectrum that will be perceived as red, green and
blue respectively. Therods on the other hand provide no color discrimination and favor high
resolution and high sensitivity1. A fifth type of receptors, theganglion cells, also known as
circadian2 receptors are sensitive to the lighting conditions that differentiate day from night.
These receptors evolved as a mechanism for synchronizing the physiology with the time of the
day. Cellular controls for circadian rythms are present in every cell of an organism and are
known to be exquisitively precise [50].

The RGB space has been constructed as a representation of a physiological response to light by
the three types ofconesin the human eye. RGB is not a Vector space. For example, negative
numbers are not appropriate in a color space because they will be the equivalent of “negative
stimulation” on the human eye. In the context of colorimetry, negative color values are used as
an artificial construct for color comparison in the sense that

ColorA= ColorB−ColorC (4.1)

just as a way of saying that we can produceColorB by combiningColorA andColorC. How-
ever, we must be aware that (at least in emitted light) it is not possible tosubstract light. So
when we mention Equation4.1we actually mean

ColorB= ColorA+ColorC (4.2)

1The human eye is capable of perceiving a single isolated photon.
2The termCircadianrefers to the cycle of day and night, that is, events that are repeated with 24 hours intervals.

44 Chapter 4. DataRepresentation

On the other hand, when dealing with printed color and with paint, as opposed to emitted light
like in computer screens, the physical behavior of color allows for subtraction. This is because
strictly speaking the objects that we see as red are those that absorb all light frequencies except
those in the red section of the spectrum [94].

The concept of addition and subtraction of colors has to be carefully interpreted. In fact, RGB
has a different definition regarding whether we are talking about the channels associated to the
three color sensors of the human eye, or to the three phosphors found in most computer monitors
or to the color inks that are used for printing reproduction.Color spaces are usually non linear
and do not even from a Group. For example, not all visible colors can be represented in RGB
space [94].

ITK introduces theitk::RGBPixel type as a support for representing the values of an RGB
color space. As such, the RGBPixel class embodies a different concept from the one of an
itk::Vector in space. For this reason, the RGBPixel lack many of the operators that may
be naively expected from it. In particular, there are no defined operations for subtraction or
addition.

When you anticipate to perform the operation of “Mean” on a RGB type you are assuming that
in the color space provides the action of finding a color in themiddle of two colors, can be found
by using a linear operation between their numerical representation. This is unfortunately not the
case in color spaces due to the fact that they are based on a human physiological response [53].

If you decide to interpret RGB images as simply three independent channels then you should
rather use theitk::Vector type as pixel type. In this way, you will have access to the setof
operations that are defined in Vector spaces. The current implementation of the RGBPixel in
ITK presumes that RGB color images are intended to be used in applications where a formal
interpretation of color is desired, therefore only the operations that are valid in a color space are
available in the RGBPixel class.

The following example illustrates how RGB images can be represented in ITK.

The source code for this section can be found in the file
Examples/DataRepresentation/Image/RGBImage.cxx.

Thanks to the flexibility offered by theGeneric Programmingstyle on which ITK is based, it is
possible to instantiate images of arbitrary pixel type. Thefollowing example illustrates how a
color image with RGB pixels can be defined.

A class intended to support the RGB pixel type is available inITK. You could also define
your own pixel class and use it to instantiate a custom image type. In order to use the
itk::RGBPixel class, it is necessary to include its header file.

#include "itkRGBPixel.h"

The RGB pixel class is templated over a type used to representeach one of the red, green and
blue pixel components. A typical instantiation of the templated class is as follows.

typedef itk::RGBPixel< unsigned char > PixelType;

http://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html
http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.boost.org/more/generic_programming.html
http://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html

4.1. Image 45

The type is then used as the pixel template parameter of the image.

typedef itk::Image< PixelType, 3 > ImageType;

The image type can be used to instantiate other filter, for example, anitk::ImageFileReader
object that will read the image from a file.

typedef itk::ImageFileReader< ImageType > ReaderType;

Access to the color components of the pixels can now be performed using the methods provided
by the RGBPixel class.

PixelType onePixel = image->GetPixel(pixelIndex);

PixelType::ValueType red = onePixel.GetRed();
PixelType::ValueType green = onePixel.GetGreen();
PixelType::ValueType blue = onePixel.GetBlue();

The subindex notation can also be used since theitk::RGBPixel inherits the[] operator from
the itk::FixedArray class.

red = onePixel[0]; // extract Red component
green = onePixel[1]; // extract Green component
blue = onePixel[2]; // extract Blue component

std::cout << "Pixel values:" << std::endl;
std::cout << "Red = "

<< itk::NumericTraits<PixelType::ValueType>::PrintType(red)
<< std::endl;

std::cout << "Green = "
<< itk::NumericTraits<PixelType::ValueType>::PrintType(green)
<< std::endl;

std::cout << "Blue = "
<< itk::NumericTraits<PixelType::ValueType>::PrintType(blue)
<< std::endl;

4.1.6 Vector Images

The source code for this section can be found in the file
Examples/DataRepresentation/Image/VectorImage.cxx.

Many image processing tasks require images of non-scalar pixel type. A typical example is an
image of vectors. This is the image type required to represent the gradient of a scalar image.

http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
http://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html
http://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html

46 Chapter 4. DataRepresentation

The following code illustrates how to instantiate and use animage whose pixels are of vector
type.

For convenience we use theitk::Vector class to define the pixel type. The Vector class
is intended to represent a geometrical vector in space. It isnot intended to be used as
an array container like thestd::vector in STL. If you are interested in containers, the
itk::VectorContainer class may provide the functionality you want.

The first step is to include the header file of the Vector class.

#include "itkVector.h"

The Vector class is templated over the type used to representthe coordinate in space and over
the dimension of the space. In this example, we want the vector dimension to match the image
dimension, but this is by no means a requirement. We could have defined a four-dimensional
image with three-dimensional vectors as pixels.

typedef itk::Vector< float, 3 > PixelType;
typedef itk::Image< PixelType, 3 > ImageType;

The Vector class inherits the operator[] from the itk::FixedArray class. This makes it
possible to access the Vector’s components using index notation.

ImageType::PixelType pixelValue;

pixelValue[0] = 1.345; // x component
pixelValue[1] = 6.841; // y component
pixelValue[2] = 3.295; // x component

We can now store this vector in one of the image pixels by defining an index and invoking the
SetPixel() method.

image->SetPixel(pixelIndex, pixelValue);

4.1.7 Importing Image Data from a Buffer

The source code for this section can be found in the file
Examples/DataRepresentation/Image/Image5.cxx.

This example illustrates how to import data into theitk::Image class. This is particularly
useful for interfacing with other software systems. Many systems use a contiguous block of
memory as a buffer for image pixel data. The current example assumes this is the case and
feeds the buffer into anitk::ImportImageFilter, thereby producing an Image as output.

http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.sgi.com/tech/stl/Vector.html
http://www.sgi.com/tech/stl/
http://www.itk.org/Doxygen/html/classitk_1_1VectorContainer.html
http://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html
http://www.itk.org/Doxygen/html/classitk_1_1Image.html
http://www.itk.org/Doxygen/html/classitk_1_1ImportImageFilter.html

4.1. Image 47

For fun we create a synthetic image with a centered sphere in alocally allocated buffer and pass
this block of memory to the ImportImageFilter. This exampleis set up so that on execution, the
user must provide the name of an output file as a command-line argument.

First, the header file of the ImportImageFilter class must beincluded.

#include "itkImage.h"
#include "itkImportImageFilter.h"

Next, we select the data type to use to represent the image pixels. We assume that the external
block of memory uses the same data type to represent the pixels.

typedef unsigned char PixelType;
const unsigned int Dimension = 3;
typedef itk::Image< PixelType, Dimension > ImageType;

The type of the ImportImageFilter is instantiated in the following line.

typedef itk::ImportImageFilter< PixelType, Dimension > ImportFilterType;

A filter object created using theNew() method is then assigned to aSmartPointer.

ImportFilterType::Pointer importFilter = ImportFilterType::New();

This filter requires the user to specify the size of the image to be produced as output. The
SetRegion() method is used to this end. The image size should exactly match the number of
pixels available in the locally allocated buffer.

ImportFilterType::SizeType size;

size[0] = 200; // size along X
size[1] = 200; // size along Y
size[2] = 200; // size along Z

ImportFilterType::IndexType start;
start.Fill(0);

ImportFilterType::RegionType region;
region.SetIndex(start);
region.SetSize(size);

importFilter->SetRegion(region);

The origin of the output image is specified with theSetOrigin() method.

48 Chapter 4. DataRepresentation

double origin[Dimension];
origin[0] = 0.0; // X coordinate
origin[1] = 0.0; // Y coordinate
origin[2] = 0.0; // Z coordinate

importFilter->SetOrigin(origin);

The spacing of the image is passed with theSetSpacing() method.

double spacing[Dimension];
spacing[0] = 1.0; // along X direction
spacing[1] = 1.0; // along Y direction
spacing[2] = 1.0; // along Z direction

importFilter->SetSpacing(spacing);

Next we allocate the memory block containing the pixel data to be passed to the ImportImage-
Filter. Note that we use exactly the same size that was specified with theSetRegion() method.
In a practical application, you may get this buffer from someother library using a different data
structure to represent the images.

const unsigned int numberOfPixels = size[0] * size[1] * size[2];
PixelType * localBuffer = new PixelType[numberOfPixels];

Here we fill up the buffer with a binary sphere. We use simplefor() loops here similar to
those found in the C or FORTRAN programming languages. Note that ITK does not usefor()
loops in its internal code to access pixels. All pixel accesstasks are instead performed using
itk::ImageIterators that support the management of n-dimensional images.

const double radius2 = radius * radius;
PixelType * it = localBuffer;

for(unsigned int z=0; z < size[2]; z++)
{
const double dz = static_cast<double>(z) - static_cast<double>(size[2])/2.0;
for(unsigned int y=0; y < size[1]; y++)

{
const double dy = static_cast<double>(y) - static_cast<double>(size[1])/2.0;
for(unsigned int x=0; x < size[0]; x++)
{
const double dx = static_cast<double>(x) - static_cast<double>(size[0])/2.0;
const double d2 = dx*dx + dy*dy + dz*dz;
*it++ = (d2 < radius2) ? 255 : 0;
}

}
}

http://www.itk.org/Doxygen/html/classitk_1_1ImageIterator.html

4.2. PointSet 49

The buffer is passed to the ImportImageFilter with theSetImportPointer(). Note that the
last argument of this method specifies who will be responsible for deleting the memory block
once it is no longer in use. Afalse value indicates that the ImportImageFilter will not try to
delete the buffer when its destructor is called. Atrue value, on the other hand, will allow the
filter to delete the memory block upon destruction of the import filter.

For the ImportImageFilter to appropriately delete the memory block, the memory must be al-
located with the C++new() operator. Memory allocated with other memory allocation mecha-
nisms, such as Cmalloc or calloc, will not be deleted properly by the ImportImageFilter. In
other words, it is the application programmer’s responsibility to ensure that ImportImageFilter
is only given permission to delete the C++new operator-allocated memory.

const bool importImageFilterWillOwnTheBuffer = true;
importFilter->SetImportPointer(localBuffer, numberOfPixels,

importImageFilterWillOwnTheBuffer);

Finally, we can connect the output of this filter to a pipeline. For simplicity we just use a writer
here, but it could be any other filter.

writer->SetInput(importFilter->GetOutput());

Note that we do not calldelete on the buffer since we passtrue as the last argument of
SetImportPointer(). Now the buffer is owned by the ImportImageFilter.

4.2 PointSet

4.2.1 Creating a PointSet

The source code for this section can be found in the file
Examples/DataRepresentation/Mesh/PointSet1.cxx.

The itk::PointSet is a basic class intended to represent geometry in the form ofa set of
points in n-dimensional space. It is the base class for theitk::Mesh providing the methods
necessary to manipulate sets of point. Points can have values associated with them. The type of
such values is defined by a template parameter of theitk::PointSet class (i.e.,TPixelType.
Two basic interaction styles of PointSets are available in ITK. These styles are referred to as
static anddynamic. The first style is used when the number of points in the set is known in
advance and is not expected to change as a consequence of the manipulations performed on
the set. The dynamic style, on the other hand, is intended to support insertion and removal of
points in an efficient manner. Distinguishing between the two styles is meant to facilitate the
fine tuning of aPointSet’s behavior while optimizing performance and memory management.

In order to use the PointSet class, its header file should be included.

#include "itkPointSet.h"

50 Chapter 4. DataRepresentation

Then we must decide what type of value to associate with the points. This is generally called
thePixelType in order to make the terminology consistent with theitk::Image. The PointSet
is also templated over the dimension of the space in which thepoints are represented. The
following declaration illustrates a typical instantiation of the PointSet class.

typedef itk::PointSet< unsigned short, 3 > PointSetType;

A PointSet object is created by invoking theNew() method on its type. The resulting object
must be assigned to aSmartPointer. The PointSet is then reference-counted and can be shared
by multiple objects. The memory allocated for the PointSet will be released when the number
of references to the object is reduced to zero. This simply means that the user does not need to
be concerned with invoking theDelete() method on this class. In fact, theDelete() method
shouldneverbe called directly within any of the reference-counted ITK classes.

PointSetType::Pointer pointsSet = PointSetType::New();

Following the principles of Generic Programming, thePointSet class has a set of associated
defined types to ensure that interacting objects can be declared with compatible types. This
set of type definitions is commonly known as a set oftraits. Among them we can find the
PointType type, for example. This is the type used by the point set to represent points in space.
The following declaration takes the point type as defined in thePointSet traits and renames it
to be conveniently used in the global namespace.

typedef PointSetType::PointType PointType;

ThePointType can now be used to declare point objects to be inserted in thePointSet. Points
are fairly small objects, so it is inconvenient to manage them with reference counting and smart
pointers. They are simply instantiated as typical C++ classes. The Point class inherits the[]
operator from theitk::Array class. This makes it possible to access its components using
index notation. For efficiency’s sake no bounds checking is performed during index access.
It is the user’s responsibility to ensure that the index usedis in the range{0,Dimension−1}.
Each of the components in the point is associated with space coordinates. The following code
illustrates how to instantiate a point and initialize its components.

PointType p0;
p0[0] = -1.0; // x coordinate
p0[1] = -1.0; // y coordinate
p0[2] = 0.0; // z coordinate

Points are inserted in the PointSet by using theSetPoint() method. This method requires the
user to provide a unique identifier for the point. The identifier is typically an unsigned integer
that will enumerate the points as they are being inserted. The following code shows how three
points are inserted into the PointSet.

4.2. PointSet 51

pointsSet->SetPoint(0, p0);
pointsSet->SetPoint(1, p1);
pointsSet->SetPoint(2, p2);

It is possible to query the PointSet in order to determine howmany points have been inserted
into it. This is done with theGetNumberOfPoints() method as illustrated below.

const unsigned int numberOfPoints = pointsSet->GetNumberOfPoints();
std::cout << numberOfPoints << std::endl;

Points can be read from the PointSet by using theGetPoint() method and the integer identifier.
The point is stored in a pointer provided by the user. If the identifier provided does not match
an existing point, the method will returnfalse and the contents of the point will be invalid.
The following code illustrates point access using defensive programming.

PointType pp;
bool pointExists = pointsSet->GetPoint(1, & pp);

if(pointExists)
{
std::cout << "Point is = " << pp << std::endl;
}

GetPoint() and SetPoint() are not the most efficient methods to access points in the
PointSet. It is preferable to get direct access to the internal point container defined by the
traits and use iterators to walk sequentially over the list of points (as shown in the following
example).

4.2.2 Getting Access to Points

The source code for this section can be found in the file
Examples/DataRepresentation/Mesh/PointSet2.cxx.

The itk::PointSet class uses an internal container to manage the storage ofitk::Points. It
is more efficient, in general, to manage points by using the access methods provided directly on
the points container. The following example illustrates how to interact with the point container
and how to use point iterators.

The type is defined by thetraits of the PointSet class. The following line conveniently takes the
PointsContainer type from the PointSet traits and declare it in the global namespace.

typedef PointSetType::PointsContainer PointsContainer;

The actual type of the PointsContainer depends on what styleof PointSet is being used.
The dynamic PointSet use theitk::MapContainer while the static PointSet uses the

http://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
http://www.itk.org/Doxygen/html/classitk_1_1Point.html
http://www.itk.org/Doxygen/html/classitk_1_1MapContainer.html

52 Chapter 4. DataRepresentation

itk::VectorContainer. The vector and map containers are basically ITK wrappers around
theSTL classesstd::map andstd::vector. By default, the PointSet uses a static style, hence
the default type of point container is an VectorContainer. Both the map and vector container
are templated over the type of the elements they contain. In this case they are templated over
PointType. Containers are reference counted object. They are then created with theNew()
method and assigned to aitk::SmartPointer after creation. The following line creates a
point container compatible with the type of the PointSet from which the trait has been taken.

PointsContainer::Pointer points = PointsContainer::New();

Points can now be defined using thePointType trait from the PointSet.

typedef PointSetType::PointType PointType;
PointType p0;
PointType p1;
p0[0] = -1.0; p0[1] = 0.0; p0[2] = 0.0; // Point 0 = {-1,0,0 }
p1[0] = 1.0; p1[1] = 0.0; p1[2] = 0.0; // Point 1 = { 1,0,0 }

The created points can be inserted in the PointsContainer using the generic method
InsertElement() which requires an identifier to be provided for each point.

unsigned int pointId = 0;
points->InsertElement(pointId++ , p0);
points->InsertElement(pointId++ , p1);

Finally the PointsContainer can be assigned to the PointSet. This will substitute any previ-
ously existing PointsContainer on the PointSet. The assignment is done using theSetPoints()
method.

pointSet->SetPoints(points);

The PointsContainer object can be obtained from the PointSet using theGetPoints() method.
This method returns a pointer to the actual container owned by the PointSet which is then
assigned to a SmartPointer.

PointsContainer::Pointer points2 = pointSet->GetPoints();

The most efficient way to sequentially visit the points is to use the iterators provided by
PointsContainer. TheIterator type belongs to the traits of the PointsContainer classes. It
behaves pretty much like the STL iterators.3 The Points iterator is not a reference counted
class, so it is created directly from the traits without using SmartPointers.

3If you dig deep enough into the code, you will discover that these iterators are actually ITK wrappers around STL
iterators.

http://www.itk.org/Doxygen/html/classitk_1_1VectorContainer.html
http://www.sgi.com/tech/stl/
http://www.sgi.com/tech/stl/Map.html
http://www.sgi.com/tech/stl/Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

4.2. PointSet 53

typedef PointsContainer::Iterator PointsIterator;

The subsequent use of the iterator follows what you may expect from a STL iterator. The
iterator to the first point is obtained from the container with theBegin() method and assigned
to another iterator.

PointsIterator pointIterator = points->Begin();

The++ operator on the iterator can be used to advance from one pointto the next. The actual
value of the Point to which the iterator is pointing can be obtained with theValue() method.
The loop for walking through all the points can be controlledby comparing the current iterator
with the iterator returned by theEnd() method of the PointsContainer. The following lines
illustrate the typical loop for walking through the points.

PointsIterator end = points->End();
while(pointIterator != end)
{
PointType p = pointIterator.Value(); // access the point
std::cout << p << std::endl; // print the point
++pointIterator; // advance to next point
}

Note that as in STL, the iterator returned by theEnd() method is not a valid iterator. This is
called a past-end iterator in order to indicate that it is thevalue resulting from advancing one
step after visiting the last element in the container.

The number of elements stored in a container can be queried with theSize() method. In the
case of the PointSet, the following two lines of code are equivalent, both of them returning the
number of points in the PointSet.

std::cout << pointSet->GetNumberOfPoints() << std::endl;
std::cout << pointSet->GetPoints()->Size() << std::endl;

4.2.3 Getting Access to Data in Points

The source code for this section can be found in the file
Examples/DataRepresentation/Mesh/PointSet3.cxx.

The itk::PointSet class was designed to interact with the Image class. For thisreason
it was found convenient to allow the points in the set to hold values that could be computed
from images. The value associated with the point is referredasPixelType in order to make
it consistent with image terminology. Users can define the type as they please thanks to the
flexibility offered by the Generic Programming approach used in the toolkit. ThePixelType is
the first template parameter of the PointSet.

http://www.itk.org/Doxygen/html/classitk_1_1PointSet.html

54 Chapter 4. DataRepresentation

The following code defines a particular type for a pixel type and instantiates a PointSet class
with it.

typedef unsigned short PixelType;
typedef itk::PointSet< PixelType, 3 > PointSetType;

Data can be inserted into the PointSet using theSetPointData() method. This method requires
the user to provide an identifier. The data in question will beassociated to the point holding
the same identifier. It is the user’s responsibility to verify the appropriate matching between
inserted data and inserted points. The following line illustrates the use of theSetPointData()
method.

unsigned int dataId = 0;
PixelType value = 79;
pointSet->SetPointData(dataId++, value);

Data associated with points can be read from the PointSet using theGetPointData() method.
This method requires the user to provide the identifier to thepoint and a valid pointer to a
location where the pixel data can be safely written. In case the identifier does not match any
existing identifier on the PointSet the method will returnfalse and the pixel value returned will
be invalid. It is the user’s responsibility to check the returned boolean value before attempting
to use it.

const bool found = pointSet->GetPointData(dataId, & value);
if(found)
{
std::cout << "Pixel value = " << value << std::endl;
}

The SetPointData() and GetPointData() methods are not the most efficient way to
get access to point data. It is far more efficient to use the Iterators provided by the
PointDataContainer.

Data associated with points is internally stored inPointDataContainers. In the same way as
with points, the actual container type used depend on whether the style of the PointSet is static
or dynamic. Static point sets will use anitk::VectorContainer while dynamic point sets
will use an itk::MapContainer. The type of the data container is defined as one of the traits
in the PointSet. The following declaration illustrates howthe type can be taken from the traits
and used to conveniently declare a similar type on the globalnamespace.

typedef PointSetType::PointDataContainer PointDataContainer;

Using the type it is now possible to create an instance of the data container. This is a standard
reference counted object, henceforth it uses theNew() method for creation and assigns the
newly created object to a SmartPointer.

http://www.itk.org/Doxygen/html/classitk_1_1VectorContainer.html
http://www.itk.org/Doxygen/html/classitk_1_1MapContainer.html

4.2. PointSet 55

PointDataContainer::Pointer pointData = PointDataContainer::New();

Pixel data can be inserted in the container with the methodInsertElement(). This method
requires an identified to be provided for each point data.

unsigned int pointId = 0;

PixelType value0 = 34;
PixelType value1 = 67;

pointData->InsertElement(pointId++ , value0);
pointData->InsertElement(pointId++ , value1);

Finally the PointDataContainer can be assigned to the PointSet. This will substitute any
previously existing PointDataContainer on the PointSet. The assignment is done using the
SetPointData() method.

pointSet->SetPointData(pointData);

The PointDataContainer can be obtained from the PointSet using theGetPointData() method.
This method returns a pointer (assigned to a SmartPointer) to the actual container owned by the
PointSet.

PointDataContainer::Pointer pointData2 = pointSet->GetPointData();

The most efficient way to sequentially visit the data associated with points is to use the iterators
provided byPointDataContainer. TheIterator type belongs to the traits of the PointsCon-
tainer classes. The iterator is not a reference counted class, so it is just created directly from the
traits without using SmartPointers.

typedef PointDataContainer::Iterator PointDataIterator;

The subsequent use of the iterator follows what you may expect from a STL iterator. The
iterator to the first point is obtained from the container with theBegin() method and assigned
to another iterator.

PointDataIterator pointDataIterator = pointData2->Begin();

The++ operator on the iterator can be used to advance from one data point to the next. The
actual value of the PixelType to which the iterator is pointing can be obtained with theValue()
method. The loop for walking through all the point data can becontrolled by comparing the
current iterator with the iterator returned by theEnd() method of the PointsContainer. The
following lines illustrate the typical loop for walking through the point data.

56 Chapter 4. DataRepresentation

PointDataIterator end = pointData2->End();
while(pointDataIterator != end)
{
PixelType p = pointDataIterator.Value(); // access the pixel data
std::cout << p << std::endl; // print the pixel data
++pointDataIterator; // advance to next pixel/point
}

Note that as in STL, the iterator returned by theEnd() method is not a valid iterator. This is
called apast-enditerator in order to indicate that it is the value resulting from advancing one
step after visiting the last element in the container.

4.2.4 RGB as Pixel Type

The source code for this section can be found in the file
Examples/DataRepresentation/Mesh/RGBPointSet.cxx.

The following example illustrates how a point set can be parameterized to manage a particular
pixel type. In this case, pixels of RGB type are used. The firststep is then to include the header
files of the itk::RGBPixel and itk::PointSet classes.

#include "itkRGBPixel.h"
#include "itkPointSet.h"

Then, the pixel type can be defined by selecting the type to be used to represent each one of the
RGB components.

typedef itk::RGBPixel< float > PixelType;

The newly defined pixel type is now used to instantiate the PointSet type and subsequently
create a point set object.

typedef itk::PointSet< PixelType, 3 > PointSetType;
PointSetType::Pointer pointSet = PointSetType::New();

The following code is generating a sphere and assigning RGB values to the points. The compo-
nents of the RGB values in this example are computed to represent the position of the points.

PointSetType::PixelType pixel;
PointSetType::PointType point;
unsigned int pointId = 0;
const double radius = 3.0;

http://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html
http://www.itk.org/Doxygen/html/classitk_1_1PointSet.html

4.2. PointSet 57

for(unsigned int i=0; i<360; i++)
{
const double angle = i * atan(1.0) / 45.0;
point[0] = radius * sin(angle);
point[1] = radius * cos(angle);
point[2] = 1.0;
pixel.SetRed(point[0] * 2.0);
pixel.SetGreen(point[1] * 2.0);
pixel.SetBlue(point[2] * 2.0);
pointSet->SetPoint(pointId, point);
pointSet->SetPointData(pointId, pixel);
pointId++;
}

All the points on the PointSet are visited using the following code.

typedef PointSetType::PointsContainer::ConstIterator PointIterator;
PointIterator pointIterator = pointSet->GetPoints()->Begin();
PointIterator pointEnd = pointSet->GetPoints()->End();
while(pointIterator != pointEnd)
{
PointSetType::PointType point = pointIterator.Value();
std::cout << point << std::endl;
++pointIterator;
}

Note that here theConstIterator was used instead of theIterator since the pixel values are
not expected to be modified. ITK supports const-correctnessat the API level.

All the pixel values on the PointSet are visited using the following code.

typedef PointSetType::PointDataContainer::ConstIterator PointDataIterator;
PointDataIterator pixelIterator = pointSet->GetPointData()->Begin();
PointDataIterator pixelEnd = pointSet->GetPointData()->End();
while(pixelIterator != pixelEnd)
{
PointSetType::PixelType pixel = pixelIterator.Value();
std::cout << pixel << std::endl;
++pixelIterator;
}

Again, please note the use of theConstIterator instead of theIterator.

4.2.5 Vectors as Pixel Type

The source code for this section can be found in the file
Examples/DataRepresentation/Mesh/PointSetWithVectors.cxx.

58 Chapter 4. DataRepresentation

This example illustrates how a point set can be parameterized to manage a particular pixel type.
It is quite common to associate vector values with points forproducing geometric representa-
tions. The following code shows how vector values can be usedas pixel type on the PointSet
class. Theitk::Vector class is used here as the pixel type. This class is appropriate for repre-
senting the relative position between two points. It could then be used to manage displacements,
for example.

In order to use the vector class it is necessary to include itsheader file along with the header of
the point set.

#include "itkVector.h"
#include "itkPointSet.h"

Figure 4.2:Vectors as PixelType.

The Vector class is templated over the type used
to represent the spatial coordinates and over the
space dimension. Since the PixelType is indepen-
dent of the PointType, we are free to select any
dimension for the vectors to be used as pixel type.
However, for the sake of producing an interesting
example, we will use vectors that represent dis-
placements of the points in the PointSet. Those
vectors are then selected to be of the same dimen-
sion as the PointSet.

const unsigned int Dimension = 3;
typedef itk::Vector< float, Dimension > PixelType;

Then we use the PixelType (which are actually Vectors) to instantiate the PointSet type and
subsequently create a PointSet object.

typedef itk::PointSet< PixelType, Dimension > PointSetType;
PointSetType::Pointer pointSet = PointSetType::New();

The following code is generating a sphere and assigning vector values to the points. The com-
ponents of the vectors in this example are computed to represent the tangents to the circle as
shown in Figure4.2.

PointSetType::PixelType tangent;
PointSetType::PointType point;

unsigned int pointId = 0;
const double radius = 300.0;

for(unsigned int i=0; i<360; i++)

http://www.itk.org/Doxygen/html/classitk_1_1Vector.html

4.2. PointSet 59

{
const double angle = i * atan(1.0) / 45.0;
point[0] = radius * sin(angle);
point[1] = radius * cos(angle);
point[2] = 1.0; // flat on the Z plane
tangent[0] = cos(angle);
tangent[1] = -sin(angle);
tangent[2] = 0.0; // flat on the Z plane
pointSet->SetPoint(pointId, point);
pointSet->SetPointData(pointId, tangent);
pointId++;
}

We can now visit all the points and use the vector on the pixel values to apply a displacement
on the points. This is along the spirit of what a deformable model could do at each one of its
iterations.

typedef PointSetType::PointDataContainer::ConstIterator PointDataIterator;
PointDataIterator pixelIterator = pointSet->GetPointData()->Begin();
PointDataIterator pixelEnd = pointSet->GetPointData()->End();

typedef PointSetType::PointsContainer::Iterator PointIterator;
PointIterator pointIterator = pointSet->GetPoints()->Begin();
PointIterator pointEnd = pointSet->GetPoints()->End();

while(pixelIterator != pixelEnd && pointIterator != pointEnd)
{
pointIterator.Value() = pointIterator.Value() + pixelIterator.Value();
++pixelIterator;
++pointIterator;
}

Note that theConstIterator was used here instead of the normalIterator since the pixel
values are only intended to be read and not modified. ITK supports const-correctness at the API
level.

The itk::Vector class has overloaded the+ operator with theitk::Point. In other words,
vectors can be added to points in order to produce new points.This property is exploited in the
center of the loop in order to update the points positions with a single statement.

We can finally visit all the points and print out the new values

pointIterator = pointSet->GetPoints()->Begin();
pointEnd = pointSet->GetPoints()->End();
while(pointIterator != pointEnd)
{
std::cout << pointIterator.Value() << std::endl;

http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1Point.html

60 Chapter 4. DataRepresentation

++pointIterator;
}

Note that itk::Vector is not the appropriate class for representing normals to surfaces and
gradients of functions. This is due to the way in which vectors behave under affine trans-
forms. ITK has a specific class for representing normals and function gradients. This is the
itk::CovariantVector class.

4.2.6 Normals as Pixel Type

The source code for this section can be found in the file
Examples/DataRepresentation/Mesh/PointSetWithCovariantVectors.cxx.

It is common to represent geometric object by using points ontheir surfaces and normals as-
sociated with those points. This structure can be easily instantiated with theitk::PointSet
class.

The natural class for representing normals to surfaces and gradients of functions is the
itk::CovariantVector. A covariant vector differs from a vector in the way they behave
under affine transforms, in particular under anisotropic scaling. If a covariant vector represents
the gradient of a function, the transformed covariant vector will still be the valid gradient of the
transformed function, a property which would not hold with aregular vector.

The following code shows how vector values can be used as pixel type on the PointSet class. The
CovariantVector class is used here as the pixel type. The example illustrates how a deformable
model could move under the influence of the gradient of potential function.

In order to use the CovariantVector class it is necessary to include its header file along with the
header of the point set.

#include "itkCovariantVector.h"
#include "itkPointSet.h"

The CovariantVector class is templated over the type used torepresent the spatial coordinates
and over the space dimension. Since the PixelType is independent of the PointType, we are free
to select any dimension for the covariant vectors to be used as pixel type. However, we want to
illustrate here the spirit of a deformable model. It is then required for the vectors representing
gradients to be of the same dimension as the points in space.

const unsigned int Dimension = 3;
typedef itk::CovariantVector< float, Dimension > PixelType;

Then we use the PixelType (which are actually CovariantVectors) to instantiate the PointSet
type and subsequently create a PointSet object.

http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html
http://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
http://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html

4.2. PointSet 61

typedef itk::PointSet< PixelType, Dimension > PointSetType;
PointSetType::Pointer pointSet = PointSetType::New();

The following code generates a sphere and assigns gradient values to the points. The com-
ponents of the CovariantVectors in this example are computed to represent the normals to the
circle.

PointSetType::PixelType gradient;
PointSetType::PointType point;

unsigned int pointId = 0;
const double radius = 300.0;

for(unsigned int i=0; i<360; i++)
{
const double angle = i * atan(1.0) / 45.0;
point[0] = radius * sin(angle);
point[1] = radius * cos(angle);
point[2] = 1.0; // flat on the Z plane
gradient[0] = sin(angle);
gradient[1] = cos(angle);
gradient[2] = 0.0; // flat on the Z plane
pointSet->SetPoint(pointId, point);
pointSet->SetPointData(pointId, gradient);
pointId++;
}

We can now visit all the points and use the vector on the pixel values to apply a deformation
on the points by following the gradient of the function. Thisis along the spirit of what a
deformable model could do at each one of its iterations. To bemore formal we should use the
function gradients as forces and multiply them by local stress tensors in order to obtain local
deformations. The resulting deformations would finally be used to apply displacements on the
points. However, to shorten the example, we will ignore thiscomplexity for the moment.

typedef PointSetType::PointDataContainer::ConstIterator PointDataIterator;
PointDataIterator pixelIterator = pointSet->GetPointData()->Begin();
PointDataIterator pixelEnd = pointSet->GetPointData()->End();

typedef PointSetType::PointsContainer::Iterator PointIterator;
PointIterator pointIterator = pointSet->GetPoints()->Begin();
PointIterator pointEnd = pointSet->GetPoints()->End();

while(pixelIterator != pixelEnd && pointIterator != pointEnd)
{
PointSetType::PointType point = pointIterator.Value();
PointSetType::PixelType gradient = pixelIterator.Value();

62 Chapter 4. DataRepresentation

for(unsigned int i=0; i<Dimension; i++)
{
point[i] += gradient[i];
}

pointIterator.Value() = point;
++pixelIterator;
++pointIterator;
}

The CovariantVector class does not overload the+ operator with theitk::Point. In other
words, CovariantVectors can not be added to points in order to get new points. Further, since
we are ignoring physics in the example, we are also forced to do the illegal addition manually
between the components of the gradient and the coordinates of the points.

Note that the absence of some basic operators on the ITK geometry classes is completely inten-
tional with the aim of preventing the incorrect use of the mathematical concepts they represent.

4.3 Mesh

4.3.1 Creating a Mesh

The source code for this section can be found in the file
Examples/DataRepresentation/Mesh/Mesh1.cxx.

The itk::Mesh class is intended to represent shapes in space. It derives from the
itk::PointSet class and hence inherits all the functionality related to points and access to
the pixel-data associated with the points. The mesh class isalso n-dimensional which allows a
great flexibility in its use.

In practice a Mesh class can be seen as a PointSet to which cells (also known as elements) of
many different dimensions and shapes have been added. Cellsin the mesh are defined in terms
of the existing points using their point-identifiers.

In the same way as for the PointSet, two basic styles of Meshesare available in ITK. They are
referred to asstaticanddynamic. The first one is used when the number of points in the set can
be known in advance and it is not expected to change as a consequence of the manipulations
performed on the set. The dynamic style, on the other hand, isintended to support insertion
and removal of points in an efficient manner. The reason for making the distinction between
the two styles is to facilitate fine tuning its behavior with the aim of optimizing performance
and memory management. In the case of the Mesh, the dynamic/static aspect is extended to the
management of cells.

In order to use the Mesh class, its header file should be included.

#include "itkMesh.h"

http://www.itk.org/Doxygen/html/classitk_1_1Point.html
http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
http://www.itk.org/Doxygen/html/classitk_1_1PointSet.html

4.3. Mesh 63

Then, the type associated with the points must be selected and used for instantiating the Mesh
type.

typedef float PixelType;

The Mesh type extensively uses the capabilities provided byGeneric Programming. In par-
ticular the Mesh class is parameterized over the PixelType and the dimension of the space.
PixelType is the type of the value associated with every point just as is done with the PointSet.
The following line illustrates a typical instantiation of the Mesh.

const unsigned int Dimension = 3;
typedef itk::Mesh< PixelType, Dimension > MeshType;

Meshes are expected to take large amounts of memory. For thisreason they are reference
counted objects and are managed using SmartPointers. The following line illustrates how a
mesh is created by invoking theNew() method of the MeshType and the resulting object is
assigned to aitk::SmartPointer.

MeshType::Pointer mesh = MeshType::New();

The management of points in the Mesh is exactly the same as in the PointSet. The type point
associated with the mesh can be obtained through thePointType trait. The following code
shows the creation of points compatible with the mesh type defined above and the assignment
of values to its coordinates.

MeshType::PointType p0;
MeshType::PointType p1;
MeshType::PointType p2;
MeshType::PointType p3;

p0[0]= -1.0; p0[1]= -1.0; p0[2]= 0.0; // first point (-1, -1, 0)
p1[0]= 1.0; p1[1]= -1.0; p1[2]= 0.0; // second point (1, -1, 0)
p2[0]= 1.0; p2[1]= 1.0; p2[2]= 0.0; // third point (1, 1, 0)
p3[0]= -1.0; p3[1]= 1.0; p3[2]= 0.0; // fourth point (-1, 1, 0)

The points can now be inserted in the Mesh using theSetPoint() method. Note that points
are copied into the mesh structure. This means that the localinstances of the points can now be
modified without affecting the Mesh content.

mesh->SetPoint(0, p0);
mesh->SetPoint(1, p1);
mesh->SetPoint(2, p2);
mesh->SetPoint(3, p3);

http://www.boost.org/more/generic_programming.html
http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

64 Chapter 4. DataRepresentation

The current number of points in the Mesh can be queried with the GetNumberOfPoints()
method.

std::cout << "Points = " << mesh->GetNumberOfPoints() << std::endl;

The points can now be efficiently accessed using the Iteratorto the PointsContainer as it was
done in the previous section for the PointSet. First, the point iterator type is extracted through
the mesh traits.

typedef MeshType::PointsContainer::Iterator PointsIterator;

A point iterator is initialized to the first point with theBegin() method of the PointsContainer.

PointsIterator pointIterator = mesh->GetPoints()->Begin();

The++ operator on the iterator is now used to advance from one pointto the next. The actual
value of the Point to which the iterator is pointing can be obtained with theValue() method.
The loop for walking through all the points is controlled by comparing the current iterator with
the iterator returned by theEnd() method of the PointsContainer. The following lines illustrate
the typical loop for walking through the points.

PointsIterator end = mesh->GetPoints()->End();
while(pointIterator != end)
{
MeshType::PointType p = pointIterator.Value(); // access the point
std::cout << p << std::endl; // print the point
++pointIterator; // advance to next point
}

4.3.2 Inserting Cells

The source code for this section can be found in the file
Examples/DataRepresentation/Mesh/Mesh2.cxx.

A itk::Mesh can contain a variety of cell types. Typical cells are theitk::LineCell,
itk::TriangleCell, itk::QuadrilateralCell and itk::TetrahedronCell. Additional
flexibility is provided for managing cells at the price of a bit more of complexity than in the
case of point management.

The following code creates a polygonal line in order to illustrate the simplest case of cell man-
agement in a Mesh. The only cell type used here is the LineCell. The header file of this class
has to be included.

#include "itkLineCell.h"

http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
http://www.itk.org/Doxygen/html/classitk_1_1LineCell.html
http://www.itk.org/Doxygen/html/classitk_1_1TriangleCell.html
http://www.itk.org/Doxygen/html/classitk_1_1QuadrilateralCell.html
http://www.itk.org/Doxygen/html/classitk_1_1TetrahedronCell.html

4.3. Mesh 65

In order to be consistent with the Mesh, cell types have to be configured with a number of
custom types taken from the mesh traits. The set of traits relevant to cells are packaged by the
Mesh class into theCellType trait. This trait needs to be passed to the actual cell types at the
moment of their instantiation. The following line shows howto extract the Cell traits from the
Mesh type.

typedef MeshType::CellType CellType;

The LineCell type can now be instantiated using the traits taken from the Mesh.

typedef itk::LineCell< CellType > LineType;

The main difference in the way cells and points are managed bythe Mesh is that points are stored
by copy on the PointsContainer while cells are stored in the CellsContainer using pointers. The
reason for using pointers is that cells use C++ polymorphismon the mesh. This means that the
mesh is only aware of having pointers to a generic cell which is the base class of all the specific
cell types. This architecture makes it possible to combine different cell types in the same mesh.
Points, on the other hand, are of a single type and have a smallmemory footprint, which makes
it efficient to copy them directly into the container.

Managing cells by pointers add another level of complexity to the Mesh since it is now necessary
to establish a protocol to make clear who is responsible for allocating and releasing the cells’
memory. This protocol is implemented in the form of a specifictype of pointer called the
CellAutoPointer. This pointer, based on theitk::AutoPointer, differs in many respects
from the SmartPointer. The CellAutoPointer has an internalpointer to the actual object and a
boolean flag that indicates if the CellAutoPointer is responsible for releasing the cell memory
whenever the time comes for its own destruction. It is said that aCellAutoPointer ownsthe
cell when it is responsible for its destruction. Many CellAutoPointer can point to the same cell
but at any given time, onlyoneCellAutoPointer can own the cell.

TheCellAutoPointer trait is defined in the MeshType and can be extracted as illustrated in
the following line.

typedef CellType::CellAutoPointer CellAutoPointer;

Note that the CellAutoPointer is pointing to a generic cell type. It is not aware of the actual type
of the cell, which can be for example LineCell, TriangleCellor TetrahedronCell. This fact will
influence the way in which we access cells later on.

At this point we can actually create a mesh and insert some points on it.

MeshType::Pointer mesh = MeshType::New();

MeshType::PointType p0;
MeshType::PointType p1;

http://www.itk.org/Doxygen/html/classitk_1_1AutoPointer.html

66 Chapter 4. DataRepresentation

MeshType::PointType p2;

p0[0] = -1.0; p0[1] = 0.0; p0[2] = 0.0;
p1[0] = 1.0; p1[1] = 0.0; p1[2] = 0.0;
p2[0] = 1.0; p2[1] = 1.0; p2[2] = 0.0;

mesh->SetPoint(0, p0);
mesh->SetPoint(1, p1);
mesh->SetPoint(2, p2);

The following code creates two CellAutoPointers and initializes them with newly created cell
objects. The actual cell type created in this case is LineCell. Note that cells are created with
the normalnew C++ operator. The CellAutoPointer takes ownership of the received pointer by
using the methodTakeOwnership(). Even though this may seem verbose, it is necessary in
order to make it explicit from the code that the responsibility of memory release is assumed by
the AutoPointer.

CellAutoPointer line0;
CellAutoPointer line1;

line0.TakeOwnership(new LineType);
line1.TakeOwnership(new LineType);

The LineCells should now be associated with points in the mesh. This is done using the iden-
tifiers assigned to points when they were inserted in the mesh. Every cell type has a specific
number of points that must be associated with it.4 For example a LineCell requires two points, a
TriangleCell requires three and a TetrahedronCell requires four. Cells use an internal numbering
system for points. It is simply an index in the range{0,NumberO f Points−1}. The association
of points and cells is done by theSetPointId() method which requires the user to provide the
internal index of the point in the cell and the correspondingPointIdentifier in the Mesh. The
internal cell index is the first parameter ofSetPointId() while the mesh point-identifier is the
second.

line0->SetPointId(0, 0); // line between points 0 and 1
line0->SetPointId(1, 1);

line1->SetPointId(0, 1); // line between points 1 and 2
line1->SetPointId(1, 2);

Cells are inserted in the mesh using theSetCell() method. It requires an identifier and the
AutoPointer to the cell. The Mesh will take ownership of the cell to which the AutoPointer is
pointing. This is done internally by theSetCell() method. In this way, the destruction of the
CellAutoPointer will not induce the destruction of the associated cell.

4Some cell types like polygons have a variable number of points associated with them.

4.3. Mesh 67

mesh->SetCell(0, line0);
mesh->SetCell(1, line1);

After serving as an argument of theSetCell() method, a CellAutoPointer no longer holds
ownership of the cell. It is important not to use this same CellAutoPointer again as argument to
SetCell() without first securing ownership of another cell.

The number of Cells currently inserted in the mesh can be queried with the
GetNumberOfCells() method.

std::cout << "Cells = " << mesh->GetNumberOfCells() << std::endl;

In a way analogous to points, cells can be accessed using Iterators to the CellsContainer in the
mesh. The trait for the cell iterator can be extracted from the mesh and used to define a local
type.

typedef MeshType::CellsContainer::Iterator CellIterator;

Then the iterators to the first and past-end cell in the mesh can be obtained respectively with the
Begin() andEnd() methods of the CellsContainer. The CellsContainer of the mesh is returned
by theGetCells() method.

CellIterator cellIterator = mesh->GetCells()->Begin();
CellIterator end = mesh->GetCells()->End();

Finally a standard loop is used to iterate over all the cells.Note the use of theValue() method
used to get the actual pointer to the cell from the CellIterator. Note also that the values returned
are pointers to the generic CellType. These pointers have tobe down-casted in order to be used
as actual LineCell types. Safe down-casting is performed with thedynamic cast operator
which will throw an exception if the conversion cannot be safely performed.

while(cellIterator != end)
{
MeshType::CellType * cellptr = cellIterator.Value();
LineType * line = dynamic_cast<LineType *>(cellptr);
std::cout << line->GetNumberOfPoints() << std::endl;
++cellIterator;
}

4.3.3 Managing Data in Cells

The source code for this section can be found in the file
Examples/DataRepresentation/Mesh/Mesh3.cxx.

68 Chapter 4. DataRepresentation

In the same way that custom data can be associated with pointsin the mesh, it is also possible to
associate custom data with cells. The type of the data associated with the cells can be different
from the data type associated with points. By default, however, these two types are the same.
The following example illustrates how to access data associated with cells. The approach is
analogous to the one used to access point data.

Consider the example of a mesh containing lines on which values are associated with each line.
The mesh and cell header files should be included first.

#include "itkMesh.h"
#include "itkLineCell.h"

Then the PixelType is defined and the mesh type is instantiated with it.

typedef float PixelType;
typedef itk::Mesh< PixelType, 2 > MeshType;

The itk::LineCell type can now be instantiated using the traits taken from the Mesh.

typedef MeshType::CellType CellType;
typedef itk::LineCell< CellType > LineType;

Let’s now create a Mesh and insert some points into it. Note that the dimension of the points
matches the dimension of the Mesh. Here we insert a sequence of points that look like a plot of
the log() function.

MeshType::Pointer mesh = MeshType::New();

typedef MeshType::PointType PointType;
PointType point;

const unsigned int numberOfPoints = 10;
for(unsigned int id=0; id<numberOfPoints; id++)
{
point[0] = static_cast<PointType::ValueType>(id); // x
point[1] = log(static_cast<double>(id)); // y
mesh->SetPoint(id, point);
}

A set of line cells is created and associated with the existing points by using point identifiers.
In this simple case, the point identifiers can be deduced fromcell identifiers since the line cells
are ordered in the same way.

CellType::CellAutoPointer line;

http://www.itk.org/Doxygen/html/classitk_1_1LineCell.html

4.3. Mesh 69

const unsigned int numberOfCells = numberOfPoints-1;
for(unsigned int cellId=0; cellId<numberOfCells; cellId++)
{
line.TakeOwnership(new LineType);
line->SetPointId(0, cellId); // first point
line->SetPointId(1, cellId+1); // second point
mesh->SetCell(cellId, line); // insert the cell
}

Data associated with cells is inserted in theitk::Mesh by using theSetCellData() method.
It requires the user to provide an identifier and the value to be inserted. The identifier should
match one of the inserted cells. In this simple example, the square of the cell identifier is used
as cell data. Note the use ofstatic cast to PixelType in the assignment.

for(unsigned int cellId=0; cellId<numberOfCells; cellId++)
{
mesh->SetCellData(cellId, static_cast<PixelType>(cellId * cellId));
}

Cell data can be read from the Mesh with theGetCellData() method. It requires the user to
provide the identifier of the cell for which the data is to be retrieved. The user should provide
also a valid pointer to a location where the data can be copied.

for(unsigned int cellId=0; cellId<numberOfCells; cellId++)
{
PixelType value;
mesh->GetCellData(cellId, &value);
std::cout << "Cell " << cellId << " = " << value << std::endl;
}

Neither SetCellData() or GetCellData() are efficient ways to access cell data. More
efficient access to cell data can be achieved by using the Iterators built into the
CellDataContainer.

typedef MeshType::CellDataContainer::ConstIterator CellDataIterator;

Note that theConstIterator is used here because the data is only going to be read. This
approach is exactly the same already illustrated for getting access to point data. The iterator to
the first cell data item can be obtained with theBegin() method of the CellDataContainer. The
past-end iterator is returned by theEnd() method. The cell data container itself can be obtained
from the mesh with the methodGetCellData().

CellDataIterator cellDataIterator = mesh->GetCellData()->Begin();
CellDataIterator end = mesh->GetCellData()->End();

http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html

70 Chapter 4. DataRepresentation

Finally a standard loop is used to iterate over all the cell data entries. Note the use of the
Value() method used to get the actual value of the data entry.PixelType elements are copied
into the local variablecellValue.

while(cellDataIterator != end)
{
PixelType cellValue = cellDataIterator.Value();
std::cout << cellValue << std::endl;
++cellDataIterator;
}

4.3.4 Customizing the Mesh

The source code for this section can be found in the file
Examples/DataRepresentation/Mesh/MeshTraits.cxx.

This section illustrates the full power ofGeneric Programming. This is sometimes perceived as
too much of a good thing!

The toolkit has been designed to offer flexibility while keeping the complexity of the code to
a moderate level. This is achieved in the Mesh by hiding most of its parameters and defining
reasonable defaults for them.

The generic concept of a mesh integrates many different elements. It is possible in principle
to use independent types for every one of such elements. The mechanism used in generic
programming for specifying the many different types involved in a concept is calledtraits.
They are basically the list of all types that interact with the current class.

The itk::Mesh is templated over three parameters. So far only two of them have been dis-
cussed, namely thePixelType and theDimension. The third parameter is a class providing
the set of traits required by the mesh. When the third parameter is omitted a default class is
used. This default class is theitk::DefaultStaticMeshTraits. If you want to customize
the types used by the mesh, the way to proceed is to modify the default traits and provide them
as the third parameter of the Mesh class instantiation.

There are two ways of achieving this. The first is to use the existing DefaultStaticMeshTraits
class. This class is itself templated over six parameters. Customizing those parameters could
provide enough flexibility to define a very specific kind of mesh. The second way is to write
a traits class from scratch, in which case the easiest way to proceed is to copy the DefaultStat-
icMeshTraits into another file and edit its content. Only thefirst approach is illustrated here.
The second is discouraged unless you are familiar with Generic Programming, feel comfortable
with C++ templates and have access to an abundant supply of (Columbian) coffee.

The first step in customizing the mesh is to include the headerfile of the Mesh and its static
traits.

#include "itkMesh.h"

http://www.boost.org/more/generic_programming.html
http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
http://www.itk.org/Doxygen/html/classitk_1_1DefaultStaticMeshTraits.html

4.3. Mesh 71

#include "itkDefaultStaticMeshTraits.h"

Then the MeshTraits class is instantiated by selecting the types of each one of its six template
arguments. They are in order

PixelType. The type associated with every point.

PointDimension. The dimension of the space in which the mesh is embedded.

MaxTopologicalDimension. The highest dimension of the mesh cells.

CoordRepType. The type used to represent space coordinates.

InterpolationWeightType. The type used to represent interpolation weights.

CellPixelType. The type associated with every cell.

Let’s define types and values for each one of those elements. For example the following code
will use points in 3D space as nodes of the Mesh. The maximum dimension of the cells will be
two which means that this is a 2D manifold better know as asurface. The data type associated
with points is defined to be a four-dimensional vector. This type could represent values of
membership for a four-classes segmentation method. The value selected for the cells are 4×3
matrices which could have for example the derivative of the membership values with respect to
coordinates in space. Finally adouble type is selected for representing space coordinates on
the mesh points and also for the weight used for interpolating values.

const unsigned int PointDimension = 3;
const unsigned int MaxTopologicalDimension = 2;

typedef itk::Vector<double,4> PixelType;
typedef itk::Matrix<double,4,3> CellDataType;

typedef double CoordinateType;
typedef double InterpolationWeightType;

typedef itk::DefaultStaticMeshTraits<
PixelType, PointDimension, MaxTopologicalDimension,
CoordinateType, InterpolationWeightType, CellDataType > MeshTraits;

typedef itk::Mesh< PixelType, PointDimension, MeshTraits > MeshType;

The itk::LineCell type can now be instantiated using the traits taken from the Mesh.

typedef MeshType::CellType CellType;
typedef itk::LineCell< CellType > LineType;

http://www.itk.org/Doxygen/html/classitk_1_1LineCell.html

72 Chapter 4. DataRepresentation

Let’s now create an Mesh and insert some points on it. Note that the dimension of the points
matches the dimension of the Mesh. Here we insert a sequence of points that look like a plot of
the log() function.

MeshType::Pointer mesh = MeshType::New();

typedef MeshType::PointType PointType;
PointType point;

const unsigned int numberOfPoints = 10;
for(unsigned int id=0; id<numberOfPoints; id++)
{
point[0] = 1.565; // Initialize points here
point[1] = 3.647; // with arbitrary values
point[2] = 4.129;
mesh->SetPoint(id, point);
}

A set of line cells is created and associated with the existing points by using point identifiers. In
this simple case, the point identifiers can be deduced from cell identifiers since the line cells are
ordered in the same way. Note that in the code above, the values assigned to point components
are arbitrary. In a more realistic example, those values would be computed from another source.

CellType::CellAutoPointer line;
const unsigned int numberOfCells = numberOfPoints-1;
for(unsigned int cellId=0; cellId<numberOfCells; cellId++)
{
line.TakeOwnership(new LineType);
line->SetPointId(0, cellId); // first point
line->SetPointId(1, cellId+1); // second point
mesh->SetCell(cellId, line); // insert the cell
}

Data associated with cells is inserted in the Mesh by using the SetCellData() method. It
requires the user to provide an identifier and the value to be inserted. The identifier should
match one of the inserted cells. In this simple example, the square of the cell identifier is used
as cell data. Note the use ofstatic cast to PixelType in the assignment.

for(unsigned int cellId=0; cellId<numberOfCells; cellId++)
{
CellDataType value;
mesh->SetCellData(cellId, value);
}

4.3. Mesh 73

Cell data can be read from the Mesh with theGetCellData() method. It requires the user to
provide the identifier of the cell for which the data is to be retrieved. The user should provide
also a valid pointer to a location where the data can be copied.

for(unsigned int cellId=0; cellId<numberOfCells; cellId++)
{
CellDataType value;
mesh->GetCellData(cellId, &value);
std::cout << "Cell " << cellId << " = " << value << std::endl;
}

NeitherSetCellData() or GetCellData() are efficient ways to access cell data. Efficient
access to cell data can be achieved by using the Iterators built into the CellDataContainer.

typedef MeshType::CellDataContainer::ConstIterator CellDataIterator;

Note that theConstIterator is used here because the data is only going to be read. This
approach is exactly the same already illustrated for getting access to point data. The iterator to
the first cell data item can be obtained with theBegin() method of the CellDataContainer. The
past-end iterator is returned by theEnd() method. The cell data container itself can be obtained
from the mesh with the methodGetCellData().

CellDataIterator cellDataIterator = mesh->GetCellData()->Begin();
CellDataIterator end = mesh->GetCellData()->End();

Finally a standard loop is used to iterate over all the cell data entries. Note the use of the
Value() method used to get the actual value of the data entry.PixelType elements are returned
by copy.

while(cellDataIterator != end)
{
CellDataType cellValue = cellDataIterator.Value();
std::cout << cellValue << std::endl;
++cellDataIterator;
}

4.3.5 Topology and the K-Complex

The source code for this section can be found in the file
Examples/DataRepresentation/Mesh/MeshKComplex.cxx.

The itk::Mesh class supports the representation of formal topologies. Inparticular the concept
of K-Complexcan be correctly represented in the Mesh. An informal definition of K-Complex

http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html

74 Chapter 4. DataRepresentation

may be as follows: a K-Complex is a topological structure in which for every cell of dimension
N, its boundary faces which are cells of dimensionN−1 also belong to the structure.

This section illustrates how to instantiate a K-Complex structure using the mesh. The example
structure is composed of one tetrahedron, its four trianglefaces, its six line edges and its four
vertices.

The header files of all the cell types involved should be loaded along with the header file of the
mesh class.

#include "itkMesh.h"
#include "itkVertexCell.h"
#include "itkLineCell.h"
#include "itkTriangleCell.h"
#include "itkTetrahedronCell.h"

Then the PixelType is defined and the mesh type is instantiated with it. Note that the dimension
of the space is three in this case.

typedef float PixelType;
typedef itk::Mesh< PixelType, 3 > MeshType;

The cell type can now be instantiated using the traits taken from the Mesh.

typedef MeshType::CellType CellType;
typedef itk::VertexCell< CellType > VertexType;
typedef itk::LineCell< CellType > LineType;
typedef itk::TriangleCell< CellType > TriangleType;
typedef itk::TetrahedronCell< CellType > TetrahedronType;

The mesh is created and the points associated with the vertices are inserted. Note that there is
an important distinction between the points in the mesh and the itk::VertexCell concept.
A VertexCell is a cell of dimension zero. Its main differenceas compared to a point is that the
cell can be aware of neighborhood relationships with other cells. Points are not aware of the
existence of cells. In fact, from the pure topological pointof view, the coordinates of points
in the mesh are completely irrelevant. They may as well be absent from the mesh structure
altogether. VertexCells on the other hand are necessary to represent the full set of neighborhood
relationships on the K-Complex.

The geometrical coordinates of the nodes of a regular tetrahedron can be obtained by taking
every other node from a regular cube.

MeshType::Pointer mesh = MeshType::New();

MeshType::PointType point0;

http://www.itk.org/Doxygen/html/classitk_1_1VertexCell.html

4.3. Mesh 75

MeshType::PointType point1;
MeshType::PointType point2;
MeshType::PointType point3;

point0[0] = -1; point0[1] = -1; point0[2] = -1;
point1[0] = 1; point1[1] = 1; point1[2] = -1;
point2[0] = 1; point2[1] = -1; point2[2] = 1;
point3[0] = -1; point3[1] = 1; point3[2] = 1;

mesh->SetPoint(0, point0);
mesh->SetPoint(1, point1);
mesh->SetPoint(2, point2);
mesh->SetPoint(3, point3);

We proceed now to create the cells, associate them with the points and insert them on the mesh.
Starting with the tetrahedron we write the following code.

CellType::CellAutoPointer cellpointer;

cellpointer.TakeOwnership(new TetrahedronType);
cellpointer->SetPointId(0, 0);
cellpointer->SetPointId(1, 1);
cellpointer->SetPointId(2, 2);
cellpointer->SetPointId(3, 3);
mesh->SetCell(0, cellpointer);

Four triangular faces are created and associated with the mesh now. The first triangle connects
points 0,1,2.

cellpointer.TakeOwnership(new TriangleType);
cellpointer->SetPointId(0, 0);
cellpointer->SetPointId(1, 1);
cellpointer->SetPointId(2, 2);
mesh->SetCell(1, cellpointer);

The second triangle connects points 0, 2, 3

cellpointer.TakeOwnership(new TriangleType);
cellpointer->SetPointId(0, 0);
cellpointer->SetPointId(1, 2);
cellpointer->SetPointId(2, 3);
mesh->SetCell(2, cellpointer);

The third triangle connects points 0, 3, 1

76 Chapter 4. DataRepresentation

cellpointer.TakeOwnership(new TriangleType);
cellpointer->SetPointId(0, 0);
cellpointer->SetPointId(1, 3);
cellpointer->SetPointId(2, 1);
mesh->SetCell(3, cellpointer);

The fourth triangle connects points 3, 2, 1

cellpointer.TakeOwnership(new TriangleType);
cellpointer->SetPointId(0, 3);
cellpointer->SetPointId(1, 2);
cellpointer->SetPointId(2, 1);
mesh->SetCell(4, cellpointer);

Note how theCellAutoPointer is reused every time. Reminder: theitk::AutoPointer
loses ownership of the cell when it is passed as an argument oftheSetCell() method. The
AutoPointer is attached to a new cell by using theTakeOwnership() method.

The construction of the K-Complex continues now with the creation of the six lines on the
tetrahedron edges.

cellpointer.TakeOwnership(new LineType);
cellpointer->SetPointId(0, 0);
cellpointer->SetPointId(1, 1);
mesh->SetCell(5, cellpointer);

cellpointer.TakeOwnership(new LineType);
cellpointer->SetPointId(0, 1);
cellpointer->SetPointId(1, 2);
mesh->SetCell(6, cellpointer);

cellpointer.TakeOwnership(new LineType);
cellpointer->SetPointId(0, 2);
cellpointer->SetPointId(1, 0);
mesh->SetCell(7, cellpointer);

cellpointer.TakeOwnership(new LineType);
cellpointer->SetPointId(0, 1);
cellpointer->SetPointId(1, 3);
mesh->SetCell(8, cellpointer);

cellpointer.TakeOwnership(new LineType);
cellpointer->SetPointId(0, 3);
cellpointer->SetPointId(1, 2);
mesh->SetCell(9, cellpointer);

cellpointer.TakeOwnership(new LineType);

http://www.itk.org/Doxygen/html/classitk_1_1AutoPointer.html

4.3. Mesh 77

cellpointer->SetPointId(0, 3);
cellpointer->SetPointId(1, 0);
mesh->SetCell(10, cellpointer);

Finally the zero dimensional cells represented by theitk::VertexCell are created and in-
serted in the mesh.

cellpointer.TakeOwnership(new VertexType);
cellpointer->SetPointId(0, 0);
mesh->SetCell(11, cellpointer);

cellpointer.TakeOwnership(new VertexType);
cellpointer->SetPointId(0, 1);
mesh->SetCell(12, cellpointer);

cellpointer.TakeOwnership(new VertexType);
cellpointer->SetPointId(0, 2);
mesh->SetCell(13, cellpointer);

cellpointer.TakeOwnership(new VertexType);
cellpointer->SetPointId(0, 3);
mesh->SetCell(14, cellpointer);

At this point the Mesh contains four points and fifteen cells enumerated from 0 to 14. The
points can be visited using PointContainer iterators

typedef MeshType::PointsContainer::ConstIterator PointIterator;
PointIterator pointIterator = mesh->GetPoints()->Begin();
PointIterator pointEnd = mesh->GetPoints()->End();

while(pointIterator != pointEnd)
{
std::cout << pointIterator.Value() << std::endl;
++pointIterator;
}

The cells can be visited using CellsContainer iterators

typedef MeshType::CellsContainer::ConstIterator CellIterator;

CellIterator cellIterator = mesh->GetCells()->Begin();
CellIterator cellEnd = mesh->GetCells()->End();

while(cellIterator != cellEnd)
{
CellType * cell = cellIterator.Value();

http://www.itk.org/Doxygen/html/classitk_1_1VertexCell.html

78 Chapter 4. DataRepresentation

std::cout << cell->GetNumberOfPoints() << std::endl;
++cellIterator;
}

Note that cells are stored as pointer to a generic cell type that is the base class of all the specific
cell classes. This means that at this level we can only have access to the virtual methods defined
in theCellType.

The point identifiers to which the cells have been associatedcan be visited using iterators
defined in theCellType trait. The following code illustrates the use of the PointIdIterators.
ThePointIdsBegin() method returns the iterator to the first point-identifier in the cell. The
PointIdsEnd() method returns the iterator to the past-end point-identifier in the cell.

typedef CellType::PointIdIterator PointIdIterator;

PointIdIterator pointIditer = cell->PointIdsBegin();
PointIdIterator pointIdend = cell->PointIdsEnd();

while(pointIditer != pointIdend)
{
std::cout << *pointIditer << std::endl;
++pointIditer;
}

Note that the point-identifier is obtained from the iteratorusing the more traditional*iterator
notation instead theValue() notation used by cell-iterators.

Up to here, the topology of the K-Complex is not completely defined since we have only intro-
duced the cells. ITK allows the user to define explicitly the neighborhood relationships between
cells. It is clear that a clever exploration of the point identifiers could have allowed a user to
figure out the neighborhood relationships. For example, twotriangle cells sharing the same two
point identifiers will probably be neighbor cells. Some of the drawbacks on this implicit dis-
covery of neighborhood relationships is that it takes computing time and that some applications
may not accept the same assumptions. A specific case is surgery simulation. This application
typically simulates bistoury cuts in a mesh representing anorgan. A small cut in the surface
may be made by specifying that two triangles are not considered to be neighbors any more.

Neighborhood relationships are represented in the mesh by the notion ofBoundaryFeature.
Every cell has an internal list of cell-identifiers pointingto other cells that are considered to be
its neighbors. Boundary features are classified by dimension. For example, a line will have two
boundary features of dimension zero corresponding to its two vertices. A tetrahedron will have
boundary features of dimension zero, one and two, corresponding to its four vertices, six edges
and four triangular faces. It is up to the user to specify the connections between the cells.

Let’s take in our current example the tetrahedron cell that was associated with the cell-identifier
0 and assign to it the four vertices as boundaries of dimensionzero. This is done by invoking
theSetBoundaryAssignment() method on the Mesh class.

4.3. Mesh 79

MeshType::CellIdentifier cellId = 0; // the tetrahedron

int dimension = 0; // vertices

MeshType::CellFeatureIdentifier featureId = 0;

mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 11);
mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 12);
mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 13);
mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 14);

ThefeatureId is simply a number associated with the sequence of the boundary cells of the
same dimension in a specific cell. For example, the zero-dimensional features of a tetrahe-
dron are its four vertices. Then the zero-dimensional feature-Ids for this cell will range from
zero to three. The one-dimensional features of the tetrahedron are its six edges, hence its one-
dimensional feature-Ids will range from zero to five. The two-dimensional features of the tetra-
hedron are its four triangular faces. The two-dimensional feature ids will then range from zero
to three. The following table summarizes the use on indices for boundary assignments.

Dimension CellType FeatureId range Cell Ids

0 VertexCell [0:3] {11,12,13,14}
1 LineCell [0:5] {5,6,7,8,9,10}
2 TriangleCell [0:3] {1,2,3,4}

In the code example above, the values of featureId range fromzero to three. The cell identifiers
of the triangle cells in this example are the numbers{1,2,3,4}, while the cell identifiers of the
vertex cells are the numbers{11,12,13,14}.

Let’s now assign one-dimensional boundary features of the tetrahedron. Those are the line cells
with identifiers{5,6,7,8,9,10}. Note that the feature identifier is reinitialized to zero since the
count is independent for each dimension.

cellId = 0; // still the tetrahedron
dimension = 1; // one-dimensional features = edges
featureId = 0; // reinitialize the count

mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 5);
mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 6);
mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 7);
mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 8);
mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 9);
mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 10);

Finally we assign the two-dimensional boundary features ofthe tetrahedron. These are the four
triangular cells with identifiers{1,2,3,4}. The featureId is reset to zero since feature-Ids are
independent on each dimension.

80 Chapter 4. DataRepresentation

cellId = 0; // still the tetrahedron
dimension = 2; // two-dimensional features = triangles
featureId = 0; // reinitialize the count

mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 1);
mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 2);
mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 3);
mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 4);

At this point we can query the tetrahedron cell for information about its boundary features. For
example, the number of boundary features of each dimension can be obtained with the method
GetNumberOfBoundaryFeatures().

cellId = 0; // still the tetrahedron

MeshType::CellFeatureCount n0; // number of zero-dimensional features
MeshType::CellFeatureCount n1; // number of one-dimensional features
MeshType::CellFeatureCount n2; // number of two-dimensional features

n0 = mesh->GetNumberOfCellBoundaryFeatures(0, cellId);
n1 = mesh->GetNumberOfCellBoundaryFeatures(1, cellId);
n2 = mesh->GetNumberOfCellBoundaryFeatures(2, cellId);

The boundary assignments can be recovered with the methodGetBoundaryAssigment(). For
example, the zero-dimensional features of the tetrahedroncan be obtained with the following
code.

dimension = 0;
for(unsigned int b0=0; b0 < n0; b0++)
{
MeshType::CellIdentifier id;
bool found = mesh->GetBoundaryAssignment(dimension, cellId, b0, &id);
if(found) std::cout << id << std::endl;
}

The following code illustrates how to set the edge boundaries for one of the triangular faces.

cellId = 2; // one of the triangles
dimension = 1; // boundary edges
featureId = 0; // start the count of features

mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 7);
mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 9);
mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 10);

4.3. Mesh 81

4.3.6 Representing a PolyLine

The source code for this section can be found in the file
Examples/DataRepresentation/Mesh/MeshPolyLine.cxx.

This section illustrates how to represent a classicalPolyLinestructure using theitk::Mesh

A PolyLine only involves zero and one dimensional cells, which are represented by the
itk::VertexCell and theitk::LineCell.

#include "itkMesh.h"
#include "itkVertexCell.h"
#include "itkLineCell.h"

Then the PixelType is defined and the mesh type is instantiated with it. Note that the dimension
of the space is two in this case.

typedef float PixelType;
typedef itk::Mesh< PixelType, 2 > MeshType;

The cell type can now be instantiated using the traits taken from the Mesh.

typedef MeshType::CellType CellType;
typedef itk::VertexCell< CellType > VertexType;
typedef itk::LineCell< CellType > LineType;

The mesh is created and the points associated with the vertices are inserted. Note that there is
an important distinction between the points in the mesh and the itk::VertexCell concept.
A VertexCell is a cell of dimension zero. Its main differenceas compared to a point is that the
cell can be aware of neighborhood relationships with other cells. Points are not aware of the
existence of cells. In fact, from the pure topological pointof view, the coordinates of points
in the mesh are completely irrelevant. They may as well be absent from the mesh structure
altogether. VertexCells on the other hand are necessary to represent the full set of neighborhood
relationships on the Polyline.

In this example we create a polyline connecting the four vertices of a square by using three of
the square sides.

MeshType::Pointer mesh = MeshType::New();

MeshType::PointType point0;
MeshType::PointType point1;
MeshType::PointType point2;
MeshType::PointType point3;

http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
http://www.itk.org/Doxygen/html/classitk_1_1VertexCell.html
http://www.itk.org/Doxygen/html/classitk_1_1LineCell.html
http://www.itk.org/Doxygen/html/classitk_1_1VertexCell.html

82 Chapter 4. DataRepresentation

point0[0] = -1; point0[1] = -1;
point1[0] = 1; point1[1] = -1;
point2[0] = 1; point2[1] = 1;
point3[0] = -1; point3[1] = 1;

mesh->SetPoint(0, point0);
mesh->SetPoint(1, point1);
mesh->SetPoint(2, point2);
mesh->SetPoint(3, point3);

We proceed now to create the cells, associate them with the points and insert them on the mesh.

CellType::CellAutoPointer cellpointer;

cellpointer.TakeOwnership(new LineType);
cellpointer->SetPointId(0, 0);
cellpointer->SetPointId(1, 1);
mesh->SetCell(0, cellpointer);

cellpointer.TakeOwnership(new LineType);
cellpointer->SetPointId(0, 1);
cellpointer->SetPointId(1, 2);
mesh->SetCell(1, cellpointer);

cellpointer.TakeOwnership(new LineType);
cellpointer->SetPointId(0, 2);
cellpointer->SetPointId(1, 0);
mesh->SetCell(2, cellpointer);

Finally the zero dimensional cells represented by theitk::VertexCell are created and in-
serted in the mesh.

cellpointer.TakeOwnership(new VertexType);
cellpointer->SetPointId(0, 0);
mesh->SetCell(3, cellpointer);

cellpointer.TakeOwnership(new VertexType);
cellpointer->SetPointId(0, 1);
mesh->SetCell(4, cellpointer);

cellpointer.TakeOwnership(new VertexType);
cellpointer->SetPointId(0, 2);
mesh->SetCell(5, cellpointer);

cellpointer.TakeOwnership(new VertexType);
cellpointer->SetPointId(0, 3);
mesh->SetCell(6, cellpointer);

http://www.itk.org/Doxygen/html/classitk_1_1VertexCell.html

4.3. Mesh 83

At this point the Mesh contains four points and three cells. The points can be visited using
PointContainer iterators

typedef MeshType::PointsContainer::ConstIterator PointIterator;
PointIterator pointIterator = mesh->GetPoints()->Begin();
PointIterator pointEnd = mesh->GetPoints()->End();

while(pointIterator != pointEnd)
{
std::cout << pointIterator.Value() << std::endl;
++pointIterator;
}

The cells can be visited using CellsContainer iterators

typedef MeshType::CellsContainer::ConstIterator CellIterator;

CellIterator cellIterator = mesh->GetCells()->Begin();
CellIterator cellEnd = mesh->GetCells()->End();

while(cellIterator != cellEnd)
{
CellType * cell = cellIterator.Value();
std::cout << cell->GetNumberOfPoints() << std::endl;
++cellIterator;
}

Note that cells are stored as pointer to a generic cell type that is the base class of all the specific
cell classes. This means that at this level we can only have access to the virtual methods defined
in theCellType.

The point identifiers to which the cells have been associatedcan be visited using iterators
defined in theCellType trait. The following code illustrates the use of the PointIdIterator.
ThePointIdsBegin() method returns the iterator to the first point-identifier in the cell. The
PointIdsEnd() method returns the iterator to the past-end point-identifier in the cell.

typedef CellType::PointIdIterator PointIdIterator;

PointIdIterator pointIditer = cell->PointIdsBegin();
PointIdIterator pointIdend = cell->PointIdsEnd();

while(pointIditer != pointIdend)
{
std::cout << *pointIditer << std::endl;
++pointIditer;
}

84 Chapter 4. DataRepresentation

Note that the point-identifier is obtained from the iteratorusing the more traditional*iterator
notation instead theValue() notation used by cell-iterators.

4.3.7 Simplifying Mesh Creation

The source code for this section can be found in the file
Examples/DataRepresentation/Mesh/AutomaticMesh.cxx.

The itk::Mesh class is extremely general and flexible, but there is some cost to convenience.
If convenience is exactly what you need, then it is possible to get it, in exchange for some
of that flexibility, by means of theitk::AutomaticTopologyMeshSource class. This class
automatically generates an explicit K-Complex, based on the cells you add. It explicitly includes
all boundary information, so that the resulting mesh can be easily traversed. It merges all shared
edges, vertices, and faces, so no geometric feature appearsmore than once.

This section shows how you can use the AutomaticTopologyMeshSource to instantiate a mesh
representing a K-Complex. We will first generate the same tetrahedron from Section4.3.5, after
which we will add a hollow one to illustrate some additional features of the mesh source.

The header files of all the cell types involved should be loaded along with the header file of the
mesh class.

#include "itkMesh.h"
#include "itkVertexCell.h"
#include "itkLineCell.h"
#include "itkTriangleCell.h"
#include "itkTetrahedronCell.h"
#include "itkAutomaticTopologyMeshSource.h"

We then define the necessary types and instantiate the mesh source. Two new types are
IdentifierType andIdentifierArrayType. Every cell in a mesh has an identifier, whose
type is determined by the mesh traits. AutomaticTopologyMeshSource requires that the iden-
tifier type of all vertices and cells beunsigned long, which is already the default. However,
if you created a new mesh traits class to use string tags as identifiers, the resulting mesh would
not be compatible withitk::AutomaticTopologyMeshSource. An IdentifierArrayType
is simply an itk::Array of IdentifierType objects.

typedef float PixelType;
typedef itk::Mesh< PixelType, 3 > MeshType;

typedef MeshType::PointType PointType;
typedef MeshType::CellType CellType;

typedef itk::AutomaticTopologyMeshSource< MeshType > MeshSourceType;
typedef MeshSourceType::IdentifierType IdentifierType;
typedef MeshSourceType::IdentifierArrayType IdentifierArrayType;

http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
http://www.itk.org/Doxygen/html/classitk_1_1AutomaticTopologyMeshSource.html
http://www.itk.org/Doxygen/html/classitk_1_1AutomaticTopologyMeshSource.html
http://www.itk.org/Doxygen/html/classitk_1_1Array.html

4.3. Mesh 85

MeshSourceType::Pointer meshSource;

meshSource = MeshSourceType::New();

Now let us generate the tetrahedron. The following line of code generates all the vertices,
edges, and faces, along with the tetrahedral solid, and addsthem to the mesh along with the
connectivity information.

meshSource->AddTetrahedron(
meshSource->AddPoint(-1, -1, -1),
meshSource->AddPoint(1, 1, -1),
meshSource->AddPoint(1, -1, 1),
meshSource->AddPoint(-1, 1, 1)
);

The functionAutomaticTopologyMeshSource::AddTetrahedron() takes point identifiers
as parameters; the identifiers must correspond to points that have already been added.
AutomaticTopologyMeshSource::AddPoint() returns the appropriate identifier type for the
point being added. It first checks to see if the point is already in the mesh. If so, it returns the
ID of the point in the mesh, and if not, it generates a new unique ID, adds the point with that
ID, and returns the ID.

Actually, AddTetrahedron() behaves in the same way. If the tetrahedron has already been
added, it leaves the mesh unchanged and returns the ID that the tetrahedron already has. If not,
it adds the tetrahedron (and all its faces, edges, and vertices), and generates a new ID, which it
returns.

It is also possible to add all the points first, and then add a number of cells using the point IDs
directly. This approach corresponds with the way the data isstored in many file formats for 3D
polygonal models.

First we add the points (in this case the vertices of a larger tetrahedron). This example also
illustrates thatAddPoint() can take a singlePointType as a parameter if desired, rather than
a sequence of floats. Another possibility (not illustrated)is to pass in a C-style array.

PointType p;
IdentifierArrayType idArray(4);

p[0] = -2;
p[1] = -2;
p[2] = -2;
idArray[0] = meshSource->AddPoint(p);

p[0] = 2;
p[1] = 2;
p[2] = -2;

86 Chapter 4. DataRepresentation

idArray[1] = meshSource->AddPoint(p);

p[0] = 2;
p[1] = -2;
p[2] = 2;
idArray[2] = meshSource->AddPoint(p);

p[0] = -2;
p[1] = 2;
p[2] = 2;
idArray[3] = meshSource->AddPoint(p);

Now we add the cells. This time we are just going to create the boundary of a tetrahedron, so
we must add each face separately.

meshSource->AddTriangle(idArray[0], idArray[1], idArray[2]);
meshSource->AddTriangle(idArray[1], idArray[2], idArray[3]);
meshSource->AddTriangle(idArray[2], idArray[3], idArray[0]);
meshSource->AddTriangle(idArray[3], idArray[0], idArray[1]);

Actually, we could have called, e.g.,AddTriangle(4, 5, 6), since IDs are assigned se-
quentially starting at zero, andidArray[0] contains the ID for the fifth point added. But you
should only do this if you are confident that you know what the IDs are. If you add the same
point twice and don’t realize it, your count will differ fromthat of the mesh source.

You may be wondering what happens if you call, say,AddEdge(0, 1) followed byAddEdge(1,
0). The answer is that they do count as the same edge, and so only one edge is added. The order
of the vertices determines an orientation, and the first orientation specified is the one that is kept.

Once you have built the mesh you want, you can access it by calling GetOutput(). Here we
send it tocout, which prints some summary data for the mesh.

In contrast to the case with typical filters,GetOutput() does not trigger an update process. The
mesh is always maintained in a valid state as cells are added,and can be accessed at any time. It
would, however, be a mistake to modify the mesh by some other means until AutomaticTopol-
ogyMeshSource is done with it, since the mesh source would then have an inaccurate record of
which points and cells are currently in the mesh.

4.3.8 Iterating Through Cells

The source code for this section can be found in the file
Examples/DataRepresentation/Mesh/MeshCellsIteration.cxx.

Cells are stored in theitk::Mesh as pointers to a generic cellitk::CellInterface. This
implies that only the virtual methods defined on this base cell class can be invoked. In order
to use methods that are specific to each cell type it is necessary to down-cast the pointer to the

http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
http://www.itk.org/Doxygen/html/classitk_1_1CellInterface.html

4.3. Mesh 87

actual type of the cell. This can be done safely by taking advantage of theGetType() method
that allows to identify the actual type of a cell.

Let’s start by assuming a mesh defined with one tetrahedron and all its boundary faces. That is,
four triangles, six edges and four vertices.

The cells can be visited using CellsContainer iterators . The iteratorValue() corresponds to a
raw pointer to theCellType base class.

typedef MeshType::CellsContainer::ConstIterator CellIterator;

CellIterator cellIterator = mesh->GetCells()->Begin();
CellIterator cellEnd = mesh->GetCells()->End();

while(cellIterator != cellEnd)
{
CellType * cell = cellIterator.Value();
std::cout << cell->GetNumberOfPoints() << std::endl;
++cellIterator;
}

In order to perform down-casting in a safe manner, the cell type can be queried first using
theGetType() method. Codes for the cell types have been defined with anenum type on the
itkCellInterface.h header file. These codes are :

• VERTEX CELL

• LINE CELL

• TRIANGLE CELL

• QUADRILATERAL CELL

• POLYGON CELL

• TETRAHEDRON CELL

• HEXAHEDRON CELL

• QUADRATIC EDGE CELL

• QUADRATIC TRIANGLE CELL

The methodGetType() returns one of these codes. It is then possible to test the type of the
cell before down-casting its pointer to the actual type. Forexample, the following code visits
all the cells in the mesh and tests which ones are actually of typeLINE CELL. Only those cells
are down-casted toLineType cells and a method specific for theLineType is invoked.

88 Chapter 4. DataRepresentation

cellIterator = mesh->GetCells()->Begin();
cellEnd = mesh->GetCells()->End();

while(cellIterator != cellEnd)
{
CellType * cell = cellIterator.Value();
if(cell->GetType() == CellType::LINE_CELL)

{
LineType * line = static_cast<LineType *>(cell);
std::cout << "dimension = " << line->GetDimension();
std::cout << " # points = " << line->GetNumberOfPoints();
std::cout << std::endl;
}

++cellIterator;
}

In order to perform different actions on different cell types aswitch statement can be used
with cases for every cell type. The following code illustrates an iteration over the cells and the
invocation of different methods on each cell type.

cellIterator = mesh->GetCells()->Begin();
cellEnd = mesh->GetCells()->End();

while(cellIterator != cellEnd)
{
CellType * cell = cellIterator.Value();
switch(cell->GetType())

{
case CellType::VERTEX_CELL:
{
std::cout << "VertexCell : " << std::endl;
VertexType * line = dynamic_cast<VertexType *>(cell);
std::cout << "dimension = " << line->GetDimension() << std::endl;
std::cout << "# points = " << line->GetNumberOfPoints() << std::endl;
break;
}

case CellType::LINE_CELL:
{
std::cout << "LineCell : " << std::endl;
LineType * line = dynamic_cast<LineType *>(cell);
std::cout << "dimension = " << line->GetDimension() << std::endl;
std::cout << "# points = " << line->GetNumberOfPoints() << std::endl;
break;
}

case CellType::TRIANGLE_CELL:
{
std::cout << "TriangleCell : " << std::endl;
TriangleType * line = dynamic_cast<TriangleType *>(cell);

4.3. Mesh 89

std::cout << "dimension = " << line->GetDimension() << std::endl;
std::cout << "# points = " << line->GetNumberOfPoints() << std::endl;
break;
}

default:
{
std::cout << "Cell with more than three points" << std::endl;
std::cout << "dimension = " << cell->GetDimension() << std::endl;
std::cout << "# points = " << cell->GetNumberOfPoints() << std::endl;
break;
}

}
++cellIterator;
}

4.3.9 Visiting Cells

The source code for this section can be found in the file
Examples/DataRepresentation/Mesh/MeshCellVisitor.cxx.

In order to facilitate access to particular cell types, a convenience mechanism has been built-in
on the itk::Mesh. This mechanism is based on theVisitor Patternpresented in [28]. The
visitor pattern is designed to facilitate the process of walking through an heterogeneous list of
objects sharing a common base class.

The first requirement for using theCellVisitor mechanism it to include the
CellInterfaceVisitor header file.

#include "itkCellInterfaceVisitor.h"

The typical mesh types are now declared

typedef float PixelType;
typedef itk::Mesh< PixelType, 3 > MeshType;

typedef MeshType::CellType CellType;

typedef itk::VertexCell< CellType > VertexType;
typedef itk::LineCell< CellType > LineType;
typedef itk::TriangleCell< CellType > TriangleType;
typedef itk::TetrahedronCell< CellType > TetrahedronType;

Then, a custom CellVisitor class should be declared. In thisparticular example, the visitor class
is intended to act only onTriangleType cells. The only requirement on the declaration of the
visitor class is that it must provide a method namedVisit(). This method expects as arguments

http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html

90 Chapter 4. DataRepresentation

a cell identifier and a pointer to thespecificcell type for which this visitor is intended. Nothing
prevents a visitor class from providingVisit() methods for several different cell types. The
multiple methods will be differentiated by the natural C++ mechanism of function overload.
The following code illustrates a minimal cell visitor class.

class CustomTriangleVisitor
{
public:

typedef itk::TriangleCell<CellType> TriangleType;

public:
void Visit(unsigned long cellId, TriangleType * t)
{
std::cout << "Cell # " << cellId << " is a TriangleType ";
std::cout << t->GetNumberOfPoints() << std::endl;
}

};

This newly defined class will now be used to instantiate a cellvisitor. In this particular example
we create a classCustomTriangleVisitor which will be invoked each time a triangle cell is
found while the mesh iterates over the cells.

typedef itk::CellInterfaceVisitorImplementation<
PixelType,
MeshType::CellTraits,
TriangleType,
CustomTriangleVisitor

> TriangleVisitorInterfaceType;

Note that the actualCellInterfaceVisitorImplementation is templated over the Pixel-
Type, the CellTraits, the CellType to be visited and the Visitor class that defines with will be
done with the cell.

A visitor implementation class can now be created using the normal invocation to itsNew()
method and assigning the result to aitk::SmartPointer.

TriangleVisitorInterfaceType::Pointer triangleVisitor =
TriangleVisitorInterfaceType::New();

Many different visitors can be configured in this way. The setof all visitors can be registered
with the MultiVisitor class provided for the mesh. An instance of the MultiVisitor class will
walk through the cells and delegate action to every registered visitor when the appropriate cell
type is encountered.

typedef CellType::MultiVisitor CellMultiVisitorType;
CellMultiVisitorType::Pointer multiVisitor = CellMultiVisitorType::New();

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

4.3. Mesh 91

The visitor is registered with the Mesh using theAddVisitor() method.

multiVisitor->AddVisitor(triangleVisitor);

Finally, the iteration over the cells is triggered by calling the methodAccept() on the
itk::Mesh.

mesh->Accept(multiVisitor);

TheAccept() method will iterate over all the cells and for each one will invite the MultiVisitor
to attempt an action on the cell. If no visitor is interested on the current cell type the cell is just
ignored and skipped.

MultiVisitors make it possible to add behavior to the cells without having to create new methods
on the cell types or creating a complex visitor class that knows about every CellType.

4.3.10 More on Visiting Cells

The source code for this section can be found in the file
Examples/DataRepresentation/Mesh/MeshCellVisitor2.cxx.

The following section illustrates a realistic example of the use of Cell visitors on the
itk::Mesh. A set of different visitors is defined here, each visitor associated with a partic-
ular type of cell. All the visitors are registered with a MultiVisitor class which is passed to the
mesh.

The first step is to include theCellInterfaceVisitor header file.

#include "itkCellInterfaceVisitor.h"

The typical mesh types are now declared

typedef float PixelType;
typedef itk::Mesh< PixelType, 3 > MeshType;

typedef MeshType::CellType CellType;

typedef itk::VertexCell< CellType > VertexType;
typedef itk::LineCell< CellType > LineType;
typedef itk::TriangleCell< CellType > TriangleType;
typedef itk::TetrahedronCell< CellType > TetrahedronType;

Then, custom CellVisitor classes should be declared. The only requirement on the declaration
of each visitor class is to provide a method namedVisit(). This method expects as arguments
a cell identifier and a pointer to thespecificcell type for which this visitor is intended.

http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html

92 Chapter 4. DataRepresentation

The following Vertex visitor simply prints out the identifier of the point with which the cell
is associated. Note that the cell uses the methodGetPointId() without any arguments. This
method is only defined on the VertexCell.

class CustomVertexVisitor
{
public:

void Visit(unsigned long cellId, VertexType * t)
{
std::cout << "cell " << cellId << " is a Vertex " << std::endl;
std::cout << " associated with point id = ";
std::cout << t->GetPointId() << std::endl;
}

};

The following Line visitor computes the length of the line. Note that this visitor is slightly more
complicated since it needs to get access to the actual mesh inorder to get point coordinates from
the point identifiers returned by the line cell. This is done by holding a pointer to the mesh and
querying the mesh each time point coordinates are required.The mesh pointer is set up in this
case with theSetMesh() method.

class CustomLineVisitor
{
public:

CustomLineVisitor():m_Mesh(0) {}

void SetMesh(MeshType * mesh) { m_Mesh = mesh; }

void Visit(unsigned long cellId, LineType * t)
{
std::cout << "cell " << cellId << " is a Line " << std::endl;
LineType::PointIdIterator pit = t->PointIdsBegin();
MeshType::PointType p0;
MeshType::PointType p1;
m_Mesh->GetPoint(*pit++, &p0);
m_Mesh->GetPoint(*pit++, &p1);
const double length = p0.EuclideanDistanceTo(p1);
std::cout << " length = " << length << std::endl;
}

private:
MeshType::Pointer m_Mesh;

};

The Triangle visitor below prints out the identifiers of its points. Note the use of the
PointIdIterator and thePointIdsBegin() andPointIdsEnd() methods.

4.3. Mesh 93

class CustomTriangleVisitor
{
public:

void Visit(unsigned long cellId, TriangleType * t)
{
std::cout << "cell " << cellId << " is a Triangle " << std::endl;
LineType::PointIdIterator pit = t->PointIdsBegin();
LineType::PointIdIterator end = t->PointIdsEnd();
while(pit != end)
{
std::cout << " point id = " << *pit << std::endl;
++pit;
}

}
};

The TetrahedronVisitor below simply returns the number of faces on this figure. Note that
GetNumberOfFaces() is a method exclusive of 3D cells.

class CustomTetrahedronVisitor
{
public:

void Visit(unsigned long cellId, TetrahedronType * t)
{
std::cout << "cell " << cellId << " is a Tetrahedron " << std::endl;
std::cout << " number of faces = ";
std::cout << t->GetNumberOfFaces() << std::endl;
}

};

With the cell visitors we proceed now to instantiate CellVisitor implementations. The visitor
classes defined above are used as template arguments of the cell visitor implementation.

typedef itk::CellInterfaceVisitorImplementation<
PixelType, MeshType::CellTraits, VertexType, CustomVertexVisitor

> VertexVisitorInterfaceType;

typedef itk::CellInterfaceVisitorImplementation<
PixelType, MeshType::CellTraits, LineType, CustomLineVisitor

> LineVisitorInterfaceType;

typedef itk::CellInterfaceVisitorImplementation<
PixelType, MeshType::CellTraits, TriangleType, CustomTriangleVisitor

> TriangleVisitorInterfaceType;

typedef itk::CellInterfaceVisitorImplementation<
PixelType, MeshType::CellTraits, TetrahedronType, CustomTetrahedronVisitor

94 Chapter 4. DataRepresentation

> TetrahedronVisitorInterfaceType;

Note that the actualCellInterfaceVisitorImplementation is templated over the Pixel-
Type, the CellTraits, the CellType to be visited and the Visitor class defining what to do with
the cell.

A visitor implementation class can now be created using the normal invocation to itsNew()
method and assigning the result to aitk::SmartPointer.

VertexVisitorInterfaceType::Pointer vertexVisitor =
VertexVisitorInterfaceType::New();

LineVisitorInterfaceType::Pointer lineVisitor =
LineVisitorInterfaceType::New();

TriangleVisitorInterfaceType::Pointer triangleVisitor =
TriangleVisitorInterfaceType::New();

TetrahedronVisitorInterfaceType::Pointer tetrahedronVisitor =
TetrahedronVisitorInterfaceType::New();

Remember that the LineVisitor requires the pointer to the mesh object since it needs to get
access to actual point coordinates. This is done by invokingthe SetMesh() method defined
above.

lineVisitor->SetMesh(mesh);

Looking carefully you will notice that theSetMesh() method is declared in
CustomLineVisitor but we are invoking it onLineVisitorInterfaceType. This is
possible thanks to the way in which the VisitorInterfaceImplementation is defined. This
class derives from the visitor type provided by the user as the fourth template parameter.
LineVisitorInterfaceType is then a derived class ofCustomLineVisitor.

The set of visitors should now be registered with the MultiVisitor class that will walk through
the cells and delegate action to every registered visitor when the appropriate cell type is encoun-
tered. The following lines create a MultiVisitor object.

typedef CellType::MultiVisitor CellMultiVisitorType;
CellMultiVisitorType::Pointer multiVisitor = CellMultiVisitorType::New();

Every visitor implementation is registered with the Mesh using theAddVisitor() method.

multiVisitor->AddVisitor(vertexVisitor);
multiVisitor->AddVisitor(lineVisitor);
multiVisitor->AddVisitor(triangleVisitor);
multiVisitor->AddVisitor(tetrahedronVisitor);

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

4.4. Path 95

Finally, the iteration over the cells is triggered by calling the methodAccept() on the Mesh
class.

mesh->Accept(multiVisitor);

TheAccept() method will iterate over all the cells and for each one will invite the MultiVisitor
to attempt an action on the cell. If no visitor is interested on the current cell type, the cell is just
ignored and skipped.

4.4 Path

4.4.1 Creating a PolyLineParametricPath

The source code for this section can be found in the file
Examples/DataRepresentation/Path/PolyLineParametricPath1.cxx.

This example illustrates how to use theitk::PolyLineParametricPath. This class will typ-
ically be used for representing in a concise way the output ofan image segmentation algorithm
in 2D. ThePolyLineParametricPath however could also be used for representing any open
or close curve in N-Dimensions as a linear piece-wise approximation.

First, the header file of thePolyLineParametricPath class must be included.

#include "itkPolyLineParametricPath.h"

The path is instantiated over the dimension of the image. In this case 2D. //

const unsigned int Dimension = 2;

typedef itk::Image< unsigned char, Dimension > ImageType;

typedef itk::PolyLineParametricPath< Dimension > PathType;

ImageType::ConstPointer image = reader->GetOutput();

PathType::Pointer path = PathType::New();

path->Initialize();

typedef PathType::ContinuousIndexType ContinuousIndexType;

http://www.itk.org/Doxygen/html/classitk_1_1PolyLineParametricPath.html

96 Chapter 4. DataRepresentation

ContinuousIndexType cindex;

typedef ImageType::PointType ImagePointType;

ImagePointType origin = image->GetOrigin();

ImageType::SpacingType spacing = image->GetSpacing();
ImageType::SizeType size = image->GetBufferedRegion().GetSize();

ImagePointType point;

point[0] = origin[0] + spacing[0] * size[0];
point[1] = origin[1] + spacing[1] * size[1];

image->TransformPhysicalPointToContinuousIndex(origin, cindex);

path->AddVertex(cindex);

image->TransformPhysicalPointToContinuousIndex(point, cindex);

path->AddVertex(cindex);

4.5 Containers

The source code for this section can be found in the file
Examples/DataRepresentation/Containers/TreeContainer.cxx.

This example shows how to use theitk::TreeContainer and the associated TreeIterators.
The itk::TreeContainer implements the notion of tree and is templated over the type of
node so it can virtually handle any objects. Each node is supposed to have only one parent so
no cycle is present in the tree. No checking is done to ensure acycle-free tree.

Let’s begin by including the appropriate header file.

#include <itkTreeContainer.h>
#include "itkTreeContainer.h"
#include "itkChildTreeIterator.h"
#include "itkLeafTreeIterator.h"
#include "itkLevelOrderTreeIterator.h"
#include "itkInOrderTreeIterator.h"
#include "itkPostOrderTreeIterator.h"

http://www.itk.org/Doxygen/html/classitk_1_1TreeContainer.html
http://www.itk.org/Doxygen/html/classitk_1_1TreeContainer.html

4.5. Containers 97

#include "itkPreOrderTreeIterator.h"
#include "itkRootTreeIterator.h"
#include "itkTreeIteratorClone.h"

First, we create a tree of integers. The TreeContainer is templated over the type of nodes.

typedef int NodeType;
typedef itk::TreeContainer<NodeType> TreeType;
TreeType::Pointer tree = TreeType::New();

Next we set the value of the root node usingSetRoot().

tree->SetRoot(0);

Then we use theAdd() function to add nodes to the tree The first argument is the value of the
new node and the second argument is the value of the parent node. If two nodes have the same
values then the first one is picked. In this particular case itis better to use an iterator to fill the
tree.

tree->Add(1,0);
tree->Add(2,0);
tree->Add(3,0);
tree->Add(4,2);
tree->Add(5,2);
tree->Add(6,5);
tree->Add(7,1);

We define anitk::LevelOrderTreeIterator to parse the tree in level order. This particular
iterator takes three arguments. The first one is the actual tree to be parsed, the second one is the
maximum depth level and the third one is the starting node. The GetNode() function return a
node given its value. Once again the first node that corresponds to the value is returned.

itk::LevelOrderTreeIterator<TreeType> levelIt(tree,10,tree->GetNode(2));
levelIt.GoToBegin();
while(!levelIt.IsAtEnd())
{
std::cout << levelIt.Get() << " ("<< levelIt.GetLevel() << ")" << std::endl;;
++levelIt;
}

std::cout << std::endl;

The TreeIterators have useful functions to test the property of the current pointed node. Among
these functions:IsLeaf returns true if the current node is a leaf,IsRoot returns true if the
node is a root,HasParent returns true if the node has a parent andCountChildren returns the
number of children for this particular node.

http://www.itk.org/Doxygen/html/classitk_1_1LevelOrderTreeIterator.html

98 Chapter 4. DataRepresentation

levelIt.IsLeaf();
levelIt.IsRoot();
levelIt.HasParent();
levelIt.CountChildren();

The itk::ChildTreeIterator provides another way to iterate through a tree by listing all
the children of a node.

itk::ChildTreeIterator<TreeType> childIt(tree);
childIt.GoToBegin();
while(!childIt.IsAtEnd())
{
std::cout << childIt.Get() << std::endl;;
++childIt;
}

std::cout << std::endl;

TheGetType() function returns the type of iterator used. The list of enumerated types is as
follow: PREORDER, INORDER, POSTORDER, LEVELORDER, CHILD,ROOT and LEAF.

if(childIt.GetType() != itk::TreeIteratorBase<TreeType>::CHILD)
{
std::cout << "[FAILURE]" << std::endl;
return EXIT_FAILURE;
}

Every TreeIterator has aClone() function which returns a copy of the current iterator. Note
that the user should delete the created iterator by hand.

childIt.GoToParent();
itk::TreeIteratorBase<TreeType>* childItClone = childIt.Clone();
delete childItClone;

The itk::LeafTreeIterator iterates through the leaves of the tree.

itk::LeafTreeIterator<TreeType> leafIt(tree);
leafIt.GoToBegin();
while(!leafIt.IsAtEnd())
{
std::cout << leafIt.Get() << std::endl;;
++leafIt;
}

std::cout << std::endl;

The itk::InOrderTreeIterator iterates through the tree in the order from left to right.

itk::InOrderTreeIterator<TreeType> InOrderIt(tree);

http://www.itk.org/Doxygen/html/classitk_1_1ChildTreeIterator.html
http://www.itk.org/Doxygen/html/classitk_1_1LeafTreeIterator.html
http://www.itk.org/Doxygen/html/classitk_1_1InOrderTreeIterator.html

4.5. Containers 99

InOrderIt.GoToBegin();
while(!InOrderIt.IsAtEnd())
{
std::cout << InOrderIt.Get() << std::endl;;
++InOrderIt;
}

std::cout << std::endl;

The itk::PreOrderTreeIterator iterates through the tree from left to right but do a depth
first search.

itk::PreOrderTreeIterator<TreeType> PreOrderIt(tree);
PreOrderIt.GoToBegin();
while(!PreOrderIt.IsAtEnd())
{
std::cout << PreOrderIt.Get() << std::endl;;
++PreOrderIt;
}

std::cout << std::endl;

The itk::PostOrderTreeIterator iterates through the tree from left to right but goes from
the leaves to the root in the search.

itk::PostOrderTreeIterator<TreeType> PostOrderIt(tree);
PostOrderIt.GoToBegin();
while(!PostOrderIt.IsAtEnd())
{
std::cout << PostOrderIt.Get() << std::endl;;
++PostOrderIt;
}

std::cout << std::endl;

The itk::RootTreeIterator goes from one node to the root. The second arguments is the
starting node. Here we go from the leaf node (value = 6) up to the root.

itk::RootTreeIterator<TreeType> RootIt(tree,tree->GetNode(6));
RootIt.GoToBegin();
while(!RootIt.IsAtEnd())
{
std::cout << RootIt.Get() << std::endl;;
++RootIt;
}

std::cout << std::endl;

All the nodes of the tree can be removed by using theClear() function.

tree->Clear();

http://www.itk.org/Doxygen/html/classitk_1_1PreOrderTreeIterator.html
http://www.itk.org/Doxygen/html/classitk_1_1PostOrderTreeIterator.html
http://www.itk.org/Doxygen/html/classitk_1_1RootTreeIterator.html

100 Chapter 4. DataRepresentation

We show how to use a TreeIterator to form a tree by creating nodes. TheAdd() function is used
to add a node and put a value on it. TheGoToChild() is used to jump to a node.

itk::PreOrderTreeIterator<TreeType> PreOrderIt2(tree);
PreOrderIt2.Add(0);
PreOrderIt2.Add(1);
PreOrderIt2.Add(2);
PreOrderIt2.Add(3);
PreOrderIt2.GoToChild(2);
PreOrderIt2.Add(4);
PreOrderIt2.Add(5);

The itk::TreeIteratorClone can be used to have a generic copy of an iterator.

typedef itk::TreeIteratorBase<TreeType> IteratorType;
typedef itk::TreeIteratorClone<IteratorType> IteratorCloneType;
itk::PreOrderTreeIterator<TreeType> anIterator(tree);
IteratorCloneType aClone = anIterator;

http://www.itk.org/Doxygen/html/classitk_1_1TreeIteratorClone.html

CHAPTER

FIVE

Spatial Objects

This chapter introduces the basic classes that describeitk::SpatialObjects.

5.1 Introduction

We promote the philosophy that many of the goals of medical image processing are more effec-
tively addressed if we consider them in the broader context of object processing. ITK’s Spatial
Object class hierarchy provides a consistent API for querying, manipulating, and interconnect-
ing objects in physical space. Via this API, methods can be coded to be invariant to the data
structure used to store the objects being processed. By abstracting the representations of objects
to support their representation by data structures other than images, a broad range of medical
image analysis research is supported; key examples are described in the following.

Model-to-image registration. A mathematical instance of an object can be registered with an
image to localize the instance of that object in the image. Using SpatialObjects, mutual
information, cross-correlation, and boundary-to-image metrics can be applied without
modification to perform spatial object-to-image registration.

Model-to-model registration. Iterative closest point, landmark, and surface distance mini-
mization methods can be used with any ITK transform, to rigidly and non-rigidly register
image, FEM, and Fourier descriptor-based representationsof objects as SpatialObjects.

Atlas formation. Collections of images or SpatialObjects can be integrated to represent ex-
pected object characteristics and their common modes of variation. Labels can be associ-
ated with the objects of an atlas.

Storing segmentation results from one or multiple scans.Results of segmentations are best
stored in physical/world coordinates so that they can be combined and compared with
other segmentations from other images taken at other resolutions. Segmentation results
from hand drawn contours, pixel labelings, or model-to-image registrations are treated
consistently.

http://www.itk.org/Doxygen/html/classitk_1_1SpatialObject.html

102 Chapter 5. Spatial Objects

Capturing functional and logical relationships between objects. SpatialObjects can have
parent and children objects. Queries made of an object (suchas to determine if a point
is inside of the object) can be made to integrate the responses from the children object.
Transformations applied to a parent can also be propagated to the children. Thus, for
example, when a liver model is moved, its vessels move with it.

Conversion to and from images.Basic functions are provided to render any SpatialObject (or
collection of SpatialObjects) into an image.

IO. SpatialObject reading and writing to disk is independent ofthe SpatialObject class hierar-
chy. Meta object IO (throughitk::MetaImageIO) methods are provided, and others are
easily defined.

Tubes, blobs, images, surfaces.Are a few of the many SpatialObject data containers and types
provided. New types can be added, generally by only defining one or two member func-
tions in a derived class.

In the remainder of this chapter several examples are used todemonstrate the many
spatial objects found in ITK and how they can be organized into hierarchies using
itk::SceneSpatialObject. Further the examples illustrate how to use SpatialObject trans-
formations to control and calculate the position of objectsin space.

5.2 Hierarchy

Spatial objects can be combined to form a hierarchy as a tree.By design, a SpatialObject can
have one parent and only one. Moreover, each transform is stored within each object, therefore
the hierarchy cannot be described as a Directed Acyclic Graph (DAG) but effectively as a tree.
The user is responsible for maintaining the tree structure,no checking is done to ensure a cycle-
free tree.

The source code for this section can be found in the file
Examples/SpatialObjects/SpatialObjectHierarchy.cxx.

This example describes howitk::SpatialObject can form a hierarchy. This first example
also shows how to create and manipulate spatial objects.

#include "itkSpatialObject.h"

First, we create two spatial objects and give them the namesFirst Object and Second
Object, respectively.

typedef itk::SpatialObject<3> SpatialObjectType;

SpatialObjectType::Pointer object1 = SpatialObjectType ::New();

http://www.itk.org/Doxygen/html/classitk_1_1MetaImageIO.html
http://www.itk.org/Doxygen/html/classitk_1_1SceneSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1SpatialObject.html

5.2. Hierarchy 103

object1->GetProperty()->SetName("First Object");

SpatialObjectType::Pointer object2 = SpatialObjectType ::New();
object2->GetProperty()->SetName("Second Object");

We then add the second object to the first one by using theAddSpatialObject() method. As
a resultobject2 becomes a child of object1.

object1->AddSpatialObject(object2);

We can query if an object has a parent by using the HasParent()method. If it has one, the
GetParent() method returns a constant pointer to the parent. In our case,if we ask the parent’s
name of the object2 we should obtain:First Object.

if(object2->HasParent())
{
std::cout << "Name of the parent of the object2: ";
std::cout << object2->GetParent()->GetProperty()->GetName() << std::endl;
}

To access the list of children of the object, theGetChildren() method returns a pointer to the
(STL) list of children.

SpatialObjectType::ChildrenListType * childrenList = object1->GetChildren();
std::cout << "object1 has " << childrenList->size() << " child" << std::endl;

SpatialObjectType::ChildrenListType::const_iterator it = childrenList->begin();
while(it != childrenList->end())
{
std::cout << "Name of the child of the object 1: ";
std::cout << (*it)->GetProperty()->GetName() << std::endl;
it++;
}

Do NOT forget to delete the list of children since theGetChildren() function creates an inter-
nal list.

delete childrenList;

An object can also be removed by using theRemoveSpatialObject() method.

object1->RemoveSpatialObject(object2);

We can query the number of children an object has with theGetNumberOfChildren() method.

104 Chapter 5. Spatial Objects

std::cout << "Number of children for object1: ";
std::cout << object1->GetNumberOfChildren() << std::endl;

TheClear() method erases all the information regarding the object as well as the data. This
method is usually overloaded by derived classes.

object1->Clear();

The output of this first example looks like the following:

Name of the parent of the object2: First Object
object1 has 1 child
Name of the child of the object 1: Second Object
Number of children for object1: 0

5.3 SpatialObject Tree Container

The source code for this section can be found in the file
Examples/SpatialObjects/SpatialObjectTreeContainer.cxx.

This example describes how to use theitk::SpatialObjectTreeContainer to form a hier-
archy of SpatialObjects. First we include the appropriate header file.

#include "itkSpatialObjectTreeContainer.h"

Next we define the type of node and the type of tree we plan to use. Both are templated over
the dimensionality of the space. Let’s create a 2-dimensional tree.

typedef itk::GroupSpatialObject<2> NodeType;
typedef itk::SpatialObjectTreeContainer<2> TreeType;

Then, we can create three nodes and set their corresponding identification numbers (using
SetId).

NodeType::Pointer object0 = NodeType::New();
object0->SetId(0);
NodeType::Pointer object1 = NodeType::New();
object1->SetId(1);
NodeType::Pointer object2 = NodeType::New();
object2->SetId(2);

The hierarchy is formed using theAddSpatialObject() function.

http://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectTreeContainer.html

5.4. Transformations 105

object0->AddSpatialObject(object1);
object1->AddSpatialObject(object2);

After instantiation of the tree we set its root using theSetRoot() function.

TreeType::Pointer tree = TreeType::New();
tree->SetRoot(object0.GetPointer());

The tree iterators described in a previous section of this guide can be used to parse the hierarchy.
For example, via anitk::LevelOrderTreeIterator templated over the type of tree, we can
parse the hierarchy of SpatialObjects. We set the maximum level to 10 which is enough in this
case since our hierarchy is only 2 deep.

itk::LevelOrderTreeIterator<TreeType> levelIt(tree,10);
levelIt.GoToBegin();
while(!levelIt.IsAtEnd())
{
std::cout << levelIt.Get()->GetId() << " ("<< levelIt.GetLevel()

<< ")" << std::endl;;
++levelIt;
}

Tree iterators can also be used to add spatial objects to the hierarchy. Here we show how to use
the itk::PreOrderTreeIterator to add a fourth object to the tree.

NodeType::Pointer object4 = NodeType::New();
itk::PreOrderTreeIterator<TreeType> preIt(tree);
preIt.Add(object4.GetPointer());

5.4 Transformations

The source code for this section can be found in the file
Examples/SpatialObjects/SpatialObjectTransforms.cxx.

This example describes the different transformations associated with a spatial object.

Figure5.1shows our set of transformations.

Like the first example, we create two spatial objects and givethem the namesFirst Object
andSecond Object, respectively.

typedef itk::SpatialObject<2> SpatialObjectType;
typedef SpatialObjectType::TransformType TransformType;

SpatialObjectType::Pointer object1 = SpatialObjectType ::New();
object1->GetProperty()->SetName("First Object");

http://www.itk.org/Doxygen/html/classitk_1_1LevelOrderTreeIterator.html
http://www.itk.org/Doxygen/html/classitk_1_1PreOrderTreeIterator.html

106 Chapter 5. Spatial Objects

NodeToParentNode

Transform

World

Parent Node

Node
ObjectToNode

Transform

IndexToObject

Transform

ObjectToParent

Transform

ObjectToWorld

Transform

IndexToWorld

Transform

Object Index

Figure 5.1:Set of transformations associated with a Spatial Object

SpatialObjectType::Pointer object2 = SpatialObjectType ::New();
object2->GetProperty()->SetName("Second Object");
object1->AddSpatialObject(object2);

Instances ofitk::SpatialObject maintain three transformations internally that can be used
to compute the position and orientation of data and objects.These transformations are: an
IndexToObjectTransform, an ObjectToParentTransform, and an ObjectToWorldTransform. As
a convenience to the user, the global transformation IndexToWorldTransform and its inverse,
WorldToIndexTransform, are also maintained by the class. Methods are provided by SpatialOb-
ject to access and manipulate these transforms.

The two main transformations, IndexToObjectTransformandObjectToParentTransform, are ap-
plied successively. ObjectToParentTransform is applied to children.

The IndexToObjectTransform transforms points from the internal data coordinate system of the
object (typically the indices of the image from which the object was defined) to “physical” space
(which accounts for the spacing, orientation, and offset ofthe indices).

The ObjectToParentTransform transforms points from the object-specific “physical” space to
the “physical” space of its parent object. As one can see fromthe figure 5.1, the ObjectToPar-
entTransform is composed of two transforms: ObjectToNodeTransform and NodeToParentN-
odeTransform. The ObjectToNodeTransform is not applied tothe children, but the ObjectToN-
odeTransform is. Therefore, if one sets the ObjectToParentTransform, the ObjectToNodeTrans-
form is modified.

http://www.itk.org/Doxygen/html/classitk_1_1SpatialObject.html

5.4. Transformations 107

The ObjectToWorldTransform maps points from the referencesystem of the SpatialObject into
the global coordinate system. This is useful when the position of the object is known only in
the global coordinate frame. Note that by setting this transform, the ObjectToParent transform
is recomputed.

These transformations use theitk::FixedCenterOfRotationAffineTransform. They are
created in the constructor of the spatialitk::SpatialObject.

First we define an index scaling factor of 2 for the object2. This is done by setting the Scale of
the IndexToObjectTransform.

double scale[2];
scale[0]=2;
scale[1]=2;
object2->GetIndexToObjectTransform()->SetScale(scale);

Next, we apply an offset on the ObjectToParentTransform of the child object Therefore, object2
is now translated by a vector [4,3] regarding to its parent.

TransformType::OffsetType Object2ToObject1Offset;
Object2ToObject1Offset[0] = 4;
Object2ToObject1Offset[1] = 3;
object2->GetObjectToParentTransform()->SetOffset(Object2ToObject1Offset);

To realize the previous operations on the transformations,we should invoke the
ComputeObjectToWorldTransform() that recomputes all dependent transformations.

object2->ComputeObjectToWorldTransform();

We can now display the ObjectToWorldTransform for both objects. One should notice that the
FixedCenterOfRotationAffineTransform derives fromitk::AffineTransform and therefore
the only valid members of the transformation are a Matrix andan Offset. For instance, when
we invoke theScale() method the internal Matrix is recomputed to reflect this change.

The FixedCenterOfRotationAffineTransform performs the following computation

X′ = R· (S·X−C)+C+V (5.1)

WhereR is the rotation matrix,S is a scaling factor,C is the center of rotation andV is a
translation vector or offset. Therefore the affine matrixM and the affine offsetT are defined as:

M = R·S (5.2)

T = C+V −R·C (5.3)

http://www.itk.org/Doxygen/html/classitk_1_1FixedCenterOfRotationAffineTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1SpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1AffineTransform.html

108 Chapter 5. Spatial Objects

This means thatGetScale() andGetOffset() as well as theGetMatrix() might not be set
to the expected value, especially if the transformation results from a composition with another
transformation since the composition is done using the Matrix and the Offset of the affine trans-
formation.

Next, we show the two affine transformations corresponding to the two objects.

std::cout << "object2 IndexToObject Matrix: " << std::endl;
std::cout << object2->GetIndexToObjectTransform()->GetMatrix() << std::endl;
std::cout << "object2 IndexToObject Offset: ";
std::cout << object2->GetIndexToObjectTransform()->GetOffset() << std::endl;
std::cout << "object2 IndexToWorld Matrix: " << std::endl;
std::cout << object2->GetIndexToWorldTransform()->GetMatrix() << std::endl;
std::cout << "object2 IndexToWorld Offset: ";
std::cout << object2->GetIndexToWorldTransform()->GetOffset() << std::endl;

Then, we decide to translate the first object which is the parent of the second by a vector [3,3].
This is still done by setting the offset of the ObjectToParentTransform. This can also be done
by setting the ObjectToWorldTransform because the first object does not have any parent and
therefore is attached to the world coordinate frame.

TransformType::OffsetType Object1ToWorldOffset;
Object1ToWorldOffset[0] = 3;
Object1ToWorldOffset[1] = 3;
object1->GetObjectToParentTransform()->SetOffset(Object1ToWorldOffset);

Next we invokeComputeObjectToWorldTransform() on the modified object. This will prop-
agate the transformation through all its children.

object1->ComputeObjectToWorldTransform();

Figure5.2shows our set of transformations.

Finally, we display the resulting affine transformations.

std::cout << "object1 IndexToWorld Matrix: " << std::endl;
std::cout << object1->GetIndexToWorldTransform()->GetMatrix() << std::endl;
std::cout << "object1 IndexToWorld Offset: ";
std::cout << object1->GetIndexToWorldTransform()->GetOffset() << std::endl;
std::cout << "object2 IndexToWorld Matrix: " << std::endl;
std::cout << object2->GetIndexToWorldTransform()->GetMatrix() << std::endl;
std::cout << "object2 IndexToWorld Offset: ";
std::cout << object2->GetIndexToWorldTransform()->GetOffset() << std::endl;

The output of this second example looks like the following:

5.5. Types of Spatial Objects 109

1

2

3

4

5

6

7

1 2 4 5 6 73 8

Object 1

Object 2

Figure 5.2:Physical positions of the two objects in the world frame (shapes are merely for illustration

purposes).

object2 IndexToObject Matrix:
2 0
0 2
object2 IndexToObject Offset: 0 0
object2 IndexToWorld Matrix:
2 0
0 2
object2 IndexToWorld Offset: 4 3
object1 IndexToWorld Matrix:
1 0
0 1
object1 IndexToWorld Offset: 3 3
object2 IndexToWorld Matrix:
2 0
0 2
object2 IndexToWorld Offset: 7 6

5.5 Types of Spatial Objects

This section describes in detail the variety of spatial objects implemented in ITK.

110 Chapter 5. Spatial Objects

5.5.1 ArrowSpatialObject

The source code for this section can be found in the file
Examples/SpatialObjects/ArrowSpatialObject.cxx.

This example shows how to create aitk::ArrowSpatialObject. Let’s begin by including
the appropriate header file.

#include <itkArrowSpatialObject.h>

The itk::ArrowSpatialObject, like many SpatialObjects, is templated over the dimension-
ality of the object.

typedef itk::ArrowSpatialObject<3> ArrowType;
ArrowType::Pointer myArrow = ArrowType::New();

The length of the arrow in the local coordinate frame is done using the SetLength() function.
By default the length is set to 1.

myArrow->SetLength(2);

The direction of the arrow can be set using the SetDirection() function. The SetDirection()
function modifies the ObjectToParentTransform (not the IndexToObjectTransform). By default
the direction is set along the X axis (first direction).

ArrowType::VectorType direction;
direction.Fill(0);
direction[1] = 1.0;
myArrow->SetDirection(direction);

5.5.2 BlobSpatialObject

The source code for this section can be found in the file
Examples/SpatialObjects/BlobSpatialObject.cxx.

itk::BlobSpatialObject defines an N-dimensional blob. Like other SpatialObjects this class
derives from itk::itkSpatialObject. A blob is defined as a list of points which compose
the object.

Let’s start by including the appropriate header file.

#include "itkBlobSpatialObject.h"

BlobSpatialObject is templated over the dimension of the space. A BlobSpatialObject contains
a list of SpatialObjectPoints. Basically, a SpatialObjectPoint has a position and a color.

http://www.itk.org/Doxygen/html/classitk_1_1ArrowSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1ArrowSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1BlobSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1itkSpatialObject.html

5.5. Types of Spatial Objects 111

#include "itkSpatialObjectPoint.h"

First we declare some type definitions.

typedef itk::BlobSpatialObject<3> BlobType;
typedef BlobType::Pointer BlobPointer;
typedef itk::SpatialObjectPoint<3> BlobPointType;

Then, we create a list of points and we set the position of eachpoint in the local coordinate
system using theSetPosition() method. We also set the color of each point to be red.

BlobType::PointListType list;

for(unsigned int i=0; i<4; i++)
{
BlobPointType p;
p.SetPosition(i,i+1,i+2);
p.SetRed(1);
p.SetGreen(0);
p.SetBlue(0);
p.SetAlpha(1.0);
list.push_back(p);
}

Next, we create the blob and set its name using theSetName() function. We also set its Identi-
fication number withSetId() and we add the list of points previously created.

BlobPointer blob = BlobType::New();
blob->GetProperty()->SetName("My Blob");
blob->SetId(1);
blob->SetPoints(list);

TheGetPoints() method returns a reference to the internal list of points of the object.

BlobType::PointListType pointList = blob->GetPoints();
std::cout << "The blob contains " << pointList.size();
std::cout << " points" << std::endl;

Then we can access the points using standard STL iterators and GetPosition() and
GetColor() functions return respectively the position and the color ofthe point.

BlobType::PointListType::const_iterator it = blob->GetPoints().begin();
while(it != blob->GetPoints().end())
{
std::cout << "Position = " << (*it).GetPosition() << std::endl;
std::cout << "Color = " << (*it).GetColor() << std::endl;
it++;
}

112 Chapter 5. Spatial Objects

5.5.3 CylinderSpatialObject

The source code for this section can be found in the file
Examples/SpatialObjects/CylinderSpatialObject.cxx.

This example shows how to create aitk::CylinderSpatialObject. Let’s begin by including
the appropriate header file.

#include "itkCylinderSpatialObject.h"

An itk::CylinderSpatialObject exists only in 3D, therefore, it is not templated.

typedef itk::CylinderSpatialObject CylinderType;

We create a cylinder using the standard smart pointers.

CylinderType::Pointer myCylinder = CylinderType::New();

The radius of the cylinder is set using theSetRadius() function. By default the radius is set to
1.

double radius = 3.0;
myCylinder->SetRadius(radius);

The height of the cylinder is set using theSetHeight() function. By default the cylinder is
defined along the X axis (first dimension).

double height = 12.0;
myCylinder->SetHeight(height);

Like any other itk::SpatialObjects, theIsInside() function can be used to query if a
point is inside or outside the cylinder.

itk::Point<double,3> insidePoint;
insidePoint[0]=1;
insidePoint[1]=2;
insidePoint[2]=0;
std::cout << "Is my point "<< insidePoint << " inside the cylinder? : "
<< myCylinder->IsInside(insidePoint) << std::endl;

We can print the cylinder information using thePrint() function.

myCylinder->Print(std::cout);

http://www.itk.org/Doxygen/html/classitk_1_1CylinderSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1CylinderSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1SpatialObject.html

5.5. Types of Spatial Objects 113

5.5.4 EllipseSpatialObject

The source code for this section can be found in the file
Examples/SpatialObjects/EllipseSpatialObject.cxx.

itk::EllipseSpatialObject defines an n-Dimensional ellipse. Like other spatial objects
this class derives fromitk::SpatialObject. Let’s start by including the appropriate header
file.

#include "itkEllipseSpatialObject.h"

Like most of the SpatialObjects, theitk::EllipseSpatialObject is templated over the di-
mension of the space. In this example we create a 3-dimensional ellipse.

typedef itk::EllipseSpatialObject<3> EllipseType;
EllipseType::Pointer myEllipse = EllipseType::New();

Then we set a radius for each dimension. By default the radiusis set to 1.

EllipseType::ArrayType radius;
for(unsigned int i = 0; i<3; i++)
{
radius[i] = i;
}

myEllipse->SetRadius(radius);

Or if we have the same radius in each dimension we can do

myEllipse->SetRadius(2.0);

We can then display the current radius by using theGetRadius() function:

EllipseType::ArrayType myCurrentRadius = myEllipse->GetRadius();
std::cout << "Current radius is " << myCurrentRadius << std::endl;

Like other SpatialObjects, we can query the object if a pointis inside the object by using the
IsInside(itk::Point) function. This function expects thepoint to be in world coordinates.

itk::Point<double,3> insidePoint;
insidePoint.Fill(1.0);
if(myEllipse->IsInside(insidePoint))
{

http://www.itk.org/Doxygen/html/classitk_1_1EllipseSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1SpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1EllipseSpatialObject.html

114 Chapter 5. Spatial Objects

std::cout << "The point " << insidePoint;
std::cout << " is really inside the ellipse" << std::endl;
}

itk::Point<double,3> outsidePoint;
outsidePoint.Fill(3.0);
if(!myEllipse->IsInside(outsidePoint))
{
std::cout << "The point " << outsidePoint;
std::cout << " is really outside the ellipse" << std::endl;
}

All spatial objects can be queried for a value at a point. TheIsEvaluableAt() function returns
a boolean to know if the object is evaluable at a particular point.

if(myEllipse->IsEvaluableAt(insidePoint))
{
std::cout << "The point " << insidePoint;
std::cout << " is evaluable at the point " << insidePoint << std::endl;
}

If the object is evaluable at that point, theValueAt() function returns the current value at that
position. Most of the objects returns a boolean value which is set to true when the point is
inside the object and false when it is outside. However, for some objects, it is more interesting
to return a value representing, for instance, the distance from the center of the object or the
distance from from the boundary.

double value;
myEllipse->ValueAt(insidePoint,value);
std::cout << "The value inside the ellipse is: " << value << std::endl;

Like other spatial objects, we can also query the bounding box of the object by using
GetBoundingBox(). The resulting bounding box is expressed in the local frame.

myEllipse->ComputeBoundingBox();
EllipseType::BoundingBoxType * boundingBox = myEllipse->GetBoundingBox();
std::cout << "Bounding Box: " << boundingBox->GetBounds() << std::endl;

5.5.5 GaussianSpatialObject

The source code for this section can be found in the file
Examples/SpatialObjects/GaussianSpatialObject.cxx.

This example shows how to create aitk::GaussianSpatialObject which defines a Gaussian
in a N-dimensional space. This object is particularly useful to query the value at a point in
physical space. Let’s begin by including the appropriate header file.

http://www.itk.org/Doxygen/html/classitk_1_1GaussianSpatialObject.html

5.5. Types of Spatial Objects 115

#include "itkGaussianSpatialObject.h"

The itk::GaussianSpatialObject is templated over the dimensionality of the object.

typedef itk::GaussianSpatialObject<3> GaussianType;
GaussianType::Pointer myGaussian = GaussianType::New();

TheSetMaximum() function is used to set the maximum value of the Gaussian.

myGaussian->SetMaximum(2);

The radius of the Gaussian is defined by theSetRadius() method. By default the radius is set
to 1.0.

myGaussian->SetRadius(3);

The standardValueAt() function is used to determine the value of the Gaussian at a particular
point in physical space.

itk::Point<double,3> pt;
pt[0]=1;
pt[1]=2;
pt[2]=1;
double value;
myGaussian->ValueAt(pt, value);
std::cout << "ValueAt(" << pt << ") = " << value << std::endl;

5.5.6 GroupSpatialObject

The source code for this section can be found in the file
Examples/SpatialObjects/GroupSpatialObject.cxx.

A itk::GroupSpatialObject does not have any data associated with it. It can be used to
group objects or to add transforms to a current object. In this example we show how to use a
GroupSpatialObject.

Let’s begin by including the appropriate header file.

#include <itkGroupSpatialObject.h>

The itk::GroupSpatialObject is templated over the dimensionality of the object.

typedef itk::GroupSpatialObject<3> GroupType;
GroupType::Pointer myGroup = GroupType::New();

http://www.itk.org/Doxygen/html/classitk_1_1GaussianSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1GroupSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1GroupSpatialObject.html

116 Chapter 5. Spatial Objects

Next, we create anitk::EllipseSpatialObject and add it to the group.

typedef itk::EllipseSpatialObject<3> EllipseType;
EllipseType::Pointer myEllipse = EllipseType::New();
myEllipse->SetRadius(2);

myGroup->AddSpatialObject(myEllipse);

We then translate the group by 10mm in each direction. Therefore the ellipse is translated in
physical space at the same time.

GroupType::VectorType offset;
offset.Fill(10);
myGroup->GetObjectToParentTransform()->SetOffset(offset);
myGroup->ComputeObjectToWorldTransform();

We can then query if a point is inside the group using theIsInside() function. We need to
specify in this case that we want to consider all the hierarchy, therefore we set the depth to 2.

GroupType::PointType point;
point.Fill(10);
std::cout << "Is my point " << point << " inside?: "
<< myGroup->IsInside(point,2) << std::endl;

Like any other SpatialObjects we can remove the ellipse fromthe group using the
RemoveSpatialObject() method.

myGroup->RemoveSpatialObject(myEllipse);

5.5.7 ImageSpatialObject

The source code for this section can be found in the file
Examples/SpatialObjects/ImageSpatialObject.cxx.

An itk::ImageSpatialObject contains anitk::Image but adds the notion of spatial trans-
formations and parent-child hierarchy. Let’s begin the next example by including the appropri-
ate header file.

#include "itkImageSpatialObject.h"

We first create a simple 2D image of size 10 by 10 pixels.

typedef itk::Image<short,2> Image;
Image::Pointer image = Image::New();

http://www.itk.org/Doxygen/html/classitk_1_1EllipseSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1Image.html

5.5. Types of Spatial Objects 117

Image::SizeType size = {{ 10, 10 }};
Image::RegionType region;
region.SetSize(size);
image->SetRegions(region);
image->Allocate();

Next we fill the image with increasing values.

typedef itk::ImageRegionIterator<Image> Iterator;
Iterator it(image,region);
short pixelValue =0;
it.GoToBegin();
for(; !it.IsAtEnd(); ++it, ++pixelValue)
{
it.Set(pixelValue);
}

We can now define the ImageSpatialObject which is templated over the dimension and the pixel
type of the image.

typedef itk::ImageSpatialObject<2,short> ImageSpatialObject;
ImageSpatialObject::Pointer imageSO = ImageSpatialObject::New();

Then we set the itkImage to the ImageSpatialObject by using theSetImage() function.

imageSO->SetImage(image);

At this point we can useIsInside(), ValueAt() andDerivativeAt() functions inherent in
SpatialObjects. TheIsInside() value can be useful when dealing with registration.

typedef itk::Point<double,2> Point;
Point insidePoint;
insidePoint.Fill(9);

if(imageSO->IsInside(insidePoint))
{
std::cout << insidePoint << " is inside the image." << std::endl;
}

TheValueAt() returns the value of the closest pixel, i.e no interpolation, to a given physical
point.

double returnedValue;
imageSO->ValueAt(insidePoint,returnedValue);

std::cout << "ValueAt(" << insidePoint << ") = " << returnedValue << std::endl;

118 Chapter 5. Spatial Objects

The derivative at a specified position in space can be computed using theDerivativeAt()
function. The first argument is the point in physical coordinates where we are evaluating the
derivatives. The second argument is the order of the derivation, and the third argument is the re-
sult expressed as aitk::Vector. Derivatives are computed iteratively using finite differences
and, like theValueAt(), no interpolator is used.

ImageSpatialObject::OutputVectorType returnedDerivative;
imageSO->DerivativeAt(insidePoint,1,returnedDerivative);
std::cout << "First derivative at " << insidePoint;
std::cout << " = " << returnedDerivative << std::endl;

5.5.8 ImageMaskSpatialObject

The source code for this section can be found in the file
Examples/SpatialObjects/ImageMaskSpatialObject.cxx.

An itk::ImageMaskSpatialObject is similar to the itk::ImageSpatialObject and de-
rived from it. However, the main difference is that theIsInside() returns true if the pixel
intensity in the image is not zero.

The supported pixel types does not includeitk::RGBPixel, itk::RGBAPixel, etc... So
far it only allows to manage images of simple types like unsigned short, unsigned int, or
itk::Vector. Let’s begin by including the appropriate header file.

#include "itkImageMaskSpatialObject.h"

The ImageMaskSpatialObject is templated over the dimensionality.

typedef itk::ImageMaskSpatialObject<3> ImageMaskSpatialObject;

Next we create anitk::Image of size 50x50x50 filled with zeros except a bright square in the
middle which defines the mask.

typedef ImageMaskSpatialObject::PixelType PixelType;
typedef ImageMaskSpatialObject::ImageType ImageType;
typedef itk::ImageRegionIterator<ImageType> Iterator;

ImageType::Pointer image = ImageType::New();
ImageType::SizeType size = {{ 50, 50, 50 }};
ImageType::IndexType index = {{ 0, 0, 0 }};
ImageType::RegionType region;

region.SetSize(size);
region.SetIndex(index);

http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageMaskSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html
http://www.itk.org/Doxygen/html/classitk_1_1RGBAPixel.html
http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1Image.html

5.5. Types of Spatial Objects 119

image->SetRegions(region);
image->Allocate();

PixelType p = itk::NumericTraits< PixelType >::Zero;

image->FillBuffer(p);

ImageType::RegionType insideRegion;
ImageType::SizeType insideSize = {{ 30, 30, 30 }};
ImageType::IndexType insideIndex = {{ 10, 10, 10 }};
insideRegion.SetSize(insideSize);
insideRegion.SetIndex(insideIndex);

Iterator it(image, insideRegion);
it.GoToBegin();

while(!it.IsAtEnd())
{
it.Set(itk::NumericTraits< PixelType >::max());
++it;
}

Then, we create an ImageMaskSpatialObject.

ImageMaskSpatialObject::Pointer maskSO = ImageMaskSpatialObject::New();

and we pass the corresponding pointer to the image.

maskSO->SetImage(image);

We can then test if a physicalitk::Point is inside or outside the mask image. This is par-
ticularly useful during the registration process when onlya part of the image should be used to
compute the metric.

ImageMaskSpatialObject::PointType inside;
inside.Fill(20);
std::cout << "Is my point " << inside << " inside my mask? "
<< maskSO->IsInside(inside) << std::endl;

ImageMaskSpatialObject::PointType outside;
outside.Fill(45);
std::cout << "Is my point " << outside << " outside my mask? "
<< !maskSO->IsInside(outside) << std::endl;

http://www.itk.org/Doxygen/html/classitk_1_1Point.html

120 Chapter 5. Spatial Objects

5.5.9 LandmarkSpatialObject

The source code for this section can be found in the file
Examples/SpatialObjects/LandmarkSpatialObject.cxx.

itk::LandmarkSpatialObject contains a list ofitk::SpatialObjectPoints which have
a position and a color. Let’s begin this example by includingthe appropriate header file.

#include "itkLandmarkSpatialObject.h"

LandmarkSpatialObject is templated over the dimension of the space.

Here we create a 3-dimensional landmark.

typedef itk::LandmarkSpatialObject<3> LandmarkType;
typedef LandmarkType::Pointer LandmarkPointer;
typedef itk::SpatialObjectPoint<3> LandmarkPointType;

LandmarkPointer landmark = LandmarkType::New();

Next, we set some properties of the object like its name and its identification number.

landmark->GetProperty()->SetName("Landmark1");
landmark->SetId(1);

We are now ready to add points into the landmark. We first create a list of SpatialObjectPoint
and for each point we set the position and the color.

LandmarkType::PointListType list;

for(unsigned int i=0; i<5; i++)
{
LandmarkPointType p;
p.SetPosition(i,i+1,i+2);
p.SetColor(1,0,0,1);
list.push_back(p);
}

Then we add the list to the object using theSetPoints() method.

landmark->SetPoints(list);

The current point list can be accessed using theGetPoints() method. The method returns a
reference to the (STL) list.

http://www.itk.org/Doxygen/html/classitk_1_1LandmarkSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectPoint.html

5.5. Types of Spatial Objects 121

unsigned int nPoints = landmark->GetPoints().size();
std::cout << "Number of Points in the landmark: " << nPoints << std::endl;

LandmarkType::PointListType::const_iterator it = landmark->GetPoints().begin();
while(it != landmark->GetPoints().end())
{
std::cout << "Position: " << (*it).GetPosition() << std::endl;
std::cout << "Color: " << (*it).GetColor() << std::endl;
it++;
}

5.5.10 LineSpatialObject

The source code for this section can be found in the file
Examples/SpatialObjects/LineSpatialObject.cxx.

itk::LineSpatialObject defines a line in an n-dimensional space. A line is defined as a
list of points which compose the line, i.e a polyline. We begin the example by including the
appropriate header files.

#include "itkLineSpatialObject.h"
#include "itkLineSpatialObjectPoint.h"

LineSpatialObject is templated over the dimension of the space. A LineSpatialObject contains
a list of LineSpatialObjectPoints. A LineSpatialObjectPoint has a position,n−1 normals and a
color. Each normal is expressed as aitk::CovariantVector of size N.

First, we define some type definitions and we create our line.

typedef itk::LineSpatialObject<3> LineType;
typedef LineType::Pointer LinePointer;
typedef itk::LineSpatialObjectPoint<3> LinePointType;
typedef itk::CovariantVector<double,3> VectorType;

LinePointer Line = LineType::New();

We create a point list and we set the position of each point in the local coordinate system using
theSetPosition() method. We also set the color of each point to red.

The two normals are set using theSetNormal() function; the first argument is the normal itself
and the second argument is the index of the normal.

LineType::PointListType list;

for(unsigned int i=0; i<3; i++)
{

http://www.itk.org/Doxygen/html/classitk_1_1LineSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html

122 Chapter 5. Spatial Objects

LinePointType p;
p.SetPosition(i,i+1,i+2);
p.SetColor(1,0,0,1);

VectorType normal1;
VectorType normal2;
for(unsigned int j=0;j<3;j++)

{
normal1[j]=j;
normal2[j]=j*2;
}

p.SetNormal(normal1,0);
p.SetNormal(normal2,1);
list.push_back(p);
}

Next, we set the name of the object usingSetName(). We also set its identification number
with SetId() and we set the list of points previously created.

Line->GetProperty()->SetName("Line1");
Line->SetId(1);
Line->SetPoints(list);

TheGetPoints() method returns a reference to the internal list of points of the object.

LineType::PointListType pointList = Line->GetPoints();
std::cout << "Number of points representing the line: ";
std::cout << pointList.size() << std::endl;

Then we can access the points using standard STL iterators. The GetPosition() and
GetColor() functions return respectively the position and the color ofthe point. Using the
GetNormal(unsigned int) function we can access each normal.

LineType::PointListType::const_iterator it = Line->GetPoints().begin();
while(it != Line->GetPoints().end())
{
std::cout << "Position = " << (*it).GetPosition() << std::endl;
std::cout << "Color = " << (*it).GetColor() << std::endl;
std::cout << "First normal = " << (*it).GetNormal(0) << std::endl;
std::cout << "Second normal = " << (*it).GetNormal(1) << std::endl;
std::cout << std::endl;
it++;
}

5.5. Types of Spatial Objects 123

5.5.11 MeshSpatialObject

The source code for this section can be found in the file
Examples/SpatialObjects/MeshSpatialObject.cxx.

A itk::MeshSpatialObject contains a pointer to anitk::Mesh but adds the notion of
spatial transformations and parent-child hierarchy. Thisexample shows how to create an
itk::MeshSpatialObject, use it to form a binary image and how to write the mesh on disk.

Let’s begin by including the appropriate header file.

#include <itkMeshSpatialObject.h>
#include <itkSpatialObjectReader.h>
#include <itkSpatialObjectWriter.h>
#include <itkSpatialObjectToImageFilter.h>

The MeshSpatialObject wraps anitk::Mesh, therefore we first create a mesh.

typedef itk::DefaultDynamicMeshTraits< float , 3, 3 > MeshTrait;
typedef itk::Mesh<float,3,MeshTrait> MeshType;
typedef MeshType::CellTraits CellTraits;
typedef itk::CellInterface< float, CellTraits > CellInterfaceType;
typedef itk::TetrahedronCell<CellInterfaceType> TetraCellType;
typedef MeshType::PointType PointType;
typedef MeshType::CellType CellType;
typedef CellType::CellAutoPointer CellAutoPointer;

MeshType::Pointer myMesh = MeshType::New();

MeshType::CoordRepType testPointCoords[4][3]
= { {0,0,0}, {9,0,0}, {9,9,0}, {0,0,9} };

unsigned long tetraPoints[4] = {0,1,2,4};
int i;
for(i=0; i < 4 ; ++i)
{
myMesh->SetPoint(i, PointType(testPointCoords[i]));
}

myMesh->SetCellsAllocationMethod(
MeshType::CellsAllocatedDynamicallyCellByCell);

CellAutoPointer testCell1;
testCell1.TakeOwnership(new TetraCellType);
testCell1->SetPointIds(tetraPoints);

myMesh->SetCell(0, testCell1);

http://www.itk.org/Doxygen/html/classitk_1_1MeshSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
http://www.itk.org/Doxygen/html/classitk_1_1MeshSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html

124 Chapter 5. Spatial Objects

We then create a MeshSpatialObject which is templated over the type of mesh previously de-
fined...

typedef itk::MeshSpatialObject<MeshType> MeshSpatialObjectType;
MeshSpatialObjectType::Pointer myMeshSpatialObject =

MeshSpatialObjectType::New();

... and pass the Mesh pointer to the MeshSpatialObject

myMeshSpatialObject->SetMesh(myMesh);

The actual pointer to the passed mesh can be retrieved using theGetMesh() function.

myMeshSpatialObject->GetMesh();

Like any other SpatialObjects. TheGetBoundingBox(), ValueAt(), IsInside() functions
can be used to access important information.

std::cout << "Mesh bounds : " <<
myMeshSpatialObject->GetBoundingBox()->GetBounds() << std::endl;

MeshSpatialObjectType::PointType myPhysicalPoint;
myPhysicalPoint.Fill(1);
std::cout << "Is my physical point inside? : " <<
myMeshSpatialObject->IsInside(myPhysicalPoint) << std::endl;

Now that we have defined the MeshSpatialObject, we can save the actual mesh using the
itk::SpatialObjectWriter. To be able to do so, we need to specify the type of Mesh we are
writing.

typedef itk::SpatialObjectWriter<3,float,MeshTrait> WriterType;
WriterType::Pointer writer = WriterType::New();

Then we set the mesh spatial object and the name of the file and call the theUpdate() function.

writer->SetInput(myMeshSpatialObject);
writer->SetFileName("myMesh.meta");
writer->Update();

Reading the saved mesh is done using theitk::SpatialObjectReader. Once again we need
to specify the type of mesh we intend to read.

typedef itk::SpatialObjectReader<3,float,MeshTrait> ReaderType;
ReaderType::Pointer reader = ReaderType::New();

We set the name of the file we want to read and call update

http://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectWriter.html
http://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectReader.html

5.5. Types of Spatial Objects 125

reader->SetFileName("myMesh.meta");
reader->Update();

Next, we show how to create a binary image of a MeshSpatialObject using the
itk::SpatialObjectToImageFilter. The resulting image will have ones inside and zeros
outside the mesh. First we define and instantiate the SpatialObjectToImageFilter.

typedef itk::Image<unsigned char,3> ImageType;
typedef itk::GroupSpatialObject<3> GroupType;
typedef itk::SpatialObjectToImageFilter< GroupType, ImageType >
SpatialObjectToImageFilterType;

SpatialObjectToImageFilterType::Pointer imageFilter =
SpatialObjectToImageFilterType::New();

Then we pass the output of the reader, i.e the MeshSpatialObject, to the filter.

imageFilter->SetInput(reader->GetGroup());

Finally we trigger the execution of the filter by calling theUpdate() method. Note that de-
pending on the size of the mesh, the computation time can increase significantly.

imageFilter->Update();

Then we can get the resulting binary image using theGetOutput() function.

ImageType::Pointer myBinaryMeshImage = imageFilter->GetOutput();

5.5.12 SurfaceSpatialObject

The source code for this section can be found in the file
Examples/SpatialObjects/SurfaceSpatialObject.cxx.

itk::SurfaceSpatialObject defines a surface in n-dimensional space. A SurfaceSpatialOb-
ject is defined by a list of points which lie on the surface. Each point has a position and a unique
normal. The example begins by including the appropriate header file.

#include "itkSurfaceSpatialObject.h"
#include "itkSurfaceSpatialObjectPoint.h"

SurfaceSpatialObject is templated over the dimension of the space. A SurfaceSpatialObject
contains a list of SurfaceSpatialObjectPoints. A SurfaceSpatialObjectPoint has a position, a
normal and a color.

First we define some type definitions

http://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectToImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1SurfaceSpatialObject.html

126 Chapter 5. Spatial Objects

typedef itk::SurfaceSpatialObject<3> SurfaceType;
typedef SurfaceType::Pointer SurfacePointer;
typedef itk::SurfaceSpatialObjectPoint<3> SurfacePointType;
typedef itk::CovariantVector<double,3> VectorType;

SurfacePointer Surface = SurfaceType::New();

We create a point list and we set the position of each point in the local coordinate system using
theSetPosition() method. We also set the color of each point to red.

SurfaceType::PointListType list;

for(unsigned int i=0; i<3; i++)
{
SurfacePointType p;
p.SetPosition(i,i+1,i+2);
p.SetColor(1,0,0,1);
VectorType normal;
for(unsigned int j=0;j<3;j++)

{
normal[j]=j;
}

p.SetNormal(normal);
list.push_back(p);
}

Next, we create the surface and set his name usingSetName(). We also set its Identification
number withSetId() and we add the list of points previously created.

Surface->GetProperty()->SetName("Surface1");
Surface->SetId(1);
Surface->SetPoints(list);

TheGetPoints() method returns a reference to the internal list of points of the object.

SurfaceType::PointListType pointList = Surface->GetPoints();
std::cout << "Number of points representing the surface: ";
std::cout << pointList.size() << std::endl;

Then we can access the points using standard STL iterators.GetPosition() andGetColor()
functions return respectively the position and the color ofthe point.GetNormal() returns the
normal as aitk::CovariantVector.

SurfaceType::PointListType::const_iterator it = Surface->GetPoints().begin();
while(it != Surface->GetPoints().end())

http://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html

5.5. Types of Spatial Objects 127

{
std::cout << "Position = " << (*it).GetPosition() << std::endl;
std::cout << "Normal = " << (*it).GetNormal() << std::endl;
std::cout << "Color = " << (*it).GetColor() << std::endl;
std::cout << std::endl;
it++;
}

5.5.13 TubeSpatialObject

itk::TubeSpatialObject represents a base class for the representation of tubular
structures using SpatialObjects. The classesitk::VesselTubeSpatialObject and
itk::DTITubeSpatialObject derive from this base class. VesselTubeSpatialObject repre-
sents blood vessels extracted for an image and DTITubeSpatialObject is used to represent fiber
tracts from diffusion tensor images.

The source code for this section can be found in the file
Examples/SpatialObjects/TubeSpatialObject.cxx.

itk::TubeSpatialObject defines an n-dimensional tube. A tube is defined as a list of cen-
terline points which have a position, a radius, some normalsand other properties. Let’s start by
including the appropriate header file.

#include "itkTubeSpatialObject.h"
#include "itkTubeSpatialObjectPoint.h"

TubeSpatialObject is templated over the dimension of the space. A TubeSpatialObject contains
a list of TubeSpatialObjectPoints.

First we define some type definitions and we create the tube.

typedef itk::TubeSpatialObject<3> TubeType;
typedef TubeType::Pointer TubePointer;
typedef itk::TubeSpatialObjectPoint<3> TubePointType;
typedef TubePointType::CovariantVectorType VectorType;

TubePointer tube = TubeType::New();

We create a point list and we set:

1. The position of each point in the local coordinate system using theSetPosition()
method.

2. The radius of the tube at this position usingSetRadius().

3. The two normals at the tube is set usingSetNormal1() andSetNormal2().

http://www.itk.org/Doxygen/html/classitk_1_1TubeSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1VesselTubeSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1DTITubeSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1TubeSpatialObject.html

128 Chapter 5. Spatial Objects

4. The color of the point is set to red in our case.

TubeType::PointListType list;
for(i=0; i<5; i++)
{
TubePointType p;
p.SetPosition(i,i+1,i+2);
p.SetRadius(1);
VectorType normal1;
VectorType normal2;
for(unsigned int j=0;j<3;j++)

{
normal1[j]=j;
normal2[j]=j*2;
}

p.SetNormal1(normal1);
p.SetNormal2(normal2);
p.SetColor(1,0,0,1);

list.push_back(p);
}

Next, we create the tube and set its name usingSetName(). We also set its identification number
with SetId() and, at the end, we add the list of points previously created.

tube->GetProperty()->SetName("Tube1");
tube->SetId(1);
tube->SetPoints(list);

TheGetPoints() method return a reference to the internal list of points of the object.

TubeType::PointListType pointList = tube->GetPoints();
std::cout << "Number of points representing the tube: ";
std::cout << pointList.size() << std::endl;

TheComputeTangentAndNormals() function computes the normals and the tangent for each
point using finite differences.

tube->ComputeTangentAndNormals();

Then we can access the points using STL iterators.GetPosition() andGetColor() functions
return respectively the position and the color of the point.GetRadius() returns the radius at
that point.GetNormal1() andGetNormal1() functions return aitk::CovariantVector and
GetTangent() returns aitk::Vector.

http://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html
http://www.itk.org/Doxygen/html/classitk_1_1Vector.html

5.5. Types of Spatial Objects 129

TubeType::PointListType::const_iterator it = tube->GetPoints().begin();
i=0;
while(it != tube->GetPoints().end())
{
std::cout << std::endl;
std::cout << "Point #" << i << std::endl;
std::cout << "Position: " << (*it).GetPosition() << std::endl;
std::cout << "Radius: " << (*it).GetRadius() << std::endl;
std::cout << "Tangent: " << (*it).GetTangent() << std::endl;
std::cout << "First Normal: " << (*it).GetNormal1() << std::endl;
std::cout << "Second Normal: " << (*it).GetNormal2() << std::endl;
std::cout << "Color = " << (*it).GetColor() << std::endl;
it++;
i++;
}

VesselTubeSpatialObject

The source code for this section can be found in the file
Examples/SpatialObjects/VesselTubeSpatialObject.cxx.

itk::VesselTubeSpatialObject derives from itk::TubeSpatialObject. It represents a
blood vessel segmented from an image. A VesselTubeSpatialObject is described as a list of
centerline points which have a position, a radius, normals,

Let’s start by including the appropriate header file.

#include "itkVesselTubeSpatialObject.h"
#include "itkVesselTubeSpatialObjectPoint.h"

VesselTubeSpatialObject is templated over the dimension of the space. A VesselTubeSpatialOb-
ject contains a list of VesselTubeSpatialObjectPoints.

First we define some type definitions and we create the tube.

typedef itk::VesselTubeSpatialObject<3> VesselTubeType;
typedef itk::VesselTubeSpatialObjectPoint<3> VesselTubePointType;

VesselTubeType::Pointer VesselTube = VesselTubeType::New();

We create a point list and we set:

1. The position of each point in the local coordinate system using theSetPosition()
method.

2. The radius of the tube at this position usingSetRadius().

http://www.itk.org/Doxygen/html/classitk_1_1VesselTubeSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1TubeSpatialObject.html

130 Chapter 5. Spatial Objects

3. The medialness value describing how the point lies in the middle of the vessel using
SetMedialness().

4. The ridgeness value describing how the point lies on the ridge usingSetRidgeness().

5. The branchness value describing if the point is a branch point usingSetBranchness().

6. The three alpha values corresponding to the eigenvalues of the Hessian using
SetAlpha1(),SetAlpha2() andSetAlpha3().

7. The mark value usingSetMark().

8. The color of the point is set to red in this example with an opacity of 1.

VesselTubeType::PointListType list;
for(i=0; i<5; i++)
{
VesselTubePointType p;
p.SetPosition(i,i+1,i+2);
p.SetRadius(1);
p.SetAlpha1(i);
p.SetAlpha2(i+1);
p.SetAlpha3(i+2);
p.SetMedialness(i);
p.SetRidgeness(i);
p.SetBranchness(i);
p.SetMark(true);
p.SetColor(1,0,0,1);
list.push_back(p);
}

Next, we create the tube and set its name usingSetName(). We also set its identification number
with SetId() and, at the end, we add the list of points previously created.

VesselTube->GetProperty()->SetName("VesselTube");
VesselTube->SetId(1);
VesselTube->SetPoints(list);

TheGetPoints() method return a reference to the internal list of points of the object.

VesselTubeType::PointListType pointList = VesselTube->GetPoints();
std::cout << "Number of points representing the blood vessel: ";
std::cout << pointList.size() << std::endl;

Then we can access the points using STL iterators.GetPosition() andGetColor() functions
return respectively the position and the color of the point.

5.5. Types of Spatial Objects 131

VesselTubeType::PointListType::const_iterator
it = VesselTube->GetPoints().begin();

i=0;
while(it != VesselTube->GetPoints().end())
{
std::cout << std::endl;
std::cout << "Point #" << i << std::endl;
std::cout << "Position: " << (*it).GetPosition() << std::endl;
std::cout << "Radius: " << (*it).GetRadius() << std::endl;
std::cout << "Medialness: " << (*it).GetMedialness() << std::endl;
std::cout << "Ridgeness: " << (*it).GetRidgeness() << std::endl;
std::cout << "Branchness: " << (*it).GetBranchness() << std::endl;
std::cout << "Mark: " << (*it).GetMark() << std::endl;
std::cout << "Alpha1: " << (*it).GetAlpha1() << std::endl;
std::cout << "Alpha2: " << (*it).GetAlpha2() << std::endl;
std::cout << "Alpha3: " << (*it).GetAlpha3() << std::endl;
std::cout << "Color = " << (*it).GetColor() << std::endl;
it++;
i++;
}

DTITubeSpatialObject

The source code for this section can be found in the file
Examples/SpatialObjects/DTITubeSpatialObject.cxx.

itk::DTITubeSpatialObject derives fromitk::TubeSpatialObject. It represents a fiber
tracts from Diffusion Tensor Imaging. A DTITubeSpatialObject is described as a list of center-
line points which have a position, a radius, normals, the fractional anisotropy (FA) value, the
ADC value, the geodesic anisotropy (GA) value, the eigenvalues and vectors as well as the full
tensor matrix.

Let’s start by including the appropriate header file.

#include "itkDTITubeSpatialObject.h"
#include "itkDTITubeSpatialObjectPoint.h"

DTITubeSpatialObject is templated over the dimension of the space. A DTITubeSpatialObject
contains a list of DTITubeSpatialObjectPoints.

First we define some type definitions and we create the tube.

typedef itk::DTITubeSpatialObject<3> DTITubeType;
typedef itk::DTITubeSpatialObjectPoint<3> DTITubePointType;

DTITubeType::Pointer dtiTube = DTITubeType::New();

http://www.itk.org/Doxygen/html/classitk_1_1DTITubeSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1TubeSpatialObject.html

132 Chapter 5. Spatial Objects

We create a point list and we set:

1. The position of each point in the local coordinate system using theSetPosition()
method.

2. The radius of the tube at this position usingSetRadius().

3. The FA value usingAddField(DTITubePointType::FA).

4. The ADC value usingAddField(DTITubePointType::ADC).

5. The GA value usingAddField(DTITubePointType::GA).

6. The full tensor matrix supposed to be symmetric definite positive value using
SetTensorMatrix().

7. The color of the point is set to red in our case.

DTITubeType::PointListType list;
for(i=0; i<5; i++)
{
DTITubePointType p;
p.SetPosition(i,i+1,i+2);
p.SetRadius(1);
p.AddField(DTITubePointType::FA,i);
p.AddField(DTITubePointType::ADC,2*i);
p.AddField(DTITubePointType::GA,3*i);
p.AddField("Lambda1",4*i);
p.AddField("Lambda2",5*i);
p.AddField("Lambda3",6*i);
float* v = new float[6];
for(unsigned int k=0;k<6;k++)

{
v[k] = k;
}

p.SetTensorMatrix(v);
delete v;
p.SetColor(1,0,0,1);
list.push_back(p);
}

Next, we create the tube and set its name usingSetName(). We also set its identification number
with SetId() and, at the end, we add the list of points previously created.

dtiTube->GetProperty()->SetName("DTITube");
dtiTube->SetId(1);
dtiTube->SetPoints(list);

5.6. SceneSpatialObject 133

TheGetPoints() method return a reference to the internal list of points of the object.

DTITubeType::PointListType pointList = dtiTube->GetPoints();
std::cout << "Number of points representing the fiber tract: ";
std::cout << pointList.size() << std::endl;

Then we can access the points using STL iterators.GetPosition() andGetColor() functions
return respectively the position and the color of the point.

DTITubeType::PointListType::const_iterator it = dtiTube->GetPoints().begin();
i=0;
while(it != dtiTube->GetPoints().end())
{
std::cout << std::endl;
std::cout << "Point #" << i << std::endl;
std::cout << "Position: " << (*it).GetPosition() << std::endl;
std::cout << "Radius: " << (*it).GetRadius() << std::endl;
std::cout << "FA: " << (*it).GetField(DTITubePointType::FA) << std::endl;
std::cout << "ADC: " << (*it).GetField(DTITubePointType::ADC) << std::endl;
std::cout << "GA: " << (*it).GetField(DTITubePointType::GA) << std::endl;
std::cout << "Lambda1: " << (*it).GetField("Lambda1") << std::endl;
std::cout << "Lambda2: " << (*it).GetField("Lambda2") << std::endl;
std::cout << "Lambda3: " << (*it).GetField("Lambda3") << std::endl;
std::cout << "TensorMatrix: " << (*it).GetTensorMatrix()[0] << " : ";
std::cout << (*it).GetTensorMatrix()[1] << " : ";
std::cout << (*it).GetTensorMatrix()[2] << " : ";
std::cout << (*it).GetTensorMatrix()[3] << " : ";
std::cout << (*it).GetTensorMatrix()[4] << " : ";
std::cout << (*it).GetTensorMatrix()[5] << std::endl;
std::cout << "Color = " << (*it).GetColor() << std::endl;
it++;
i++;
}

5.6 SceneSpatialObject

The source code for this section can be found in the file
Examples/SpatialObjects/SceneSpatialObject.cxx.

This example describes how to use theitk::SceneSpatialObject. A SceneSpatialObject
contains a collection of SpatialObjects. This example begins by including the appropriate
header file.

#include "itkSceneSpatialObject.h"

http://www.itk.org/Doxygen/html/classitk_1_1SceneSpatialObject.html

134 Chapter 5. Spatial Objects

An SceneSpatialObject is templated over the dimension of the space which requires all the
objects referenced by the SceneSpatialObject to have the same dimension.

First we define some type definitions and we create the SceneSpatialObject.

typedef itk::SceneSpatialObject<3> SceneSpatialObjectType;
SceneSpatialObjectType::Pointer scene = SceneSpatialObjectType::New();

Then we create twoitk::EllipseSpatialObjects.

typedef itk::EllipseSpatialObject<3> EllipseType;
EllipseType::Pointer ellipse1 = EllipseType::New();
ellipse1->SetRadius(1);
ellipse1->SetId(1);
EllipseType::Pointer ellipse2 = EllipseType::New();
ellipse2->SetId(2);
ellipse2->SetRadius(2);

Then we add the two ellipses into the SceneSpatialObject.

scene->AddSpatialObject(ellipse1);
scene->AddSpatialObject(ellipse2);

We can query the number of object in the SceneSpatialObject with theGetNumberOfObjects()
function. This function takes two optional arguments: the depth at which we should count the
number of objects (default is set to infinity) and the name of the object to count (default is set
to NULL). This allows the user to count, for example, only ellipses.

std::cout << "Number of objects in the SceneSpatialObject = ";
std::cout << scene->GetNumberOfObjects() << std::endl;

TheGetObjectById() returns the first object in the SceneSpatialObject that has the specified
identification number.

std::cout << "Object in the SceneSpatialObject with an ID == 2: " << std::endl;
scene->GetObjectById(2)->Print(std::cout);

Objects can also be removed from the SceneSpatialObject using theRemoveSpatialObject()
function.

scene->RemoveSpatialObject(ellipse1);

The list of current objects in the SceneSpatialObject can beretrieved using theGetObjects()
method. Like theGetNumberOfObjects() method,GetObjects() can take two arguments: a
search depth and a matching name.

http://www.itk.org/Doxygen/html/classitk_1_1EllipseSpatialObject.html

5.7. Read/Write SpatialObjects 135

SceneSpatialObjectType::ObjectListType * myObjectList = scene->GetObjects();
std::cout << "Number of objects in the SceneSpatialObject = ";
std::cout << myObjectList->size() << std::endl;

In some cases, it is useful to define the hierarchy by usingParentId() and the current identi-
fication number. This results in having a flat list of SpatialObjects in the SceneSpatialObject.
Therefore, the SceneSpatialObject provides theFixHierarchy() method which reorganizes
the Parent-Child hierarchy based on identification numbers.

scene->FixHierarchy();

The scene can also be cleared by using theClear() function.

scene->Clear();

5.7 Read/Write SpatialObjects

The source code for this section can be found in the file
Examples/SpatialObjects/ReadWriteSpatialObject.cxx.

Reading and writing SpatialObjects is a fairly simple task. The classes
itk::SpatialObjectReader and itk::SpatialObjectWriter are used to read and
write these objects, respectively. (Note these classes make use of the MetaIO auxiliary I/O
routines and therefore have a.meta file suffix.)

We begin this example by including the appropriate header files.

#include "itkSpatialObjectWriter.h"
#include "itkSpatialObjectReader.h"

Next, we create a SpatialObjectWriter that is templated over the dimension of the object(s) we
want to write.

typedef itk::SpatialObjectWriter<3> WriterType;
WriterType::Pointer writer = WriterType::New();

For this example, we create anitk::EllipseSpatialObject.

typedef itk::EllipseSpatialObject<3> EllipseType;
EllipseType::Pointer ellipse = EllipseType::New();
ellipse->SetRadius(3);

http://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectReader.html
http://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectWriter.html
http://www.itk.org/Doxygen/html/classitk_1_1EllipseSpatialObject.html

136 Chapter 5. Spatial Objects

Finally, we set to the writer the object to write using theSetInput() method and we set the
name of the file withSetFileName() and call theUpdate() method to actually write the in-
formation.

writer->SetInput(ellipse);
writer->SetFileName("ellipse.meta");
writer->Update();

Now we are ready to open the freshly created object. We first create a SpatialObjectReader
which is also templated over the dimension of the object in the file. This means that the file
should contain only objects with the same dimension.

typedef itk::SpatialObjectReader<3> ReaderType;
ReaderType::Pointer reader = ReaderType::New();

Next we set the name of the file to read usingSetFileName() and we call theUpdate() method
to read the file.

reader->SetFileName("ellipse.meta");
reader->Update();

To get the objects in the file you can call theGetScene() method or theGetGroup() method.
GetScene() returns an pointer to aitk::SceneSpatialObject.

ReaderType::SceneType * scene = reader->GetScene();
std::cout << "Number of objects in the scene: ";
std::cout << scene->GetNumberOfObjects() << std::endl;
ReaderType::GroupType * group = reader->GetGroup();
std::cout << "Number of objects in the group: ";
std::cout << group->GetNumberOfChildren() << std::endl;

5.8 Statistics Computation via SpatialObjects

The source code for this section can be found in the file
Examples/SpatialObjects/SpatialObjectToImageStatisticsCalculator.cxx.

This example describes how to use theitk::SpatialObjectToImageStatisticsCalculator
to compute statistics of an itk::Image only in a region defined inside a given
itk::SpatialObject.

#include "itkSpatialObjectToImageStatisticsCalculator.h"

We first create a test image using theitk::RandomImageSource

http://www.itk.org/Doxygen/html/classitk_1_1SceneSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectToImageStatisticsCalculator.html
http://www.itk.org/Doxygen/html/classitk_1_1Image.html
http://www.itk.org/Doxygen/html/classitk_1_1SpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1RandomImageSource.html

5.8. Statistics Computation via SpatialObjects 137

typedef itk::Image<unsigned char,2> ImageType;
typedef itk::RandomImageSource<ImageType> RandomImageSourceType;
RandomImageSourceType::Pointer randomImageSource = RandomImageSourceType::New();
unsigned long size[2];
size[0] = 10;
size[1] = 10;
randomImageSource->SetSize(size);
randomImageSource->Update();
ImageType::Pointer image = randomImageSource->GetOutput();

Next we create anitk::EllipseSpatialObject with a radius of 2. We also move the ellipse
to the center of the image by increasing the offset of the IndexToObjectTransform.

typedef itk::EllipseSpatialObject<2> EllipseType;
EllipseType::Pointer ellipse = EllipseType::New();
ellipse->SetRadius(2);
EllipseType::VectorType offset;
offset.Fill(5);
ellipse->GetIndexToObjectTransform()->SetOffset(offset);
ellipse->ComputeObjectToParentTransform();

Then we can create theitk::SpatialObjectToImageStatisticsCalculator

typedef itk::SpatialObjectToImageStatisticsCalculator<
ImageType, EllipseType > CalculatorType;

CalculatorType::Pointer calculator = CalculatorType::New();

We pass a pointer to the image to the calculator.

calculator->SetImage(image);

And we also pass the SpatialObject. The statistics will be computed inside the SpatialObject
(Internally the calculator is using theIsInside() function).

calculator->SetSpatialObject(ellipse);

At the end we trigger the computation via theUpdate() function and we can retrieve the mean
and the covariance matrix usingGetMean() andGetCovarianceMatrix() respectively.

calculator->Update();
std::cout << "Sample mean = " << calculator->GetMean() << std::endl ;
std::cout << "Sample covariance = " << calculator->GetCovarianceMatrix();

http://www.itk.org/Doxygen/html/classitk_1_1EllipseSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectToImageStatisticsCalculator.html

CHAPTER

SIX

Filtering

This chapter introduces the most commonly used filters foundin the toolkit. Most of these
filters are intended to process images. They will accept one or more images as input and will
produce one or more images as output. ITK is based on a data pipeline architecture in which
the output of one filter is passed as input to another filter. (See Section3.5on page28 for more
information.)

6.1 Thresholding

The thresholding operation is used to change or identify pixel values based on specifying one
or more values (called thethresholdvalue). The following sections describe how to perform
thresholding operations using ITK.

6.1.1 Binary Thresholding

The source code for this section can be found in the file
Examples/Filtering/BinaryThresholdImageFilter.cxx.

140 Chapter 6. Filtering

Lower
Threshold

Upper
Threshold

Output
Intensity

Input
Intensity

Outside
Value

Inside
Value

Figure 6.1: Transfer function of the BinaryThresholdImage-

Filter.

This example illustrates the use
of the binary threshold image fil-
ter. This filter is used to transform
an image into a binary image by
changing the pixel values according
to the rule illustrated in Figure6.1.
The user defines two thresholds—
Upper and Lower—and two inten-
sity values—Inside and Outside.
For each pixel in the input image,
the value of the pixel is compared
with the lower and upper thresh-
olds. If the pixel value is inside the
range defined by[Lower,U pper]
the output pixel is assigned the In-
sideValue. Otherwise the output pixels are assigned to the OutsideValue. Thresholding is com-
monly applied as the last operation of a segmentation pipeline.

The first step required to use theitk::BinaryThresholdImageFilter is to include its header
file.

#include "itkBinaryThresholdImageFilter.h"

The next step is to decide which pixel types to use for the input and output images.

typedef unsigned char InputPixelType;
typedef unsigned char OutputPixelType;

The input and output image types are now defined using their respective pixel types and dimen-
sions.

typedef itk::Image< InputPixelType, 2 > InputImageType;
typedef itk::Image< OutputPixelType, 2 > OutputImageType;

The filter type can be instantiated using the input and outputimage types defined above.

typedef itk::BinaryThresholdImageFilter<
InputImageType, OutputImageType > FilterType;

An itk::ImageFileReader class is also instantiated in order to read image data from a file.
(See Section7 on page263for more information about reading and writing data.)

typedef itk::ImageFileReader< InputImageType > ReaderType;

http://www.itk.org/Doxygen/html/classitk_1_1BinaryThresholdImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html

6.1. Thresholding 141

An itk::ImageFileWriter is instantiated in order to write the output image to a file.

typedef itk::ImageFileWriter< InputImageType > WriterType;

Both the filter and the reader are created by invoking theirNew() methods and assigning the
result to itk::SmartPointers.

ReaderType::Pointer reader = ReaderType::New();
FilterType::Pointer filter = FilterType::New();

The image obtained with the reader is passed as input to the BinaryThresholdImageFilter.

filter->SetInput(reader->GetOutput());

The methodSetOutsideValue() defines the intensity value to be assigned to those pixels
whose intensities are outside the range defined by the lower and upper thresholds. The method
SetInsideValue() defines the intensity value to be assigned to pixels with intensities falling
inside the threshold range.

filter->SetOutsideValue(outsideValue);
filter->SetInsideValue(insideValue);

The methodsSetLowerThreshold() andSetUpperThreshold() define the range of the input
image intensities that will be transformed into theInsideValue. Note that the lower and upper
thresholds are values of the type of the input image pixels, while the inside and outside values
are of the type of the output image pixels.

filter->SetLowerThreshold(lowerThreshold);
filter->SetUpperThreshold(upperThreshold);

The execution of the filter is triggered by invoking theUpdate() method. If the filter’s output
has been passed as input to subsequent filters, theUpdate() call on any posterior filters in the
pipeline will indirectly trigger the update of this filter.

filter->Update();

Figure6.2 illustrates the effect of this filter on a MRI proton density image of the brain. This
figure shows the limitations of this filter for performing segmentation by itself. These limita-
tions are particularly noticeable in noisy images and in images lacking spatial uniformity as is
the case with MRI due to field bias.

The following classes provide similar functionality:

• itk::ThresholdImageFilter

http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
http://www.itk.org/Doxygen/html/classitk_1_1ThresholdImageFilter.html

142 Chapter 6. Filtering

Figure 6.2:Effect of the BinaryThresholdImageFilter on a slice from a MRI proton density image of the

brain.

6.1.2 General Thresholding

The source code for this section can be found in the file
Examples/Filtering/ThresholdImageFilter.cxx.

This example illustrates the use of theitk::ThresholdImageFilter. This filter can be used
to transform the intensity levels of an image in three different ways.

• First, the user can define a single threshold. Any pixels withvalues below this threshold
will be replaced by a user defined value, called here theOutsideValue. Pixels with
values above the threshold remain unchanged. This type of thresholding is illustrated in
Figure6.3.

• Second, the user can define a particular threshold such that all the pixels with values
above the threshold will be replaced by theOutsideValue. Pixels with values below the
threshold remain unchanged. This is illustrated in Figure6.4.

• Third, the user can provide two thresholds. All the pixels with intensity values inside the
range defined by the two thresholds will remain unchanged. Pixels with values outside
this range will be assigned to theOutsideValue. This is illustrated in Figure6.5.

The following methods choose among the three operating modes of the filter.

• ThresholdBelow()

http://www.itk.org/Doxygen/html/classitk_1_1ThresholdImageFilter.html

6.1. Thresholding 143

Outside
Value

Output
Intensity

Input
Intensity

Threshold
Below

Unchanged
Intensities

Figure 6.3:ThresholdImageFilter using the threshold-below mode.

Output
Intensity

Input
Intensity

Unchanged
Intensities

Threshold
Above

Outside
Value

Figure 6.4:ThresholdImageFilter using the threshold-above mode.

Outside
Value

Output
Intensity

Lower
Threshold

Unchanged
Intensities

Upper
Threshold

Input
Intensity

Figure 6.5:ThresholdImageFilter using the threshold-outside mode.

144 Chapter 6. Filtering

• ThresholdAbove()

• ThresholdOutside()

The first step required to use this filter is to include its header file.

#include "itkThresholdImageFilter.h"

Then we must decide what pixel type to use for the image. This filter is templated over a single
image type because the algorithm only modifies pixel values outside the specified range, passing
the rest through unchanged.

typedef unsigned char PixelType;

The image is defined using the pixel type and the dimension.

typedef itk::Image< PixelType, 2 > ImageType;

The filter can be instantiated using the image type defined above.

typedef itk::ThresholdImageFilter< ImageType > FilterType;

An itk::ImageFileReader class is also instantiated in order to read image data from a file.

typedef itk::ImageFileReader< ImageType > ReaderType;

An itk::ImageFileWriter is instantiated in order to write the output image to a file.

typedef itk::ImageFileWriter< ImageType > WriterType;

Both the filter and the reader are created by invoking theirNew() methods and assigning the
result to SmartPointers.

ReaderType::Pointer reader = ReaderType::New();
FilterType::Pointer filter = FilterType::New();

The image obtained with the reader is passed as input to theitk::ThresholdImageFilter.

filter->SetInput(reader->GetOutput());

The methodSetOutsideValue() defines the intensity value to be assigned to those pixels
whose intensities are outside the range defined by the lower and upper thresholds.

http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
http://www.itk.org/Doxygen/html/classitk_1_1ThresholdImageFilter.html

6.2. Edge Detection 145

filter->SetOutsideValue(0);

The methodThresholdBelow() defines the intensity value below which pixels of the input
image will be changed to theOutsideValue.

filter->ThresholdBelow(180);

The filter is executed by invoking theUpdate() method. If the filter is part of a larger image
processing pipeline, callingUpdate() on a downstream filter will also trigger update of this
filter.

filter->Update();

The output of this example is shown in Figure6.3. The second operating mode of the filter is
now enabled by calling the methodThresholdAbove().

filter->ThresholdAbove(180);
filter->Update();

Updating the filter with this new setting produces the outputshown in Figure6.4. The third
operating mode of the filter is enabled by callingThresholdOutside().

filter->ThresholdOutside(170,190);
filter->Update();

The output of this third, “band-pass” thresholding mode is shown in Figure6.5.

The examples in this section also illustrate the limitations of the thresholding filter for perform-
ing segmentation by itself. These limitations are particularly noticeable in noisy images and in
images lacking spatial uniformity, as is the case with MRI due to field bias.

The following classes provide similar functionality:

• itk::BinaryThresholdImageFilter

6.2 Edge Detection

6.2.1 Canny Edge Detection

The source code for this section can be found in the file
Examples/Filtering/CannyEdgeDetectionImageFilter.cxx.

http://www.itk.org/Doxygen/html/classitk_1_1BinaryThresholdImageFilter.html

146 Chapter 6. Filtering

This example introduces the use of theitk::CannyEdgeDetectionImageFilter. This filter
is widely used for edge detection since it is the optimal solution satisfying the constraints of
good sensitivity, localization and noise robustness.

The first step required for using this filter is to include its header file

#include "itkCannyEdgeDetectionImageFilter.h"

This filter operates on image of pixel type float. It is then necessary to cast the type of the input
images that are usually of integer type. Theitk::CastImageFilter is used here for that
purpose. Its image template parameters are defined for casting from the input type to the float
type using for processing.

typedef itk::CastImageFilter< CharImageType, RealImageType> CastToRealFilterType;

The itk::CannyEdgeDetectionImageFilter is instantiated using the float image type.

6.3 Casting and Intensity Mapping

The filters discussed in this section perform pixel-wise intensity mappings. Casting is used to
convert one pixel type to another, while intensity mappingsalso take into account the different
intensity ranges of the pixel types.

6.3.1 Linear Mappings

The source code for this section can be found in the file
Examples/Filtering/CastingImageFilters.cxx.

Due to the use ofGeneric Programmingin the toolkit, most types are resolved at compile-time.
Few decisions regarding type conversion are left to run-time. It is up to the user to anticipate
the pixel type-conversions required in the data pipeline. In medical imaging applications it is
usually not desirable to use a general pixel type since this may result in the loss of valuable
information.

This section introduces the mechanisms for explicit casting of images that flow through the
pipeline. The following four filters are treated in this section: itk::CastImageFilter,
itk::RescaleIntensityImageFilter, itk::ShiftScaleImageFilter and
itk::NormalizeImageFilter. These filters are not directly related to each other ex-
cept that they all modify pixel values. They are presented together here with the purpose of
comparing their individual features.

The CastImageFilter is a very simple filter that acts pixel-wise on an input image, casting every
pixel to the type of the output image. Note that this filter does not perform any arithmetic

http://www.itk.org/Doxygen/html/classitk_1_1CannyEdgeDetectionImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1CastImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1CannyEdgeDetectionImageFilter.html
http://www.boost.org/more/generic_programming.html
http://www.itk.org/Doxygen/html/classitk_1_1CastImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1RescaleIntensityImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ShiftScaleImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1NormalizeImageFilter.html

6.3. Casting and Intensity Mapping 147

operation on the intensities. Applying CastImageFilter isequivalent to performing aC-Style
cast on every pixel.

outputPixel = static cast<OutputPixelType>(inputPixel)

The RescaleIntensityImageFilter linearly scales the pixel values in such a way that the minimum
and maximum values of the input are mapped to minimum and maximum values provided by
the user. This is a typical process for forcing the dynamic range of the image to fit within a
particular scale and is common for image display. The lineartransformation applied by this
filter can be expressed as

out putPixel= (inputPixel− inpMin)× (outMax−outMin)
(inpMax− inpMin)

+outMin

The ShiftScaleImageFilter also applies a linear transformation to the intensities of the input
image, but the transformation is specified by the user in the form of a multiplying factor and a
value to be added. This can be expressed as

out putPixel= (inputPixel+Shi f t)×Scale

.

The parameters of the linear transformation applied by the NormalizeImageFilter are computed
internally such that the statistical distribution of gray levels in the output image have zero mean
and a variance of one. This intensity correction is particularly useful in registration applications
as a preprocessing step to the evaluation of mutual information metrics. The linear transforma-
tion of NormalizeImageFilter is given as

out putPixel=
(inputPixel−mean)√

variance

As usual, the first step required to use these filters is to include their header files.

#include "itkCastImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkShiftScaleImageFilter.h"
#include "itkNormalizeImageFilter.h"

Let’s define pixel types for the input and output images.

typedef unsigned char InputPixelType;
typedef float OutputPixelType;

Then, the input and output image types are defined.

148 Chapter 6. Filtering

typedef itk::Image< InputPixelType, 3 > InputImageType;
typedef itk::Image< OutputPixelType, 3 > OutputImageType;

The filters are instantiated using the defined image types.

typedef itk::CastImageFilter<
InputImageType, OutputImageType > CastFilterType;

typedef itk::RescaleIntensityImageFilter<
InputImageType, OutputImageType > RescaleFilterType;

typedef itk::ShiftScaleImageFilter<
InputImageType, OutputImageType > ShiftScaleFilterType;

typedef itk::NormalizeImageFilter<
InputImageType, OutputImageType > NormalizeFilterType;

Object filters are created by invoking theNew() operator and assigning the result to
itk::SmartPointers.

CastFilterType::Pointer castFilter = CastFilterType::New();
RescaleFilterType::Pointer rescaleFilter = RescaleFilterType::New();
ShiftScaleFilterType::Pointer shiftFilter = ShiftScaleFilterType::New();
NormalizeFilterType::Pointer normalizeFilter = NormalizeFilterType::New();

The output of a reader filter (whose creation is not shown here) is now connected as input to the
various casting filters.

castFilter->SetInput(reader->GetOutput());
shiftFilter->SetInput(reader->GetOutput());
rescaleFilter->SetInput(reader->GetOutput());
normalizeFilter->SetInput(reader->GetOutput());

Next we proceed to setup the parameters required by each filter. The CastImageFilter and the
NormalizeImageFilter do not require any parameters. The RescaleIntensityImageFilter, on the
other hand, requires the user to provide the desired minimumand maximum pixel values of
the output image. This is done by using theSetOutputMinimum() andSetOutputMaximum()
methods as illustrated below.

rescaleFilter->SetOutputMinimum(10);
rescaleFilter->SetOutputMaximum(250);

The ShiftScaleImageFilter requires a multiplication factor (scale) and a post-scaling additive
value (shift). The methodsSetScale() andSetShift() are used, respectively, to set these
values.

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

6.3. Casting and Intensity Mapping 149

shiftFilter->SetScale(1.2);
shiftFilter->SetShift(25);

Finally, the filters are executed by invoking theUpdate() method.

castFilter->Update();
shiftFilter->Update();
rescaleFilter->Update();
normalizeFilter->Update();

6.3.2 Non Linear Mappings

The following filter can be seen as a variant of the casting filters. Its main difference is the use
of a smooth and continuous transition function of non-linear form.

The source code for this section can be found in the file
Examples/Filtering/SigmoidImageFilter.cxx.

The itk::SigmoidImageFilter is commonly used as an intensity transform. It maps a spe-
cific range of intensity values into a new intensity range by making a very smooth and con-
tinuous transition in the borders of the range. Sigmoids arewidely used as a mechanism for
focusing attention on a particular set of values and progressively attenuating the values outside
that range. In order to extend the flexibility of the Sigmoid filter, its implementation in ITK
includes four parameters that can be tuned to select its input and output intensity ranges. The
following equation represents the Sigmoid intensity transformation, applied pixel-wise.

I ′ = (Max−Min) · 1
(

1+e
−

(

I−β
α

)) +Min (6.1)

In the equation above,I is the intensity of the input pixel,I ′ the intensity of the output pixel,
Min,Maxare the minimum and maximum values of the output image,α defines the width of the
input intensity range, andβ defines the intensity around which the range is centered. Figure6.6
illustrates the significance of each parameter.

This filter will work on images of any dimension and will take advantage of multiple processors
when available.

The header file corresponding to this filter should be included first.

#include "itkSigmoidImageFilter.h"

Then pixel and image types for the filter input and output mustbe defined.

typedef unsigned char InputPixelType;

http://www.itk.org/Doxygen/html/classitk_1_1SigmoidImageFilter.html

150 Chapter 6. Filtering

OutputMinimum

OutputMaximum

0

0.2

0.4

0.6

0.8

1

-10 -5 0 5 10

Alpha=0.25

Alpha=0.5

Alpha=4

Alpha=2

Alpha=1

Alpha=-1 Beta = −4
Beta = −2

Beta = 4
Beta = 2

Beta = 0

0

0.2

0.4

0.6

0.8

1

−10 −5 0 5 10

Figure 6.6:Effects of the various parameters in the SigmoidImageFilter. The alpha parameter defines the

width of the intensity window. The beta parameter defines the center of the intensity window.

typedef unsigned char OutputPixelType;

typedef itk::Image< InputPixelType, 2 > InputImageType;
typedef itk::Image< OutputPixelType, 2 > OutputImageType;

Using the image types, we instantiate the filter type and create the filter object.

typedef itk::SigmoidImageFilter<
InputImageType, OutputImageType > SigmoidFilterType;

SigmoidFilterType::Pointer sigmoidFilter = SigmoidFilterType::New();

The minimum and maximum values desired in the output are defined using the methods
SetOutputMinimum() andSetOutputMaximum().

sigmoidFilter->SetOutputMinimum(outputMinimum);
sigmoidFilter->SetOutputMaximum(outputMaximum);

The coefficientsα andβ are set with the methodsSetAlpha() andSetBeta(). Note thatα
is proportional to the width of the input intensity window. As rule of thumb, we may say that
the window is the interval[−3α,3α]. The boundaries of the intensity window are not sharp.
Theα curve approaches its extrema smoothly, as shown in Figure6.6. You may want to think
about this in the same terms as when taking a range in a population of measures by defining an
interval of[−3σ,+3σ] around the population mean.

sigmoidFilter->SetAlpha(alpha);
sigmoidFilter->SetBeta(beta);

The input to the SigmoidImageFilter can be taken from any other filter, such as an image file
reader, for example. The output can be passed down the pipeline to other filters, like an image
file writer. An update call on any downstream filter will trigger the execution of the Sigmoid
filter.

6.3. Casting and Intensity Mapping 151

Figure 6.7:Effect of the Sigmoid filter on a slice from a MRI proton density brain image.

sigmoidFilter->SetInput(reader->GetOutput());
writer->SetInput(sigmoidFilter->GetOutput());
writer->Update();

Figure6.7 illustrates the effect of this filter on a slice of MRI brain image using the following
parameters.

• Minimum = 10

• Maximum = 240

• α = 10

• β = 170

As can be seen from the figure, the intensities of the white matter were expanded in their dy-
namic range, while intensity values lower thanβ− 3α and higher thanβ + 3α became pro-
gressively mapped to the minimum and maximum output values.This is the way in which a
Sigmoid can be used for performing smooth intensity windowing.

Note that bothα and β can be positive and negative. A negativeα will have the effect of
negatingthe image. This is illustrated on the left side of Figure6.6. An application of the
Sigmoid filter as preprocessing for segmentation is presented in Section9.3.1.

Sigmoid curves are common in the natural world. They represent the plot of sensitivity to a
stimulus. They are also the integral curve of the Gaussian and, therefore, appear naturally as
the response to signals whose distribution is Gaussian.

152 Chapter 6. Filtering

6.4 Gradients

Computation of gradients is a fairly common operation in image processing. The term “gradi-
ent” may refer in some contexts to the gradient vectors and inothers to the magnitude of the
gradient vectors. ITK filters attempt to reduce this ambiguity by including themagnitudeterm
when appropriate. ITK provides filters for computing both the image of gradient vectors and
the image of magnitudes.

6.4.1 Gradient Magnitude

The source code for this section can be found in the file
Examples/Filtering/GradientMagnitudeImageFilter.cxx.

The magnitude of the image gradient is extensively used in image analysis, mainly to help
in the determination of object contours and the separation of homogeneous regions. The
itk::GradientMagnitudeImageFilter computes the magnitude of the image gradient at
each pixel location using a simple finite differences approach. For example, in the case of
2D the computation is equivalent to convolving the image with masks of type

-1 0 1

1

0

-1

then adding the sum of their squares and computing the squareroot of the sum.

This filter will work on images of any dimension thanks to the internal use of
itk::NeighborhoodIterator and itk::NeighborhoodOperator.

The first step required to use this filter is to include its header file.

#include "itkGradientMagnitudeImageFilter.h"

Types should be chosen for the pixels of the input and output images.

typedef float InputPixelType;
typedef float OutputPixelType;

The input and output image types can be defined using the pixeltypes.

typedef itk::Image< InputPixelType, 2 > InputImageType;
typedef itk::Image< OutputPixelType, 2 > OutputImageType;

http://www.itk.org/Doxygen/html/classitk_1_1GradientMagnitudeImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodIterator.html
http://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodOperator.html

6.4. Gradients 153

The type of the gradient magnitude filter is defined by the input image and the output image
types.

typedef itk::GradientMagnitudeImageFilter<
InputImageType, OutputImageType > FilterType;

A filter object is created by invoking theNew() method and assigning the result to a
itk::SmartPointer.

FilterType::Pointer filter = FilterType::New();

The input image can be obtained from the output of another filter. Here, the source is an image
reader.

filter->SetInput(reader->GetOutput());

Finally, the filter is executed by invoking theUpdate() method.

filter->Update();

If the output of this filter has been connected to other filtersin a pipeline, updating any of the
downstream filters will also trigger an update of this filter.For example, the gradient magnitude
filter may be connected to an image writer.

rescaler->SetInput(filter->GetOutput());
writer->SetInput(rescaler->GetOutput());
writer->Update();

Figure6.8 illustrates the effect of the gradient magnitude filter on a MRI proton density image
of the brain. The figure shows the sensitivity of this filter tonoisy data.

Attention should be paid to the image type chosen to represent the output image since the
dynamic range of the gradient magnitude image is usually smaller than the dynamic range of
the input image. As always, there are exceptions to this rule, for example, synthetic images that
contain high contrast objects.

This filter does not apply any smoothing to the image before computing the gradients. The
results can therefore be very sensitive to noise and may not be best choice for scale space
analysis.

6.4.2 Gradient Magnitude With Smoothing

The source code for this section can be found in the file
Examples/Filtering/GradientMagnitudeRecursiveGaussianImageFilter.cxx.

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

154 Chapter 6. Filtering

Figure 6.8:Effect of the GradientMagnitudeImageFilter on a slice from a MRI proton density image of the

brain.

Differentiation is an ill-defined operation over digital data. In practice it is convenient to define
a scale in which the differentiation should be performed. This is usually done by preprocessing
the data with a smoothing filter. It has been shown that a Gaussian kernel is the most convenient
choice for performing such smoothing. By choosing a particular value for the standard devi-
ation (σ) of the Gaussian, an associated scale is selected that ignores high frequency content,
commonly considered image noise.

The itk::GradientMagnitudeRecursiveGaussianImageFilter computes the magnitude
of the image gradient at each pixel location. The computational process is equivalent to first
smoothing the image by convolving it with a Gaussian kernel and then applying a differential
operator. The user selects the value ofσ.

Internally this is done by applying an IIR1 filter that approximates a convolution with the
derivative of the Gaussian kernel. Traditional convolution will produce a more accurate result,
but the IIR approach is much faster, especially using largeσs [21, 22].

GradientMagnitudeRecursiveGaussianImageFilter will work on images of any dimension by
taking advantage of the natural separability of the Gaussian kernel and its derivatives.

The first step required to use this filter is to include its header file.

#include "itkGradientMagnitudeRecursiveGaussianImageFilter.h"

Types should be instantiated based on the pixels of the inputand output images.

1Infinite Impulse Response

http://www.itk.org/Doxygen/html/classitk_1_1GradientMagnitudeRecursiveGaussianImageFilter.html

6.4. Gradients 155

typedef float InputPixelType;
typedef float OutputPixelType;

With them, the input and output image types can be instantiated.

typedef itk::Image< InputPixelType, 2 > InputImageType;
typedef itk::Image< OutputPixelType, 2 > OutputImageType;

The filter type is now instantiated using both the input imageand the output image types.

typedef itk::GradientMagnitudeRecursiveGaussianImageFilter<
InputImageType, OutputImageType > FilterType;

A filter object is created by invoking theNew() method and assigning the result to a
itk::SmartPointer.

FilterType::Pointer filter = FilterType::New();

The input image can be obtained from the output of another filter. Here, an image reader is used
as source.

filter->SetInput(reader->GetOutput());

The standard deviation of the Gaussian smoothing kernel is now set.

filter->SetSigma(sigma);

Finally the filter is executed by invoking theUpdate() method.

filter->Update();

If connected to other filters in a pipeline, this filter will automatically update when any down-
stream filters are updated. For example, we may connect this gradient magnitude filter to an
image file writer and then update the writer.

rescaler->SetInput(filter->GetOutput());
writer->SetInput(rescaler->GetOutput());
writer->Update();

Figure6.9illustrates the effect of this filter on a MRI proton density image of the brain usingσ
values of 3 (left) and 5 (right). The figure shows how the sensitivity to noise can be regulated
by selecting an appropriateσ. This type of scale-tunable filter is suitable for performing scale-
space analysis.

/ Attention should be paid to the image type chosen to represent the output image since the
dynamic range of the gradient magnitude image is usually smaller than the dynamic range of
the input image.

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

156 Chapter 6. Filtering

Figure 6.9:Effect of the GradientMagnitudeRecursiveGaussianImageFilter on a slice from a MRI proton

density image of the brain.

6.4.3 Derivative Without Smoothing

The source code for this section can be found in the file
Examples/Filtering/DerivativeImageFilter.cxx.

The itk::DerivativeImageFilter is used for computing the partial derivative of an image,
the derivative of an image along a particular axial direction.

The header file corresponding to this filter should be included first.

#include "itkDerivativeImageFilter.h"

Next, the pixel types for the input and output images must be defined and, with them, the image
types can be instantiated. Note that it is important to select a signed type for the image, since
the values of the derivatives will be positive as well as negative.

typedef float InputPixelType;
typedef float OutputPixelType;

const unsigned int Dimension = 2;

typedef itk::Image< InputPixelType, Dimension > InputImageType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;

Using the image types, it is now possible to define the filter type and create the filter object.

http://www.itk.org/Doxygen/html/classitk_1_1DerivativeImageFilter.html

6.4. Gradients 157

Figure 6.10:Effect of the Derivative filter on a slice from a MRI proton density brain image.

typedef itk::DerivativeImageFilter<
InputImageType, OutputImageType > FilterType;

FilterType::Pointer filter = FilterType::New();

The order of the derivative is selected with theSetOrder() method. The direction along which
the derivative will be computed is selected with theSetDirection() method.

filter->SetOrder(atoi(argv[4]));
filter->SetDirection(atoi(argv[5]));

The input to the filter can be taken from any other filter, for example a reader. The output
can be passed down the pipeline to other filters, for example,a writer. An update call on any
downstream filter will trigger the execution of the derivative filter.

filter->SetInput(reader->GetOutput());
writer->SetInput(filter->GetOutput());
writer->Update();

Figure6.10 illustrates the effect of the DerivativeImageFilter on a slice of MRI brain image.
The derivative is taken along thex direction. The sensitivity to noise in the image is evident
from this result.

158 Chapter 6. Filtering

6.5 Second Order Derivatives

6.5.1 Second Order Recursive Gaussian

The source code for this section can be found in the file
Examples/Filtering/SecondDerivativeRecursiveGaussianImageFilter.cxx.

This example illustrates how to compute second derivativesof a 3D image using the
itk::RecursiveGaussianImageFilter.

In this example, all the second derivatives are computed independently in the same way as if
they were intended to be used for building the Hessian matrixof the image.

#include "itkRecursiveGaussianImageFilter.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkImageDuplicator.h"
#include "itkImage.h"
#include <string>

int main(int argc, char * argv [])
{

if(argc < 3)
{
std::cerr << "Usage: " << std::endl;
std::cerr << "SecondDerivativeRecursiveGaussianImageFilter inputImage outputPrefix [sigma] " << std::endl;
return EXIT_FAILURE;
}

typedef float PixelType;
typedef float OutputPixelType;

const unsigned int Dimension = 3;

typedef itk::Image< PixelType, Dimension > ImageType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;

typedef itk::ImageFileReader< ImageType > ReaderType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;

typedef itk::ImageDuplicator< OutputImageType > DuplicatorType;

typedef itk::RecursiveGaussianImageFilter<
ImageType,
ImageType > FilterType;

http://www.itk.org/Doxygen/html/classitk_1_1RecursiveGaussianImageFilter.html

6.5. Second Order Derivatives 159

ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();

DuplicatorType::Pointer duplicator = DuplicatorType::New();

reader->SetFileName(argv[1]);

std::string outputPrefix = argv[2];
std::string outputFileName;

try
{
reader->Update();
}

catch(itk::ExceptionObject & excp)
{
std::cerr << "Problem reading the input file" << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}

FilterType::Pointer ga = FilterType::New();
FilterType::Pointer gb = FilterType::New();
FilterType::Pointer gc = FilterType::New();

ga->SetDirection(0);
gb->SetDirection(1);
gc->SetDirection(2);

if(argc > 3)
{
const float sigma = atof(argv[3]);
ga->SetSigma(sigma);
gb->SetSigma(sigma);
gc->SetSigma(sigma);
}

ga->SetZeroOrder();
gb->SetZeroOrder();
gc->SetSecondOrder();

ImageType::Pointer inputImage = reader->GetOutput();

ga->SetInput(inputImage);
gb->SetInput(ga->GetOutput());
gc->SetInput(gb->GetOutput());

duplicator->SetInputImage(gc->GetOutput());

160 Chapter 6. Filtering

gc->Update();
duplicator->Update();

ImageType::Pointer Izz = duplicator->GetOutput();

writer->SetInput(Izz);
outputFileName = outputPrefix + "-Izz.mhd";
writer->SetFileName(outputFileName.c_str());
writer->Update();

gc->SetDirection(1); // gc now works along Y
gb->SetDirection(2); // gb now works along Z

gc->Update();
duplicator->Update();

ImageType::Pointer Iyy = duplicator->GetOutput();

writer->SetInput(Iyy);
outputFileName = outputPrefix + "-Iyy.mhd";
writer->SetFileName(outputFileName.c_str());
writer->Update();

gc->SetDirection(0); // gc now works along X
ga->SetDirection(1); // ga now works along Y

gc->Update();
duplicator->Update();

ImageType::Pointer Ixx = duplicator->GetOutput();

writer->SetInput(Ixx);
outputFileName = outputPrefix + "-Ixx.mhd";
writer->SetFileName(outputFileName.c_str());
writer->Update();

ga->SetDirection(0);
gb->SetDirection(1);
gc->SetDirection(2);

ga->SetZeroOrder();
gb->SetFirstOrder();
gc->SetFirstOrder();

6.5. Second Order Derivatives 161

gc->Update();
duplicator->Update();

ImageType::Pointer Iyz = duplicator->GetOutput();

writer->SetInput(Iyz);
outputFileName = outputPrefix + "-Iyz.mhd";
writer->SetFileName(outputFileName.c_str());
writer->Update();

ga->SetDirection(1);
gb->SetDirection(0);
gc->SetDirection(2);

ga->SetZeroOrder();
gb->SetFirstOrder();
gc->SetFirstOrder();

gc->Update();
duplicator->Update();

ImageType::Pointer Ixz = duplicator->GetOutput();

writer->SetInput(Ixz);
outputFileName = outputPrefix + "-Ixz.mhd";
writer->SetFileName(outputFileName.c_str());
writer->Update();

ga->SetDirection(2);
gb->SetDirection(0);
gc->SetDirection(1);

ga->SetZeroOrder();
gb->SetFirstOrder();
gc->SetFirstOrder();

gc->Update();
duplicator->Update();

ImageType::Pointer Ixy = duplicator->GetOutput();

writer->SetInput(Ixy);
outputFileName = outputPrefix + "-Ixy.mhd";
writer->SetFileName(outputFileName.c_str());
writer->Update();

162 Chapter 6. Filtering

6.5.2 Laplacian Filters

Laplacian Filter Finite Difference

Laplacian Filter Recursive Gaussian

The source code for this section can be found in the file
Examples/Filtering/LaplacianRecursiveGaussianImageFilter1.cxx.

This example illustrates how to use theitk::RecursiveGaussianImageFilter for comput-
ing the Laplacian of a 2D image.

The first step required to use this filter is to include its header file.

#include "itkRecursiveGaussianImageFilter.h"

Types should be selected on the desired input and output pixel types.

typedef float InputPixelType;
typedef float OutputPixelType;

The input and output image types are instantiated using the pixel types.

typedef itk::Image< InputPixelType, 2 > InputImageType;
typedef itk::Image< OutputPixelType, 2 > OutputImageType;

The filter type is now instantiated using both the input imageand the output image types.

typedef itk::RecursiveGaussianImageFilter<
InputImageType, OutputImageType > FilterType;

This filter applies the approximation of the convolution along a single dimension. It is therefore
necessary to concatenate several of these filters to producesmoothing in all directions. In this
example, we create a pair of filters since we are processing a 2D image. The filters are created
by invoking theNew() method and assigning the result to aitk::SmartPointer.

We need two filters for computing the X component of the Laplacian and two other filters for
computing the Y component.

FilterType::Pointer filterX1 = FilterType::New();
FilterType::Pointer filterY1 = FilterType::New();

FilterType::Pointer filterX2 = FilterType::New();
FilterType::Pointer filterY2 = FilterType::New();

http://www.itk.org/Doxygen/html/classitk_1_1RecursiveGaussianImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

6.5. Second Order Derivatives 163

Since each one of the newly created filters has the potential to perform filtering along any
dimension, we have to restrict each one to a particular direction. This is done with the
SetDirection() method.

filterX1->SetDirection(0); // 0 --> X direction
filterY1->SetDirection(1); // 1 --> Y direction

filterX2->SetDirection(0); // 0 --> X direction
filterY2->SetDirection(1); // 1 --> Y direction

The itk::RecursiveGaussianImageFilter can approximate the convolution with the Gaus-
sian or with its first and second derivatives. We select one ofthese options by using the
SetOrder() method. Note that the argument is anenum whose values can beZeroOrder,
FirstOrder andSecondOrder. For example, to compute thex partial derivative we should
selectFirstOrder for x andZeroOrder for y. Here we want only to smooth inx andy, so we
selectZeroOrder in both directions.

filterX1->SetOrder(FilterType::ZeroOrder);
filterY1->SetOrder(FilterType::SecondOrder);

filterX2->SetOrder(FilterType::SecondOrder);
filterY2->SetOrder(FilterType::ZeroOrder);

There are two typical ways of normalizing Gaussians depending on their application. For scale-
space analysis it is desirable to use a normalization that will preserve the maximum value of the
input. This normalization is represented by the following equation.

1

σ
√

2π
(6.2)

In applications that use the Gaussian as a solution of the diffusion equation it is desirable to
use a normalization that preserve the integral of the signal. This last approach can be seen as a
conservation of mass principle. This is represented by the following equation.

1

σ2
√

2π
(6.3)

The itk::RecursiveGaussianImageFilter has a boolean flag that allows users to
select between these two normalization options. Selectionis done with the method
SetNormalizeAcrossScale(). Enable this flag to analyzing an image across scale-space.
In the current example, this setting has no impact because weare actually renormalizing the
output to the dynamic range of the reader, so we simply disable the flag.

const bool normalizeAcrossScale = false;

http://www.itk.org/Doxygen/html/classitk_1_1RecursiveGaussianImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1RecursiveGaussianImageFilter.html

164 Chapter 6. Filtering

filterX1->SetNormalizeAcrossScale(normalizeAcrossScale);
filterY1->SetNormalizeAcrossScale(normalizeAcrossScale);
filterX2->SetNormalizeAcrossScale(normalizeAcrossScale);
filterY2->SetNormalizeAcrossScale(normalizeAcrossScale);

The input image can be obtained from the output of another filter. Here, an image reader is
used as the source. The image is passed to thex filter and then to they filter. The reason
for keeping these two filters separate is that it is usual in scale-space applications to compute
not only the smoothing but also combinations of derivativesat different orders and smoothing.
Some factorization is possible when separate filters are used to generate the intermediate results.
Here this capability is less interesting, though, since we only want to smooth the image in all
directions.

filterX1->SetInput(reader->GetOutput());
filterY1->SetInput(filterX1->GetOutput());

filterY2->SetInput(reader->GetOutput());
filterX2->SetInput(filterY2->GetOutput());

It is now time to select theσ of the Gaussian used to smooth the data. Note thatσ must be
passed to both filters and that sigma is considered to be in millimeters. That is, at the moment
of applying the smoothing process, the filter will take into account the spacing values defined
in the image.

filterX1->SetSigma(sigma);
filterY1->SetSigma(sigma);
filterX2->SetSigma(sigma);
filterY2->SetSigma(sigma);

Finally the two components of the Laplacian should be added together. The
itk::AddImageFilter is used for this purpose.

typedef itk::AddImageFilter<
OutputImageType,
OutputImageType,
OutputImageType > AddFilterType;

AddFilterType::Pointer addFilter = AddFilterType::New();

addFilter->SetInput1(filterY1->GetOutput());
addFilter->SetInput2(filterX2->GetOutput());

The filters are triggered by invokingUpdate() on the Add filter at the end of the pipeline.

http://www.itk.org/Doxygen/html/classitk_1_1AddImageFilter.html

6.5. Second Order Derivatives 165

try
{
addFilter->Update();
}

catch(itk::ExceptionObject & err)
{
std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std::endl;
return EXIT_FAILURE;
}

The resulting image could be saved to a file using theitk::ImageFileWriter class.

typedef float WritePixelType;

typedef itk::Image< WritePixelType, 2 > WriteImageType;

typedef itk::ImageFileWriter< WriteImageType > WriterType;

WriterType::Pointer writer = WriterType::New();

writer->SetInput(addFilter->GetOutput());

writer->SetFileName(argv[2]);

writer->Update();

Figure6.11illustrates the effect of this filter on a MRI proton density image of the brain using
σ values of 3 (left) and 5 (right). The figure shows how the attenuation of noise can be regulated
by selecting the appropriate standard deviation. This typeof scale-tunable filter is suitable for
performing scale-space analysis.

The source code for this section can be found in the file
Examples/Filtering/LaplacianRecursiveGaussianImageFilter2.cxx.

The previous exampled showed how to use theitk::RecursiveGaussianImageFilter
for computing the equivalent of a Laplacian of an image aftersmoothing with a Gaus-
sian. The elements used in this previous example have been packaged together in the
itk::LaplacianRecursiveGaussianImageFilter in order to simplify its usage. This cur-
rent example shows how to use this convenience filter for achieving the same results as the
previous example.

The first step required to use this filter is to include its header file.

#include "itkLaplacianRecursiveGaussianImageFilter.h"

Types should be selected on the desired input and output pixel types.

http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
http://www.itk.org/Doxygen/html/classitk_1_1RecursiveGaussianImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1LaplacianRecursiveGaussianImageFilter.html

166 Chapter 6. Filtering

Figure 6.11:Effect of the LaplacianRecursiveGaussianImageFilter on a slice from a MRI proton density

image of the brain.

typedef float InputPixelType;
typedef float OutputPixelType;

The input and output image types are instantiated using the pixel types.

typedef itk::Image< InputPixelType, 2 > InputImageType;
typedef itk::Image< OutputPixelType, 2 > OutputImageType;

The filter type is now instantiated using both the input imageand the output image types.

typedef itk::LaplacianRecursiveGaussianImageFilter<
InputImageType, OutputImageType > FilterType;

This filter packages all the components illustrated in the previous example. The filter is created
by invoking theNew() method and assigning the result to aitk::SmartPointer.

FilterType::Pointer laplacian = FilterType::New();

The option for normalizing across scale space can also be selected in this filter.

laplacian->SetNormalizeAcrossScale(false);

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

6.6. Neighborhood Filters 167

The input image can be obtained from the output of another filter. Here, an image reader is used
as the source.

laplacian->SetInput(reader->GetOutput());

It is now time to select theσ of the Gaussian used to smooth the data. Note thatσ must be
passed to both filters and that sigma is considered to be in millimeters. That is, at the moment
of applying the smoothing process, the filter will take into account the spacing values defined
in the image.

laplacian->SetSigma(sigma);

Finally the pipeline is executed by invoking theUpdate() method.

try
{
laplacian->Update();
}

catch(itk::ExceptionObject & err)
{
std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std::endl;
return EXIT_FAILURE;
}

Figure6.12illustrates the effect of this filter on a MRI proton density image of the brain using
σ values of 3 (left) and 5 (right). The figure shows how the attenuation of noise can be regulated
by selecting the appropriate standard deviation. This typeof scale-tunable filter is suitable for
performing scale-space analysis.

6.6 Neighborhood Filters

The concept of locality is frequently encountered in image processing in the form of filters that
compute every output pixel using information from a small region in the neighborhood of the
input pixel. The classical form of these filters are the 3×3 filters in 2D images. Convolution
masks based on these neighborhoods can perform diverse tasks ranging from noise reduction,
to differential operations, to mathematical morphology.

The Insight toolkit implements an elegant approach to neighborhood-based image filtering. The
input image is processed using a special iterator called theitk::NeighborhoodIterator.
This iterator is capable of moving over all the pixels in an image and, for each position, it can
address the pixels in a local neighborhood. Operators are defined that apply an algorithmic
operation in the neighborhood of the input pixel to produce avalue for the output pixel. The
following section describes some of the more commonly used filters that take advantage of this
construction. (See Chapter11on page701for more information about iterators.)

http://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodIterator.html

168 Chapter 6. Filtering

Figure 6.12:Effect of the LaplacianRecursiveGaussianImageFilter on a slice from a MRI proton density

image of the brain.

6.6.1 Mean Filter

The source code for this section can be found in the file
Examples/Filtering/MeanImageFilter.cxx.

The itk::MeanImageFilter is commonly used for noise reduction. The filter computes the
value of each output pixel by finding the statistical mean of the neighborhood of the corre-
sponding input pixel. The following figure illustrates the local effect of the MeanImageFilter
in a 2D case. The statistical mean of the neighborhood on the left ispassed as the output value
associated with the pixel at the center of the neighborhood.

25 30 32

27 25 29

28 26 50
- 30.22 - 30

Note that this algorithm is sensitive to the presence of outliers in the neighbor-
hood. This filter will work on images of any dimension thanks to the internal use of
itk::SmartNeighborhoodIterator and itk::NeighborhoodOperator. The size of the
neighborhood over which the mean is computed can be set by theuser.

The header file corresponding to this filter should be included first.

#include "itkMeanImageFilter.h"

http://www.itk.org/Doxygen/html/classitk_1_1MeanImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1SmartNeighborhoodIterator.html
http://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodOperator.html

6.6. Neighborhood Filters 169

Then the pixel types for input and output image must be definedand, with them, the image types
can be instantiated.

typedef unsigned char InputPixelType;
typedef unsigned char OutputPixelType;

typedef itk::Image< InputPixelType, 2 > InputImageType;
typedef itk::Image< OutputPixelType, 2 > OutputImageType;

Using the image types it is now possible to instantiate the filter type and create the filter object.

typedef itk::MeanImageFilter<
InputImageType, OutputImageType > FilterType;

FilterType::Pointer filter = FilterType::New();

The size of the neighborhood is defined along every dimensionby passing aSizeType object
with the corresponding values. The value on each dimension is used as the semi-size of a
rectangular box. For example, in 2D a size of 1,2 will result in a 3×5 neighborhood.

InputImageType::SizeType indexRadius;

indexRadius[0] = 1; // radius along x
indexRadius[1] = 1; // radius along y

filter->SetRadius(indexRadius);

The input to the filter can be taken from any other filter, for example a reader. The output
can be passed down the pipeline to other filters, for example,a writer. An update call on any
downstream filter will trigger the execution of the mean filter.

filter->SetInput(reader->GetOutput());
writer->SetInput(filter->GetOutput());
writer->Update();

Figure6.13illustrates the effect of this filter on a slice of MRI brain image using neighborhood
radii of 1,1 which corresponds to a 3×3 classical neighborhood. It can be seen from this picture
that edges are rapidly degraded by the diffusion of intensity values among neighbors.

6.6.2 Median Filter

The source code for this section can be found in the file
Examples/Filtering/MedianImageFilter.cxx.

170 Chapter 6. Filtering

Figure 6.13:Effect of the MeanImageFilter on a slice from a MRI proton density brain image.

The itk::MedianImageFilter is commonly used as a robust approach for noise reduction.
This filter is particularly efficient againstsalt-and-peppernoise. In other words, it is robust to
the presence of gray-level outliers. MedianImageFilter computes the value of each output pixel
as the statistical median of the neighborhood of values around the corresponding input pixel.
The following figure illustrates the local effect of this filter in a 2D case. The statistical median
of the neighborhood on the left is passed as the output value associated with the pixel at the
center of the neighborhood.

25 30 32

27 25 29

28 26 50
- 28

This filter will work on images of any dimension thanks to the internal use of
itk::NeighborhoodIterator and itk::NeighborhoodOperator. The size of the neigh-
borhood over which the median is computed can be set by the user.

The header file corresponding to this filter should be included first.

#include "itkMedianImageFilter.h"

Then the pixel and image types of the input and output must be defined.

typedef unsigned char InputPixelType;

http://www.itk.org/Doxygen/html/classitk_1_1MedianImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodIterator.html
http://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodOperator.html

6.6. Neighborhood Filters 171

typedef unsigned char OutputPixelType;

typedef itk::Image< InputPixelType, 2 > InputImageType;
typedef itk::Image< OutputPixelType, 2 > OutputImageType;

Using the image types, it is now possible to define the filter type and create the filter object.

typedef itk::MedianImageFilter<
InputImageType, OutputImageType > FilterType;

FilterType::Pointer filter = FilterType::New();

The size of the neighborhood is defined along every dimensionby passing aSizeType object
with the corresponding values. The value on each dimension is used as the semi-size of a
rectangular box. For example, in 2D a size of 1,2 will result in a 3×5 neighborhood.

InputImageType::SizeType indexRadius;

indexRadius[0] = 1; // radius along x
indexRadius[1] = 1; // radius along y

filter->SetRadius(indexRadius);

The input to the filter can be taken from any other filter, for example a reader. The output
can be passed down the pipeline to other filters, for example,a writer. An update call on any
downstream filter will trigger the execution of the median filter.

filter->SetInput(reader->GetOutput());
writer->SetInput(filter->GetOutput());
writer->Update();

Figure6.14illustrates the effect of the MedianImageFilter filter on a slice of MRI brain image
using a neighborhood radius of 1,1, which corresponds to a 3×3 classical neighborhood. The
filtered image demonstrates the moderate tendency of the median filter to preserve edges.

6.6.3 Mathematical Morphology

Mathematical morphology has proved to be a powerful resource for image processing and anal-
ysis [73]. ITK implements mathematical morphology filters using NeighborhoodIterators and
itk::NeighborhoodOperators. The toolkit contains two types of image morphology algo-
rithms, filters that operate on binary images and filters thatoperate on grayscale images.

http://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodOperator.html

172 Chapter 6. Filtering

Figure 6.14:Effect of the MedianImageFilter on a slice from a MRI proton density brain image.

Binary Filters

The source code for this section can be found in the file
Examples/Filtering/MathematicalMorphologyBinaryFilters.cxx.

The following section illustrates the use of filters that perform basic mathematical
morphology operations on binary images. Theitk::BinaryErodeImageFilter and
itk::BinaryDilateImageFilter are described here. The filter names clearly specify the
type of image on which they operate. The header files requiredto construct a simple example
of the use of the mathematical morphology filters are included below.

#include "itkBinaryErodeImageFilter.h"
#include "itkBinaryDilateImageFilter.h"
#include "itkBinaryBallStructuringElement.h"

The following code defines the input and output pixel types and their associated image types.

const unsigned int Dimension = 2;

typedef unsigned char InputPixelType;
typedef unsigned char OutputPixelType;

typedef itk::Image< InputPixelType, Dimension > InputImageType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;

http://www.itk.org/Doxygen/html/classitk_1_1BinaryErodeImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1BinaryDilateImageFilter.html

6.6. Neighborhood Filters 173

Mathematical morphology operations are implemented by applying an operator over the neigh-
borhood of each input pixel. The combination of the rule and the neighborhood is known as
structuring element. Although some rules have become de facto standards for image process-
ing, there is a good deal of freedom as to what kind of algorithmic rule should be applied to the
neighborhood. The implementation in ITK follows the typical rule of minimum for erosion and
maximum for dilation.

The structuring element is implemented as a NeighborhoodOperator. In particular, the default
structuring element is theitk::BinaryBallStructuringElement class. This class is instan-
tiated using the pixel type and dimension of the input image.

typedef itk::BinaryBallStructuringElement<
InputPixelType,
Dimension > StructuringElementType;

The structuring element type is then used along with the input and output image types for
instantiating the type of the filters.

typedef itk::BinaryErodeImageFilter<
InputImageType,
OutputImageType,
StructuringElementType > ErodeFilterType;

typedef itk::BinaryDilateImageFilter<
InputImageType,
OutputImageType,
StructuringElementType > DilateFilterType;

The filters can now be created by invoking theNew() method and assigning the result to
itk::SmartPointers.

ErodeFilterType::Pointer binaryErode = ErodeFilterType::New();
DilateFilterType::Pointer binaryDilate = DilateFilterType::New();

The structuring element is not a reference counted class. Thus it is created as a C++
stack object instead of usingNew() and SmartPointers. The radius of the neighborhood
associated with the structuring element is defined with theSetRadius() method and the
CreateStructuringElement() method is invoked in order to initialize the operator. The
resulting structuring element is passed to the mathematical morphology filter through the
SetKernel() method, as illustrated below.

StructuringElementType structuringElement;

structuringElement.SetRadius(1); // 3x3 structuring element

http://www.itk.org/Doxygen/html/classitk_1_1BinaryBallStructuringElement.html
http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

174 Chapter 6. Filtering

structuringElement.CreateStructuringElement();

binaryErode->SetKernel(structuringElement);
binaryDilate->SetKernel(structuringElement);

A binary image is provided as input to the filters. This image might be, for example, the output
of a binary threshold image filter.

thresholder->SetInput(reader->GetOutput());

InputPixelType background = 0;
InputPixelType foreground = 255;

thresholder->SetOutsideValue(background);
thresholder->SetInsideValue(foreground);

thresholder->SetLowerThreshold(lowerThreshold);
thresholder->SetUpperThreshold(upperThreshold);

binaryErode->SetInput(thresholder->GetOutput());
binaryDilate->SetInput(thresholder->GetOutput());

The values that correspond to “objects” in the binary image are specified with the methods
SetErodeValue() andSetDilateValue(). The value passed to these methods will be con-
sidered the value over which the dilation and erosion rules will apply.

binaryErode->SetErodeValue(foreground);
binaryDilate->SetDilateValue(foreground);

The filter is executed by invoking itsUpdate() method, or by updating any downstream filter,
like, for example, an image writer.

writerDilation->SetInput(binaryDilate->GetOutput());
writerDilation->Update();

Figure6.15illustrates the effect of the erosion and dilation filters ona binary image from a MRI
brain slice. The figure shows how these operations can be usedto remove spurious details from
segmented images.

Grayscale Filters

The source code for this section can be found in the file
Examples/Filtering/MathematicalMorphologyGrayscaleFilters.cxx.

6.6. Neighborhood Filters 175

Figure 6.15:Effect of erosion and dilation in a binary image.

The following section illustrates the use of filters for performing basic mathematical mor-
phology operations on grayscale images. Theitk::GrayscaleErodeImageFilter and
itk::GrayscaleDilateImageFilter are covered in this example. The filter names clearly
specify the type of image on which they operate. The header files required for a simple example
of the use of grayscale mathematical morphology filters are presented below.

#include "itkGrayscaleErodeImageFilter.h"
#include "itkGrayscaleDilateImageFilter.h"
#include "itkBinaryBallStructuringElement.h"

The following code defines the input and output pixel types and their associated image types.

const unsigned int Dimension = 2;

typedef unsigned char InputPixelType;
typedef unsigned char OutputPixelType;

typedef itk::Image< InputPixelType, Dimension > InputImageType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;

Mathematical morphology operations are based on the application of an operator over a neigh-
borhood of each input pixel. The combination of the rule and the neighborhood is known as
structuring element. Although some rules have become the de facto standard in image process-
ing there is a good deal of freedom as to what kind of algorithmic rule should be applied on the
neighborhood. The implementation in ITK follows the typical rule of minimum for erosion and
maximum for dilation.

The structuring element is implemented as aitk::NeighborhoodOperator. In particular, the
default structuring element is theitk::BinaryBallStructuringElement class. This class is
instantiated using the pixel type and dimension of the inputimage.

http://www.itk.org/Doxygen/html/classitk_1_1GrayscaleErodeImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1GrayscaleDilateImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodOperator.html
http://www.itk.org/Doxygen/html/classitk_1_1BinaryBallStructuringElement.html

176 Chapter 6. Filtering

typedef itk::BinaryBallStructuringElement<
InputPixelType,
Dimension > StructuringElementType;

The structuring element type is then used along with the input and output image types for
instantiating the type of the filters.

typedef itk::GrayscaleErodeImageFilter<
InputImageType,
OutputImageType,
StructuringElementType > ErodeFilterType;

typedef itk::GrayscaleDilateImageFilter<
InputImageType,
OutputImageType,
StructuringElementType > DilateFilterType;

The filters can now be created by invoking theNew() method and assigning the result to Smart-
Pointers.

ErodeFilterType::Pointer grayscaleErode = ErodeFilterType::New();
DilateFilterType::Pointer grayscaleDilate = DilateFilterType::New();

The structuring element is not a reference counted class. Thus it is created as a C++
stack object instead of usingNew() and SmartPointers. The radius of the neighborhood
associated with the structuring element is defined with theSetRadius() method and the
CreateStructuringElement() method is invoked in order to initialize the operator. The
resulting structuring element is passed to the mathematical morphology filter through the
SetKernel() method, as illustrated below.

StructuringElementType structuringElement;

structuringElement.SetRadius(1); // 3x3 structuring element

structuringElement.CreateStructuringElement();

grayscaleErode->SetKernel(structuringElement);
grayscaleDilate->SetKernel(structuringElement);

A grayscale image is provided as input to the filters. This image might be, for example, the
output of a reader.

grayscaleErode->SetInput(reader->GetOutput());
grayscaleDilate->SetInput(reader->GetOutput());

6.6. Neighborhood Filters 177

Figure 6.16:Effect of erosion and dilation in a grayscale image.

The filter is executed by invoking itsUpdate() method, or by updating any downstream filter,
like, for example, an image writer.

writerDilation->SetInput(grayscaleDilate->GetOutput());
writerDilation->Update();

Figure6.16illustrates the effect of the erosion and dilation filters ona binary image from a MRI
brain slice. The figure shows how these operations can be usedto remove spurious details from
segmented images.

6.6.4 Voting Filters

Voting filters are quite a generic family of filters. In fact, both the Dilate and Erode filters from
Mathematical Morphology are very particular cases of the broader family of voting filters. In a
voting filter, the outcome of a pixel is decided by counting the number of pixels in its neighbor-
hood and applying a rule to the result of that counting.For example, the typical implementation
of Erosion in terms of a voting filter will be to say that a foreground pixel will become back-
ground if the numbers of background neighbors is greater or equal than 1. In this context, you
could imagine variations of Erosion in which the count couldbe changed to require at least 3
foreground.

Binary Median Filter

One of the particular cases of Voting filters is the BinaryMedianImageFilter. This filter is equiv-
alent to applying a Median filter over a binary image. The factof having a binary image as input
makes possible to optimize the execution of the filter since there is no real need for sorting the
pixels according to their frequency in the neighborhood.

178 Chapter 6. Filtering

The source code for this section can be found in the file
Examples/Filtering/BinaryMedianImageFilter.cxx.

The itk::BinaryMedianImageFilter is commonly used as a robust approach for noise re-
duction. BinaryMedianImageFilter computes the value of each output pixel as the statistical
median of the neighborhood of values around the corresponding input pixel. When the input
images are binary, the implementation can be optimized by simply counting the number of
pixels ON/OFF around the current pixel.

This filter will work on images of any dimension thanks to the internal use of
itk::NeighborhoodIterator and itk::NeighborhoodOperator. The size of the neigh-
borhood over which the median is computed can be set by the user.

The header file corresponding to this filter should be included first.

#include "itkBinaryMedianImageFilter.h"

Then the pixel and image types of the input and output must be defined.

typedef unsigned char InputPixelType;
typedef unsigned char OutputPixelType;

typedef itk::Image< InputPixelType, 2 > InputImageType;
typedef itk::Image< OutputPixelType, 2 > OutputImageType;

Using the image types, it is now possible to define the filter type and create the filter object.

typedef itk::BinaryMedianImageFilter<
InputImageType, OutputImageType > FilterType;

FilterType::Pointer filter = FilterType::New();

The size of the neighborhood is defined along every dimensionby passing aSizeType object
with the corresponding values. The value on each dimension is used as the semi-size of a
rectangular box. For example, in 2D a size of 1,2 will result in a 3×5 neighborhood.

InputImageType::SizeType indexRadius;

indexRadius[0] = radiusX; // radius along x
indexRadius[1] = radiusY; // radius along y

filter->SetRadius(indexRadius);

The input to the filter can be taken from any other filter, for example a reader. The output
can be passed down the pipeline to other filters, for example,a writer. An update call on any
downstream filter will trigger the execution of the median filter.

http://www.itk.org/Doxygen/html/classitk_1_1BinaryMedianImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodIterator.html
http://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodOperator.html

6.6. Neighborhood Filters 179

Figure 6.17:Effect of the BinaryMedianImageFilter on a slice from a MRI proton density brain image that

has been thresholded in order to produce a binary image.

filter->SetInput(reader->GetOutput());
writer->SetInput(filter->GetOutput());
writer->Update();

Figure6.17illustrates the effect of the BinaryMedianImageFilter filter on a slice of MRI brain
image using a neighborhood radius of 2,2, which corresponds to a 5× 5 classical neighbor-
hood. The filtered image demonstrates the capability of thisfilter for reducing noise both in the
background and foreground of the image, as well as smoothingthe contours of the regions.

The typical effect of median filtration on a noisy digital image is a dramatic reduction in impulse
noise spikes. The filter also tends to preserve brightness differences across signal steps, resulting
in reduced blurring of regional boundaries. The filter also tends to preserve the positions of
boundaries in an image.

Figure6.18below shows the effect of running the median filter with a 3x3 classical window
size 1, 10 and 50 times. There is a tradeoff in noise reductionand the sharpness of the image
when the window size is increased.

Hole Filling Filter

Another variation of Voting filters is the Hole Filling filter. This filter converts background
pixels into foreground only when the number of foreground pixels is a majority of the neighbors.
By selecting the size of the majority, this filter can be tunedto fill-in holes of different size. To

180 Chapter 6. Filtering

Figure 6.18:Effect of 1, 10 and 50 iterations of the BinaryMedianImageFilter using a 3x3 window.

6.6. Neighborhood Filters 181

be more precise, the effect of the filter is actually related to the curvature of the edge in which
the pixel is located.

The source code for this section can be found in the file
Examples/Filtering/VotingBinaryHoleFillingImageFilter.cxx.

The itk::VotingBinaryHoleFillingImageFilter applies a voting operation in order to
fill-in cavities. This can be used for smoothing contours andfor filling holes in binary images.

The header file corresponding to this filter should be included first.

#include "itkVotingBinaryHoleFillingImageFilter.h"

Then the pixel and image types of the input and output must be defined.

typedef unsigned char InputPixelType;
typedef unsigned char OutputPixelType;

typedef itk::Image< InputPixelType, 2 > InputImageType;
typedef itk::Image< OutputPixelType, 2 > OutputImageType;

Using the image types, it is now possible to define the filter type and create the filter object.

typedef itk::VotingBinaryHoleFillingImageFilter<
InputImageType, OutputImageType > FilterType;

FilterType::Pointer filter = FilterType::New();

The size of the neighborhood is defined along every dimensionby passing aSizeType object
with the corresponding values. The value on each dimension is used as the semi-size of a
rectangular box. For example, in 2D a size of 1,2 will result in a 3×5 neighborhood.

InputImageType::SizeType indexRadius;

indexRadius[0] = radiusX; // radius along x
indexRadius[1] = radiusY; // radius along y

filter->SetRadius(indexRadius);

Since the filter is expecting a binary image as input, we must specify the levels that are going to
be considered background and foreground. This is done with theSetForegroundValue() and
SetBackgroundValue() methods.

filter->SetBackgroundValue(0);
filter->SetForegroundValue(255);

http://www.itk.org/Doxygen/html/classitk_1_1VotingBinaryHoleFillingImageFilter.html

182 Chapter 6. Filtering

We must also specify the majority threshold that is going to be used as the decision criterion
for converting a background pixel into a foreground pixel. The rule of conversion is that a
background pixel will be converted into a foreground pixel if the number of foreground neigh-
bors surpass the number of background neighbors by the majority value. For example, in a 2D
image, with neighborhood or radius 1, the neighborhood willhave size 3× 3. If we set the
majority value to 2, then we are requiring that the number of foreground neighbors should be at
least (3x3 -1)/2 + majority. This is done with theSetMajorityThreshold() method.

filter->SetMajorityThreshold(2);

The input to the filter can be taken from any other filter, for example a reader. The output
can be passed down the pipeline to other filters, for example,a writer. An update call on any
downstream filter will trigger the execution of the median filter.

filter->SetInput(reader->GetOutput());
writer->SetInput(filter->GetOutput());
writer->Update();

Figure6.19illustrates the effect of the VotingBinaryHoleFillingImageFilter filter on a thresh-
olded slice of MRI brain image using neighborhood radii of 1,1, 2,2 and 3,3 that correspond
respectively to neighborhoods of size 3×3, 5×5, 7×7. The filtered image demonstrates the
capability of this filter for reducing noise both in the background and foreground of the image,
as well as smoothing the contours of the regions.

Iterative Hole Filling Filter

The Hole Filling filter can be used in an iterative way, by applying it repeatedly until no pixel
changes. In this context, the filter can be seen as a binary variation of a Level Set filter.

The source code for this section can be found in the file
Examples/Filtering/VotingBinaryIterativeHoleFillingImageFilter.cxx.

The itk::VotingBinaryIterativeHoleFillingImageFilter applies a voting operation in
order to fill-in cavities. This can be used for smoothing contours and for filling holes in binary
images. This filter runs internally aitk::VotingBinaryHoleFillingImageFilter until no
pixels change or the maximum number of iterations has been reached.

The header file corresponding to this filter should be included first.

#include "itkVotingBinaryIterativeHoleFillingImageFilter.h"

Then the pixel and image types must be defined. Note that this filter requires the input and
output images to be of the same type, therefore a single imagetype is required for the template
instantiation.

http://www.itk.org/Doxygen/html/classitk_1_1VotingBinaryIterativeHoleFillingImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1VotingBinaryHoleFillingImageFilter.html

6.6. Neighborhood Filters 183

Figure 6.19:Effect of the VotingBinaryHoleFillingImageFilter on a slice from a MRI proton density brain

image that has been thresholded in order to produce a binary image. The output images have used radius

1,2 and 3 respectively.

184 Chapter 6. Filtering

typedef unsigned char PixelType;

typedef itk::Image< PixelType, 2 > ImageType;

Using the image types, it is now possible to define the filter type and create the filter object.

typedef itk::VotingBinaryIterativeHoleFillingImageFilter<
ImageType > FilterType;

FilterType::Pointer filter = FilterType::New();

The size of the neighborhood is defined along every dimensionby passing aSizeType object
with the corresponding values. The value on each dimension is used as the semi-size of a
rectangular box. For example, in 2D a size of 1,2 will result in a 3×5 neighborhood.

ImageType::SizeType indexRadius;

indexRadius[0] = radiusX; // radius along x
indexRadius[1] = radiusY; // radius along y

filter->SetRadius(indexRadius);

Since the filter is expecting a binary image as input, we must specify the levels that are going to
be considered background and foreground. This is done with theSetForegroundValue() and
SetBackgroundValue() methods.

filter->SetBackgroundValue(0);
filter->SetForegroundValue(255);

We must also specify the majority threshold that is going to be used as the decision criterion
for converting a background pixel into a foreground pixel. The rule of conversion is that a
background pixel will be converted into a foreground pixel if the number of foreground neigh-
bors surpass the number of background neighbors by the majority value. For example, in a 2D
image, with neighborhood or radius 1, the neighborhood willhave size 3× 3. If we set the
majority value to 2, then we are requiring that the number of foreground neighbors should be at
least (3x3 -1)/2 + majority. This is done with theSetMajorityThreshold() method.

filter->SetMajorityThreshold(2);

Finally we specify the maximum number of iterations that this filter should be run. The number
of iteration will determine the maximum size of holes and cavities that this filter will be able to
fill-in. The more iterations you ran, the larger the cavitiesthat will be filled in.

filter->SetMaximumNumberOfIterations(numberOfIterations);

6.7. Smoothing Filters 185

The input to the filter can be taken from any other filter, for example a reader. The output
can be passed down the pipeline to other filters, for example,a writer. An update call on any
downstream filter will trigger the execution of the median filter.

filter->SetInput(reader->GetOutput());
writer->SetInput(filter->GetOutput());
writer->Update();

Figure6.20illustrates the effect of the VotingBinaryIterativeHoleFillingImageFilter filter on a
thresholded slice of MRI brain image using neighborhood radii of 1,1, 2,2 and 3,3 that corre-
spond respectively to neighborhoods of size 3×3, 5×5, 7×7. The filtered image demonstrates
the capability of this filter for reducing noise both in the background and foreground of the
image, as well as smoothing the contours of the regions.

6.7 Smoothing Filters

Real image data has a level of uncertainty that is manifestedin the variability of measures
assigned to pixels. This uncertainty is usually interpreted as noise and considered an undesirable
component of the image data. This section describes severalmethods that can be applied to
reduce noise on images.

6.7.1 Blurring

Blurring is the traditional approach for removing noise from images. It is usually implemented
in the form of a convolution with a kernel. The effect of blurring on the image spectrum is
to attenuate high spatial frequencies. Different kernels attenuate frequencies in different ways.
One of the most commonly used kernels is the Gaussian. Two implementations of Gaussian
smoothing are available in the toolkit. The first one is basedon a traditional convolution while
the other is based on the application of IIR filters that approximate the convolution with a
Gaussian [21, 22].

Discrete Gaussian

The source code for this section can be found in the file
Examples/Filtering/DiscreteGaussianImageFilter.cxx.

186 Chapter 6. Filtering

Figure 6.20:Effect of the VotingBinaryIterativeHoleFillingImageFilter on a slice from a MRI proton density

brain image that has been thresholded in order to produce a binary image. The output images have used

radius 1,2 and 3 respectively.

6.7. Smoothing Filters 187

KernelWidth

Error

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
�� ������

��
��
��

��
��
��
��

�
�
�
�
�

�
�
�
�
�

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 6.21:Discretized Gaussian.

The itk::DiscreteGaussianImageFilter
computes the convolution of the input im-
age with a Gaussian kernel. This is
done in ND by taking advantage of the
separability of the Gaussian kernel. A
one-dimensional Gaussian function is
discretized on a convolution kernel. The
size of the kernel is extended until there
are enough discrete points in the Gaussian
to ensure that a user-provided maximum
error is not exceeded. Since the size of the
kernel is unknown a priori, it is necessary
to impose a limit to its growth. The user can thus provide a value to be the maximum admissible
size of the kernel. Discretization error is defined as the difference between the area under the
discrete Gaussian curve (which has finite support) and the area under the continuous Gaussian.

Gaussian kernels in ITK are constructed according to the theory of Tony Lindeberg [49] so that
smoothing and derivative operations commute before and after discretization. In other words,
finite difference derivatives on an imageI that has been smoothed by convolution with the
Gaussian are equivalent to finite differences computed onI by convolving with a derivative of
the Gaussian.

The first step required to use this filter is to include its header file.

#include "itkDiscreteGaussianImageFilter.h"

Types should be chosen for the pixels of the input and output images. Image types can be
instantiated using the pixel type and dimension.

typedef float InputPixelType;
typedef float OutputPixelType;

typedef itk::Image< InputPixelType, 2 > InputImageType;
typedef itk::Image< OutputPixelType, 2 > OutputImageType;

The discrete Gaussian filter type is instantiated using the input and output image types. A
corresponding filter object is created.

typedef itk::DiscreteGaussianImageFilter<
InputImageType, OutputImageType > FilterType;

FilterType::Pointer filter = FilterType::New();

The input image can be obtained from the output of another filter. Here, an image reader is used
as its input.

http://www.itk.org/Doxygen/html/classitk_1_1DiscreteGaussianImageFilter.html

188 Chapter 6. Filtering

Figure 6.22:Effect of the DiscreteGaussianImageFilter on a slice from a MRI proton density image of the

brain.

filter->SetInput(reader->GetOutput());

The filter requires the user to provide a value for the variance associated with the Gaussian
kernel. The methodSetVariance() is used for this purpose. The discrete Gaussian is con-
structed as a convolution kernel. The maximum kernel size can be set by the user. Note that the
combination of variance and kernel-size values may result in a truncated Gaussian kernel.

filter->SetVariance(gaussianVariance);
filter->SetMaximumKernelWidth(maxKernelWidth);

Finally, the filter is executed by invoking theUpdate() method.

filter->Update();

If the output of this filter has been connected to other filtersdown the pipeline, updating any
of the downstream filters would have triggered the executionof this one. For example, a writer
could have been used after the filter.

rescaler->SetInput(filter->GetOutput());
writer->SetInput(rescaler->GetOutput());
writer->Update();

6.7. Smoothing Filters 189

Figure6.22illustrates the effect of this filter on a MRI proton density image of the brain.

Note that large Gaussian variances will produce large convolution kernels and correspondingly
slower computation times. Unless a high degree of accuracy is required, it may be more desir-
able to use the approximatingitk::RecursiveGaussianImageFilter with large variances.

Binomial Blurring

The source code for this section can be found in the file
Examples/Filtering/BinomialBlurImageFilter.cxx.

The itk::BinomialBlurImageFilter computes a nearest neighbor average along each di-
mension. The process is repeated a number of times, as specified by the user. In principle, after
a large number of iterations the result will approach the convolution with a Gaussian.

The first step required to use this filter is to include its header file.

#include "itkBinomialBlurImageFilter.h"

Types should be chosen for the pixels of the input and output images. Image types can be
instantiated using the pixel type and dimension.

typedef float InputPixelType;
typedef float OutputPixelType;

typedef itk::Image< InputPixelType, 2 > InputImageType;
typedef itk::Image< OutputPixelType, 2 > OutputImageType;

The filter type is now instantiated using both the input imageand the output image types. Then
a filter object is created.

typedef itk::BinomialBlurImageFilter<
InputImageType, OutputImageType > FilterType;

FilterType::Pointer filter = FilterType::New();

The input image can be obtained from the output of another filter. Here, an image reader is
used as the source. The number of repetitions is set with theSetRepetitions() method.
Computation time will increase linearly with the number of repetitions selected. Finally, the
filter can be executed by calling theUpdate() method.

filter->SetInput(reader->GetOutput());
filter->SetRepetitions(repetitions);
filter->Update();

http://www.itk.org/Doxygen/html/classitk_1_1RecursiveGaussianImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1BinomialBlurImageFilter.html

190 Chapter 6. Filtering

Figure 6.23:Effect of the BinomialBlurImageFilter on a slice from a MRI proton density image of the brain.

Figure6.23illustrates the effect of this filter on a MRI proton density image of the brain.

Note that the standard deviationσ of the equivalent Gaussian is fixed. In the spatial spectrum,
the effect of every iteration of this filter is like a multiplication with a sinus cardinal function.

Recursive Gaussian IIR

The source code for this section can be found in the file
Examples/Filtering/SmoothingRecursiveGaussianImageFilter.cxx.

The classical method of smoothing an image by convolution with a Gaussian kernel has the
drawback that it is slow when the standard deviationσ of the Gaussian is large. This is due to
the larger size of the kernel, which results in a higher number of computations per pixel.

The itk::RecursiveGaussianImageFilter implements an approximation of convolution
with the Gaussian and its derivatives by using IIR2 filters. In practice this filter requires a
constant number of operations for approximating the convolution, regardless of theσ value
[21, 22].

The first step required to use this filter is to include its header file.

#include "itkRecursiveGaussianImageFilter.h"

Types should be selected on the desired input and output pixel types.

2Infinite Impulse Response

http://www.itk.org/Doxygen/html/classitk_1_1RecursiveGaussianImageFilter.html

6.7. Smoothing Filters 191

typedef float InputPixelType;
typedef float OutputPixelType;

The input and output image types are instantiated using the pixel types.

typedef itk::Image< InputPixelType, 2 > InputImageType;
typedef itk::Image< OutputPixelType, 2 > OutputImageType;

The filter type is now instantiated using both the input imageand the output image types.

typedef itk::RecursiveGaussianImageFilter<
InputImageType, OutputImageType > FilterType;

This filter applies the approximation of the convolution along a single dimension. It is therefore
necessary to concatenate several of these filters to producesmoothing in all directions. In this
example, we create a pair of filters since we are processing a 2D image. The filters are created
by invoking theNew() method and assigning the result to aitk::SmartPointer.

FilterType::Pointer filterX = FilterType::New();
FilterType::Pointer filterY = FilterType::New();

Since each one of the newly created filters has the potential to perform filtering along any
dimension, we have to restrict each one to a particular direction. This is done with the
SetDirection() method.

filterX->SetDirection(0); // 0 --> X direction
filterY->SetDirection(1); // 1 --> Y direction

The itk::RecursiveGaussianImageFilter can approximate the convolution with the Gaus-
sian or with its first and second derivatives. We select one ofthese options by using the
SetOrder() method. Note that the argument is anenum whose values can beZeroOrder,
FirstOrder andSecondOrder. For example, to compute thex partial derivative we should
selectFirstOrder for x andZeroOrder for y. Here we want only to smooth inx andy, so we
selectZeroOrder in both directions.

filterX->SetOrder(FilterType::ZeroOrder);
filterY->SetOrder(FilterType::ZeroOrder);

There are two typical ways of normalizing Gaussians depending on their application. For scale-
space analysis it is desirable to use a normalization that will preserve the maximum value of the
input. This normalization is represented by the following equation.

1

σ
√

2π
(6.4)

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
http://www.itk.org/Doxygen/html/classitk_1_1RecursiveGaussianImageFilter.html

192 Chapter 6. Filtering

In applications that use the Gaussian as a solution of the diffusion equation it is desirable to
use a normalization that preserve the integral of the signal. This last approach can be seen as a
conservation of mass principle. This is represented by the following equation.

1

σ2
√

2π
(6.5)

The itk::RecursiveGaussianImageFilter has a boolean flag that allows users to
select between these two normalization options. Selectionis done with the method
SetNormalizeAcrossScale(). Enable this flag to analyzing an image across scale-space.
In the current example, this setting has no impact because weare actually renormalizing the
output to the dynamic range of the reader, so we simply disable the flag.

filterX->SetNormalizeAcrossScale(false);
filterY->SetNormalizeAcrossScale(false);

The input image can be obtained from the output of another filter. Here, an image reader is
used as the source. The image is passed to thex filter and then to they filter. The reason
for keeping these two filters separate is that it is usual in scale-space applications to compute
not only the smoothing but also combinations of derivativesat different orders and smoothing.
Some factorization is possible when separate filters are used to generate the intermediate results.
Here this capability is less interesting, though, since we only want to smooth the image in all
directions.

filterX->SetInput(reader->GetOutput());
filterY->SetInput(filterX->GetOutput());

It is now time to select theσ of the Gaussian used to smooth the data. Note thatσ must be
passed to both filters and that sigma is considered to be in millimeters. That is, at the moment
of applying the smoothing process, the filter will take into account the spacing values defined
in the image.

filterX->SetSigma(sigma);
filterY->SetSigma(sigma);

Finally the pipeline is executed by invoking theUpdate() method.

filterY->Update();

Figure6.24illustrates the effect of this filter on a MRI proton density image of the brain using
σ values of 3 (left) and 5 (right). The figure shows how the attenuation of noise can be regulated
by selecting the appropriate standard deviation. This typeof scale-tunable filter is suitable for
performing scale-space analysis.

http://www.itk.org/Doxygen/html/classitk_1_1RecursiveGaussianImageFilter.html

6.7. Smoothing Filters 193

Figure 6.24:Effect of the SmoothingRecursiveGaussianImageFilter on a slice from a MRI proton density

image of the brain.

The RecursiveGaussianFilters can also be applied on multi-component images. For instance,
the above filter could have applied with RGBPixel as the pixeltype. Each component is then
independently filtered. However the RescaleIntensityImageFilter will not work on RGBPixels
since it does not mathematically make sense to rescale the output of multi-component images.

6.7.2 Local Blurring

In some cases it is desirable to compute smoothing in restricted regions of the image, or to do
it using different parameters that are computed locally. The following sections describe options
for applying local smoothing in images.

Gaussian Blur Image Function

The source code for this section can be found in the file
Examples/Filtering/GaussianBlurImageFunction.cxx.

194 Chapter 6. Filtering

6.7.3 Edge Preserving Smoothing

Introduction to Anisotropic Diffusion

The drawback of image denoising (smoothing) is that it tendsto blur away the sharp boundaries
in the image that help to distinguish between the larger-scale anatomical structures that one
is trying to characterize (which also limits the size of the smoothing kernels in most applica-
tions). Even in cases where smoothing does not obliterate boundaries, it tends to distort the fine
structure of the image and thereby changes subtle aspects ofthe anatomical shapes in question.

Perona and Malik [63] introduced an alternative to linear-filtering that they called anisotropic
diffusion. Anisotropic diffusion is closely related to the earlier work of Grossberg [32],
who used similar nonlinear diffusion processes to model human vision. The motivation for
anisotropic diffusion (also callednonuniformor variable conductancediffusion) is that a Gaus-
sian smoothed image is a single time slice of the solution to the heat equation, that has the
original image as its initial conditions. Thus, the solution to

∂g(x,y,t)
∂t

= ∇ ·∇g(x,y,t), (6.6)

whereg(x,y,0) = f (x,y) is the input image, isg(x,y,t) = G(
√

2t)⊗ f (x,y), whereG(σ) is a
Gaussian with standard deviationσ.

Anisotropic diffusion includes a variable conductance term that, in turn, depends on the dif-
ferential structure of the image. Thus, the variable conductance can be formulated to limit the
smoothing at “edges” in images, as measured by high gradientmagnitude, for example.

gt = ∇ ·c(|∇g|)∇g, (6.7)

where, for notational convenience, we leave off the independent parameters ofg and use the
subscripts with respect to those parameters to indicate partial derivatives. The functionc(|∇g|)
is a fuzzy cutoff that reduces the conductance at areas of large |∇g|, and can be any one of a
number of functions. The literature has shown

c(|∇g|) = e
− |∇g|2

2k2 (6.8)

to be quite effective. Notice that conductance term introduces a free parameterk, theconduc-
tance parameter, that controls the sensitivity of the process to edge contrast. Thus, anisotropic
diffusion entails two free parameters: the conductance parameter,k, and the time parameter,t,
that is analogous toσ, the effective width of the filter when using Gaussian kernels.

Equation6.7 is a nonlinear partial differential equation that can be solved on a discrete grid
using finite forward differences. Thus, the smoothed image is obtained only by an iterative
process, not a convolution or non-stationary, linear filter. Typically, the number of iterations
required for practical results are small, and large 2D images can be processed in several tens of
seconds using carefully written code running on modern, general purpose, single-processor
computers. The technique applies readily and effectively to 3D images, but requires more
processing time.

6.7. Smoothing Filters 195

In the early 1990’s several research groups [29, 89] demonstrated the effectiveness of
anisotropic diffusion on medical images. In a series of papers on the subject [93, 91, 92, 89, 90,
87], Whitaker described a detailed analytical and empirical analysis, introduced a smoothing
term in the conductance that made the process more robust, invented a numerical scheme that
virtually eliminated directional artifacts in the original algorithm, and generalized anisotropic
diffusion to vector-valued images, an image processing technique that can be used on vector-
valued medical data (such as the color cryosection data of the Visible Human Project).

For a vector-valued input~F : U 7→ ℜm the process takes the form

~Ft = ∇ ·c(D ~F)~F , (6.9)

whereD ~F is adissimilaritymeasure of~F , a generalization of the gradient magnitude to vector-
valued images, that can incorporate linear and nonlinear coordinate transformations on the range
of ~F . In this way, the smoothing of the multiple images associated with vector-valued data is
coupled through the conductance term, that fuses the information in the different images. Thus
vector-valued, nonlinear diffusion can combine low-levelimage features (e.g. edges) across
all “channels” of a vector-valued image in order to preserveor enhance those features in all of
image “channels”.

Vector-valued anisotropic diffusion is useful for denoising data from devices that produce mul-
tiple values such as MRI or color photography. When performing nonlinear diffusion on a color
image, the color channels are diffused separately, but linked through the conductance term.
Vector-valued diffusion it is also useful for processing registered data from different devices or
for denoising higher-order geometric or statistical features from scalar-valued images [87, 95].

The output of anisotropic diffusion is an image or set of images that demonstrates reduced noise
and texture but preserves, and can also enhance, edges. Suchimages are useful for a variety
of processes including statistical classification, visualization, and geometric feature extraction.
Previous work has shown [90] that anisotropic diffusion, over a wide range of conductance
parameters, offers quantifiable advantages over linear filtering for edge detection in medical
images.

Since the effectiveness of nonlinear diffusion was first demonstrated, numerous variations of
this approach have surfaced in the literature [79]. These include alternatives for constructing
dissimilarity measures [71], directional (i.e., tensor-valued) conductance terms [86, 3] and level
set interpretations [88].

Gradient Anisotropic Diffusion

The source code for this section can be found in the file
Examples/Filtering/GradientAnisotropicDiffusionImageFilter.cxx.

The itk::GradientAnisotropicDiffusionImageFilter implements anN-dimensional
version of the classic Perona-Malik anisotropic diffusionequation for scalar-valued images [63].

The conductance term for this implementation is chosen as a function of the gradient magnitude

http://www.itk.org/Doxygen/html/classitk_1_1GradientAnisotropicDiffusionImageFilter.html

196 Chapter 6. Filtering

of the image at each point, reducing the strength of diffusion at edge pixels.

C(x) = e−(
‖∇U(x)‖

K)2
(6.10)

The numerical implementation of this equation is similar tothat described in the Perona-Malik
paper [63], but uses a more robust technique for gradient magnitude estimation and has been
generalized toN-dimensions.

The first step required to use this filter is to include its header file.

#include "itkGradientAnisotropicDiffusionImageFilter.h"

Types should be selected based on the pixel types required for the input and output images. The
image types are defined using the pixel type and the dimension.

typedef float InputPixelType;
typedef float OutputPixelType;

typedef itk::Image< InputPixelType, 2 > InputImageType;
typedef itk::Image< OutputPixelType, 2 > OutputImageType;

The filter type is now instantiated using both the input imageand the output image types. The
filter object is created by theNew() method.

typedef itk::GradientAnisotropicDiffusionImageFilter<
InputImageType, OutputImageType > FilterType;

FilterType::Pointer filter = FilterType::New();

The input image can be obtained from the output of another filter. Here, an image reader is used
as source.

filter->SetInput(reader->GetOutput());

This filter requires three parameters, the number of iterations to be performed, the time
step and the conductance parameter used in the computation of the level set evolution.
These parameters are set using the methodsSetNumberOfIterations(), SetTimeStep() and
SetConductanceParameter() respectively. The filter can be executed by invoking Update().

filter->SetNumberOfIterations(numberOfIterations);
filter->SetTimeStep(timeStep);
filter->SetConductanceParameter(conductance);

filter->Update();

6.7. Smoothing Filters 197

Figure 6.25:Effect of the GradientAnisotropicDiffusionImageFilter on a slice from a MRI Proton Density

image of the brain.

Typical values for the time step are 0.25 in 2D images and 0.125 in 3D images. The number of
iterations is typically set to 5; more iterations result in further smoothing and will increase the
computing time linearly.

Figure6.25illustrates the effect of this filter on a MRI proton density image of the brain. In
this example the filter was run with a time step of 0.25, and 5 iterations. The figure shows how
homogeneous regions are smoothed and edges are preserved.

The following classes provide similar functionality:

• itk::BilateralImageFilter

• itk::CurvatureAnisotropicDiffusionImageFilter

• itk::CurvatureFlowImageFilter

Curvature Anisotropic Diffusion

The source code for this section can be found in the file
Examples/Filtering/CurvatureAnisotropicDiffusionImageFilter.cxx.

The itk::CurvatureAnisotropicDiffusionImageFilter performs anisotropic diffusion
on an image using a modified curvature diffusion equation (MCDE).

MCDE does not exhibit the edge enhancing properties of classic anisotropic diffusion, which

http://www.itk.org/Doxygen/html/classitk_1_1BilateralImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1CurvatureAnisotropicDiffusionImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1CurvatureFlowImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1CurvatureAnisotropicDiffusionImageFilter.html

198 Chapter 6. Filtering

can under certain conditions undergo a “negative” diffusion, which enhances the contrast of
edges. Equations of the form of MCDE always undergo positivediffusion, with the conductance
term only varying the strength of that diffusion.

Qualitatively, MCDE compares well with other non-linear diffusion techniques. It is less sensi-
tive to contrast than classic Perona-Malik style diffusion, and preserves finer detailed structures
in images. There is a potential speed trade-off for using this function in place of itkGradient-
NDAnisotropicDiffusionFunction. Each iteration of the solution takes roughly twice as long.
Fewer iterations, however, may be required to reach an acceptable solution.

The MCDE equation is given as:

ft =| ∇ f | ∇ ·c(| ∇ f |) ∇ f
| ∇ f | (6.11)

where the conductance modified curvature term is

∇ · ∇ f
| ∇ f | (6.12)

The first step required for using this filter is to include its header file

#include "itkCurvatureAnisotropicDiffusionImageFilter.h"

Types should be selected based on the pixel types required for the input and output images. The
image types are defined using the pixel type and the dimension.

typedef float InputPixelType;
typedef float OutputPixelType;

typedef itk::Image< InputPixelType, 2 > InputImageType;
typedef itk::Image< OutputPixelType, 2 > OutputImageType;

The filter type is now instantiated using both the input imageand the output image types. The
filter object is created by theNew() method.

typedef itk::CurvatureAnisotropicDiffusionImageFilter<
InputImageType, OutputImageType > FilterType;

FilterType::Pointer filter = FilterType::New();

The input image can be obtained from the output of another filter. Here, an image reader is used
as source.

filter->SetInput(reader->GetOutput());

6.7. Smoothing Filters 199

Figure 6.26:Effect of the CurvatureAnisotropicDiffusionImageFilter on a slice from a MRI Proton Density

image of the brain.

This filter requires three parameters, the number of iterations to be performed, the time step used
in the computation of the level set evolution and the value ofconductance. These parameters are
set using the methodsSetNumberOfIterations(), SetTimeStep() andSetConductance()
respectively. The filter can be executed by invokingUpdate().

filter->SetNumberOfIterations(numberOfIterations);
filter->SetTimeStep(timeStep);
filter->SetConductanceParameter(conductance);
if (useImageSpacing)
{
filter->UseImageSpacingOn();
}

filter->Update();

Typical values for the time step are 0.125 in 2D images and 0.0625 in 3D images. The number
of iterations can be usually around 5, more iterations will result in further smoothing and will
increase linearly the computing time. The conductance parameter is usually around 3.0.

Figure6.26illustrates the effect of this filter on a MRI proton density image of the brain. In
this example the filter was run with a time step of 0.125, 5 iterations and a conductance value
of 3.0. The figure shows how homogeneous regions are smoothed and edges are preserved.

The following classes provide similar functionality:

• itk::BilateralImageFilter

http://www.itk.org/Doxygen/html/classitk_1_1BilateralImageFilter.html

200 Chapter 6. Filtering

• itk::CurvatureFlowImageFilter

• itk::GradientAnisotropicDiffusionImageFilter

Curvature Flow

The source code for this section can be found in the file
Examples/Filtering/CurvatureFlowImageFilter.cxx.

The itk::CurvatureFlowImageFilter performs edge-preserving smoothing in a similar
fashion to the classical anisotropic diffusion. The filter uses a level set formulation where the
iso-intensity contours in a image are viewed as level sets, where pixels of a particular inten-
sity form one level set. The level set function is then evolved under the control of a diffusion
equation where the speed is proportional to the curvature ofthe contour:

It = κ|∇I | (6.13)

whereκ is the curvature.

Areas of high curvature will diffuse faster than areas of lowcurvature. Hence, small jagged
noise artifacts will disappear quickly, while large scale interfaces will be slow to evolve, thereby
preserving sharp boundaries between objects. However, it should be noted that although the
evolution at the boundary is slow, some diffusion still occur. Thus, continual application of
this curvature flow scheme will eventually result is the removal of information as each contour
shrinks to a point and disappears.

The first step required to use this filter is to include its header file.

#include "itkCurvatureFlowImageFilter.h"

Types should be selected based on the pixel types required for the input and output images.

typedef float InputPixelType;
typedef float OutputPixelType;

With them, the input and output image types can be instantiated.

typedef itk::Image< InputPixelType, 2 > InputImageType;
typedef itk::Image< OutputPixelType, 2 > OutputImageType;

The CurvatureFlow filter type is now instantiated using boththe input image and the output
image types.

typedef itk::CurvatureFlowImageFilter<
InputImageType, OutputImageType > FilterType;

http://www.itk.org/Doxygen/html/classitk_1_1CurvatureFlowImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1GradientAnisotropicDiffusionImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1CurvatureFlowImageFilter.html

6.7. Smoothing Filters 201

A filter object is created by invoking theNew() method and assigning the result to a
itk::SmartPointer.

FilterType::Pointer filter = FilterType::New();

The input image can be obtained from the output of another filter. Here, an image reader is used
as source.

filter->SetInput(reader->GetOutput());

The CurvatureFlow filter requires two parameters, the number of iterations to be performed and
the time step used in the computation of the level set evolution. These two parameters are set
using the methodsSetNumberOfIterations() andSetTimeStep() respectively. Then the
filter can be executed by invokingUpdate().

filter->SetNumberOfIterations(numberOfIterations);
filter->SetTimeStep(timeStep);
filter->Update();

Typical values for the time step are 0.125 in 2D images and 0.0625 in 3D images. The number
of iterations can be usually around 10, more iterations willresult in further smoothing and
will increase linearly the computing time. Edge-preserving behavior is not guaranteed by this
filter, some degradation will occur on the edges and will increase as the number of iterations is
increased.

If the output of this filter has been connected to other filtersdown the pipeline, updating any of
the downstream filters will triggered the execution of this one. For example, a writer filter could
have been used after the curvature flow filter.

rescaler->SetInput(filter->GetOutput());
writer->SetInput(rescaler->GetOutput());
writer->Update();

Figure6.27illustrates the effect of this filter on a MRI proton density image of the brain. In
this example the filter was run with a time step of 0.25 and 10 iterations. The figure shows how
homogeneous regions are smoothed and edges are preserved.

The following classes provide similar functionality:

• itk::GradientAnisotropicDiffusionImageFilter

• itk::CurvatureAnisotropicDiffusionImageFilter

• itk::BilateralImageFilter

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
http://www.itk.org/Doxygen/html/classitk_1_1GradientAnisotropicDiffusionImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1CurvatureAnisotropicDiffusionImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1BilateralImageFilter.html

202 Chapter 6. Filtering

Figure 6.27:Effect of the CurvatureFlowImageFilter on a slice from a MRI proton density image of the

brain.

MinMaxCurvature Flow

The source code for this section can be found in the file
Examples/Filtering/MinMaxCurvatureFlowImageFilter.cxx.

The MinMax curvature flow filter applies a variant of the curvature flow algorithm where dif-
fusion is turned on or off depending of the scale of the noise that one wants to remove. The
evolution speed is switched between min(κ,0) and max(κ,0) such that:

It = F |∇I | (6.14)

whereF is defined as

F =

{

max(κ,0) : Average< Threshold
min(κ,0) : Average≥ Threshold

(6.15)

TheAverageis the average intensity computed over a neighborhood of a user specified radius of
the pixel. The choice of the radius governs the scale of the noise to be removed. TheThreshold
is calculated as the average of pixel intensities along the direction perpendicular to the gradient
at theextremaof the local neighborhood.

A speed ofF = max(κ,0) will cause small dark regions in a predominantly light region to
shrink. Conversely, a speed ofF = min(κ,0), will cause light regions in a predominantly dark
region to shrink. Comparison between the neighborhood average and the threshold is used to

6.7. Smoothing Filters 203

Iso−curves

Gradient

Figure 6.28:Elements involved in the computation of min-max curvature flow.

select the the right speed function to use. This switching prevents the unwanted diffusion of the
simple curvature flow method.

Figure6.28shows the main elements involved in the computation. The setof square pixels
represent the neighborhood over which the average intensity is being computed. The gray pixels
are those lying close to the direction perpendicular to the gradient. The pixels which intersect
the neighborhood bounds are used to compute the threshold value in the equation above. The
integer radius of the neighborhood is selected by the user.

The first step required to use theitk::MinMaxCurvatureFlowImageFilter is to include its
header file.

#include "itkMinMaxCurvatureFlowImageFilter.h"

Types should be selected based on the pixel types required for the input and output images. The
input and output image types are instantiated.

typedef float InputPixelType;
typedef float OutputPixelType;

typedef itk::Image< InputPixelType, 2 > InputImageType;
typedef itk::Image< OutputPixelType, 2 > OutputImageType;

The itk::MinMaxCurvatureFlowImageFilter type is now instantiated using both the input
image and the output image types. The filter is then created using theNew() method.

http://www.itk.org/Doxygen/html/classitk_1_1MinMaxCurvatureFlowImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1MinMaxCurvatureFlowImageFilter.html

204 Chapter 6. Filtering

typedef itk::MinMaxCurvatureFlowImageFilter<
InputImageType, OutputImageType > FilterType;

FilterType::Pointer filter = FilterType::New();

The input image can be obtained from the output of another filter. Here, an image reader is used
as source.

filter->SetInput(reader->GetOutput());

The itk::MinMaxCurvatureFlowImageFilter requires the two normal parameters of the
CurvatureFlow image, the number of iterations to be performed and the time step used in the
computation of the level set evolution. In addition to them,the radius of the neighborhood is
also required. This last parameter is passed using theSetStencilRadius() method. Note that
the radius is provided as an integer number since it is referring to a number of pixels from the
center to the border of the neighborhood. Then the filter can be executed by invokingUpdate().

filter->SetTimeStep(timeStep);
filter->SetNumberOfIterations(numberOfIterations);
filter->SetStencilRadius(radius);
filter->Update();

Typical values for the time step are 0.125 in 2D images and 0.0625 in 3D images. The number
of iterations can be usually around 10, more iterations willresult in further smoothing and will
increase the computing time linearly. The radius of the stencil can be typically 1. Theedge-
preservingcharacteristic is not perfect on this filter, some degradation will occur on the edges
and will increase as the number of iterations is increased.

If the output of this filter has been connected to other filtersdown the pipeline, updating any
of the downstream filters would have triggered the executionof this one. For example, a writer
filter could have been used after the curvature flow filter.

rescaler->SetInput(filter->GetOutput());
writer->SetInput(rescaler->GetOutput());
writer->Update();

Figure6.29illustrates the effect of this filter on a MRI proton density image of the brain. In this
example the filter was run with a time step of 0.125, 10 iterations and a radius of 1. The figure
shows how homogeneous regions are smoothed and edges are preserved. Notice also, that the
results in the figure has sharper edges than the same example using simple curvature flow in
Figure6.27.

The following classes provide similar functionality:

• itk::CurvatureFlowImageFilter

http://www.itk.org/Doxygen/html/classitk_1_1MinMaxCurvatureFlowImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1CurvatureFlowImageFilter.html

6.7. Smoothing Filters 205

Figure 6.29:Effect of the MinMaxCurvatureFlowImageFilter on a slice from a MRI proton density image

of the brain.

Bilateral Filter

The source code for this section can be found in the file
Examples/Filtering/BilateralImageFilter.cxx.

The itk::BilateralImageFilter performs smoothing by using both domain and range
neighborhoods. Pixels that are close to a pixel in the image domain and similar to a pixel in the
image range are used to calculate the filtered value. Two Gaussian kernels (one in the image
domain and one in the image range) are used to smooth the image. The result is an image that is
smoothed in homogeneous regions yet has edges preserved. The result is similar to anisotropic
diffusion but the implementation in non-iterative. Another benefit to bilateral filtering is that
any distance metric can be used for kernel smoothing the image range. Bilateral filtering is
capable of reducing the noise in an image by an order of magnitude while maintaining edges.
The bilateral operator used here was described by Tomasi andManduchi (Bilateral Filtering for
Gray and Color Images. IEEE ICCV. 1998.)

The filtering operation can be described by the following equation

h(x) = k(x)−1
Z

ω
f (w)c(x,w)s(f (x), f (w))dw (6.16)

wherex holds the coordinates of aND point, f (x) is the input image andh(x) is the output
image. The convolution kernelsc() ands() are associated with the spatial and intensity domain
respectively. TheND integral is computed overω which is a neighborhood of the pixel located

http://www.itk.org/Doxygen/html/classitk_1_1BilateralImageFilter.html

206 Chapter 6. Filtering

at x. The normalization factork(x) is computed as

k(x) =

Z

ω
c(x,w)s(f (x), f (w))dw (6.17)

The default implementation of this filter uses Gaussian kernels for bothc() ands(). Thec kernel
can be described as

c(x,w) = e
(
||x−w||2

σ2
c

)
(6.18)

whereσc is provided by the user and defines how close pixel neighbors should be in order to be
considered for the computation of the output value. Theskernel is given by

s(f (x), f (w)) = e
(

(f (x)− f (w)2

σ2
s

)
(6.19)

whereσs is provided by the user and defines how close should the neighbors intensity be in
order to be considered for the computation of the output value.

The first step required to use this filter is to include its header file.

#include "itkBilateralImageFilter.h"

The image types are instantiated using pixel type and dimension.

typedef unsigned char InputPixelType;
typedef unsigned char OutputPixelType;

typedef itk::Image< InputPixelType, 2 > InputImageType;
typedef itk::Image< OutputPixelType, 2 > OutputImageType;

The bilateral filter type is now instantiated using both the input image and the output image
types and the filter object is created.

typedef itk::BilateralImageFilter<
InputImageType, OutputImageType > FilterType;

FilterType::Pointer filter = FilterType::New();

The input image can be obtained from the output of another filter. Here, an image reader is used
as a source.

filter->SetInput(reader->GetOutput());

6.7. Smoothing Filters 207

The Bilateral filter requires two parameters. First, theσ to be used for the Gaussian kernel on
image intensities. Second, the set ofσs to be used along each dimension in the space domain.
This second parameter is supplied as an array offloat or double values. The array dimension
matches the image dimension. This mechanism makes possibleto enforce more coherence
along some directions. For example, more smoothing can be done along theX direction than
along theY direction.

In the following code example, theσ values are taken from the command line. Note the use of
ImageType::ImageDimension to get access to the image dimension at compile time.

const unsigned int Dimension = InputImageType::ImageDimension;
double domainSigmas[Dimension];
for(unsigned int i=0; i<Dimension; i++)
{
domainSigmas[i] = atof(argv[3]);
}

const double rangeSigma = atof(argv[4]);

The filter parameters are set with the methods SetRangeSigma() and SetDomainSigma().

filter->SetDomainSigma(domainSigmas);
filter->SetRangeSigma(rangeSigma);

The output of the filter is connected here to a intensity rescaler filter and then to a writer. Invok-
ing Update() on the writer triggers the execution of both filters.

rescaler->SetInput(filter->GetOutput());
writer->SetInput(rescaler->GetOutput());
writer->Update();

Figure6.30illustrates the effect of this filter on a MRI proton density image of the brain. In this
example the filter was run with a range sigma of 5.0 and a domainσ of 6.0. The figure shows
how homogeneous regions are smoothed and edges are preserved.

The following classes provide similar functionality:

• itk::GradientAnisotropicDiffusionImageFilter

• itk::CurvatureAnisotropicDiffusionImageFilter

• itk::CurvatureFlowImageFilter

6.7.4 Edge Preserving Smoothing in Vector Images

Anisotropic diffusion can also be applied to images whose pixels are vectors. In this case
the diffusion is computed independently for each vector component. The following classes
implement versions of anisotropic diffusion on vector images.

http://www.itk.org/Doxygen/html/classitk_1_1GradientAnisotropicDiffusionImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1CurvatureAnisotropicDiffusionImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1CurvatureFlowImageFilter.html

208 Chapter 6. Filtering

Figure 6.30:Effect of the BilateralImageFilter on a slice from a MRI proton density image of the brain.

Vector Gradient Anisotropic Diffusion

The source code for this section can be found in the file
Examples/Filtering/VectorGradientAnisotropicDiffusionImageFilter.cxx.

The itk::VectorGradientAnisotropicDiffusionImageFilter implements an N-
dimensional version of the classic Perona-Malik anisotropic diffusion equation for vector-
valued images. Typically in vector-valued diffusion, vector components are diffused indepen-
dently of one another using a conductance term that is linkedacross the components. The
diffusion equation was illustrated in6.7.3

This filter is designed to process images ofitk::Vector type. The code relies on various
typedefs and overloaded operators defined in Vector. It is perfectly reasonable, however, to
apply this filter to images of other, user-defined types as long as the appropriate typedefs and
operator overloads are in place. As a general rule, follow the example of Vector in defining your
data types.

The first step required to use this filter is to include its header file.

#include "itkVectorGradientAnisotropicDiffusionImageFilter.h"

Types should be selected based on required pixel type for theinput and output images. The
image types are defined using the pixel type and the dimension.

typedef float InputPixelType;

http://www.itk.org/Doxygen/html/classitk_1_1VectorGradientAnisotropicDiffusionImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1Vector.html

6.7. Smoothing Filters 209

typedef itk::CovariantVector<float,2> VectorPixelType;
typedef itk::Image< InputPixelType, 2 > InputImageType;
typedef itk::Image< VectorPixelType, 2 > VectorImageType;

The filter type is now instantiated using both the input imageand the output image types. The
filter object is created by theNew() method.

typedef itk::VectorGradientAnisotropicDiffusionImageFilter<
VectorImageType, VectorImageType > FilterType;

FilterType::Pointer filter = FilterType::New();

The input image can be obtained from the output of another filter. Here, an image reader is used
as source and its data is passed through a gradient filter in order to generate an image of vectors.

gradient->SetInput(reader->GetOutput());
filter->SetInput(gradient->GetOutput());

This filter requires two parameters, the number of iterations to be performed and the time step
used in the computation of the level set evolution. These parameters are set using the methods
SetNumberOfIterations() andSetTimeStep() respectively. The filter can be executed by
invokingUpdate().

filter->SetNumberOfIterations(numberOfIterations);
filter->SetTimeStep(timeStep);
filter->SetConductanceParameter(1.0);
filter->Update();

Typical values for the time step are 0.125 in 2D images and 0.0625 in 3D images. The number
of iterations can be usually around 5, more iterations will result in further smoothing and will
linearly increase the computing time.

Figure6.31illustrates the effect of this filter on a MRI proton density image of the brain. The
images show theX component of the gradient before (left) and after (right) the application of
the filter. In this example the filter was run with a time step of0.25, and 5 iterations.

Vector Curvature Anisotropic Diffusion

The source code for this section can be found in the file
Examples/Filtering/VectorCurvatureAnisotropicDiffusionImageFilter.cxx.

The itk::VectorCurvatureAnisotropicDiffusionImageFilter performs anisotropic
diffusion on a vector image using a modified curvature diffusion equation (MCDE). The MCDE
is the same described in6.7.3.

http://www.itk.org/Doxygen/html/classitk_1_1VectorCurvatureAnisotropicDiffusionImageFilter.html

210 Chapter 6. Filtering

Figure 6.31:Effect of the VectorGradientAnisotropicDiffusionImageFilter on the X component of the gra-

dient from a MRI proton density brain image.

Typically in vector-valued diffusion, vector components are diffused independently of one an-
other using a conductance term that is linked across the components.

This filter is designed to process images ofitk::Vector type. The code relies on various
typedefs and overloaded operators defined in Vector. It is perfectly reasonable, however, to
apply this filter to images of other, user-defined types as long as the appropriate typedefs and
operator overloads are in place. As a general rule, follow the example of the Vector class in
defining your data types.

The first step required to use this filter is to include its header file.

#include "itkVectorCurvatureAnisotropicDiffusionImageFilter.h"

Types should be selected based on required pixel type for theinput and output images. The
image types are defined using the pixel type and the dimension.

typedef float InputPixelType;
typedef itk::CovariantVector<float,2> VectorPixelType;
typedef itk::Image< InputPixelType, 2 > InputImageType;
typedef itk::Image< VectorPixelType, 2 > VectorImageType;

The filter type is now instantiated using both the input imageand the output image types. The
filter object is created by theNew() method.

http://www.itk.org/Doxygen/html/classitk_1_1Vector.html

6.7. Smoothing Filters 211

typedef itk::VectorCurvatureAnisotropicDiffusionImageFilter<
VectorImageType, VectorImageType > FilterType;

FilterType::Pointer filter = FilterType::New();

The input image can be obtained from the output of another filter. Here, an image reader is used
as source and its data is passed through a gradient filter in order to generate an image of vectors.

gradient->SetInput(reader->GetOutput());
filter->SetInput(gradient->GetOutput());

This filter requires two parameters, the number of iterations to be performed and the time step
used in the computation of the level set evolution. These parameters are set using the methods
SetNumberOfIterations() andSetTimeStep() respectively. The filter can be executed by
invokingUpdate().

filter->SetNumberOfIterations(numberOfIterations);
filter->SetTimeStep(timeStep);
filter->SetConductanceParameter(1.0);
filter->Update();

Typical values for the time step are 0.125 in 2D images and 0.0625 in 3D images. The number
of iterations can be usually around 5, more iterations will result in further smoothing and will
increase linearly the computing time.

Figure6.32illustrates the effect of this filter on a MRI proton density image of the brain. The
images show theX component of the gradient before (left) and after (right) the application of
the filter. In this example the filter was run with a time step of0.25, and 5 iterations.

6.7.5 Edge Preserving Smoothing in Color Images

Gradient Anisotropic Diffusion

The source code for this section can be found in the file
Examples/Filtering/RGBGradientAnisotropicDiffusionImageFilter.cxx.

The vector anisotropic diffusion approach can equally wellbe applied to color images. As in the
vector case, each RGB component is diffused independently.The following example illustrates
the use of the Vector curvature anisotropic diffusion filteron an image withitk::RGBPixel
type.

The first step required to use this filter is to include its header file.

#include "itkVectorGradientAnisotropicDiffusionImageFilter.h"

Also the headers forImage andRGBPixel type are required.

http://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html

212 Chapter 6. Filtering

Figure 6.32:Effect of the VectorCurvatureAnisotropicDiffusionImageFilter on the X component of the

gradient from a MRIproton density brain image.

#include "itkRGBPixel.h"
#include "itkImage.h"

It is desirable to perform the computation on the RGB image using float representation. How-
ever for input and output purposesunsigned char RGB components are commonly used. It is
necessary to cast the type of color components along the pipeline before writing them to a file.
The itk::VectorCastImageFilter is used to achieve this goal.

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkVectorCastImageFilter.h"

The image type is defined using the pixel type and the dimension.

typedef itk::RGBPixel< float > InputPixelType;
typedef itk::Image< InputPixelType, 2 > InputImageType;

The filter type is now instantiated and a filter object is created by theNew() method.

typedef itk::VectorGradientAnisotropicDiffusionImageFilter<
InputImageType, InputImageType > FilterType;

FilterType::Pointer filter = FilterType::New();

http://www.itk.org/Doxygen/html/classitk_1_1VectorCastImageFilter.html

6.7. Smoothing Filters 213

The input image can be obtained from the output of another filter. Here, an image reader is used
as source.

typedef itk::ImageFileReader< InputImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(argv[1]);
filter->SetInput(reader->GetOutput());

This filter requires two parameters, the number of iterations to be performed and the time step
used in the computation of the level set evolution. These parameters are set using the methods
SetNumberOfIterations() andSetTimeStep() respectively. The filter can be executed by
invokingUpdate().

filter->SetNumberOfIterations(numberOfIterations);
filter->SetTimeStep(timeStep);
filter->SetConductanceParameter(1.0);
filter->Update();

The filter output is now cast tounsigned char RGB components by using the
itk::VectorCastImageFilter.

typedef itk::RGBPixel< unsigned char > WritePixelType;
typedef itk::Image< WritePixelType, 2 > WriteImageType;
typedef itk::VectorCastImageFilter<

InputImageType, WriteImageType > CasterType;
CasterType::Pointer caster = CasterType::New();

Finally, the writer type can be instantiated. One writer is created and connected to the output of
the cast filter.

typedef itk::ImageFileWriter< WriteImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
caster->SetInput(filter->GetOutput());
writer->SetInput(caster->GetOutput());
writer->SetFileName(argv[2]);
writer->Update();

Figure6.33illustrates the effect of this filter on a RGB image from a cryogenic section of the
Visible Woman data set. In this example the filter was run witha time step of 0.125, and 20
iterations. The input image has 570×670 pixels and the processing took 4 minutes on a Pentium
4 2Ghz.

http://www.itk.org/Doxygen/html/classitk_1_1VectorCastImageFilter.html

214 Chapter 6. Filtering

Figure 6.33:Effect of the VectorGradientAnisotropicDiffusionImageFilter on a RGB image from a cryo-

genic section of the Visible Woman data set.

Curvature Anisotropic Diffusion

The source code for this section can be found in the file
Examples/Filtering/RGBCurvatureAnisotropicDiffusionImageFilter.cxx.

The vector anisotropic diffusion approach can equally wellbe applied to color images. As in the
vector case, each RGB component is diffused independently.The following example illustrates
the use of theitk::VectorCurvatureAnisotropicDiffusionImageFilter on an image
with itk::RGBPixel type.

The first step required to use this filter is to include its header file.

#include "itkVectorCurvatureAnisotropicDiffusionImageFilter.h"

Also the headers forImage andRGBPixel type are required.

#include "itkRGBPixel.h"
#include "itkImage.h"

It is desirable to perform the computation on the RGB image using float representation. How-
ever for input and output purposesunsigned char RGB components are commonly used. It is
necessary to cast the type of color components in the pipeline before writing them to a file. The
itk::VectorCastImageFilter is used to achieve this goal.

http://www.itk.org/Doxygen/html/classitk_1_1VectorCurvatureAnisotropicDiffusionImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html
http://www.itk.org/Doxygen/html/classitk_1_1VectorCastImageFilter.html

6.7. Smoothing Filters 215

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkVectorCastImageFilter.h"

The image type is defined using the pixel type and the dimension.

typedef itk::RGBPixel< float > InputPixelType;
typedef itk::Image< InputPixelType, 2 > InputImageType;

The filter type is now instantiated and a filter object is created by theNew() method.

typedef itk::VectorCurvatureAnisotropicDiffusionImageFilter<
InputImageType, InputImageType > FilterType;

FilterType::Pointer filter = FilterType::New();

The input image can be obtained from the output of another filter. Here, an image reader is used
as source.

typedef itk::ImageFileReader< InputImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(argv[1]);
filter->SetInput(reader->GetOutput());

This filter requires two parameters, the number of iterations to be performed and the time step
used in the computation of the level set evolution. These parameters are set using the methods
SetNumberOfIterations() andSetTimeStep() respectively. The filter can be executed by
invokingUpdate().

filter->SetNumberOfIterations(numberOfIterations);
filter->SetTimeStep(timeStep);
filter->SetConductanceParameter(1.0);
filter->Update();

The filter output is now cast tounsigned char RGB components by using the VectorCastIm-
ageFilter

typedef itk::RGBPixel< unsigned char > WritePixelType;
typedef itk::Image< WritePixelType, 2 > WriteImageType;
typedef itk::VectorCastImageFilter<

InputImageType, WriteImageType > CasterType;
CasterType::Pointer caster = CasterType::New();

Finally, the writer type can be instantiated. One writer is created and connected to the output of
the cast filter.

216 Chapter 6. Filtering

Figure 6.34:Effect of the VectorCurvatureAnisotropicDiffusionImageFilter on a RGB image from a cryo-

genic section of the Visible Woman data set.

typedef itk::ImageFileWriter< WriteImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
caster->SetInput(filter->GetOutput());
writer->SetInput(caster->GetOutput());
writer->SetFileName(argv[2]);
writer->Update();

Figure6.34illustrates the effect of this filter on a RGB image from a cryogenic section of the
Visible Woman data set. In this example the filter was run witha time step of 0.125, and 20
iterations. The input image has 570×670 pixels and the processing took 4 minutes on a Pentium
4 at 2Ghz.

Figure6.35compares the effect of the gradient and curvature anisotropic diffusion filters on a
small region of the same cryogenic slice used in Figure6.34. The region used in this figure is
only 127×162 pixels and took 14 seconds to compute on the same platform.

6.8 Distance Map

The source code for this section can be found in the file
Examples/Filtering/DanielssonDistanceMapImageFilter.cxx.

This example illustrates the use of theitk::DanielssonDistanceMapImageFilter. This fil-
ter generates a distance map from the input image using the algorithm developed by Danielsson

http://www.itk.org/Doxygen/html/classitk_1_1DanielssonDistanceMapImageFilter.html

6.8. Distance Map 217

Figure 6.35:Comparison between the gradient (center) and curvature (right) Anisotropic Diffusion filters.

Original image at left.

[18]. As secondary outputs, a Voronoi partition of the input elements is produced, as well as a
vector image with the components of the distance vector to the closest point. The input to the
map is assumed to be a set of points on the input image. Each point/pixel is considered to be a
separate entity even if they share the same gray level value.

The first step required to use this filter is to include its header file.

#include "itkDanielssonDistanceMapImageFilter.h"

Then we must decide what pixel types to use for the input and output images. Since the output
will contain distances measured in pixels, the pixel type should be able to represent at least
the width of the image, or said inN−D terms, the maximum extension along all the dimen-
sions. The input and output image types are now defined using their respective pixel type and
dimension.

typedef unsigned char InputPixelType;
typedef unsigned short OutputPixelType;
typedef itk::Image< InputPixelType, 2 > InputImageType;
typedef itk::Image< OutputPixelType, 2 > OutputImageType;

The filter type can be instantiated using the input and outputimage types defined above. A filter
object is created with theNew() method.

typedef itk::DanielssonDistanceMapImageFilter<
InputImageType, OutputImageType > FilterType;

FilterType::Pointer filter = FilterType::New();

218 Chapter 6. Filtering

Figure 6.36:DanielssonDistanceMapImageFilter output. Set of pixels, distance map and Voronoi parti-

tion.

The input to the filter is taken from a reader and its output is passed to a
itk::RescaleIntensityImageFilter and then to a writer.

filter->SetInput(reader->GetOutput());
scaler->SetInput(filter->GetOutput());
writer->SetInput(scaler->GetOutput());

The type of input image has to be specified. In this case, a binary image is selected.

filter->InputIsBinaryOn();

Figure6.36illustrates the effect of this filter on a binary image with a set of points. The input
image is shown at left, the distance map at the center and the Voronoi partition at right. This
filter computes distance maps in N-dimensions and is therefore capable of producingN−D
Voronoi partitions.

The Voronoi map is obtained with theGetVoronoiMap() method. In the lines below we connect
this output to the intensity rescaler and save the result in afile.

scaler->SetInput(filter->GetVoronoiMap());
writer->SetFileName(voronoiMapFileName);
writer->Update();

The distance filter also produces an image ofitk::Offset pixels representing the vectorial
distance to the closest object in the scene. The type of this output image is defined by the
VectorImageType trait of the filter type.

typedef FilterType::VectorImageType OffsetImageType;

http://www.itk.org/Doxygen/html/classitk_1_1RescaleIntensityImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1Offset.html

6.8. Distance Map 219

We can use this type for instantiating anitk::ImageFileWriter type and creating an object
of this class in the following lines.

typedef itk::ImageFileWriter< OffsetImageType > WriterOffsetType;
WriterOffsetType::Pointer offsetWriter = WriterOffsetType::New();

The output of the distance filter can be connected as input to the writer.

offsetWriter->SetInput(filter->GetVectorDistanceMap());

Execution of the writer is triggered by the invocation of theUpdate() method. Since this
method can potentially throw exceptions it must be placed inatry/catch block.

try
{
offsetWriter->Update();
}

catch(itk::ExceptionObject exp)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << exp << std::endl;
}

Note that only theitk::MetaImageIO class supports reading and writing images of pixel type
itk::Offset.

The source code for this section can be found in the file
Examples/Filtering/SignedDanielssonDistanceMapImageFilter.cxx.

This example illustrates the use of theitk::SignedDanielssonDistanceMapImageFilter.
This filter generates a distance map by running Danielsson distance map twice, once on the
input image and once on the flipped image.

The first step required to use this filter is to include its header file.

#include "itkSignedDanielssonDistanceMapImageFilter.h"

Then we must decide what pixel types to use for the input and output images. Since the output
will contain distances measured in pixels, the pixel type should be able to represent at least
the width of the image, or said inN−D terms, the maximum extension along all the dimen-
sions. The input and output image types are now defined using their respective pixel type and
dimension.

typedef unsigned char InputPixelType;
typedef float OutputPixelType;

http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
http://www.itk.org/Doxygen/html/classitk_1_1MetaImageIO.html
http://www.itk.org/Doxygen/html/classitk_1_1Offset.html
http://www.itk.org/Doxygen/html/classitk_1_1SignedDanielssonDistanceMapImageFilter.html

220 Chapter 6. Filtering

Figure 6.37:SignedDanielssonDistanceMapImageFilter applied on a binary circle image. The intensity

has been rescaled for purposes of display.

const unsigned int Dimension = 2;

typedef itk::Image< InputPixelType, Dimension > InputImageType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;

The only change with respect to the previous example is to replace the DanielssonDis-
tanceMapImageFilter with the SignedDanielssonDistanceMapImageFilter

typedef itk::SignedDanielssonDistanceMapImageFilter<
InputImageType,
OutputImageType > FilterType;

FilterType::Pointer filter = FilterType::New();

The inside is considered as having negative distances. Outside is treated as having positive
distances. To change the convention, use the InsideIsPositive(bool) function.

Figure6.37illustrates the effect of this filter. The input image and thedistance map are shown.

6.9 Geometric Transformations

6.9.1 Filters You Should be Afraid to Use

6.9.2 Change Information Image Filter

This one is the scariest and more dangerous filter in the entire toolkit. You should not use this
filter unless you are entirely certain that you know what you are doing. In fact if you decide
to use this filter, you should write your code, then go for a long walk, get more coffee and ask

6.9. Geometric Transformations 221

yourself if you really needed to use this filter. If the answeris yes, then you should discuss this
issue with someone you trust and get his/her opinion in writing. In general, if you need to use
this filter, it means that you have a poor image provider that is putting your career at risk along
with the life of any potential patient whose images you may end up processing.

6.9.3 Flip Image Filter

The source code for this section can be found in the file
Examples/Filtering/FlipImageFilter.cxx.

The itk::FlipImageFilter is used for flipping the image content in any of the coordinate
axis. This filter must be used withEXTREME caution. You probably don’t want to appear
in the newspapers as the responsible of a surgery mistake in which a doctor extirpates the left
kidney when it should have extracted the right one3 . If that prospect doesn’t scares you, maybe
it is time for you to reconsider your career in medical image processing. Flipping effects that
may seem innocuous at first view may still have dangerous consequences. For example flipping
the cranio-caudal axis of a CT scans forces an observer to flipthe left-right axis in order to make
sense of the image.

The header file corresponding to this filter should be included first.

#include "itkFlipImageFilter.h"

Then the pixel types for input and output image must be definedand, with them, the image types
can be instantiated.

typedef unsigned char PixelType;

typedef itk::Image< PixelType, 2 > ImageType;

Using the image types it is now possible to instantiate the filter type and create the filter object.

typedef itk::FlipImageFilter< ImageType > FilterType;

FilterType::Pointer filter = FilterType::New();

The axis to flip are specified in the form of an Array. In this case we take them from the
command line arguments.

typedef FilterType::FlipAxesArrayType FlipAxesArrayType;

3Wrong sidesurgery accounts for 2% of the reported medical errors in theUnited States. Trivial... but equally
dangerous.

http://www.itk.org/Doxygen/html/classitk_1_1FlipImageFilter.html

222 Chapter 6. Filtering

Figure 6.38:Effect of the FlipImageFilter on a slice from a MRI proton density brain image.

FlipAxesArrayType flipArray;

flipArray[0] = atoi(argv[3]);
flipArray[1] = atoi(argv[4]);

filter->SetFlipAxes(flipArray);

The input to the filter can be taken from any other filter, for example a reader. The output
can be passed down the pipeline to other filters, for example,a writer. An update call on any
downstream filter will trigger the execution of the mean filter.

filter->SetInput(reader->GetOutput());
writer->SetInput(filter->GetOutput());
writer->Update();

Figure6.38illustrates the effect of this filter on a slice of MRI brain image using a flip array
[0,1] which means that theY axis was flipped while theX axis was conserved.

6.9.4 Resample Image Filter

Introduction

The source code for this section can be found in the file
Examples/Filtering/ResampleImageFilter.cxx.

6.9. Geometric Transformations 223

Resampling an image is a very important task in image analysis. It is especially important in the
frame of image registration. Theitk::ResampleImageFilter implements image resampling
through the use ofitk::Transforms. The inputs expected by this filter are an image, a trans-
form and an interpolator. The space coordinates of the imageare mapped through the transform
in order to generate a new image. The extent and spacing of theresulting image are selected by
the user. Resampling is performed in space coordinates, notpixel/grid coordinates. It is quite
important to ensure that image spacing is properly set on theimages involved. The interpolator
is required since the mapping from one space to the other willoften require evaluation of the
intensity of the image at non-grid positions.

The header file corresponding to this filter should be included first.

#include "itkResampleImageFilter.h"

The header files corresponding to the transform and interpolator must also be included.

#include "itkAffineTransform.h"
#include "itkNearestNeighborInterpolateImageFunction.h"

The dimension and pixel types for input and output image mustbe defined and with them the
image types can be instantiated.

const unsigned int Dimension = 2;
typedef unsigned char InputPixelType;
typedef unsigned char OutputPixelType;
typedef itk::Image< InputPixelType, Dimension > InputImageType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;

Using the image and transform types it is now possible to instantiate the filter type and create
the filter object.

typedef itk::ResampleImageFilter<InputImageType,OutputImageType> FilterType;
FilterType::Pointer filter = FilterType::New();

The transform type is typically defined using the image dimension and the type used for repre-
senting space coordinates.

typedef itk::AffineTransform< double, Dimension > TransformType;

An instance of the transform object is instantiated and passed to the resample filter. By default,
the parameters of transform is set to represent the identitytransform.

TransformType::Pointer transform = TransformType::New();
filter->SetTransform(transform);

http://www.itk.org/Doxygen/html/classitk_1_1ResampleImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1Transform.html

224 Chapter 6. Filtering

The interpolator type is defined using the full image type andthe type used for representing
space coordinates.

typedef itk::NearestNeighborInterpolateImageFunction<
InputImageType, double > InterpolatorType;

An instance of the interpolator object is instantiated and passed to the resample filter.

InterpolatorType::Pointer interpolator = InterpolatorType::New();
filter->SetInterpolator(interpolator);

Given that some pixels of the output image may end up being mapped outside the extent of the
input image it is necessary to decide what values to assign tothem. This is done by invoking
theSetDefaultPixelValue() method.

filter->SetDefaultPixelValue(0);

The sampling grid of the output space is specified with the spacing along each dimension and
the origin.

double spacing[Dimension];
spacing[0] = 1.0; // pixel spacing in millimeters along X
spacing[1] = 1.0; // pixel spacing in millimeters along Y

filter->SetOutputSpacing(spacing);

double origin[Dimension];
origin[0] = 0.0; // X space coordinate of origin
origin[1] = 0.0; // Y space coordinate of origin

filter->SetOutputOrigin(origin);

The extent of the sampling grid on the output image is defined by a SizeType and is set using
theSetSize() method.

InputImageType::SizeType size;

size[0] = 300; // number of pixels along X
size[1] = 300; // number of pixels along Y

filter->SetSize(size);

The input to the filter can be taken from any other filter, for example a reader. The output
can be passed down the pipeline to other filters, for example awriter. An update call on any
downstream filter will trigger the execution of the resampling filter.

6.9. Geometric Transformations 225

Figure 6.39:Effect of the resample filter.

filter->SetInput(reader->GetOutput());
writer->SetInput(filter->GetOutput());
writer->Update();

Figure6.39 illustrates the effect of this filter on a slice of MRI brain image using an affine
transform containing an identity transform. Note that any analysis of the behavior of this filter
must be done on the space coordinate system in millimeters, not with respect to the sampling
grid in pixels. The figure shows the resulting image in the lower left quarter of the extent. This
may seem odd if analyzed in terms of the image grid but is quiteclear when seen with respect
to space coordinates. Figure6.39is particularly misleading because the images are rescaledto
fit nicely on the text of this book. Figure6.40clarifies the situation. It shows the two same
images placed on a equally scaled coordinate system. It becomes clear here that an identity
transform is being used to map the image data, and that simply, we have requested to resample
additional empty space around the image. The input image is 181×217 pixels in size and we
have requested an output of 300× 300 pixels. In this case, the input and output images both
have spacing of 1mm×1mmand origin of(0.0,0.0).

Let’s now set values on the transform. Note that the suppliedtransform represents the mapping
of points from the output space to the input space. The following code sets up a translation.

TransformType::OutputVectorType translation;
translation[0] = -30; // X translation in millimeters
translation[1] = -50; // Y translation in millimeters
transform->Translate(translation);

226 Chapter 6. Filtering

0 10050 150 200

0

50

100

150

200

250

300

Identity
Transform

0 10050 150 200 250 300

0

50

100

150

200

250

300

Input Image Resampled Image

300 x 300 pixels

181 x 217 pixels

Figure 6.40:Analysis of the resample image done in a common coordinate system.

Figure 6.41:ResampleImageFilter with a translation by (−30,−50).

6.9. Geometric Transformations 227

0 10050 150 200

0

50

100

150

200

250

300

0 10050 150 200 250 300

0

50

100

150

200

250

300

Translation
Transform

Input Image Resampled Image

300 x 300 pixels

181 x 217 pixels

(105,188)

(75,138)

T={−30,−50}

Figure 6.42:ResampleImageFilter. Analysis of a translation by (−30,−50).

The output image resulting from the translation can be seen in Figure6.41. Again, it is better to
interpret the result in a common coordinate system as illustrated in Figure6.42.

Probably the most important thing to keep in mind when resampling images is that the transform
is used to map points from theoutput image space into theinput image space. In this case,
Figure6.42 shows that the translation is applied to every point of the output image and the
resulting position is used to read the intensity from the input image. In this way, the gray level
of the pointP in the output image is taken from the pointT(P) in the input image. WhereT is
the transformation. In the specific case of the Figure6.42, the value of point(105,188) in the
output image is taken from the point(75,138) of the input image because the transformation
applied was a translation of(−30,−50).

It is sometimes useful to intentionally set the default output value to a distinct gray value in
order to highlight the mapping of the image borders. For example, the following code sets the
default external value of 100. The result is shown in the right side of Figure6.43

filter->SetDefaultPixelValue(100);

With this change we can better appreciate the effect of the previous translation transform on the
image resampling. Figure6.43illustrates how the point(30,50) of the output image gets its
gray value from the point(0,0) of the input image.

228 Chapter 6. Filtering

0 10050 150 200

0

50

100

150

200

250

300

0 10050 150 200 250 300

0

50

100

150

200

250

300

Translation
Transform

Input Image Resampled Image

300 x 300 pixels

181 x 217 pixels
T={−30,−50}

(0,0)

(30,50)

Figure 6.43:ResampleImageFilter highlighting image borders with SetDefaultPixelValue().

Importance of Spacing and Origin

The source code for this section can be found in the file
Examples/Filtering/ResampleImageFilter2.cxx.

During the computation of the resampled image all the pixelsin the output region are visited.
This visit is performed usingImageIterators which walk in the integer grid-space of the
image. For each pixel, we need to convert grid position to space coordinates using the image
spacing and origin.

For example, the pixel of indexI = (20,50) in an image of originO = (19.0,29.0) and pixel
spacingS= (1.3,1.5) corresponds to the spatial position

P[i] = I [i]×S[i]+O[i] (6.20)

which in this case leads toP = (20×1.3+19.0,50×1.5+29.0) and finallyP = (45.0,104.0)

The space coordinates ofP are mapped using the transformT supplied to the
itk::ResampleImageFilter in order to map the pointP to the input image space point
Q = T(P).

The whole process is illustrated in Figure6.44. In order to correctly interpret the process of the
ResampleImageFilter you should be aware of the origin and spacing settings of both the input
and output images.

In order to facilitate the interpretation of the transform we set the default pixel value to a distinct
from the image background.

http://www.itk.org/Doxygen/html/classitk_1_1ResampleImageFilter.html

6.9. Geometric Transformations 229

filter->SetDefaultPixelValue(50);

Let’s set up a uniform spacing for the output image.

double spacing[Dimension];
spacing[0] = 1.0; // pixel spacing in millimeters along X
spacing[1] = 1.0; // pixel spacing in millimeters along Y

filter->SetOutputSpacing(spacing);

Additionally, we will specify a non-zero origin. Note that the values provided here will be those
of the space coordinates for the pixel of index(0,0).

double origin[Dimension];
origin[0] = 30.0; // X space coordinate of origin
origin[1] = 40.0; // Y space coordinate of origin
filter->SetOutputOrigin(origin);

We set the transform to identity in order to better appreciate the effect of the origin selection.

transform->SetIdentity();
filter->SetTransform(transform);

The output resulting from these filter settings is analyzed in Figure6.44

In the figure, the output image point with indexI = (0,0) has space coordinatesP = (30,40).
The identity transform maps this point toQ = (30,40) in the input image space. Because the
input image in this case happens to have spacing(1.0,1.0) and origin(0.0,0.0), the physical
pointQ = (30,40) maps to the pixel with indexI = (30,40).

The code for a different selection of origin and image size isillustrated below. The resulting
output is presented in Figure6.45

size[0] = 150; // number of pixels along X
size[1] = 200; // number of pixels along Y
filter->SetSize(size);

origin[0] = 60.0; // X space coordinate of origin
origin[1] = 30.0; // Y space coordinate of origin
filter->SetOutputOrigin(origin);

The output image point with indexI = (0,0) now has space coordinatesP = (60,30). The
identity transform maps this point toQ = (60,30) in the input image space. Because the input

230 Chapter 6. Filtering

0 10050 150 200

0

50

100

150

200

250

300

0 10050 150 200 250 300

0

50

100

150

200

250

300

Identity
Transform

Resampled ImageInput Image

DefaultPixelValue

Origin=(30,40)
Index=(0,0)Index=(0,0)

Origin=(0,0)

Size=181x217 Spacing=(1.0,1.0)

Size=300x300 Spacing=(1.0,1.0)

Figure 6.44:ResampleImageFilter selecting the origin of the output image.

0 10050 150 200

0

50

100

150

200

250

300

0 10050 150 200 250 300

0

50

100

150

200

250

300

Identity
Transform

Resampled ImageInput Image

Origin=(0,0)
Index=(0,0)

Origin=(60,30)
Index=(0,0)

Size=150x200

Size=181x217

Spacing=(1.0,1.0)

Spacing=(1.0,1.0)
DefaultPixelValue

Figure 6.45:ResampleImageFilter selecting the origin of the output image.

6.9. Geometric Transformations 231

0 10050 150 200

0

50

100

150

200

250

300

0 10050 150 200 250 300

0

50

100

150

200

250

300

Identity
Transform

Resampled ImageInput Image

Spacing=(1.0,1.0)

Index=(0,0)
Origin=(50,70)

Index=(0,0)

Origin=(60,30)

DefaultPixelValue

I=(56,120)I=(66,80)

Spacing=(1.0,1.0)

Size=181x217

Size=150x200

Figure 6.46:Effect of selecting the origin of the input image with ResampleImageFilter.

image in this case happens to have spacing(1.0,1.0) and origin(0.0,0.0), the physical point
Q = (60,30) maps to the pixel with indexI = (60,30).

Let’s now analyze the effect of a non-zero origin in the inputimage. Keeping the output image
settings of the previous example, we modify only the origin values on the file header of the
input image. The new origin assigned to the input image isO= (50,70). An identity transform
is still used as input for the ResampleImageFilter. The result of executing the filter with these
parameters is presented in Figure6.46

The pixel with indexI = (56,120) on the output image has coordinatesP= (116,150) in phys-
ical space. The identity transform mapsP to the pointQ= (116,150) on the input image space.
The coordinates ofQ are associated with the pixel of indexI = (66,80) on the input image.

Now consider the effect of the output spacing on the process of image resampling. In order to
simplify the analysis, let’s put the origin back to zero in both the input and output images.

origin[0] = 0.0; // X space coordinate of origin
origin[1] = 0.0; // Y space coordinate of origin
filter->SetOutputOrigin(origin);

We then specify a non-unit spacing for the output image.

spacing[0] = 2.0; // pixel spacing in millimeters along X
spacing[1] = 3.0; // pixel spacing in millimeters along Y
filter->SetOutputSpacing(spacing);

Additionally, we reduce the output image extent, since the new pixels are now covering a larger
area of 2.0mm×3.0mm.

232 Chapter 6. Filtering

Figure 6.47:Resampling with different spacing seen by a naive viewer (center) and a correct viewer

(right), input image (left).

size[0] = 80; // number of pixels along X
size[1] = 50; // number of pixels along Y
filter->SetSize(size);

With these new parameters the physical extent of the output image is 160 millimeters by 150
millimeters.

Before attempting to analyze the effect of the resampling image filter it is important to make
sure that the image viewer used to display the input and output images take the spacing into
account and use it to appropriately scale the images on the screen. Please note that images in
formats like PNG are not capable of representing origin and spacing. The toolkit assume trivial
default values for them. Figure6.47(center) illustrates the effect of using a naive viewer that
does not take pixel spacing into account. A correct display is presented at the right in the same
figure4.

The filter output is analyzed in a common coordinate system with the input from Figure6.48.
In this figure, pixelI = (33,27) of the output image is located at coordinatesP = (66.0,81.0)
of the physical space. The identity transform maps this point to Q = (66.0,81.0) in the input
image physical space. The pointQ is then associated to the pixel of indexI = (66,81) on the
input image, because this image has zero origin and unit spacing.

The input image spacing is also an important factor in the process of resampling an image.
The following example illustrates the effect of non-unit pixel spacing on the input image. An
input image similar to the those used in Figures6.44to 6.48has been resampled to have pixel
spacing of 2mm×3mm. The input image is presented in Figure6.49as viewed with a naive
image viewer (left) and with a correct image viewer (right).

The following code is used to transform this non-unit spacing input image into another non-unit

4A viewer is provided with ITK under the name of MetaImageViewer. This viewer takes into account pixel spacing.

6.9. Geometric Transformations 233

0 10050 150 200

0

50

100

150

200

250

300

0 10050 150 200 250 300

0

50

100

150

200

250

300

Identity
Transform

Resampled ImageInput Image

Spacing=(1.0,1.0)

Size=181x217

Spacing=(2.0,3.0)

Size=80x50

Physical extent=(181.0,217.0) Physical extent=(160.0,150.0)

I=(66,81)
Q=(66.0,81.0)

I=(33,27)

P=(66.0,81.0)

Figure 6.48:Effect of selecting the spacing on the output image.

Figure 6.49:Input image with 2×3mm spacing as seen with a naive viewer (left) and a correct viewer

(right).

234 Chapter 6. Filtering

spacing image located at a non-zero origin. The comparison between input and output in a
common reference system is presented in figure6.50.

Here we start by selecting the origin of the output image.

origin[0] = 25.0; // X space coordinate of origin
origin[1] = 35.0; // Y space coordinate of origin
filter->SetOutputOrigin(origin);

We then select the number of pixels along each dimension.

size[0] = 40; // number of pixels along X
size[1] = 45; // number of pixels along Y
filter->SetSize(size);

Finally, we set the output pixel spacing.

spacing[0] = 4.0; // pixel spacing in millimeters along X
spacing[1] = 4.5; // pixel spacing in millimeters along Y
filter->SetOutputSpacing(spacing);

Figure6.50shows the analysis of the filter output under these conditions. First, notice that the
origin of the output image corresponds to the settingsO = (25.0,35.0) millimeters, spacing
(4.0,4.5) millimeters and size(40,45) pixels. With these parameters the pixel of indexI =
(10,10) in the output image is associated with the spatial point of coordinatesP = (10×4.0+
25.0,10×4.5+35.0)) = (65.0,80.0). This point is mapped by the transform—identity in this
particular case—to the pointQ = (65.0,80.0) in the input image space. The pointQ is then
associated with the pixel of indexI = ((65.0− 0.0)/2.0− (80.0− 0.0)/3.0) = (32.5,26.6).
Note that the index does not fall on grid position, for this reason the value to be assigned to
the output pixel is computed by interpolating values on the input image around the non-integer
indexI = (32.5,26.6).

Note also that the discretization of the image is more visible on the output presented on the right
side of Figure6.50due to the choice of a low resolution—just 40×45 pixels.

A Complete Example

The source code for this section can be found in the file
Examples/Filtering/ResampleImageFilter3.cxx.

Previous examples have described the basic principles behind the
itk::ResampleImageFilter. Now it’s time to have some fun with it.

Figure6.52illustrates the general case of the resampling process. Theorigin and spacing of
the output image has been selected to be different from thoseof the input image. The circles

http://www.itk.org/Doxygen/html/classitk_1_1ResampleImageFilter.html

6.9. Geometric Transformations 235

0 10050 150 200

0

50

100

150

200

250

300

0 10050 150 200 250 300

0

50

100

150

200

250

300

Identity
Transform

Size=40x45

Spacing=(4.0,4.5)

Physical extent=(160.0,202.5)

Size=90x72

Spacing=(2.0,3.0)

Physical extent=(180.0,216.0)

Resampled ImageInput Image

I=(10,10)

P=(65.0,80.0)

Q=(65.0,80.0)
I=(32.5,26.6) Origin=(25.0,35.0)

Figure 6.50:Effect of non-unit spacing on the input and output images.

represent thecenterof pixels. They are inscribed in a rectangle representing the coverageof
this pixel. The spacing specifies the distance between pixelcenters along every dimension.

The transform applied is a rotation of 30 degrees. It is important to note here that the transform
supplied to theitk::ResampleImageFilter is a clockwiserotation. This transform rotates
the coordinate systemof the output image 30 degrees clockwise. When the two imagesare
relocated in a common coordinate system—as in Figure6.52—the result is that the frame of
the output image appears rotated 30 degreesclockwise. If the output image is seen with its
coordinate system vertically aligned—as in Figure6.51—the image content appears rotated 30
degreescounter-clockwise. Before continuing to read this section, you may want to meditate a
bit on this fact while enjoying a cup of (Columbian) coffee.

The following code implements the conditions illustrated in Figure6.52with the only difference
of the output spacing being 40 times smaller and a number of pixels 40 times larger in both
dimensions. Without these changes, few detail will be recognizable on the images. Note that
the spacing and origin of the input image should be prepared in advance by using other means
since this filter cannot alter in any way the actual content ofthe input image.

In order to facilitate the interpretation of the transform we set the default pixel value to value
distinct from the image background.

filter->SetDefaultPixelValue(100);

The spacing is selected here to be 40 times smaller than the one illustrated in Figure6.52.

double spacing[Dimension];

http://www.itk.org/Doxygen/html/classitk_1_1ResampleImageFilter.html

236 Chapter 6. Filtering

Figure 6.51:Effect of a rotation on the resampling filter. Input image at left, output image at right.

0 10050 150 200

0

50

100

150

200

250

300

0 10050 150 200 250 300

0

50

100

150

200

250

300

30.0

20.0

Size=5x4

Spacing=(40.0, 30.0)

Physical extent=(200.0, 120.0)

Size=7x6

Spacing=(20.0, 30.0)

Physical extent=(140.0, 180.0)

Rotation 30
Transform

Resampled ImageInput Image

Origin=(60.0,70.0) Origin=(50.0,130.0)

30.0

40.0

Figure 6.52:Input and output image placed in a common reference system.

6.9. Geometric Transformations 237

spacing[0] = 40.0 / 40.0; // pixel spacing in millimeters along X
spacing[1] = 30.0 / 40.0; // pixel spacing in millimeters along Y
filter->SetOutputSpacing(spacing);

Let us now set up the origin of the output image. Note that the values provided here will be
those of the space coordinates for the output image pixel of index(0,0).

double origin[Dimension];
origin[0] = 50.0; // X space coordinate of origin
origin[1] = 130.0; // Y space coordinate of origin
filter->SetOutputOrigin(origin);

The output image size is defined to be 40 times the one illustrated on the Figure6.52.

InputImageType::SizeType size;
size[0] = 5 * 40; // number of pixels along X
size[1] = 4 * 40; // number of pixels along Y
filter->SetSize(size);

Rotations are performed around the origin of physical coordinates—not the image origin nor the
image center. Hence, the process of positioning the output image frame as it is shown in Figure
6.52requires three steps. First, the image origin must be moved to the origin of the coordinate
system, this is done by applying a translation equal to the negative values of the image origin.

TransformType::OutputVectorType translation1;
translation1[0] = -origin[0];
translation1[1] = -origin[1];
transform->Translate(translation1);

In a second step, a rotation of 30 degrees is performed. In theitk::AffineTransform, angles
are specified inradians. Also, a second boolean argument is used to specify if the current mod-
ification of the transform should be pre-composed or post-composed with the current transform
content. In this case the argument is set tofalse to indicate that the rotation should be applied
after the current transform content.

const double degreesToRadians = atan(1.0) / 45.0;
transform->Rotate2D(-30.0 * degreesToRadians, false);

The third and final step implies translating the image originback to its previous location. This
is be done by applying a translation equal to the origin values.

TransformType::OutputVectorType translation2;
translation2[0] = origin[0];
translation2[1] = origin[1];
transform->Translate(translation2, false);
filter->SetTransform(transform);

http://www.itk.org/Doxygen/html/classitk_1_1AffineTransform.html

238 Chapter 6. Filtering

Figure6.51presents the actual input and output images of this example as shown by a correct
viewer which takes spacing into account. Note theclockwiseversuscounter-clockwiseeffect
discussed previously between the representation in Figure6.52and Figure6.51.

As a final exercise, let’s track the mapping of an individual pixel. Keep in mind that the trans-
formation is initiated by walking through the pixels of theoutputimage. This is the only way
to ensure that the image will be generated without holes or redundant values. When you think
about transformation it is always useful to analyze things from the output image towards the
input image.

Let’s take the pixel with indexI = (1,2) from the output image. The physical coordinates of
this point in the output image reference system areP = (1×40.0+ 50.0,2×30.0+ 130.0)=
(90.0,190.0) millimeters.

This pointP is now mapped through theitk::AffineTransform into the input image space.
The operation requires to subtract the origin, apply a 30 degrees rotation and add the origin back.
Let’s follow those steps. Subtracting the origin fromP leads toP1 = (40.0,60.0), the rotation
mapsP1 to P2 = (40.0×cos(30.0)+60.0×sin(30.0),40.0×sin(30.0)−60.0×cos(30.0))=
(64.64,31.96). Finally this point is translated back by the amount of the image origin. This
movesP2 toP3 = (114.64,161.96).

The pointP3 is now in the coordinate system of the input image. The pixelof the input image
associated with this physical position is computed using the origin and spacing of the input
image.I = ((114.64−60.0)/20.0,(161−70.0)/30.0) which results inI = (2.7,3.0). Note that
this is a non-grid position since the values are non-integers. This means that the gray value to
be assigned to the output image pixelI = (1,2) must be computed by interpolation of the input
image values.

In this particular code the interpolator used is simply a
itk::NearestNeighborInterpolateImageFunction which will assign the value of
the closest pixel. This ends up being the pixel of indexI = (3,3) and can be seen from Figure
6.52.

Rotating an Image

The source code for this section can be found in the file
Examples/Filtering/ResampleImageFilter4.cxx.

The following example illustrates how to rotate an image around its center. In this particular
case anitk::AffineTransform is used to map the input space into the output space.

The header of the affine transform is included below.

#include "itkAffineTransform.h"

The transform type is instantiated using the coordinate representation type and the space di-
mension. Then a transform object is constructed with the New() method and passed to a

http://www.itk.org/Doxygen/html/classitk_1_1AffineTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1NearestNeighborInterpolateImageFunction.html
http://www.itk.org/Doxygen/html/classitk_1_1AffineTransform.html

6.9. Geometric Transformations 239

Figure 6.53:Effect of the resample filter rotating an image.

itk::SmartPointer.

typedef itk::AffineTransform< double, Dimension > TransformType;
TransformType::Pointer transform = TransformType::New();

The parameters of the output image are taken from the input image.

reader->Update();
const InputImageType::SpacingType&
spacing = reader->GetOutput()->GetSpacing();

const InputImageType::PointType&
origin = reader->GetOutput()->GetOrigin();

InputImageType::SizeType size =
reader->GetOutput()->GetLargestPossibleRegion().GetSize();

filter->SetOutputOrigin(origin);
filter->SetOutputSpacing(spacing);
filter->SetSize(size);

Rotations are performed around the origin of physical coordinates—not the image origin nor the
image center. Hence, the process of positioning the output image frame as it is shown in Figure
6.53requires three steps. First, the image origin must be moved to the origin of the coordinate
system, this is done by applying a translation equal to the negative values of the image origin.

TransformType::OutputVectorType translation1;

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

240 Chapter 6. Filtering

const double imageCenterX = origin[0] + spacing[0] * size[0] / 2.0;
const double imageCenterY = origin[1] + spacing[1] * size[1] / 2.0;

translation1[0] = -imageCenterX;
translation1[1] = -imageCenterY;

transform->Translate(translation1);

In a second step, the rotation is specified using the methodRotate2D().

const double degreesToRadians = atan(1.0) / 45.0;
const double angle = angleInDegrees * degreesToRadians;
transform->Rotate2D(-angle, false);

The third and final step requires translating the image origin back to its previous location. This
is be done by applying a translation equal to the origin values.

TransformType::OutputVectorType translation2;
translation2[0] = imageCenterX;
translation2[1] = imageCenterY;
transform->Translate(translation2, false);
filter->SetTransform(transform);

The output of the resampling filter is connected to a writer and the execution of the pipeline is
triggered by a writer update.

try
{
writer->Update();
}

catch(itk::ExceptionObject & excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}

Rotating and Scaling an Image

The source code for this section can be found in the file
Examples/Filtering/ResampleImageFilter5.cxx.

This example illustrates the use of theitk::Similarity2DTransform. A similarity transform
involves rotation, translation and scaling. Since the parameterization of rotations is difficult to
get in a genericND case, a particular implementation is available for 2D.

The header file of the transform is included below.

http://www.itk.org/Doxygen/html/classitk_1_1Similarity2DTransform.html

6.9. Geometric Transformations 241

#include "itkSimilarity2DTransform.h"

The transform type is instantiated using the coordinate representation type as the single template
parameter.

typedef itk::Similarity2DTransform< double > TransformType;

A transform object is constructed by callingNew() and passing the result to a
itk::SmartPointer.

TransformType::Pointer transform = TransformType::New();

The parameters of the output image are taken from the input image.

The Similarity2DTransform allows the user to select the center of rotation. This center is used
for both rotation and scaling operations.

TransformType::InputPointType rotationCenter;
rotationCenter[0] = origin[0] + spacing[0] * size[0] / 2.0;
rotationCenter[1] = origin[1] + spacing[1] * size[1] / 2.0;
transform->SetCenter(rotationCenter);

The rotation is specified with the methodSetAngle().

const double degreesToRadians = atan(1.0) / 45.0;
const double angle = angleInDegrees * degreesToRadians;
transform->SetAngle(angle);

The scale change is defined using the methodSetScale().

transform->SetScale(scale);

A translation to be applied after the rotation and scaling can be specified with the method
SetTranslation().

TransformType::OutputVectorType translation;

translation[0] = 13.0;
translation[1] = 17.0;

transform->SetTranslation(translation);

filter->SetTransform(transform);

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

242 Chapter 6. Filtering

Figure 6.54:Effect of the resample filter rotating and scaling an image.

Note that the order in which rotation, scaling and translation are defined is irrelevant in this
transform. This is not the case in the Affine transform which is very generic and allow different
combinations for initialization. In the Similarity2DTransform class the rotation and scaling will
always be applied before the translation.

Figure6.54shows the effect of this rotation, translation and scaling on a slice of a brain MRI.
The scale applied for producing this figure was 1.2 and the rotation angle was 10◦.

Resampling using a deformation field

The source code for this section can be found in the file
Examples/Filtering/WarpImageFilter1.cxx.

This example illustrates how to use the WarpImageFilter anda deformation field for resampling
an image. This is typically done as the last step of a deformable registration algorithm.

#include "itkWarpImageFilter.h"
#include "itkLinearInterpolateImageFunction.h"

The deformation field is represented as an image of vector pixel types. The dimension of the
vectors is the same as the dimension of the input image. Each vector in the deformation field
represents the distance between a geometric point in the input space and a point in the output
space such that:

pin = pout +distance (6.21)

6.9. Geometric Transformations 243

typedef float VectorComponentType;
typedef itk::Vector< VectorComponentType, Dimension > VectorPixelType;
typedef itk::Image< VectorPixelType, Dimension > DeformationFieldType;

typedef unsigned char PixelType;
typedef itk::Image< PixelType, Dimension > ImageType;

The field is read from a file, through a reader instantiated over the vector pixel types.

typedef itk::ImageFileReader< DeformationFieldType > FieldReaderType;

FieldReaderType::Pointer fieldReader = FieldReaderType::New();
fieldReader->SetFileName(argv[2]);
fieldReader->Update();

DeformationFieldType::ConstPointer deformationField = fieldReader->GetOutput();

The itk::WarpImageFilter is templated over the input image type, output image type and
the deformation field type.

typedef itk::WarpImageFilter< ImageType,
ImageType,
DeformationFieldType > FilterType;

FilterType::Pointer filter = FilterType::New();

Typically the mapped position does not correspond to an integer pixel position in the input
image. Interpolation via an image function is used to compute values at non-integer positions.
This is done via theSetInterpolator() method.

typedef itk::LinearInterpolateImageFunction<
ImageType, double > InterpolatorType;

InterpolatorType::Pointer interpolator = InterpolatorType::New();

filter->SetInterpolator(interpolator);

The output image spacing and origin may be set via SetOutputSpacing(), SetOutputOrigin().
This is taken from the deformation field.

filter->SetOutputSpacing(deformationField->GetSpacing());
filter->SetOutputOrigin(deformationField->GetOrigin());

filter->SetDeformationField(deformationField);

http://www.itk.org/Doxygen/html/classitk_1_1WarpImageFilter.html

244 Chapter 6. Filtering

Subsampling and image in the same space

The source code for this section can be found in the file
Examples/Filtering/SubsampleVolume.cxx.

This example illustrates how to perform subsampling of a volume using ITK classes. In order
to avoid aliasing artifacts, the volume must be processed bya low-pass filter before resampling.
Here we use theitk::RecursiveGaussianImageFilter as low-pass filter. The image is then
resampled by using three different factors, one per dimension of the image.

The most important headers to include here are the ones corresponding to the resampling image
filter, the transform, the interpolator and the smoothing filter.

#include "itkResampleImageFilter.h"
#include "itkIdentityTransform.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkRecursiveGaussianImageFilter.h"

We explicitly instantiate the pixel type and dimension of the input image, and the images that
will be used internally for computing the resampling.

const unsigned int Dimension = 3;

typedef unsigned char InputPixelType;

typedef float InternalPixelType;
typedef unsigned char OutputPixelType;

typedef itk::Image< InputPixelType, Dimension > InputImageType;
typedef itk::Image< InternalPixelType, Dimension > InternalImageType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;

In this particular case we take the factors for resampling directly from the command line argu-
ments.

const double factorX = atof(argv[3]);
const double factorY = atof(argv[4]);
const double factorZ = atof(argv[5]);

A casting filter is instantiated in order to convert the pixeltype of the input image into the pixel
type desired for computing the resampling.

typedef itk::CastImageFilter< InputImageType,
InternalImageType > CastFilterType;

http://www.itk.org/Doxygen/html/classitk_1_1RecursiveGaussianImageFilter.html

6.9. Geometric Transformations 245

CastFilterType::Pointer caster = CastFilterType::New();

caster->SetInput(inputImage);

The smoothing filter of choice is theRecursiveGaussianImageFilter. We create three of
them in order to have the freedom of performing smoothing with different Sigma values along
each dimension.

typedef itk::RecursiveGaussianImageFilter<
InternalImageType,
InternalImageType > GaussianFilterType;

GaussianFilterType::Pointer smootherX = GaussianFilterType::New();
GaussianFilterType::Pointer smootherY = GaussianFilterType::New();
GaussianFilterType::Pointer smootherZ = GaussianFilterType::New();

The smoothing filters are connected in a cascade in the pipeline.

smootherX->SetInput(caster->GetOutput());
smootherY->SetInput(smootherX->GetOutput());
smootherZ->SetInput(smootherY->GetOutput());

The Sigma values to use in the smoothing filters is computed based on the pixel spacings of the
input image and the factors provided as arguments.

const InputImageType::SpacingType& inputSpacing = inputImage->GetSpacing();

const double sigmaX = inputSpacing[0] * factorX;
const double sigmaY = inputSpacing[1] * factorY;
const double sigmaZ = inputSpacing[2] * factorZ;

smootherX->SetSigma(sigmaX);
smootherY->SetSigma(sigmaY);
smootherZ->SetSigma(sigmaZ);

We instruct each one of the smoothing filters to act along a particular direction of the image,
and set them to use normalization across scale space in orderto prevent for the reduction of
intensity that accompanies the diffusion process associated with the Gaussian smoothing.

smootherX->SetDirection(0);
smootherY->SetDirection(1);
smootherZ->SetDirection(2);

smootherX->SetNormalizeAcrossScale(false);
smootherY->SetNormalizeAcrossScale(false);
smootherZ->SetNormalizeAcrossScale(false);

246 Chapter 6. Filtering

The type of the resampling filter is instantiated using the internal image type and the output
image type.

typedef itk::ResampleImageFilter<
InternalImageType, OutputImageType > ResampleFilterType;

ResampleFilterType::Pointer resampler = ResampleFilterType::New();

Since the resampling is performed in the same physical extent of the input image, we select the
IdentityTransform as the one to be used by the resampling filter.

typedef itk::IdentityTransform< double, Dimension > TransformType;

TransformType::Pointer transform = TransformType::New();
transform->SetIdentity();
resampler->SetTransform(transform);

The Linear interpolator is selected given that it provides agood run-time perfor-
mance. For applications that require better precision you may want to replace this in-
terpolator with the itk::BSplineInterpolateImageFunction interpolator or with the
itk::WindowedSincInterpolateImageFunction interpolator.

typedef itk::LinearInterpolateImageFunction<
InternalImageType, double > InterpolatorType;

InterpolatorType::Pointer interpolator = InterpolatorType::New();

resampler->SetInterpolator(interpolator);

The spacing to be used in the grid of the resampled image is computed using the input image
spacing and the factors provided in the command line arguments.

OutputImageType::SpacingType spacing;

spacing[0] = inputSpacing[0] * factorX;
spacing[1] = inputSpacing[1] * factorY;
spacing[2] = inputSpacing[2] * factorZ;

resampler->SetOutputSpacing(spacing);

The origin of the input image is preserved and passed to the output image.

resampler->SetOutputOrigin(inputImage->GetOrigin());

http://www.itk.org/Doxygen/html/classitk_1_1BSplineInterpolateImageFunction.html
http://www.itk.org/Doxygen/html/classitk_1_1WindowedSincInterpolateImageFunction.html

6.9. Geometric Transformations 247

The number of pixels to use along each direction on the grid ofthe resampled image is computed
using the number of pixels in the input image and the samplingfactors.

InputImageType::SizeType inputSize =
inputImage->GetLargestPossibleRegion().GetSize();

typedef InputImageType::SizeType::SizeValueType SizeValueType;

InputImageType::SizeType size;

size[0] = static_cast< SizeValueType >(inputSize[0] / factorX);
size[1] = static_cast< SizeValueType >(inputSize[1] / factorY);
size[2] = static_cast< SizeValueType >(inputSize[2] / factorZ);

resampler->SetSize(size);

Finally, the input to the resampler is taken from the output of the smoothing filter.

resampler->SetInput(smootherZ->GetOutput());

At this point we can trigger the execution of the resampling by calling theUpdate() method,
or we can chose to pass the output of the resampling filter to another section of pipeline, for
example, an image writer.

Resampling an Anisotropic image to make it Isotropic

The source code for this section can be found in the file
Examples/Filtering/ResampleVolumesToBeIsotropic.cxx.

It is unfortunate that it is still very common to find medical image datasets that have been
acquired with large inter-sclice spacings that result in voxels with anisotropic shapes. In many
cases these voxels have ratios of[1 : 5] or even[1 : 10] between the resolution in the plane
(x,y) and the resolution along thez axis. Such dataset are close touselessfor the purpose of
computer assisted image analysis. The persistent tendencyfor acquiring dataset in such formats
just reveals how small is the understanding of the third dimension that have been gained in the
clinical settings and in many radiology reading rooms. Datasets that are acquired with such
large anisotropies bring with them the retrograde message:“I do not think 3D is informative”.
They repeat stubbornly that:“all that you need to know, can be known by looking at individual
slices, one by one”. However, the fallacy of such statement is made evident withthe simple act
of looking at the slices when reconstructed in any of the ortogonal planes. The ugliness of the
extreme rectangular pixel shapes becomes obvious, along with the clear technical realization
that no decent signal processing or algorithms can be performed in such images.

Image analysts have a long educational battle to fight in the radiological setting in order to
bring the message that 3D datasets acquired with anisotropies larger than[1 : 2] are simply

248 Chapter 6. Filtering

dismissive of the most fundamental concept of digital signal processing: The Shannon Sampling
Theorem [75, 76].

Facing the inertia of many clinical imaging departments andtheir insistence that these images
should be good enough for image processing, some image analysts have stoically tried to deal
with these poor datasets. These image analysts usually proceed to subsample the high in-plane
resolution and to super-sample the inter-slice resolutionwith the purpose of faking the type of
dataset that they should have received in the first place: anisotropic dataset. This example is
an illustration of how such operation can be performed usingthe filter available in the Insight
Toolkit.

Note that this example is not presented here as asolutionto the problem of anisotropic datasets.
On the contrary, this is simply adangerous palliativethat will help to perpetuate the mistake
of the image acquisition departments. This code is just an analgesic that will make you believe
that you don’t have pain, while a real and lethal disease is growing inside you. The real solution
to the problem of the atrophic anisotropic dataset is to educate radiologist on the fundamental
principles of image processing. If you really care about thetechnical decency of the medical
image processing field, and you really care about providing your best effort to the patients who
will receive health care directly or indirectly affected byyour processed images, then it is your
duty to reject anisotropic datasets and to patiently explain radiologist why a barbarity such as a
[1 : 5] anisotropy ratio makes a data set to be just “a collection of slices” instead of an authentic
3D datasets.

Please, before employing the techniques covered in this section, do kindly invite your fellow
radiologist to see the dataset in an orthogonal slice. Zoom in that image in a viewer without
any linear interpolation until you see the daunting realityof the rectangular pixels. Let her/him
know how absurd is to process digital data that have been sampled at ratios of[1 : 5] or [1 : 10].
Then, let them know that the first thing that you are going to dois to throw away all that high
in-plane resolution and tomake updata in-between the slices in order to compensate for their
low resolution. Only then, you will have gained the right to use this code.

Let’s now move into the code.... and, yes, bring with you thatguilt5, because the fact that you
are going to use the code below, is the evidence that we have lost one more battle on the quest
for real 3D dataset processing.

This example performs subsampling on the in-plane resolution and performs super-sampling
along the inter-slices resolution. The subsampling process requires that we preprocess the data
with a smoothing filter in order to avoid the occurrence of aliasing effects due to overlap of
the spectrum in the frequency domain [75, 76]. The smoothing is performed here using the
RecursiveGaussian filter, given that it provides a convenient run-time performance.

The first thing that you will need to do in order to resample this ugly anisotropic dataset is to
include the header files for theitk::ResampleImageFilter, and the Gaussian smoothing
filter.

5A feeling of regret or remorse for having committed some improper act; a recognition of one’s own responsibility
for doing something wrong.

http://www.itk.org/Doxygen/html/classitk_1_1ResampleImageFilter.html

6.9. Geometric Transformations 249

#include "itkResampleImageFilter.h"
#include "itkRecursiveGaussianImageFilter.h"

The resampling filter will need a Transform in order to map point coordinates and will need an
interpolator in order to compute intensity values for the new resampled image. In this particular
case we use theitk::IdentityTransform because the image is going to be resampled by
preserving the physical extent of the sampled region. The Linear interpolator is used as a
common trade-off, although arguably we should use one type of interpolator for the in-plane
subsampling process and another one for the inter-slice supersampling, but again, one should
wonder why to enter into technical sophistication here, when what we are doing is to cover-up
for an improper acquisition of medical data, and we are just trying to make it look as if it was
correctly acquired.

#include "itkIdentityTransform.h"
#include "itkLinearInterpolateImageFunction.h"

Note that, as part of the preprocessing of the image, in this example we are also rescaling the
range of intensities. This operation has already been described as Intensity Windowing. In a
real clinical application, this step requires careful consideration of the range of intensities that
contain information about the anatomical structures that are of interest for the current clinical
application. It practice you may want to remove this step of intensity rescaling.

#include "itkIntensityWindowingImageFilter.h"

We made explicit now our choices for the pixel type and dimension of the input image to be
processed, as well as the pixel type that we intend to use for the internal computation during the
smoothing and resampling.

const unsigned int Dimension = 3;

typedef unsigned short InputPixelType;
typedef float InternalPixelType;

typedef itk::Image< InputPixelType, Dimension > InputImageType;
typedef itk::Image< InternalPixelType, Dimension > InternalImageType;

We instantiate the smoothing filter that will be used on the preprocessing for subsampling the
in-plane resolution of the dataset.

typedef itk::RecursiveGaussianImageFilter<
InternalImageType,
InternalImageType > GaussianFilterType;

http://www.itk.org/Doxygen/html/classitk_1_1IdentityTransform.html

250 Chapter 6. Filtering

We create two instances of the smoothing filter, one will smooth along theX direction while
the other will smooth along theY direction. They are connected in a cascade in the pipeline,
while taking their input from the intensity windowing filter. Note that you may want to skip the
intensity windowing scale and simply take the input directly from the reader.

GaussianFilterType::Pointer smootherX = GaussianFilterType::New();
GaussianFilterType::Pointer smootherY = GaussianFilterType::New();

smootherX->SetInput(intensityWindowing->GetOutput());
smootherY->SetInput(smootherX->GetOutput());

We must now provide the settings for the resampling itself. This is done by searching for a value
of isotropic resolution that will provide a trade-off between the evil of subsampling and the evil
of supersampling. We advance here the conjecture that the geometrical mean between the in-
plane and the inter-slice resolutions should be a convenient isotropic resolution to use. This
conjecture is supported on nothing else than intuition and common sense. You can rightfully
argue that this choice deserves a more technical consideration, but then, if you are so inclined
to the technical correctness of the image sampling process,you should not be using this code,
and should rather we talking about such technical correctness to the radiologist who acquired
this ugly anisotropic dataset.

We take the image from the input and then request its array of pixel spacing values.

InputImageType::ConstPointer inputImage = reader->GetOutput();

const InputImageType::SpacingType& inputSpacing = inputImage->GetSpacing();

and apply our ad-hoc conjecture that the correct anisotropic resolution to use is the geometrical
mean of the in-plane and inter-slice resolutions. Then set this spacing as the Sigma value to be
used for the Gaussian smoothing at the preprocessing stage.

const double isoSpacing = sqrt(inputSpacing[2] * inputSpacing[0]);

smootherX->SetSigma(isoSpacing);
smootherY->SetSigma(isoSpacing);

We instruct the smoothing filters to act along theX andY direction respectively. And define
the settings for avoiding the loss of intensity as a result ofthe diffusion process that is inherited
from the use of a Gaussian filter.

smootherX->SetDirection(0);
smootherY->SetDirection(1);

smootherX->SetNormalizeAcrossScale(true);
smootherY->SetNormalizeAcrossScale(true);

6.9. Geometric Transformations 251

Now that we have taken care of the smoothing in-plane, we proceed to instantiate the resampling
filter that will reconstruct an isotropic image. We start by declaring the pixel type to be use at
the output of such filter, then instantiate the image type andthe type for the resampling filter.
Finally we construct an instantiation of such a filter.

typedef unsigned char OutputPixelType;

typedef itk::Image< OutputPixelType, Dimension > OutputImageType;

typedef itk::ResampleImageFilter<
InternalImageType, OutputImageType > ResampleFilterType;

ResampleFilterType::Pointer resampler = ResampleFilterType::New();

The resampling filter requires that we provide a Transform, that in this particular case can
simply be an identity transform.

typedef itk::IdentityTransform< double, Dimension > TransformType;

TransformType::Pointer transform = TransformType::New();
transform->SetIdentity();

resampler->SetTransform(transform);

The filter also requires an interpolator to be passed to it. Inthis case we chose to use a linear
interpolator.

typedef itk::LinearInterpolateImageFunction<
InternalImageType, double > InterpolatorType;

InterpolatorType::Pointer interpolator = InterpolatorType::New();

resampler->SetInterpolator(interpolator);

The pixel spacing of the resampled dataset is loaded in aSpacingType and passed to the re-
sampling filter.

OutputImageType::SpacingType spacing;

spacing[0] = isoSpacing;
spacing[1] = isoSpacing;
spacing[2] = isoSpacing;

resampler->SetOutputSpacing(spacing);

252 Chapter 6. Filtering

The origin of the output image is maintained, since we decided to resample the image in the
same physical extent of the input anisotropic image.

resampler->SetOutputOrigin(inputImage->GetOrigin());

The number of pixels to use along each dimension in the grid ofthe resampled image is com-
puted using the ratio between the pixel spacings of the inputimage and those of the output
image. Note that the computation of the number of pixels along theZ direction is slightly dif-
ferent with the purpose of making sure that we don’t attempt to compute pixels that are outside
of the original anisotropic dataset.

InputImageType::SizeType inputSize =
inputImage->GetLargestPossibleRegion().GetSize();

typedef InputImageType::SizeType::SizeValueType SizeValueType;

const double dx = inputSize[0] * inputSpacing[0] / isoSpacing;
const double dy = inputSize[1] * inputSpacing[1] / isoSpacing;

const double dz = (inputSize[2] - 1) * inputSpacing[2] / isoSpacing;

Finally the values are stored in aSizeType and passed to the resampling filter. Note that this
process requires a casting since the computation are performed indouble, while the elements
of theSizeType are integers.

InputImageType::SizeType size;

size[0] = static_cast<SizeValueType>(dx);
size[1] = static_cast<SizeValueType>(dy);
size[2] = static_cast<SizeValueType>(dz);

resampler->SetSize(size);

Our last action is to take the input for the resampling image filter from the output of the cascade
of smoothing filters, and then to trigger the execution of thepipeline by invoking theUpdate()
method on the resampling filter.

resampler->SetInput(smootherY->GetOutput());

resampler->Update();

At this point we should take some minutes in silence to reflecton the circumstances that have
lead us to accept to cover-up for the improper acquisition ofmedical data.

6.10. Frequency Domain 253

6.10 Frequency Domain

6.10.1 Computing a Fast Fourier Transform (FFT)

The source code for this section can be found in the file
Examples/Filtering/FFTImageFilter.cxx.

In this section we assume that you are familiar with SpectralAnalysis, in particular with the
concepts of the Fourier Transform and the numerical implementation of the Fast Fourier trans-
form. If you are not familiar with these concepts you may wantto consult first any of the many
available introductory books to spectral analysis [10, 11].

This example illustrates how to use the Fast Fourier Transform filter (FFT) for processing
an image in the spectral domain. Given that FFT computation can be CPU intensive, there
are multiple hardware specific implementations of FFT. IT isconvenient in many cases to
delegate the actual computation of the transform to local available libraries. Particular ex-
amples of those libraries are fftw6 and the VXL implementation of FFT. For this reason
ITK provides a base abstract class that factorizes the interface to multiple specific imple-
mentations of FFT. This base class is theitk::FFTRealToComplexConjugateImageFilter,
and two of its derived classes areitk::VnlFFTRealToComplexConjugateImageFilter and
itk::FFTWRealToComplexConjugateImageFilter.

A typical application that uses FFT will need to include the following header files.

#include "itkImage.h"
#include "itkVnlFFTRealToComplexConjugateImageFilter.h"
#include "itkComplexToRealImageFilter.h"
#include "itkComplexToImaginaryImageFilter.h"

The first decision to make is related to the pixel type and dimension of the images on which we
want to compute the Fourier transform.

typedef float PixelType;
const unsigned int Dimension = 2;

typedef itk::Image< PixelType, Dimension > ImageType;

We use the same image type in order to instantiate the FFT filter. In this case the
itk::VnlFFTRealToComplexConjugateImageFilter. Note that contrary to most ITK fil-
ters, the FFT filter is instantiated using the Pixel type and the image dimension explicitly. Once
the filter type is instantiated, we can use it for creating oneobject by invoking theNew() method
and assigning the result to a SmartPointer.

typedef itk::VnlFFTRealToComplexConjugateImageFilter<

6http://www.fftw.org

http://www.itk.org/Doxygen/html/classitk_1_1FFTRealToComplexConjugateImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1VnlFFTRealToComplexConjugateImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1FFTWRealToComplexConjugateImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1VnlFFTRealToComplexConjugateImageFilter.html

254 Chapter 6. Filtering

PixelType, Dimension > FFTFilterType;

FFTFilterType::Pointer fftFilter = FFTFilterType::New();

The input to this filter can be taken from a reader, for example.

typedef itk::ImageFileReader< ImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(argv[1]);

fftFilter->SetInput(reader->GetOutput());

The execution of the filter can be triggered by invoking theUpdate() method. Since this
invocation can eventually throw and exception, the call must be placed inside a try/catch block.

try
{
fftFilter->Update();
}

catch(itk::ExceptionObject & excp)
{
std::cerr << "Error: " << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}

In general the output of the FFT filter will be a complex image.We can proceed to
save this image in a file for further analysis. This can be doneby simply instantiating an
itk::ImageFileWriter using the trait of the output image from the FFT filter. We construct
one instance of the writer and pass the output of the FFT filteras the input of the writer.

typedef FFTFilterType::OutputImageType ComplexImageType;

typedef itk::ImageFileWriter< ComplexImageType > ComplexWriterType;

ComplexWriterType::Pointer complexWriter = ComplexWriterType::New();
complexWriter->SetFileName("complexImage.mhd");

complexWriter->SetInput(fftFilter->GetOutput());

Finally we invoke theUpdate() method placing inside a try/catch block.

try
{
complexWriter->Update();

http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html

6.10. Frequency Domain 255

}
catch(itk::ExceptionObject & excp)
{
std::cerr << "Error: " << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}

In addition to saving the complex image into a file, we could also extract its real and imaginary
parts for further analysis. This can be done with theitk::ComplexToRealImageFilter and
the itk::ComplexToImaginaryImageFilter.

We instantiate first the ImageFilter that will help us to extract the real part from the complex
image. TheComplexToRealImageFilter takes as first template parameter the type of the
complex image and as second template parameter it takes the type of the output image pixel.
We create one instance of this filter and connect as its input the output of the FFT filter.

typedef itk::ComplexToRealImageFilter<
ComplexImageType, ImageType > RealFilterType;

RealFilterType::Pointer realFilter = RealFilterType::New();

realFilter->SetInput(fftFilter->GetOutput());

Since the range of intensities in the Fourier domain can be quite concentrated, it result con-
venient to rescale the image in order to visualize it. For this purpose we instantiate here a
itk::RescaleIntensityImageFilter that will rescale the intensities of thereal image into
a range suitable for writing in a file. We also set the minimum and maximum values of the
output to the range of the pixel type used for writing.

typedef itk::RescaleIntensityImageFilter<
ImageType,
WriteImageType > RescaleFilterType;

RescaleFilterType::Pointer intensityRescaler = RescaleFilterType::New();

intensityRescaler->SetInput(realFilter->GetOutput());

intensityRescaler->SetOutputMinimum(0);
intensityRescaler->SetOutputMaximum(255);

We can now instantiate the ImageFilter that will help us to extract the imaginary part from the
complex image. The filter that we use here is theitk::ComplexToImaginaryImageFilter.
It takes as first template parameter the type of the complex image and as second template pa-
rameter it takes the type of the output image pixel. An instance of the filter is created, and its
input is connected to the output of the FFT filter.

http://www.itk.org/Doxygen/html/classitk_1_1ComplexToRealImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ComplexToImaginaryImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1RescaleIntensityImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ComplexToImaginaryImageFilter.html

256 Chapter 6. Filtering

typedef FFTFilterType::OutputImageType ComplexImageType;

typedef itk::ComplexToImaginaryImageFilter<
ComplexImageType, ImageType > ImaginaryFilterType;

ImaginaryFilterType::Pointer imaginaryFilter = ImaginaryFilterType::New();

imaginaryFilter->SetInput(fftFilter->GetOutput());

The Imaginary image can then be rescaled and saved into a file,just as we did with the Real
part.

For the sake of illustrating the use of aitk::ImageFileReader on Complex images, here
we instantiate a reader that will load the Complex image thatwe just saved. Note that nothing
special is required in this case. The instantiation is done just the same as for any other type of
image. Which once again illustrates the power of Generic Programming.

typedef itk::ImageFileReader< ComplexImageType > ComplexReaderType;

ComplexReaderType::Pointer complexReader = ComplexReaderType::New();

complexReader->SetFileName("complexImage.mhd");
complexReader->Update();

6.10.2 Filtering on the Frequency Domain

The source code for this section can be found in the file
Examples/Filtering/FFTImageFilterFourierDomainFiltering.cxx.

One of the most common image processing operations performed in the Fourier Domain is the
masking of the spectrum in order to eliminate a range of spatial frequencies from the input
image. This operation is typically performed by taking the input image, computing its Fourier
transform using a FFT filter, masking the resulting image in the Fourier domain with a mask,
and finally taking the result of the masking and computing itsinverse Fourier transform.

This typical processing is what it is illustrated in the example below.

We start by including the headers of the FFT filters and the Mask image filter. Note that we use
two different types of FFT filters here. The first one expects as input an image of real pixel type
(real in the sense of complex numbers) and produces as outputa complex image. The second
FFT filter expects as in put a complex image and produces a realimage as output.

#include "itkVnlFFTRealToComplexConjugateImageFilter.h"
#include "itkVnlFFTComplexConjugateToRealImageFilter.h"
#include "itkMaskImageFilter.h"

http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html

6.10. Frequency Domain 257

The first decision to make is related to the pixel type and dimension of the images on which we
want to compute the Fourier transform.

typedef float InputPixelType;
const unsigned int Dimension = 2;

typedef itk::Image< InputPixelType, Dimension > InputImageType;

Then we select the pixel type to use for the mask image and instantiate the image type of the
mask.

typedef unsigned char MaskPixelType;

typedef itk::Image< MaskPixelType, Dimension > MaskImageType;

Both the input image and the mask image can be read from files orcould be obtained as the
output of a preprocessing pipeline. We omit here the detailsof reading the image since the
process is quite standard.

Now the itk::VnlFFTRealToComplexConjugateImageFilter can be instantiated. Note that
contrary to most ITK filters, the FFT filter is instantiated using the Pixel type and the image
dimension explicitly. Using the type we construct one instance of the filter.

typedef itk::VnlFFTRealToComplexConjugateImageFilter<
InputPixelType, Dimension > FFTFilterType;

FFTFilterType::Pointer fftFilter = FFTFilterType::New();

fftFilter->SetInput(inputReader->GetOutput());

Since our purpose is to perform filtering in the frequency domain by altering the weights of the
image spectrum, we need here a filter that will mask the Fourier transform of the input image
with a binary image. Note that the type of the spectral image is taken here from the traits of the
FFT filter.

typedef FFTFilterType::OutputImageType SpectralImageType;

typedef itk::MaskImageFilter< SpectralImageType,
MaskImageType,
SpectralImageType > MaskFilterType;

MaskFilterType::Pointer maskFilter = MaskFilterType::New();

We connect the inputs to the mask filter by taking the outputs from the first FFT filter and from
the reader of the Mask image.

http://www.itk.org/Doxygen/html/classitk_1_1VnlFFTRealToComplexConjugateImageFilter.html

258 Chapter 6. Filtering

maskFilter->SetInput1(fftFilter->GetOutput());
maskFilter->SetInput2(maskReader->GetOutput());

For the purpose of verifying the aspect of the spectrum afterbeing filtered with the mask, we
can write out the output of the Mask filter to a file.

typedef itk::ImageFileWriter< SpectralImageType > SpectralWriterType;
SpectralWriterType::Pointer spectralWriter = SpectralWriterType::New();
spectralWriter->SetFileName("filteredSpectrum.mhd");
spectralWriter->SetInput(maskFilter->GetOutput());
spectralWriter->Update();

The output of the mask filter will contain thefiltered spectrum of the input image. We must
then apply an inverse Fourier transform on it in order to obtain the filtered version of the input
image. For that purpose we create another instance of the FFTfilter.

typedef itk::VnlFFTComplexConjugateToRealImageFilter<
InputPixelType, Dimension > IFFTFilterType;

IFFTFilterType::Pointer fftInverseFilter = IFFTFilterType::New();

fftInverseFilter->SetInput(maskFilter->GetOutput());

The execution of the pipeline can be triggered by invoking the Update() method in this last
filter. Since this invocation can eventually throw and exception, the call must be placed inside a
try/catch block.

try
{
fftInverseFilter->Update();
}

catch(itk::ExceptionObject & excp)
{
std::cerr << "Error: " << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}

The result of the filtering can now be saved into an image file, or be passed to a subsequent
processing pipeline. Here we simply write it out to an image file.

typedef itk::ImageFileWriter< InputImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetFileName(argv[3]);
writer->SetInput(fftInverseFilter->GetOutput());

6.11. Extracting Surfaces 259

Note that this example is just a minimal illustration of the multiple types of processing that are
possible in the Fourier domain.

6.11 Extracting Surfaces

6.11.1 Surface extraction

The source code for this section can be found in the file
Examples/Filtering/SurfaceExtraction.cxx.

Surface extraction has attracted continuous interest since the early days of image analysis, in
particular on the context of medical applications. Although it is commonly associated with
image segmentation, surface extraction is not in itself a segmentation technique, instead it is a
transformation that changes the way a segmentation is represented. In its most common form,
isosurface extraction is the equivalent of image thresholding followed by surface extraction.

Probably the most widely known method of surface extractionis the Marching Cubesalgo-
rithm [51]. Although it has been followed by a number of variants [72], Marching Cubes has
become an icon on medical image processing. The following example illustrates how to perform
surface extraction in ITK using an algorithm similar to Marching Cubes7.

The representation of unstructured data in ITK is done with the itk::Mesh. This class allows
to represent N-Dimensional grids of varied topology. It is natural for the filter that extracts
surfaces from an Image to produce a Mesh as its output.

We initiate our example by including the header files of the surface extraction filter, the image
and the Mesh.

#include "itkBinaryMask3DMeshSource.h"
#include "itkImage.h"
#include "itkMesh.h"

We define then the pixel type and dimension of the image from which we are going to extract
the surface.

const unsigned int Dimension = 3;
typedef unsigned char PixelType;

typedef itk::Image< PixelType, Dimension > ImageType;

With the same image type we instantiate the type of an ImageFileReader and construct one with
the purpose of reading in the input image.

7Note that the Marching Cubes algorithm is covered by a patentthat expired on June 5th 2005.

http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html

260 Chapter 6. Filtering

typedef itk::ImageFileReader< ImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(argv[1]);

The type of theitk::Mesh is instantiated by specifying the type to be associated withthe pixel
value of the Mesh nodes. This particular pixel type happens to be irrelevant for the purpose of
extracting the surface.

typedef itk::Mesh<double> MeshType;

Having declared the Image and Mesh types we can now instantiate the surface extraction filter,
and construct one by invoking itsNew() method.

typedef itk::BinaryMask3DMeshSource< ImageType, MeshType > MeshSourceType;

MeshSourceType::Pointer meshSource = MeshSourceType::New();

In this particular example, the pixel value to be associatedto the object to be extracted is read
from the command line arguments and it is passed to the filter by using theSetObjectValue()
method. Note that this is different from the traditional isovalue used in the Marching Cubes
algorithm. In the case of theBinaryMask3DMeshSource filter, the object values defines the
membership of pixels to the object from which the surface will be extracted. In other words,
the surface will be surrounding all pixels with value equal to the ObjectValue parameter.

const PixelType objectValue = static_cast<PixelType>(atof(argv[2]));

meshSource->SetObjectValue(objectValue);

The input to the surface extraction filter is taken from the output of the image reader.

meshSource->SetInput(reader->GetOutput());

Finally we trigger the execution of the pipeline by invokingtheUpdate() method. Given that
the pipeline may throw an exception this call must be place inside atry/catch block.

try
{
meshSource->Update();
}

catch(itk::ExceptionObject & exp)
{
std::cerr << "Exception thrown during Update() " << std::endl;
std::cerr << exp << std::endl;
return EXIT_FAILURE;
}

http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html

6.11. Extracting Surfaces 261

As a way of taking a look at the output Mesh we print out here itsnumber of Nodes and Cells.

std::cout << "Nodes = " << meshSource->GetNumberOfNodes() << std::endl;
std::cout << "Cells = " << meshSource->GetNumberOfCells() << std::endl;

This resulting Mesh could be used as input for a deformable model segmentation algorithm, or
it could be converted to a format suitable for visualizationin an interactive application.

CHAPTER

SEVEN

Reading and Writing Images

This chapter describes the toolkit architecture supporting reading and writing of images to files.
ITK does not enforce any particular file format, instead, it provides a structure supporting a
variety of formats that can be easily extended by the user as new formats become available.

We begin the chapter with some simple examples of file I/O.

7.1 Basic Example

The source code for this section can be found in the file
Examples/IO/ImageReadWrite.cxx.

The classes responsible for reading and writing images are located at the beginning and end of
the data processing pipeline. These classes are known as data sources (readers) and data sinks
(writers). Generally speaking they are referred to as filters, although readers have no pipeline
input and writers have no pipeline output.

The reading of images is managed by the classitk::ImageFileReader while writing is per-
formed by the classitk::ImageFileWriter. These two classes are independent of any par-
ticular file format. The actual low level task of reading and writing specific file formats is done
behind the scenes by a family of classes of typeitk::ImageIO.

The first step for performing reading and writing is to include the following headers.

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"

Then, as usual, a decision must be made about the type of pixelused to represent the image
processed by the pipeline. Note that when reading and writing images, the pixel type of the
imageis not necessarilythe same as the pixel type stored in the file. Your choice of thepixel
type (and hence template parameter) should be driven mainlyby two considerations:

http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageIO.html

264 Chapter 7. Reading and Writing Images

• It should be possible to cast the file pixel type in the file to the pixel type you select. This
casting will be performed using the standard C-language rules, so you will have to make
sure that the conversion does not result in information being lost.

• The pixel type in memory should be appropriate to the type of processing you intended
to apply on the images.

A typical selection for medical images is illustrated in thefollowing lines.

typedef unsigned short PixelType;
const unsigned int Dimension = 2;
typedef itk::Image< PixelType, Dimension > ImageType;

Note that the dimension of the image in memory should match the one of the image in file.
There are a couple of special cases in which this condition may be relaxed, but in general it is
better to ensure that both dimensions match.

We can now instantiate the types of the reader and writer. These two classes are parameterized
over the image type.

typedef itk::ImageFileReader< ImageType > ReaderType;
typedef itk::ImageFileWriter< ImageType > WriterType;

Then, we create one object of each type using the New() methodand assigning the result to a
itk::SmartPointer.

ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();

The name of the file to be read or written is passed with the SetFileName() method.

reader->SetFileName(inputFilename);
writer->SetFileName(outputFilename);

We can now connect these readers and writers to filters to create a pipeline. For example, we
can create a short pipeline by passing the output of the reader directly to the input of the writer.

writer->SetInput(reader->GetOutput());

At first view, this may seem as a quite useless program, but it is actually implementing a pow-
erful file format conversion tool! The execution of the pipeline is triggered by the invocation of
theUpdate() methods in one of the final objects. In this case, the final datapipeline object is
the writer. It is a wise practice of defensive programming toinsert anyUpdate() call inside a
try/catch block in case exceptions are thrown during the execution of the pipeline.

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

7.1. Basic Example 265

PNGImageIO DicomImageIOMetaImageIO

CanReadFile():bool
CanWriteFile():bool

ImageIO

VTKImageIO

RawImageIO

GiplImageIO VOLImageIO

ImageFileWriterImageFileReader

1

1 1

1

Figure 7.1:Collaboration diagram of the ImageIO classes.

try
{
writer->Update();
}

catch(itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}

Note that exceptions should only be caught by pieces of code that know what to do with them.
In a typical application thiscatch block should probably reside on the GUI code. The action
on thecatch block could inform the user about the failure of the IO operation.

The IO architecture of the toolkit makes it possible to avoidexplicit specification of the file for-
mat used to read or write images.1 The object factory mechanism enables the ImageFileReader
and ImageFileWriter to determine (at run-time) with which file format it is working with. Typ-
ically, file formats are chosen based on the filename extension, but the architecture supports
arbitrarily complex processes to determine whether a file can be read or written. Alternatively,
the user can specify the data file format by explicit instantiation and assignment the appropriate
itk::ImageIO subclass.

For historical reasons and as a convenience to the user, theitk::ImageFileWriter also has a
Write() method that is aliased to theUpdate() method. You can in principle use either of them
butUpdate() is recommended since Write() may be deprecated in the future.

To better understand the IO architecture, please refer to Figures7.1, 7.2, and7.3.

The following section describes the internals of the IO architecture provided in the toolkit.

1In this example no file format is specified; this program can beused as a general file conversion utility.

http://www.itk.org/Doxygen/html/classitk_1_1ImageIO.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html

266 Chapter 7. Reading and Writing Images

Register

CanWrite ?

CanRead ?

MetaImageIOFactory

PNGImageIOFactory

ImageIOFactory

Pluggable Factories Pluggable Factories

ImageFileReader

ImageFileWriter

CreateImageIO
for Reading

CreateImageIO
for Writing

filename

filename

filename

file
name

Figure 7.2:Use cases of ImageIO factories.

Ge4xImageIOFactory

PNGImageIOFactory

JPEGImageIOFactory

VTKImageIOFactory

NrrdImageIOFactory

MetaImageIOFactory

DicomImageIOFactory

GDCMImageIOFactory

VOLImageIOFactory

BMPImageIOFactory

MetaImageIOFactory

TIFFImageIOFactory
 SiemensVisionIOFactory

StimulateImageIOFactory

GiplImageIOFactory

RawImageIOFactory

AnalyzeImageIOFactory

ImageIOFactory

Register(factory:ImageIOFactory)
CreateImageIO(file:string)

Figure 7.3:Class diagram of the ImageIO factories.

7.2. Pluggable Factories 267

7.2 Pluggable Factories

The principle behind the input/output mechanism used in ITKis known aspluggable-factories
[28]. This concept is illustrated in the UML diagram in Figure7.1. From the user’s point
of view the objects responsible for reading and writing filesare the itk::ImageFileReader
and itk::ImageFileWriter classes. These two classes, however, are not aware of the details
involved in reading or writing particular file formats like PNG or DICOM. What they do is to
dispatch the user’s requests to a set of specific classes thatare aware of the details of image file
formats. These classes are theitk::ImageIO classes. The ITK delegation mechanism enables
users to extend the number of supported file formats by just adding new classes to the ImageIO
hierarchy.

Each instance of ImageFileReader and ImageFileWriter has apointer to an ImageIO object.
If this pointer is empty, it will be impossible to read or write an image and the image file
reader/writer must determine which ImageIO class to use to perform IO operations. This is
done basically by passing the filename to a centralized class, the itk::ImageIOFactory and
asking it to identify any subclass of ImageIO capable of reading or writing the user-specified
file. This is illustrated by the use cases on the right side of Figure7.2.

Each class derived from ImageIO must provide an associated factory class capable of producing
an instance of the ImageIO class. For example, for PNG files, there is a itk::PNGImageIO
object that knows how to read this image files and there is aitk::PNGImageIOFactory class
capable of constructing a PNGImageIO object and returning apointer to it. Each time a new
file format is added (i.e., a new ImageIO subclass is created), a factory must be implemented as
a derived class of the ImageIOFactory class as illustrated in Figure7.3.

For example, in order to read PNG files, a PNGImageIOFactory is created and registered with
the central ImageIOFactory singleton2 class as illustrated in the left side of Figure7.2. When the
ImageFileReader asks the ImageIOFactory for an ImageIO capable of reading the file identified
with filenamethe ImageIOFactory will iterate over the list of registeredfactories and will ask
each one of them is they know how to read the file. The factory that responds affirmatively will
be used to create the specific ImageIO instance that will be returned to the ImageFileReader
and used to perform the read operations.

In most cases the mechanism is transparent to the user who only interacts with the Image-
FileReader and ImageFileWriter. It is possible, however, to explicitly select the type of ImageIO
object to use. This is illustrated by the following example.

7.3 Using ImageIO Classes Explicitly

The source code for this section can be found in the file
Examples/IO/ImageReadExportVTK.cxx.

2Singletonmeans that there is only one instance of this class in a particular application

http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageIO.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageIOFactory.html
http://www.itk.org/Doxygen/html/classitk_1_1PNGImageIO.html
http://www.itk.org/Doxygen/html/classitk_1_1PNGImageIOFactory.html

268 Chapter 7. Reading and Writing Images

In cases where the user knows what file format to use and wants to indicate this explicitly, a
specific itk::ImageIO class can be instantiated and assigned to the image file reader or writer.
This circumvents theitk::ImageIOFactory mechanism which tries to find the appropriate
ImageIO class for performing the IO operations. Explicit selection of the ImageIO also allows
the user to invoke specialized features of a particular class which may not be available from the
general API provide by ImageIO.

The following example illustrates explicit instantiatingof an IO class (in this case a VTK file
format), setting its parameters and then connecting it to the itk::ImageFileWriter.

The example begins by including the appropriate headers.

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkVTKImageIO.h"

Then, as usual, we select the pixel types and the image dimension. Remember, if the file format
represents pixels with a particular type, C-style casting will be performed to convert the data.

typedef unsigned short PixelType;
const unsigned int Dimension = 2;
typedef itk::Image< PixelType, Dimension > ImageType;

We can now instantiate the reader and writer. These two classes are parameterized over the
image type. We instantiate theitk::VTKImageIO class as well. Note that the ImageIO objects
are not templated.

typedef itk::ImageFileReader< ImageType > ReaderType;
typedef itk::ImageFileWriter< ImageType > WriterType;
typedef itk::VTKImageIO ImageIOType;

Then, we create one object of each type using the New() methodand assigning the result to a
itk::SmartPointer.

ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
ImageIOType::Pointer vtkIO = ImageIOType::New();

The name of the file to be read or written is passed with the SetFileName() method.

reader->SetFileName(inputFilename);
writer->SetFileName(outputFilename);

We can now connect these readers and writers to filters in a pipeline. For example, we can
create a short pipeline by passing the output of the reader directly to the input of the writer.

http://www.itk.org/Doxygen/html/classitk_1_1ImageIO.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageIOFactory.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
http://www.itk.org/Doxygen/html/classitk_1_1VTKImageIO.html
http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

7.4. Reading and Writing RGB Images 269

writer->SetInput(reader->GetOutput());

Explicitly declaring the specific VTKImageIO allow users toinvoke methods specific to a par-
ticular IO class. For example, the following line specifies to the writer to use ASCII format
when writing the pixel data.

vtkIO->SetFileTypeToASCII();

The VTKImageIO object is then connected to the ImageFileWriter. This will short-circuit the
action of the ImageIOFactory mechanism. The ImageFileWriter will not attempt to look for
other ImageIO objects capable of performing the writing tasks. It will simply invoke the one
provided by the user.

writer->SetImageIO(vtkIO);

Finally we invoke Update() on the ImageFileWriter and placethis call inside a try/catch block
in case any errors occur during the writing process.

try
{
writer->Update();
}

catch(itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}

Although this example only illustrates how to use an explicit ImageIO class with the Image-
FileWriter, the same can be done with the ImageFileReader. The typical case in which this is
done is when reading raw image files with theitk::RawImageIO object. The drawback of
this approach is that the parameters of the image have to be explicitly written in the code. The
direct use of raw file isstrongly discouragedin medical imaging. It is always better to create
a header for a raw file by using any of the file formats that combine a text header file and a raw
binary file, like itk::MetaImageIO, itk::GiplImageIO and itk::VTKImageIO.

7.4 Reading and Writing RGB Images

The source code for this section can be found in the file
Examples/IO/RGBImageReadWrite.cxx.

http://www.itk.org/Doxygen/html/classitk_1_1RawImageIO.html
http://www.itk.org/Doxygen/html/classitk_1_1MetaImageIO.html
http://www.itk.org/Doxygen/html/classitk_1_1GiplImageIO.html
http://www.itk.org/Doxygen/html/classitk_1_1VTKImageIO.html

270 Chapter 7. Reading and Writing Images

RGB images are commonly used for representing data acquiredfrom cryogenic sections, optical
microscopy and endoscopy. This example illustrates how to read and write RGB color images
to and from a file. This requires the following headers as shown.

#include "itkRGBPixel.h"
#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"

The itk::RGBPixel class is templated over the type used to represent each one ofthe red,
green and blue components. A typical instantiation of the RGB image class might be as follows.

typedef itk::RGBPixel< unsigned char > PixelType;
typedef itk::Image< PixelType, 2 > ImageType;

The image type is used as a template parameter to instantiatethe reader and writer.

typedef itk::ImageFileReader< ImageType > ReaderType;
typedef itk::ImageFileWriter< ImageType > WriterType;

ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();

The filenames of the input and output files must be provided to the reader and writer respectively.

reader->SetFileName(inputFilename);
writer->SetFileName(outputFilename);

Finally, execution of the pipeline can be triggered by invoking the Update() method in the writer.

writer->Update();

You may have noticed that apart from the declaration of thePixelType there is nothing in
this code that is specific for RGB images. All the actions required to support color images are
implemented internally in theitk::ImageIO objects.

7.5 Reading, Casting and Writing Images

The source code for this section can be found in the file
Examples/IO/ImageReadCastWrite.cxx.

Given thatITK is based on the Generic Programming paradigm, most of the types are defined
at compilation time. It is sometimes important to anticipate conversion between different types

http://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageIO.html
http://www.itk.org

7.5. Reading, Casting and Writing Images 271

of images. The following example illustrates the common case of reading an image of one pixel
type and writing it on a different pixel type. This process not only involves casting but also
rescaling the image intensity since the dynamic range of theinput and output pixel types can
be quite different. Theitk::RescaleIntensityImageFilter is used here to linearly rescale
the image values.

The first step in this example is to include the appropriate headers.

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"

Then, as usual, a decision should be made about the pixel typethat should be used to represent
the images. Note that when reading an image, this pixel typeis not necessarilythe pixel type
of the image stored in the file. Instead, it is the type that will be used to store the image as soon
as it is read into memory.

typedef float InputPixelType;
typedef unsigned char OutputPixelType;
const unsigned int Dimension = 2;

typedef itk::Image< InputPixelType, Dimension > InputImageType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;

Note that the dimension of the image in memory should match the one of the image in file.
There are a couple of special cases in which this condition may be relaxed, but in general it is
better to ensure that both dimensions match.

We can now instantiate the types of the reader and writer. These two classes are parameterized
over the image type.

typedef itk::ImageFileReader< InputImageType > ReaderType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;

Below we instantiate the RescaleIntensityImageFilter class that will linearly scale the image
intensities.

typedef itk::RescaleIntensityImageFilter<
InputImageType,
OutputImageType > FilterType;

A filter object is constructed and the minimum and maximum values of the output are selected
using the SetOutputMinimum() and SetOutputMaximum() methods.

http://www.itk.org/Doxygen/html/classitk_1_1RescaleIntensityImageFilter.html

272 Chapter 7. Reading and Writing Images

FilterType::Pointer filter = FilterType::New();
filter->SetOutputMinimum(0);
filter->SetOutputMaximum(255);

Then, we create the reader and writer and connect the pipeline.

ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();

filter->SetInput(reader->GetOutput());
writer->SetInput(filter->GetOutput());

The name of the files to be read and written are passed with the SetFileName() method.

reader->SetFileName(inputFilename);
writer->SetFileName(outputFilename);

Finally we trigger the execution of the pipeline with the Update() method on the writer. The
output image will then be the scaled and cast version of the input image.

try
{
writer->Update();
}

catch(itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}

7.6 Extracting Regions

The source code for this section can be found in the file
Examples/IO/ImageReadRegionOfInterestWrite.cxx.

This example should arguably be placed in the previous filtering chapter. However its usefulness
for typical IO operations makes it interesting to mention here. The purpose of this example is
to read and image, extract a subregion and write this subregion to a file. This is a common task
when we want to apply a computationally intensive method to the region of interest of an image.

As usual with ITK IO, we begin by including the appropriate header files.

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"

7.6. Extracting Regions 273

The itk::RegionOfInterestImageFilter is the filter used to extract a region from an im-
age. Its header is included below.

#include "itkRegionOfInterestImageFilter.h"

Image types are defined below.

typedef signed short InputPixelType;
typedef signed short OutputPixelType;
const unsigned int Dimension = 2;

typedef itk::Image< InputPixelType, Dimension > InputImageType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;

The types for theitk::ImageFileReader and itk::ImageFileWriter are instantiated us-
ing the image types.

typedef itk::ImageFileReader< InputImageType > ReaderType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;

The RegionOfInterestImageFilter type is instantiated using the input and output image types. A
filter object is created with the New() method and assigned toa itk::SmartPointer.

typedef itk::RegionOfInterestImageFilter< InputImageType,
OutputImageType > FilterType;

FilterType::Pointer filter = FilterType::New();

The RegionOfInterestImageFilter requires a region to be defined by the user. The region is
specified by anitk::Index indicating the pixel where the region starts and anitk::Size
indicating how many pixels the region has along each dimension. In this example, the specifi-
cation of the region is taken from the command line arguments(this example assumes that a 2D
image is being processed).

OutputImageType::IndexType start;
start[0] = atoi(argv[3]);
start[1] = atoi(argv[4]);

OutputImageType::SizeType size;
size[0] = atoi(argv[5]);
size[1] = atoi(argv[6]);

An itk::ImageRegion object is created and initialized with start and size obtained from the
command line.

http://www.itk.org/Doxygen/html/classitk_1_1RegionOfInterestImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
http://www.itk.org/Doxygen/html/classitk_1_1Index.html
http://www.itk.org/Doxygen/html/classitk_1_1Size.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageRegion.html

274 Chapter 7. Reading and Writing Images

OutputImageType::RegionType desiredRegion;
desiredRegion.SetSize(size);
desiredRegion.SetIndex(start);

Then the region is passed to the filter using the SetRegionOfInterest() method.

filter->SetRegionOfInterest(desiredRegion);

Below, we create the reader and writer using the New() methodand assigning the result to a
SmartPointer.

ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();

The name of the file to be read or written is passed with the SetFileName() method.

reader->SetFileName(inputFilename);
writer->SetFileName(outputFilename);

Below we connect the reader, filter and writer to form the dataprocessing pipeline.

filter->SetInput(reader->GetOutput());
writer->SetInput(filter->GetOutput());

Finally we execute the pipeline by invoking Update() on the writer. The call is placed in a
try/catch block in case exceptions are thrown.

try
{
writer->Update();
}

catch(itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}

7.7 Extracting Slices

The source code for this section can be found in the file
Examples/IO/ImageReadExtractWrite.cxx.

7.7. Extracting Slices 275

This example illustrates the common task of extracting a 2D slice from a 3D volume. This is
typically used for display purposes and for expediting userfeedback in interactive programs.
Here we simply read a 3D volume, extract one of its slices and save it as a 2D image. Note that
caution should be used when working with 2D slices from a 3D dataset, since for most image
processing operations, the application of a filter on a extracted slice is not equivalent to first
applying the filter in the volume and then extracting the slice.

In this example we start by including the appropriate headerfiles.

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"

The filter used to extract a region from an image is theitk::ExtractImageFilter. Its header
is included below. This filter is capable of extracting(N− 1)-dimensional images fromN-
dimensional ones.

#include "itkExtractImageFilter.h"

Image types are defined below. Note that the input image type is 3D and the output image type
is 2D.

typedef signed short InputPixelType;
typedef signed short OutputPixelType;

typedef itk::Image< InputPixelType, 3 > InputImageType;
typedef itk::Image< OutputPixelType, 2 > OutputImageType;

The types for theitk::ImageFileReader and itk::ImageFileWriter are instantiated us-
ing the image types.

typedef itk::ImageFileReader< InputImageType > ReaderType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;

Below, we create the reader and writer using the New() methodand assigning the result to a
itk::SmartPointer.

ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();

The name of the file to be read or written is passed with the SetFileName() method.

reader->SetFileName(inputFilename);
writer->SetFileName(outputFilename);

http://www.itk.org/Doxygen/html/classitk_1_1ExtractImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

276 Chapter 7. Reading and Writing Images

The ExtractImageFilter type is instantiated using the input and output image types. A filter
object is created with the New() method and assigned to a SmartPointer.

typedef itk::ExtractImageFilter< InputImageType, OutputImageType > FilterType;
FilterType::Pointer filter = FilterType::New();

The ExtractImageFilter requires a region to be defined by theuser. The region is specified by
an itk::Index indicating the pixel where the region starts and anitk::Size indication how
many pixels the region has along each dimension. In order to extract a 2D image from a 3D
data set, it is enough to set the size of the region to 0 in one dimension. This will indicate to
ExtractImageFilter that a dimensional reduction has been specified. Here we take the region
from the largest possible region of the input image. Note that Update() is being called first on
the reader, since otherwise the output would have invalid data.

reader->Update();
InputImageType::RegionType inputRegion =

reader->GetOutput()->GetLargestPossibleRegion();

We take the size from the region and collapse the size in theZ component by setting its value to
0. This will indicate to the ExtractImageFilter that the output image should have a dimension
less than the input image.

InputImageType::SizeType size = inputRegion.GetSize();
size[2] = 0;

Note that in this case we are extracting aZ slice, and for that reason, the dimension to be
collapsed in the one with index 2. You may keep in mind the association of index components
{X = 0,Y = 1,Z = 2}. If we were interested in extracting a slice perpendicular to theY axis we
would have setsize[1]=0;.

Then, we take the index from the region and set itsZ value to the slice number we want to
extract. In this example we obtain the slice number from the command line arguments.

InputImageType::IndexType start = inputRegion.GetIndex();
const unsigned int sliceNumber = atoi(argv[3]);
start[2] = sliceNumber;

Finally, an itk::ImageRegion object is created and initialized with the start and size we just
prepared using the slice information.

InputImageType::RegionType desiredRegion;
desiredRegion.SetSize(size);
desiredRegion.SetIndex(start);

http://www.itk.org/Doxygen/html/classitk_1_1Index.html
http://www.itk.org/Doxygen/html/classitk_1_1Size.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageRegion.html

7.8. Reading and Writing Vector Images 277

Then the region is passed to the filter using the SetExtractionRegion() method.

filter->SetExtractionRegion(desiredRegion);

Below we connect the reader, filter and writer to form the dataprocessing pipeline.

filter->SetInput(reader->GetOutput());
writer->SetInput(filter->GetOutput());

Finally we execute the pipeline by invoking Update() on the writer. The call is placed in a
try/catch block in case exceptions are thrown.

try
{
writer->Update();
}

catch(itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}

7.8 Reading and Writing Vector Images

Images whose pixel type is a Vector, a CovariantVector, an Array, or a Complex are quite
common in image processing. It is convenient then to describe rapidly how those images can
be saved into files and how they can be read from those files later on.

7.8.1 The Minimal Example

The source code for this section can be found in the file
Examples/IO/VectorImageReadWrite.cxx.

This example illustrates how to read and write an image of pixel type itk::Vector.

We should include the header files for the Image, the ImageFileReader and the ImageFileWriter.

#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"

Then we define the specific type of vector to be used as pixel type.

http://www.itk.org/Doxygen/html/classitk_1_1Vector.html

278 Chapter 7. Reading and Writing Images

const unsigned int VectorDimension = 3;

typedef itk::Vector< float, VectorDimension > PixelType;

We define the image dimension, and along with the pixel type weuse it for fully instantiating
the image type.

const unsigned int ImageDimension = 2;

typedef itk::Image< PixelType, ImageDimension > ImageType;

Having the image type at hand, we can instantiate the reader and writer types, and use them for
creating one object of each type.

typedef itk::ImageFileReader< ImageType > ReaderType;
typedef itk::ImageFileWriter< ImageType > WriterType;

ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();

Filename must be provided to both the reader and the writer. In this particular case we take
those filenames from the command line arguments.

reader->SetFileName(argv[1]);
writer->SetFileName(argv[2]);

Being this a minimal example, we create a short pipeline where we simply connect the output
of the reader to the input of the writer.

writer->SetInput(reader->GetOutput());

The execution of this short pipeline is triggered by invoking the writer’s Update() method. This
invocation must be placed inside a try/catch block since itsexecution may result in exceptions
being thrown.

try
{
writer->Update();
}

catch(itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}

7.8. Reading and Writing Vector Images 279

Of course, you could envision the addition of filters in between the reader and the writer. Those
filters could perform operations on the vector image.

7.8.2 Producing and Writing Covariant Images

The source code for this section can be found in the file
Examples/IO/CovariantVectorImageWrite.cxx.

This example illustrates how to write an image whose pixel type is CovariantVector.
For practical purposes all the content in this example is applicable to images of pixel type
itk::Vector, itk::Point and itk::FixedArray. These pixel types are similar in that they
are all arrays of fixed size in which the components have the same representational type.

In order to make this example a bit more interesting we setup apipeline to read an im-
age, compute its gradient and write the gradient to a file. Gradients are represented with
itk::CovariantVectors as opposed to Vectors. In this way, gradients are transformed cor-
rectly underitk::AffineTransforms or in general, any transform having anisotropic scaling.

Let’s start by including the relevant header files.

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"

We use theitk::GradientRecursiveGaussianImageFilter in order to compute the image
gradient. The output of this filter is an image whose pixels are CovariantVectors.

#include "itkGradientRecursiveGaussianImageFilter.h"

We select to read an image ofsigned short pixels and compute the gradient to produce an
image of CovariantVector where each component is of typefloat.

typedef signed short InputPixelType;
typedef float ComponentType;
const unsigned int Dimension = 2;

typedef itk::CovariantVector< ComponentType,
Dimension > OutputPixelType;

typedef itk::Image< InputPixelType, Dimension > InputImageType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;

The itk::ImageFileReader and itk::ImageFileWriter are instantiated using the image
types.

typedef itk::ImageFileReader< InputImageType > ReaderType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;

http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1Point.html
http://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html
http://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html
http://www.itk.org/Doxygen/html/classitk_1_1AffineTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1GradientRecursiveGaussianImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html

280 Chapter 7. Reading and Writing Images

The GradientRecursiveGaussianImageFilter class is instantiated using the input and out-
put image types. A filter object is created with the New() method and assigned to a
itk::SmartPointer.

typedef itk::GradientRecursiveGaussianImageFilter<
InputImageType,
OutputImageType > FilterType;

FilterType::Pointer filter = FilterType::New();

We select a value for theσ parameter of the GradientRecursiveGaussianImageFilter.Note that
this σ is specified in millimeters.

filter->SetSigma(1.5); // Sigma in millimeters

Below, we create the reader and writer using the New() methodand assigning the result to a
SmartPointer.

ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();

The name of the file to be read or written is passed with the SetFileName() method.

reader->SetFileName(inputFilename);
writer->SetFileName(outputFilename);

Below we connect the reader, filter and writer to form the dataprocessing pipeline.

filter->SetInput(reader->GetOutput());
writer->SetInput(filter->GetOutput());

Finally we execute the pipeline by invoking Update() on the writer. The call is placed in a
try/catch block in case exceptions are thrown.

try
{
writer->Update();
}

catch(itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

7.8. Reading and Writing Vector Images 281

7.8.3 Reading Covariant Images

Let’s now take the image that we just created and read it into another program.

The source code for this section can be found in the file
Examples/IO/CovariantVectorImageRead.cxx.

This example illustrates how to read an image whose pixel type isCovariantVector. For prac-
tical purposes this example is applicable to images of pixeltype itk::Vector, itk::Point
and itk::FixedArray. These pixel types are similar in that they are all arrays of fixed size in
which the components have the same representation type.

In this example we are reading an gradient image from a file (written in the previous example)
and computing its magnitude using theitk::GradientToMagnitudeImageFilter. Note that
this filter is different from theitk::GradientMagnitudeImageFilter which actually takes
a scalar image as input and compute the magnitude of its gradient. The GradientToMagni-
tudeImageFilter class takes an image of vector pixel type asinput and computes pixel-wise the
magnitude of each vector.

Let’s start by including the relevant header files.

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkGradientToMagnitudeImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"

We read an image ofitk::CovariantVector pixels and compute pixel magnitude to pro-
duce an image where each pixel is of typeunsigned short. The components of the Covari-
antVector are selected to befloat here. Notice that a renormalization is required in order to
map the dynamic range of the magnitude values into the range of the output pixel type. The
itk::RescaleIntensityImageFilter is used to achieve this.

typedef float ComponentType;
const unsigned int Dimension = 2;

typedef itk::CovariantVector< ComponentType,
Dimension > InputPixelType;

typedef float MagnitudePixelType;
typedef unsigned short OutputPixelType;

typedef itk::Image< InputPixelType, Dimension > InputImageType;
typedef itk::Image< MagnitudePixelType, Dimension > MagnitudeImageType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;

The itk::ImageFileReader and itk::ImageFileWriter are instantiated using the image
types.

http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1Point.html
http://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html
http://www.itk.org/Doxygen/html/classitk_1_1GradientToMagnitudeImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1GradientMagnitudeImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html
http://www.itk.org/Doxygen/html/classitk_1_1RescaleIntensityImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html

282 Chapter 7. Reading and Writing Images

typedef itk::ImageFileReader< InputImageType > ReaderType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;

The GradientToMagnitudeImageFilter is instantiated using the input and output image types. A
filter object is created with the New() method and assigned toa itk::SmartPointer.

typedef itk::GradientToMagnitudeImageFilter<
InputImageType,
MagnitudeImageType > FilterType;

FilterType::Pointer filter = FilterType::New();

The RescaleIntensityImageFilter class is instantiated next.

typedef itk::RescaleIntensityImageFilter<
MagnitudeImageType,
OutputImageType > RescaleFilterType;

RescaleFilterType::Pointer rescaler = RescaleFilterType::New();

In the following the minimum and maximum values for the output image are specified. Note the
use of theitk::NumericTraits class which allows to define a number of type-related constant
in a generic way. The use of traits is a fundamental characteristic of generic programming [6, 1].

rescaler->SetOutputMinimum(itk::NumericTraits< OutputPixelType >::min());
rescaler->SetOutputMaximum(itk::NumericTraits< OutputPixelType >::max());

Below, we create the reader and writer using the New() methodand assign the result to a Smart-
Pointer.

ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();

The name of the file to be read or written is passed with the SetFileName() method.

reader->SetFileName(inputFilename);
writer->SetFileName(outputFilename);

Below we connect the reader, filter and writer to form the dataprocessing pipeline.

filter->SetInput(reader->GetOutput());
rescaler->SetInput(filter->GetOutput());
writer->SetInput(rescaler->GetOutput());

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
http://www.itk.org/Doxygen/html/classitk_1_1NumericTraits.html

7.9. Reading and Writing Complex Images 283

Finally we execute the pipeline by invoking Update() on the writer. The call is placed in a
try/catch block in case exceptions are thrown.

try
{
writer->Update();
}

catch(itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}

7.9 Reading and Writing Complex Images

The source code for this section can be found in the file
Examples/IO/ComplexImageReadWrite.cxx.

This example illustrates how to read and write an image of pixel typestd::complex. The
complex type is defined as an integral part of the C++ language. The characteristics of the type
are specified in the C++ standard document in Chapter 26 ”Numerics Library”, page 565, in
particular in section 26.2 [5].

We start by including the headers of the complex class, the image, and the reader and writer
classes.

#include <complex>
#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"

The image dimension and pixel type must be declared. In this case we use thestd::complex<>
as the pixel type. Using the dimension and pixel type we proceed to instantiate the image type.

const unsigned int Dimension = 2;

typedef std::complex< float > PixelType;
typedef itk::Image< PixelType, Dimension > ImageType;

The image file reader and writer types are instantiated usingthe image type. We can then create
objects for both of them.

typedef itk::ImageFileReader< ImageType > ReaderType;

284 Chapter 7. Reading and Writing Images

typedef itk::ImageFileWriter< ImageType > WriterType;

ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();

Filenames should be provided for both the reader and the writer. In this particular example we
take those filenames from the command line arguments.

reader->SetFileName(argv[1]);
writer->SetFileName(argv[2]);

Here we simply connect the output of the reader as input to thewriter. This simple program
could be used for converting complex images from one fileformat to another.

writer->SetInput(reader->GetOutput());

The execution of this short pipeline is triggered by invoking the Update() method of the writer.
This invocation must be placed inside a try/catch block since its execution may result in excep-
tions being thrown.

try
{
writer->Update();
}

catch(itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}

For a more interesting use of this code, you may want to add a filter in between the reader and
the writer and perform any complex image to complex image operation. A practical application
of this code is presented in section6.10in the context of Fourier analysis.

7.10 Extracting Components from Vector Images

The source code for this section can be found in the file
Examples/IO/CovariantVectorImageExtractComponent.cxx.

This example illustrates how to read an image whose pixel type isCovariantVector, extract
one of its components to form a scalar image and finally save this image into a file.

7.10. Extracting Components from Vector Images 285

The itk::VectorIndexSelectionCastImageFilter is used to extract a scalar from the vec-
tor image. It is also possible to cast the component type whenusing this filter. It is the user’s
responsibility to make sure that the cast will not result in any information loss.

Let’s start by including the relevant header files.

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkVectorIndexSelectionCastImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"

We read an image ofitk::CovariantVector pixels and extract on of its components to
generate a scalar image of a consistent pixel type. Then, we rescale the intensities of this scalar
image and write it as a image ofunsigned short pixels.

typedef float ComponentType;
const unsigned int Dimension = 2;

typedef itk::CovariantVector< ComponentType,
Dimension > InputPixelType;

typedef unsigned short OutputPixelType;

typedef itk::Image< InputPixelType, Dimension > InputImageType;
typedef itk::Image< ComponentType, Dimension > ComponentImageType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;

The itk::ImageFileReader and itk::ImageFileWriter are instantiated using the image
types.

typedef itk::ImageFileReader< InputImageType > ReaderType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;

The VectorIndexSelectionCastImageFilter is instantiated using the input and output image
types. A filter object is created with the New() method and assigned to aitk::SmartPointer.

typedef itk::VectorIndexSelectionCastImageFilter<
InputImageType,
ComponentImageType > FilterType;

FilterType::Pointer componentExtractor = FilterType::New();

The VectorIndexSelectionCastImageFilter class require us to specify which of the vector com-
ponents is to be extracted from the vector image. This is donewith the SetIndex() method. In
this example we obtain this value from the command line arguments.

http://www.itk.org/Doxygen/html/classitk_1_1VectorIndexSelectionCastImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

286 Chapter 7. Reading and Writing Images

componentExtractor->SetIndex(indexOfComponentToExtract);

The itk::RescaleIntensityImageFilter filter is instantiated here.

typedef itk::RescaleIntensityImageFilter<
ComponentImageType,
OutputImageType > RescaleFilterType;

RescaleFilterType::Pointer rescaler = RescaleFilterType::New();

The minimum and maximum values for the output image are specified in the following. Note the
use of theitk::NumericTraits class which allows to define a number of type-related constant
in a generic way. The use of traits is a fundamental characteristic of generic programming [6, 1].

rescaler->SetOutputMinimum(itk::NumericTraits< OutputPixelType >::min());
rescaler->SetOutputMaximum(itk::NumericTraits< OutputPixelType >::max());

Below, we create the reader and writer using the New() methodand assign the result to a Smart-
Pointer.

ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();

The name of the file to be read or written is passed with the SetFileName() method.

reader->SetFileName(inputFilename);
writer->SetFileName(outputFilename);

Below we connect the reader, filter and writer to form the dataprocessing pipeline.

componentExtractor->SetInput(reader->GetOutput());
rescaler->SetInput(componentExtractor->GetOutput());
writer->SetInput(rescaler->GetOutput());

Finally we execute the pipeline by invoking Update() on the writer. The call is placed in a
try/catch block in case exceptions are thrown.

try
{
writer->Update();
}

catch(itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}

http://www.itk.org/Doxygen/html/classitk_1_1RescaleIntensityImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1NumericTraits.html

7.11. Reading and Writing Image Series 287

7.11 Reading and Writing Image Series

It is still quite common to store 3D medical images in sets of files each one containing a single
slice of a volume dataset. Those 2D files can be read as individual 2D images, or can be
grouped together in order to reconstruct a 3D dataset. The same practice can be extended
to higher dimensions, for example, for managing 4D datasetsby using sets of files each one
containing a 3D image. This practice is common in the domain of cardiac imaging, perfusion,
functional MRI and PET. This section illustrates the functionalities available in ITK for dealing
with reading and writing series of images.

7.11.1 Reading Image Series

The source code for this section can be found in the file
Examples/IO/ImageSeriesReadWrite.cxx.

This example illustrates how to read a series of 2D slices from independent files in order to com-
pose a volume. The classitk::ImageSeriesReader is used for this purpose. This class works
in combination with a generator of filenames that will provide a list of files to be read. In this
particular example we use theitk::NumericSeriesFileNames class as filename generator.
This generator uses aprintf style of string format with a “%d” field that will be successively
replaced by a number specified by the user. Here we will use a format like “file%03d.png”
for reading PNG files named file001.png, file002.png, file003.png... and so on.

This requires the following headers as shown.

#include "itkImage.h"
#include "itkImageSeriesReader.h"
#include "itkImageFileWriter.h"
#include "itkNumericSeriesFileNames.h"
#include "itkPNGImageIO.h"

We start by defining thePixelType andImageType.

typedef unsigned char PixelType;
const unsigned int Dimension = 3;

typedef itk::Image< PixelType, Dimension > ImageType;

The image type is used as a template parameter to instantiatethe reader and writer.

typedef itk::ImageSeriesReader< ImageType > ReaderType;
typedef itk::ImageFileWriter< ImageType > WriterType;

ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();

http://www.itk.org/Doxygen/html/classitk_1_1ImageSeriesReader.html
http://www.itk.org/Doxygen/html/classitk_1_1NumericSeriesFileNames.html

288 Chapter 7. Reading and Writing Images

Then, we declare the filenames generator type and create one instance of it.

typedef itk::NumericSeriesFileNames NameGeneratorType;

NameGeneratorType::Pointer nameGenerator = NameGeneratorType::New();

The filenames generator requires us to provide a pattern of text for the filenames, and numbers
for the initial value, last value and increment to be used forgenerating the names of the files.

nameGenerator->SetSeriesFormat("vwe%03d.png");

nameGenerator->SetStartIndex(first);
nameGenerator->SetEndIndex(last);
nameGenerator->SetIncrementIndex(1);

The ImageIO object that actually performs the read process is now connected to the Image-
SeriesReader. This is the safest way of making sure that we use an ImageIO object that is
appropriate for the type of files that we want to read.

reader->SetImageIO(itk::PNGImageIO::New());

The filenames of the input files must be provided to the reader.While the writer is instructed to
write the same volume dataset in a single file.

reader->SetFileNames(nameGenerator->GetFileNames());

writer->SetFileName(outputFilename);

We connect the output of the reader to the input of the writer.

writer->SetInput(reader->GetOutput());

Finally, execution of the pipeline can be triggered by invoking the Update() method in the writer.
This call must be placed in a try/catch block since exceptions be potentially be thrown in the
process of reading or writing the images.

try
{
writer->Update();
}

catch(itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}

7.11. Reading and Writing Image Series 289

7.11.2 Writing Image Series

The source code for this section can be found in the file
Examples/IO/ImageReadImageSeriesWrite.cxx.

This example illustrates how to save an image using theitk::ImageSeriesWriter. This
class enables the saving of a 3D volume as a set of files containing one 2D slice per file.

The type of the input image is declared here and it is used for declaring the type of the reader.
This will be a conventional 3D image reader.

typedef itk::Image< unsigned char, 3 > ImageType;
typedef itk::ImageFileReader< ImageType > ReaderType;

The reader object is constructed using theNew() operator and assigning the result to a
SmartPointer. The filename of the 3D volume to be read is taken from the command line
arguments and passed to the reader using theSetFileName() method.

ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(argv[1]);

The type of the series writer must be instantiated taking into account that the input file is a 3D
volume and the output files are 2D images. Additionally, the output of the reader is connected
as input to the writer.

typedef itk::Image< unsigned char, 2 > Image2DType;

typedef itk::ImageSeriesWriter< ImageType, Image2DType > WriterType;

WriterType::Pointer writer = WriterType::New();

writer->SetInput(reader->GetOutput());

The writer requires a list of filenames to be generated. This list can be produced with the help
of the itk::NumericSeriesFileNames class.

typedef itk::NumericSeriesFileNames NameGeneratorType;

NameGeneratorType::Pointer nameGenerator = NameGeneratorType::New();

TheNumericSeriesFileNames class requires an input string in order to have a template for
generating the filenames of all the output slices. Here we compose this string using a prefix
taken from the command line arguments and adding the extension for PNG files.

http://www.itk.org/Doxygen/html/classitk_1_1ImageSeriesWriter.html
http://www.itk.org/Doxygen/html/classitk_1_1NumericSeriesFileNames.html

290 Chapter 7. Reading and Writing Images

std::string format = argv[2];
format += "%03d.";
format += argv[3]; // filename extension

nameGenerator->SetSeriesFormat(format.c_str());

The input string is going to be used for generating filenames by setting the values of the first
and last slice. This can be done by collecting information from the input image. Note that
before attempting to take any image information from the reader, its execution must be triggered
with the invocation of theUpdate() method, and since this invocation can potentially throw
exceptions, it must be put inside atry/catch block.

try
{
reader->Update();
}

catch(itk::ExceptionObject & excp)
{
std::cerr << "Exception thrown while reading the image" << std::endl;
std::cerr << excp << std::endl;
}

Now that the image has been read we can query its largest possible region and recover informa-
tion about the number of pixels along every dimension.

ImageType::ConstPointer inputImage = reader->GetOutput();
ImageType::RegionType region = inputImage->GetLargestPossibleRegion();
ImageType::IndexType start = region.GetIndex();
ImageType::SizeType size = region.GetSize();

With this information we can find the number that will identify the first and last slices of the
3D data set. This numerical values are then passed to the filenames generator object that will
compose the names of the files where the slices are going to be stored.

const unsigned int firstSlice = start[2];
const unsigned int lastSlice = start[2] + size[2] - 1;

nameGenerator->SetStartIndex(firstSlice);
nameGenerator->SetEndIndex(lastSlice);
nameGenerator->SetIncrementIndex(1);

The list of filenames is taken from the names generator and it is passed to the series writer.

writer->SetFileNames(nameGenerator->GetFileNames());

7.11. Reading and Writing Image Series 291

Finally we trigger the execution of the pipeline with the Update() method on the writer. At this
point the slices of the image will be saved in individual filescontaining a single slice per file.
The filenames used for these slices are those produced by the filenames generator.

try
{
writer->Update();
}

catch(itk::ExceptionObject & excp)
{
std::cerr << "Exception thrown while reading the image" << std::endl;
std::cerr << excp << std::endl;
}

Note that by saving data into isolated slices we are losing information that may be significant
for medical applications, such as the interslice spacing inmillimeters.

7.11.3 Reading and Writing Series of RGB Images

The source code for this section can be found in the file
Examples/IO/RGBImageSeriesReadWrite.cxx.

RGB images are commonly used for representing data acquiredfrom cryogenic sections, optical
microscopy and endoscopy. This example illustrates how to read RGB color images from a set
of files containing individual 2D slices in order to compose a3D color dataset. Then save it into
a single 3D file, and finally save it again as a set of 2D slices with other names.

This requires the following headers as shown.

#include "itkRGBPixel.h"
#include "itkImage.h"
#include "itkImageFileWriter.h"
#include "itkImageSeriesReader.h"
#include "itkImageSeriesWriter.h"
#include "itkNumericSeriesFileNames.h"
#include "itkPNGImageIO.h"

The itk::RGBPixel class is templated over the type used to represent each one ofthe Red,
Green and Blue components. A typical instantiation of the RGB image class might be as fol-
lows.

typedef itk::RGBPixel< unsigned char > PixelType;
const unsigned int Dimension = 3;

typedef itk::Image< PixelType, Dimension > ImageType;

http://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html

292 Chapter 7. Reading and Writing Images

The image type is used as a template parameter to instantiatethe series reader and the volumetric
writer.

typedef itk::ImageSeriesReader< ImageType > SeriesReaderType;
typedef itk::ImageFileWriter< ImageType > WriterType;

SeriesReaderType::Pointer seriesReader = SeriesReaderType::New();
WriterType::Pointer writer = WriterType::New();

We use a NumericSeriesFileNames class in order to generate the filenames of the slices to be
read. Later on in this example we will reuse this object in order to generate the filenames of the
slices to be written.

typedef itk::NumericSeriesFileNames NameGeneratorType;

NameGeneratorType::Pointer nameGenerator = NameGeneratorType::New();

nameGenerator->SetStartIndex(first);
nameGenerator->SetEndIndex(last);
nameGenerator->SetIncrementIndex(1);

nameGenerator->SetSeriesFormat("vwe%03d.png");

The ImageIO object that actually performs the read process is now connected to the Image-
SeriesReader.

seriesReader->SetImageIO(itk::PNGImageIO::New());

The filenames of the input slices are taken from the names generator and passed to the series
reader.

seriesReader->SetFileNames(nameGenerator->GetFileNames());

The name of the volumetric output image is passed to the imagewriter, and we connect the
output of the series reader to the input of the volumetric writer.

writer->SetFileName(outputFilename);

writer->SetInput(seriesReader->GetOutput());

Finally, execution of the pipeline can be triggered by invoking the Update() method in the
volumetric writer. This, of course, is done from inside a try/catch block.

7.11. Reading and Writing Image Series 293

try
{
writer->Update();
}

catch(itk::ExceptionObject & excp)
{
std::cerr << "Error reading the series " << std::endl;
std::cerr << excp << std::endl;
}

We now proceed to save the same volumetric dataset as a set of slices. This is done only to
illustrate the process for saving a volume as a series of 2D individual datasets. The type of the
series writer must be instantiated taking into account thatthe input file is a 3D volume and the
output files are 2D images. Additionally, the output of the series reader is connected as input to
the series writer.

typedef itk::Image< PixelType, 2 > Image2DType;

typedef itk::ImageSeriesWriter< ImageType, Image2DType > SeriesWriterType;

SeriesWriterType::Pointer seriesWriter = SeriesWriterType::New();

seriesWriter->SetInput(seriesReader->GetOutput());

We now reuse the filenames generator in order to produce the list of filenames for the output
series. In this case we just need to modify the format of the filenames generator. Then, we pass
the list of output filenames to the series writer.

nameGenerator->SetSeriesFormat("output%03d.png");

seriesWriter->SetFileNames(nameGenerator->GetFileNames());

Finally we trigger the execution of the series writer from inside a try/catch block.

try
{
seriesWriter->Update();
}

catch(itk::ExceptionObject & excp)
{
std::cerr << "Error reading the series " << std::endl;
std::cerr << excp << std::endl;
}

You may have noticed that apart from the declaration of thePixelType there is nothing in
this code that is specific for RGB images. All the actions required to support color images are
implemented internally in theitk::ImageIO objects.

http://www.itk.org/Doxygen/html/classitk_1_1ImageIO.html

294 Chapter 7. Reading and Writing Images

7.12 Reading and Writing DICOM Images

7.12.1 Foreword

With the introduction of computed tomography (CT) followedby other digital diagnostic imag-
ing modalities such as MRI in the 1970’s, and the increasing use of computers in clinical appli-
cations, the American College of Radiology (ACR)3 and the National Electrical Manufacturers
Association (NEMA)4 recognized the need for a standard method for transferring images as
well as associated information between devices manufactured from various vendors.

ACR and NEMA formed a joint committee to develop a standard for Digital Imaging and Com-
munications in Medicine (DICOM). This standard was developed in liaison with other Stan-
dardization Organizations such as CEN TC251, JIRA including IEEE, HL7 and ANSI USA as
reviewers.

DICOM is a comprehensive set of standards for handling, storing and transmitting information
in medical imaging. The DICOM standard was developed based on the previous NEMA spec-
ification. The standard specifies a file format definition as well as a network communication
protocol. DICOM was developed to enable integration of scanners, servers, workstations and
network hardware from multiple vendors into an image archiving and communication system.

DICOM files consist of a header and a body of image data. The header contains
standardized as well as free-form fields. The set of standardized fields is called the
public DICOM dictionary, an instance of this dictionary is available in ITK in the
file Insight/Utilities/gdcm/Dict/dicomV3.dic. The list of free-form fields is also called
theshadow dictionary.

A single DICOM file can contain multiples frames, allowing storage of volumes or animations.
Image data can be compressed using a large variety of standards, including JPEG (both lossy
and lossless), LZW (Lempel Ziv Welch), and RLE (Run-length encoding).

The DICOM Standard is an evolving standard and it is maintained in accordance with the Pro-
cedures of the DICOM Standards Committee. Proposals for enhancements are forthcoming
from the DICOM Committee member organizations based on input from users of the Standard.
These proposals are considered for inclusion in future editions of the Standard. A requirement
in updating the Standard is to maintain effective compatibility with previous editions.

For a more detailed description of the DICOM standard see [60].

The following sections illustrate how to use the functionalities that ITK provides for reading and
writing DICOM files. This is extremely important in the domain of medical imaging since most
of the images that are acquired a clinical setting are storedand transported using the DICOM
standard.

DICOM functionalities in ITK are provided by the GDCM library. This open source library

3http://www.acr.org
4http://www.nema.org

http://www.acr.org
http://www.nema.org

7.12. Reading and Writing DICOM Images 295

was developed by the CREATIS Team5 at INSA-Lyon [26]. Although originally this library
was distributed under a LGPL License6, the CREATIS Team was lucid enough to understand
the limitations of that license and agreed to adopt the more open BSD-like License7 that is used
by ITK. This change in their licensing made possible to distribute GDCM along with ITK.

GDCM is still being maintained and improved at the original CREATIS site and the version
distributed with ITK gets updated with major releases of theGDCM library.

7.12.2 Reading and Writing a 2D Image

The source code for this section can be found in the file
Examples/IO/DicomImageReadWrite.cxx.

This example illustrates how to read a single DICOM slice andwrite it back as another DICOM
slice. In the process an intensity rescaling is also applied.

In order to read and write the slice we use here theitk::GDCMImageIO class that encapsu-
lates a connection to the underlying GDCM library. In this way we gain access from ITK to
the DICOM functionalities offered by GDCM. The GDCMImageIOobject is connected as the
ImageIO object to be used by theitk::ImageFileWriter.

We should first include the following header files.

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkGDCMImageIO.h"

Then we declare the pixel type and image dimension, and use them for instantiating the image
type to be read.

typedef signed short InputPixelType;
const unsigned int InputDimension = 2;

typedef itk::Image< InputPixelType, InputDimension > InputImageType;

With the image type we can instantiate the type of the reader,create one, and set the filename
of the image to be read.

typedef itk::ImageFileReader< InputImageType > ReaderType;

ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(argv[1]);

5http://www.creatis.insa-lyon.fr
6http://www.gnu.org/copyleft/lesser.html
7http://www.opensource.org/licenses/bsd-license.php

http://www.itk.org/Doxygen/html/classitk_1_1GDCMImageIO.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
http://www.creatis.insa-lyon.fr
http://www.gnu.org/copyleft/lesser.html
http://www.opensource.org/licenses/bsd-license.php

296 Chapter 7. Reading and Writing Images

GDCMImageIO is an ImageIO class for reading and writing DICOM v3 and ACR/NEMA
images. The GDCMImageIO object is constructed here and connected to the ImageFileReader.

typedef itk::GDCMImageIO ImageIOType;

ImageIOType::Pointer gdcmImageIO = ImageIOType::New();

reader->SetImageIO(gdcmImageIO);

At this point we can trigger the reading process by invoking the Update() method. Since this
reading process may eventually throw an exception, we placethe invocation inside a try/catch
block.

try
{
reader->Update();
}

catch (itk::ExceptionObject & e)
{
std::cerr << "exception in file reader " << std::endl;
std::cerr << e << std::endl;
return EXIT_FAILURE;
}

We have now the image in memory and can get access to it by usingthe GetOutput() method of
the reader. In the remaining of this current example, we focus on showing how we can save this
image again in DICOM format in a new file.

First, we must instantiate an ImageFileWriter type. Then, we construct one, set the filename to
be used for writing and connect the input image to be written.Given that in this example we
write the image in different ways, and in each case we use a different writer, we enumerated
here the variable names of the writer objects as well as theirtypes.

typedef itk::ImageFileWriter< InputImageType > Writer1Type;

Writer1Type::Pointer writer1 = Writer1Type::New();

writer1->SetFileName(argv[2]);
writer1->SetInput(reader->GetOutput());

We need to explicitly set the proper image IO (GDCMImageIO) to the writer filter since the
input DICOM dictionary is being passed along the writing process. The dictionary contains all
necessary information that a valid DICOM file should contain, like Patient Name, Patient ID,
Institution Name, etc.

writer1->SetImageIO(gdcmImageIO);

7.12. Reading and Writing DICOM Images 297

The writing process is triggered by invoking the Update() method. Since this execution may
result in exceptions being thrown we place the Update() callinside a try/catch block.

try
{
writer1->Update();
}

catch (itk::ExceptionObject & e)
{
std::cerr << "exception in file writer " << std::endl;
std::cerr << e << std::endl;
return EXIT_FAILURE;
}

We will now rescale the image into a rescaled image one using the rescale intensity image filter.
For this purpose we use a better suited pixel type:unsigned char instead ofsigned short.
The minimum and maximum values of the output image are explicitly defined in the rescaling
filter.

typedef unsigned char WritePixelType;

typedef itk::Image< WritePixelType, 2 > WriteImageType;

typedef itk::RescaleIntensityImageFilter<
InputImageType, WriteImageType > RescaleFilterType;

RescaleFilterType::Pointer rescaler = RescaleFilterType::New();

rescaler->SetOutputMinimum(0);
rescaler->SetOutputMaximum(255);

We create a second writer object that will save the rescaled image into a file. This time not in
DICOM format. This is done only for the sake of verifying the image against the one that will
be saved in DICOM format later on this example.

typedef itk::ImageFileWriter< WriteImageType > Writer2Type;

Writer2Type::Pointer writer2 = Writer2Type::New();

writer2->SetFileName(argv[3]);

rescaler->SetInput(reader->GetOutput());
writer2->SetInput(rescaler->GetOutput());

The writer can be executed by invoking the Update() method from inside a try/catch block.

298 Chapter 7. Reading and Writing Images

We proceed now to save the same rescaled image into a file in DICOM format. For this purpose
we just need to set up aitk::ImageFileWriter and pass to it the rescaled image as input.

typedef itk::ImageFileWriter< WriteImageType > Writer3Type;

Writer3Type::Pointer writer3 = Writer3Type::New();

writer3->SetFileName(argv[4]);
writer3->SetInput(rescaler->GetOutput());

We now need to explicitly set the proper image IO (GDCMImageIO), but also we must tell
the ImageFileWriter to not use the MetaDataDictionary fromthe input but from the GDCMIm-
ageIO since this is the one that contains the DICOM specific information

The GDCMImageIO object will automatically detect the pixeltype, in this caseunsigned
char and it will update the DICOM header information accordingly.

writer3->UseInputMetaDataDictionaryOff ();
writer3->SetImageIO(gdcmImageIO);

Finally we trigger the execution of the DICOM writer by invoking the Update() method from
inside a try/catch block.

try
{
writer3->Update();
}

catch (itk::ExceptionObject & e)
{
std::cerr << "Exception in file writer " << std::endl;
std::cerr << e << std::endl;
return EXIT_FAILURE;
}

7.12.3 Reading a 2D DICOM Series and Writing a Volume

The source code for this section can be found in the file
Examples/IO/DicomSeriesReadImageWrite2.cxx.

Probably the most common representation of datasets in clinical applications is the one that
uses sets of DICOM slices in order to compose tridimensionalimages. This is the case for
CT, MRI and PET scanners. It is very common therefore for image analysts to have to process
volumetric images that are stored in the form of a set of DICOMfiles belonging to a common
DICOM series.

http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html

7.12. Reading and Writing DICOM Images 299

The following example illustrates how to use ITK functionalities in order to read a DICOM
series into a volume and then save this volume in another file format.

The example begins by including the appropriate headers. Inparticular we will need the
itk::GDCMImageIO object in order to have access to the capabilities of the GDCMlibrary
for reading DICOM files, and theitk::GDCMSeriesFileNames object for generating the lists
of filenames identifying the slices of a common volumetric dataset.

#include "itkGDCMImageIO.h"
#include "itkGDCMSeriesFileNames.h"
#include "itkImageSeriesReader.h"
#include "itkImageFileWriter.h"

We define the pixel type and dimension of the image to be read. In this particular case, the
dimensionality of the image is 3, and we assume asigned short pixel type that is commonly
used for X-Rays CT scanners.

typedef signed short PixelType;
const unsigned int Dimension = 3;

typedef itk::Image< PixelType, Dimension > ImageType;

We use the image type for instantiating the type of the seriesreader and for constructing one
object of its type.

typedef itk::ImageSeriesReader< ImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();

A GDCMImageIO object is created and connected to the reader.This object is the one that is
aware of the internal intricacies of the DICOM format.

typedef itk::GDCMImageIO ImageIOType;
ImageIOType::Pointer dicomIO = ImageIOType::New();

reader->SetImageIO(dicomIO);

Now we face one of the main challenges of the process of reading a DICOM series. That is, to
identify from a given directory the set of filenames that belong together to the same volumetric
image. Fortunately for us, GDCM offers functionalities forsolving this problem and we just
need to invoke those functionalities through an ITK class that encapsulates a communication
with GDCM classes. This ITK object is the GDCMSeriesFileNames. Conveniently for us, we
only need to pass to this class the name of the directory wherethe DICOM slices are stored. This
is done with theSetDirectory() method. The GDCMSeriesFileNames object will explore the
directory and will generate a sequence of filenames for DICOMfiles for one study/series. In

http://www.itk.org/Doxygen/html/classitk_1_1GDCMImageIO.html
http://www.itk.org/Doxygen/html/classitk_1_1GDCMSeriesFileNames.html

300 Chapter 7. Reading and Writing Images

this example, we also call theSetUseSeriesDetails(true) function that tells the GDCM-
SereiesFileNames object to use additional DICOM information to distinguish unique volumes
within the directory. This is useful, for example, if a DICOMdevice assigns the same SeriesID
to a scout scan and its 3D volume; by using additional DICOM information the scout scan will
not be included as part of the 3D volume. Note thatSetUseSeriesDetails(true) must be
called prior to callingSetDirectory().

typedef itk::GDCMSeriesFileNames NamesGeneratorType;
NamesGeneratorType::Pointer nameGenerator = NamesGeneratorType::New();

nameGenerator->SetUseSeriesDetails(true);

nameGenerator->SetDirectory(argv[1]);

The GDCMSeriesFileNames object first identifies the list of DICOM series that are present in
the given directory. We receive that list in a reference to a container of strings and then we
can do things like printing out all the series identifiers that the generator had found. Since the
process of finding the series identifiers can potentially throw exceptions, it is wise to put this
code inside a try/catch block.

typedef std::vector< std::string > SeriesIdContainer;

const SeriesIdContainer & seriesUID = nameGenerator->GetSeriesUIDs();

SeriesIdContainer::const_iterator seriesItr = seriesUID.begin();
SeriesIdContainer::const_iterator seriesEnd = seriesUID.end();
while(seriesItr != seriesEnd)

{
std::cout << seriesItr->c_str() << std::endl;
seriesItr++;
}

Given that it is common to find multiple DICOM series in the same directory, we must tell the
GDCM classes what specific series do we want to read. In this example we do this by checking
first if the user has provided a series identifier in the command line arguments. If no series
identifier has been passed, then we simply use the first seriesfound during the exploration of
the directory.

std::string seriesIdentifier;

if(argc > 3) // If no optional series identifier
{
seriesIdentifier = argv[3];
}

else

7.12. Reading and Writing DICOM Images 301

{
seriesIdentifier = seriesUID.begin()->c_str();
}

We pass the series identifier to the name generator and ask forall the filenames associated to
that series. This list is returned in a container of strings by theGetFileNames() method.

typedef std::vector< std::string > FileNamesContainer;
FileNamesContainer fileNames;

fileNames = nameGenerator->GetFileNames(seriesIdentifier);

The list of filenames can now be passed to theitk::ImageSeriesReader using the
SetFileNames() method.

reader->SetFileNames(fileNames);

Finally we can trigger the reading process by invoking theUpdate() method in the reader. This
call as usual is placed inside atry/catch block.

try
{
reader->Update();
}

catch (itk::ExceptionObject &ex)
{
std::cout << ex << std::endl;
return EXIT_FAILURE;
}

At this point, we have a volumetric image in memory that we canaccess by invoking the
GetOutput() method of the reader.

We proceed now to save the volumetric image in another file, asspecified by the user in the
command line arguments of this program. Thanks to the ImageIO factory mechanism, only the
filename extension is needed to identify the file format in this case.

typedef itk::ImageFileWriter< ImageType > WriterType;
WriterType::Pointer writer = WriterType::New();

writer->SetFileName(argv[2]);

writer->SetInput(reader->GetOutput());

The process of writing the image is initiated by invoking theUpdate() method of the writer.

http://www.itk.org/Doxygen/html/classitk_1_1ImageSeriesReader.html

302 Chapter 7. Reading and Writing Images

writer->Update();

Note that in addition to writing the volumetric image to a filewe could have used it as the input
for any 3D processing pipeline. Keep in mind that DICOM is simply a file format and a network
protocol. Once the image data has been loaded into memory, itbehaves as any other volumetric
dataset that you could have loaded from any other file format.

7.12.4 Reading a 2D DICOM Series and Writing a 2D DICOM Series

The source code for this section can be found in the file
Examples/IO/DicomSeriesReadSeriesWrite.cxx.

This example illustrates how to read a DICOM series into a volume and then save this volume
into another DICOM series using the exact same header information. It makes use of the GDCM
library.

The main purpose of this example is to show how to properly propagate the DICOM specific
information along the pipeline to be able to correctly writeback the image using the information
from the input DICOM files.

Please note that writing DICOM files is quite a delicate operation since we are dealing with a
significant amount of patient specific data. It is your responsibility to verify that the DICOM
headers generated from this code are not introducing risks in the diagnosis or treatment of
patients. It is as well your responsibility to make sure thatthe privacy of the patient is respected
when you process data sets that contain personal information. Privacy issues are regulated in
the United States by the HIPAA norms8. You would probably find similar legislation in every
country.

When saving datasets in DICOM format it must be made clear whether this datasets have been
processed in any way, and if so, you should inform the recipients of the data about the purpose
and potential consequences of the processing. This is fundamental if the datasets are intended
to be used for diagnosis, treatment or follow-up of patients. For example, the simple reduction
of a dataset form a 16-bits/pixel to a 8-bits/pixel representation may make impossible to detect
certain pathologies and as a result will expose the patient to the risk or remaining untreated for
a long period of time while her/his pathology progresses.

You are strongly encouraged to get familiar with the report on medical errors “To Err is Human”,
produced by the U.S. Institute of Medicine [46]. Raising awareness about the high frequency
of medical errors is a first step in reducing their occurrence.

After all these warnings, let us now go back to the code and getfamiliar with the use of ITK and
GDCM for writing DICOM Series. The first step that we must takeis to include the header files
of the relevant classes. We include the GDCM image IO class, the GDCM filenames generator,
the series reader and writer.

8The Health Insurance Portability and Accountability Act of1996.http://www.cms.hhs.gov/hipaa/

http://www.cms.hhs.gov/hipaa/

7.12. Reading and Writing DICOM Images 303

#include "itkGDCMImageIO.h"
#include "itkGDCMSeriesFileNames.h"
#include "itkImageSeriesReader.h"
#include "itkImageSeriesWriter.h"

As a second step, we define the image type to be used in this example. This is done by explicitly
selecting a pixel type and a dimension. Using the image type we can define the type of the series
reader.

typedef signed short PixelType;
const unsigned int Dimension = 3;

typedef itk::Image< PixelType, Dimension > ImageType;
typedef itk::ImageSeriesReader< ImageType > ReaderType;

We also declare types for theitk::GDCMImageIO object that will actually read and write the
DICOM images, and theitk::GDCMSeriesFileNames object that will generate and order all
the filenames for the slices composing the volume dataset. Once we have the types, we proceed
to create instances of both objects.

typedef itk::GDCMImageIO ImageIOType;
typedef itk::GDCMSeriesFileNames NamesGeneratorType;

ImageIOType::Pointer gdcmIO = ImageIOType::New();
NamesGeneratorType::Pointer namesGenerator = NamesGeneratorType::New();

Just as the previous example, we get the DICOM filenames from the directory. Note however,
that in this case we use theSetInputDirectory() method instead of theSetDirectory().
This is done because in the present case we will use the filenames generator for produc-
ing both the filenames for reading and the filenames for writing. Then, we invoke the
GetInputFileNames() method in order to get the list of filenames to read.

namesGenerator->SetInputDirectory(argv[1]);

const ReaderType::FileNamesContainer & filenames =
namesGenerator->GetInputFileNames();

We construct one instance of the series reader object. Set the DICOM image IO object to be use
with it, and set the list of filenames to read.

ReaderType::Pointer reader = ReaderType::New();

reader->SetImageIO(gdcmIO);
reader->SetFileNames(filenames);

http://www.itk.org/Doxygen/html/classitk_1_1GDCMImageIO.html
http://www.itk.org/Doxygen/html/classitk_1_1GDCMSeriesFileNames.html

304 Chapter 7. Reading and Writing Images

We can trigger the reading process by calling theUpdate() method on the series reader. It is
wise to put this invocation inside atry/catch block since the process may eventually throw
exceptions.

reader->Update();

At this point we would have the volumetric data loaded in memory and we can get access to it
by invoking theGetOutput() method in the reader.

Now we can prepare the process for writing the dataset. First, we take the name of the output
directory from the command line arguments.

const char * outputDirectory = argv[2];

Second, we make sure the output directory exist, using the cross platform tools:
itksys::SystemTools. In this case we select to create the directory if it does not exist yet.

itksys::SystemTools::MakeDirectory(outputDirectory);

We instantiate explicitly the image type to be used for writing, and use the image type for
instantiating the type of the series writer.

typedef signed short OutputPixelType;
const unsigned int OutputDimension = 2;

typedef itk::Image< OutputPixelType, OutputDimension > Image2DType;

typedef itk::ImageSeriesWriter<
ImageType, Image2DType > SeriesWriterType;

We construct a series writer and connect to its input the output from the reader. Then we pass
the GDCM image IO object in order to be able to write the imagesin DICOM format.

SeriesWriterType::Pointer seriesWriter = SeriesWriterType::New();

seriesWriter->SetInput(reader->GetOutput());
seriesWriter->SetImageIO(gdcmIO);

It is time now to setup the GDCMSeriesFileNames to generate new filenames using another
output directory. Then simply pass those newly generated files to the series writer.

namesGenerator->SetOutputDirectory(outputDirectory);

seriesWriter->SetFileNames(namesGenerator->GetOutputFileNames());

7.12. Reading and Writing DICOM Images 305

The following line of code is extremely important for this process to work correctly. The line
is taking the MetaDataDictionary from the input reader and passing it to the output writer. The
reason why this step is so important is that the MetaDataDictionary contains all the entries of
the input DICOM header.

seriesWriter->SetMetaDataDictionaryArray(
reader->GetMetaDataDictionaryArray());

Finally we trigger the writing process by invoking theUpdate() method in the series writer.
We place this call inside a try/catch block, in case any exception is thrown during the writing
process.

try
{
seriesWriter->Update();
}

catch(itk::ExceptionObject & excp)
{
std::cerr << "Exception thrown while writing the series " << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}

Please keep in mind that you should avoid to generate DICOM files that have the appearance
of being produced by a scanner. It should be clear from the directory or filenames that this data
was the result of the execution of some sort of algorithm. This will help to prevent your dataset
from being used as scanner data by accident.

7.12.5 Printing DICOM Tags From One Slice

The source code for this section can be found in the file
Examples/IO/DicomImageReadPrintTags.cxx.

It is often valuable to be able to query the entries from the header of a DICOM file. This can
be used for checking for consistency, or simply for verifying that we have the correct dataset in
our hands. This example illustrates how to read a DICOM file and then print out most of the
DICOM header information. The binary fields of the DICOM header are skipped.

The headers of the main classes involved in this example are specified below. They include the
image file reader, the GDCM image IO object, the Meta data dictionary and its entry element
the Meta data object.

#include "itkImageFileReader.h"
#include "itkGDCMImageIO.h"
#include "itkMetaDataDictionary.h"
#include "itkMetaDataObject.h"

306 Chapter 7. Reading and Writing Images

We instantiate the type to be used for storing the image once it is read into memory.

typedef signed short PixelType;
const unsigned int Dimension = 2;

typedef itk::Image< PixelType, Dimension > ImageType;

Using the image type as template parameter we instantiate the type of the image file reader and
construct one instance of it.

typedef itk::ImageFileReader< ImageType > ReaderType;

ReaderType::Pointer reader = ReaderType::New();

The GDCM image IO type is declared and used for constructing one image IO object.

typedef itk::GDCMImageIO ImageIOType;
ImageIOType::Pointer dicomIO = ImageIOType::New();

We pass to the reader the filename of the image to be read and connect the ImageIO object to it
too.

reader->SetFileName(argv[1]);
reader->SetImageIO(dicomIO);

The reading process is triggered with a call to theUpdate() method. This call should be placed
inside atry/catch block because its execution may result in exceptions being thrown.

reader->Update();

Now that the image has been read, we obtain the Meta data dictionary from the ImageIO object
using theGetMetaDataDictionary() method.

typedef itk::MetaDataDictionary DictionaryType;

const DictionaryType & dictionary = dicomIO->GetMetaDataDictionary();

Since we are interested only in the DICOM tags that can be expressed in strings, we declare a
MetaDataObject suitable for managing strings.

typedef itk::MetaDataObject< std::string > MetaDataStringType;

7.12. Reading and Writing DICOM Images 307

We instantiate the iterators that will make possible to walkthrough all the entries of the Meta-
DataDictionary.

DictionaryType::ConstIterator itr = dictionary.Begin();
DictionaryType::ConstIterator end = dictionary.End();

For each one of the entries in the dictionary, we check first ifits element can be converted to a
string, adynamic cast is used for this purpose.

while(itr != end)
{
itk::MetaDataObjectBase::Pointer entry = itr->second;

MetaDataStringType::Pointer entryvalue =
dynamic_cast<MetaDataStringType *>(entry.GetPointer()) ;

For those entries that can be converted, we take their DICOM tag and pass it to the
GetLabelFromTag() method of the GDCMImageIO class. This method checks the DICOM
dictionary and returns the string label associated to the tag that we are providing in thetagkey
variable. If the label is found, it is returned inlabelId variable. The method itself return false
if the tagkey is not found in the dictionary. For example ”0010—0010” in tagkey becomes
”Patient’s Name” inlabelId.

if(entryvalue)
{
std::string tagkey = itr->first;
std::string labelId;
bool found = itk::GDCMImageIO::GetLabelFromTag(tagkey, labelId);

The actual value of the dictionary entry is obtained as a string with the
GetMetaDataObjectValue() method.

std::string tagvalue = entryvalue->GetMetaDataObjectValue();

At this point we can print out an entry by concatenating the DICOM Name or label, the numeric
tag and its actual value.

if(found)
{
std::cout << "(" << tagkey << ") " << labelId;
std::cout << " = " << tagvalue.c_str() << std::endl;
}

Finally we just close the loop that will walk through all the Dictionary entries.

308 Chapter 7. Reading and Writing Images

++itr;
}

It is also possible to read a specific tag. In that case the string of the entry can be used for
querying the MetaDataDictionary.

std::string entryId = "0010|0010";
DictionaryType::ConstIterator tagItr = dictionary.Find(entryId);

If the entry is actually found in the Dictionary, then we can attempt to convert it to a string entry
by using adynamic cast.

if(tagItr != end)
{
MetaDataStringType::ConstPointer entryvalue =
dynamic_cast<const MetaDataStringType *>(

tagItr->second.GetPointer());

If the dynamic cast succeed, then we can print out the values of the label, the tag and the actual
value.

if(entryvalue)
{
std::string tagvalue = entryvalue->GetMetaDataObjectValue();
std::cout << "Patient’s Name (" << entryId << ") ";
std::cout << " is: " << tagvalue << std::endl;
}

For a full description of the DICOM dictionary please look atthe file.

Insight/Utilities/gdcm/Dicts/dicomV3.dic

7.12.6 Printing DICOM Tags From a Series

The source code for this section can be found in the file
Examples/IO/DicomSeriesReadPrintTags.cxx.

This example illustrates how to read a DICOM series into a volume and then print most of the
DICOM header information. The binary fields are skipped.

The header files for the series reader and the GDCM classes forimage IO and name generation
should be included first.

#include "itkImageSeriesReader.h"
#include "itkGDCMImageIO.h"
#include "itkGDCMSeriesFileNames.h"

7.12. Reading and Writing DICOM Images 309

We instantiate then the type to be used for storing the image once it is read into memory.

typedef signed short PixelType;
const unsigned int Dimension = 3;

typedef itk::Image< PixelType, Dimension > ImageType;

We use the image type for instantiating the series reader type and then we construct one object
of this class.

typedef itk::ImageSeriesReader< ImageType > ReaderType;

ReaderType::Pointer reader = ReaderType::New();

A GDCMImageIO object is created and assigned to the reader.

typedef itk::GDCMImageIO ImageIOType;

ImageIOType::Pointer dicomIO = ImageIOType::New();

reader->SetImageIO(dicomIO);

A GDCMSeriesFileNames is declared in order to generate the names of DICOM slices. We
specify the directory with theSetInputDirectory() method and, in this case, take the direc-
tory name from the command line arguments. You could have obtained the directory name from
a file dialog in a GUI.

typedef itk::GDCMSeriesFileNames NamesGeneratorType;

NamesGeneratorType::Pointer nameGenerator = NamesGeneratorType::New();

nameGenerator->SetInputDirectory(argv[1]);

The list of files to read is obtained from the name generator byinvoking the
GetInputFileNames() method and receiving the results in a container of strings. The list
of filenames is passed to the reader using theSetFileNames() method.

typedef std::vector<std::string> FileNamesContainer;
FileNamesContainer fileNames = nameGenerator->GetInputFileNames();

reader->SetFileNames(fileNames);

We trigger the reader by invoking theUpdate() method. This invocation should normally be
done inside atry/catch block given that it may eventually throw exceptions.

310 Chapter 7. Reading and Writing Images

reader->Update();

ITK internally queries GDCM and obtain all the DICOM tags from the file headers. The tag
values are stored in theitk::MetaDataDictionary that is a general purpose container for
{key,value} pairs. The Meta data dictionary can be recovered from any ImageIO class by
invoking theGetMetaDataDictionary() method.

typedef itk::MetaDataDictionary DictionaryType;

const DictionaryType & dictionary = dicomIO->GetMetaDataDictionary();

In this example, we are only interested in the DICOM tags thatcan be represented as strings. We
declare therefore aitk::MetaDataObject of string type in order to receive those particular
values.

typedef itk::MetaDataObject< std::string > MetaDataStringType;

The Meta data dictionary is organized as a container with itscorresponding iterators. We can
therefore visit all its entries by first getting access to itsBegin() andEnd() methods.

DictionaryType::ConstIterator itr = dictionary.Begin();
DictionaryType::ConstIterator end = dictionary.End();

We are now ready for walking through the list of DICOM tags. For this purpose we use the
iterators that we just declared. At every entry we attempt toconvert it in to a string entry
by using thedynamic cast based on RTTI information9. The dictionary is organized like a
std::map structure, we should use therefore thefirst andsecond members of every entry in
order to get access to the{key,value} pairs.

while(itr != end)
{
itk::MetaDataObjectBase::Pointer entry = itr->second;

MetaDataStringType::Pointer entryvalue =
dynamic_cast<MetaDataStringType *>(entry.GetPointer()) ;

if(entryvalue)
{
std::string tagkey = itr->first;
std::string tagvalue = entryvalue->GetMetaDataObjectValue();
std::cout << tagkey << " = " << tagvalue << std::endl;
}

++itr;
}

9Run Time Type Information

http://www.itk.org/Doxygen/html/classitk_1_1MetaDataDictionary.html
http://www.itk.org/Doxygen/html/classitk_1_1MetaDataObject.html

7.12. Reading and Writing DICOM Images 311

It is also possible to query for specific entries instead of reading all of them as we did above.
In this case, the user must provide the tag identifier using the standard DICOM encoding. The
identifier is stored in a string and used as key on the dictionary.

std::string entryId = "0010|0010";

DictionaryType::ConstIterator tagItr = dictionary.Find(entryId);

if(tagItr == end)
{
std::cerr << "Tag " << entryId;
std::cerr << " not found in the DICOM header" << std::endl;
}

Since the entry may or may not be of string type we must again use adynamic cast in order
to attempt to convert it to a string dictionary entry. If the conversion is successful, then we can
print out its content.

MetaDataStringType::ConstPointer entryvalue =
dynamic_cast<const MetaDataStringType *>(tagItr->second.GetPointer());

if(entryvalue)
{
std::string tagvalue = entryvalue->GetMetaDataObjectValue();
std::cout << "Patient’s Name (" << entryId << ") ";
std::cout << " is: " << tagvalue << std::endl;
}

This type of functionality will probably be more useful whenprovided through a graphical user
interface. For a full description of the DICOM dictionary please look at the file

Insight/Utilities/gdcm/Dicts/dicomV3.dic

7.12.7 Changing a DICOM Header

The source code for this section can be found in the file
Examples/IO/DicomImageReadChangeHeaderWrite.cxx.

This example illustrates how to read a single DICOM slice andwrite it back with some changed
header information as another DICOM slice. Header Key/Value pairs can be specified on the
command line. The keys are defined in the file

Insight/Utilities/gdcm/Dicts/dicomV3.dic

Please note that modifying the content of a DICOM header is a very risky operation. The
Header contains fundamental information about the patientand therefore its consistency must

312 Chapter 7. Reading and Writing Images

be protected from any data corruption. Before attempting tomodify the DICOM headers of
your files, you must make sure that you have a very good reason for doing so, and that you
can ensure that this information change will not result in a lower quality of health care to be
delivered to the patient.

We must start by including the relevant header files. Here we include the image reader, image
writer, the image, the Meta data dictionary and its entries the Meta data objects and the GD-
CMImageIO. The Meta data dictionary is the data container that stores all the entries from the
DICOM header once the DICOM image file is read into an ITK image.

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkImage.h"
#include "itkMetaDataDictionary.h"
#include "itkMetaDataObject.h"
#include "itkGDCMImageIO.h"

We declare the image type by selecting a particular pixel type and image dimension.

typedef signed short InputPixelType;
const unsigned int Dimension = 2;
typedef itk::Image< InputPixelType, Dimension > InputImageType;

We instantiate the reader type by using the image type as template parameter. An instance of
the reader is created and the file name to be read is taken from the command line arguments.

typedef itk::ImageFileReader< InputImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(argv[1]);

The GDCMImageIO object is created in order to provide the services for reading and writing
DICOM files. The newly created image IO class is connected to the reader.

typedef itk::GDCMImageIO ImageIOType;
ImageIOType::Pointer gdcmImageIO = ImageIOType::New();
reader->SetImageIO(gdcmImageIO);

The reading of the image is triggered by invokingUpdate() in the reader.

reader->Update();

We take the Meta data dictionary from the image that the reader had loaded in memory.

7.12. Reading and Writing DICOM Images 313

InputImageType::Pointer inputImage = reader->GetOutput();
typedef itk::MetaDataDictionary DictionaryType;
DictionaryType & dictionary = inputImage->GetMetaDataDictionary();

Now we access the entries in the Meta data dictionary, and forparticular key values we assign
a new content to the entry. This is done here by taking{key,value} pairs from the command
line arguments. The relevant method is the EncapsulateMetaData that takes the dictionary and
for a given key provided byentryId, replaces the current value with the content of thevalue
variable. This is repeated for every potential pair presentin the command line arguments.

for (int i = 3; i < argc; i+=2)
{
std::string entryId(argv[i]);
std::string value(argv[i+1]);
itk::EncapsulateMetaData<std::string>(dictionary, entryId, value);
}

Now that the Dictionary has been updated, we proceed to save the image. This output image
will have the modified data associated to its DICOM header.

Using the image type, we instantiate a writer type and construct a writer. A short pipeline be-
tween the reader and the writer is connected. The filename to write is taken from the command
line arguments. The image IO object is connected to the writer.

typedef itk::ImageFileWriter< InputImageType > Writer1Type;

Writer1Type::Pointer writer1 = Writer1Type::New();

writer1->SetInput(reader->GetOutput());
writer1->SetFileName(argv[2]);
writer1->SetImageIO(gdcmImageIO);

Execution of the writer is triggered by invoking theUpdate() method.

writer1->Update();

Remember again, that modifying the header entries of a DICOMfile involves very serious risks
for patients and therefore must be done with extreme caution.

CHAPTER

EIGHT

Registration

p qT

Figure 8.1: Image registration is the task of finding a spatial

transform mapping on image into another.

This chapter introduces ITK’s capa-
bilities for performing image reg-
istration. Image registration is the
process of determining the spatial
transform that maps points from
one image to homologous points
on a object in the second image.
This concept is schematically rep-
resented in Figure8.1. In ITK,
registration is performed within a
framework of pluggable components that can easily be interchanged. This flexibility means
that a combinatorial variety of registration methods can becreated, allowing users to pick and
choose the right tools for their specific application.

8.1 Registration Framework

The components of the registration framework and their interconnections are shown in Figure
8.2. The basic input data to the registration process are two images: one is defined as thefixed
image f (X) and the other as themovingimagem(X). WhereX represents a position in N-
dimensional space. Registration is treated as an optimization problem with the goal of finding
the spatial mapping that will bring the moving image into alignment with the fixed image.

The transformcomponentT(X) represents the spatial mapping of points from the fixed image
space to points in the moving image space. Theinterpolator is used to evaluate moving image
intensities at non-grid positions. ThemetriccomponentS(f ,m◦T) provides a measure of how
well the fixed image is matched by the transformed moving image. This measure forms the
quantitative criterion to be optimized by theoptimizerover the search space defined by the
parameters of thetransform.

316 Chapter 8. Registration

Optimizer

Transform

Interpolator

Metric

Moving Image

Fixed Image
fitness value

points

pixels

pixels

pixels

Transform
parameters

Figure 8.2: The basic components of the registration framework are two input images, a transform, a

metric, an interpolator and an optimizer.

These various ITK registration components will be described in later sections. First, we begin
with some simple registration examples.

8.2 ”Hello World” Registration

The source code for this section can be found in the file
Examples/Registration/ImageRegistration1.cxx.

This example illustrates the use of the image registration framework in Insight. It should be
read as a ”Hello World” for ITK registration. Which means that for now, you don’t ask “why?”.
Instead, use the example as an introduction to the elements that are typically involved in solving
an image registration problem.

A registration method requires the following set of components: two input images, a trans-
form, a metric, an interpolator and an optimizer. Some of these components are parameterized
by the image type for which the registration is intended. Thefollowing header files provide
declarations of common types used for these components.

#include "itkImageRegistrationMethod.h"
#include "itkTranslationTransform.h"
#include "itkMeanSquaresImageToImageMetric.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkRegularStepGradientDescentOptimizer.h"
#include "itkImage.h"

The types of each one of the components in the registration methods should be instantiated first.
With that purpose, we start by selecting the image dimensionand the type used for representing
image pixels.

const unsigned int Dimension = 2;
typedef float PixelType;

8.2. ”Hello World” Registration 317

The types of the input images are instantiated by the following lines.

typedef itk::Image< PixelType, Dimension > FixedImageType;
typedef itk::Image< PixelType, Dimension > MovingImageType;

The transform that will map the fixed image space into the moving image space is defined below.

typedef itk::TranslationTransform< double, Dimension > TransformType;

An optimizer is required to explore the parameter space of the transform in search of optimal
values of the metric.

typedef itk::RegularStepGradientDescentOptimizer OptimizerType;

The metric will compare how well the two images match each other. Metric types are usually
parameterized by the image types as it can be seen in the following type declaration.

typedef itk::MeanSquaresImageToImageMetric<
FixedImageType,
MovingImageType > MetricType;

Finally, the type of the interpolator is declared. The interpolator will evaluate the intensities of
the moving image at non-grid positions.

typedef itk:: LinearInterpolateImageFunction<
MovingImageType,
double > InterpolatorType;

The registration method type is instantiated using the types of the fixed and moving images.
This class is responsible for interconnecting all the components that we have described so far.

typedef itk::ImageRegistrationMethod<
FixedImageType,
MovingImageType > RegistrationType;

Each one of the registration components is created using itsNew() method and is assigned to
its respectiveitk::SmartPointer.

MetricType::Pointer metric = MetricType::New();
TransformType::Pointer transform = TransformType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
InterpolatorType::Pointer interpolator = InterpolatorType::New();
RegistrationType::Pointer registration = RegistrationType::New();

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

318 Chapter 8. Registration

Each component is now connected to the instance of the registration method.

registration->SetMetric(metric);
registration->SetOptimizer(optimizer);
registration->SetTransform(transform);
registration->SetInterpolator(interpolator);

In this example, the fixed and moving images are read from files. This requires the
itk::ImageRegistrationMethod to acquire its inputs from the output of the readers.

registration->SetFixedImage(fixedImageReader->GetOutput());
registration->SetMovingImage(movingImageReader->GetOutput());

The registration can be restricted to consider only a particular region of the fixed image as
input to the metric computation. This region is defined with the SetFixedImageRegion()
method. You could use this feature to reduce the computational time of the registration or
to avoid unwanted objects present in the image from affecting the registration outcome. In
this example we use the full available content of the image. This region is identified by the
BufferedRegion of the fixed image. Note that for this region to be valid the reader must first
invoke itsUpdate() method.

fixedImageReader->Update();
registration->SetFixedImageRegion(

fixedImageReader->GetOutput()->GetBufferedRegion());

The parameters of the transform are initialized by passing them in an array. This can be used
to setup an initial known correction of the misalignment. Inthis particular case, a translation
transform is being used for the registration. The array of parameters for this transform is simply
composed of the translation values along each dimension. Setting the values of the parameters
to zero initializes the transform to anIdentitytransform. Note that the array constructor requires
the number of elements to be passed as an argument.

typedef RegistrationType::ParametersType ParametersType;
ParametersType initialParameters(transform->GetNumberOfParameters());

initialParameters[0] = 0.0; // Initial offset in mm along X
initialParameters[1] = 0.0; // Initial offset in mm along Y

registration->SetInitialTransformParameters(initialParameters);

At this point the registration method is ready for execution. The optimizer is the component
that drives the execution of the registration. However, theImageRegistrationMethod class or-
chestrates the ensemble to make sure that everything is in place before control is passed to the
optimizer.

http://www.itk.org/Doxygen/html/classitk_1_1ImageRegistrationMethod.html

8.2. ”Hello World” Registration 319

It is usually desirable to fine tune the parameters of the optimizer. Each optimizer has particular
parameters that must be interpreted in the context of the optimization strategy it implements.
The optimizer used in this example is a variant of gradient descent that attempts to prevent it
from taking steps that are too large. At each iteration, thisoptimizer will take a step along
the direction of theitk::ImageToImageMetric derivative. The initial length of the step is
defined by the user. Each time the direction of the derivativeabruptly changes, the optimizer
assumes that a local extrema has been passed and reacts by reducing the step length by a half.
After several reductions of the step length, the optimizer may be moving in a very restricted
area of the transform parameter space. The user can define howsmall the step length should be
to consider convergence to have been reached. This is equivalent to defining the precision with
which the final transform should be known.

The initial step length is defined with the methodSetMaximumStepLength(), while the toler-
ance for convergence is defined with the methodSetMinimumStepLength().

optimizer->SetMaximumStepLength(4.00);
optimizer->SetMinimumStepLength(0.01);

In case the optimizer never succeeds reaching the desired precision tolerance, it is prudent to
establish a limit on the number of iterations to be performed. This maximum number is defined
with the methodSetNumberOfIterations().

optimizer->SetNumberOfIterations(200);

The registration process is triggered by an invocation to the Update() method. If something
goes wrong during the initialization or execution of the registration an exception will be thrown.
We should therefore place theUpdate() method inside atry/catch block as illustrated in the
following lines.

try
{
registration->Update();
}

catch(itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return -1;
}

In a real life application, you may attempt to recover from the error by taking more effective
actions in the catch block. Here we are simply printing out a message and then terminating the
execution of the program.

The result of the registration process is an array of parameters that defines the spatial transforma-
tion in an unique way. This final result is obtained using theGetLastTransformParameters()
method.

http://www.itk.org/Doxygen/html/classitk_1_1ImageToImageMetric.html

320 Chapter 8. Registration

ParametersType finalParameters = registration->GetLastTransformParameters();

In the case of theitk::TranslationTransform, there is a straightforward interpretation of
the parameters. Each element of the array corresponds to a translation along one spatial dimen-
sion.

const double TranslationAlongX = finalParameters[0];
const double TranslationAlongY = finalParameters[1];

The optimizer can be queried for the actual number of iterations performed to reach conver-
gence. TheGetCurrentIteration() method returns this value. A large number of iterations
may be an indication that the maximum step length has been settoo small, which is undesirable
since it results in long computational times.

const unsigned int numberOfIterations = optimizer->GetCurrentIteration();

The value of the image metric corresponding to the last set ofparameters can be obtained with
theGetValue() method of the optimizer.

const double bestValue = optimizer->GetValue();

Let’s execute this example over two of the images provided inExamples/Data:

• BrainProtonDensitySliceBorder20.png

• BrainProtonDensitySliceShifted13x17y.png

The second image is the result of intentionally translatingthe first image by(13,17) millimeters.
Both images have unit-spacing and are shown in Figure8.3. The registration takes 18 iterations
and the resulting transform parameters are:

Translation X = 12.9959
Translation Y = 17.0001

As expected, these values match quite well the misalignmentthat we intentionally introduced
in the moving image.

It is common, as the last step of a registration task, to use the resulting transform
to map the moving image into the fixed image space. This is easily done with the
itk::ResampleImageFilter. Please refer to Section6.9.4for details on the use of this fil-
ter. First, a ResampleImageFilter type is instantiated using the image types. It is convenient to
use the fixed image type as the output type since it is likely that the transformed moving image
will be compared with the fixed image.

http://www.itk.org/Doxygen/html/classitk_1_1TranslationTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1ResampleImageFilter.html

8.2. ”Hello World” Registration 321

Figure 8.3:Fixed and Moving image provided as input to the registration method.

typedef itk::ResampleImageFilter<
MovingImageType,
FixedImageType > ResampleFilterType;

A resampling filter is created and the moving image is connected as its input.

ResampleFilterType::Pointer resampler = ResampleFilterType::New();
resampler->SetInput(movingImageReader->GetOutput());

The Transform that is produced as output of the Registrationmethod is also passed as input to
the resampling filter. Note the use of the methodsGetOutput() andGet(). This combination
is needed here because the registration method acts as a filter whose output is a transform
decorated in the form of aitk::DataObject. For details in this construction you may want to
read the documentation of theitk::DataObjectDecorator.

resampler->SetTransform(registration->GetOutput()->Get());

As described in Section6.9.4, the ResampleImageFilter requires additional parametersto be
specified, in particular, the spacing, origin and size of theoutput image. The default pixel value
is also set to a distinct gray level in order to highlight the regions that are mapped outside of the
moving image.

FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
resampler->SetSize(fixedImage->GetLargestPossibleRegion().GetSize());

http://www.itk.org/Doxygen/html/classitk_1_1DataObject.html
http://www.itk.org/Doxygen/html/classitk_1_1DataObjectDecorator.html

322 Chapter 8. Registration

Figure 8.4:Mapped moving image and its difference with the fixed image before and after registration

resampler->SetOutputOrigin(fixedImage->GetOrigin());
resampler->SetOutputSpacing(fixedImage->GetSpacing());
resampler->SetDefaultPixelValue(100);

The output of the filter is passed to a writer that will store the image in a file. An
itk::CastImageFilter is used to convert the pixel type of the resampled image to thefinal
type used by the writer. The cast and writer filters are instantiated below.

typedef unsigned char OutputPixelType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
typedef itk::CastImageFilter<

FixedImageType,
OutputImageType > CastFilterType;

typedef itk::ImageFileWriter< OutputImageType > WriterType;

The filters are created by invoking theirNew() method.

WriterType::Pointer writer = WriterType::New();
CastFilterType::Pointer caster = CastFilterType::New();

The filters are connected together and theUpdate() method of the writer is invoked in order to
trigger the execution of the pipeline.

caster->SetInput(resampler->GetOutput());
writer->SetInput(caster->GetOutput());
writer->Update();

The fixed image and the transformed moving image can easily becompared using the
itk::SubtractImageFilter. This pixel-wise filter computes the difference between homol-
ogous pixels of its two input images.

http://www.itk.org/Doxygen/html/classitk_1_1CastImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1SubtractImageFilter.html

8.2. ”Hello World” Registration 323

Optimizer

Transform

Interpolator

MetricFixed Image

Reader

Reader

Moving Image

Filter
Resample

Transform

Subtract
Filter Writer

Subtract
Filter WriterFilter

Resample

Registration Method

Parameters

Figure 8.5:Pipeline structure of the registration example.

typedef itk::SubtractImageFilter<
FixedImageType,
FixedImageType,
FixedImageType > DifferenceFilterType;

DifferenceFilterType::Pointer difference = DifferenceFilterType::New();

difference->SetInput1(fixedImageReader->GetOutput());
difference->SetInput2(resampler->GetOutput());

Note that the use of subtraction as a method for comparing theimages is appropriate here
because we chose to represent the images using a pixel typefloat. A different filter would
have been used if the pixel type of the images were any of theunsigned integer type.

Since the differences between the two images may correspondto very low values of intensity,
we rescale those intensities with aitk::RescaleIntensityImageFilter in order to make
them more visible. This rescaling will also make possible tovisualize the negative values even
if we save the difference image in a file format that only support unsigned pixel values1. We
also reduce theDefaultPixelValue to “1” in order to prevent that value from absorbing the
dynamic range of the differences between the two images.

typedef itk::RescaleIntensityImageFilter<
FixedImageType,
OutputImageType > RescalerType;

RescalerType::Pointer intensityRescaler = RescalerType::New();

intensityRescaler->SetInput(difference->GetOutput());
intensityRescaler->SetOutputMinimum(0);
intensityRescaler->SetOutputMaximum(255);

resampler->SetDefaultPixelValue(1);

Its output can be passed to another writer.

1This is the case of PNG, BMP, JPEG and TIFF among other common file formats.

http://www.itk.org/Doxygen/html/classitk_1_1RescaleIntensityImageFilter.html

324 Chapter 8. Registration

WriterType::Pointer writer2 = WriterType::New();
writer2->SetInput(intensityRescaler->GetOutput());

For the purpose of comparison, the difference between the fixed image and the moving im-
age before registration can also be computed by simply setting the transform to an identity
transform. Note that the resampling is still necessary because the moving image does not nec-
essarily have the same spacing, origin and number of pixels as the fixed image. Therefore a
pixel-by-pixel operation cannot in general be performed. The resampling process with an iden-
tity transform will ensure that we have a representation of the moving image in the grid of the
fixed image.

TransformType::Pointer identityTransform = TransformType::New();
identityTransform->SetIdentity();
resampler->SetTransform(identityTransform);

The complete pipeline structure of the current example is presented in Figure8.5. The com-
ponents of the registration method are depicted as well. Figure 8.4 (left) shows the result of
resampling the moving image in order to map it onto the fixed image space. The top and right
borders of the image appear in the gray level selected with the SetDefaultPixelValue() in
the ResampleImageFilter. The center image shows the difference between the fixed image and
the original moving image. That is, the difference before the registration is performed. The
right image shows the difference between the fixed image and the transformed moving image.
That is, after the registration has been performed. Both difference images have been rescaled
in intensity in order to highlight those pixels where differences exist. Note that the final reg-
istration is still off by a fraction of a pixel, which resultsin bands around edges of anatomical
structures to appear in the difference image. A perfect registration would have produced a null
difference image.

It is always useful to keep in mind that registration is essentially an optimization problem.
Figure8.6 helps to reinforce this notion by showing the trace of translations and values of the
image metric at each iteration of the optimizer. It can be seen from the top figure that the step
length is reduced progressively as the optimizer gets closer to the metric extrema. The bottom
plot clearly shows how the metric value decreases as the optimization advances. The log plot
helps to highlight the normal oscillations of the optimizeraround the extrema value.

8.3 Features of the Registration Framework

This section presents a discussion on the two most common difficulties that users encounter
when they start using the ITK registration framework. They are, in order of difficulty

• The direction of the Transform mapping

• The fact that registration is done in physical coordinates

8.3. Features of the Registration Framework 325

 2

 4

 6

 8

 10

 12

 14

 16

 18

 2 4 6 8 10 12 14

Y
 T

ra
n
sl

at
io

n
s

(m
m

)

X Translations (mm)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 2 4 6 8 10 12 14

M
ea

n
 S

q
u
ar

es
 M

et
ri

c

Iteration No.

Figure 8.6:The sequence of translations and metric values at each iteration of the optimizer.

326 Chapter 8. Registration

Fixed Image Grid
i

j

Moving Image Grid
i

j

x

y

Fixed Image
Physical Coordinates

x

y

Fixed Im
age

x

y

Moving Image
Physical Coordinates

Space Transform

T2T1

Figure 8.7:Different coordinate systems involved in the image registration process. Note that the trans-

form being optimized is the one mapping from the physical space of the fixed image into the physical space

of the moving image.

8.3. Features of the Registration Framework 327

Probably the reason why these two topics tend to create confusion is that they are implemented
in different ways in other systems and therefore users tend to have different expectations regard-
ing how things should work in ITK. The situation is further complicated by the fact that most
people describe image operations as if they were manually performed in a picture in paper.

8.3.1 Direction of the Transform Mapping

The Transform that is optimized in the ITK registration framework is the one that maps points
from the physical space of the fixed image into the physical space of the moving image. This
is illustrated in Figure8.7. This implies that the Transform will accept as input pointsfrom the
fixed image and it will compute the coordinates of the analogous points in the moving image.
What tends to create confusion is the fact that when the Transform shifts a point on thepositive
X direction, the visual effect of this mapping, once the moving image is resampled, is equivalent
to manually shiftingthe moving image along thenegativeX direction. In the same way, when
the Transform applies aclock-wiserotation to the fixed image points, the visual effect of this
mapping once the moving image has been resampled is equivalent to manually rotatingthe
moving imagecounter-clock-wise.

The reason why this direction of mapping has been chosen for the ITK implementation of the
registration framework is that this is the direction that better fits the fact that the moving image
is expected to be resampled using the grid of the fixed image. The nature of the resampling pro-
cess is such that an algorithm must go through every pixel of thefixedimage and compute the
intensity that should be assigned to this pixel from the mapping of themovingimage. This com-
putation involves taking the integral coordinates of the pixel in the image grid, usually called
the “(i,j)” coordinates, mapping them into the physical space of the fixed image (transformT1
in Figure8.7), mapping those physical coordinates into the physical space of the moving image
(Transform to be optimized), then mapping the physical coordinates of the moving image in to
the integral coordinates of the discrete grid of the moving image (transformT2 in the figure),
where the value of the pixel intensity will be computed by interpolation.

If we have used the Transform that maps coordinates from the moving image physical space
into the fixed image physical space, then the resampling process could not guarantee that every
pixel in the grid of the fixed image was going to receive one andonly one value. In other words,
the resampling will have resulted in an image with holes and with redundant or overlapped pixel
values.

As you have seen in the previous examples, and you will corroborate in the remaining examples
in this chapter, the Transform computed by the registrationframework is the Transform that can
be used directly in the resampling filter in order to map the moving image into the discrete grid
of the fixed image.

There are exceptional cases in which the transform that you want is actually the inverse trans-
form of the one computed by the ITK registration framework. Only in those cases you may have
to recur to invoking theGetInverse() method that most transform offer. Make sure that before
you consider following that dark path, you interact with theexamples of resampling illustrated

328 Chapter 8. Registration

in section6.9 in order to get familiar with the correct interpretation of the transforms.

8.3.2 Registration is done in physical space

The second common difficulty that users encounter with the ITK registration framework is
related to the fact that ITK performs registration in the context of physical space and not in
the discrete space of the image grid. Figure8.7 show this concept by crossing the transform
that goes between the two image grids. One important consequence of this fact is that having
the correct image origin and image pixel size is fundamentalfor the success of the registration
process in ITK. Users must make sure that they provide correct values for the origin and spacing
of both the fixed and moving images.

A typical case that helps to understand this issue, is to consider the registration of two images
where one has a pixel size different from the other. For example, a PET2 image and a CT3

image. Typically a CT image will have a pixel size in the orderof 1 millimeter, while a PET
image will have a pixel size in the order of 5 millimeters to 1 centimeter. Therefore, the CT will
need about 500 pixels in order to cover the extent across a human brain, while the PET image
will only have about 50 pixels for covering the same physicalextent of a human brain.

A user performing registration between a PET image and a CT image may be naively expecting
that because the PET image has less pixels, ascaling factor is required in the Transform in
order to map this image into the CT image. At that point, this person is attempting to interpret
the registration process directly between the two image grids, or inpixel space. What ITK will
do in this case is to take into account the pixel size that the user has provided and it will use
that pixel size in order to compute a scaling factor for Transforms T1 andT2 in Figure8.7.
Since these two transforms take care of the required scalingfactor, the spatial Transform to be
computed during the registration process does not need to beconcerned about such scaling. The
transform that ITK is computing is the one that will physically map the brain from the moving
image into the brain of the fixed image.

In order to better understand this concepts, it is very useful to draw sketches of the fixed and
moving imageat scalein the same physical coordinate system. That is the geometrical config-
uration that the ITK registration framework uses as context. Keeping this in mind helps a lot for
interpreting correctly the results of a registration process performed with ITK.

8.4 Monitoring Registration

The source code for this section can be found in the file
Examples/Registration/ImageRegistration3.cxx.

Given the numerous parameters involved in tuning a registration method for a particular appli-
cation, it is not uncommon for a registration process to run for several minutes and still produce

2Positron Emission Tomography
3Computer Tomography in X-rays

8.4. Monitoring Registration 329

a useless result. To avoid this situation it is quite helpfulto track the evolution of the regis-
tration as it progresses. The following section illustrates the mechanisms provided in ITK for
monitoring the activity of the ImageRegistrationMethod class.

Insight implements theObserver/Commanddesign pattern [28]. (See Section3.2.6 for an
overview.) The classes involved in this implementation arethe itk::Object, itk::Command
and itk::EventObject classes. The Object is the base class of most ITK objects. This class
maintains a linked list of pointers to event observers. The role of observers is played by the
Command class. Observers register themselves with an Object, declaring that they are inter-
ested in receiving notification when a particular event happens. A set of events is represented
by the hierarchy of the Event class. Typical events areStart, End, Progress andIteration.

Registration is controlled by anitk::Optimizer, which generally executes an iterative pro-
cess. Most Optimizer classes invoke anitk::IterationEvent at the end of each iteration.
When an event is invoked by an object, this object goes through its list of registered observers
(Commands) and checks whether any one of them has expressed interest in the current event
type. Whenever such an observer is found, its correspondingExecute() method is invoked. In
this context,Execute() methods should be consideredcallbacks. As such, some of the com-
mon sense rules of callbacks should be respected. For example,Execute() methods should not
perform heavy computational tasks. They are expected to execute rapidly, for example, printing
out a message or updating a value in a GUI.

The following code illustrates a simple way of creating a Observer/Command to monitor a
registration process. This new class derives from the Command class and provides a specific
implementation of theExecute() method. First, the header file of the Command class must be
included.

#include "itkCommand.h"

Our custom command class is calledCommandIterationUpdate. It derives from the Command
class and declares for convenience the typesSelf andSuperclass. This facilitate the use of
standard macros later in the class implementation.

class CommandIterationUpdate : public itk::Command
{
public:
typedef CommandIterationUpdate Self;
typedef itk::Command Superclass;

The following typedef declares the type of the SmartPointercapable of holding a reference to
this object.

typedef itk::SmartPointer<Self> Pointer;

TheitkNewMacro takes care of defining all the necessary code for theNew() method. Those
with curious minds are invited to see the details of the macroin the file itkMacro.h in the
Insight/Code/Common directory.

http://www.itk.org/Doxygen/html/classitk_1_1Object.html
http://www.itk.org/Doxygen/html/classitk_1_1Command.html
http://www.itk.org/Doxygen/html/classitk_1_1EventObject.html
http://www.itk.org/Doxygen/html/classitk_1_1Optimizer.html
http://www.itk.org/Doxygen/html/classitk_1_1IterationEvent.html

330 Chapter 8. Registration

itkNewMacro(Self);

In order to ensure that theNew() method is used to instantiate the class (and not the C++new
operator), the constructor is declaredprotected.

protected:
CommandIterationUpdate() {};

Since this Command object will be observing the optimizer, the following typedefs are useful
for converting pointers when theExecute() method is invoked. Note the use ofconst on
the declaration ofOptimizerPointer. This is relevant since, in this case, the observer is not
intending to modify the optimizer in any way. Aconst interface ensures that all operations
invoked on the optimizer are read-only.

typedef itk::RegularStepGradientDescentOptimizer OptimizerType;
typedef const OptimizerType *OptimizerPointer;

ITK enforces const-correctness. There is hence a distinction between theExecute() method
that can be invoked from aconst object and the one that can be invoked from a non-const
object. In this particular example the non-const version simply invoke theconst version. In
a more elaborate situation the implementation of bothExecute() methods could be quite dif-
ferent. For example, you could imagine a non-const interaction in which the observer decides
to stop the optimizer in response to a divergent behavior. A similar case could happen when a
user is controlling the registration process from a GUI.

void Execute(itk::Object *caller, const itk::EventObject & event)
{
Execute((const itk::Object *)caller, event);

}

Finally we get to the heart of the observer, theExecute() method. Two arguments are passed
to this method. The first argument is the pointer to the objectthat invoked the event. The second
argument is the event that was invoked.

void Execute(const itk::Object * object, const itk::EventObject & event)
{

Note that the first argument is a pointer to an Object even though the actual object invoking
the event is probably a subclass of Object. In our case we knowthat the actual object is an
optimizer. Thus we can perform adynamic cast to the real type of the object.

OptimizerPointer optimizer =
dynamic_cast< OptimizerPointer >(object);

8.4. Monitoring Registration 331

Transform

Interpolator

MetricFixed Image

Moving Image

Optimizer Command
Update
Iteration

itk::Command
Registration Method

Invoke(IterationEvent)

AddObserver()

Execute()

Figure 8.8:Interaction between the Command/Observer and the Registration Method.

The next step is to verify that the event invoked is actually the one in which we are interested.
This is checked using the RTTI4 support. TheCheckEvent() method allows us to compare
the actual type of two events. In this case we compare the typeof the received event with an
IterationEvent. The comparison will return true ifevent is of typeIterationEvent or derives
from IterationEvent. If we find that the event is not of the expected type then theExecute()
method of this command observer should return without any further action.

if(! itk::IterationEvent().CheckEvent(&event))
{
return;
}

If the event matches the type we are looking for, we are ready to query data from the opti-
mizer. Here, for example, we get the current number of iterations, the current value of the cost
function and the current position on the parameter space. All of these values are printed to the
standard output. You could imagine more elaborate actions like updating a GUI or refreshing a
visualization pipeline.

std::cout << optimizer->GetCurrentIteration() << " = ";
std::cout << optimizer->GetValue() << " : ";
std::cout << optimizer->GetCurrentPosition() << std::endl;

This concludes our implementation of a minimal Command class capable of observing our
registration method. We can now move on to configuring the registration process.

Once all the registration components are in place we can create one instance of our observer.
This is done with the standardNew() method and assigned to a SmartPointer.

CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New();

4RTTI stands for: Run-Time Type Information

332 Chapter 8. Registration

The newly created command is registered as observer on the optimizer, using the
AddObserver() method. Note that the event type is provided as the first argument to this
method. In order for the RTTI mechanism to work correctly, a newly created event of the de-
sired type must be passed as the first argument. The second argument is simply the smart pointer
to the optimizer. Figure8.8illustrates the interaction between the Command/Observerclass and
the registration method.

optimizer->AddObserver(itk::IterationEvent(), observer);

At this point, we are ready to execute the registration. The typical call to
StartRegistration() will do it. Note again the use of thetry/catch block around the
StartRegistration() method in case an exception is thrown.

try
{
registration->StartRegistration();
}

catch(itk::ExceptionObject & err)
{
std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std::endl;
return -1;
}

The registration process is applied to the following imagesin Examples/Data:

• BrainProtonDensitySliceBorder20.png

• BrainProtonDensitySliceShifted13x17y.png

It produces the following output.

0 = 4499.45 : [2.9287, 2.72447]
1 = 3860.84 : [5.62751, 5.67683]
2 = 3450.68 : [8.85516, 8.03952]
3 = 3152.07 : [11.7997, 10.7469]
4 = 2189.97 : [13.3628, 14.4288]
5 = 1047.21 : [11.292, 17.851]
6 = 900.189 : [13.1602, 17.1372]
7 = 19.6301 : [12.3268, 16.5846]
8 = 237.317 : [12.7824, 16.7906]
9 = 38.1331 : [13.1833, 17.0894]
10 = 18.9201 : [12.949, 17.002]
11 = 1.15456 : [13.074, 16.9979]

8.5. Multi-Modality Registration 333

12 = 2.42488 : [13.0115, 16.9994]
13 = 0.0590549 : [12.949, 17.002]
14 = 1.15451 : [12.9803, 17.001]
15 = 0.173731 : [13.0115, 16.9997]
16 = 0.0586584 : [12.9959, 17.0001]

You can verify from the code in theExecute() method that the first column is the iteration
number, the second column is the metric value and the third and fourth columns are the param-
eters of the transform, which is a 2D translation transform in this case. By tracking these values
as the registration progresses, you will be able to determine whether the optimizer is advanc-
ing in the right direction and whether the step-length is reasonable or not. That will allow you
to interrupt the registration process and fine-tune parameters without having to wait until the
optimizer stops by itself.

8.5 Multi-Modality Registration

Some of the most challenging cases of image registration arise when images of different modal-
ities are involved. In such cases, metrics based on direct comparison of gray levels are not
applicable. It has been extensively shown that metrics based on the evaluation of mutual infor-
mation are well suited for overcoming the difficulties of multi-modality registration.

The concept of Mutual Information is derived from Information Theory and its application to
image registration has been proposed in different forms by different groups [17, 52, 85], a more
detailed review can be found in [33, 64]. The Insight Toolkit currently provides five different
implementations of Mutual Information metrics (see section 8.10for details). The following
examples illustrate the practical use of some of these metrics.

8.5.1 Viola-Wells Mutual Information

The source code for this section can be found in the file
Examples/Registration/ImageRegistration2.cxx.

The following simple example illustrates how multiple imaging modalities can be registered
using the ITK registration framework. The first difference between this and previous examples
is the use of theitk::MutualInformationImageToImageMetric as the cost-function to be
optimized. The second difference is the use of theitk::GradientDescentOptimizer. Due
to the stochastic nature of the metric computation, the values are too noisy to work successfully
with the itk::RegularStepGradientDescentOptimizer. Therefore, we will use the simpler
GradientDescentOptimizer with a user defined learning rate. The following headers declare the
basic components of this registration method.

#include "itkImageRegistrationMethod.h"

http://www.itk.org/Doxygen/html/classitk_1_1MutualInformationImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1GradientDescentOptimizer.html
http://www.itk.org/Doxygen/html/classitk_1_1RegularStepGradientDescentOptimizer.html

334 Chapter 8. Registration

#include "itkTranslationTransform.h"
#include "itkMutualInformationImageToImageMetric.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkGradientDescentOptimizer.h"
#include "itkImage.h"

One way to simplify the computation of the mutual information is to normalize the statistical
distribution of the two input images. Theitk::NormalizeImageFilter is the perfect tool for
this task. It rescales the intensities of the input images inorder to produce an output image with
zero mean and unit variance. This filter has been discussed inSection6.3.

#include "itkNormalizeImageFilter.h"

Additionally, low-pass filtering of the images to be registered will also increase robustness
against noise. In this example, we will use theitk::DiscreteGaussianImageFilter for
that purpose. The characteristics of this filter have been discussed in Section6.7.1.

#include "itkDiscreteGaussianImageFilter.h"

The moving and fixed images types should be instantiated first.

const unsigned int Dimension = 2;
typedef unsigned short PixelType;

typedef itk::Image< PixelType, Dimension > FixedImageType;
typedef itk::Image< PixelType, Dimension > MovingImageType;

It is convenient to work with an internal image type because mutual information will perform
better on images with a normalized statistical distribution. The fixed and moving images will
be normalized and converted to this internal type.

typedef float InternalPixelType;
typedef itk::Image< InternalPixelType, Dimension > InternalImageType;

The rest of the image registration components are instantiated as illustrated in Section8.2with
the use of theInternalImageType.

typedef itk::TranslationTransform< double, Dimension > TransformType;
typedef itk::GradientDescentOptimizer OptimizerType;
typedef itk::LinearInterpolateImageFunction<

InternalImageType,
double > InterpolatorType;

typedef itk::ImageRegistrationMethod<
InternalImageType,
InternalImageType > RegistrationType;

http://www.itk.org/Doxygen/html/classitk_1_1NormalizeImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1DiscreteGaussianImageFilter.html

8.5. Multi-Modality Registration 335

The mutual information metric type is instantiated using the image types.

typedef itk::MutualInformationImageToImageMetric<
InternalImageType,
InternalImageType > MetricType;

The metric is created using theNew() method and then connected to the registration object.

MetricType::Pointer metric = MetricType::New();
registration->SetMetric(metric);

The metric requires a number of parameters to be selected, including the standard deviation of
the Gaussian kernel for the fixed image density estimate, thestandard deviation of the kernel for
the moving image density and the number of samples use to compute the densities and entropy
values. Details on the concepts behind the computation of the metric can be found in Section
8.10.4. Experience has shown that a kernel standard deviation of 0.4 works well for images
which have been normalized to a mean of zero and unit variance. We will follow this empirical
rule in this example.

metric->SetFixedImageStandardDeviation(0.4);
metric->SetMovingImageStandardDeviation(0.4);

The normalization filters are instantiated using the fixed and moving image types as input and
the internal image type as output.

typedef itk::NormalizeImageFilter<
FixedImageType,
InternalImageType

> FixedNormalizeFilterType;

typedef itk::NormalizeImageFilter<
MovingImageType,
InternalImageType

> MovingNormalizeFilterType;

FixedNormalizeFilterType::Pointer fixedNormalizer =
FixedNormalizeFilterType::New();

MovingNormalizeFilterType::Pointer movingNormalizer =
MovingNormalizeFilterType::New();

The blurring filters are declared using the internal image type as both the input and output types.
In this example, we will set the variance for both blurring filters to 2.0.

336 Chapter 8. Registration

typedef itk::DiscreteGaussianImageFilter<
InternalImageType,
InternalImageType

> GaussianFilterType;

GaussianFilterType::Pointer fixedSmoother = GaussianFilterType::New();
GaussianFilterType::Pointer movingSmoother = GaussianFilterType::New();

fixedSmoother->SetVariance(2.0);
movingSmoother->SetVariance(2.0);

The output of the readers becomes the input to the normalization filters. The output of the
normalization filters is connected as input to the blurring filters. The input to the registration
method is taken from the blurring filters.

fixedNormalizer->SetInput(fixedImageReader->GetOutput());
movingNormalizer->SetInput(movingImageReader->GetOutput());

fixedSmoother->SetInput(fixedNormalizer->GetOutput());
movingSmoother->SetInput(movingNormalizer->GetOutput());

registration->SetFixedImage(fixedSmoother->GetOutput());
registration->SetMovingImage(movingSmoother->GetOutput());

We should now define the number of spatial samples to be considered in the metric computation.
Note that we were forced to postpone this setting until we haddone the preprocessing of the
images because the number of samples is usually defined as a fraction of the total number of
pixels in the fixed image.

The number of spatial samples can usually be as low as 1% of thetotal number of pixels in the
fixed image. Increasing the number of samples improves the smoothness of the metric from one
iteration to another and therefore helps when this metric isused in conjunction with optimizers
that rely of the continuity of the metric values. The trade-off, of course, is that a larger number
of samples result in longer computation times per every evaluation of the metric.

It has been demonstrated empirically that the number of samples is not a critical parameter for
the registration process. When you start fine tuning your ownregistration process, you should
start using high values of number of samples, for example in the range of 20% to 50% of the
number of pixels in the fixed image. Once you have succeeded toregister your images you can
then reduce the number of samples progressively until you find a good compromise on the time
it takes to compute one evaluation of the Metric. Note that itis not useful to have very fast
evaluations of the Metric if the noise in their values results in more iterations being required
by the optimizer to converge. You must then study the behavior of the metric values as the
iterations progress, just as illustrated in section8.4.

const unsigned int numberOfPixels = fixedImageRegion.GetNumberOfPixels();

8.5. Multi-Modality Registration 337

const unsigned int numberOfSamples =
static_cast< unsigned int >(numberOfPixels * 0.01);

metric->SetNumberOfSpatialSamples(numberOfSamples);

Since larger values of mutual information indicate better matches than smaller values, we need
to maximize the cost function in this example. By default theGradientDescentOptimizer class is
set to minimize the value of the cost-function. It is therefore necessary to modify its default be-
havior by invoking theMaximizeOn() method. Additionally, we need to define the optimizer’s
step size using theSetLearningRate() method.

optimizer->SetLearningRate(15.0);
optimizer->SetNumberOfIterations(200);
optimizer->MaximizeOn();

Note that large values of the learning rate will make the optimizer unstable. Small values,
on the other hand, may result in the optimizer needing too many iterations in order to walk
to the extrema of the cost function. The easy way of fine tuningthis parameter is to start
with small values, probably in the range of{5.0,10.0}. Once the other registration parameters
have been tuned for producing convergence, you may want to revisit the learning rate and start
increasing its value until you observe that the optimization becomes unstable. The ideal value
for this parameter is the one that results in a minimum numberof iterations while still keeping
a stable path on the parametric space of the optimization. Keep in mind that this parameter is a
multiplicative factor applied on the gradient of the Metric. Therefore, its effect on the optimizer
step length is proportional to the Metric values themselves. Metrics with large values will
require you to use smaller values for the learning rate in order to maintain a similar optimizer
behavior.

Let’s execute this example over two of the images provided inExamples/Data:

• BrainT1SliceBorder20.png

• BrainProtonDensitySliceShifted13x17y.png

The second image is the result of intentionally translatingthe imageBrainProtonDensity-
SliceBorder20.png by (13,17) millimeters. Both images have unit-spacing and are shown in
Figure8.9. The registration is stopped at 200 iterations and producesas result the parameters:

Translation X = 12.9147
Translation Y = 17.0871

These values are approximately within one tenth of a pixel from the true misalignment intro-
duced in the moving image.

338 Chapter 8. Registration

Figure 8.9:A T1 MRI (fixed image) and a proton density MRI (moving image) are provided as input to the

registration method.

Figure 8.10:Mapped moving image (left) and composition of fixed and moving images before (center)

and after (right) registration.

8.5. Multi-Modality Registration 339

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14

Y
 T

ra
n
sl

at
io

n
s

(m
m

)

X Translations (mm)

 16.6

 16.8

 17

 17.2

 17.4

 12.6 12.8 13 13.2 13.4

Y
 T

ra
n
sl

at
io

n
s

(m
m

)

X Translations (mm)

Figure 8.11:Sequence of translations during the registration process. On the left are iterations 0 to 200.

On the right are iterations 150 to 200.

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0 20 40 60 80 100 120 140 160 180 200

M
u
tu

al
 I

n
fo

rm
at

io
n
 V

io
la

-W
el

ls

Iteration No.

 0.58

 0.585

 0.59

 0.595

 0.6

 0.605

 0.61

 0.615

 0.62

 0.625

 0.63

 150 160 170 180 190 200

M
u
tu

al
 I

n
fo

rm
at

io
n
 V

io
la

-W
el

ls

Iteration No.

Figure 8.12:The sequence of metric values produced during the registration process. On the left are

iterations 0 to 200. On the right are iterations 150 to 200.

The moving image after resampling is presented on the left side of Figure8.10. The center and
right figures present a checkerboard composite of the fixed and moving images before and after
registration.

Figure8.11 shows the sequence of translations followed by the optimizer as it searched the
parameter space. The left plot shows iterations 0 to 200 while the right figure zooms into
iterations 150 to 200. The area covered by the right figure hasbeen highlighted by a rectangle
in the left image. It can be seen that after a certain number ofiterations the optimizer oscillates
within one or two pixels of the true solution. At this point itis clear that more iterations will not
help. Instead it is time to modify some of the parameters of the registration process, for example,
reducing the learning rate of the optimizer and continuing the registration so that smaller steps
are taken.

Figure8.12shows the sequence of metric values computed as the optimizer searched the pa-

340 Chapter 8. Registration

rameter space. The left plot shows values when iterations are extended from 0 to 200 while the
right figure zooms into iterations 150 to 200. The fluctuations in the metric value are due to
the stochastic nature in which the measure is computed. At each call ofGetValue(), two new
sets of intensity samples are randomly taken from the image to compute the density and entropy
estimates. Even with the fluctuations, the measure initially increases overall with the number of
iterations. After about 150 iterations, the metric value merely oscillates without further notice-
able convergence. The trace plots in Figure8.12highlight one of the difficulties associated with
this particular metric: the stochastic oscillations make it difficult to determine convergence and
limit the use of more sophisticated optimization methods. As explained above, the reduction of
the learning rate as the registration progresses is very important in order to get precise results.

This example shows the importance of tracking the evolutionof the registration method in order
to obtain insight into the characteristics of the particular problem at hand and the components
being used. The behavior revealed by these plots usually helps to identify possible improve-
ments in the setup of the registration parameters.

The plots in Figures8.11and8.12were generated using Gnuplot5. The scripts used for this
purpose are available in theInsightDocuments CVS module under the directory

InsightDocuments/SoftwareGuide/Art

Data for the plots was taken directly from the output that theCommand/Observer in this exam-
ple prints out to the console. The output was processed with the UNIX editorsed6 in order to
remove commas and brackets that were confusing for Gnuplot’s parser. Both the shell script for
runningsed and for running Gnuplot are available in the directory indicated above. You may
find useful to run them in order to verify the results presented here, and to eventually modify
them for profiling your own registrations.

Open Science is not just an abstract concept. Open Science issomething to be practiced every
day with the simple gesture of sharing information with yourpeers, and by providing all the
tools that they need for replicating the results that you arereporting. In Open Science, the
only bad results are those that can not be replicated7. Science is dead when people blindly trust
authorities8 instead of verifying their statements by performing their own experiments [65, 66].

8.5.2 Mattes Mutual Information

The source code for this section can be found in the file
Examples/Registration/ImageRegistration4.cxx.

In this example, we will solve a simple multi-modality problem using another implementation
of mutual information. This implementation was published by Matteset. al [56]. One of
the main differences betweenitk::MattesMutualInformationImageToImageMetric and
itk::MutualInformationImageToImageMetric is that only one spatial sample set is used

5http://www.gnuplot.info/
6http://www.gnu.org/software/sed/sed.html
7http://science.creativecommons.org/
8For example: Reviewers of Scientific Journals.

http://www.itk.org/Doxygen/html/classitk_1_1MattesMutualInformationImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1MutualInformationImageToImageMetric.html
http://www.gnuplot.info/
http://www.gnu.org/software/sed/sed.html
http://science.creativecommons.org/

8.5. Multi-Modality Registration 341

for the whole registration process instead of using new samples every iteration. The use of a
single sample set results in a much smoother cost function and hence allows the use of more
intelligent optimizers. In this example, we will use the RegularStepGradientDescentOptimizer.
Another noticeable difference is that pre-normalization of the images is not necessary as the
metric rescales internally when building up the discrete density functions. Other differences
between the two mutual information implementations are described in detail in Section8.10.4.

First, we include the header files of the components used in this example.

#include "itkImageRegistrationMethod.h"
#include "itkTranslationTransform.h"
#include "itkMattesMutualInformationImageToImageMetric.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkRegularStepGradientDescentOptimizer.h"
#include "itkImage.h"

In this example the image types and all registration components, except the metric, are declared
as in Section8.2. The Mattes mutual information metric type is instantiatedusing the image
types.

typedef itk::MattesMutualInformationImageToImageMetric<
FixedImageType,
MovingImageType > MetricType;

The metric is created using theNew() method and then connected to the registration object.

MetricType::Pointer metric = MetricType::New();
registration->SetMetric(metric);

The metric requires two parameters to be selected: the number of bins used to compute the
entropy and the number of spatial samples used to compute thedensity estimates. In typical
application 50 histogram bins are sufficient. Note however,that the number of bins may have
dramatic effects on the optimizer’s behavior. The number ofspatial samples to be used depends
on the content of the image. If the images are smooth and do notcontain much detail, then using
approximately 1 percent of the pixels will do. On the other hand, if the images are detailed, it
may be necessary to use a much higher proportion, such as 20 percent.

unsigned int numberOfBins = 24;
unsigned int numberOfSamples = 10000;

metric->SetNumberOfHistogramBins(numberOfBins);
metric->SetNumberOfSpatialSamples(numberOfSamples);

One mechanism for bringing the Metric to its limit is to disable the sampling and use all the pix-
els present in the FixedImageRegion. This can be done with the UseAllPixelsOn() method.

342 Chapter 8. Registration

You may want to try this option only while you are fine tuning all other parameters of your
registration. We don’t use this method in this current example though.

Another significant difference in the metric is that it computes the negative mutual information
and hence we need to minimize the cost function in this case. In this example we will use the
same optimization parameters as in Section8.2.

optimizer->MinimizeOn();
optimizer->SetMaximumStepLength(2.00);
optimizer->SetMinimumStepLength(0.001);
optimizer->SetNumberOfIterations(200);

Whenever the regular step gradient descent optimizer encounters that the direction of movement
has changed in the parametric space, it reduces the size of the step length. The rate at which
the step length is reduced is controlled by a relaxation factor. The default value of the factor is
0.5. This value, however may prove to be inadequate for noisy metrics since they tend to induce
very erratic movements on the optimizers and therefore result in many directional changes. In
those conditions, the optimizer will rapidly shrink the step length while it is still too far from
the location of the extrema in the cost function. In this example we set the relaxation factor to
a number higher than the default in order to prevent the premature shrinkage of the step length.

optimizer->SetRelaxationFactor(0.8);

This example is executed using the same multi-modality images as the one in section8.5.1The
registration converges after 59 iterations and produces the following results:

Translation X = 13.0283
Translation Y = 17.007

These values are a very close match to the true misalignment introduced in the moving image.

The result of resampling the moving image is presented on theleft of Figure8.13. The center
and right parts of the figure present a checkerboard composite of the fixed and moving images
before and after registration respectively.

Figure 8.14 (upper-left) shows the sequence of translations followed by the optimizer as it
searched the parameter space. The upper-right figure presents a closer look at the conver-
gence basin for the last iterations of the optimizer. The bottom of the same figure shows the
sequence of metric values computed as the optimizer searched the parameter space. Compar-
ing these trace plots with Figures8.11 and8.12, we can see that the measures produced by
MattesMutualInformationImageToImageMetric are smoother than those of the MutualInforma-
tionImageToImageMetric. This smoothness allows the use ofmore sophisticated optimizers
such as theitk::RegularStepGradientDescentOptimizer which efficiently locks onto the
optimal value.

http://www.itk.org/Doxygen/html/classitk_1_1RegularStepGradientDescentOptimizer.html

8.5. Multi-Modality Registration 343

Figure 8.13:The mapped moving image (left) and the composition of fixed and moving images before

(center) and after (right) registration with Mattes mutual information.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14

Y
 T

ra
n
sl

at
io

n
s

(m
m

)

X Translations (mm)

 16.6

 16.8

 17

 17.2

 17.4

 12.6 12.8 13 13.2 13.4

Y
 T

ra
n
sl

at
io

n
s

(m
m

)

X Translations (mm)

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

 0 10 20 30 40 50 60

M
u
tu

al
 I

n
fo

rm
at

io
n
 M

at
te

s

Iteration No.

Figure 8.14:Sequence of translations and metric values at each iteration of the optimizer.

344 Chapter 8. Registration

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

-2 0 2 4 6 8 10 12 14 16

Y
 T

ra
n
sl

at
io

n
s

(m
m

)

X Translations (mm)

Figure 8.15:Sensitivity of the optimization path to the number of Bins used for estimating the value of

Mutual Information with Mattes et al. approach.

You must note however that there are a number of non-trivial issues involved in the fine tuning
of parameters for the optimization. For example, the numberof bins used in the estimation
of Mutual Information has a dramatic effect on the performance of the optimizer. In order to
illustrate this effect, this same example has been executedusing a range of different values for
the number of bins, from 10 to 30. If you repeat this experiment, you will notice that depending
on the number of bins used, the optimizer’s path may get trapped early on in local minima.
Figure8.15 shows the multiple paths that the optimizer took in the parametric space of the
transform as a result of different selections on the number of bins used by the Mattes Mutual
Information metric. Note that many of the paths die in local minima instead of reaching the
extrema value on the upper right corner.

Effects such as the one illustrated here highlight how useless is to compare different algorithms
based on a non-exhaustive search of their parameter setting. It is quite difficult to be able to
claim that a particular selection of parameters represent the best combination for running a
particular algorithm. Therefore, when comparing the performance of two or more different
algorithms, we are faced with the challenge of proving that none of the algorithms involved in

8.5. Multi-Modality Registration 345

the comparison is being run with a sub-optimal set of parameters.

The plots in Figures8.14 and8.15 were generated using Gnuplot. The scripts used for this
purpose are available in theInsightDocuments CVS module under the directory

InsightDocuments/SoftwareGuide/Art

The use of these scripts was similar to what was described at the end of section8.5.1.

8.5.3 Plotting joint histograms

The source code for this section can be found in the file
Examples/Registration/ImageRegistrationHistogramPlotter.cxx.

When fine tuning the parameters of an image registration process it is not always clear what
factor are having a larger impact on the behavior of the registration. Even plotting the values of
the metric and the transform parameters may not provide a clear indication on the best way to
modify the optimizer and metric parameters in order to improve the convergence rate and sta-
bility. In such circumstances it is useful to take a closer look at the internals of the components
involved in computing the registration. One of the criticalcomponents is, of course, the image
metric. This section illustrates a mechanism that can be used for monitoring the behavior of the
Mutual Information metric by continuously looking at the joint histogram at regular intervals
during the iterations of the optimizer.

This particular example shows how to use theitk::HistogramToEntropyImageFilter class
in order to get access to the joint histogram that is internally computed by the metric. This
class represents the joint histogram as a 2D image and therefore can take advantage of the IO
functionalities described in chapter7. The example registers two images using the gradient
descent optimizer. The transform used here is a simple translation transform. The metric is a
itk::MutualInformationHistogramImageToImageMetric.

In the code below we create a helper class called theHistogramWriter. Its purpose is to save
the joint histogram into a file using any of the file formats supported by ITK. This object is
invoked after every iteration of the optimizer. The writer here saves the joint histogram into
files with names:JointHistogramXXX.mhd whereXXX is replaced with the iteration number.
The output image contains the joint entropy histogram givenby

fi j = −pi j log2(pi j) (8.1)

where the indicesi and j identify the location of a bin in the Joint Histogram of the two images
and are in the rangesi ∈ [0 : N− 1] and j ∈ [0 : M − 1]. The imagef representing the joint
histogram hasNxM pixels because the intensities of the Fixed image are quantized intoN
histogram bins and the intensities of the Moving image are quantized intoM histogram bins.
The probability valuepi j is computed from the frequency count of the histogram bins.

pi j =
qi j

∑N−1
i=0 ∑M−1

j=0 qi j
(8.2)

http://www.itk.org/Doxygen/html/classitk_1_1HistogramToEntropyImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1MutualInformationHistogramImageToImageMetric.html

346 Chapter 8. Registration

The valueqi j is the frequency of a bin in the histogram and it is computed asthe number of
pixels where the Fixed image has intensities in the range of bin i and the Moving image has
intensities on the range of binj. The valuepi j is therefore the probability of the occurrence of
the measurement vector centered in the bini j . The filter produces an output image of pixel type
double. For details on the use of Histograms in ITK please refer to section10.1.3.

Depending on whether you want to see the joint histogram frequencies directly, or the joint
probabilities, or log of joint probabilities, you may want to instantiate respectively any of the
following classes

• itk::HistogramToIntensityImageFilter

• itk::HistogramToProbabilityImageFilter

• itk::HistogramToLogProbabilityImageFilter

The use of all of these classes is very similar. Note that the log of the probability is equiva-
lent to units of information, also known asbits, more details on this concept can be found in
section10.3.2

The header files of the classes featured in this example are included as a first step.

#include "itkHistogramToEntropyImageFilter.h"
#include "itkMutualInformationHistogramImageToImageMetric.h"

Here we will create a simple class to write the joint histograms. This class, that we arbitrar-
ily name asHistogramWriter, uses internally theitk::HistogramToEntropyImageFilter
class among others.

class HistogramWriter
{
public:
typedef float InternalPixelType;
itkStaticConstMacro(Dimension, unsigned int, 2);

typedef itk::Image< InternalPixelType, Dimension > InternalImageType;

typedef itk::MutualInformationHistogramImageToImageMetric<
InternalImageType,
InternalImageType > MetricType;

typedef MetricType::HistogramType HistogramType;

typedef itk::HistogramToEntropyImageFilter< HistogramType >
HistogramToEntropyImageFilterType;

http://www.itk.org/Doxygen/html/classitk_1_1HistogramToIntensityImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1HistogramToProbabilityImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1HistogramToLogProbabilityImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1HistogramToEntropyImageFilter.html

8.5. Multi-Modality Registration 347

typedef HistogramToEntropyImageFilterType::Pointer
HistogramToImageFilterPointer;

typedef HistogramToEntropyImageFilterType::OutputImageType OutputImageType;

typedef itk::ImageFileWriter< OutputImageType > HistogramFileWriterType;
typedef HistogramFileWriterType::Pointer HistogramFileWriterPointer;

TheHistogramWriter has a member variablem Filter of type HistogramToEntropyImage-
Filter.

this->m_Filter = HistogramToEntropyImageFilterType::New();

It also has an ImageFileWriter that has been instantiated using the image type that is produced
as output from the histogram to image filter. We connect the output of the filter as input to the
writer.

this->m_HistogramFileWriter = HistogramFileWriterType::New();
this->m_HistogramFileWriter->SetInput(this->m_Filter->GetOutput());

The method of this class that is most relevant to our discussion is the one that writes the image
into a file. In this method we assign the output histogram of the metric to the input of the his-
togram to image filter. In this way we construct an ITK 2D image where every pixel corresponds
to one of the Bins of the joint histogram computed by the Metric.

void WriteHistogramFile(const char * outputFilename)
{

this->m_Filter->SetInput(m_Metric->GetHistogram());

The output of the filter is connected to a filter that will rescale the intensities in order to improve
the visualization of the values. This is done because it is common to find histograms of medical
images that have a minority of bins that are largely dominant. Visualizing such histogram in
direct values is challenging because only the dominant binstend to become visible.

The following are the member variables of ourHistogramWriter class.

private:
MetricPointer m_Metric;
HistogramToImageFilterPointer m_Filter;
HistogramFileWriterPointer m_HistogramFileWriter;

We invoke the histogram writer within the Command/Observerof the optimizer to write joint
histograms after every iteration.

348 Chapter 8. Registration

m_JointHistogramWriter.WriteHistogramFile(m_InitialHistogramFile.c_str());

We instantiate an optimizer, interpolator and the registration method as shown in previous ex-
amples.

The number of bins in the metric is set with theSetHistogramSize() method. This will
determine the number of pixels along each dimension of the joint histogram. Note that in this
case we arbitrarily decided to use the same number of bins forthe intensities of the Fixed image
and those of the Moving image. However, this does not have to be the case, we could have
selected different numbers of bins for each image.

unsigned int numberOfHistogramBins = atoi(argv[7]);
MetricType::HistogramType::SizeType histogramSize;
histogramSize[0] = numberOfHistogramBins;
histogramSize[1] = numberOfHistogramBins;
metric->SetHistogramSize(histogramSize);

Mutual information attempts to re-group the joint entropy histograms into a more “meaningful”
formation. An optimizer that minimizes the joint entropy seeks a transform that produces a
small number of high value bins and a large majority of almostzero bins. Multi-modality regis-
tration seeks such a transform while also attempting to maximize the information contribution
by the fixed and the moving images in the overall region of the metric.

A T1 MRI (fixed image) and a proton density MRI (moving image) as shown in Figure8.9are
provided as input to this example.

Figure8.16shows the joint histograms before and after registration.

8.6 Centered Transforms

The ITK image coordinate origin is typically located in one of the image corners (see section
4.1.4for details). This results in counter-intuitive transformbehavior when rotations and scaling
are involved. Users tend to assume that rotations and scaling are performed around a fixed point
at the center of the image. In order to compensate for this difference in natural interpretation,
the concept ofcenteredtransforms have been introduced into the toolkit. The following sections
describe the main characteristics of such transforms.

The introduction of the centered transforms in the Insight Toolkit reflects the dynamic nature of
a software library when it evolves in harmony with the requests of the community that it serves.
This dynamism has, as everything else in real life, some advantages and some disadvantages.
The main advantage is that when a need is identified by the users, it gets implemented in a matter
of days or weeks. This capability for rapidly responding to the needs of a community is one of
the major strengths of Open Source software. It has the additional safety that if the rest of the
community does not wish to adopt a particular change, an isolated user can always implement
that change in her local copy of the toolkit, since all the source code of ITK is available in a

8.6. Centered Transforms 349

Figure 8.16:Joint entropy histograms before and after registration. The final transform was within half a

pixel of true misalignment.

BSD-style license9 that does not restrict modification nor distribution of the code, and that does
not impose the assimilation demands of viral licenses such as GPL10.

The main disadvantage of dynamism, is of course, the fact that there is continuous change and
a need for perpetual adaptation. The evolution of software occurs at different scales, some
changes happen to evolve in localized regions of the code, while from time to time accommo-
dations of a larger scale are needed. The need for continuouschanges is addressed in Extreme
Programming with the methodology ofRefactoring. At any given point, the structure of the
code may not project the organized and neatly distributed architecture that may have resulted
from a monolithic and static design. There is, after all, good reasons why living beings can not
have straight angles. What you are about to witness in this section is a clear example of the
diversity of species that flourishes when Evolution is in action [19].

8.6.1 Rigid Registration in 2D

The source code for this section can be found in the file
Examples/Registration/ImageRegistration5.cxx.

This example illustrates the use of theitk::CenteredRigid2DTransform for performing
rigid registration in 2D. The example code is for the most part identical to that presented in
Section8.2. The main difference is the use of the CenteredRigid2DTransform here instead of
the itk::TranslationTransform.

In addition to the headers included in previous examples, the following header must also be

9http://www.opensource.org/licenses/bsd-license.php
10http://www.gnu.org/copyleft/gpl.html

http://www.itk.org/Doxygen/html/classitk_1_1CenteredRigid2DTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1TranslationTransform.html
http://www.opensource.org/licenses/bsd-license.php
http://www.gnu.org/copyleft/gpl.html

350 Chapter 8. Registration

included.

#include "itkCenteredRigid2DTransform.h"

The transform type is instantiated using the code below. Theonly template parameter for this
class is the representation type of the space coordinates.

typedef itk::CenteredRigid2DTransform< double > TransformType;

The transform object is constructed below and passed to the registration method.

TransformType::Pointer transform = TransformType::New();
registration->SetTransform(transform);

In this example, the input images are taken from readers. Thecode below updates the readers
in order to ensure that the image parameters (size, origin and spacing) are valid when used to
initialize the transform. We intend to use the center of the fixed image as the rotation center and
then use the vector between the fixed image center and the moving image center as the initial
translation to be applied after the rotation.

fixedImageReader->Update();
movingImageReader->Update();

The center of rotation is computed using the origin, size andspacing of the fixed image.

FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();

const SpacingType fixedSpacing = fixedImage->GetSpacing();
const OriginType fixedOrigin = fixedImage->GetOrigin();
const RegionType fixedRegion = fixedImage->GetLargestPossibleRegion();
const SizeType fixedSize = fixedRegion.GetSize();

TransformType::InputPointType centerFixed;

centerFixed[0] = fixedOrigin[0] + fixedSpacing[0] * fixedSize[0] / 2.0;
centerFixed[1] = fixedOrigin[1] + fixedSpacing[1] * fixedSize[1] / 2.0;

The center of the moving image is computed in a similar way.

MovingImageType::Pointer movingImage = movingImageReader->GetOutput();

const SpacingType movingSpacing = movingImage->GetSpacing();
const OriginType movingOrigin = movingImage->GetOrigin();

8.6. Centered Transforms 351

const RegionType movingRegion = movingImage->GetLargestPossibleRegion();
const SizeType movingSize = movingRegion.GetSize();

TransformType::InputPointType centerMoving;

centerMoving[0] = movingOrigin[0] + movingSpacing[0] * movingSize[0] / 2.0;
centerMoving[1] = movingOrigin[1] + movingSpacing[1] * movingSize[1] / 2.0;

The most straightforward method of initializing the transform parameters is to configure the
transform and then get its parameters with the methodGetParameters(). Here we initialize the
transform by passing the center of the fixed image as the rotation center with theSetCenter()
method. Then the translation is set as the vector relating the center of the moving image to the
center of the fixed image. This last vector is passed with the methodSetTranslation().

transform->SetCenter(centerFixed);
transform->SetTranslation(centerMoving - centerFixed);

Let’s finally initialize the rotation with a zero angle.

transform->SetAngle(0.0);

Now we pass the current transform’s parameters as the initial parameters to be used when the
registration process starts.

registration->SetInitialTransformParameters(transform->GetParameters());

Keeping in mind that the scale of units in rotation and translation is quite different, we take ad-
vantage of the scaling functionality provided by the optimizers. We know that the first element
of the parameters array corresponds to the angle that is measured in radians, while the other
parameters correspond to translations that are measured inmillimeters. For this reason we use
small factors in the scales associated with translations and the coordinates of the rotation center
.

typedef OptimizerType::ScalesType OptimizerScalesType;
OptimizerScalesType optimizerScales(transform->GetNumberOfParameters());
const double translationScale = 1.0 / 1000.0;

optimizerScales[0] = 1.0;
optimizerScales[1] = translationScale;
optimizerScales[2] = translationScale;
optimizerScales[3] = translationScale;
optimizerScales[4] = translationScale;

optimizer->SetScales(optimizerScales);

352 Chapter 8. Registration

Next we set the normal parameters of the optimization method. In this case we are using an
itk::RegularStepGradientDescentOptimizer. Below, we define the optimization param-
eters like the relaxation factor, initial step length, minimal step length and number of iterations.
These last two act as stopping criteria for the optimization.

double initialStepLength = 0.1;

optimizer->SetRelaxationFactor(0.6);
optimizer->SetMaximumStepLength(initialStepLength);
optimizer->SetMinimumStepLength(0.001);
optimizer->SetNumberOfIterations(200);

Let’s execute this example over two of the images provided inExamples/Data:

• BrainProtonDensitySliceBorder20.png

• BrainProtonDensitySliceRotated10.png

The second image is the result of intentionally rotating thefirst image by 10 degrees around the
geometrical center of the image. Both images have unit-spacing and are shown in Figure8.17.
The registration takes 20 iterations and produces the results:

[0.177458, 110.489, 128.488, 0.0106296, 0.00194103]

These results are interpreted as

• Angle = 0.177458 radians

• Center =(110.489,128.488) millimeters

• Translation =(0.0106296,0.00194103) millimeters

As expected, these values match the misalignment intentionally introduced into the moving
image quite well, since 10 degrees is about 0.174532 radians.

Figure8.18shows from left to right the resampled moving image after registration, the differ-
ence between fixed and moving images before registration, and the difference between fixed
and resampled moving image after registration. It can be seen from the last difference image
that the rotational component has been solved but that a small centering misalignment persists.

Figure8.19shows plots of the main output parameters produced from the registration process.
This includes, the metric values at every iteration, the angle values at every iteration, and the
translation components of the transform as the registration progress.

Let’s now consider the case in which rotations and translations are present in the initial regis-
tration, as in the following pair of images:

http://www.itk.org/Doxygen/html/classitk_1_1RegularStepGradientDescentOptimizer.html

8.6. Centered Transforms 353

Figure 8.17:Fixed and moving images are provided as input to the registration method using the Cen-

teredRigid2D transform.

Figure 8.18:Resampled moving image (left). Differences between the fixed and moving images, before

(center) and after (right) registration using the CenteredRigid2D transform.

354 Chapter 8. Registration

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12 14 16 18 20

S
q

u
ar

e
D

if
fe

re
n

ce
s

M
et

ri
c

Iteration No.

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 2 4 6 8 10 12 14 16 18 20

R
o

ta
ti

o
n

 A
n

g
le

 (
ra

d
ia

n
s)

Iteration No.

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

-0.05 0 0.05 0.1 0.15 0.2

Y
 T

ra
n

sl
at

io
n

s
(m

m
)

X Translations (mm)

Figure 8.19:Metric values, rotation angle and translations during registration with the CenteredRigid2D

transform.

8.6. Centered Transforms 355

• BrainProtonDensitySliceBorder20.png

• BrainProtonDensitySliceR10X13Y17.png

The second image is the result of intentionally rotating thefirst image by 10 degrees and then
translating it 13mm in X and 17mm in Y. Both images have unit-spacing and are shown in
Figure8.20. In order to accelerate convergence it is convenient to use alarger step length as
shown here.

optimizer->SetMaximumStepLength(1.0);

The registration now takes 46 iterations and produces the following results:

[0.174454, 110.361, 128.647, 12.977, 15.9761]

These parameters are interpreted as

• Angle = 0.174454 radians

• Center =(110.361,128.647) millimeters

• Translation =(12.977,15.9761) millimeters

These values approximately match the initial misalignmentintentionally introduced into the
moving image, since 10 degrees is about 0.174532 radians. The horizontal translation is well
resolved while the vertical translation ends up being off byabout one millimeter.

Figure8.21shows the output of the registration. The rightmost image ofthis figure shows the
difference between the fixed image and the resampled moving image after registration.

Figure8.22shows plots of the main output registration parameters whenthe rotation and trans-
lations are combined. These results include, the metric values at every iteration, the angle
values at every iteration, and the translation components of the registration as the registration
converges. It can be seen from the smoothness of these plots that a larger step length could have
been supported easily by the optimizer. You may want to modify this value in order to get a
better idea of how to tune the parameters.

8.6.2 Initializing with Image Moments

The source code for this section can be found in the file
Examples/Registration/ImageRegistration6.cxx.

This example illustrates the use of theitk::CenteredRigid2DTransform for perform-
ing registration. The example code is for the most part identical to the one pre-
sented in Section8.6.1. Even though this current example is done in 2D, the class

http://www.itk.org/Doxygen/html/classitk_1_1CenteredRigid2DTransform.html

356 Chapter 8. Registration

Figure 8.20:Fixed and moving images provided as input to the registration method using the Centered-

Rigid2D transform.

Figure 8.21:Resampled moving image (left). Differences between the fixed and moving images, before

(center) and after (right) registration with the CenteredRigid2D transform.

8.6. Centered Transforms 357

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 5 10 15 20 25 30 35 40 45

S
q

u
ar

e
D

if
fe

re
n

ce
s

M
et

ri
c

Iteration No.

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 5 10 15 20 25 30 35 40 45

R
o

ta
ti

o
n

 A
n

g
le

 (
ra

d
ia

n
s)

Iteration No.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14

Y
 T

ra
n

sl
at

io
n

s
(m

m
)

X Translations (mm)

Figure 8.22:Metric values, rotation angle and translations during the registration using the Centered-

Rigid2D transform on an image with rotation and translation mis-registration.

358 Chapter 8. Registration

itk::CenteredTransformInitializer is quite generic and could be used in other dimen-
sions. The objective of the initializer class is to simplifythe computation of the center of
rotation and the translation required to initialize certain transforms such as the Centered-
Rigid2DTransform. The initializer accepts two images and atransform as inputs. The images
are considered to be the fixed and moving images of the registration problem, while the trans-
form is the one used to register the images.

The CenteredRigid2DTransform supports two modes of operation. In the first mode, the centers
of the images are computed as space coordinates using the image origin, size and spacing. The
center of the fixed image is assigned as the rotational centerof the transform while the vector
going from the fixed image center to the moving image center ispassed as the initial translation
of the transform. In the second mode, the image centers are not computed geometrically but by
using the moments of the intensity gray levels. The center ofmass of each image is computed
using the helper classitk::ImageMomentsCalculator. The center of mass of the fixed image
is passed as the rotational center of the transform while thevector going from the fixed image
center of mass to the moving image center of mass is passed as the initial translation of the
transform. This second mode of operation is quite convenient when the anatomical structures
of interest are not centered in the image. In such cases the alignment of the centers of mass
provides a better rough initial registration than the simple use of the geometrical centers. The
validity of the initial registration should be questioned when the two images are acquired in
different imaging modalities. In those cases, the center ofmass of intensities in one modality
does not necessarily matches the center of mass of intensities in the other imaging modality.

The following are the most relevant headers in this example.

#include "itkCenteredRigid2DTransform.h"
#include "itkCenteredTransformInitializer.h"

The transform type is instantiated using the code below. Theonly template parameter of this
class is the representation type of the space coordinates.

typedef itk::CenteredRigid2DTransform< double > TransformType;

The transform object is constructed below and passed to the registration method.

TransformType::Pointer transform = TransformType::New();
registration->SetTransform(transform);

The input images are taken from readers. It is not necessary to explicitly callUpdate() on the
readers since the CenteredTransformInitializer class will do it as part of its initialization. The
following code instantiates the initializer. This class istemplated over the fixed and moving
image type as well as the transform type. An initializer is then constructed by calling theNew()
method and assigning the result to aitk::SmartPointer.

http://www.itk.org/Doxygen/html/classitk_1_1CenteredTransformInitializer.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageMomentsCalculator.html
http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

8.6. Centered Transforms 359

typedef itk::CenteredTransformInitializer<
TransformType,
FixedImageType,
MovingImageType > TransformInitializerType;

TransformInitializerType::Pointer initializer = TransformInitializerType::New();

The initializer is now connected to the transform and to the fixed and moving images.

initializer->SetTransform(transform);
initializer->SetFixedImage(fixedImageReader->GetOutput());
initializer->SetMovingImage(movingImageReader->GetOutput());

The use of the geometrical centers is selected by callingGeometryOn() while the use of center
of mass is selected by callingMomentsOn(). Below we select the center of mass mode.

initializer->MomentsOn();

Finally, the computation of the center and translation is triggered by the
InitializeTransform() method. The resulting values will be passed directly to the
transform.

initializer->InitializeTransform();

The remaining parameters of the transform are initialized as before.

transform->SetAngle(0.0);

Now the parameters of the current transform are passed as theinitial parameters to be used
when the registration process starts.

registration->SetInitialTransformParameters(transform->GetParameters());

Let’s execute this example over some of the images provided in Examples/Data, for example:

• BrainProtonDensitySliceBorder20.png

• BrainProtonDensitySliceR10X13Y17.png

The second image is the result of intentionally rotating thefirst image by 10 degrees and shifting
it 13mmin X and 17mmin Y. Both images have unit-spacing and are shown in Figure8.17. The
registration takes 22 iterations and produces:

360 Chapter 8. Registration

[0.174475, 111.177, 131.572, 12.4566, 16.0729]

These parameters are interpreted as

• Angle = 0.174475 radians

• Center =(111.177,131.572) millimeters

• Translation =(12.4566,16.0729) millimeters

Note that the reported translation is not the translation of(13,17) that might be expected. The
reason is that the five parameters of the CenteredRigid2DTransform are redundant. The actual
movement in space is described by only 3 parameters. This means that there are infinite com-
binations of rotation center and translations that will represent the same actual movement in
space. It is more illustrative in this case to take a look at the actual rotation matrix and offset
resulting form the five parameters.

transform->SetParameters(finalParameters);

TransformType::MatrixType matrix = transform->GetRotationMatrix();
TransformType::OffsetType offset = transform->GetOffset();

std::cout << "Matrix = " << std::endl << matrix << std::endl;
std::cout << "Offset = " << std::endl << offset << std::endl;

Which produces the following output.

Matrix =
0.984818 -0.173591
0.173591 0.984818

Offset =
[36.9843, -1.22896]

This output illustrates how counter-intuitive the mix of center of rotation and translations can
be. Figure8.23 will clarify this situation. The figure shows the original image on the left.
A rotation of 10◦ around the center of the image is shown in the middle. The samerotation
performed around the origin of coordinates is shown on the right. It can be seen here that
changing the center of rotation introduces additional translations.

Let’s analyze what happens to the center of the image that we just registered. Under the point
of view of rotating 10◦ around the center and then applying a translation of(13mm,17mm).

8.6. Centered Transforms 361

10

20

30

40

50

60

0

0 10 20 30 40 50 0 10 20 30 40 50

10

20

30

40

50

60

0

0 10 20 30 40 50

10

20

30

40

50

60

0

10
10

Rotation around image center Rotation around originOriginal Image

Figure 8.23:Effect of changing the center of rotation.

The image has a size of(221×257) pixels and unit spacing. Hence its center has coordinates
(110.5,128.5). Since the rotation is done around this point, the center behaves as the fixed
point of the transformation and remains unchanged. Then with the(13mm,17mm) translation it
is mapped to(123.5,145.5) which becomes its final position.

The matrix and offset that we obtained at the end of the registration indicate that this should be
equivalent to a rotation of 10◦ around the origin, followed by a translations of(36.98,−1.22).
Let’s compute this in detail. First the rotation of the imagecenter by 10◦ around the origin
will move the point to(86.52,147.97). Now, applying a translation of(36.98,−1.22) maps this
point to(123.5,146.75). Which is close to the result of our previous computation.

It is unlikely that we could have chosen such translations asthe initial guess, since we tend to
think about image in a coordinate system whose origin is in the center of the image.

You may be wondering why the actual movement is represented by three parameters when we
take the trouble of using five. In particular, why use a 5-dimensional optimizer space instead
of a 3-dimensional one. The answer is that by using five parameters we have a much simpler
way of initializing the transform with the rotation matrix and offset. Using the minimum three
parameters it is not obvious how to determine what the initial rotation and translations should
be.

Figure8.25shows the output of the registration. The image on the right of this figure shows the
differences between the fixed image and the resampled movingimage after registration.

Figure8.26plots the output parameters of the registration process. Itincludes, the metric values
at every iteration, the angle values at every iteration, andthe values of the translation compo-
nents as the registration progress. Note that this is the complementary translation as used in the
transform, not the actual total translation that is used in the transform offset. We could modify
the observer to print the total offset instead of printing the array of parameters. Let’s call that
an exercise for the reader!

362 Chapter 8. Registration

Figure 8.24:Fixed and moving images provided as input to the registration method using CenteredTrans-

formInitializer.

Figure 8.25: Resampled moving image (left). Differences between fixed and moving images, before

registration (center) and after registration (right) with the CenteredTransformInitializer.

8.6. Centered Transforms 363

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5 10 15 20 25

S
q

u
ar

e
D

if
fe

re
n

ce
s

M
et

ri
c

Iteration No.

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 5 10 15 20 25

R
o

ta
ti

o
n

 A
n

g
le

 (
ra

d
ia

n
s)

Iteration No.

 15.85

 15.9

 15.95

 16

 16.05

 16.1

 16.15

 12.25 12.3 12.35 12.4 12.45 12.5 12.55 12.6 12.65 12.7 12.75 12.8

Y
 T

ra
n

sl
at

io
n

s
(m

m
)

X Translations (mm)

Figure 8.26:Plots of the Metric, rotation angle, center of rotation and translations during the registration

using CenteredTransformInitializer.

364 Chapter 8. Registration

8.6.3 Similarity Transform in 2D

The source code for this section can be found in the file
Examples/Registration/ImageRegistration7.cxx.

This example illustrates the use of the itk::CenteredSimilarity2DTransform
class for performing registration in 2D. The of example code is for the most
part identical to the code presented in Section8.6.2. The main difference
is the use of itk::CenteredSimilarity2DTransform here rather than the
itk::CenteredRigid2DTransform class.

A similarity transform can be seen as a composition of rotations, translations and uniform scal-
ing. It preserves angles and map lines into lines. This transform is implemented in the toolkit
as deriving from a rigid 2D transform and with a scale parameter added.

When using this transform, attention should be paid to the fact that scaling and translations
are not independent. In the same way that rotations can locally be seen as translations, scaling
also result in local displacements. Scaling is performed ingeneral with respect to the origin of
coordinates. However, we already saw how ambiguous that could be in the case of rotations.
For this reason, this transform also allows users to setup a specific center. This center is use
both for rotation and scaling.

In addition to the headers included in previous examples, here the following header must be
included.

#include "itkCenteredSimilarity2DTransform.h"

The Transform class is instantiated using the code below. The only template parameter of this
class is the representation type of the space coordinates.

typedef itk::CenteredSimilarity2DTransform< double > TransformType;

The transform object is constructed below and passed to the registration method.

TransformType::Pointer transform = TransformType::New();
registration->SetTransform(transform);

In this example, we again use the helper classitk::CenteredTransformInitializer to
compute a reasonable value for the initial center of rotation and the translation.

typedef itk::CenteredTransformInitializer<
TransformType,
FixedImageType,
MovingImageType > TransformInitializerType;

http://www.itk.org/Doxygen/html/classitk_1_1CenteredSimilarity2DTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1CenteredSimilarity2DTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1CenteredRigid2DTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1CenteredTransformInitializer.html

8.6. Centered Transforms 365

TransformInitializerType::Pointer initializer = TransformInitializerType::New();

initializer->SetTransform(transform);

initializer->SetFixedImage(fixedImageReader->GetOutput());
initializer->SetMovingImage(movingImageReader->GetOutput());

initializer->MomentsOn();

initializer->InitializeTransform();

The remaining parameters of the transform are initialized below.

transform->SetScale(initialScale);
transform->SetAngle(initialAngle);

We now pass the parameter of the current transform as the initial parameters to be used when
the registration process starts.

registration->SetInitialTransformParameters(transform->GetParameters());

Keeping in mind that the scale of units in scaling, rotation and translation are quite different, we
take advantage of the scaling functionality provided by theoptimizers. We know that the first
element of the parameters array corresponds to the scale factor, the second corresponds to the
angle, third and forth are the center of rotation and fifth andsixth are the remaining translation.
We use henceforth small factors in the scales associated with translations and the rotation center.

typedef OptimizerType::ScalesType OptimizerScalesType;
OptimizerScalesType optimizerScales(transform->GetNumberOfParameters());
const double translationScale = 1.0 / 100.0;

optimizerScales[0] = 10.0;
optimizerScales[1] = 1.0;
optimizerScales[2] = translationScale;
optimizerScales[3] = translationScale;
optimizerScales[4] = translationScale;
optimizerScales[5] = translationScale;

optimizer->SetScales(optimizerScales);

We set also the normal parameters of the optimization method. In this case we are using A
itk::RegularStepGradientDescentOptimizer. Below, we define the optimization param-
eters like initial step length, minimal step length and number of iterations. These last two act as
stopping criteria for the optimization.

http://www.itk.org/Doxygen/html/classitk_1_1RegularStepGradientDescentOptimizer.html

366 Chapter 8. Registration

optimizer->SetMaximumStepLength(steplength);
optimizer->SetMinimumStepLength(0.0001);
optimizer->SetNumberOfIterations(500);

Let’s execute this example over some of the images provided in Examples/Data, for example:

• BrainProtonDensitySliceBorder20.png

• BrainProtonDensitySliceR10X13Y17S12.png

The second image is the result of intentionally rotating thefirst image by 10 degrees, scaling
by 1/1.2 and then translating by(−13,−17). Both images have unit-spacing and are shown in
Figure8.27. The registration takes 16 iterations and produces:

[0.833222, -0.174521, 111.437, 131.741, -12.8272, -12.7862]

That are interpreted as

• Scale factor = 0.833222

• Angle = 0.174521 radians

• Center =(111.437,131.741) millimeters

• Translation =(−12.8272,−12.7862) millimeters

These values approximate the misalignment intentionally introduced into the moving image.
Since 10 degrees is about 0.174532 radians.

Figure8.28shows the output of the registration. The right image shows the squared magnitude
of pixel differences between the fixed image and the resampled moving image.

Figure 8.29 shows the plots of the main output parameters of the registration process. The
metric values at every iteration are shown on the top. The angle values are shown in the plot at
left while the translation components of the registration are presented in the plot at right.

8.6.4 Rigid Transform in 3D

The source code for this section can be found in the file
Examples/Registration/ImageRegistration8.cxx.

This example illustrates the use of theitk::VersorRigid3DTransform class for performing
registration of two 3D images. The example code is for the most part identical to thecode
presented in Section8.6.1. The major difference is that this example is done in 3D. The class

http://www.itk.org/Doxygen/html/classitk_1_1VersorRigid3DTransform.html

8.6. Centered Transforms 367

Figure 8.27:Fixed and Moving image provided as input to the registration method using the Similarity2D

transform.

Figure 8.28: Resampled moving image (left). Differences between fixed and moving images, before

(center) and after (right) registration with the Similarity2D transform.

368 Chapter 8. Registration

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 0 10 20 30 40 50 60 70

S
q

u
ar

e
D

if
fe

re
n

ce
s

M
et

ri
c

Iteration No.

-0.18

-0.17

-0.16

-0.15

-0.14

-0.13

-0.12

-0.11

-0.1

 0 10 20 30 40 50 60 70

R
o

ta
ti

o
n

 A
n

g
le

 (
ra

d
ia

n
s)

Iteration No.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0 10 20 30 40 50 60 70

S
ca

le
 F

ac
to

r

Iteration No.

-14.2

-14

-13.8

-13.6

-13.4

-13.2

-13

-12.8

-12.6

-13.2 -13.15 -13.1 -13.05 -13 -12.95 -12.9 -12.85 -12.8

Y
 T

ra
n

sl
at

io
n

s
(m

m
)

X Translations (mm)

Figure 8.29:Plots of the Metric, rotation angle and translations during the registration using Similarity2D

transform.

8.6. Centered Transforms 369

itk::CenteredTransformInitializer is used to initialize the center and translation of the
transform. The case of rigid registration of 3D images is probably one of the most commonly
found cases of image registration.

The following are the most relevant headers of this example.

#include "itkVersorRigid3DTransform.h"
#include "itkCenteredTransformInitializer.h"

The parameter space of theVersorRigid3DTransform is not a vector space, due to the fact
that addition is not a closed operation in the space of versorcomponents. This precludes the use
of standard gradient descent algorithms for optimizing theparameter space of this transform. A
special optimizer should be used in this registration configuration. The optimizer designed for
this transform is theitk::VersorRigid3DTransformOptimizer. This optimizer uses Versor
composition for updating the first three components of the parameters array, and Vector addition
for updating the last three components of the parameters array [34, 42].

#include "itkVersorRigid3DTransformOptimizer.h"

The Transform class is instantiated using the code below. The only template parameter to this
class is the representation type of the space coordinates.

typedef itk::VersorRigid3DTransform< double > TransformType;

The transform object is constructed below and passed to the registration method.

TransformType::Pointer transform = TransformType::New();
registration->SetTransform(transform);

The input images are taken from readers. It is not necessary here to explicitly callUpdate() on
the readers since theitk::CenteredTransformInitializer will do it as part of its compu-
tations. The following code instantiates the type of the initializer. This class is templated over
the fixed and moving image type as well as the transform type. An initializer is then constructed
by calling theNew() method and assigning the result to a smart pointer.

typedef itk::CenteredTransformInitializer< TransformType,
FixedImageType,
MovingImageType

> TransformInitializerType;

TransformInitializerType::Pointer initializer =
TransformInitializerType::New();

The initializer is now connected to the transform and to the fixed and moving images.

http://www.itk.org/Doxygen/html/classitk_1_1CenteredTransformInitializer.html
http://www.itk.org/Doxygen/html/classitk_1_1VersorRigid3DTransformOptimizer.html
http://www.itk.org/Doxygen/html/classitk_1_1CenteredTransformInitializer.html

370 Chapter 8. Registration

initializer->SetTransform(transform);
initializer->SetFixedImage(fixedImageReader->GetOutput());
initializer->SetMovingImage(movingImageReader->GetOutput());

The use of the geometrical centers is selected by callingGeometryOn() while the use of center
of mass is selected by callingMomentsOn(). Below we select the center of mass mode.

initializer->MomentsOn();

Finally, the computation of the center and translation is triggered by the
InitializeTransform() method. The resulting values will be passed directly to the
transform.

initializer->InitializeTransform();

The rotation part of the transform is initialized using aitk::Versor which is simply a unit
quaternion. TheVersorType can be obtained from the transform traits. The versor itselfde-
fines the type of the vector used to indicate the rotation axis. This trait can be extracted as
VectorType. The following lines create a versor object and initialize its parameters by passing
a rotation axis and an angle.

typedef TransformType::VersorType VersorType;
typedef VersorType::VectorType VectorType;

VersorType rotation;
VectorType axis;

axis[0] = 0.0;
axis[1] = 0.0;
axis[2] = 1.0;

const double angle = 0;

rotation.Set(axis, angle);

transform->SetRotation(rotation);

We now pass the parameters of the current transform as the initial parameters to be used when
the registration process starts.

registration->SetInitialTransformParameters(transform->GetParameters());

Let’s execute this example over some of the images availablein the ftp site

http://www.itk.org/Doxygen/html/classitk_1_1Versor.html

8.6. Centered Transforms 371

ftp://public.kitware.com/pub/itk/Data/BrainWeb

Note that the images in the ftp site are compressed in.tgz files. You should download these
files an uncompress them in your local system. After decompressing and extracting the files
you could take a pair of volumes, for example the pair:

• brainweb165a10f17.mha

• brainweb165a10f17Rot10Tx15.mha

The second image is the result of intentionally rotating thefirst image by 10 degrees around the
origin and shifting it 15mmin X. The registration takes 24 iterations and produces:

[-6.03744e-05, 5.91487e-06, -0.0871932, 2.64659, -17.4637, -0.00232496]

That are interpreted as

• Versor =(−6.03744e−05,5.91487e−06,−0.0871932)

• Translation =(2.64659,−17.4637,−0.00232496) millimeters

This Versor is equivalent to a rotation of 9.98 degrees around theZ axis.

Note that the reported translation is not the translation of(15.0,0.0,0.0) that we may be naively
expecting. The reason is that theVersorRigid3DTransform is applying the rotation around the
center found by theCenteredTransformInitializer and then adding the translation vector
shown above.

It is more illustrative in this case to take a look at the actual rotation matrix and offset resulting
form the 6 parameters.

transform->SetParameters(finalParameters);

TransformType::MatrixType matrix = transform->GetRotationMatrix();
TransformType::OffsetType offset = transform->GetOffset();

std::cout << "Matrix = " << std::endl << matrix << std::endl;
std::cout << "Offset = " << std::endl << offset << std::endl;

The output of this print statements is

Matrix =
0.984795 0.173722 2.23132e-05
-0.173722 0.984795 0.000119257

ftp://public.kitware.com/pub/itk/Data/BrainWeb

372 Chapter 8. Registration

Figure 8.30:Fixed and moving image provided as input to the registration method using CenteredTrans-

formInitializer.

-1.25621e-06 -0.00012132 1

Offset =
[-15.0105, -0.00672343, 0.0110854]

From the rotation matrix it is possible to deduce that the rotation is happening in the X,Y plane
and that the angle is on the order of arcsin(0.173722) which is very close to 10 degrees, as we
expected.

Figure8.31 shows the output of the registration. The center image in this figure shows the
differences between the fixed image and the resampled movingimage before the registration.
The image on the right side presents the difference between the fixed image and the resampled
moving image after the registration has been performed. Note that these images are individual
slices extracted from the actual volumes. For details, lookat the source code of this example,
where the ExtractImageFilter is used to extract a slice fromthe the center of each one of the
volumes. One of the main purposes of this example is to illustrate that the toolkit can perform
registration on images of any dimension. The only limitations are, as usual, the amount of mem-
ory available for the images and the amount of computation time that it will take to complete
the optimization process.

Figure 8.32 shows the plots of the main output parameters of the registration process. The
metric values at every iteration. The Z component of the versor is plotted as an indication of
how the rotation progress. The X,Y translation components of the registration are plotted at
every iteration too.

8.6. Centered Transforms 373

Figure 8.31: Resampled moving image (left). Differences between fixed and moving images, before

(center) and after (right) registration with the CenteredTransformInitializer.

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25

S
q
u
ar

e
D

if
fe

re
n
ce

s
M

et
ri

c

Iteration No.

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0 5 10 15 20 25

Z
 V

er
so

r
C

o
m

p
o
n
en

t

Iteration No.

-17.6

-17.4

-17.2

-17

-16.8

-16.6

-16.4

-16.2

-16

-15.8

-15.6

 2.2 2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.65 2.7

Y
 T

ra
n
sl

at
io

n
s

(m
m

)

X Translations (mm)

Figure 8.32:Plots of the metric, rotation angle, center of rotation and translations during the registration

using CenteredTransformInitializer.

374 Chapter 8. Registration

Shell and Gnuplot scripts for generating the diagrams in Figure8.32are available in the direc-
tory

InsightDocuments/SoftwareGuide/Art

You are strongly encouraged to run the example code, since only in this way you can gain a
first hand experience with the behavior of the registration process. Once again, this is a simple
reflection of the philosophy that we put forward in this book:

If you can not replicate it, then it does not exist!.

We have seen enough published papers with pretty pictures, presenting results that in practice
are impossible to replicate. That is vanity, not science.

8.6.5 Centered Affine Transform

The source code for this section can be found in the file
Examples/Registration/ImageRegistration9.cxx.

This example illustrates the use of theitk::AffineTransform for performing registration in
2D. The example code is, for the most part, identical to that in8.6.2. The main difference is
the use of the AffineTransform here instead of theitk::CenteredRigid2DTransform. We
will focus on the most relevant changes in the current code and skip the basic elements already
explained in previous examples.

Let’s start by including the header file of the AffineTransform.

#include "itkAffineTransform.h"

We define then the types of the images to be registered.

const unsigned int Dimension = 2;
typedef float PixelType;

typedef itk::Image< PixelType, Dimension > FixedImageType;
typedef itk::Image< PixelType, Dimension > MovingImageType;

The transform type is instantiated using the code below. Thetemplate parameters of this class
are the representation type of the space coordinates and thespace dimension.

typedef itk::AffineTransform<
double,
Dimension > TransformType;

The transform object is constructed below and passed to the registration method.

http://www.itk.org/Doxygen/html/classitk_1_1AffineTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1CenteredRigid2DTransform.html

8.6. Centered Transforms 375

TransformType::Pointer transform = TransformType::New();
registration->SetTransform(transform);

In this example, we again use theitk::CenteredTransformInitializer helper class in
order to compute a reasonable value for the initial center ofrotation and the translation. The
initializer is set to use the center of mass of each image as the initial correspondence correction.

typedef itk::CenteredTransformInitializer<
TransformType,
FixedImageType,
MovingImageType > TransformInitializerType;

TransformInitializerType::Pointer initializer = TransformInitializerType::New();
initializer->SetTransform(transform);
initializer->SetFixedImage(fixedImageReader->GetOutput());
initializer->SetMovingImage(movingImageReader->GetOutput());
initializer->MomentsOn();
initializer->InitializeTransform();

Now we pass the parameters of the current transform as the initial parameters to be used when
the registration process starts.

registration->SetInitialTransformParameters(
transform->GetParameters());

Keeping in mind that the scale of units in scaling, rotation and translation are quite different,
we take advantage of the scaling functionality provided by the optimizers. We know that the
first N×N elements of the parameters array correspond to the rotationmatrix factor, the next
N correspond to the rotation center, and the lastN are the components of the translation to be
applied after multiplication with the matrix is performed.

typedef OptimizerType::ScalesType OptimizerScalesType;
OptimizerScalesType optimizerScales(transform->GetNumberOfParameters());

optimizerScales[0] = 1.0;
optimizerScales[1] = 1.0;
optimizerScales[2] = 1.0;
optimizerScales[3] = 1.0;
optimizerScales[4] = translationScale;
optimizerScales[5] = translationScale;

optimizer->SetScales(optimizerScales);

We also set the usual parameters of the optimization method.In this case we are using an
itk::RegularStepGradientDescentOptimizer. Below, we define the optimization param-
eters like initial step length, minimal step length and number of iterations. These last two act as
stopping criteria for the optimization.

http://www.itk.org/Doxygen/html/classitk_1_1CenteredTransformInitializer.html
http://www.itk.org/Doxygen/html/classitk_1_1RegularStepGradientDescentOptimizer.html

376 Chapter 8. Registration

optimizer->SetMaximumStepLength(steplength);
optimizer->SetMinimumStepLength(0.0001);
optimizer->SetNumberOfIterations(maxNumberOfIterations);

We also set the optimizer to do minimization by calling theMinimizeOn() method.

optimizer->MinimizeOn();

Finally we trigger the execution of the registration methodby calling theUpdate() method.
The call is placed in atry/catch block in case any exceptions are thrown.

try
{
registration->StartRegistration();
}

catch(itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return -1;
}

Once the optimization converges, we recover the parametersfrom the registration method. This
is done with theGetLastTransformParameters() method. We can also recover the final
value of the metric with theGetValue() method and the final number of iterations with the
GetCurrentIteration() method.

OptimizerType::ParametersType finalParameters =
registration->GetLastTransformParameters();

const double finalRotationCenterX = transform->GetCenter()[0];
const double finalRotationCenterY = transform->GetCenter()[1];
const double finalTranslationX = finalParameters[4];
const double finalTranslationY = finalParameters[5];

const unsigned int numberOfIterations = optimizer->GetCurrentIteration();
const double bestValue = optimizer->GetValue();

Let’s execute this example over two of the images provided inExamples/Data:

• BrainProtonDensitySliceBorder20.png

• BrainProtonDensitySliceR10X13Y17.png

8.7. Multi-Resolution Registration 377

The second image is the result of intentionally rotating thefirst image by 10 degrees and then
translating by(−13,−17). Both images have unit-spacing and are shown in Figure8.33. We
execute the code using the following parameters: step length=1.0, translation scale= 0.0001 and
maximum number of iterations = 300. With these images and parameters the registration takes
98 iterations and produces

96 58.09 [0.986481, -0.169104, 0.166411, 0.986174, 12.461, 16.0754]

These results are interpreted as

• Iterations = 98

• Final Metric = 58.09

• Center =(111.204,131.6) millimeters

• Translation =(12.461,16.0754) millimeters

• Affine scales =(1.00185, .999137)

The second component of the matrix values is usually associated with sinθ. We obtain the
rotation through SVD of the affine matrix. The value is 9.6526 degrees, which is approximately
the intentional misalignment of 10.0 degrees.

Figure8.34shows the output of the registration. The right most image ofthis figure shows the
squared magnitude difference between the fixed image and theresampled moving image.

Figure8.35shows the plots of the main output parameters of the registration process. The metric
values at every iteration are shown on the top plot. The anglevalues are shown on the bottom
left plot, while the translation components of the registration are presented on the bottom right
plot. Note that the final total offset of the transform is to becomputed as a combination of the
shift due rotation plus the explicit translation set on the transform.

8.7 Multi-Resolution Registration

Performing image registration using a multi-resolution approach is widely used to improve
speed, accuracy and robustness. The basic idea is that registration is first performed at a coarse
scale where the images have fewer pixels. The spatial mapping determined at the coarse level is
then used to initialize registration at the next finer scale.This process is repeated until it reaches
the finest possible scale. This coarse-to-fine strategy greatly improve the registration success
rate and also increases robustness by eliminating local optima at coarser scales.

The Insight Toolkit offers a multi-resolution registration framework that is directly compatible
with all the registration framework components. The multi-resolution registration framework

378 Chapter 8. Registration

Figure 8.33:Fixed and moving images provided as input to the registration method using the AffineTrans-

form.

Figure 8.34:The resampled moving image (left), and the difference between the fixed and moving images

before (center) and after (right) registration with the AffineTransform transform.

8.7. Multi-Resolution Registration 379

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 20 40 60 80 100 120 140

S
q
u
ar

e
D

if
fe

re
n
ce

s
M

et
ri

c

Iteration No.

-4

-2

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100 120 140

A
n
g
le

 (
d
eg

re
es

)

Iteration No.

 15.7

 15.8

 15.9

 16

 16.1

 16.2

 16.3

 16.4

 12.4 12.6 12.8 13 13.2 13.4 13.6

Y
 T

ra
n
sl

at
io

n
s

(m
m

)

X Translations (mm)

Figure 8.35:Metric values, rotation angle and translations during the registration using the AffineTrans-

form transform.

380 Chapter 8. Registration

Optimizer

Interpolator

Metric
Fixed Image

Pyramid

Moving Image

Pyramid
Transform

Figure 8.36:Components of the multi-resolution registration framework.

has two additional components: a pair ofimage pyramidsthat are used to down-sample the
fixed and moving images as illustrated in Figure8.36. The pyramids smooth and subsample the
images according to user-defined scheduling of shrink factors.

We now present the main capabilities of the multi-resolution framework by way of an example.

8.7.1 Fundamentals

The source code for this section can be found in the file
Examples/Registration/MultiResImageRegistration1.cxx.

This example illustrates the use of theitk::MultiResolutionImageRegistrationMethod
to solve a simple multi-modality registration problem. In addition to the two input images,
a transform, a metric, an interpolator and an optimizer, themulti-resolution framework also
requires two image pyramids for creating the sequence of downsampled images. To begin the
example, we include the headers of the registration components we will use.

#include "itkMultiResolutionImageRegistrationMethod.h"
#include "itkTranslationTransform.h"
#include "itkMattesMutualInformationImageToImageMetric.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkRegularStepGradientDescentOptimizer.h"
#include "itkMultiResolutionPyramidImageFilter.h"
#include "itkImage.h"

The MultiResolutionImageRegistrationMethod solves a registration problem in a coarse to fine
manner as illustrated in Figure8.37. The registration is first performed at the coarsest level
using the images at the first level of the fixed and moving imagepyramids. The transform
parameters determined by the registration are then used to initialize the registration at the next
finer level using images from the second level of the pyramids. This process is repeated as we
work up to the finest level of image resolution.

In a typical registration scenario, a user will tweak component settings or even swap out com-
ponents between multi-resolution levels. For example, when optimizing at a coarse resolution,

http://www.itk.org/Doxygen/html/classitk_1_1MultiResolutionImageRegistrationMethod.html

8.7. Multi-Resolution Registration 381

Registration Level 0

Registration Level 2

Registration Level 1

Registration Level 3

Registration Level 4

Transform

Fixed Image
PyramidMoving Image

Pyramid

Transform

Transform

Transform

Transform

Figure 8.37:Conceptual representation of the multi-resolution registration process.

it may be possible to take more aggressive step sizes and havea more relaxed convergence cri-
terion. Another possible scheme is to use a simple translation transform for the initial coarse
registration and upgrade to an affine transform at the finer levels.

Tweaking the components between resolution levels can be done using ITK’s implementation
of the Command/Observerdesign pattern. Before beginning registration at each resolution
level, MultiResolutionImageRegistrationMethod invokesan IterationEvent. The registration
components can be changed by implementing aitk::Command which responds to the event.
A brief description the interaction between events and commands was previously presented in
Section8.4.

We will illustrate this mechanism by changing the parameters of the optimizer between each
resolution level by way of a simple interface command. First, we include the header file of the
Command class.

#include "itkCommand.h"

Our new interface command class is calledRegistrationInterfaceCommand. It derives from
Command and is templated over the multi-resolution registration type.

template <typename TRegistration>
class RegistrationInterfaceCommand : public itk::Command
{

We then defineSelf, Superclass, Pointer, New() and a constructor in a similar fashion to
theCommandIterationUpdate class in Section8.4.

http://www.itk.org/Doxygen/html/classitk_1_1Command.html

382 Chapter 8. Registration

public:
typedef RegistrationInterfaceCommand Self;
typedef itk::Command Superclass;
typedef itk::SmartPointer<Self> Pointer;
itkNewMacro(Self);

protected:
RegistrationInterfaceCommand() {};

For convenience, we declare types useful for converting pointers in theExecute() method.

public:
typedef TRegistration RegistrationType;
typedef RegistrationType * RegistrationPointer;
typedef itk::RegularStepGradientDescentOptimizer OptimizerType;
typedef OptimizerType * OptimizerPointer;

Two arguments are passed to theExecute() method: the first is the pointer to the object which
invoked the event and the second is the event that was invoked.

void Execute(itk::Object * object, const itk::EventObject & event)
{

First we verify if that the event invoked is of the right type.If not, we return without any further
action.

if(!(itk::IterationEvent().CheckEvent(&event)))
{
return;
}

We then convert the input object pointer to a RegistrationPointer. Note that no error checking
is done here to verify if thedynamic cast was successful since we know the actual object is a
multi-resolution registration method.

RegistrationPointer registration =
dynamic_cast<RegistrationPointer>(object);

If this is the first resolution level we set the maximum step length (representing the first step
size) and the minimum step length (representing the convergence criterion) to large values. At
each subsequent resolution level, we will reduce the minimum step length by a factor of 10
in order to allow the optimizer to focus on progressively smaller regions. The maximum step
length is set up to the current step length. In this way, when the optimizer is reinitialized at the
beginning of the registration process for the next level, the step length will simply start with the
last value used for the previous level. This will guarantee the continuity of the path taken by the
optimizer through the parameter space.

8.7. Multi-Resolution Registration 383

OptimizerPointer optimizer = dynamic_cast< OptimizerPointer >(
registration->GetOptimizer());

if (registration->GetCurrentLevel() == 0)
{
optimizer->SetMaximumStepLength(16.00);
optimizer->SetMinimumStepLength(2.5);
}

else
{
optimizer->SetMaximumStepLength(

optimizer->GetCurrentStepLength());
optimizer->SetMinimumStepLength(

optimizer->GetMinimumStepLength() / 10.0);
}

}

Another version of theExecute() method accepting aconst input object is also required since
this method is defined as pure virtual in the base class. This version simply returns without
taking any action.

void Execute(const itk::Object * , const itk::EventObject &)
{ return; }

};

The fixed and moving image types are defined as in previous examples. Due to the recursive
nature of the process by which the downsampled images are computed by the image pyramids,
the output images are required to have real pixel types. We declare this internal image type to
beInternalPixelType:

typedef float InternalPixelType;
typedef itk::Image< InternalPixelType, Dimension > InternalImageType;

The types for the registration components are then derived using the internal image type.

typedef itk::TranslationTransform< double, Dimension > TransformType;
typedef itk::RegularStepGradientDescentOptimizer OptimizerType;
typedef itk::LinearInterpolateImageFunction<

InternalImageType,
double > InterpolatorType;

typedef itk::MattesMutualInformationImageToImageMetric<
InternalImageType,
InternalImageType > MetricType;

typedef itk::MultiResolutionImageRegistrationMethod<
InternalImageType,
InternalImageType > RegistrationType;

384 Chapter 8. Registration

In the multi-resolution framework, aitk::MultiResolutionPyramidImageFilter is used
to create a pyramid of downsampled images. The size of each downsampled image is specified
by the user in the form of a schedule of shrink factors. A description of the filter and the format
of the schedules are found in Section8.12. For this example, we will simply use the default
schedules.

typedef itk::MultiResolutionPyramidImageFilter<
InternalImageType,
InternalImageType > FixedImagePyramidType;

typedef itk::MultiResolutionPyramidImageFilter<
InternalImageType,
InternalImageType > MovingImagePyramidType;

The fixed and moving images are read from a file. Before connecting these images to the
registration we need to cast them to the internal image type using itk::CastImageFilters.

typedef itk::CastImageFilter<
FixedImageType, InternalImageType > FixedCastFilterType;

typedef itk::CastImageFilter<
MovingImageType, InternalImageType > MovingCastFilterType;

FixedCastFilterType::Pointer fixedCaster = FixedCastFilterType::New();
MovingCastFilterType::Pointer movingCaster = MovingCastFilterType::New();

The output of the readers is connected as input to the cast filters. The inputs to the registration
method are taken from the cast filters.

fixedCaster->SetInput(fixedImageReader->GetOutput());
movingCaster->SetInput(movingImageReader->GetOutput());

registration->SetFixedImage(fixedCaster->GetOutput());
registration->SetMovingImage(movingCaster->GetOutput());

Given that the Mattes Mutual Information metric uses a random iterator in order to collect the
samples from the images, it is usually convenient to initialize the seed of the random number
generator.

metric->ReinitializeSeed(76926294);

optimizer->SetNumberOfIterations(200);

// Create the Command observer and register it with the optimizer.
//
CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New();

http://www.itk.org/Doxygen/html/classitk_1_1MultiResolutionPyramidImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1CastImageFilters.html

8.7. Multi-Resolution Registration 385

optimizer->AddObserver(itk::IterationEvent(), observer);

Once all the registration components are in place we can create
an instance of our interface command and connect it to the
registration object using the \code{AddObserver()} method.

\small
\begin{verbatim}
typedef RegistrationInterfaceCommand<RegistrationType> CommandType;
CommandType::Pointer command = CommandType::New();
registration->AddObserver(itk::IterationEvent(), command);

We set the number of multi-resolution levels to three and trigger the registration process by
callingStartRegistration().

registration->SetNumberOfLevels(3);

try
{
registration->StartRegistration();
}

catch(itk::ExceptionObject & err)
{
std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std::endl;
return -1;
}

Let’s execute this example using the same multi-modality images as before. The registration
converged at the first level after 6 iterations with translation parameters of (13.8663, 18.9939).
The second level converged after 5 iterations with result of(13.1035, 17.19). Registration
converged after 1 iteration at the last level with the final result being:

Translation X = 13.1035
Translation Y = 17.19

These values are a close match to the true misalignment of(13,17) introduced in the moving
image.

The result of resampling the moving image is presented in theleft image of Figure8.38. The
center and right images of the figure depict a checkerboard composite of the fixed and moving
images before and after registration.

386 Chapter 8. Registration

Figure 8.38:Mapped moving image (left) and composition of fixed and moving images before (center)

and after (right) registration.

Figure8.39(left) shows the sequence of translations followed by the optimizer as it searched
the parameter space. The right side of the same figure shows the sequence of metric values
computed as the optimizer searched the parameter space. From the trace, we can see that with
the more aggressive optimization parameters we get quite close to the optimal value within 4
iterations with the remaining iterations just doing fine adjustments. It is interesting to compare
these results with the ones of the single resolution examplein Section8.5.2, where 24 iterations
were required as more conservative optimization parameters had to be used.

8.7.2 Parameter Tuning

The source code for this section can be found in the file
Examples/Registration/MultiResImageRegistration2.cxx.

This example illustrates the use of more complex componentsof the registration framework.
In particular, it introduces the use of theitk::AffineTransform and the importance of fine-
tuning the scale parameters of the optimizer.

The AffineTransform is a linear transformation that maps lines into lines. It can be used to rep-
resent translations, rotations, anisotropic scaling, shearing or any combination of them. Details
about the affine transform can be seen in Section8.8.16.

In order to use the AffineTransform class, the following header must be included.

#include "itkAffineTransform.h"

The configuration of the registration method in this exampleclosely follows the procedure in the
previous section. The main changes involve the construction and initialization of the transform.
The instantiation of the transform type requires only the dimension of the space and the type
used for representing space coordinates.

http://www.itk.org/Doxygen/html/classitk_1_1AffineTransform.html

8.7. Multi-Resolution Registration 387

 10

 12

 14

 16

 18

 20

 22

 24

 26

 6 8 10 12 14 16 18 20

Y
 T

ra
n
sl

at
io

n
s

(m
m

)

X Translations (mm)

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

 0 1 2 3 4 5

M
et

ri
c

Iteration No.

Figure 8.39:Sequence of translations and metric values at each iteration of the optimizer.

388 Chapter 8. Registration

typedef itk::AffineTransform< double, Dimension > TransformType;

The transform is constructed using the standardNew() method and assigning it to a Smart-
Pointer.

TransformType::Pointer transform = TransformType::New();
registration->SetTransform(transform);

One of the easiest ways of preparing a consistent set of parameters for the transform is to
use the transform itself. We can simplify the task of initialization by taking advantage of the
additional convenience methods that most transforms have.In this case, we simply force the
transform to be initialized as an identity transform. The method SetIdentity() is used to
that end. Once the transform is initialized, we can invoke its GetParameters() method to
extract the array of parameters. Finally the array is passedto the registration method using its
SetInitialTransformParameters() method.

transform->SetIdentity();
registration->SetInitialTransformParameters(transform->GetParameters());

The set of parameters in the AffineTransform have different dynamic ranges. Typically the
parameters associated with the matrix have values around[−1 : 1], although they are not re-
stricted to this interval. Parameters associated with translations, on the other hand, tend to have
much higher values, typically in the order of 10.0 to 100.0. This difference in dynamic range
negatively affects the performance of gradient descent optimizers. ITK provides a mechanism
to compensate for such differences in values among the parameters when they are passed to
the optimizer. The mechanism consists of providing an arrayof scale factors to the optimizer.
These factors re-normalize the gradient components beforethey are used to compute the step
of the optimizer at the current iteration. In our particularcase, a common choice for the scale
parameters is to set to 1.0 all those associated with the matrix coefficients, that is,the firstN×N
factors. Then, we set the remaining scale factors to a small value. The following code sets up
the scale coefficients.

OptimizerScalesType optimizerScales(transform->GetNumberOfParameters());

optimizerScales[0] = 1.0; // scale for M11
optimizerScales[1] = 1.0; // scale for M12
optimizerScales[2] = 1.0; // scale for M21
optimizerScales[3] = 1.0; // scale for M22

optimizerScales[4] = 1.0 / 1000000.0; // scale for translation on X
optimizerScales[5] = 1.0 / 1000000.0; // scale for translation on Y

Here the affine transform is represented by the matrixM and the vectorT. The transformation

8.7. Multi-Resolution Registration 389

of a pointP into P′ is expressed as

[

P′
x

P′
y

]

=

[

M11 M12

M21 M22

]

·
[

Px

Py

]

+

[

Tx

Ty

]

(8.3)

The array of scales is then passed to the optimizer using theSetScales() method.

optimizer->SetScales(optimizerScales);

Given that the Mattes Mutual Information metric uses a random iterator in order to collect the
samples from the images, it is usually convenient to initialize the seed of the random number
generator.

metric->ReinitializeSeed(76926294);

The step length has to be proportional to the expected values of the
parameters in the search space. Since the expected values of the matrix
coefficients are around 1.0, the initial step of the optimization
should be a small number compared to 1.0. As a guideline, it is
useful to think of the matrix coefficients as combinations of
$cos(\theta)$ and $sin(\theta)$. This leads to use values close to the
expected rotation measured in radians. For example, a rotation of 1.0
degree is about 0.017 radians. As in the previous example, the
maximum and minimum step length of the optimizer are set by the
\code{RegistrationInterfaceCommand} when it is called at the beginning
of registration at each multi-resolution level.

Let’s execute this example using the same multi-modality images as
before. The registration converges after 5 iterations in the first
level, 7 in the second level and 4 in the third level. The final
results when printed as an array of parameters are

\begin{verbatim}
[1.00164, 0.00147688, 0.00168372, 1.0027, 12.6296, 16.4768]

By reordering them as coefficient of matrixM and vectorT they can now be seen as

M =

[

1.00164 0.0014
0.00168 1.0027

]

andT =

[

12.6296
16.4768

]

(8.4)

In this form, it is easier to interpret the effect of the transform. The matrixM is responsible for scaling,
rotation and shearing whileT is responsible for translations. It can be seen that the translation values in
this case closely match the true misalignment introduced inthe moving image.

390 Chapter 8. Registration

Figure 8.40:Mapped moving image (left) and composition of fixed and moving images before (center)

and after (right) multi-resolution registration with the AffineTransform class.

It is important to note that once the images are registered ata sub-pixel level, any further improvement of
the registration relies heavily on the quality of the interpolator. It may then be reasonable to use a coarse
and fast interpolator in the lower resolution levels and switch to a high-quality but slow interpolator in the
final resolution level.

The result of resampling the moving image is shown in the leftimage of Figure8.40. The center and right
images of the figure present a checkerboard composite of the fixed and moving images before and after
registration.

Figure8.41 (left) presents the sequence of translations followed by the optimizer as it searched the pa-
rameter space. The right side of the same figure shows the sequence of metric values computed as the
optimizer explored the parameter space.

With the completion of these examples, we will now review themain features of the components forming
the registration framework.

8.7. Multi-Resolution Registration 391

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 11 12 13 14 15 16 17 18

Y
 T

ra
n
sl

at
io

n
s

(m
m

)

X Translations (mm)

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

 0 2 4 6 8 10 12

M
et

ri
c

Iteration No.

Figure 8.41: Sequence of translations and metric values at each iteration of the optimizer for multi-

resolution with the AffineTransform class.

392 Chapter 8. Registration

Vector

Covariant

Vectors

Point

Figure 8.42:Geometric representation objects in ITK.

8.8 Transforms

In the Insight Toolkit, itk::Transform objects encapsulate the mapping of points and vectors from an
input space to an output space. If a transform is invertible,back transform methods are also provided.
Currently, ITK provides a variety of transforms from simpletranslation, rotation and scaling to general
affine and kernel transforms. Note that, while in this section we discuss transforms in the context of
registration, transforms are general and can be used for other applications. Some of the most commonly
used transforms will be discussed in detail later. Let’s begin by introducing the objects used in ITK for
representing basic spatial concepts.

8.8.1 Geometrical Representation

ITK implements a consistent geometric representation of the space. The characteristics of classes involved
in this representation are summarized in Table8.1. In this regard, ITK takes full advantage of the capa-
bilities of Object Oriented programming and resists the temptation of using simple arrays offloat or
double in order to represent geometrical objects. The use of basic arrays would have blurred the impor-
tant distinction between the different geometrical concepts and would have allowed for the innumerable
conceptual and programming errors that result from using a vector where a point is needed or vice versa.

Additional uses of theitk::Point, itk::Vector and itk::CovariantVector classes have been
discussed in Chapter4. Each one of these classes behaves differently under spatial transformations. It
is therefore quite important to keep their distinction clear. Figure8.42illustrates the differences between
these concepts.

Transform classes provide different methods for mapping each one of the basic space-representation
objects. Points, vectors and covariant vectors are transformed using the methodsTransformPoint(),
TransformVector() andTransformCovariantVector() respectively.

One of the classes that deserve further comments is theitk::Vector. This ITK class tend to be mis-
interpreted as a container of elements instead of a geometrical object. This is a common misconception
originated by the fact that Computer Scientist and SoftwareEngineers misuse the term “Vector”. The
actual word “Vector” is relatively young. It was coined by William Hamilton in his book “Elements of
Quaternions” published in 1886 (post-mortem)[34]. In the same text Hamilton coined the terms: “Scalar”,
“Versor” and “Tensor”. Although the modern term of “Tensor” is used in Calculus in a different sense of
what Hamilton defined in his book at the time [23].

http://www.itk.org/Doxygen/html/classitk_1_1Transform.html
http://www.itk.org/Doxygen/html/classitk_1_1Point.html
http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html
http://www.itk.org/Doxygen/html/classitk_1_1Vector.html

8.8. Transforms 393

Class Geometrical concept

itk::Point Position in space. InN-dimensional space it is repre-
sented by an array ofN numbers associated with space
coordinates.

itk::Vector Relative position between two points. InN-dimensional
space it is represented by an array ofN numbers, each one
associated with the distance along a coordinate axis. Vec-
tors do not have a position in space. A vector is defined
as the subtraction of two points.

itk::CovariantVector Orthogonal direction to a(N−1)-dimensional manifold
in space. For example, in 3D it corresponds to the vector
orthogonal to a surface. This is the appropriate class for
representing Gradients of functions. Covariant vectors do
not have a position in space. Covariant vector should not
be added to Points, nor to Vectors.

Table 8.1:Summary of objects representing geometrical concepts in ITK.

A “ Vector” is, by definition, a mathematical object that embodies the concept of “direction in space”.
Strictly speaking, a Vector describes the relationship between two Points in space, and captures both their
relative distance and orientation.

Computer scientists and software engineers misused the term vector in order to represent the concept of
an “Indexed Set” [6]. Mechanical Engineers and Civil Engineers, who deal with the real world of physical
objects will not commit this mistake and will keep the word “Vector” attached to a geometrical concept.
Biologists, on the other hand, will associate “Vector” to a “vehicle” that allows them to direct something in
a particular direction, for example, a virus that allows them to insert pieces of code into a DNA strand [50].

Textbooks in programming do not help to clarify those concepts and loosely use the term “Vector” for the
purpose of representing an “enumerated set of common elements”. STL follows this trend and continue
using the word “Vector” for what it was not supposed to be used [6, 1]. Linear algebra separates the
“Vector” from its notion of geometric reality and makes it an abstract set of numbers with arithmetic
operations associated.

For those of you who are looking for the “Vector” in the Software Engineering sense, please look at
the itk::Array and itk::FixedArray classes that actually provide such functionalities. Additionally,
the itk::VectorContainer and itk::MapContainer classes may be of interest too. These container
classes are intended for algorithms that require to insert and delete elements, and that may have large
numbers of elements.

The Insight Toolkit deals with real objects that inhabit thephysical space. This is particularly true in the
context of the image registration framework. We chose to give the appropriate name to the mathematical
objects that describe geometrical relationships in N-Dimensional space. It is for this reason that we ex-
plicitly make clear the distinction between Point, Vector and CovariantVector, despite the fact that most
people would be happy with a simple use ofdouble[3] for the three concepts and then will proceed to
perform all sort of conceptually flawed operations such as

http://www.itk.org/Doxygen/html/classitk_1_1Point.html
http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html
http://www.itk.org/Doxygen/html/classitk_1_1Array.html
http://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html
http://www.itk.org/Doxygen/html/classitk_1_1VectorContainer.html
http://www.itk.org/Doxygen/html/classitk_1_1MapContainer.html

394 Chapter 8. Registration

• Adding two Points

• Dividing a Point by a Scalar

• Adding a Covariant Vector to a Point

• Adding a Covariant Vector to a Vector

In order to enforce the correct use of the Geometrical concepts in ITK we organized these classes in a
hierarchy that supports reuse of code and yet compartmentalize the behavior of the individual classes.
The use of the itk::FixedArray as base class of theitk::Point, the itk::Vector and the
itk::CovariantVector was a design decision based on calling things by their correct name.

An itk::FixedArray is an enumerated collection with a fixed number of elements. You can instantiate
a fixed array of letters, or a fixed array of images, or a fixed array of transforms, or a fixed array of
geometrical shapes. Therefore, the FixedArray only implements the functionality that is necessary to
access those enumerated elements. No assumptions can be made at this point on any other operations
required by the elements of the FixedArray, except the fact of having a default constructor.

The itk::Point is a type that represents the spatial coordinates of a spatial location. Based on geo-
metrical concepts we defined the valid operations of the Point class. In particular we made sure that no
operator+() was defined between Points, and that nooperator*(scalar) noroperator/(scalar
) were defined for Points.

In other words, you could do in ITK operations such as:

• Vector = Point - Point

• Point += Vector

• Point -= Vector

• Point = BarycentricCombination(Point, Point)

and you cannot (because youshould not) do operation such as

• Point = Point * Scalar

• Point = Point + Point

• Point = Point / Scalar

The itk::Vector is, by Hamilton’s definition, the subtraction between two points. Therefore a Vector
must satisfy the following basic operations:

• Vector = Point - Point

• Point = Point + Vector

• Point = Point - Vector

• Vector = Vector + Vector

• Vector = Vector - Vector

An itk::Vector object is intended to be instantiated over elements that support mathematical operation
such as addition, subtraction and multiplication by scalars.

http://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html
http://www.itk.org/Doxygen/html/classitk_1_1Point.html
http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html
http://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html
http://www.itk.org/Doxygen/html/classitk_1_1Point.html
http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1Vector.html

8.8. Transforms 395

8.8.2 Transform General Properties

Each transform class typically has several methods for setting its parameters. For example,
itk::Euler2DTransform provides methods for specifying the offset, angle, and the entire rotation ma-
trix. However, for use in the registration framework, the parameters are represented by a flat Array of
doubles to facilitate communication with generic optimizers. In the case of the Euler2DTransform, the
transform is also defined by three doubles: the first representing the angle, and the last two the offset. The
flat array of parameters is defined usingSetParameters(). A description of the parameters and their
ordering is documented in the sections that follow.

In the context of registration, the transform parameters define the search space for optimizers. That is, the
goal of the optimization is to find the set of parameters defining a transform that results in the best possible
value of an image metric. The more parameters a transform has, the longer its computational time will be
when used in a registration method since the dimension of thesearch space will be equal to the number of
transform parameters.

Another requirement that the registration framework imposes on the transform classes is the computation
of their Jacobians. In general, metrics require the knowledge of the Jacobian in order to compute Metric
derivatives. The Jacobian is a matrix whose element are the partial derivatives of the output point with
respect to the array of parameters that defines the transform:11

J =















∂x1
∂p1

∂x1
∂p2

· · · ∂x1
∂pm

∂x2
∂p1

∂x2
∂p2

· · · ∂x2
∂pm

...
...

. . .
...

∂xn
∂p1

∂xn
∂p2

· · · ∂xn
∂pm















(8.5)

where{pi} are the transform parameters and{xi} are the coordinates of the output point. Within this
framework, the Jacobian is represented by anitk::Array2D of doubles and is obtained from the trans-
form by methodGetJacobian(). The Jacobian can be interpreted as a matrix that indicates for a point in
the input space how much its mapping on the output space will change as a response to a small variation
in one of the transform parameters. Note that the values of the Jacobian matrix depend on the point in the
input space. So actually the Jacobian can be noted asJ(X), whereX = {xi}. The use of transform Jaco-
bians enables the efficient computation of metric derivatives. When Jacobians are not available, metrics
derivatives have to be computed using finite difference at a price of 2M evaluations of the metric value,
whereM is the number of transform parameters.

The following sections describe the main characteristics of the transform classes available in ITK.

8.8.3 Identity Transform

The identity transformitk::IdentityTransform is mainly used for debugging purposes. It is provided
to methods that require a transform and in cases where we wantto have the certainty that the transform
will have no effect whatsoever in the outcome of the process.It is just a NULL operation. The main
characteristics of the identity transform are summarized in Table8.2

11Note that the termJacobianis also commonly used for the matrix representing the derivatives of output point
coordinates with respect to input point coordinates. Sometimes the term is loosely used to refer to the determinant of
such a matrix. [23]

http://www.itk.org/Doxygen/html/classitk_1_1Euler2DTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1Array2D.html
http://www.itk.org/Doxygen/html/classitk_1_1IdentityTransform.html

396 Chapter 8. Registration

Behavior Number of
Parameters

Parameter
Ordering

Restrictions

Maps every point to
itself, every vector to
itself and every co-
variant vector to it-
self.

0 NA Only defined when the in-
put and output space has the
same number of dimensions.

Table 8.2:Characteristics of the identity transform.

Behavior Number of
Parameters

Parameter
Ordering

Restrictions

Represents a simple
translation of points
in the input space and
has no effect on vec-
tors or covariant vec-
tors.

Same as the
input space
dimension.

The i-th parame-
ter represents the
translation in the
i-th dimension.

Only defined when the in-
put and output space has the
same number of dimensions.

Table 8.3:Characteristics of the TranslationTransform class.

8.8.4 Translation Transform

The itk::TranslationTransform is probably the simplest yet one of the most useful transformations.
It maps all Points by adding a Vector to them. Vector and covariant vectors remain unchanged under this
transformation since they are not associated with a particular position in space. Translation is the best
transform to use when starting a registration method. Before attempting to solve for rotations or scaling
it is important to overlap the anatomical objects in both images as much as possible. This is done by
resolving the translational misalignment between the images. Translations also have the advantage of
being fast to compute and having parameters that are easy to interpret. The main characteristics of the
translation transform are presented in Table8.3.

8.8.5 Scale Transform

The itk::ScaleTransform represents a simple scaling of the vector space. Different scaling factors can
be applied along each dimension. Points are transformed by multiplying each one of their coordinates
by the corresponding scale factor for the dimension. Vectors are transformed in the same way as points.
Covariant vectors, on the other hand, are transformed differently since anisotropic scaling does not pre-
serve angles. Covariant vectors are transformed bydividing their components by the scale factor of the
corresponding dimension. In this way, if a covariant vectorwas orthogonal to a vector, this orthogonality
will be preserved after the transformation. The following equations summarize the effect of the transform

http://www.itk.org/Doxygen/html/classitk_1_1TranslationTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1ScaleTransform.html

8.8. Transforms 397

Behavior Number of
Parameters

Parameter
Ordering

Restrictions

Points are trans-
formed by multi-
plying each one of
their coordinates by
the corresponding
scale factor for the
dimension. Vectors
are transformed as
points. Covariant
vectors are trans-
formed by dividing
their components by
the scale factor in
the corresponding
dimension.

Same as the
input space
dimension.

The i-th parame-
ter represents the
scaling in thei-th
dimension.

Only defined when the in-
put and output space has the
same number of dimensions.

Table 8.4:Characteristics of the ScaleTransform class.

on the basic geometric objects.

Point P′ = T(P) : P′
i = Pi ·Si

Vector V′ = T(V) : V′
i = V i ·Si

CovariantVector C′ = T(C) : C′
i = Ci/Si

(8.6)

wherePi , V i andCi are the point, vector and covariant vectori-th components whileSi is the scaling
factor along dimensioni − th. The following equation illustrates the effect of the scaling transform on a
3D point.





x′

y′

z′



 =





S1 0 0
0 S2 0
0 0 S3



 ·





x
y
z



 (8.7)

Scaling appears to be a simple transformation but there are actually a number of issues to keep in mind
when using different scale factors along every dimension. There are subtle effects—for example, when
computing image derivatives. Since derivatives are represented by covariant vectors, their values are not
intuitively modified by scaling transforms.

One of the difficulties with managing scaling transforms in aregistration process is that typical optimizers
manage the parameter space as a vector space where addition is the basic operation. Scaling is better
treated in the frame of a logarithmic space where additions result in regular multiplicative increments of
the scale. Gradient descent optimizers have trouble updating step length, since the effect of an additive
increment on a scale factor diminishes as the factor grows. In other words, a scale factor variation of
(1.0+ ε) is quite different from a scale variation of(5.0+ ε).

398 Chapter 8. Registration

Behavior Number of
Parameters

Parameter
Ordering

Restrictions

Points are trans-
formed by multi-
plying each one of
their coordinates by
the corresponding
scale factor for the
dimension. Vectors
are transformed as
points. Covariant
vectors are trans-
formed by dividing
their components by
the scale factor in
the corresponding
dimension.

Same as the
input space
dimension.

The i-th parame-
ter represents the
scaling in thei-th
dimension.

Only defined when the in-
put and output space has
the same number of dimen-
sions. The difference be-
tween this transform and
the ScaleTransform is that
here the scaling factors are
passed as logarithms, in this
way their behavior is closer
to the one of a Vector space.

Table 8.5:Characteristics of the ScaleLogarithmicTransform class.

Registrations involving scale transforms require carefulmonitoring of the optimizer parameters in order
to keep it progressing at a stable pace. Note that some of the transforms discussed in following sections,
for example, the AffineTransform, have hidden scaling parameters and are therefore subject to the same
vulnerabilities of the ScaleTransform.

In cases involving misalignments with simultaneous translation, rotation and scaling components it may
be desirable to solve for these components independently. The main characteristics of the scale transform
are presented in Table8.4.

8.8.6 Scale Logarithmic Transform

The itk::ScaleLogarithmicTransform is a simple variation of theitk::ScaleTransform. It is
intended to improve the behavior of the scaling parameters when they are modified by optimizers. The
difference between this transform and the ScaleTransform is that the parameter factors are passed here as
logarithms. In this way, multiplicative variations in the scale become additive variations in the logarithm
of the scaling factors.

8.8.7 Euler2DTransform

itk::Euler2DTransform implements a rigid transformation in 2D. It is composed of a plane rotation
and a two-dimensional translation. The rotation is appliedfirst, followed by the translation. The following

http://www.itk.org/Doxygen/html/classitk_1_1ScaleLogarithmicTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1ScaleTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1Euler2DTransform.html

8.8. Transforms 399

Behavior Number of
Parameters

Parameter
Ordering

Restrictions

Represents a 2D rota-
tion and a 2D trans-
lation. Note that
the translation com-
ponent has no effect
on the transformation
of vectors and covari-
ant vectors.

3 The first param-
eter is the angle
in radians and the
last two parame-
ters are the trans-
lation in each di-
mension.

Only defined for two-
dimensional input and
output spaces.

Table 8.6:Characteristics of the Euler2DTransform class.

equation illustrates the effect of this transform on a 2D point,

[

x′

y′

]

=

[

cosθ −sinθ
sinθ cosθ

]

·
[

x
y

]

+

[

Tx

Ty

]

(8.8)

whereθ is the rotation angle and(Tx,Ty) are the components of the translation.

A challenging aspect of this transformation is the fact thattranslations and rotations do not form a vector
space and cannot be managed as linear independent parameters. Typical optimizers make the loose as-
sumption that parameters exist in a vector space and rely on the step length to be small enough for this
assumption to hold approximately.

In addition to the non-linearity of the parameter space, themost common difficulty found when using this
transform is the difference in units used for rotations and translations. Rotations are measured in radians;
hence, their values are in the range[−π,π]. Translations are measured in millimeters and their actualvalues
vary depending on the image modality being considered. In practice, translations have values on the order
of 10 to 100. This scale difference between the rotation and translation parameters is undesirable for
gradient descent optimizers because they deviate from the trajectories of descent and make optimization
slower and more unstable. In order to compensate for these differences, ITK optimizers accept an array of
scale values that are used to normalize the parameter space.

Registrations involving angles and translations should take advantage of the scale normalization func-
tionality in order to obtain the best performance out of the optimizers. The main characteristics of the
Euler2DTransform class are presented in Table8.6.

8.8.8 CenteredRigid2DTransform

itk::CenteredRigid2DTransform implements a rigid transformation in 2D. The main difference be-
tween this transform and theitk::Euler2DTransform is that here we can specify an arbitrary center
of rotation, while the Euler2DTransform always uses the origin of the coordinate system as the center of
rotation. This distinction is quite important in image registration since ITK images usually have their ori-
gin in the corner of the image rather than the middle. Rotational mis-registrations usually exist, however,
as rotations around the center of the image, or at least as rotations around a point in the middle of the

http://www.itk.org/Doxygen/html/classitk_1_1CenteredRigid2DTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1Euler2DTransform.html

400 Chapter 8. Registration

Behavior Number of
Parameters

Parameter
Ordering

Restrictions

Represents a 2D ro-
tation around a user-
provided center fol-
lowed by a 2D trans-
lation.

5 The first parame-
ter is the angle in
radians. Second
and third are the
center of rota-
tion coordinates
and the last two
parameters are
the translation in
each dimension.

Only defined for two-
dimensional input and
output spaces.

Table 8.7:Characteristics of the CenteredRigid2DTransform class.

anatomical structure captured by the image. Using gradientdescent optimizers, it is almost impossible to
solve non-origin rotations using a transform with origin rotations since the deep basin of the real solution
is usually located across a high ridge in the topography of the cost function.

In practice, the user must supply the center of rotation in the input space, the angle of rotation and a
translation to be applied after the rotation. With these parameters, the transform initializes a rotation
matrix and a translation vector that together perform the equivalent of translating the center of rotation
to the origin of coordinates, rotating by the specified angle, translating back to the center of rotation and
finally translating by the user-specified vector.

As with the Euler2DTransform, this transform suffers from the difference in units used for rotations and
translations. Rotations are measured in radians; hence, their values are in the range[−π,π]. The center
of rotation and the translations are measured in millimeters, and their actual values vary depending on the
image modality being considered. Registrations involvingangles and translations should take advantage
of the scale normalization functionality of the optimizersin order to get the best performance out of them.

The following equation illustrates the effect of the transform on an input point(x,y) that maps to the output
point (x′,y′),

[

x′

y′

]

=

[

cosθ −sinθ
sinθ cosθ

]

·
[

x−Cx

y−Cy

]

+

[

Tx +Cx

Ty +Cy

]

(8.9)

whereθ is the rotation angle,(Cx,Cy) are the coordinates of the rotation center and(Tx,Ty) are the com-
ponents of the translation. Note that the center coordinates are subtracted before the rotation and added
back after the rotation. The main features of the CenteredRigid2DTransform are presented in Table8.7.

8.8.9 Similarity2DTransform

The itk::Similarity2DTransform can be seen as a rigid transform combined with an isotropic
scaling factor. This transform preserves angles between lines. In its 2D implementation, the four
parameters of this transformation combine the characteristics of the itk::ScaleTransform and

http://www.itk.org/Doxygen/html/classitk_1_1Similarity2DTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1ScaleTransform.html

8.8. Transforms 401

Behavior Number of
Parameters

Parameter
Ordering

Restrictions

Represents a 2D ro-
tation, homogeneous
scaling and a 2D
translation. Note that
the translation com-
ponent has no effect
on the transformation
of vectors and covari-
ant vectors.

4 The first pa-
rameter is the
scaling factor for
all dimensions,
the second is the
angle in radians,
and the last
two parameters
are the transla-
tions in (x,y)
respectively.

Only defined for two-
dimensional input and
output spaces.

Table 8.8:Characteristics of the Similarity2DTransform class.

itk::Euler2DTransform. In particular, those relating to the non-linearity of the parameter space and
the non-uniformity of the measurement units. Gradient descent optimizers should be used with caution on
such parameter spaces since the notions of gradient direction and step length are ill-defined.

The following equation illustrates the effect of the transform on an input point(x,y) that maps to the output
point (x′,y′),

[

x′

y′

]

=

[

λ 0
0 λ

]

·
[

cosθ −sinθ
sinθ cosθ

]

·
[

x−Cx

y−Cy

]

+

[

Tx +Cx

Ty +Cy

]

(8.10)

whereλ is the scale factor,θ is the rotation angle,(Cx,Cy) are the coordinates of the rotation center and
(Tx,Ty) are the components of the translation. Note that the center coordinates are subtracted before the
rotation and scaling, and they are added back afterwards. The main features of the Similarity2DTransform
are presented in Table8.8.

A possible approach for controlling optimization in the parameter space of this transform is to dynamically
modify the array of scales passed to the optimizer. The effect produced by the parameter scaling can be
used to steer the walk in the parameter space (by giving preference to some of the parameters over others).
For example, perform some iterations updating only the rotation angle, then balance the array of scale
factors in the optimizer and perform another set of iterations updating only the translations.

8.8.10 QuaternionRigidTransform

The itk::QuaternionRigidTransform class implements a rigid transformation in 3D space. The ro-
tational part of the transform is represented using a quaternion while the translation is represented with
a vector. Quaternions components do not form a vector space and hence raise the same concerns as the
itk::Similarity2DTransform when used with gradient descent optimizers.

The itk::QuaternionRigidTransformGradientDescentOptimizer was introduced into the toolkit to
address these concerns. This specialized optimizer implements a variation of a gradient descent algorithm

http://www.itk.org/Doxygen/html/classitk_1_1Euler2DTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1QuaternionRigidTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1Similarity2DTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1QuaternionRigidTransformGradientDescentOptimizer.html

402 Chapter 8. Registration

Behavior Number of
Parameters

Parameter
Ordering

Restrictions

Represents a 3D rotation and
a 3D translation. The rota-
tion is specified as a quater-
nion, defined by a set of four
numbersq. The relationship
between quaternion and ro-
tation about vectorn by an-
gleθ is as follows:

q = (nsin(θ/2),cos(θ/2))

Note that if the quaternion
is not of unit length, scaling
will also result.

7 The first four pa-
rameters defines
the quaternion
and the last three
parameters the
translation in
each dimension.

Only defined for
three-dimensional
input and output
spaces.

Table 8.9:Characteristics of the QuaternionRigidTransform class.

adapted for a quaternion space. This class insures that after advancing in any direction on the parameter
space, the resulting set of transform parameters is mapped back into the permissible set of parameters. In
practice, this comes down to normalizing the newly-computed quaternion to make sure that the transfor-
mation remains rigid and no scaling is applied. The main characteristics of the QuaternionRigidTransform
are presented in Table8.9.

The Quaternion rigid transform also accepts a user-defined center of rotation. In this way, the transform
can easily be used for registering images where the rotationis mostly relative to the center of the image
instead one of the corners. The coordinates of this rotationcenter are not subject to optimization. They
only participate in the computation of the mappings for Points and in the computation of the Jacobian. The
transformations for Vectors and CovariantVector are not affected by the selection of the rotation center.

8.8.11 VersorTransform

By definition, aVersor is the rotational part of a Quaternion. It can also be defined as aunit-quaternion
[34, 42]. Versors only have three independent components, since they are restricted to reside in the space
of unit-quaternions. The implementation of versors in the toolkit uses a set of three numbers. These
three numbers correspond to the first three components of a quaternion. The fourth component of the
quaternion is computed internally such that the quaternionis of unit length. The main characteristics of
the itk::VersorTransform are presented in Table8.10.

This transform exclusively represents rotations in 3D. It is intended to rapidly solve the rotational com-
ponent of a more general misalignment. The efficiency of thistransform comes from using a parameter
space of reduced dimensionality. Versors are the best possible representation for rotations in 3D space. Se-
quences of versors allow the creation of smooth rotational trajectories; for this reason, they behave stably
under optimization methods.

http://www.itk.org/Doxygen/html/classitk_1_1VersorTransform.html

8.8. Transforms 403

Behavior Number of
Parameters

Parameter
Ordering

Restrictions

Represents a 3D ro-
tation. The rotation
is specified by a ver-
sor or unit quater-
nion. The rotation
is performed around
a user-specified cen-
ter of rotation.

3 The three param-
eters define the
versor.

Only defined for three-
dimensional input and
output spaces.

Table 8.10:Characteristics of the Versor Transform

Behavior Number of
Parameters

Parameter
Ordering

Restrictions

Represents a 3D rota-
tion and a 3D trans-
lation. The rotation
is specified by a ver-
sor or unit quater-
nion, while the trans-
lation is represented
by a vector. Users
can specify the coor-
dinates of the center
of rotation.

6 The first three
parameters define
the versor and
the last three
parameters the
translation in
each dimension.

Only defined for three-
dimensional input and
output spaces.

Table 8.11:Characteristics of the VersorRigid3DTransform class.

The space formed by versor parameters is not a vector space. Standard gradient descent algorithms are not
appropriate for exploring this parameter space. An optimizer specialized for the versor space is available
in the toolkit under the name ofitk::VersorTransformOptimizer. This optimizer implements versor
derivatives as originally defined by Hamilton [34].

The center of rotation can be specified by the user with theSetCenter() method. The center is not part
of the parameters to be optimized, therefore it remains the same during an optimization process. Its value
is used during the computations for transforming Points andwhen computing the Jacobian.

8.8.12 VersorRigid3DTransform

The itk::VersorRigid3DTransform implements a rigid transformation in 3D space. It is a vari-
ant of the itk::QuaternionRigidTransform and the itk::VersorTransform. It can be seen as a
itk::VersorTransform plus a translation defined by a vector. The advantage of this class with respect

http://www.itk.org/Doxygen/html/classitk_1_1VersorTransformOptimizer.html
http://www.itk.org/Doxygen/html/classitk_1_1VersorRigid3DTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1QuaternionRigidTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1VersorTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1VersorTransform.html

404 Chapter 8. Registration

Behavior Number of
Parameters

Parameter
Ordering

Restrictions

Represents a rigid ro-
tation in 3D space.
That is, a rotation fol-
lowed by a 3D trans-
lation. The rotation is
specified by three an-
gles representing ro-
tations to be applied
around the X, Y and
Z axis one after an-
other. The translation
part is represented by
a Vector. Users can
also specify the coor-
dinates of the center
of rotation.

6 The first three
parameters are
the rotation an-
gles around X, Y
and Z axis, and
the last three pa-
rameters are the
translations along
each dimension.

Only defined for three-
dimensional input and
output spaces.

Table 8.12:Characteristics of the Euler3DTransform class.

to the QuaternionRigidTransform is that it exposes only sixparameters, three for the versor components
and three for the translational components. This reduces the search space for the optimizer to six dimen-
sions instead of the seven dimensional used by the QuaternionRigidTransform. This transform also allows
the users to set a specific center of rotation. The center coordinates are not modified during the optimiza-
tion performed in a registration process. The main featuresof this transform are summarized in Table8.11.
This transform is probably the best option to use when dealing with rigid transformations in 3D.

Given that the space of Versors is not a Vector space, typicalgradient descent optimizers are not well suited
for exploring the parametric space of this transform. Theitk::VersorRigid3DTranformOptimizer has
been introduced in the ITK toolkit with the purpose of providing an optimizer that is aware of the Versor
space properties on the rotational part of this transform, as well as the Vector space properties on the
translational part of the transform.

8.8.13 Euler3DTransform

The itk::Euler3DTransform implements a rigid transformation in 3D space. It can be seen as a rotation
followed by a translation. This class exposes six parameters, three for the Euler angles that represent
the rotation and three for the translational components. This transform also allows the users to set a
specific center of rotation. The center coordinates are not modified during the optimization performed in
a registration process. The main features of this transformare summarized in Table8.12.

The fact that the three rotational parameters are non-linear and do not behave like Vector spaces must
be taken into account when selecting an optimizer to work with this transform and when fine tuning the
parameters of such optimizer. It is strongly recommended touse this transform by introducing very small

http://www.itk.org/Doxygen/html/classitk_1_1VersorRigid3DTranformOptimizer.html
http://www.itk.org/Doxygen/html/classitk_1_1Euler3DTransform.html

8.8. Transforms 405

Behavior Number of
Parameters

Parameter
Ordering

Restrictions

Represents a 3D ro-
tation, a 3D trans-
lation and homoge-
neous scaling. The
scaling factor is spec-
ified by a scalar, the
rotation is specified
by a versor, and the
translation is repre-
sented by a vector.
Users can also spec-
ify the coordinates of
the center of rotation,
that is the same cen-
ter used for scaling.

7 The first parame-
ter is the scaling
factor, the next
three parameters
define the versor
and the last three
parameters the
translation in
each dimension.

Only defined for three-
dimensional input and
output spaces.

Table 8.13:Characteristics of the Similarity3DTransform class.

variations on the rotational components. A small rotation will be in the range of 1 degree, which in radians
is approximately 0.0.1745.

You should not expect this transform to be able to compensatefor large rotations just by being driven with
the optimizer. In practice you must provide a reasonable initialization of the transform angles and only
need to correct for residual rotations in the order of 10 or 20degrees.

8.8.14 Similarity3DTransform

The itk::Similarity3DTransform implements a similarity transformation in 3D space. It can be
seen as an homogeneous scaling followed by aitk::VersorRigid3DTransform. This class exposes
seven parameters, one for the scaling factor, three for the versor components and three for the translational
components. This transform also allows the users to set a specific center of rotation. The center coordinates
are not modified during the optimization performed in a registration process. Both the rotation and scaling
operations are performed with respect to the center of rotation. The main features of this transform are
summarized in Table8.13.

The fact that the scaling and rotational spaces are non-linear and do not behave like Vector spaces must
be taken into account when selecting an optimizer to work with this transform and when fine tuning the
parameters of such optimizer.

http://www.itk.org/Doxygen/html/classitk_1_1Similarity3DTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1VersorRigid3DTransform.html

406 Chapter 8. Registration

Behavior Number of
Parameters

Parameter
Ordering

Restrictions

Represents a rigid
3D transformation
followed by a per-
spective projection.
The rotation is spec-
ified by a Versor,
while the translation
is represented by a
Vector. Users can
specify the coordi-
nates of the center of
rotation. They must
specifically a focal
distance to be used
for the perspective
projection. The
rotation center and
the focal distance
parameters are not
modified during the
optimization process.

6 The first three
parameters define
the Versor and
the last three
parameters the
Translation in
each dimension.

Only defined for three-
dimensional input and
two-dimensional output
spaces. This is one of the
few transforms where the
input space has a different
dimension from the output
space.

Table 8.14:Characteristics of the Rigid3DPerspectiveTransform class.

8.8. Transforms 407

Behavior Number of
Parameters

Parameter
Ordering

Restrictions

Represents an affine
transform composed
of rotation, scaling,
shearing and transla-
tion. The transform
is specified by aN×
N matrix and aN×1
vector whereN is the
space dimension.

(N+1)×N The first N × N
parameters define
the matrix in
column-major
order (where
the column in-
dex varies the
fastest). The last
N parameters
define the trans-
lations for each
dimension.

Only defined when the input
and output space have the
same dimension.

Table 8.15:Characteristics of the AffineTransform class.

8.8.15 Rigid3DPerspectiveTransform

The itk::Rigid3DPerspectiveTransform implements a rigid transformation in 3D space followed by
a perspective projection. This transform is intended to be used in 3D/2D registration problems where a
3D object is projected onto a 2D plane. This is the case of Fluoroscopic images used for image guided
intervention, and it is also the case for classical radiography. Users must provide a value for the focal
distance to be used during the computation of the perspective transform. This transform also allows
users to set a specific center of rotation. The center coordinates are not modified during the optimization
performed in a registration process. The main features of this transform are summarized in Table8.14.
This transform is also used when creating Digitally Reconstructed Radiographs (DRRs).

The strategies for optimizing the parameters of this transform are the same ones used for optimizing the
VersorRigid3DTransform. In particular, you can use the same VersorRigid3DTranformOptimizer in order
to optimize the parameters of this class.

8.8.16 AffineTransform

The itk::AffineTransform is one of the most popular transformations used for image registration. Its
main advantage comes from the fact that it is represented as alinear transformation. The main features of
this transform are presented in Table8.15.

The set of AffineTransform coefficients can actually be represented in a vector space of dimension(N +
1)×N. This makes it possible for optimizers to be used appropriately on this search space. However,
the high dimensionality of the search space also implies a high computational complexity of cost-function
derivatives. The best compromise in the reduction of this computational time is to use the transform’s
Jacobian in combination with the image gradient for computing the cost-function derivatives.

The coefficients of theN×N matrix can represent rotations, anisotropic scaling and shearing. These coef-
ficients are usually of a very different dynamic range compared to the translation coefficients. Coefficients

http://www.itk.org/Doxygen/html/classitk_1_1Rigid3DPerspectiveTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1AffineTransform.html

408 Chapter 8. Registration

Behavior Number of
Parameters

Parameter
Ordering

Restrictions

Represents a free
from deformation
by providing a de-
formation field from
the interpolation of
deformations in a
coarse grid.

M×N Where M is the
number of nodes
in the BSpline
grid andN is the
dimension of the
space.

Only defined when the in-
put and output space have
the same dimension. This
transform has the advantage
of allowing to compute de-
formable registration. It also
has the disadvantage of hav-
ing a very high dimensional
parametric space, and there-
fore requiring long compu-
tation times.

Table 8.16:Characteristics of the BSplineDeformableTransform class.

in the matrix tend to be in the range[−1 : 1], but are not restricted to this interval. Translation coefficients,
on the other hand, can be on the order of 10 to 100, and are basically related to the image size and pixel
spacing.

This difference in scale makes it necessary to take advantage of the functionality offered by the optimizers
for rescaling the parameter space. This is particularly relevant for optimizers based on gradient descent
approaches. This transform lets the user set an arbitrary center of rotation. The coordinates of the rotation
center do not make part of the parameters array passed to the optimizer. Equation8.11illustrates the effect
of applying the AffineTransform in a point in 3D space.





x′

y′

z′



 =





M00 M01 M02
M10 M11 M12
M20 M21 M22



 ·





x−Cx

y−Cy

z−Cz



+





Tx +Cx

Ty +Cy

Tz+Cz



 (8.11)

A registration based on the affine transform may be more effective when applied after simpler transfor-
mations have been used to remove the major components of misalignment. Otherwise it will incur an
overwhelming computational cost. For example, using an affine transform, the first set of optimization
iterations would typically focus on removing large translations. This task could instead be accomplished
by a translation transform in a parameter space of sizeN instead of the(N + 1)×N associated with the
affine transform.

Tracking the evolution of a registration process that uses AffineTransforms can be challenging, since it is
difficult to represent the coefficients in a meaningful way. Asimple printout of the transform coefficients
generally does not offer a clear picture of the current behavior and trend of the optimization. A better
implementation uses the affine transform to deform wire-frame cube which is shown in a 3D visualization
display.

8.8. Transforms 409

8.8.17 BSplineDeformableTransform

The itk::BSplineDeformableTransform is designed to be used for solving deformable registration
problems. This transform is equivalent to generation a deformation field where a deformation vector is
assigned to every point in space. The deformation vectors are computed using BSpline interpolation from
the deformation values of points located in a coarse grid, that is usually referred to as the BSpline grid.

The BSplineDeformableTransform is not flexible enough for accounting for large rotations or shearing,
or scaling differences. In order to compensate for this limitation, it provides the functionality of being
composed with an arbitrary transform. This transform is known as theBulk transform and it is applied to
points before they are mapped with the displacement field.

This transform do not provide functionalities for mapping Vectors nor CovariantVectors, only Points can
be mapped. The reason is that the variations of a vector undera deformable transform actually depend on
the location of the vector in space. In other words, Vector only make sense as the relative position between
two points.

The BSplineDeformableTransform has a very large number of parameters and therefore is well suited for
the itk::LBFGSOptimizer and itk::LBFGSBOptimizer. The use of this transform for was proposed
in the following papers [70, 55, 56].

8.8.18 KernelTransforms

Kernel Transforms are a set of Transforms that are also suitable for performing deformable registration.
These transforms compute on the fly the displacements corresponding to a deformation field. The dis-
placement values corresponding to every point in space are computed by interpolation from the vectors
defined by a set ofSource Landmarksand a set ofTarget Landmarks.

Several variations of these transforms are available in thetoolkit. They differ on the type of interpolation
kernel that is used when computing the deformation in a particular point of space. Note that these trans-
forms are computationally expensive and that their numerical complexity is proportional to the number of
landmarks and the space dimension.

The following is the list of Transforms based on the KernelTransform.

• itk::ElasticBodySplineKernelTransform

• itk::ElasticBodyReciprocalSplineKernelTransform

• itk::ThinPlateSplineKernelTransform

• itk::ThinPlateR2LogRSplineKernelTransform

• itk::VolumeSplineKernelTransform

Details about the mathematical background of these transform can be found in the paper by Daviset.
al [20] and the papers by Rohret. al [68, 69].

http://www.itk.org/Doxygen/html/classitk_1_1BSplineDeformableTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1LBFGSOptimizer.html
http://www.itk.org/Doxygen/html/classitk_1_1LBFGSBOptimizer.html
http://www.itk.org/Doxygen/html/classitk_1_1ElasticBodySplineKernelTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1ElasticBodyReciprocalSplineKernelTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1ThinPlateSplineKernelTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1ThinPlateR2LogRSplineKernelTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1VolumeSplineKernelTransform.html

410 Chapter 8. Registration

X X

Y

Transform T(x)
Y

Moving Image

Walk
Iterator

Moving Image Fixed ImageFixed Image

Transform T(x)

Figure 8.43:The moving image is mapped into the fixed image space under some spatial transformation.

An iterator walks through the fixed image and its coordinates are mapped onto the moving image.

8.9 Interpolators

Figure 8.44:Grid positions of the fixed image map to non-grid

positions of the moving image.

In the registration process, the metric
typically compares intensity values in
the fixed image against the correspond-
ing values in the transformed moving
image. When a point is mapped from
one space to another by a transform, it
will in general be mapped to a non-grid
position. Therefore, interpolation is re-
quired to evaluate the image intensity at
the mapped position.

Figure 8.43 (left) illustrates the map-
ping of the fixed image space onto the
moving image space. The transform
maps points from the fixed image co-
ordinate system onto the moving im-
age coordinate system. The figure high-
lights the region of overlap between the
two images after the mapping. The
right side illustrates how an iterator is used to walk through a region of the fixed image. Each one of
the iterator positions is mapped by the transform onto the moving image space in order to find the homol-
ogous pixel.

Figure8.44presents a detailed view of the mapping from the fixed image tothe moving image. In general,
the grid positions of the fixed image will not be mapped onto grid positions of the moving image. Interpo-
lation is needed for estimating the intensity of the moving image at these non-grid positions. The service
is provided in ITK by interpolator classes that can be plugged into the registration method.

The following interpolators are available:

• itk::NearestNeighborInterpolateImageFunction

• itk::LinearInterpolateImageFunction

• itk::BSplineInterpolateImageFunction

http://www.itk.org/Doxygen/html/classitk_1_1NearestNeighborInterpolateImageFunction.html
http://www.itk.org/Doxygen/html/classitk_1_1LinearInterpolateImageFunction.html
http://www.itk.org/Doxygen/html/classitk_1_1BSplineInterpolateImageFunction.html

8.9. Interpolators 411

• itk::WindowedSincInterpolateImageFunction

In the context of registration, the interpolation method affects the smoothness of the optimization search
space and the overall computation time. On the other hand, interpolations are executed thousands of times
in a single optimization cycle. Hence, the user has to balance the simplicity of computation with the
smoothness of the optimization when selecting the interpolation scheme.

The basic input to anitk::InterpolateImageFunction is the image to be interpolated. Once an image
has been defined usingSetInputImage(), a user can interpolate either at a point usingEvaluate() or
an index usingEvaluateAtContinuousIndex().

Interpolators provide the methodIsInsideBuffer() that tests whether a particular image index or a
physical point falls inside the spatial domain for which image pixels exist.

8.9.1 Nearest Neighbor Interpolation

The itk::NearestNeighborInterpolateImageFunction simply uses the intensity of the nearest grid
position. That is, it assumes that the image intensity is piecewise constant with jumps mid-way between
grid positions. This interpolation scheme is cheap as it does not require any floating point computations.

8.9.2 Linear Interpolation

The itk::LinearInterpolateImageFunction assumes that intensity varies linearly between grid po-
sitions. Unlike nearest neighbor interpolation, the interpolated intensity is spatially continuous. However,
the intensity gradient will be discontinuous at grid positions.

8.9.3 B-Spline Interpolation

The itk::BSplineInterpolateImageFunction represents the image intensity using B-spline basis
functions. When an input image is first connected to the interpolator, B-spline coefficients are computed
using recursive filtering (assuming mirror boundary conditions). Intensity at a non-grid position is com-
puted by multiplying the B-spline coefficients with shiftedB-spline kernels within a small support region
of the requested position. Figure8.45 illustrates on the left how the deformation values on the BSpline
grid nodes are used for computing interpolated deformations in the rest of space. Note for example that
when a cubic BSpline is used, the grid must have one extra nodein one side of the image and two extra
nodes on the other side, this along every dimension.

Currently, this interpolator supports splines of order 0 to5. Using a spline of order 0 is almost identical to
nearest neighbor interpolation; a spline of order 1 is exactly identical to linear interpolation. For splines
of order greater than 1, both the interpolated value and its derivative are spatially continuous.

It is important to note that when using this scheme, the interpolated value may lie outside the range of
input image intensities. This is especially important whenhandling unsigned data, as it is possible that the
interpolated value is negative.

http://www.itk.org/Doxygen/html/classitk_1_1WindowedSincInterpolateImageFunction.html
http://www.itk.org/Doxygen/html/classitk_1_1InterpolateImageFunction.html
http://www.itk.org/Doxygen/html/classitk_1_1NearestNeighborInterpolateImageFunction.html
http://www.itk.org/Doxygen/html/classitk_1_1LinearInterpolateImageFunction.html
http://www.itk.org/Doxygen/html/classitk_1_1BSplineInterpolateImageFunction.html

412 Chapter 8. Registration

Figure 8.45:The left side illustrates the BSpline grid and the deformations that are known on those nodes.

The right side illustrates the region where interpolation is possible when the BSpline is of cubic order. The

small arrows represent deformation values that were interpolated from the grid deformations shown on the

left side of the diagram.

8.9.4 Windowed Sinc Interpolation

The itk::WindowedSincInterpolateImageFunction is the best possible interpolator for data that
has been digitized in a discrete grid. This interpolator hasbeen developed based on Fourier Analysis
considerations. It is well known in signal processing that the process of sampling a spatial function using
a periodic discrete grid results in a replication of the spectrum of that signal in the frequency domain.

The process of recovering the continuous signal from the discrete sampling is equivalent to the removal
of the replicated spectra in the frequency domain. This can be done by multiplying the spectra with a
box function that will set to zero all the frequencies above the highest frequency in the original signal.
Multiplying the spectrum with a box function is equivalent to convolving the spatial discrete signal with a
sinc function

sinc(x) = sin(x)/x (8.12)

The sinc function has infinite support, which of course in practice can not really be implemented. There-
fore, the sinc is usually truncated by multiplying it with a Window function. The Windowed Sinc interpo-
lator is the result of such operation.

This interpolator presents a series of trade-offs in its utilization. Probably the most significant is that the
larger the window, the more precise will be the resulting interpolation. However, large windows will also
result in long computation times. Since the user can select the window size in this interpolator, it is up
to the user to determine how much interpolation quality is required in her/his application and how much
computation time can be justified. For details on the signal processing theory behind this interpolator,
please refer to Meijeringet. al [57].

The region of the image used for computing the interpolator is determined by the windowradius. For

http://www.itk.org/Doxygen/html/classitk_1_1WindowedSincInterpolateImageFunction.html

8.9. Interpolators 413

example, in a 2D image where we want to interpolate the value at position(x,y) the following computation
will be performed.

I(x,y) =
⌊x⌋+m

∑
i=⌊x⌋+1−m

⌊y⌋+m

∑
j=⌊y⌋+1−m

Ii, jK(x− i)K(y− j) (8.13)

wherem is theradiusof the window. Typically, values such as 3 or 4 are reasonablefor the window radius.
The function kernelK(t) is composed by thesinc function and one of the windows listed above.

K(t) = w(t)sinc(t) = w(t)
sin(πt)

πt
(8.14)

Some of the windows that can be used with this interpolator are

Cosinus window
w(x) = cos(

πx
2m

) (8.15)

Hamming window

w(x) = 0.54+0.46cos(
πx
m

) (8.16)

Welch window

w(x) = 1− (
x2

m2) (8.17)

Lancos window
w(x) = sinc(

x
m

) (8.18)

Blackman window

w(x) = 0.42+0.5cos(
πx
m

)+0.08cos(
2πx
m

) (8.19)

The window functions listed above are available inside the itk::Function namespace. The conclusions of
the referenced paper suggest to use the Welch, Cosine, Kaiser, and Lancos windows for m = 4,5. These are
based on error in rotating medical images with respect to thelinear interpolation method. In some cases
the results achieve a 20-fold improvement in accuracy.

This filter can be used in the same way you would use any ImageInterpolationFunction. For instance, you
can plug it into the ResampleImageFilter class. In order to instantiate the filter you must choose several
template parameters.

typedef WindowedSincInterpolateImageFunction< TInputImage, VRadius,
TWindowFunction, TBoundaryCondition, TCoordRep > InterpolatorType;

TInputImage is the image type, as for any other interpolator.

VRadius is the radius of the kernel, i.e., them from the formula above.

TWindowFunction is the window function object, which you can choose from about five different func-
tions defined in this header. The default is the Hamming window, which is commonly used but not optimal
according to the cited paper.

414 Chapter 8. Registration

TBoundaryCondition is the boundary condition class used to determine the valuesof pixels that fall off
the image boundary. This class has the same meaning here as inthe itk::NeighborhoodIterator
classes.

TCoordRep is again standard for interpolating functions, and should be float or double.

The WindowedSincInterpolateImageFunction is probably not the interpolator that you want to use for
performing registration. Its computation burden makes it too expensive for this purpose. The best use
of this interpolator is for the final resampling of the image,once that the transform has been found using
another less expensive interpolator in the registration process.

http://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodIterator.html

8.10. Metrics 415

8.10 Metrics

In ITK, itk::ImageToImageMetric objects quantitatively measure how well the transformed moving
image fits the fixed image by comparing the gray-scale intensity of the images. These metrics are very
flexible and can work with any transform or interpolation method and do not require reduction of the
gray-scale images to sparse extracted information such as edges.

The metric component is perhaps the most critical element ofthe registration framework. The selection
of which metric to use is highly dependent on the registration problem to be solved. For example, some
metrics have a large capture range while others require initialization close to the optimal position. In
addition, some metrics are only suitable for comparing images obtained from the same imaging modality,
while others can handle inter-modality comparisons. Unfortunately, there are no clear-cut rules as to how
to choose a metric.

The basic inputs to a metric are: the fixed and moving images, atransform and an interpolator. The method
GetValue() can be used to evaluate the quantitative criterion at the transform parameters specified in the
argument. Typically, the metric samples points within a defined region of the fixed image. For each point,
the corresponding moving image position is computed using the transform with the specified parameters,
then the interpolator is used to compute the moving image intensity at the mapped position. Details on
this mapping are illustrated in Figures8.43and8.44.

The metrics also support region based evaluation. TheSetFixedImageMask() and
SetMovingImageMask() methods may be used to restrict evaluation of the metric within a speci-
fied region. The masks may be of any type derived fromitk::SpatialObject.

Besides the measure value, gradient-based optimization schemes also require derivatives of the
measure with respect to each transform parameter. The methods GetDerivatives() and
GetValueAndDerivatives() can be used to obtain the gradient information.

The following is the list of metrics currently available in ITK:

• Mean squares
itk::MeanSquaresImageToImageMetric

• Normalized correlation
itk::NormalizedCorrelationImageToImageMetric

• Mean reciprocal squared difference
itk::MeanReciprocalSquareDifferenceImageToImageMetric

• Mutual information by Viola and Wells
itk::MutualInformationImageToImageMetric

• Mutual information by Mattes
itk::MattesMutualInformationImageToImageMetric

• Kullback Liebler distance metric by Kullback and Liebler
itk::KullbackLeiblerCompareHistogramImageToImageMetric

• Normalized mutual information
itk::NormalizedMutualInformationHistogramImageToImageMetric

• Mean squares histogram
itk::MeanSquaresHistogramImageToImageMetric

• Correlation coefficient histogram
itk::CorrelationCoefficientHistogramImageToImageMetric

http://www.itk.org/Doxygen/html/classitk_1_1ImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1SpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1MeanSquaresImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1NormalizedCorrelationImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1MeanReciprocalSquareDifferenceImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1MutualInformationImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1MattesMutualInformationImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1KullbackLeiblerCompareHistogramImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1NormalizedMutualInformationHistogramImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1MeanSquaresHistogramImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1CorrelationCoefficientHistogramImageToImageMetric.html

416 Chapter 8. Registration

• Cardinality Match metric
itk::MatchCardinalityImageToImageMetric

• Kappa Statistics metric
itk::KappaStatisticImageToImageMetric

• Gradient Difference metric
itk::GradientDifferenceImageToImageMetric

In the following sections, we describe each metric type in detail. For ease of notation, we will refer to the
fixed imagef (X) and transformed moving image(m◦T(X)) as imagesA andB.

8.10.1 Mean Squares Metric

The itk::MeanSquaresImageToImageMetric computes the mean squared pixel-wise difference in in-
tensity between imageA andB over a user defined region:

MS(A,B) =
1
N

N

∑
i=1

(Ai −Bi)
2 (8.20)

Ai is the i-th pixel of Image A
Bi is the i-th pixel of Image B

N is the number of pixels considered

The optimal value of the metric is zero. Poor matches betweenimagesA andB result in large values of
the metric. This metric is simple to compute and has a relatively large capture radius.

This metric relies on the assumption that intensity representing the same homologous point must be the
same in both images. Hence, its use is restricted to images ofthe same modality. Additionally, any linear
changes in the intensity result in a poor match value.

Exploring a Metric

Getting familiar with the characteristics of the Metric as acost function is fundamental in order to find
the best way of setting up an optimization process that will use this metric for solving a registration
problem. The following example illustrates a typical mechanism for studying the characteristics of a
Metric. Although the example is using the Mean Squares metric, the same methodology can be applied to
any of the other metrics available in the toolkit.

The source code for this section can be found in the file
Examples/Registration/MeanSquaresImageMetric1.cxx.

This example illustrates how to explore the domain of an image metric. This is a useful exercise to
do before starting a registration process, since getting familiar with the characteristics of the metric is
fundamental for the appropriate selection of the optimizerto be use for driving the registration process,
as well as for selecting the optimizer parameters. This process makes possible to identify how noisy a
metric may be in a given range of parameters, and it will also give an idea of the number of local minima
or maxima in which an optimizer may get trapped while exploring the parametric space.

We start by including the headers of the basic components: Metric, Transform and Interpolator.

http://www.itk.org/Doxygen/html/classitk_1_1MatchCardinalityImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1KappaStatisticImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1GradientDifferenceImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1MeanSquaresImageToImageMetric.html

8.10. Metrics 417

#include "itkMeanSquaresImageToImageMetric.h"
#include "itkTranslationTransform.h"
#include "itkNearestNeighborInterpolateImageFunction.h"

We define the dimension and pixel type of the images to be used in the evaluation of the Metric.

const unsigned int Dimension = 2;
typedef unsigned char PixelType;

typedef itk::Image< PixelType, Dimension > ImageType;

The type of the Metric is instantiated and one is constructed. In this case we decided to use the
same image type for both the fixed and the moving images.

typedef itk::MeanSquaresImageToImageMetric<
ImageType, ImageType > MetricType;

MetricType::Pointer metric = MetricType::New();

We also instantiate the transform and interpolator types, and create objects of each class.

typedef itk::TranslationTransform< double, Dimension > TransformType;

TransformType::Pointer transform = TransformType::New();

typedef itk::NearestNeighborInterpolateImageFunction<
ImageType, double > InterpolatorType;

InterpolatorType::Pointer interpolator = InterpolatorType::New();

The classes required by the metric are connected to it. This includes the fixed and moving
images, the interpolator and the transform.

metric->SetTransform(transform);
metric->SetInterpolator(interpolator);

metric->SetFixedImage(fixedImage);
metric->SetMovingImage(movingImage);

Finally we select a region of the parametric space to explore. In this case we are using a trans-
lation transform in 2D, so we simply select translations from a negative position to a positive
position, in bothx andy. For each one of those positions we invoke the GetValue() method of
the Metric.

418 Chapter 8. Registration

-60
-40

-20
 0

 20
 40

 60-60

-40

-20

 0

 20

 40

 60

 0

 2000

 4000

 6000

 8000

 10000

 12000

Mean Squares Metric

Translation in X (mm)

Translation in Y (mm)

Mean Squares Metric
-60

-40

-20

 0

 20

 40

 60
-60 -40 -20 0 20 40 60

Figure 8.46:Plots of the Mean Squares Metric for an image compared to itself under multiple translations.

MetricType::TransformParametersType displacement(Dimension);

const int rangex = 50;
const int rangey = 50;

for(int dx = -rangex; dx <= rangex; dx++)
{
for(int dy = -rangey; dy <= rangey; dy++)

{
displacement[0] = dx;
displacement[1] = dy;
const double value = metric->GetValue(displacement);
std::cout << dx << " " << dy << " " << value << std::endl;
}

}

Running this code using the image BrainProtonDensitySlice.png as both the fixed and the mov-
ing images results in the plot shown in Figure8.46. From this Figure, it can be seen that a
gradient based optimizer will be appropriate for finding theextrema of the Metric. It is also
possible to estimate a good value for the step length of a gradient-descent optimizer.

This exercise of plotting the Metric is probably the best thing to do when a registration process
is not converging and when it is unclear how to fine tune the different parameters involved in
the registration. This includes the optimizer parameters,the metric parameters and even options
such as preprocessing the image data with smoothing filters.

The shell and Gnuplot12 scripts used for generating the graphics in Figure8.46are available in
the directory

InsightDocuments/SoftwareGuide/Art

Of course, this plotting exercise becomes more challengingwhen the transform has more than

12http://www.gnuplot.info

8.10. Metrics 419

three parameters, and when those parameters have very different range of values. In those
cases is necessary to select only a key subset of parameters from the transform and to study the
behavior of the metric when those parameters are varied.

8.10.2 Normalized Correlation Metric

The itk::NormalizedCorrelationImageToImageMetric computes pixel-wise cross-
correlation and normalizes it by the square root of the autocorrelation of the images:

NC(A,B) = −1× ∑N
i=1 (Ai ·Bi)

√

∑N
i=1A2

i ·∑N
i=1B2

i

(8.21)

Ai is the i-th pixel of Image A
Bi is the i-th pixel of Image B

N is the number of pixels considered

Note the−1 factor in the metric computation. This factor is used to make the metric be optimal
when its minimum is reached. The optimal value of the metric is then minus one. Misalignment
between the images results in small measure values. The use of this metric is limited to images
obtained using the same imaging modality. The metric is insensitive to multiplicative factors
between the two images. This metric produces a cost functionwith sharp peaks and well defined
minima. On the other hand, it has a relatively small capture radius.

8.10.3 Mean Reciprocal Square Differences

The itk::MeanReciprocalSquareDifferenceImageToImageMetric computes pixel-wise
differences and adds them after passing them through a bell-shaped function 1

1+x2 :

PI(A,B) =
N

∑
i=1

1

1+ (Ai−Bi)
2

λ2

(8.22)

Ai is the i-th pixel of Image A
Bi is the i-th pixel of Image B

N is the number of pixels considered
λ controls the capture radius

The optimal value isN and poor matches results in small measure values. The characteristics
of this metric have been studied by Penney and Holden [36][62]

This image metric has the advantage of producing poor valueswhen few pixels are considered.
This makes it consistent when its computation is subject to the size of the overlap region be-
tween the images. The capture radius of the metric can be regulated with the parameterλ. The

http://www.itk.org/Doxygen/html/classitk_1_1NormalizedCorrelationImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1MeanReciprocalSquareDifferenceImageToImageMetric.html

420 Chapter 8. Registration

profile of this metric is very peaky. The sharp peaks of the metric help to measure spatial mis-
alignment with high precision. Note that the notion of capture radius is used here in terms of
the intensity domain, not the spatial domain. In that regard, λ should be given in intensity units
and be associated with the differences in intensity that will make drop the metric by 50%.

The metric is limited to images of the same image modality. The fact that its derivative is large
at the central peak is a problem for some optimizers that relyon the derivative to decrease as
the extrema are reached. This metric is also sensitive to linear changes in intensity.

8.10.4 Mutual Information Metric

The itk::MutualInformationImageToImageMetric computes the mutual information be-
tween imageA and imageB. Mutual information (MI) measures how much information one
random variable (image intensity in one image) tells about another random variable (image in-
tensity in the other image). The major advantage of using MI is that the actual form of the
dependency does not have to be specified. Therefore, complexmapping between two images
can be modeled. This flexibility makes MI well suited as a criterion of multi-modality registra-
tion [64].

Mutual information is defined in terms of entropy. Let

H(A) = −
Z

pA(a) logpA(a)da (8.23)

be the entropy of random variableA, H(B) the entropy of random variableB and

H(A,B) =

Z

pAB(a,b) logpAB(a,b)dadb (8.24)

be the joint entropy ofA andB. If A andB are independent, then

pAB(a,b) = pA(a)pB(b) (8.25)

and
H(A,B) = H(A)+H(B). (8.26)

However, if there is any dependency, then

H(A,B) < H(A)+H(B). (8.27)

The difference is called Mutual Information :I(A,B)

I(A,B) = H(A)+H(B)−H(A,B) (8.28)

Parzen Windowing

http://www.itk.org/Doxygen/html/classitk_1_1MutualInformationImageToImageMetric.html

8.10. Metrics 421

Sigma

Gray levels

Figure 8.47: In Parzen windowing, a continuous

density function is constructed by superimposing ker-

nel functions (Gaussian function in this case) cen-

tered on the intensity samples obtained from the im-

age.

In a typical registration problem, direct ac-
cess to the marginal and joint probability
densities is not available and hence the den-
sities must be estimated from the image data.
Parzen windows (also known as kernel den-
sity estimators) can be used for this purpose.
In this scheme, the densities are constructed
by taking intensity samplesSfrom the image
and super-positioning kernel functionsK(·)
centered on the elements ofSas illustrated in
Figure8.47:

A variety of functions can be used as the
smoothing kernel with the requirement that
they are smooth, symmetric, have zero mean
and integrate to one. For example, boxcar,
Gaussian and B-spline functions are suitable
candidates. A smoothing parameter is used
to scale the kernel function. The larger the
smoothing parameter, the wider the kernel
function used and hence the smoother the density estimate. If the parameter is too large, fea-
tures such as modes in the density will get smoothed out. On the other hand, if the smoothing
parameter is too small, the resulting density may be too noisy. The estimation is given by the
following equation.

p(a) ≈ P∗(a) =
1
N ∑

sj∈S

K (a−sj) (8.29)

Choosing the optimal smoothing parameter is a difficult research problem and beyond the scope
of this software guide. Typically, the optimal value of the smoothing parameter will depend on
the data and the number of samples used.

Viola and Wells Implementation

The Insight Toolkit has multiple implementations of the mutual information metric. One of the
most commonly used isitk::MutualInformationImageToImageMetric and follows the
method specified by Viola and Wells in [85].

In this implementation, two separate intensity samplesSandR are drawn from the image: the
first to compute the density, and the second to approximate the entropy as a sample mean:

H(A) =
1
N ∑

r j∈R

logP∗(r j). (8.30)

Gaussian density is used as a smoothing kernel, where the standard deviationσ acts as the

http://www.itk.org/Doxygen/html/classitk_1_1MutualInformationImageToImageMetric.html

422 Chapter 8. Registration

smoothing parameter.

The number of spatial samples used for computation is definedusing the
SetNumberOfSpatialSamples() method. Typical values range from 50 to 100. Note
that computation involves anN×N loop and hence, the computation burden becomes very
expensive when a large number of samples is used.

The quality of the density estimates depends on the choice ofthe standard deviation of the
Gaussian kernel. The optimal choice will depend on the content of the images. In our experience
with the toolkit, we have found that a standard deviation of 0.4 works well for images that
have been normalized to have a mean of zero and standard deviation of 1.0. The standard
deviation of the fixed image and moving image kernel can be setseparately using methods
SetFixedImageStandardDeviation() andSetMovingImageStandardDeviation().

Mattes et al. Implementation

Another form of mutual information metric available in ITK follows the
method specified by Mattes et al. in [55] and is implemented by the
itk::MattesMutualInformationImageToImageMetric class.

In this implementation, only one set of intensity samples isdrawn from the image. Using this
set, the marginal and joint probability density function (PDF) is evaluated at discrete positions
or bins uniformly spread within the dynamic range of the images. Entropy values are then
computed by summing over the bins.

The number of spatial samples used is set using methodSetNumberOfSpatialSamples(). The
number of bins used to compute the entropy values is set viaSetNumberOfHistogramBins().

Since the fixed image PDF does not contribute to the metric derivatives, it does not need to be
smooth. Hence, a zero order (boxcar) B-spline kernel is usedfor computing the PDF. On the
other hand, to ensure smoothness, a third order B-spline kernel is used to compute the moving
image intensity PDF. The advantage of using a B-spline kernel over a Gaussian kernel is that the
B-spline kernel has a finite support region. This is computationally attractive, as each intensity
sample only affects a small number of bins and hence does not require aN×N loop to compute
the metric value.

During the PDF calculations, the image intensity values arelinearly scaled to have a minimum
of zero and maximum of one. This rescaling means that a fixed B-spline kernel bandwidth of
one can be used to handle image data with arbitrary magnitudeand dynamic range.

8.10.5 Kullback-Leibler distance metric

The itk::KullbackLeiblerCompareHistogramImageToImageMetric is yet another infor-
mation based metric. Kullback-Leibler distance measures the relative entropy between two
discrete probability distributions. The distributions are obtained from the histograms of the two
input images,A andB.

http://www.itk.org/Doxygen/html/classitk_1_1MattesMutualInformationImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1KullbackLeiblerCompareHistogramImageToImageMetric.html

8.10. Metrics 423

The Kullback-Liebler distance between two histograms is given by

KL(A,B) =
N

∑
i

pA(i)× log
pA(i)
pB(i)

(8.31)

The distance is always non-negative and is zero only if the two distributions are the same. Note
that the distance is not symmetric. In other words,KL(A,B) 6= KL(B,A). Nevertheless, if the
distributions are not too dissimilar, the difference betweenKL(A,B) andKL(B,A) is small.

The implementation in ITK is based on [16].

8.10.6 Normalized Mutual Information Metric

Given two images,A andB, the normalized mutual information may be computed as

NMI(A,B) = 1+
I(A,B)

H(A,B)
=

H(A)+H(B)

H(A,B)
(8.32)

where the entropy of the images,H(A), H(B), the mutual information,I(A,B) and the joint
entropyH(A,B) are computed as mentioned in8.10.4. Details of the implementation may be
found in the [33].

8.10.7 Mean Squares Histogram

The itk::MeanSquaresHistogramImageToImageMetric is an alternative implementation
of the Mean Squares Metric. In this implementation the jointhistogram of the fixed and the
mapped moving image is built first. The user selects the number of bins to use in this joint
histogram. Once the joint histogram is computed, the bins are visited with an iterator. Given
that each bin is associated to a pair of intensities of the form: {fixed intensity, moving intensity},
along with the number of pixels pairs in the images that fell in this bin, it is then possible to
compute the sum of square distances between the intensitiesof both images at the quantization
levels defined by the joint histogram bins.

This metric can be represented with Equation8.33

MSH= ∑
f

∑
m

H(f ,m)(f −m)2 (8.33)

whereH(f ,m) is the count on the joint histogram bin identified with fixed image intensityf
and moving image intensitym.

http://www.itk.org/Doxygen/html/classitk_1_1MeanSquaresHistogramImageToImageMetric.html

424 Chapter 8. Registration

8.10.8 Correlation Coefficient Histogram

The itk::CorrelationCoefficientHistogramImageToImageMetric computes the cross
correlation coefficient between the intensities in the fixedimage and the intensities on the
mapped moving image. This metric is intended to be used in images of the same modality
where the relationship between the intensities of the fixed image and the intensities on the mov-
ing images is given by a linear equation.

The correlation coefficient is computed from the Joint histogram as

CC=
∑ f ∑m H(f ,m)

(

f ·m− f ·m
)

∑ f H(f)
(

(f − f)2
)

· ∑mH(m)((m−m)2)
(8.34)

WhereH(f ,m) is the joint histogram count for the bin identified with the fixed image intensity
f and the moving image intensitym. The valuesf andm are the mean values of the fixed and
moving images respectively.H(f) andH(m) are the histogram counts of the fixed and moving
images respectively. The optimal value of the correlation coefficient is 1, which would indicate
a perfect straight line in the histogram.

8.10.9 Cardinality Match Metric

The itk::MatchCardinalityImageToImageMetric computes cardinality of the set of pixels
that match exactly between the moving and fixed images. In other words, it computes the
number of pixel matches and mismatches between the two images. The match is designed for
label maps. All pixel mismatches are considered equal whether they are between label 1 and
label 2 or between label 1 and label 500. In other words, the magnitude of an individual label
mismatch is not relevant, or the occurrence of a label mismatch is important.

The spatial correspondence between the fixed and moving images is established us-
ing a itk::Transform using the SetTransform() method and an interpolator using
SetInterpolator(). Given that we are matching pixels with labels, it is advisable to use
Nearest Neighbor interpolation.

8.10.10 Kappa Statistics Metric

The itk::KappaStatisticImageToImageMetric computes spatial intersection of two binary
images. The metric here is designed for matching pixels in two images with the same exact
value, which may be set usingSetForegroundValue(). Given two imagesA andB, the κ
coefficient is computed as

κ =
|A| ∩ |B|
|A|+ |B| (8.35)

http://www.itk.org/Doxygen/html/classitk_1_1CorrelationCoefficientHistogramImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1MatchCardinalityImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1Transform.html
http://www.itk.org/Doxygen/html/classitk_1_1KappaStatisticImageToImageMetric.html

8.10. Metrics 425

where|A| is the number of foreground pixels in imageA. This computes the fraction of area
in the two images that is common to both the images. In the computation of the metric, only
foreground pixels are considered.

8.10.11 Gradient Difference Metric

This itk::GradientDifferenceImageToImageMetric metric evaluates the difference in the
derivatives of the moving and fixed images. The derivatives are passed through a function11+x
and then they are added. The purpose of this metric is to focusthe registration on the edges
of structures in the images. In this way the borders exert larger influence on the result of the
registration than do the inside of the homogeneous regions on the image.

http://www.itk.org/Doxygen/html/classitk_1_1GradientDifferenceImageToImageMetric.html

426 Chapter 8. Registration

8.11 Optimizers

Optimization algorithms are encapsulated asitk::Optimizer objects within ITK. Optimizers
are generic and can be used for applications other than registration. Within the registration
framework, subclasses ofitk::SingleValuedNonLinearOptimizer are used to optimize
the metric criterion with respect to the transform parameters.

The basic input to an optimizer is a cost function object. In the context of registra-
tion, itk::ImageToImageMetric classes provides this functionality. The initial param-
eters are set usingSetInitialPosition() and the optimization algorithm is invoked by
StartOptimization(). Once the optimization has finished, the final parameters canbe ob-
tained usingGetCurrentPosition().

Some optimizers also allow rescaling of their individual parameters. This is convenient for
normalizing parameters spaces where some parameters have different dynamic ranges. For
example, the first parameter ofitk::Euler2DTransform represents an angle while the last
two parameters represent translations. A unit change in angle has a much greater impact on an
image than a unit change in translation. This difference in scale appears as long narrow valleys
in the search space making the optimization problem more difficult. Rescaling the translation
parameters can help to fix this problem. Scales are represented as anitk::Array of doubles
and set defined usingSetScales().

There are two main types of optimizers in ITK. In the first typewe find optimizers that are
suitable for dealing with cost functions that return a single value. These are indeed the most
common type of cost functions, and are known asSingle Valuedfunctions, therefore the corre-
sponding optimizers are known asSingle Valuedoptimizers. The second type of optimizers are
those suitable for managing cost functions that return multiple values at each evaluation. These
cost functions are common in model-fitting problems and are known asMulti Valuedor Multi-
variatefunctions. The corresponding optimizers are therefore calledMultipleValuedoptimizers
in ITK.

The itk::SingleValuedNonLinearOptimizer is the base class for the first type of optimiz-
ers while the itk::MultipleValuedNonLinearOptimizer is the base class for the second
type of optimizers.

The types of single valued optimizer currently available inITK are:

• Amoeba: Nelder-Meade downhill simplex. This optimizer is actually implemented in the
vxl/vnl numerics toolkit. The ITK classitk::AmoebaOptimizer is merely an adaptor
class.

• Conjugate Gradient: Fletcher-Reeves form of the conjugate gradient with or without
preconditioning (itk::ConjugateGradientOptimizer). It is also an adaptor to an
optimizer invnl.

• Gradient Descent: Advances parameters in the direction of the gradient wherethe step
size is governed by a learning rate (itk::GradientDescentOptimizer).

http://www.itk.org/Doxygen/html/classitk_1_1Optimizer.html
http://www.itk.org/Doxygen/html/classitk_1_1SingleValuedNonLinearOptimizer.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1Euler2DTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1Array.html
http://www.itk.org/Doxygen/html/classitk_1_1SingleValuedNonLinearOptimizer.html
http://www.itk.org/Doxygen/html/classitk_1_1MultipleValuedNonLinearOptimizer.html
http://www.itk.org/Doxygen/html/classitk_1_1AmoebaOptimizer.html
http://www.itk.org/Doxygen/html/classitk_1_1ConjugateGradientOptimizer.html
http://www.itk.org/Doxygen/html/classitk_1_1GradientDescentOptimizer.html

8.11.
O

ptim
izers

427

itk::ConjugateGradientOptimizer

itk::OnePlusOneEvolutionaryOptimizer itk::SingleValuedNonLinearVnlOptimizer

itk::MultipleValuedNonLinearOptimizer

itk::NonLinearOptimizer

itk::SingleValuedNonLinearOptimizer

itk::AmoebaOptimizer

itk::LevenbergMarquardtOptimizer

itk::MultipleValuedNonLinearVnlOptimizer

itk::MultipleValuedCostFunctionitk::SingleValuedCostFunction

itk::CostFunction itk::CostFunction

itk::Object

itk::Optimizer

itk::LBFGSOptimizer

itk::RegularStepGradientDescentBaseOptimizer

itk::RegularStepGradientDescentOptimizer

itk::VersorTransformOptimizer

itk::VersorRigid3DTransformOptimizer

itk::SPSAOptimizer

itk::PowellOptimizer

itk::FRPROptimizer

itk::GradientDescentOptimizer

itk::QuaternionRigidTransformGradientDescentOptimizer

VxL/vnl
vnl_levenberg_marquardt
vnl_amoeba
vnl_conjugate_gradient
vnl_lbgs

F
ig

u
re

8
.4

8
:C

lass
diagram

ofthe
optim

izers
hierarchy.

428 Chapter 8. Registration

• Quaternion Rigid Transform Gradient Descent: A specialized version of GradientDe-
scentOptimizer for QuaternionRigidTransform parameters, where the parameters repre-
senting the quaternion are normalized to a magnitude of one at each iteration to represent
a pure rotation (itk::QuaternionRigidTransformGradientDescent).

• LBFGS: Limited memory Broyden, Fletcher, Goldfarb and Shannon minimization. It is
an adaptor to an optimizer invnl (itk::LBFGSOptimizer).

• LBFGSB: A modified version of the LBFGS optimizer that allows to specify bounds for
the parameters in the search space. It is an adaptor to an optimizer innetlib. Details on
this optimizer can be found in [12, 13] (itk::LBFGSBOptimizer).

• One Plus One Evolutionary: Strategy that simulates the biological evolution of a set
of samples in the search space. This optimizer is mainly usedin the process of bias
correction of MRI images (itk::OnePlusOneEvolutionaryOptimizer.). Details on
this optimizer can be found in [78].

• Regular Step Gradient Descent: Advances parameters in the direction of
the gradient where a bipartition scheme is used to compute the step size (
itk::RegularStepGradientDescentOptimizer).

• Powell Optimizer: Powell optimization method. For an N-dimensional parameter space,
each iteration minimizes(maximizes) the function in N (initially orthogonal) directions.
This optimizer is described in [67]. (itk::PowellOptimizer).

• SPSA Optimizer: Simultaneous Perturbation Stochastic Approximation Method.
This optimizer is described inhttp://www.jhuapl.edu/SPSA and in [77]. (
itk::SPSAOptimizer).

• Versor Transform Optimizer : A specialized version of the RegularStepGradientDes-
centOptimizer for VersorTransform parameters, where the current rotation is composed
with the gradient rotation to produce the new rotation versor. It follows the definition of
versor gradients defined by Hamilton [34] (itk::VersorTransformOptimizer).

• Versor Rigid3D Transform Optimizer : A specialized version of the RegularStepGra-
dientDescentOptimizer for VersorRigid3DTransform parameters, where the current ro-
tation is composed with the gradient rotation to produce thenew rotation versor. The
translational part of the transform parameters are updatedas usually done in a vector
space. (itk::VersorRigid3DTransformOptimizer).

A parallel hierarchy exists for optimizing multiple-valued cost functions. The base optimizer in
this branch of the hierarchy is theitk::MultipleValuedNonLinearOptimizer whose only
current derived class is:

• Levenberg Marquardt : Non-linear least squares minimization. Adapted to an optimizer
in vnl (itk::LevenbergMarquardtOptimizer). This optimizer is described in [67].

http://www.itk.org/Doxygen/html/classitk_1_1QuaternionRigidTransformGradientDescent.html
http://www.itk.org/Doxygen/html/classitk_1_1LBFGSOptimizer.html
http://www.itk.org/Doxygen/html/classitk_1_1LBFGSBOptimizer.html
http://www.itk.org/Doxygen/html/classitk_1_1OnePlusOneEvolutionaryOptimizer..html
http://www.itk.org/Doxygen/html/classitk_1_1RegularStepGradientDescentOptimizer.html
http://www.itk.org/Doxygen/html/classitk_1_1PowellOptimizer.html
http://www.jhuapl.edu/SPSA
http://www.itk.org/Doxygen/html/classitk_1_1SPSAOptimizer.html
http://www.itk.org/Doxygen/html/classitk_1_1VersorTransformOptimizer.html
http://www.itk.org/Doxygen/html/classitk_1_1VersorRigid3DTransformOptimizer.html
http://www.itk.org/Doxygen/html/classitk_1_1MultipleValuedNonLinearOptimizer.html
http://www.itk.org/Doxygen/html/classitk_1_1LevenbergMarquardtOptimizer.html

8.11. Optimizers 429

Figure8.48 illustrates the full class hierarchy of optimizers in ITK. Optimizers in the lower
right corner are adaptor classes to optimizers existing in the vxl/vnl numerics toolkit. The
optimizers interact with theitk::CostFunction class. In the registration framework this cost
function is reimplemented in the form of ImageToImageMetric.

8.11.1 Registration using Match Cardinality metric

The source code for this section can be found in the file
Examples/Registration/ImageRegistration10.cxx.

This example illustrates the use of the image registration framework in Insight to align two label
maps. Common structures are assumed to use the same label. The registration metric simply
counts the number of corresponding pixels that have the samelabel.

#include "itkImageRegistrationMethod.h"
#include "itkTranslationTransform.h"
#include "itkMatchCardinalityImageToImageMetric.h"
#include "itkNearestNeighborInterpolateImageFunction.h"
#include "itkAmoebaOptimizer.h"

The transform that will map one image space into the other is defined below.

typedef itk::TranslationTransform< double, Dimension > TransformType;

An optimizer is required to explore the parameter space of the transform in search of optimal
values of the metric. The metric selected does not require analytical derivatives of its cost
function.

typedef itk::AmoebaOptimizer OptimizerType;

The metric will compare how well the two images match each other. Metric types are usually
parameterized by the image types as can be seen in the following type declaration. The metric
selected here is suitable for comparing two label maps wherethe labels are consistent between
the two maps. This metric measures the percentage of pixels that exactly match or mismatch.

typedef itk::MatchCardinalityImageToImageMetric<
FixedImageType,
MovingImageType > MetricType;

Since we are registering label maps, we use a NearestNeighborInterpolateImageFunction to
ensure subpixel values are not interpolated (to labels thatdo not exist).

typedef itk:: NearestNeighborInterpolateImageFunction<
MovingImageType,
double > InterpolatorType;

http://www.itk.org/Doxygen/html/classitk_1_1CostFunction.html

430 Chapter 8. Registration

MetricType::Pointer metric = MetricType::New();
TransformType::Pointer transform = TransformType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
InterpolatorType::Pointer interpolator = InterpolatorType::New();
RegistrationType::Pointer registration = RegistrationType::New();

We are using a MatchCardinalityImageToImageMetric to compare two label maps. This metric
simple counts the percentage of corresponding pixels that have the same label. This metric does
not provide analytical derivatives, so we will use an AmoebaOptimizer to drive the registration.
The AmoebaOptimizer can only minimize a cost function, so weset the metric to count the
percentages of mismatches.

metric->MeasureMatchesOff();

It is usually desirable to fine tune the parameters of the optimizer. Each optimizer has particular
parameters that must be interpreted in the context of the optimization strategy it implements.

The AmoebaOptimizer moves a simplex around the cost surface. Here we set the initial size of
the simplex (5 units in each of the parameters)

OptimizerType::ParametersType
simplexDelta(transform->GetNumberOfParameters());

simplexDelta.Fill(5.0);

optimizer->AutomaticInitialSimplexOff();
optimizer->SetInitialSimplexDelta(simplexDelta);

We also adjust the tolerances on the optimizer to define convergence. Here, we used a tolerance
on the parameters of 0.25 (which will be a quarter of image unit, in this case pixels). We also set
the tolerance on the cost function value to define convergence. The metric we are using returns
the percentage of pixels that mismatch. So we set the function convergence to be 0.1

optimizer->SetParametersConvergenceTolerance(0.25); // quarter pixel
optimizer->SetFunctionConvergenceTolerance(0.001); // 0.1%

In the case where the optimizer never succeeds in reaching the desired precision tolerance, it is
prudent to establish a limit on the number of iterations to beperformed. This maximum number
is defined with the methodSetMaximumNumberOfIterations().

optimizer->SetMaximumNumberOfIterations(200);

The example was run on two binary images. The first binary image was generated by running
the confidence connected image filter (section9.1.4) on the MRI slice of the brain. The second
was generated similarly after shifting the slice by 13 pixels horizontally and 17 pixels vertically.
The Amoeba optimizer converged after 34 iterations and produced the following results:

8.11. Optimizers 431

Translation X = 12.5
Translation Y = 16.77

These results are a close match to the true misalignment.

8.11.2 Registration using the One plus One Evolutionary Optimizer

The source code for this section can be found in the file
Examples/Registration/ImageRegistration11.cxx.

This example illustrates how to combine the MutualInformation metric with an Evolutionary
algorithm for optimization. Evolutionary algorithms are naturally well-suited for optimizing
the Mutual Information metric given its random and noisy behavior.

The structure of the example is almost identical o the one illustrated in ImageRegistration4.
Therefore we will focus here on the setup that is specificallyrequired for the evolutionary
optimizer.

#include "itkImageRegistrationMethod.h"
#include "itkTranslationTransform.h"
#include "itkMattesMutualInformationImageToImageMetric.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkOnePlusOneEvolutionaryOptimizer.h"
#include "itkNormalVariateGenerator.h"
#include "itkImage.h"

In this example the image types and all registration components, except the metric, are declared
as in Section8.2. The Mattes mutual information metric type is instantiatedusing the image
types.

typedef itk::MattesMutualInformationImageToImageMetric<
FixedImageType,
MovingImageType > MetricType;

Evolutionary algorithms are based on testing random variations of parameters. In order to
support the computation of random values, ITK provides a family of random number generators.
In this example, we use theitk::NormalVariateGenerator which generates values with a
normal distribution.

typedef itk::Statistics::NormalVariateGenerator GeneratorType;

GeneratorType::Pointer generator = GeneratorType::New();

The random number generator must be initialized with a seed.

http://www.itk.org/Doxygen/html/classitk_1_1NormalVariateGenerator.html

432 Chapter 8. Registration

generator->Initialize(12345);

Another significant difference in the metric is that it computes the negative mutual information
and hence we need to minimize the cost function in this case. In this example we will use the
same optimization parameters as in Section8.2.

optimizer->MaximizeOff();

optimizer->SetNormalVariateGenerator(generator);
optimizer->Initialize(10);
optimizer->SetEpsilon(1.0);
optimizer->SetMaximumIteration(4000);

This example is executed using the same multi-modality images as in the previous one. The
registration converges after 24 iterations and produces the following results:

Translation X = 13.1719
Translation Y = 16.9006

These values are a very close match to the true misalignment introduced in the moving image.

8.11.3 Registration using masks constructed with Spatial objects

The source code for this section can be found in the file
Examples/Registration/ImageRegistration12.cxx.

This example illustrates the use SpatialObjects as masks for selecting the pixels that should
contribute to the computation of Image Metrics. This example is almost identical to ImageReg-
istration6 with the exception that the SpatialObject masksare created and passed to the image
metric.

The most important header in this example is the one corresponding to the
itk::ImageMaskSpatialObject class.

#include "itkImageMaskSpatialObject.h"

Here we instantiate the type of theitk::ImageMaskSpatialObject using the same dimension
of the images to be registered.

typedef itk::ImageMaskSpatialObject< Dimension > MaskType;

Then we use the type for creating the spatial object mask thatwill restrict the registration to a
reduced region of the image.

http://www.itk.org/Doxygen/html/classitk_1_1ImageMaskSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageMaskSpatialObject.html

8.11. Optimizers 433

MaskType::Pointer spatialObjectMask = MaskType::New();

The mask in this case is read from a binary file using theImageFileReader instantiated for an
unsigned char pixel type.

typedef itk::Image< unsigned char, Dimension > ImageMaskType;

typedef itk::ImageFileReader< ImageMaskType > MaskReaderType;

The reader is constructed and a filename is passed to it.

MaskReaderType::Pointer maskReader = MaskReaderType::New();

maskReader->SetFileName(argv[3]);

As usual, the reader is triggered by invoking itsUpdate() method. Since this may eventually
throw an exception, the call must be placed in atry/catch block. Note that a full fledged
application will place thistry/catch block at a much higher level, probably under the control
of the GUI.

try
{
maskReader->Update();
}

catch(itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return -1;
}

The output of the mask reader is connected as input to theImageMaskSpatialObject.

spatialObjectMask->SetImage(maskReader->GetOutput());

Finally, the spatial object mask is passed to the image metric.

metric->SetFixedImageMask(spatialObjectMask);

Let’s execute this example over some of the images provided in Examples/Data, for example:

• BrainProtonDensitySliceBorder20.png

434 Chapter 8. Registration

• BrainProtonDensitySliceR10X13Y17.png

The second image is the result of intentionally rotating thefirst image by 10 degrees and shifting
it 13mmin X and 17mmin Y. Both images have unit-spacing and are shown in Figure8.17.

transform->SetParameters(finalParameters);

TransformType::MatrixType matrix = transform->GetRotationMatrix();
TransformType::OffsetType offset = transform->GetOffset();

std::cout << "Matrix = " << std::endl << matrix << std::endl;
std::cout << "Offset = " << std::endl << offset << std::endl;

Now we resample the moving image using the transform resulting from the registration process.

8.11.4 Rigid registrations incorporating prior knowledge

The source code for this section can be found in the file
Examples/Registration/ImageRegistration13.cxx.

This example illustrates how to do registration with a 2D Rigid Transform and with MutualIn-
formation metric.

#include "itkMattesMutualInformationImageToImageMetric.h"

The CenteredRigid2DTransform applies a rigid transform in2D space.

typedef itk::CenteredRigid2DTransform< double > TransformType;
typedef itk::RegularStepGradientDescentOptimizer OptimizerType;

typedef itk::MattesMutualInformationImageToImageMetric<
FixedImageType,
MovingImageType > MetricType;

TransformType::Pointer transform = TransformType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();

The itk::CenteredRigid2DTransform is initialized by 5 parameters, indicating the angle of
rotation, the center coordinates and the translation to be applied after rotation. The initialization
is done by theitk::CenteredTransformInitializer. The transform can operate in two
modes, one assumes that the anatomical objects to be registered are centered in their respective
images. Hence the best initial guess for the registration isthe one that superimposes those two
centers. This second approach assumes that the moments of the anatomical objects are similar
for both images and hence the best initial guess for registration is to superimpose both mass
centers. The center of mass is computed from the moments obtained from the gray level values.
Here we adopt the first approach. TheGeometryOn() method toggles between the approaches.

http://www.itk.org/Doxygen/html/classitk_1_1CenteredRigid2DTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1CenteredTransformInitializer.html

8.11. Optimizers 435

typedef itk::CenteredTransformInitializer<
TransformType,
FixedImageType,
MovingImageType > TransformInitializerType;

TransformInitializerType::Pointer initializer = TransformInitializerType::New();

initializer->SetTransform(transform);

initializer->SetFixedImage(fixedImageReader->GetOutput());
initializer->SetMovingImage(movingImageReader->GetOutput());
initializer->GeometryOn();
initializer->InitializeTransform();

The optimizer scales the metrics (the gradient in this case)by the scales during each iteration.
Hence a large value of the center scale will prevent movementalong the center during optimiza-
tion. Here we assume that the fixed and moving images are likely to be related by a translation.

typedef OptimizerType::ScalesType OptimizerScalesType;
OptimizerScalesType optimizerScales(transform->GetNumberOfParameters());

const double translationScale = 1.0 / 128.0;
const double centerScale = 1000.0; // prevents it from moving

// during the optimization
optimizerScales[0] = 1.0;
optimizerScales[1] = centerScale;
optimizerScales[2] = centerScale;
optimizerScales[3] = translationScale;
optimizerScales[4] = translationScale;

optimizer->SetScales(optimizerScales);

optimizer->SetMaximumStepLength(0.5);
optimizer->SetMinimumStepLength(0.0001);
optimizer->SetNumberOfIterations(400);

Let’s execute this example over some of the images provided in Examples/Data, for example:

• BrainProtonDensitySlice.png

• BrainProtonDensitySliceBorder20.png

The second image is the result of intentionally shifting thefirst image by 20mmin X and 20mm
in Y. Both images have unit-spacing and are shown in Figure8.3. The example yielded the
following results.

Translation X = 20
Translation Y = 20

436 Chapter 8. Registration

These values match the true misalignment introduced in the moving image.

8.12. Image Pyramids 437

8.12 Image Pyramids

In ITK, the itk::MultiResolutionPyramidImageFilter can be used to create a sequence
of reduced resolution images from the input image. The down-sampling is performed according
to a user defined multi-resolution schedule. The schedule isspecified as anitk::Array2D of
integers, containing shrink factors for each multi-resolution level (rows) for each dimension
(columns). For example,

8 4 4
4 4 2

is a schedule for a three dimensional image for two multi-resolution levels. In the first (coarsest)
level, the image is reduced by a factor of 8 in the column dimension, factor of 4 in the row
dimension and a factor of 4 in the slice dimension. In the second level, the image reduced by a
factor of 4 in the column dimension, 4 in the row dimension and2 in the slice dimension.

The methodSetNumberOfLevels() is used to set the number of resolution levels in the pyra-
mid. This method will allocate memory for the schedule and generate a default table with the
starting (coarsest) shrink factors for all dimensions set to (M−1)2, whereM is the number of
levels. All factors are halved for all subsequent levels. For example, if we set the number of
levels to 4, the default schedule is then:

8 8 8
4 4 4
2 2 2
1 1 1

The user can get a copy of the schedule using methodGetSchedule(), make modifications, and
reset it using methodSetSchedule(). Alternatively, a user can create a default table by spec-
ifying the starting (coarsest) shrink factors using the methodSetStartingShrinkFactors().
The factors for the subsequent levels are generated by halving the factor or setting it to one,
depending on which is larger. For example, for a 4 level pyramid and starting factors of 8, 8 and
4, the generated schedule would be:

8 8 4
4 4 2
2 2 1
1 1 1

When this filter is triggered byUpdate(), M outputs are produced where them-th output
corresponds to them-th level of the pyramid. To generate these images, Gaussiansmooth-
ing is first performed using aitk::DiscreteGaussianImageFilter with the variance set
to (s/2)2, wheres is the shrink factor. The smoothed images are then sub-sampled using a
itk::ShrinkImageFilter.

http://www.itk.org/Doxygen/html/classitk_1_1MultiResolutionPyramidImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1Array2D.html
http://www.itk.org/Doxygen/html/classitk_1_1DiscreteGaussianImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ShrinkImageFilter.html

438 Chapter 8. Registration

Figure 8.49:Checkerboard comparisons before and after FEM-based deformable registration.

8.13 Deformable Registration

The source code for this section can be found in the file
Examples/Registration/DeformableRegistration1.cxx.

The finite element (FEM) library within the Insight Toolkit can be used to solve deformable
image registration problems. The first step in implementinga FEM-based registration is to
include the appropriate header files.

#include "itkFEM.h"
#include "itkFEMRegistrationFilter.h"

Next, we usetypedefs to instantiate all necessary classes. We define the image and element
types we plan to use to solve a two-dimensional registrationproblem. We define multiple ele-
ment types so that they can be used without recompiling the code.

typedef itk::Image<unsigned char, 2> fileImageType;
typedef itk::Image<float, 2> ImageType;
typedef itk::fem::Element2DC0LinearQuadrilateralMembrane ElementType;
typedef itk::fem::Element2DC0LinearTriangularMembrane ElementType2;

Note that in order to solve a three-dimensional registration problem, we would simply define
3D image and element types in lieu of those above. The following declarations could be used
for a 3D problem:

typedef itk::Image<unsigned char, 3> fileImage3DType;

8.13. Deformable Registration 439

typedef itk::Image<float, 3> Image3DType;
typedef itk::fem::Element3DC0LinearHexahedronMembrane Element3DType;
typedef itk::fem::Element3DC0LinearTetrahedronMembrane Element3DType2;

Here, we instantiate the load types and explicitly templatethe load implementation type. We
also define visitors that allow the elements and loads to communicate with one another.

typedef itk::fem::FiniteDifferenceFunctionLoad<ImageType,ImageType> ImageLoadType;
template class itk::fem::ImageMetricLoadImplementation<ImageLoadType>;

typedef ElementType::LoadImplementationFunctionPointer LoadImpFP;
typedef ElementType::LoadType ElementLoadType;

typedef ElementType2::LoadImplementationFunctionPointer LoadImpFP2;
typedef ElementType2::LoadType ElementLoadType2;

typedef itk::fem::VisitorDispatcher<ElementType,ElementLoadType, LoadImpFP>
DispatcherType;

typedef itk::fem::VisitorDispatcher<ElementType2,ElementLoadType2, LoadImpFP2>
DispatcherType2;

Once all the necessary components have been instantiated, we can instantiate the
itk::FEMRegistrationFilter, which depends on the image input and output types.

typedef itk::fem::FEMRegistrationFilter<ImageType,ImageType> RegistrationType;

The itk::fem::ImageMetricLoad must be registered before it can be used correctly with a
particular element type. An example of this is shown below for ElementType. Similar defini-
tions are required for all other defined element types.

ElementType::LoadImplementationFunctionPointer fp =
&itk::fem::ImageMetricLoadImplementation<ImageLoadType>::ImplementImageMetricLoad;

DispatcherType::RegisterVisitor((ImageLoadType*)0,fp);

In order to begin the registration, we declare an instance ofthe FEMRegistrationFilter. For
simplicity, we will call it registrationFilter.

RegistrationType::Pointer registrationFilter = RegistrationType::New();

Next, we callregistrationFilter->SetConfigFileName() to read the parameter file con-
taining information we need to set up the registration filter(image files, image sizes, etc.). A

http://www.itk.org/Doxygen/html/classitk_1_1FEMRegistrationFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1fem::ImageMetricLoad.html

440 Chapter 8. Registration

sample parameter file is shown at the end of this section, and the individual components are
labeled.

In order to initialize the mesh of elements, we must first create “dummy” material and element
objects and assign them to the registration filter. These objects are subsequently used to either
read a predefined mesh from a file or generate a mesh using the software. The values assigned to
the fields within the material object are arbitrary since they will be replaced with those specified
in the parameter file. Similarly, the element object will be replaced with those from the desired
mesh.

// Create the material properties
itk::fem::MaterialLinearElasticity::Pointer m;
m = itk::fem::MaterialLinearElasticity::New();
m->GN = 0; // Global number of the material
m->E = registrationFilter->GetElasticity(); // Young’s modulus -- used in the membrane
m->A = 1.0; // Cross-sectional area
m->h = 1.0; // Thickness
m->I = 1.0; // Moment of inertia
m->nu = 0.; // Poisson’s ratio -- DONT CHOOSE 1.0!!
m->RhoC = 1.0; // Density

// Create the element type
ElementType::Pointer e1=ElementType::New();
e1->m_mat=dynamic_cast<itk::fem::MaterialLinearElasticity*>(m);
registrationFilter->SetElement(e1);
registrationFilter->SetMaterial(m);

Now we are ready to run the registration:

registrationFilter->RunRegistration();

To output the image resulting from the registration, we can call WriteWarpedImage(). The
image is written in floating point format.

registrationFilter->WriteWarpedImage(
(registrationFilter->GetResultsFileName()).c_str());

We can also output the displacement fields resulting from theregistration, we can call
WriteDisplacementField() with the desired vector component as an argument. For a 2D
registration, you would want to write out both thex andy displacements, and this requires two
calls to the aforementioned function.

if (registrationFilter->GetWriteDisplacements())
{
registrationFilter->WriteDisplacementField(0);

8.13. Deformable Registration 441

registrationFilter->WriteDisplacementField(1);
// If this were a 3D example, you might also want to call this line:
// registrationFilter->WriteDisplacementField(2);

// We can also write it as a multicomponent vector field
registrationFilter->WriteDisplacementFieldMultiComponent();
}

Figure8.49presents the results of the FEM-based deformable registration applied to two time-
separated slices of a living rat dataset. Checkerboard comparisons of the two images are shown
before registration (left) and after registration (right). Both images were acquired from the
same living rat, the first after inspiration of air into the lungs and the second after exhalation.
Deformation occurs due to the relaxation of the diaphragm and the intercostal muscles, both of
which exert force on the lung tissue and cause air to be expelled.

The following is a documented sample parameter file that can be used with this deformable
registration example. This example demonstrates the setupof a basic registration problem that
does not use multi-resolution strategies. As a result, onlyone value for the parameters between
(# of pixels per element) and(maximum iterations) is necessary. In order to use a
multi-resolution strategy, you would have to specify values for those parameters at each level
of the pyramid.

The source code for this section can be found in the file
Examples/Registration/DeformableRegistration4.cxx.

This example illustrates the use of theitk::BSplineDeformableTransform class for per-
forming registration of two 2D images. The example code is for the most part identical to the
code presented in Section8.6.1. The major difference is that this example we replace the Trans-
form for a more generic one endowed with a large number of degrees of freedom. Due to the
large number of parameters, we will also replace the simple steepest descent optimizer with the
itk::LBFGSOptimizer.

The following are the most relevant headers to this example.

#include "itkBSplineDeformableTransform.h"
#include "itkLBFGSOptimizer.h"

The parameter space of theBSplineDeformableTransform is composed by the set of all the
deformations associated with the nodes of the BSpline grid.This large number of parameters
makes possible to represent a wide variety of deformations,but it also has the price of requiring
a significant amount of computation time.

We instantiate now the type of theBSplineDeformableTransform using as template param-
eters the type for coordinates representation, the dimension of the space, and the order of the
BSpline.

const unsigned int SpaceDimension = ImageDimension;

http://www.itk.org/Doxygen/html/classitk_1_1BSplineDeformableTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1LBFGSOptimizer.html

442 Chapter 8. Registration

const unsigned int SplineOrder = 3;
typedef double CoordinateRepType;

typedef itk::BSplineDeformableTransform<
CoordinateRepType,
SpaceDimension,
SplineOrder > TransformType;

The transform object is constructed below and passed to the registration method.

TransformType::Pointer transform = TransformType::New();
registration->SetTransform(transform);

Here we define the parameters of the BSplineDeformableTransform grid. We arbitrarily decide
to use a grid with 5× 5 nodes within the image. The reader should note that the BSpline
computation requires a finite support region (1 grid node at the lower borders and 2 grid nodes
at upper borders). Therefore in this example, we set the gridsize to be 8×8 and place the grid
origin such that grid node (1,1) coincides with the first pixel in the fixed image.

typedef TransformType::RegionType RegionType;
RegionType bsplineRegion;
RegionType::SizeType gridSizeOnImage;
RegionType::SizeType gridBorderSize;
RegionType::SizeType totalGridSize;

gridSizeOnImage.Fill(5);
gridBorderSize.Fill(3); // Border for spline order = 3 (1 lower, 2 upper)
totalGridSize = gridSizeOnImage + gridBorderSize;

bsplineRegion.SetSize(totalGridSize);

typedef TransformType::SpacingType SpacingType;
SpacingType spacing = fixedImage->GetSpacing();

typedef TransformType::OriginType OriginType;
OriginType origin = fixedImage->GetOrigin();;

FixedImageType::SizeType fixedImageSize = fixedRegion.GetSize();

for(unsigned int r=0; r<ImageDimension; r++)
{
spacing[r] *= floor(static_cast<double>(fixedImageSize[r] - 1) /

static_cast<double>(gridSizeOnImage[r] - 1));
origin[r] -= spacing[r];
}

8.13. Deformable Registration 443

transform->SetGridSpacing(spacing);
transform->SetGridOrigin(origin);
transform->SetGridRegion(bsplineRegion);

typedef TransformType::ParametersType ParametersType;

const unsigned int numberOfParameters =
transform->GetNumberOfParameters();

ParametersType parameters(numberOfParameters);

parameters.Fill(0.0);

transform->SetParameters(parameters);

We now pass the parameters of the current transform as the initial parameters to be used when
the registration process starts.

registration->SetInitialTransformParameters(transform->GetParameters());

Next we set the parameters of the LBFGS Optimizer.

optimizer->SetGradientConvergenceTolerance(0.05);
optimizer->SetLineSearchAccuracy(0.9);
optimizer->SetDefaultStepLength(1.5);
optimizer->TraceOn();
optimizer->SetMaximumNumberOfFunctionEvaluations(1000);

Let’s execute this example using the rat lung images from theprevious examples.

• RatLungSlice1.mha

• RatLungSlice2.mha

transform->SetParameters(finalParameters);

The source code for this section can be found in the file
Examples/Registration/DeformableRegistration5.cxx.

This example demonstrates how to use the level set motion to deformably register two images.
The first step is to include the header files.

#include "itkLevelSetMotionRegistrationFilter.h"
#include "itkHistogramMatchingImageFilter.h"

444 Chapter 8. Registration

#include "itkCastImageFilter.h"
#include "itkWarpImageFilter.h"
#include "itkLinearInterpolateImageFunction.h"

Second, we declare the types of the images.

const unsigned int Dimension = 2;
typedef unsigned short PixelType;

typedef itk::Image< PixelType, Dimension > FixedImageType;
typedef itk::Image< PixelType, Dimension > MovingImageType;

Image file readers are set up in a similar fashion to previous examples. To support the re-
mapping of the moving image intensity, we declare an internal image type with a floating point
pixel type and cast the input images to the internal image type.

typedef float InternalPixelType;
typedef itk::Image< InternalPixelType, Dimension > InternalImageType;
typedef itk::CastImageFilter< FixedImageType,

InternalImageType > FixedImageCasterType;
typedef itk::CastImageFilter< MovingImageType,

InternalImageType > MovingImageCasterType;

FixedImageCasterType::Pointer fixedImageCaster = FixedImageCasterType::New();
MovingImageCasterType::Pointer movingImageCaster = MovingImageCasterType::New();

fixedImageCaster->SetInput(fixedImageReader->GetOutput());
movingImageCaster->SetInput(movingImageReader->GetOutput());

The level set motion algorithm relies on the assumption thatpixels representing the same ho-
mologous point on an object have the same intensity on both the fixed and moving images to
be registered. In this example, we will preprocess the moving image to match the intensity
between the images using theitk::HistogramMatchingImageFilter.

The basic idea is to match the histograms of the two images at auser-specified number of
quantile values. For robustness, the histograms are matched so that the background pixels are
excluded from both histograms. For MR images, a simple procedure is to exclude all gray
values that are smaller than the mean gray value of the image.

typedef itk::HistogramMatchingImageFilter<
InternalImageType,
InternalImageType > MatchingFilterType;

MatchingFilterType::Pointer matcher = MatchingFilterType::New();

For this example, we set the moving image as the source or input image and the fixed image as
the reference image.

http://www.itk.org/Doxygen/html/classitk_1_1HistogramMatchingImageFilter.html

8.13. Deformable Registration 445

matcher->SetInput(movingImageCaster->GetOutput());
matcher->SetReferenceImage(fixedImageCaster->GetOutput());

We then select the number of bins to represent the histogramsand the number of points or
quantile values where the histogram is to be matched.

matcher->SetNumberOfHistogramLevels(1024);
matcher->SetNumberOfMatchPoints(7);

Simple background extraction is done by thresholding at themean intensity.

matcher->ThresholdAtMeanIntensityOn();

In the itk::LevelSetMotionRegistrationFilter, the deformation field is represented as
an image whose pixels are floating point vectors.

typedef itk::Vector< float, Dimension > VectorPixelType;
typedef itk::Image< VectorPixelType, Dimension > DeformationFieldType;
typedef itk::LevelSetMotionRegistrationFilter<

InternalImageType,
InternalImageType,
DeformationFieldType> RegistrationFilterType;

RegistrationFilterType::Pointer filter = RegistrationFilterType::New();

The input fixed image is simply the output of the fixed image casting filter. The input moving
image is the output of the histogram matching filter.

filter->SetFixedImage(fixedImageCaster->GetOutput());
filter->SetMovingImage(matcher->GetOutput());

The level set motion registration filter has two parameters:the number of iterations to be per-
formed and the standard deviation of the Gaussian smoothingkernel to be applied to the image
prior to calculating gradients.

filter->SetNumberOfIterations(50);
filter->SetGradientSmoothingStandardDeviations(4);

The registration algorithm is triggered by updating the filter. The filter output is the computed
deformation field.

filter->Update();

http://www.itk.org/Doxygen/html/classitk_1_1LevelSetMotionRegistrationFilter.html

446 Chapter 8. Registration

The itk::WarpImageFilter can be used to warp the moving image with the output defor-
mation field. Like theitk::ResampleImageFilter, the WarpImageFilter requires the speci-
fication of the input image to be resampled, an input image interpolator, and the output image
spacing and origin.

typedef itk::WarpImageFilter<
MovingImageType,
MovingImageType,
DeformationFieldType > WarperType;

typedef itk::LinearInterpolateImageFunction<
MovingImageType,
double > InterpolatorType;

WarperType::Pointer warper = WarperType::New();
InterpolatorType::Pointer interpolator = InterpolatorType::New();
FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();

warper->SetInput(movingImageReader->GetOutput());
warper->SetInterpolator(interpolator);
warper->SetOutputSpacing(fixedImage->GetSpacing());
warper->SetOutputOrigin(fixedImage->GetOrigin());

Unlike the ResampleImageFilter, the WarpImageFilter warps or transform the input image with
respect to the deformation field represented by an image of vectors. The resulting warped or
resampled image is written to file as per previous examples.

warper->SetDeformationField(filter->GetOutput());

Let’s execute this example using the rat lung data from the previous example. The associated
data files can be found inExamples/Data:

• RatLungSlice1.mha

• RatLungSlice2.mha

The result of the demons-based deformable registration is presented in Figure8.50. The
checkerboard comparison shows that the algorithm was able to recover the misalignment due to
expiration.

It may be also desirable to write the deformation field as an image of vectors. This can be done
with the following code.

typedef itk::ImageFileWriter< DeformationFieldType > FieldWriterType;
FieldWriterType::Pointer fieldWriter = FieldWriterType::New();
fieldWriter->SetFileName(argv[4]);
fieldWriter->SetInput(filter->GetOutput());

fieldWriter->Update();

http://www.itk.org/Doxygen/html/classitk_1_1WarpImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ResampleImageFilter.html

8.13. Deformable Registration 447

Figure 8.50:Checkerboard comparisons before and after demons-based deformable registration.

Note that the file format used for writing the deformation field must be capable of representing
multiple components per pixel. This is the case for the MetaImage and VTK file formats for
example.

The source code for this section can be found in the file
Examples/Registration/DeformableRegistration6.cxx.

This example illustrates the use of theitk::BSplineDeformableTransform class in a man-
ually controlled multi-resolution scheme. Here we define two transforms at two different res-
olution levels. A first registration is performed with the spline grid of low resolution, and the
results are then used for initializing a higher resolution grid. Since this example is quite similar
to the previous example on the use of theBSplineDeformableTransform we omit here most
of the details already discussed and will focus on the aspects related to the multi-resolution
approach.

We include the header files for the transform and the optimizer.

#include "itkBSplineDeformableTransform.h"
#include "itkLBFGSOptimizer.h"

We instantiate now the type of theBSplineDeformableTransform using as template param-
eters the type for coordinates representation, the dimension of the space, and the order of the
BSpline.

const unsigned int SpaceDimension = ImageDimension;
const unsigned int SplineOrder = 3;
typedef double CoordinateRepType;

http://www.itk.org/Doxygen/html/classitk_1_1BSplineDeformableTransform.html

448 Chapter 8. Registration

typedef itk::BSplineDeformableTransform<
CoordinateRepType,
SpaceDimension,
SplineOrder > TransformType;

We construct two transform objects, each one will be configured for a resolution level. Notice
than in this multi-resolution scheme we are not modifying the resolution of the image, but rather
the flexibility of the deformable transform itself.

TransformType::Pointer transformLow = TransformType::New();
registration->SetTransform(transformLow);

Here we define the parameters of the BSplineDeformableTransform grid. We arbitrarily decide
to use a grid with 5× 5 nodes within the image. The reader should note that the BSpline
computation requires a finite support region (1 grid node at the lower borders and 2 grid nodes
at upper borders). Therefore in this example, we set the gridsize to be 8×8 and place the grid
origin such that grid node (1,1) coincides with the first pixel in the fixed image.

Here we define the parameters of the BSpline transform at low resolution

RegionType::SizeType gridLowSizeOnImage;
gridLowSizeOnImage.Fill(5);
totalGridSize = gridLowSizeOnImage + gridBorderSize;

RegionType bsplineRegion;
bsplineRegion.SetSize(totalGridSize);

typedef TransformType::SpacingType SpacingType;
SpacingType spacingLow = fixedImage->GetSpacing();

typedef TransformType::OriginType OriginType;
OriginType originLow = fixedImage->GetOrigin();;

FixedImageType::SizeType fixedImageSize = fixedRegion.GetSize();

for(unsigned int r=0; r<ImageDimension; r++)
{
spacingLow[r] *= floor(static_cast<double>(fixedImageSize[r] - 1) /

static_cast<double>(gridLowSizeOnImage[r] - 1));
originLow[r] -= spacingLow[r];
}

transformLow->SetGridSpacing(spacingLow);
transformLow->SetGridOrigin(originLow);
transformLow->SetGridRegion(bsplineRegion);

typedef TransformType::ParametersType ParametersType;

8.13. Deformable Registration 449

const unsigned int numberOfParameters =
transformLow->GetNumberOfParameters();

ParametersType parametersLow(numberOfParameters);

parametersLow.Fill(0.0);

transformLow->SetParameters(parametersLow);

We now pass the parameters of the current transform as the initial parameters to be used when
the registration process starts.

registration->SetInitialTransformParameters(transformLow->GetParameters());

optimizer->SetGradientConvergenceTolerance(0.05);
optimizer->SetLineSearchAccuracy(0.9);
optimizer->SetDefaultStepLength(1.5);
optimizer->TraceOn();
optimizer->SetMaximumNumberOfFunctionEvaluations(1000);

std::cout << "Starting Registration with low resolution transform" << std::endl;

try
{
registration->StartRegistration();
}

catch(itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return -1;
}

Once the registration has finished with the low resolution grid, we proceed to instantiate a higher
resolutionBSplineDeformableTransform.

Now we need to initialize the BSpline coefficients of the higher resolution transform. This is
done by first computing the actual deformation field at the higher resolution from the lower
resolution BSpline coefficients. Then a BSpline decomposition is done to obtain the BSpline
coefficient of the higher resolution transform.

We now pass the parameters of the high resolution transform as the initial parameters to be used
in a second stage of the registration process.

registration->SetInitialTransformParameters(transformHigh->GetParameters());

450 Chapter 8. Registration

registration->SetTransform(transformHigh);

Typically, we will also want to tighten the optimizer parameters
when we move from lower to higher resolution grid.

The source code for this section can be found in the file
Examples/Registration/DeformableRegistration7.cxx.

This example illustrates the use of theitk::BSplineDeformableTransform class for per-
forming registration of two 3D images. The example code is for the most part identi-
cal to the code presented in Section8.13. The major difference is that this example we
set the image dimension to 3 and replace theitk::LBFGSOptimizer optimizer with the
itk::LBFGSBOptimizer. This optimizer is more appropriate for performing optimization in a
parametric spaces of higher dimensions.

The following are the most relevant headers to this example.

#include "itkBSplineDeformableTransform.h"
#include "itkLBFGSBOptimizer.h"

The parameter space of theBSplineDeformableTransform is composed by the set of all the
deformations associated with the nodes of the BSpline grid.This large number of parameters
makes possible to represent a wide variety of deformations,but it also has the price of requiring
a significant amount of computation time.

We instantiate now the type of theBSplineDeformableTransform using as template param-
eters the type for coordinates representation, the dimension of the space, and the order of the
BSpline.

const unsigned int SpaceDimension = ImageDimension;
const unsigned int SplineOrder = 3;
typedef double CoordinateRepType;

typedef itk::BSplineDeformableTransform<
CoordinateRepType,
SpaceDimension,
SplineOrder > TransformType;

The transform object is constructed below and passed to the registration method.

TransformType::Pointer transform = TransformType::New();
registration->SetTransform(transform);

Here we define the parameters of the BSplineDeformableTransform grid. We arbitrarily decide
to use a grid with 5× 5 nodes within the image. The reader should note that the BSpline

http://www.itk.org/Doxygen/html/classitk_1_1BSplineDeformableTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1LBFGSOptimizer.html
http://www.itk.org/Doxygen/html/classitk_1_1LBFGSBOptimizer.html

8.13. Deformable Registration 451

computation requires a finite support region (1 grid node at the lower borders and 2 grid nodes
at upper borders). Therefore in this example, we set the gridsize to be 8×8 and place the grid
origin such that grid node (1,1) coincides with the first pixel in the fixed image.

typedef TransformType::RegionType RegionType;
RegionType bsplineRegion;
RegionType::SizeType gridSizeOnImage;
RegionType::SizeType gridBorderSize;
RegionType::SizeType totalGridSize;

gridSizeOnImage.Fill(5);
gridBorderSize.Fill(3); // Border for spline order = 3 (1 lower, 2 upper)
totalGridSize = gridSizeOnImage + gridBorderSize;

bsplineRegion.SetSize(totalGridSize);

typedef TransformType::SpacingType SpacingType;
SpacingType spacing = fixedImage->GetSpacing();

typedef TransformType::OriginType OriginType;
OriginType origin = fixedImage->GetOrigin();;

FixedImageType::SizeType fixedImageSize = fixedRegion.GetSize();

for(unsigned int r=0; r<ImageDimension; r++)
{
spacing[r] *= floor(static_cast<double>(fixedImageSize[r] - 1) /

static_cast<double>(gridSizeOnImage[r] - 1));
origin[r] -= spacing[r];
}

transform->SetGridSpacing(spacing);
transform->SetGridOrigin(origin);
transform->SetGridRegion(bsplineRegion);

typedef TransformType::ParametersType ParametersType;

const unsigned int numberOfParameters =
transform->GetNumberOfParameters();

ParametersType parameters(numberOfParameters);

parameters.Fill(0.0);

transform->SetParameters(parameters);

We now pass the parameters of the current transform as the initial parameters to be used when

452 Chapter 8. Registration

the registration process starts.

registration->SetInitialTransformParameters(transform->GetParameters());

Next we set the parameters of the LBFGSB Optimizer.

transform->SetParameters(finalParameters);

The source code for this section can be found in the file
Examples/Registration/DeformableRegistration8.cxx.

This example illustrates the use of theitk::BSplineDeformableTransform class for per-
forming registration of two 3D images and for the case of multi-modality images. The image
metric of choice in this case is theitk::MattesMutualInformationImageToImageMetric.

The following are the most relevant headers to this example.

#include "itkBSplineDeformableTransform.h"
#include "itkLBFGSBOptimizer.h"

The parameter space of theBSplineDeformableTransform is composed by the set of all the
deformations associated with the nodes of the B-spline grid. This large number of parameters
makes possible to represent a wide variety of deformations,but it also has the price of requiring
a significant amount of computation time.

We instantiate now the type of theBSplineDeformableTransform using as template param-
eters the type for coordinates representation, the dimension of the space, and the order of the
B-spline.

const unsigned int SpaceDimension = ImageDimension;
const unsigned int SplineOrder = 3;
typedef double CoordinateRepType;

typedef itk::BSplineDeformableTransform<
CoordinateRepType,
SpaceDimension,
SplineOrder > TransformType;

The transform object is constructed below and passed to the registration method.

TransformType::Pointer transform = TransformType::New();
registration->SetTransform(transform);

Here we define the parameters of the BSplineDeformableTransform grid. We arbitrarily decide
to use a grid with 5× 5 nodes within the image. The reader should note that the B-spline

http://www.itk.org/Doxygen/html/classitk_1_1BSplineDeformableTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1MattesMutualInformationImageToImageMetric.html

8.13. Deformable Registration 453

computation requires a finite support region (1 grid node at the lower borders and 2 grid nodes
at upper borders). Therefore in this example, we set the gridsize to be 8×8 and place the grid
origin such that grid node (1,1) coincides with the first pixel in the fixed image.

typedef TransformType::RegionType RegionType;
RegionType bsplineRegion;
RegionType::SizeType gridSizeOnImage;
RegionType::SizeType gridBorderSize;
RegionType::SizeType totalGridSize;

gridSizeOnImage.Fill(12);
gridBorderSize.Fill(3); // Border for spline order = 3 (1 lower, 2 upper)
totalGridSize = gridSizeOnImage + gridBorderSize;

bsplineRegion.SetSize(totalGridSize);

typedef TransformType::SpacingType SpacingType;
SpacingType spacing = fixedImage->GetSpacing();

typedef TransformType::OriginType OriginType;
OriginType origin = fixedImage->GetOrigin();;

FixedImageType::SizeType fixedImageSize = fixedRegion.GetSize();

for(unsigned int r=0; r<ImageDimension; r++)
{
spacing[r] *= floor(static_cast<double>(fixedImageSize[r] - 1) /

static_cast<double>(gridSizeOnImage[r] - 1));
origin[r] -= spacing[r];
}

transform->SetGridSpacing(spacing);
transform->SetGridOrigin(origin);
transform->SetGridRegion(bsplineRegion);

typedef TransformType::ParametersType ParametersType;

const unsigned int numberOfParameters =
transform->GetNumberOfParameters();

ParametersType parameters(numberOfParameters);

parameters.Fill(0.0);

transform->SetParameters(parameters);

We now pass the parameters of the current transform as the initial parameters to be used when

454 Chapter 8. Registration

the registration process starts.

registration->SetInitialTransformParameters(transform->GetParameters());

Next we set the parameters of the LBFGSB Optimizer.

OptimizerType::BoundSelectionType boundSelect(transform->GetNumberOfParameters());
OptimizerType::BoundValueType upperBound(transform->GetNumberOfParameters());
OptimizerType::BoundValueType lowerBound(transform->GetNumberOfParameters());

boundSelect.Fill(0);
upperBound.Fill(0.0);
lowerBound.Fill(0.0);

optimizer->SetBoundSelection(boundSelect);
optimizer->SetUpperBound(upperBound);
optimizer->SetLowerBound(lowerBound);

optimizer->SetCostFunctionConvergenceFactor(1e+7);
optimizer->SetProjectedGradientTolerance(1e-4);
optimizer->SetMaximumNumberOfIterations(500);
optimizer->SetMaximumNumberOfEvaluations(500);
optimizer->SetMaximumNumberOfCorrections(12);

Next we set the parameters of the Mattes Mutual Information Metric.

metric->SetNumberOfHistogramBins(50);

const unsigned int numberOfSamples = fixedRegion.GetNumberOfPixels() / 10;

metric->SetNumberOfSpatialSamples(numberOfSamples);

Given that the Mattes Mutual Information metric uses a random iterator in order to collect the
samples from the images, it is usually convenient to initialize the seed of the random number
generator.

metric->ReinitializeSeed(76926294);

transform->SetParameters(finalParameters);

% Configuration file #1 for DeformableRegistration1.cxx
%
% This example demonstrates the setup of a basic registration
% problem that does NOT use multi-resolution strategies. As a

8.13. Deformable Registration 455

% result, only one value for the parameters between
% (# of pixels per element) and (maximum iterations) is necessary.
% If you were using multi-resolution, you would have to specify
% values for those parameters at each level of the pyramid.
%
% Note: the paths in the parameters assume you have the traditional
% ITK file hierarchy as shown below:
%
% ITK/Insight/Examples/Registration/DeformableRegistration1.cxx
% ITK/Insight/Examples/Data/RatLungSlice*
% ITK/Insight-Bin/bin/DeformableRegistration1
%
% ---
% Parameters for the single- or multi-resolution techniques
% ---
1 % Number of levels in the multi-res pyramid (1 = single-res)
1 % Highest level to use in the pyramid
1 1 % Scaling at lowest level of pyramid
4 % Number of pixels per element
1.e4 % Elasticity (E)
1.e4 % Density x capacity (RhoC)
1 % Image energy scaling (gamma) - sets gradient step size
2 % NumberOfIntegrationPoints
1 % WidthOfMetricRegion
20 % MaximumIterations
% -------------------------------
% Parameters for the registration
% -------------------------------
0 0.99 % Similarity metric (0=mean sq, 1 = ncc, 2=pattern int, 3=MI, 5=demons)
1.0 % Alpha
0 % DescentDirection (1 = max, 0 = min)
0 % DoLineSearch (0=never, 1=always, 2=if needed)
1.e1 % TimeStep
0.5 % Landmark variance
0 % Employ regridding / enforce diffeomorphism (>= 1 -> true)
% ----------------------------------
% Information about the image inputs
% ----------------------------------
128 % Nx (image x dimension)
128 % Ny (image y dimension)
0 % Nz (image z dimension - not used if 2D)
../../Insight/Examples/Data/RatLungSlice1.mha % ReferenceFileName
../../Insight/Examples/Data/RatLungSlice2.mha % TargetFileName
% ---
% The actions below depend on the values of the flags preceding them.
% For example, to write out the displacement fields, you have to set
% the value of WriteDisplacementField to 1.
% ---

456 Chapter 8. Registration

0 % UseLandmarks? - read the file name below if this is true
- % LandmarkFileName
./RatLung_result % ResultsFileName (prefix only)
1 % WriteDisplacementField?
./RatLung_disp % DisplacementsFileName (prefix only)
0 % ReadMeshFile?
- % MeshFileName
END

The source code for this section can be found in the file
Examples/Registration/LandmarkWarping2.cxx.

This example illustrates how to deform an image using a KernelBase spline and two sets of
landmarks.

#include "itkVector.h"
#include "itkImage.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkDeformationFieldSource.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkWarpImageFilter.h"
#include "itkLinearInterpolateImageFunction.h"

The source code for this section can be found in the file
Examples/Registration/BSplineWarping1.cxx.

This example illustrates how to deform an image using a BSplineTransform.

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"

#include "itkImage.h"
#include "itkResampleImageFilter.h"
#include "itkLinearInterpolateImageFunction.h"

#include "itkBSplineDeformableTransform.h"

#include <fstream>

int main(int argc, char * argv[])
{

if(argc < 5)
{

8.13. Deformable Registration 457

std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " coefficientsFile fixedImage ";
std::cerr << "movingImage deformedMovingImage" << std::endl;
std::cerr << "[deformationField]" << std::endl;
return 1;
}

const unsigned int ImageDimension = 2;

typedef unsigned char PixelType;
typedef itk::Image< PixelType, ImageDimension > FixedImageType;
typedef itk::Image< PixelType, ImageDimension > MovingImageType;

typedef itk::ImageFileReader< FixedImageType > FixedReaderType;
typedef itk::ImageFileReader< MovingImageType > MovingReaderType;

typedef itk::ImageFileWriter< MovingImageType > MovingWriterType;

FixedReaderType::Pointer fixedReader = FixedReaderType::New();
fixedReader->SetFileName(argv[2]);

try
{
fixedReader->Update();
}

catch(itk::ExceptionObject & excp)
{
std::cerr << "Exception thrown " << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}

MovingReaderType::Pointer movingReader = MovingReaderType::New();
MovingWriterType::Pointer movingWriter = MovingWriterType::New();

movingReader->SetFileName(argv[3]);
movingWriter->SetFileName(argv[4]);

FixedImageType::ConstPointer fixedImage = fixedReader->GetOutput();

typedef itk::ResampleImageFilter< MovingImageType,
FixedImageType > FilterType;

458 Chapter 8. Registration

FilterType::Pointer resampler = FilterType::New();

typedef itk::LinearInterpolateImageFunction<
MovingImageType, double > InterpolatorType;

InterpolatorType::Pointer interpolator = InterpolatorType::New();

resampler->SetInterpolator(interpolator);

FixedImageType::SpacingType fixedSpacing = fixedImage->GetSpacing();
FixedImageType::PointType fixedOrigin = fixedImage->GetOrigin();

resampler->SetOutputSpacing(fixedSpacing);
resampler->SetOutputOrigin(fixedOrigin);

FixedImageType::RegionType fixedRegion = fixedImage->GetBufferedRegion();
FixedImageType::SizeType fixedSize = fixedRegion.GetSize();
resampler->SetSize(fixedSize);
resampler->SetOutputStartIndex(fixedRegion.GetIndex());

resampler->SetInput(movingReader->GetOutput());

movingWriter->SetInput(resampler->GetOutput());

We instantiate now the type of theBSplineDeformableTransform using as template param-
eters the type for coordinates representation, the dimension of the space, and the order of the
B-spline.

const unsigned int SpaceDimension = ImageDimension;
const unsigned int SplineOrder = 3;
typedef double CoordinateRepType;

typedef itk::BSplineDeformableTransform<
CoordinateRepType,
SpaceDimension,
SplineOrder > TransformType;

TransformType::Pointer bsplineTransform = TransformType::New();

Since we are using a B-spline of order 3, the coverage of the BSpling grid should exceed by one
the spatial extent of the image on the lower region of image indices, and by two grid points on
the upper region of image indices. We choose here to use a 8×8 B-spline grid, from which only
a 5×5 sub-grid will be covering the input image. If we use an inputimage of size 500×500

8.13. Deformable Registration 459

pixels, and pixel spacing 2.0× 2.0 then we need the 5× 5 B-spline grid to cover a physical
extent of 1000×1000 mm. This can be achieved by setting the pixel spacing of the B-spline
grid to 250.0×250.0 mm. The origin of the B-spline grid must be set at one grid position away
from the origin of the desired output image. All this is done with the following lines of code.

typedef TransformType::RegionType RegionType;
RegionType bsplineRegion;
RegionType::SizeType size;

const unsigned int numberOfGridNodesOutsideTheImageSupport = 3;

const unsigned int numberOfGridNodesInsideTheImageSupport = 5;

const unsigned int numberOfGridNodes =
numberOfGridNodesInsideTheImageSupport +
numberOfGridNodesOutsideTheImageSupport;

const unsigned int numberOfGridCells =
numberOfGridNodesInsideTheImageSupport - 1;

size.Fill(numberOfGridNodes);
bsplineRegion.SetSize(size);

typedef TransformType::SpacingType SpacingType;
SpacingType spacing;
spacing[0] = floor(fixedSpacing[0] * (fixedSize[0] - 1) / numberOfGridCells);
spacing[1] = floor(fixedSpacing[1] * (fixedSize[1] - 1) / numberOfGridCells);

typedef TransformType::OriginType OriginType;
OriginType origin;
origin[0] = fixedOrigin[0] - spacing[0];
origin[1] = fixedOrigin[1] - spacing[1];

bsplineTransform->SetGridSpacing(spacing);
bsplineTransform->SetGridOrigin(origin);
bsplineTransform->SetGridRegion(bsplineRegion);

typedef TransformType::ParametersType ParametersType;

const unsigned int numberOfParameters =
bsplineTransform->GetNumberOfParameters();

const unsigned int numberOfNodes = numberOfParameters / SpaceDimension;

ParametersType parameters(numberOfParameters);

460 Chapter 8. Registration

The B-spline grid should now be fed with coeficients at each node. Since this is a two dimen-
sional grid, each node should receive two coefficients. Eachcoefficient pair is representing a
displacement vector at this node. The coefficients can be passed to the B-spline in the form of
an array where the first set of elements are the first componentof the displacements for all the
nodes, and the second set of elemets is formed by the second component of the displacements
for all the nodes.

In this example we read such displacements from a file, but forconvinience we have written this
file using the pairs of(x,y) displacement for every node. The elements read from the file should
therefore be reorganized when assigned to the elements of the array. We do this by storing all
the odd elements from the file in the first block of the array, and all the even elements from the
file in the second block of the array. Finally the array is passed to the B-spline transform using
theSetParameters().

std::ifstream infile;

infile.open(argv[1]);

for(unsigned int n=0; n < numberOfNodes; n++)
{
infile >> parameters[n];
infile >> parameters[n+numberOfNodes];
}

infile.close();

Finally the array is passed to the B-spline transform using theSetParameters().

bsplineTransform->SetParameters(parameters);

At this point we are ready to use the transform as part of the resample filter. We trigger the
execution of the pipeline by invokingUpdate() on the last filter of the pipeline, in this case
writer.

resampler->SetTransform(bsplineTransform);

try
{
movingWriter->Update();
}

catch(itk::ExceptionObject & excp)
{
std::cerr << "Exception thrown " << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}

8.14. Demons Deformable Registration 461

8.14 Demons Deformable Registration

For the problem of intra-modality deformable registration, the Insight Toolkit provides an im-
plementation of Thirion’s “demons” algorithm [80, 81]. In this implementation, each image is
viewed as a set of iso-intensity contours. The main idea is that a regular grid of forces deform
an image by pushing the contours in the normal direction. Theorientation and magnitude of the
displacement is derived from the instantaneous optical flowequation:

D(X) ·∇f(X) = −(m(X)− f(X)) (8.36)

In the above equation,f (X) is the fixed image,m(X) is the moving image to be registered, and
D(X) is the displacement or optical flow between the images. It is well known in optical flow
literature that Equation8.36is insufficient to specifyD(X) locally and is usually determined
using some form of regularization. For registration, the projection of the vector on the direction
of the intensity gradient is used:

D(X) = − (m(X)− f(X))∇f(X)

‖∇f‖2 (8.37)

However, this equation becomes unstable for small values ofthe image gradient, resulting in
large displacement values. To overcome this problem, Thirion re-normalizes the equation such
that:

D(X) = − (m(X)− f(X))∇f(X)

‖∇f‖2 +(m(X)− f(X))2/K
(8.38)

WhereK is a normalization factor that accounts for the units imbalance between intensities
and gradients. This factor is computed as the mean squared value of the pixel spacings. The
inclusion ofK make the force computation to be invariant to the pixel scaling of the images.

Starting with an initial deformation fieldD0(X), the demons algorithm iteratively updates the
field using Equation8.38such that the field at theN-th iteration is given by:

DN(X) = DN−1(X)−
(

m(X +DN−1(X))− f(X)
)

∇f(X)

‖∇f‖2 +(m(X +DN−1(X))− f(X))
2 (8.39)

Reconstruction of the deformation field is an ill-posed problem where matching the fixed and
moving images has many solutions. For example, since each image pixel is free to move in-
dependently, it is possible that all pixels of one particular value inm(X) could map to a single
image pixel in f (X) of the same value. The resulting deformation field may be unrealistic for
real-world applications. An option to solve for the field uniquely is to enforce an elastic-like
behavior, smoothing the deformation field with a Gaussian filter between iterations.

462 Chapter 8. Registration

In ITK, the demons algorithm is implemented as part of the finite difference solver (FDS) frame-
work and its use is demonstrated in the following example.

The source code for this section can be found in the file
Examples/Registration/DeformableRegistration2.cxx.

This example demonstrates how to use the “demons” algorithmto deformably register two
images. The first step is to include the header files.

#include "itkDemonsRegistrationFilter.h"
#include "itkHistogramMatchingImageFilter.h"
#include "itkCastImageFilter.h"
#include "itkWarpImageFilter.h"
#include "itkLinearInterpolateImageFunction.h"

Second, we declare the types of the images.

const unsigned int Dimension = 2;
typedef unsigned short PixelType;

typedef itk::Image< PixelType, Dimension > FixedImageType;
typedef itk::Image< PixelType, Dimension > MovingImageType;

Image file readers are set up in a similar fashion to previous examples. To support the re-
mapping of the moving image intensity, we declare an internal image type with a floating point
pixel type and cast the input images to the internal image type.

typedef float InternalPixelType;
typedef itk::Image< InternalPixelType, Dimension > InternalImageType;
typedef itk::CastImageFilter< FixedImageType,

InternalImageType > FixedImageCasterType;
typedef itk::CastImageFilter< MovingImageType,

InternalImageType > MovingImageCasterType;

FixedImageCasterType::Pointer fixedImageCaster = FixedImageCasterType::New();
MovingImageCasterType::Pointer movingImageCaster = MovingImageCasterType::New();

fixedImageCaster->SetInput(fixedImageReader->GetOutput());
movingImageCaster->SetInput(movingImageReader->GetOutput());

The demons algorithm relies on the assumption that pixels representing the same homologous
point on an object have the same intensity on both the fixed andmoving images to be registered.
In this example, we will preprocess the moving image to matchthe intensity between the images
using theitk::HistogramMatchingImageFilter.

The basic idea is to match the histograms of the two images at auser-specified number of
quantile values. For robustness, the histograms are matched so that the background pixels are

http://www.itk.org/Doxygen/html/classitk_1_1HistogramMatchingImageFilter.html

8.14. Demons Deformable Registration 463

excluded from both histograms. For MR images, a simple procedure is to exclude all gray
values that are smaller than the mean gray value of the image.

typedef itk::HistogramMatchingImageFilter<
InternalImageType,
InternalImageType > MatchingFilterType;

MatchingFilterType::Pointer matcher = MatchingFilterType::New();

For this example, we set the moving image as the source or input image and the fixed image as
the reference image.

matcher->SetInput(movingImageCaster->GetOutput());
matcher->SetReferenceImage(fixedImageCaster->GetOutput());

We then select the number of bins to represent the histogramsand the number of points or
quantile values where the histogram is to be matched.

matcher->SetNumberOfHistogramLevels(1024);
matcher->SetNumberOfMatchPoints(7);

Simple background extraction is done by thresholding at themean intensity.

matcher->ThresholdAtMeanIntensityOn();

In the itk::DemonsRegistrationFilter, the deformation field is represented as an image
whose pixels are floating point vectors.

typedef itk::Vector< float, Dimension > VectorPixelType;
typedef itk::Image< VectorPixelType, Dimension > DeformationFieldType;
typedef itk::DemonsRegistrationFilter<

InternalImageType,
InternalImageType,
DeformationFieldType> RegistrationFilterType;

RegistrationFilterType::Pointer filter = RegistrationFilterType::New();

The input fixed image is simply the output of the fixed image casting filter. The input moving
image is the output of the histogram matching filter.

filter->SetFixedImage(fixedImageCaster->GetOutput());
filter->SetMovingImage(matcher->GetOutput());

The demons registration filter has two parameters: the number of iterations to be performed and
the standard deviation of the Gaussian smoothing kernel to be applied to the deformation field
after each iteration.

http://www.itk.org/Doxygen/html/classitk_1_1DemonsRegistrationFilter.html

464 Chapter 8. Registration

filter->SetNumberOfIterations(50);
filter->SetStandardDeviations(1.0);

The registration algorithm is triggered by updating the filter. The filter output is the computed
deformation field.

filter->Update();

The itk::WarpImageFilter can be used to warp the moving image with the output defor-
mation field. Like theitk::ResampleImageFilter, the WarpImageFilter requires the speci-
fication of the input image to be resampled, an input image interpolator, and the output image
spacing and origin.

typedef itk::WarpImageFilter<
MovingImageType,
MovingImageType,
DeformationFieldType > WarperType;

typedef itk::LinearInterpolateImageFunction<
MovingImageType,
double > InterpolatorType;

WarperType::Pointer warper = WarperType::New();
InterpolatorType::Pointer interpolator = InterpolatorType::New();
FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();

warper->SetInput(movingImageReader->GetOutput());
warper->SetInterpolator(interpolator);
warper->SetOutputSpacing(fixedImage->GetSpacing());
warper->SetOutputOrigin(fixedImage->GetOrigin());

Unlike the ResampleImageFilter, the WarpImageFilter warps or transform the input image with
respect to the deformation field represented by an image of vectors. The resulting warped or
resampled image is written to file as per previous examples.

warper->SetDeformationField(filter->GetOutput());

Let’s execute this example using the rat lung data from the previous example. The associated
data files can be found inExamples/Data:

• RatLungSlice1.mha

• RatLungSlice2.mha

The result of the demons-based deformable registration is presented in Figure8.51. The
checkerboard comparison shows that the algorithm was able to recover the misalignment due to
expiration.

http://www.itk.org/Doxygen/html/classitk_1_1WarpImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ResampleImageFilter.html

8.14. Demons Deformable Registration 465

Figure 8.51:Checkerboard comparisons before and after demons-based deformable registration.

It may be also desirable to write the deformation field as an image of vectors. This can be done
with the following code.

typedef itk::ImageFileWriter< DeformationFieldType > FieldWriterType;
FieldWriterType::Pointer fieldWriter = FieldWriterType::New();
fieldWriter->SetFileName(argv[4]);
fieldWriter->SetInput(filter->GetOutput());

fieldWriter->Update();

Note that the file format used for writing the deformation field must be capable of representing
multiple components per pixel. This is the case for the MetaImage and VTK file formats for
example.

A variant of the force computation is also implemented in which the gradient of the deformed
moving image is also involved. This provides a level of symmetry in the force calculation during
one iteration of the PDE update. The equation used in this case is

D(X) = −2(m(X)− f(X))(∇f(X)+ ∇g(X))

‖∇f + ∇g‖2 +(m(X)− f(X))2/K
(8.40)

The following example illustrates the use of this deformable registration method.

The source code for this section can be found in the file
Examples/Registration/DeformableRegistration3.cxx.

This example demonstrates how to use a variant of the “demons” algorithm to deformably
register two images. This variant uses a different formulation for computing the forces to be

466 Chapter 8. Registration

applied to the image in order to compute the deformation fields. The variant uses both the
gradient of the fixed image and the gradient of the deformed moving image in order to compute
the forces. This mechanism for computing the forces introduces a symmetry with respect to the
choice of the fixed and moving images. This symmetry only holds during the computation of
one iteration of the PDE updates. It is unlikely that total symmetry may be achieved by this
mechanism for the entire registration process.

The first step for using this filter is to include the followingheader files.

#include "itkSymmetricForcesDemonsRegistrationFilter.h"
#include "itkHistogramMatchingImageFilter.h"
#include "itkCastImageFilter.h"
#include "itkWarpImageFilter.h"
#include "itkLinearInterpolateImageFunction.h"

Second, we declare the types of the images.

const unsigned int Dimension = 2;
typedef unsigned short PixelType;

typedef itk::Image< PixelType, Dimension > FixedImageType;
typedef itk::Image< PixelType, Dimension > MovingImageType;

Image file readers are set up in a similar fashion to previous examples. To support the re-
mapping of the moving image intensity, we declare an internal image type with a floating point
pixel type and cast the input images to the internal image type.

typedef float InternalPixelType;
typedef itk::Image< InternalPixelType, Dimension > InternalImageType;
typedef itk::CastImageFilter< FixedImageType,

InternalImageType > FixedImageCasterType;
typedef itk::CastImageFilter< MovingImageType,

InternalImageType > MovingImageCasterType;

FixedImageCasterType::Pointer fixedImageCaster = FixedImageCasterType::New();
MovingImageCasterType::Pointer movingImageCaster = MovingImageCasterType::New();

fixedImageCaster->SetInput(fixedImageReader->GetOutput());
movingImageCaster->SetInput(movingImageReader->GetOutput());

The demons algorithm relies on the assumption that pixels representing the same homologous
point on an object have the same intensity on both the fixed andmoving images to be registered.
In this example, we will preprocess the moving image to matchthe intensity between the images
using theitk::HistogramMatchingImageFilter.

The basic idea is to match the histograms of the two images at auser-specified number of
quantile values. For robustness, the histograms are matched so that the background pixels are

http://www.itk.org/Doxygen/html/classitk_1_1HistogramMatchingImageFilter.html

8.14. Demons Deformable Registration 467

excluded from both histograms. For MR images, a simple procedure is to exclude all gray
values that are smaller than the mean gray value of the image.

typedef itk::HistogramMatchingImageFilter<
InternalImageType,
InternalImageType > MatchingFilterType;

MatchingFilterType::Pointer matcher = MatchingFilterType::New();

For this example, we set the moving image as the source or input image and the fixed image as
the reference image.

matcher->SetInput(movingImageCaster->GetOutput());
matcher->SetReferenceImage(fixedImageCaster->GetOutput());

We then select the number of bins to represent the histogramsand the number of points or
quantile values where the histogram is to be matched.

matcher->SetNumberOfHistogramLevels(1024);
matcher->SetNumberOfMatchPoints(7);

Simple background extraction is done by thresholding at themean intensity.

matcher->ThresholdAtMeanIntensityOn();

In the itk::SymmetricForcesDemonsRegistrationFilter, the deformation field is repre-
sented as an image whose pixels are floating point vectors.

typedef itk::Vector< float, Dimension > VectorPixelType;
typedef itk::Image< VectorPixelType, Dimension > DeformationFieldType;
typedef itk::SymmetricForcesDemonsRegistrationFilter<

InternalImageType,
InternalImageType,
DeformationFieldType> RegistrationFilterType;

RegistrationFilterType::Pointer filter = RegistrationFilterType::New();

The input fixed image is simply the output of the fixed image casting filter. The input moving
image is the output of the histogram matching filter.

filter->SetFixedImage(fixedImageCaster->GetOutput());
filter->SetMovingImage(matcher->GetOutput());

The demons registration filter has two parameters: the number of iterations to be performed and
the standard deviation of the Gaussian smoothing kernel to be applied to the deformation field
after each iteration.

http://www.itk.org/Doxygen/html/classitk_1_1SymmetricForcesDemonsRegistrationFilter.html

468 Chapter 8. Registration

filter->SetNumberOfIterations(50);
filter->SetStandardDeviations(1.0);

The registration algorithm is triggered by updating the filter. The filter output is the computed
deformation field.

filter->Update();

The itk::WarpImageFilter can be used to warp the moving image with the output defor-
mation field. Like theitk::ResampleImageFilter, the WarpImageFilter requires the speci-
fication of the input image to be resampled, an input image interpolator, and the output image
spacing and origin.

typedef itk::WarpImageFilter<
MovingImageType,
MovingImageType,
DeformationFieldType > WarperType;

typedef itk::LinearInterpolateImageFunction<
MovingImageType,
double > InterpolatorType;

WarperType::Pointer warper = WarperType::New();
InterpolatorType::Pointer interpolator = InterpolatorType::New();
FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();

warper->SetInput(movingImageReader->GetOutput());
warper->SetInterpolator(interpolator);
warper->SetOutputSpacing(fixedImage->GetSpacing());
warper->SetOutputOrigin(fixedImage->GetOrigin());

Unlike the ResampleImageFilter, the WarpImageFilter warps or transform the input image with
respect to the deformation field represented by an image of vectors. The resulting warped or
resampled image is written to file as per previous examples.

warper->SetDeformationField(filter->GetOutput());

Let’s execute this example using the rat lung data from the previous example. The associated
data files can be found inExamples/Data:

• RatLungSlice1.mha

• RatLungSlice2.mha

The result of the demons-based deformable registration is presented in Figure8.52. The
checkerboard comparison shows that the algorithm was able to recover the misalignment due to
expiration.

http://www.itk.org/Doxygen/html/classitk_1_1WarpImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ResampleImageFilter.html

8.15. Visualizing Deformation fields 469

Figure 8.52:Checkerboard comparisons before and after demons-based deformable registration.

It may be also desirable to write the deformation field as an image of vectors. This can be done
with the following code.

typedef itk::ImageFileWriter< DeformationFieldType > FieldWriterType;

FieldWriterType::Pointer fieldWriter = FieldWriterType::New();
fieldWriter->SetFileName(argv[4]);
fieldWriter->SetInput(filter->GetOutput());

fieldWriter->Update();

Note that the file format used for writing the deformation field must be capable of representing
multiple components per pixel. This is the case for the MetaImage and VTK file formats for
example.

8.15 Visualizing Deformation fields

Vector deformation fields may be visualized using ParaView.ParaView [35] is an open-source,
multi-platform visualization application and uses the Visualization Toolkit as the data process-
ing and rendering engine and has a user interface written using a unique blend of Tcl/Tk and
C++. You may download it from http://paraview.org.

470 Chapter 8. Registration

8.15.1 Visualizing 2D deformation fields

Let us visualize the deformation field obtained from Demons Registration algorithm generated
from Insight/Examples/Registration/DeformableRegistration2.cxx.

Load the Deformation field in Paraview. (The deformation field must be capable of handling
vector data, such as MetaImages). Paraview shows a color mapof the magnitudes of the defor-
mation fields as shown in8.53.

Covert the deformation field to 3D vector data using aCalculator. The Calculator may be
found in theFilter pull down menu. A screenshot of the calculator tab is shown inFigure
8.54. Although the deformation field is a 2D vector, we will generate a 3D vector with the third
component set to 0 since Paraview generates glyphs only for 3D vectors. You may now apply
a glyph of arrows to the resulting 3D vector field by usingGlyphon the menu bar. The glyphs
obtained will be very dense since a glyph is generated for each point in the data set. To better
visualize the deformation field, you may adopt one of the following approaches.

Reduce the number of glyphs by reducing the number inMax. Number of Glyphsto reasonable
amount. This uniformly downsamples the number of glyphs. Alternatively, you may apply a
Thresholdfilter to theMagnitudeof the vector dataset and then glyph the vector data that lies
above the threshold. This eliminates the smaller deformation fields that clutter the display. You
may now reduce the number of glyphs to a reasonable value.

Figure8.55shows the vector field visualized using Paraview by thresholding the vector magni-
tudes by 2.1 and restricting the number of glyphs to 100.

8.15.2 Visualizing 3D deformation fields

Let us create a 3D deformation field. We will use Thin Plate Splines to warp a 3D dataset and
create a deformation field. We will pick a set of point landmarks and translate them to pro-
vide a specification of correspondences at point landmarks.Note that the landmarks have been
picked randomly for purposes of illustration and are not intended to portray a true deformation.
The landmarks may be used to produce a deformation field in several ways. Most techniques
minimize some regularizing functional representing the irregularity of the deformation field,
which is usually some function of the spatial derivatives ofthe field. Here will we usethin plate
splines. Thin plate splines minimize the regularizing functional

I [f (x,y)] =
ZZ

(f 2
xx+2 f 2

xy+ f 2
yy)dxdy (8.41)

where the subscripts denote partial derivatives of f.

The code for this section can be found in Insight/Examples/Registration/ThinPlateSplineWarp.cxx

We may now proceed as before to visualize the deformation field using Paraview as shown in
Figure8.56.

Let us register the deformed volumes generated by Thin platewarping in the previous example

8.15. Visualizing Deformation fields 471

Figure 8.53:Deformation field magnitudes displayed using Paraview

Figure 8.54:Calculators and filters may be used to compute the vector magnitude, compose vectors etc.

472 Chapter 8. Registration

Figure 8.55:Deformation field visualized using Paraview after thresholding and subsampling.

8.15. Visualizing Deformation fields 473

Figure 8.56:3D Deformation field visualized using Paraview.

474 Chapter 8. Registration

Iteration Function
value

‖G‖ Step length

1 156.981 14.911 0.202
2 68.956 11.774 1.500
3 38.146 4.802 1.500
4 26.690 2.515 1.500
5 23.295 1.106 1.500
6 21.454 1.032 1.500
7 20.322 1.557 1.500
8 19.751 0.594 1.500

Table 8.17:LBFGS Optimizer trace.

using DeformableRegistration4.cxx. Since ITK is in general N-dimensional, the only change in
the example is to replace theImageDimension by 3.

The registration method uses B-splines and an LBFGS optimizer. The trace in Table.8.17prints
the trace of the optimizer through the search space.

Here‖G‖ is the norm of the gradient at the current estimate of the minimum, x. “Function
Value” is the current value of the function, f(x).

The resulting deformation field that maps the moving to the fixed image is shown in8.57. A
difference image of two slices before and after registration is shown in8.58. As can be seen
from the figures, the deformation field is in close agreement to the one generated from the Thin
plate spline warping.

8.15. Visualizing Deformation fields 475

Figure 8.57:Resulting deformation field that maps the moving image to the fixed image.

Figure 8.58:Difference image from a slice before and after registration.

476 Chapter 8. Registration

8.16 Model Based Registration

Optimizer

Transform

Interpolator

Metric

Moving Image

SpatialObject
fitness value

points

pixels

pixels

Parameters

points

Figure 8.59:The basic components of model based registra-

tion are an image, a spatial object, a transform, a metric, an

interpolator and an optimizer.

This section introduces the concept
of registering a geometrical model
with an image. We refer to this
concept asmodel based registra-
tion but this may not be the most
widespread terminology. In this ap-
proach, a geometrical model is built
first and a number of parameters are
identified in the model. Variations
of these parameters make it possi-
ble to adapt the model to the mor-
phology of a particular patient. The
task of registration is then to find the optimal combination of model parameters that will make
this model a good representation of the anatomical structures contained in an image.

For example, let’s say that in the axial view of a brain image we can roughly approximate the
skull with an ellipse. The ellipse becomes our simplified geometrical model, and registration
is the task of finding the best center for the ellipse, the measures of its axis lengths and its
orientation in the plane. This is illustrated in Figure8.60. If we compare this approach with the
image-to-image registration problem, we can see that the main difference here is that in addition
to mapping the spatial position of the model, we can also customize internal parameters that
change its shape.

Figure8.59illustrates the major components of the registration framework in ITK when a model
base registration problem is configured. The basic input data for the registration is provided by
pixel data in anitk::Image and by geometrical data stored in aitk::SpatialObject. A
metric has to be defined in order to evaluate the fitness between the model and the image.
This fitness value can be improved by introducing variationsin the spatial positioning of the
SpatialObject and/or by changing its internal parameters.The search space for the optimizer is
now the composition of the transform parameter and the shapeinternal parameters.

This same approach can be considered a segmentation technique, since once the model has
been optimally superimposed on the image we could label pixels according to their associations
with specific parts of the model. The applications of model toimage registration/segmentation
are endless. The main advantage of this approach is probablythat, as opposed to image-to-
image registration, it actually providesInsight into the anatomical structure contained in the
image. The adapted model becomes a condensed representation of the essential elements of the
anatomical structure.

ITK provides a hierarchy of classes intended to support the construction of shape models. This
hierarchy has the SpatialObject as its base class. A number of basic functionalities are defined
at this level, including the capacity to evaluate whether a given point is insideor outsideof
the model, form complex shapes by creating hierarchical conglomerates of basic shapes, and
support basic spatial parameterizations like scale, orientation and position.

http://www.itk.org/Doxygen/html/classitk_1_1Image.html
http://www.itk.org/Doxygen/html/classitk_1_1SpatialObject.html

8.16. Model Based Registration 477

Model and Image Before Registration Model and Image After Registration

Figure 8.60:Basic concept of Model-to-Image registration. A simplified geometrical model (ellipse) is

registered against an anatomical structure (skull) by applying a spatial transform and modifying the model

internal parameters. This image is not the result of an actual registration, it is shown here only with the

purpose of illustrating the concept of model to image registration.

The following sections present examples of the typical usesof these powerful elements of the
toolkit.

The source code for this section can be found in the file
Examples/Registration/ModelToImageRegistration1.cxx.

This example illustrates the use of theitk::SpatialObject as a component of the registra-
tion framework in order to perform model based registration. The current example creates a
geometrical model composed of several ellipses. Then, it uses the model to produce a synthetic
binary image of the ellipses. Next, it introduces perturbations on the position and shape of the
model, and finally it uses the perturbed version as the input to a registration problem. A metric
is defined to evaluate the fitness between the geometric modeland the image.

Let’s look first at the classes required to support SpatialObject. In this example we
use the itk::EllipseSpatialObject as the basic shape components and we use the
itk::GroupSpatialObject to group them together as a representation of a more complex
shape. Their respective headers are included below.

#include "itkEllipseSpatialObject.h"
#include "itkGroupSpatialObject.h"

In order to generate the initial synthetic image of the ellipses, we use the
itk::SpatialObjectToImageFilter that tests—for every pixel in the image—whether
the pixel (and hence the spatial object) isinsideor outsidethe geometric model.

http://www.itk.org/Doxygen/html/classitk_1_1SpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1EllipseSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1GroupSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectToImageFilter.html

478 Chapter 8. Registration

#include <itkSpatialObjectToImageFilter.h>

A metric is defined to evaluate the fitness between the SpatialObject and the Image. The base
class for this type of metric is theitk::ImageToSpatialObjectMetric, whose header is
included below.

#include <itkImageToSpatialObjectMetric.h>

As in previous registration problems, we have to evaluate the image intensity in non-grid posi-
tions. Theitk::LinearInterpolateImageFunction is used here for this purpose.

#include "itkLinearInterpolateImageFunction.h"

The SpatialObject is mapped from its own space into the imagespace by using a
itk::Transform. In this example, we use theitk::Euler2DTransform.

#include "itkEuler2DTransform.h"

Registration is fundamentally an optimization problem. Here we include the optimizer
used to search the parameter space and identify the best transformation that will map
the shape model on top of the image. The optimizer used in thisexample is the
itk::OnePlusOneEvolutionaryOptimizer that implements anevolutionary algorithm.

#include "itkOnePlusOneEvolutionaryOptimizer.h"

As in previous registration examples, it is important to track the evolution of the optimizer
as it progresses through the parameter space. This is done byusing the Command/Observer
paradigm. The following lines of code implement theitk::Command observer that monitors
the progress of the registration. The code is quite similar to what we have used in previous
registration examples.

#include "itkCommand.h"
template < class TOptimizer >
class IterationCallback : public itk::Command
{
public:
typedef IterationCallback Self;
typedef itk::Command Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;

itkTypeMacro(IterationCallback, Superclass);
itkNewMacro(Self);

http://www.itk.org/Doxygen/html/classitk_1_1ImageToSpatialObjectMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1LinearInterpolateImageFunction.html
http://www.itk.org/Doxygen/html/classitk_1_1Transform.html
http://www.itk.org/Doxygen/html/classitk_1_1Euler2DTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1OnePlusOneEvolutionaryOptimizer.html
http://www.aic.nrl.navy.mil/galist/
http://www.itk.org/Doxygen/html/classitk_1_1Command.html

8.16. Model Based Registration 479

/** Type defining the optimizer. */
typedef TOptimizer OptimizerType;

/** Method to specify the optimizer. */
void SetOptimizer(OptimizerType * optimizer)
{

m_Optimizer = optimizer;
m_Optimizer->AddObserver(itk::IterationEvent(), this);

}

/** Execute method will print data at each iteration */
void Execute(itk::Object *caller, const itk::EventObject & event)
{

Execute((const itk::Object *)caller, event);
}

void Execute(const itk::Object *, const itk::EventObject & event)
{

if(typeid(event) == typeid(itk::StartEvent))
{
std::cout << std::endl << "Position Value";
std::cout << std::endl << std::endl;
}

else if(typeid(event) == typeid(itk::IterationEvent))
{
std::cout << m_Optimizer->GetCurrentIteration() << " ";
std::cout << m_Optimizer->GetValue() << " ";
std::cout << m_Optimizer->GetCurrentPosition() << std::endl;
}

else if(typeid(event) == typeid(itk::EndEvent))
{
std::cout << std::endl << std::endl;
std::cout << "After " << m_Optimizer->GetCurrentIteration();
std::cout << " iterations " << std::endl;
std::cout << "Solution is = " << m_Optimizer->GetCurrentPosition();
std::cout << std::endl;
}

}

This command will be invoked at every iteration of the optimizer and will print out the current
combination of transform parameters.

Consider now the most critical component of this new registration approach: the metric. This
component evaluates the match between the SpatialObject and the Image. The smoothness and
regularity of the metric determine the difficulty of the taskassigned to the optimizer. In this case,
we use a very robust optimizer that should be able to find its way even in the most discontinuous
cost functions. The metric to be implemented should derive from the ImageToSpatialObject-

480 Chapter 8. Registration

Metric class.

The following code implements a simple metric that computesthe sum of the pixels that are
inside the spatial object. In fact, the metric maximum is obtained when the model and the
image are aligned. The metric is templated over the type of the SpatialObject and the type of
the Image.

template <typename TFixedImage, typename TMovingSpatialObject>
class SimpleImageToSpatialObjectMetric :
public itk::ImageToSpatialObjectMetric<TFixedImage,TMovingSpatialObject>

{

The fundamental operation of the metric is itsGetValue() method. It is in this method that
the fitness value is computed. In our current example, the fitness is computed over the points of
the SpatialObject. For each point, its coordinates are mapped through the transform into image
space. The resulting point is used to evaluate the image and the resulting value is accumulated
in a sum. Since we are not allowing scale changes, the optimalvalue of the sum will result
when all the SpatialObject points are mapped on the white regions of the image. Note that the
argument for theGetValue() method is the array of parameters of the transform.

MeasureType GetValue(const ParametersType & parameters) const
{

double value;
this->m_Transform->SetParameters(parameters);

PointListType::const_iterator it = m_PointList.begin();

typename TFixedImage::SizeType size =
this->m_FixedImage->GetBufferedRegion().GetSize();

itk::Index<2> index;
itk::Index<2> start = this->m_FixedImage->GetBufferedRegion().GetIndex();

value = 0;
while(it != m_PointList.end())
{
PointType transformedPoint = this->m_Transform->TransformPoint(*it);
this->m_FixedImage->TransformPhysicalPointToIndex(transformedPoint,index);
if(index[0]> start[0]

&& index[1]> start[1]
&& index[0]< static_cast< signed long >(size[0])
&& index[1]< static_cast< signed long >(size[1]))

{
value += this->m_FixedImage->GetPixel(index);
}

it++;
}

8.16. Model Based Registration 481

return value;
}

Having defined all the registration components we are ready to put the pieces together and
implement the registration process.

First we instantiate the GroupSpatialObject and EllipseSpatialObject. These two objects are
parameterized by the dimension of the space. In our current example a 2D instantiation is
created.

typedef itk::GroupSpatialObject< 2 > GroupType;
typedef itk::EllipseSpatialObject< 2 > EllipseType;

The image is instantiated in the following lines using the pixel type and the space dimension.
This image uses afloat pixel type since we plan to blur it in order to increase the capture
radius of the optimizer. Images of real pixel type behave better under blurring than those of
integer pixel type.

typedef itk::Image< float, 2 > ImageType;

Here is where the fun begins! In the following lines we createthe EllipseSpatialObjects using
their New() methods, and assigning the results to SmartPointers. Theselines will create three
ellipses.

EllipseType::Pointer ellipse1 = EllipseType::New();
EllipseType::Pointer ellipse2 = EllipseType::New();
EllipseType::Pointer ellipse3 = EllipseType::New();

Every class deriving from SpatialObject has particular parameters enabling the user to tailor its
shape. In the case of the EllipseSpatialObject,SetRadius() is used to define the ellipse size.
An additionalSetRadius(Array) method allows the user to define the ellipse axes indepen-
dently.

ellipse1->SetRadius(10.0);
ellipse2->SetRadius(10.0);
ellipse3->SetRadius(10.0);

The ellipses are created centered in space by default. We usethe following lines of code to
arrange the ellipses in a triangle. The spatial transform intrinsically associated with the object is
accessed by theGetTransform() method. This transform can define a translation in space with
theSetOffset() method. We take advantage of this feature to place the ellipses at particular
points in space.

482 Chapter 8. Registration

EllipseType::TransformType::OffsetType offset;
offset[0] = 100.0;
offset[1] = 40.0;

ellipse1->GetObjectToParentTransform()->SetOffset(offset);
ellipse1->ComputeObjectToWorldTransform();

offset[0] = 40.0;
offset[1] = 150.0;
ellipse2->GetObjectToParentTransform()->SetOffset(offset);
ellipse2->ComputeObjectToWorldTransform();

offset[0] = 150.0;
offset[1] = 150.0;
ellipse3->GetObjectToParentTransform()->SetOffset(offset);
ellipse3->ComputeObjectToWorldTransform();

Note that after a change has been made in the transform, the SpatialObject invokes the method
ComputeGlobalTransform() in order to update its global transform. The reason for doingthis
is that SpatialObjects can be arranged in hierarchies. It isthen possible to change the position
of a set of spatial objects by moving the parent of the group.

Now we add the three EllipseSpatialObjects to a GroupSpatialObject that will be subsequently
passed on to the registration method. The GroupSpatialObject facilitates the management of the
three ellipses as a higher level structure representing a complex shape. Groups can be nested
any number of levels in order to represent shapes with higherdetail.

GroupType::Pointer group = GroupType::New();
group->AddSpatialObject(ellipse1);
group->AddSpatialObject(ellipse2);
group->AddSpatialObject(ellipse3);

Having the geometric model ready, we proceed to generate thebinary image representing the
imprint of the space occupied by the ellipses. The SpatialObjectToImageFilter is used to that
end. Note that this filter is instantiated over the spatial object used and the image type to be
generated.

typedef itk::SpatialObjectToImageFilter< GroupType, ImageType >
SpatialObjectToImageFilterType;

With the defined type, we construct a filter using theNew() method. The newly created filter is
assigned to a SmartPointer.

SpatialObjectToImageFilterType::Pointer imageFilter =
SpatialObjectToImageFilterType::New();

8.16. Model Based Registration 483

The GroupSpatialObject is passed as input to the filter.

imageFilter->SetInput(group);

The itk::SpatialObjectToImageFilter acts as a resampling filter. Therefore it requires
the user to define the size of the desired output image. This isspecified with theSetSize()
method.

ImageType::SizeType size;
size[0] = 200;
size[1] = 200;
imageFilter->SetSize(size);

Finally we trigger the execution of the filter by calling theUpdate() method.

imageFilter->Update();

In order to obtain a smoother metric, we blur the image using a
itk::DiscreteGaussianImageFilter. This extends the capture radius of the metric
and produce a more continuous cost function to optimize. Thefollowing lines instantiate the
Gaussian filter and create one object of this type using theNew() method.

typedef itk::DiscreteGaussianImageFilter< ImageType, ImageType >
GaussianFilterType;

GaussianFilterType::Pointer gaussianFilter = GaussianFilterType::New();

The output of the SpatialObjectToImageFilter is connectedas input to the DiscreteGaussianIm-
ageFilter.

gaussianFilter->SetInput(imageFilter->GetOutput());

The variance of the filter is defined as a large value in order toincrease the capture radius.
Finally the execution of the filter is triggered using theUpdate() method.

const double variance = 20;
gaussianFilter->SetVariance(variance);
gaussianFilter->Update();

The following lines instantiate the type of theitk::ImageToSpatialObjectRegistrationMethod
method and instantiate a registration object with theNew() method. Note that the registration
type is templated over the Image and the SpatialObject types. The spatial object in this case is
the group of spatial objects.

http://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectToImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1DiscreteGaussianImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageToSpatialObjectRegistrationMethod.html

484 Chapter 8. Registration

typedef itk::ImageToSpatialObjectRegistrationMethod< ImageType, GroupType >
RegistrationType;

RegistrationType::Pointer registration = RegistrationType::New();

Now we instantiate the metric that is templated over the image type and the spatial object type.
As usual, theNew() method is used to create an object.

typedef SimpleImageToSpatialObjectMetric< ImageType, GroupType > MetricType;
MetricType::Pointer metric = MetricType::New();

An interpolator will be needed to evaluate the image at non-grid positions. Here we instantiate
a linear interpolator type.

typedef itk::LinearInterpolateImageFunction< ImageType, double >
InterpolatorType;

InterpolatorType::Pointer interpolator = InterpolatorType::New();

The following lines instantiate the evolutionary optimizer.

typedef itk::OnePlusOneEvolutionaryOptimizer OptimizerType;
OptimizerType::Pointer optimizer = OptimizerType::New();

Next, we instantiate the transform class. In this case we usethe Euler2DTransform that imple-
ments a rigid transform in 2D space.

typedef itk::Euler2DTransform<> TransformType;
TransformType::Pointer transform = TransformType::New();

Evolutionary algorithms are based on testing random variations of parameters. In order to
support the computation of random values, ITK provides a family of random number generators.
In this example, we use theitk::NormalVariateGenerator which generates values with a
normal distribution.

itk::Statistics::NormalVariateGenerator::Pointer generator
= itk::Statistics::NormalVariateGenerator::New();

The random number generator must be initialized with a seed.

generator->Initialize(12345);

The OnePlusOneEvolutionaryOptimizer is initialized by specifying the random number gener-
ator, the number of samples for the initial population and the maximum number of iterations.

http://www.itk.org/Doxygen/html/classitk_1_1NormalVariateGenerator.html

8.16. Model Based Registration 485

optimizer->SetNormalVariateGenerator(generator);
optimizer->Initialize(10);
optimizer->SetMaximumIteration(400);

As in previous registration examples, we take care to normalize the dynamic range of the dif-
ferent transform parameters. In particular, the we must compensate for the ranges of the angle
and translations of the Euler2DTransform. In order to achieve this goal, we provide an array of
scales to the optimizer.

TransformType::ParametersType parametersScale;
parametersScale.set_size(3);
parametersScale[0] = 1000; // angle scale

for(unsigned int i=1; i<3; i++)
{
parametersScale[i] = 2; // offset scale
}

optimizer->SetScales(parametersScale);

Here we instantiate the Command object that will act as an observer of the registration method
and print out parameters at each iteration. Earlier, we defined this command as a class templated
over the optimizer type. Once it is created with theNew() method, we connect the optimizer to
the command.

typedef IterationCallback< OptimizerType > IterationCallbackType;
IterationCallbackType::Pointer callback = IterationCallbackType::New();
callback->SetOptimizer(optimizer);

All the components are plugged into the ImageToSpatialObjectRegistrationMethod object. The
typicalSet() methods are used here. Note the use of theSetMovingSpatialObject() method
for connecting the spatial object. We provide the blurred version of the original synthetic binary
image as the input image.

registration->SetFixedImage(gaussianFilter->GetOutput());
registration->SetMovingSpatialObject(group);
registration->SetTransform(transform);
registration->SetInterpolator(interpolator);
registration->SetOptimizer(optimizer);
registration->SetMetric(metric);

The initial set of transform parameters is passed to the registration method using the
SetInitialTransformParameters() method. Note that since our original model is already
registered with the synthetic image, we introduce an artificial mis-registration in order to ini-
tialize the optimization at some point away from the optimalvalue.

486 Chapter 8. Registration

TransformType::ParametersType initialParameters(
transform->GetNumberOfParameters());

initialParameters[0] = 0.2; // Angle
initialParameters[1] = 7.0; // Offset X
initialParameters[2] = 6.0; // Offset Y
registration->SetInitialTransformParameters(initialParameters);

Due to the character of the metric used to evaluate the fitnessbetween the spatial object and the
image, we must tell the optimizer that we are interested in finding the maximum value of the
metric. Some metrics associate low numeric values with goodmatching, while others associate
high numeric values with good matching. TheMaximizeOn() andMaximizeOff() methods
allow the user to deal with both types of metrics.

optimizer->MaximizeOn();

Finally, we trigger the execution of the registration process with theStartRegistration()
method. We place this call in atry/catch block in case any exception is thrown during the
process.

try
{
registration->StartRegistration();
}

catch(itk::ExceptionObject & exp)
{
std::cerr << "Exception caught ! " << std::endl;
std::cerr << exp << std::endl;
}

The set of transform parameters resulting from the registration can be recovered with the
GetLastTransformParameters() method. This method returns the array of transform pa-
rameters that should be interpreted according to the implementation of each transform. In our
current example, the Euler2DTransform has three parameters: the rotation angle, the translation
in x and the translation iny.

RegistrationType::ParametersType finalParameters
= registration->GetLastTransformParameters();

std::cout << "Final Solution is : " << finalParameters << std::endl;

The results are presented in Figure8.61. The left side shows the evolution of the angle parameter
as a function of iteration numbers, while the right side shows the(x,y) translation.

8.16. Model Based Registration 487

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300 350 400

R
ot

at
io

n
A

ng
le

 (
de

gr
ee

s)

Iteration No.

-25

-20

-15

-10

-5

0

5

0 5 10 15 20 25 30

T
ra

ns
la

tio
n

Y
 (

m
m

)

Translation X (mm)

Figure 8.61:Plots of the angle and translation parameters for a registration process between an spatial

object and an image.

488 Chapter 8. Registration

8.17 Point Set Registration

PointSet-to-PointSet registration is a common problem in medical image analysis. It usually
arises in cases where landmarks are extracted from images and are used for establishing the
spatial correspondence between the images. This type of registration can be considered to be
the simplest case of feature-based registration. In general terms, feature-based registration is
more efficient than the intensity based method that we have presented so far. However, feature-
base registration brings the new problem of identifying andextracting the features from the
images, which is not a minor challenge.

The two most common scenarios in PointSet to PointSet registration are

• Two PointSets with the same number of points, and where each point in one set has a
known correspondence to exactly one point in the second set.

• Two PointSets without known correspondences between the points of one set and the
points of the other. In this case the PointSets may have different numbers of points.

The first case can be solved with a closed form solution when weare dealing
with a Rigid or an Affine Transform [37]. This is done in ITK with the class
itk::LandmarkBasedTransformInitializer. If we are interested in a deformable Trans-
formation then the problem can be solved with theitk::KernelTransform family of classes,
which includes Thin Plate Splines among others [69]. In both circumstances, the availability o
f correspondences between the points make possible to applya straight forward solution to the
problem.

The classical algorithm for performing PointSet to PointSet registration is the Iterative Closest
Point (ICP) algorithm. The following examples illustrate how this can be used in ITK.

The source code for this section can be found in the file
Examples/Patented/IterativeClosestPoint1.cxx.

This example illustrates how to perform Iterative Closest Point (ICP) registration in ITK. The
main class featured in this section is theitk::EuclideanDistancePointMetric.

#include "itkTranslationTransform.h"
#include "itkEuclideanDistancePointMetric.h"
#include "itkLevenbergMarquardtOptimizer.h"
#include "itkPointSet.h"
#include "itkPointSetToPointSetRegistrationMethod.h"
#include <iostream>
#include <fstream>

int main(int argc, char * argv[])
{

http://www.itk.org/Doxygen/html/classitk_1_1LandmarkBasedTransformInitializer.html
http://www.itk.org/Doxygen/html/classitk_1_1KernelTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1EuclideanDistancePointMetric.html

8.17. Point Set Registration 489

if(argc < 3)
{
std::cerr << "Arguments Missing. " << std::endl;
std::cerr

<< "Usage: IterativeClosestPoint1 fixedPointsFile movingPointsFile "
<< std::endl;

return 1;
}

const unsigned int Dimension = 2;

typedef itk::PointSet< float, Dimension > PointSetType;

PointSetType::Pointer fixedPointSet = PointSetType::New();
PointSetType::Pointer movingPointSet = PointSetType::New();

typedef PointSetType::PointType PointType;

typedef PointSetType::PointsContainer PointsContainer;

PointsContainer::Pointer fixedPointContainer = PointsContainer::New();
PointsContainer::Pointer movingPointContainer = PointsContainer::New();

PointType fixedPoint;
PointType movingPoint;

// Read the file containing coordinates of fixed points.
std::ifstream fixedFile;
fixedFile.open(argv[1]);
if(fixedFile.fail())
{
std::cerr << "Error opening points file with name : " << std::endl;
std::cerr << argv[1] << std::endl;
return 2;
}

unsigned int pointId = 0;
fixedFile >> fixedPoint;
while(!fixedFile.eof())
{
fixedPointContainer->InsertElement(pointId, fixedPoint);
fixedFile >> fixedPoint;
pointId++;
}

fixedPointSet->SetPoints(fixedPointContainer);
std::cout <<
"Number of fixed Points = " <<

490 Chapter 8. Registration

fixedPointSet->GetNumberOfPoints() << std::endl;

// Read the file containing coordinates of moving points.
std::ifstream movingFile;
movingFile.open(argv[2]);
if(movingFile.fail())
{
std::cerr << "Error opening points file with name : " << std::endl;
std::cerr << argv[2] << std::endl;
return 2;
}

pointId = 0;
movingFile >> movingPoint;
while(!movingFile.eof())
{
movingPointContainer->InsertElement(pointId, movingPoint);
movingFile >> movingPoint;
pointId++;
}

movingPointSet->SetPoints(movingPointContainer);
std::cout << "Number of moving Points = "
<< movingPointSet->GetNumberOfPoints() << std::endl;

//---
// Set up the Metric
//---
typedef itk::EuclideanDistancePointMetric<

PointSetType,
PointSetType>

MetricType;

typedef MetricType::TransformType TransformBaseType;
typedef TransformBaseType::ParametersType ParametersType;
typedef TransformBaseType::JacobianType JacobianType;

MetricType::Pointer metric = MetricType::New();

//---
// Set up a Transform
//---

typedef itk::TranslationTransform< double, Dimension > TransformType;

8.17. Point Set Registration 491

TransformType::Pointer transform = TransformType::New();

// Optimizer Type
typedef itk::LevenbergMarquardtOptimizer OptimizerType;

OptimizerType::Pointer optimizer = OptimizerType::New();
optimizer->SetUseCostFunctionGradient(false);

// Registration Method
typedef itk::PointSetToPointSetRegistrationMethod<

PointSetType,
PointSetType >

RegistrationType;

RegistrationType::Pointer registration = RegistrationType::New();

// Scale the translation components of the Transform in the Optimizer
OptimizerType::ScalesType scales(transform->GetNumberOfParameters());
scales.Fill(0.01);

unsigned long numberOfIterations = 100;
double gradientTolerance = 1e-5; // convergence criterion
double valueTolerance = 1e-5; // convergence criterion
double epsilonFunction = 1e-6; // convergence criterion

optimizer->SetScales(scales);
optimizer->SetNumberOfIterations(numberOfIterations);
optimizer->SetValueTolerance(valueTolerance);
optimizer->SetGradientTolerance(gradientTolerance);
optimizer->SetEpsilonFunction(epsilonFunction);

// Start from an Identity transform (in a normal case, the user
// can probably provide a better guess than the identity...
transform->SetIdentity();

registration->SetInitialTransformParameters(transform->GetParameters());

//--
// Connect all the components required for Registration
//--
registration->SetMetric(metric);
registration->SetOptimizer(optimizer);
registration->SetTransform(transform);
registration->SetFixedPointSet(fixedPointSet);

492 Chapter 8. Registration

registration->SetMovingPointSet(movingPointSet);

try
{
registration->StartRegistration();
}

catch(itk::ExceptionObject & e)
{
std::cout << e << std::endl;
return EXIT_FAILURE;
}

std::cout << "Solution = " << transform->GetParameters() << std::endl;

The source code for this section can be found in the file
Examples/Patented/IterativeClosestPoint2.cxx.

This example illustrates how to perform Iterative Closest Point (ICP) registration in ITK using
sets of 3D points.

#include "itkEuler3DTransform.h"
#include "itkEuclideanDistancePointMetric.h"
#include "itkLevenbergMarquardtOptimizer.h"
#include "itkPointSet.h"
#include "itkPointSetToPointSetRegistrationMethod.h"
#include <iostream>
#include <fstream>

int main(int argc, char * argv[])
{

if(argc < 3)
{
std::cerr << "Arguments Missing. " << std::endl;
std::cerr <<

"Usage: IterativeClosestPoint1 fixedPointsFile movingPointsFile "
<< std::endl;

return 1;
}

const unsigned int Dimension = 3;

8.17. Point Set Registration 493

typedef itk::PointSet< float, Dimension > PointSetType;

PointSetType::Pointer fixedPointSet = PointSetType::New();
PointSetType::Pointer movingPointSet = PointSetType::New();

typedef PointSetType::PointType PointType;

typedef PointSetType::PointsContainer PointsContainer;

PointsContainer::Pointer fixedPointContainer = PointsContainer::New();
PointsContainer::Pointer movingPointContainer = PointsContainer::New();

PointType fixedPoint;
PointType movingPoint;

// Read the file containing coordinates of fixed points.
std::ifstream fixedFile;
fixedFile.open(argv[1]);
if(fixedFile.fail())
{
std::cerr << "Error opening points file with name : " << std::endl;
std::cerr << argv[1] << std::endl;
return 2;
}

unsigned int pointId = 0;
fixedFile >> fixedPoint;
while(!fixedFile.eof())
{
fixedPointContainer->InsertElement(pointId, fixedPoint);
fixedFile >> fixedPoint;
pointId++;
}

fixedPointSet->SetPoints(fixedPointContainer);
std::cout <<
"Number of fixed Points = " << fixedPointSet->GetNumberOfPoints()
<< std::endl;

// Read the file containing coordinates of moving points.
std::ifstream movingFile;
movingFile.open(argv[2]);
if(movingFile.fail())
{
std::cerr << "Error opening points file with name : " << std::endl;
std::cerr << argv[2] << std::endl;

494 Chapter 8. Registration

return 2;
}

pointId = 0;
movingFile >> movingPoint;
while(!movingFile.eof())
{
movingPointContainer->InsertElement(pointId, movingPoint);
movingFile >> movingPoint;
pointId++;
}

movingPointSet->SetPoints(movingPointContainer);
std::cout <<
"Number of moving Points = "
<< movingPointSet->GetNumberOfPoints() << std::endl;

//---
// Set up the Metric
//---
typedef itk::EuclideanDistancePointMetric<

PointSetType,
PointSetType>

MetricType;

typedef MetricType::TransformType TransformBaseType;
typedef TransformBaseType::ParametersType ParametersType;
typedef TransformBaseType::JacobianType JacobianType;

MetricType::Pointer metric = MetricType::New();

//---
// Set up a Transform
//---

typedef itk::Euler3DTransform< double > TransformType;

TransformType::Pointer transform = TransformType::New();

// Optimizer Type
typedef itk::LevenbergMarquardtOptimizer OptimizerType;

OptimizerType::Pointer optimizer = OptimizerType::New();
optimizer->SetUseCostFunctionGradient(false);

// Registration Method

8.17. Point Set Registration 495

typedef itk::PointSetToPointSetRegistrationMethod<
PointSetType,
PointSetType >

RegistrationType;

RegistrationType::Pointer registration = RegistrationType::New();

// Scale the translation components of the Transform in the Optimizer
OptimizerType::ScalesType scales(transform->GetNumberOfParameters());

const double translationScale = 1000.0; // dynamic range of translations
const double rotationScale = 1.0; // dynamic range of rotations

scales[0] = 1.0 / rotationScale;
scales[1] = 1.0 / rotationScale;
scales[2] = 1.0 / rotationScale;
scales[3] = 1.0 / translationScale;
scales[4] = 1.0 / translationScale;
scales[5] = 1.0 / translationScale;

unsigned long numberOfIterations = 2000;
double gradientTolerance = 1e-4; // convergence criterion
double valueTolerance = 1e-4; // convergence criterion
double epsilonFunction = 1e-5; // convergence criterion

optimizer->SetScales(scales);
optimizer->SetNumberOfIterations(numberOfIterations);
optimizer->SetValueTolerance(valueTolerance);
optimizer->SetGradientTolerance(gradientTolerance);
optimizer->SetEpsilonFunction(epsilonFunction);

// Start from an Identity transform (in a normal case, the user
// can probably provide a better guess than the identity...
transform->SetIdentity();

registration->SetInitialTransformParameters(transform->GetParameters());

//--
// Connect all the components required for Registration
//--
registration->SetMetric(metric);
registration->SetOptimizer(optimizer);
registration->SetTransform(transform);
registration->SetFixedPointSet(fixedPointSet);
registration->SetMovingPointSet(movingPointSet);

496 Chapter 8. Registration

try
{
registration->StartRegistration();
}

catch(itk::ExceptionObject & e)
{
std::cout << e << std::endl;
return EXIT_FAILURE;
}

std::cout << "Solution = " << transform->GetParameters() << std::endl;

The source code for this section can be found in the file
Examples/Patented/IterativeClosestPoint3.cxx.

This example illustrates how to perform Iterative Closest Point (ICP) registration in ITK using
a DistanceMap in order to increase the performance. There isof course a trade-off between the
time needed for computing the DistanceMap and the time saving obtained by its repeated use
during the iterative computation of the point to point distances. It is then necessary in practice
to ponder both factors.

itk::EuclideanDistancePointMetric.

#include "itkTranslationTransform.h"
#include "itkEuclideanDistancePointMetric.h"
#include "itkLevenbergMarquardtOptimizer.h"
#include "itkPointSet.h"
#include "itkPointSetToPointSetRegistrationMethod.h"
#include "itkDanielssonDistanceMapImageFilter.h"
#include "itkPointSetToImageFilter.h"
#include <iostream>
#include <fstream>

int main(int argc, char * argv[])
{

if(argc < 3)
{
std::cerr << "Arguments Missing. " << std::endl;
std::cerr <<

"Usage: IterativeClosestPoint3 fixedPointsFile movingPointsFile "
<< std::endl;

http://www.itk.org/Doxygen/html/classitk_1_1EuclideanDistancePointMetric.html

8.17. Point Set Registration 497

return 1;
}

const unsigned int Dimension = 2;

typedef itk::PointSet< float, Dimension > PointSetType;

PointSetType::Pointer fixedPointSet = PointSetType::New();
PointSetType::Pointer movingPointSet = PointSetType::New();

typedef PointSetType::PointType PointType;

typedef PointSetType::PointsContainer PointsContainer;

PointsContainer::Pointer fixedPointContainer = PointsContainer::New();
PointsContainer::Pointer movingPointContainer = PointsContainer::New();

PointType fixedPoint;
PointType movingPoint;

// Read the file containing coordinates of fixed points.
std::ifstream fixedFile;
fixedFile.open(argv[1]);
if(fixedFile.fail())
{
std::cerr << "Error opening points file with name : " << std::endl;
std::cerr << argv[1] << std::endl;
return 2;
}

unsigned int pointId = 0;
fixedFile >> fixedPoint;
while(!fixedFile.eof())
{
fixedPointContainer->InsertElement(pointId, fixedPoint);
fixedFile >> fixedPoint;
pointId++;
}

fixedPointSet->SetPoints(fixedPointContainer);
std::cout << "Number of fixed Points = "

<< fixedPointSet->GetNumberOfPoints() << std::endl;

// Read the file containing coordinates of moving points.
std::ifstream movingFile;
movingFile.open(argv[2]);

498 Chapter 8. Registration

if(movingFile.fail())
{
std::cerr << "Error opening points file with name : " << std::endl;
std::cerr << argv[2] << std::endl;
return 2;
}

pointId = 0;
movingFile >> movingPoint;
while(!movingFile.eof())
{
movingPointContainer->InsertElement(pointId, movingPoint);
movingFile >> movingPoint;
pointId++;
}

movingPointSet->SetPoints(movingPointContainer);
std::cout << "Number of moving Points = "

<< movingPointSet->GetNumberOfPoints() << std::endl;

//---
// Set up the Metric
//---
typedef itk::EuclideanDistancePointMetric<

PointSetType,
PointSetType>

MetricType;

typedef MetricType::TransformType TransformBaseType;
typedef TransformBaseType::ParametersType ParametersType;
typedef TransformBaseType::JacobianType JacobianType;

MetricType::Pointer metric = MetricType::New();

//---
// Set up a Transform
//---

typedef itk::TranslationTransform< double, Dimension > TransformType;

TransformType::Pointer transform = TransformType::New();

// Optimizer Type
typedef itk::LevenbergMarquardtOptimizer OptimizerType;

OptimizerType::Pointer optimizer = OptimizerType::New();

8.17. Point Set Registration 499

optimizer->SetUseCostFunctionGradient(false);

// Registration Method
typedef itk::PointSetToPointSetRegistrationMethod<

PointSetType,
PointSetType >

RegistrationType;

RegistrationType::Pointer registration = RegistrationType::New();

// Scale the translation components of the Transform in the Optimizer
OptimizerType::ScalesType scales(transform->GetNumberOfParameters());
scales.Fill(0.01);

unsigned long numberOfIterations = 100;
double gradientTolerance = 1e-5; // convergence criterion
double valueTolerance = 1e-5; // convergence criterion
double epsilonFunction = 1e-6; // convergence criterion

optimizer->SetScales(scales);
optimizer->SetNumberOfIterations(numberOfIterations);
optimizer->SetValueTolerance(valueTolerance);
optimizer->SetGradientTolerance(gradientTolerance);
optimizer->SetEpsilonFunction(epsilonFunction);

// Start from an Identity transform (in a normal case, the user
// can probably provide a better guess than the identity...
transform->SetIdentity();

registration->SetInitialTransformParameters(transform->GetParameters());

//--
// Connect all the components required for Registration
//--
registration->SetMetric(metric);
registration->SetOptimizer(optimizer);
registration->SetTransform(transform);
registration->SetFixedPointSet(fixedPointSet);
registration->SetMovingPointSet(movingPointSet);

//--
// Prepare the Distance Map in order to accelerate
// distance computations.
//--

500 Chapter 8. Registration

//
// First map the Fixed Points into a binary image.
// This is needed because the DanielssonDistance
// filter expects an image as input.
//
//---
typedef itk::Image< unsigned char, Dimension > BinaryImageType;

typedef itk::PointSetToImageFilter<
PointSetType,
BinaryImageType> PointsToImageFilterType;

PointsToImageFilterType::Pointer
pointsToImageFilter = PointsToImageFilterType::New();

pointsToImageFilter->SetInput(fixedPointSet);

BinaryImageType::SpacingType spacing;
spacing.Fill(1.0);

BinaryImageType::PointType origin;
origin.Fill(0.0);

pointsToImageFilter->SetSpacing(spacing);
pointsToImageFilter->SetOrigin(origin);

pointsToImageFilter->Update();

BinaryImageType::Pointer binaryImage = pointsToImageFilter->GetOutput();

typedef itk::Image< unsigned short, Dimension > DistanceImageType;

typedef itk::DanielssonDistanceMapImageFilter<
BinaryImageType,
DistanceImageType> DistanceFilterType;

DistanceFilterType::Pointer distanceFilter = DistanceFilterType::New();

distanceFilter->SetInput(binaryImage);

distanceFilter->Update();

metric->SetDistanceMap(distanceFilter->GetOutput());

try
{

8.17. Point Set Registration 501

registration->StartRegistration();
}

catch(itk::ExceptionObject & e)
{
std::cout << e << std::endl;
return EXIT_FAILURE;
}

std::cout << "Solution = " << transform->GetParameters() << std::endl;

CHAPTER

NINE

Segmentation

Segmentation of medical images is a challenging task. A myriad of different methods have been
proposed and implemented in recent years. In spite of the huge effort invested in this problem,
there is no single approach that can generally solve the problem of segmentation for the large
variety of image modalities existing today.

The most effective segmentation algorithms are obtained bycarefully customizing combinations
of components. The parameters of these components are tunedfor the characteristics of the
image modality used as input and the features of the anatomical structure to be segmented.

The Insight Toolkit provides a basic set of algorithms that can be used to develop and customize
a full segmentation application. Some of the most commonly used segmentation components
are described in the following sections.

9.1 Region Growing

Region growing algorithms have proven to be an effective approach for image segmentation.
The basic approach of a region growing algorithm is to start from a seed region (typically one or
more pixels) that are considered to be inside the object to besegmented. The pixels neighboring
this region are evaluated to determine if they should also beconsidered part of the object. If
so, they are added to the region and the process continues as long as new pixels are added to
the region. Region growing algorithms vary depending on thecriteria used to decide whether a
pixel should be included in the region or not, the type connectivity used to determine neighbors,
and the strategy used to visit neighboring pixels.

Several implementations of region growing are available inITK. This section describes some
of the most commonly used.

504 Chapter 9. Segmentation

9.1.1 Connected Threshold

A simple criterion for including pixels in a growing region is to evaluate intensity value inside
a specific interval.

The source code for this section can be found in the file
Examples/Segmentation/ConnectedThresholdImageFilter.cxx.

The following example illustrates the use of theitk::ConnectedThresholdImageFilter.
This filter uses the flood fill iterator. Most of the algorithmic complexity of a region growing
method comes from visiting neighboring pixels. The flood filliterator assumes this respon-
sibility and greatly simplifies the implementation of the region growing algorithm. Thus the
algorithm is left to establish a criterion to decide whethera particular pixel should be included
in the current region or not.

The criterion used by the ConnectedThresholdImageFilter is based on an interval of intensity
values provided by the user. Values of lower and upper threshold should be provided. The
region growing algorithm includes those pixels whose intensities are inside the interval.

I(X) ∈ [lower,upper] (9.1)

Let’s look at the minimal code required to use this algorithm. First, the following header defin-
ing the ConnectedThresholdImageFilter class must be included.

#include "itkConnectedThresholdImageFilter.h"

Noise present in the image can reduce the capacity of this filter to grow large regions. When
faced with noisy images, it is usually convenient to pre-process the image by using an edge-
preserving smoothing filter. Any of the filters discussed in Section6.7.3could be used to this
end. In this particular example we use theitk::CurvatureFlowImageFilter, hence we need
to include its header file.

#include "itkCurvatureFlowImageFilter.h"

We declare the image type based on a particular pixel type anddimension. In this case the
float type is used for the pixels due to the requirements of the smoothing filter.

typedef float InternalPixelType;
const unsigned int Dimension = 2;
typedef itk::Image< InternalPixelType, Dimension > InternalImageType;

The smoothing filter is instantiated using the image type as atemplate parameter.

typedef itk::CurvatureFlowImageFilter< InternalImageType, InternalImageType >
CurvatureFlowImageFilterType;

http://www.itk.org/Doxygen/html/classitk_1_1ConnectedThresholdImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1CurvatureFlowImageFilter.html

9.1. Region Growing 505

Then the filter is created by invoking theNew() method and assigning the result to a
itk::SmartPointer.

CurvatureFlowImageFilterType::Pointer smoothing =
CurvatureFlowImageFilterType::New();

We now declare the type of the region growing filter. In this case it is the ConnectedThresh-
oldImageFilter.

typedef itk::ConnectedThresholdImageFilter< InternalImageType,
InternalImageType > ConnectedFilterType;

Then we construct one filter of this class using theNew() method.

ConnectedFilterType::Pointer connectedThreshold = ConnectedFilterType::New();

Now it is time to connect a simple, linear pipeline. A file reader is added at the beginning of the
pipeline and a cast filter and writer are added at the end. The cast filter is required to convert
float pixel types to integer types since only a few image file formats supportfloat types.

smoothing->SetInput(reader->GetOutput());
connectedThreshold->SetInput(smoothing->GetOutput());
caster->SetInput(connectedThreshold->GetOutput());
writer->SetInput(caster->GetOutput());

The CurvatureFlowImageFilter requires a couple of parameters to be defined. The following are
typical values for 2D images. However they may have to be adjusted depending on theamount
of noise present in the input image.

smoothing->SetNumberOfIterations(5);
smoothing->SetTimeStep(0.125);

The ConnectedThresholdImageFilterhas two main parameters to be defined. They are the lower
and upper thresholds of the interval in which intensity values should fall in order to be included
in the region. Setting these two values too close will not allow enough flexibility for the region
to grow. Setting them too far apart will result in a region that engulfs the image.

connectedThreshold->SetLower(lowerThreshold);
connectedThreshold->SetUpper(upperThreshold);

The output of this filter is a binary image with zero-value pixels everywhere except on
the extracted region. The intensity value set inside the region is selected with the method
SetReplaceValue()

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

506 Chapter 9. Segmentation

Structure Seed Index Lower Upper Output Image
White matter (60,116) 150 180 Second from left in Figure9.1
Ventricle (81,112) 210 250 Third from left in Figure9.1
Gray matter (107,69) 180 210 Fourth from left in Figure9.1

Table 9.1: Parameters used for segmenting some brain structures shown in Figure 9.1 with the filter

itk::ConnectedThresholdImageFilter.

connectedThreshold->SetReplaceValue(255);

The initialization of the algorithm requires the user to provide a seed point. It is convenient to
select this point to be placed in atypical region of the anatomical structure to be segmented.
The seed is passed in the form of aitk::Index to theSetSeed() method.

connectedThreshold->SetSeed(index);

The invocation of theUpdate() method on the writer triggers the execution of the pipeline.It
is usually wise to put update calls in atry/catch block in case errors occur and exceptions are
thrown.

try
{
writer->Update();
}

catch(itk::ExceptionObject & excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}

Let’s run this example using as input the imageBrainProtonDensitySlice.png provided in
the directoryExamples/Data. We can easily segment the major anatomical structures by pro-
viding seeds in the appropriate locations and defining values for the lower and upper thresholds.
Figure9.1 illustrates several examples of segmentation. The parameters used are presented in
Table9.1.

Notice that the gray matter is not being completely segmented. This illustrates the vulnerability
of the region growing methods when the anatomical structures to be segmented do not have a
homogeneous statistical distribution over the image space. You may want to experiment with
different values of the lower and upper thresholds to verifyhow the accepted region will extend.

Another option for segmenting regions is to take advantage of the functionality provided by the
ConnectedThresholdImageFilter for managing multiple seeds. The seeds can be passed one by
one to the filter using theAddSeed() method. You could imagine a user interface in which

http://www.itk.org/Doxygen/html/classitk_1_1ConnectedThresholdImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1Index.html

9.1. Region Growing 507

Figure 9.1:Segmentation results for the ConnectedThreshold filter for various seed points.

an operator clicks on multiple points of the object to be segmented and each selected point is
passed as a seed to this filter.

9.1.2 Otsu Segmentation

Another criterion for classifying pixels is to minimize theerror of misclassification. The goal
is to find a threshold that classifies the image into two clusters such that we minimize the area
under the histogram for one cluster that lies on the other cluster’s side of the threshold. This
is equivalent to minimizing the within class variance or equivalently maximizing the between
class variance.

The source code for this section can be found in the file
Examples/Filtering/OtsuThresholdImageFilter.cxx.

This example illustrates how to use theitk::OtsuThresholdImageFilter.

#include "itkOtsuThresholdImageFilter.h"

The next step is to decide which pixel types to use for the input and output images.

typedef unsigned char InputPixelType;
typedef unsigned char OutputPixelType;

The input and output image types are now defined using their respective pixel types and dimen-
sions.

typedef itk::Image< InputPixelType, 2 > InputImageType;
typedef itk::Image< OutputPixelType, 2 > OutputImageType;

The filter type can be instantiated using the input and outputimage types defined above.

http://www.itk.org/Doxygen/html/classitk_1_1OtsuThresholdImageFilter.html

508 Chapter 9. Segmentation

typedef itk::OtsuThresholdImageFilter<
InputImageType, OutputImageType > FilterType;

An itk::ImageFileReader class is also instantiated in order to read image data from a file.
(See Section7 on page263for more information about reading and writing data.)

typedef itk::ImageFileReader< InputImageType > ReaderType;

An itk::ImageFileWriter is instantiated in order to write the output image to a file.

typedef itk::ImageFileWriter< InputImageType > WriterType;

Both the filter and the reader are created by invoking theirNew() methods and assigning the
result to itk::SmartPointers.

ReaderType::Pointer reader = ReaderType::New();
FilterType::Pointer filter = FilterType::New();

The image obtained with the reader is passed as input to the OtsuThresholdImageFilter.

filter->SetInput(reader->GetOutput());

The methodSetOutsideValue() defines the intensity value to be assigned to those pixels
whose intensities are outside the range defined by the lower and upper thresholds. The method
SetInsideValue() defines the intensity value to be assigned to pixels with intensities falling
inside the threshold range.

filter->SetOutsideValue(outsideValue);
filter->SetInsideValue(insideValue);

The methodSetNumberOfHistogramBins() defines the number of bins to be used for com-
puting the histogram. This histogram will be used internally in order to compute the Otsu
threshold.

filter->SetNumberOfHistogramBins(128);

The execution of the filter is triggered by invoking theUpdate() method. If the filter’s output
has been passed as input to subsequent filters, theUpdate() call on any posterior filters in the
pipeline will indirectly trigger the update of this filter.

filter->Update();

http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

9.1. Region Growing 509

Figure 9.2: Effect of the OtsuThresholdImageFilter on a slice from a MRI proton density image of the

brain.

We print out here the Threshold value that was computed internally by the filter. For this we
invoke theGetThreshold method.

int threshold = filter->GetThreshold();
std::cout << "Threshold = " << threshold << std::endl;

Figure9.2 illustrates the effect of this filter on a MRI proton density image of the brain. This
figure shows the limitations of this filter for performing segmentation by itself. These limita-
tions are particularly noticeable in noisy images and in images lacking spatial uniformity as is
the case with MRI due to field bias.

The following classes provide similar functionality:

• itk::ThresholdImageFilter

The source code for this section can be found in the file
Examples/Filtering/OtsuMultipleThresholdImageFilter.cxx.

This example illustrates how to use theitk::OtsuMultipleThresholdsCalculator.

#include "itkOtsuMultipleThresholdsCalculator.h"

OtsuMultipleThresholdsCalculator calculates thresholds for a give histogram so as to maximize
the between-class variance. We use ScalarImageToHistogramGenerator to generate histograms

http://www.itk.org/Doxygen/html/classitk_1_1ThresholdImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1OtsuMultipleThresholdsCalculator.html

510 Chapter 9. Segmentation

typedef itk::Statistics::ScalarImageToHistogramGenerator< InputImageType >
ScalarImageToHistogramGeneratorType;

typedef itk::OtsuMultipleThresholdsCalculator<
ScalarImageToHistogramGeneratorType::HistogramType > CalculatorType;

Once thresholds are computed we will use BinaryThresholdImageFilter to segment the input
image into segments.

typedef itk::BinaryThresholdImageFilter< InputImageType, OutputImageType >
FilterType;

ScalarImageToHistogramGeneratorType::Pointer scalarImageToHistogramGenerator =
ScalarImageToHistogramGeneratorType::New();

CalculatorType::Pointer calculator = CalculatorType::New();
FilterType::Pointer filter = FilterType::New();

scalarImageToHistogramGenerator->SetNumberOfBins(128);
calculator->SetNumberOfThresholds(atoi(argv[4]));

The pipeline will look as follows:

scalarImageToHistogramGenerator->SetInput(reader->GetOutput());
calculator->SetInputHistogram(scalarImageToHistogramGenerator->GetOutput());
filter->SetInput(reader->GetOutput());
writer->SetInput(filter->GetOutput());

Thresholds are obtained using theGetOutput method

const CalculatorType::OutputType &thresholdVector = calculator->GetOutput();
CalculatorType::OutputType::const_iterator itNum = thresholdVector.begin();

for(; itNum < thresholdVector.end(); itNum++)
{
std::cout << "OtsuThreshold["

<< (int)(itNum - thresholdVector.begin())
<< "] = " <<
static_cast<itk::NumericTraits<CalculatorType::MeasurementType>::PrintType>
(*itNum) << std::endl;

}

9.1.3 Neighborhood Connected

The source code for this section can be found in the file
Examples/Segmentation/NeighborhoodConnectedImageFilter.cxx.

9.1. Region Growing 511

The following example illustrates the use of theitk::NeighborhoodConnectedImageFilter.
This filter is a close variant of theitk::ConnectedThresholdImageFilter. On one hand,
the ConnectedThresholdImageFilter accepts a pixel in the region if its intensity is in the interval
defined by two user-provided threshold values. The NeighborhoodConnectedImageFilter, on
the other hand, will only accept a pixel ifall its neighbors have intensities that fit in the interval.
The size of the neighborhood to be considered around each pixel is defined by a user-provided
integer radius.

The reason for considering the neighborhood intensities instead of only the current pixel inten-
sity is that small structures are less likely to be accepted in the region. The operation of this filter
is equivalent to applying the ConnectedThresholdImageFilter followed by mathematical mor-
phology erosion using a structuring element of the same shape as the neighborhood provided to
the NeighborhoodConnectedImageFilter.

#include "itkNeighborhoodConnectedImageFilter.h"

The itk::CurvatureFlowImageFilter is used here to smooth the image while preserving
edges.

#include "itkCurvatureFlowImageFilter.h"

We now define the image type using a particular pixel type and image dimension. In this case
thefloat type is used for the pixels due to the requirements of the smoothing filter.

typedef float InternalPixelType;
const unsigned int Dimension = 2;
typedef itk::Image< InternalPixelType, Dimension > InternalImageType;

The smoothing filter type is instantiated using the image type as a template parameter.

typedef itk::CurvatureFlowImageFilter<InternalImageType, InternalImageType>
CurvatureFlowImageFilterType;

Then, the filter is created by invoking theNew() method and assigning the result to a
itk::SmartPointer.

CurvatureFlowImageFilterType::Pointer smoothing =
CurvatureFlowImageFilterType::New();

We now declare the type of the region growing filter. In this case it is the NeighborhoodCon-
nectedImageFilter.

typedef itk::NeighborhoodConnectedImageFilter<InternalImageType,
InternalImageType > ConnectedFilterType;

http://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodConnectedImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ConnectedThresholdImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1CurvatureFlowImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

512 Chapter 9. Segmentation

One filter of this class is constructed using theNew() method.

ConnectedFilterType::Pointer neighborhoodConnected = ConnectedFilterType::New();

Now it is time to create a simple, linear data processing pipeline. A file reader is added at
the beginning of the pipeline and a cast filter and writer are added at the end. The cast filter
is required to convertfloat pixel types to integer types since only a few image file formats
supportfloat types.

smoothing->SetInput(reader->GetOutput());
neighborhoodConnected->SetInput(smoothing->GetOutput());
caster->SetInput(neighborhoodConnected->GetOutput());
writer->SetInput(caster->GetOutput());

The CurvatureFlowImageFilter requires a couple of parameters to be defined. The following are
typical values for 2D images. However they may have to be adjusted depending on theamount
of noise present in the input image.

smoothing->SetNumberOfIterations(5);
smoothing->SetTimeStep(0.125);

The NeighborhoodConnectedImageFilter requires that two main parameters are specified. They
are the lower and upper thresholds of the interval in which intensity values must fall to be
included in the region. Setting these two values too close will not allow enough flexibility for
the region to grow. Setting them too far apart will result in aregion that engulfs the image.

neighborhoodConnected->SetLower(lowerThreshold);
neighborhoodConnected->SetUpper(upperThreshold);

Here, we add the crucial parameter that defines the neighborhoodsize used to determine whether
a pixel lies in the region. The larger the neighborhood, the more stable this filter will be against
noise in the input image, but also the longer the computing time will be. Here we select a filter
of radius 2 along each dimension. This results in a neighborhood of 5×5 pixels.

InternalImageType::SizeType radius;

radius[0] = 2; // two pixels along X
radius[1] = 2; // two pixels along Y

neighborhoodConnected->SetRadius(radius);

As in the ConnectedThresholdImageFilter we must now provide the intensity value to be used
for the output pixels accepted in the region and at least one seed point to define the initial region.

9.1. Region Growing 513

Figure 9.3:Segmentation results of the NeighborhoodConnectedImageFilter for various seed points.

neighborhoodConnected->SetSeed(index);
neighborhoodConnected->SetReplaceValue(255);

The invocation of theUpdate() method on the writer triggers the execution of the pipeline.It
is usually wise to put update calls in atry/catch block in case errors occur and exceptions are
thrown.

try
{
writer->Update();
}

catch(itk::ExceptionObject & excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}

Now we’ll run this example using the imageBrainProtonDensitySlice.png as input avail-
able from the directoryExamples/Data. We can easily segment the major anatomical struc-
tures by providing seeds in the appropriate locations and defining values for the lower and upper
thresholds. For example

Structure Seed Index Lower Upper Output Image
White matter (60,116) 150 180 Second from left in Figure9.3
Ventricle (81,112) 210 250 Third from left in Figure9.3
Gray matter (107,69) 180 210 Fourth from left in Figure9.3

As with the ConnectedThresholdImageFilter, several seedscould be provided to the filter by
using theAddSeed() method. Compare the output of Figure9.3with those of Figure9.1pro-
duced by the ConnectedThresholdImageFilter. You may want to play with the value of the
neighborhood radius and see how it affect the smoothness of the segmented object borders, the
size of the segmented region and how much that costs in computing time.

514 Chapter 9. Segmentation

9.1.4 Confidence Connected

The source code for this section can be found in the file
Examples/Segmentation/ConfidenceConnected.cxx.

The following example illustrates the use of theitk::ConfidenceConnectedImageFilter.
The criterion used by the ConfidenceConnectedImageFilter is based on simple statistics of the
current region. First, the algorithm computes the mean and standard deviation of intensity val-
ues for all the pixels currently included in the region. A user-provided factor is used to multiply
the standard deviation and define a range around the mean. Neighbor pixels whose intensity
values fall inside the range are accepted and included in theregion. When no more neighbor
pixels are found that satisfy the criterion, the algorithm is considered to have finished its first
iteration. At that point, the mean and standard deviation ofthe intensity levels are recomputed
using all the pixels currently included in the region. This mean and standard deviation defines a
new intensity range that is used to visit current region neighbors and evaluate whether their in-
tensity falls inside the range. This iterative process is repeated until no more pixels are added or
the maximum number of iterations is reached. The following equation illustrates the inclusion
criterion used by this filter,

I(X) ∈ [m− f σ,m+ f σ] (9.2)

wherem and σ are the mean and standard deviation of the region intensities, f is a factor
defined by the user,I() is the image andX is the position of the particular neighbor pixel being
considered for inclusion in the region.

Let’s look at the minimal code required to use this algorithm. First, the following header defin-
ing the itk::ConfidenceConnectedImageFilter class must be included.

#include "itkConfidenceConnectedImageFilter.h"

Noise present in the image can reduce the capacity of this filter to grow large regions. When
faced with noisy images, it is usually convenient to pre-process the image by using an edge-
preserving smoothing filter. Any of the filters discussed in Section6.7.3can be used to this end.
In this particular example we use theitk::CurvatureFlowImageFilter, hence we need to
include its header file.

#include "itkCurvatureFlowImageFilter.h"

We now define the image type using a pixel type and a particulardimension. In this case the
float type is used for the pixels due to the requirements of the smoothing filter.

typedef float InternalPixelType;
const unsigned int Dimension = 2;
typedef itk::Image< InternalPixelType, Dimension > InternalImageType;

http://www.itk.org/Doxygen/html/classitk_1_1ConfidenceConnectedImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ConfidenceConnectedImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1CurvatureFlowImageFilter.html

9.1. Region Growing 515

The smoothing filter type is instantiated using the image type as a template parameter.

typedef itk::CurvatureFlowImageFilter< InternalImageType, InternalImageType >
CurvatureFlowImageFilterType;

Next the filter is created by invoking theNew() method and assigning the result to a
itk::SmartPointer.

CurvatureFlowImageFilterType::Pointer smoothing =
CurvatureFlowImageFilterType::New();

We now declare the type of the region growing filter. In this case it is the ConfidenceConnecte-
dImageFilter.

typedef itk::ConfidenceConnectedImageFilter<InternalImageType, InternalImageType>
ConnectedFilterType;

Then, we construct one filter of this class using theNew() method.

ConnectedFilterType::Pointer confidenceConnected = ConnectedFilterType::New();

Now it is time to create a simple, linear pipeline. A file reader is added at the beginning of
the pipeline and a cast filter and writer are added at the end. The cast filter is required here to
convertfloat pixel types to integer types since only a few image file formats supportfloat
types.

smoothing->SetInput(reader->GetOutput());
confidenceConnected->SetInput(smoothing->GetOutput());
caster->SetInput(confidenceConnected->GetOutput());
writer->SetInput(caster->GetOutput());

The CurvatureFlowImageFilter requires defining two parameters. The following are typical
values for 2D images. However they may have to be adjusted depending on theamount of noise
present in the input image.

smoothing->SetNumberOfIterations(5);
smoothing->SetTimeStep(0.125);

The ConfidenceConnectedImageFilter requires defining two parameters. First, the factorf that
the defines how large the range of intensities will be. Small values of the multiplier will restrict
the inclusion of pixels to those having very similar intensities to those in the current region.
Larger values of the multiplier will relax the accepting condition and will result in more gener-
ous growth of the region. Values that are too large will causethe region to grow into neighboring
regions that may actually belong to separate anatomical structures.

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

516 Chapter 9. Segmentation

confidenceConnected->SetMultiplier(2.5);

The number of iterations is specified based on the homogeneity of the intensities of the anatom-
ical structure to be segmented. Highly homogeneous regionsmay only require a couple of it-
erations. Regions with ramp effects, like MRI images with inhomogeneous fields, may require
more iterations. In practice, it seems to be more important to carefully select the multiplier
factor than the number of iterations. However, keep in mind that there is no reason to assume
that this algorithm should converge to a stable region. It ispossible that by letting the algorithm
run for more iterations the region will end up engulfing the entire image.

confidenceConnected->SetNumberOfIterations(5);

The output of this filter is a binary image with zero-value pixels everywhere except on the
extracted region. The intensity value to be set inside the region is selected with the method
SetReplaceValue()

confidenceConnected->SetReplaceValue(255);

The initialization of the algorithm requires the user to provide a seed point. It is convenient to
select this point to be placed in atypical region of the anatomical structure to be segmented. A
small neighborhood around the seed point will be used to compute the initial mean and standard
deviation for the inclusion criterion. The seed is passed inthe form of a itk::Index to the
SetSeed() method.

confidenceConnected->SetSeed(index);

The size of the initial neighborhood around the seed is defined with the method
SetInitialNeighborhoodRadius(). The neighborhood will be defined as anN-dimensional
rectangular region with 2r +1 pixels on the side, wherer is the value passed as initial neighbor-
hood radius.

confidenceConnected->SetInitialNeighborhoodRadius(2);

The invocation of theUpdate() method on the writer triggers the execution of the pipeline.It
is recommended to place update calls in atry/catch block in case errors occur and exceptions
are thrown.

try
{
writer->Update();
}

catch(itk::ExceptionObject & excep)
{

http://www.itk.org/Doxygen/html/classitk_1_1Index.html

9.1. Region Growing 517

Figure 9.4:Segmentation results for the ConfidenceConnected filter for various seed points.

std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}

Let’s now run this example using as input the imageBrainProtonDensitySlice.png pro-
vided in the directoryExamples/Data. We can easily segment the major anatomical structures
by providing seeds in the appropriate locations. For example

Structure Seed Index Output Image
White matter (60,116) Second from left in Figure9.4
Ventricle (81,112) Third from left in Figure9.4
Gray matter (107,69) Fourth from left in Figure9.4

Note that the gray matter is not being completely segmented.This illustrates the vulnerability
of the region growing methods when the anatomical structures to be segmented do not have a
homogeneous statistical distribution over the image space. You may want to experiment with
different numbers of iterations to verify how the accepted region will extend.

Application of the Confidence Connected filter on the Brain Web Data

This section shows some results obtained by applying the Confidence Connected fil-
ter on the BrainWeb database. The filter was applied on a 181× 217 ×
181 crosssection of thebrainweb165a10f17dataset. The data is a MR T1 ac-
quisition, with an intensity non-uniformity of 20% and a slice thickness 1mm.
The dataset may be obtained fromhttp://www.bic.mni.mcgill.ca/brainweb/ or
ftp://public.kitware.com/pub/itk/Data/BrainWeb/

The previous code was used in this example replacing the image dimension by 3. Gradient
Anistropic diffusion was applied to smooth the image. The filter used 2 iterations, a time step
of 0.05 and a conductance value of 3. The smoothed volume was then segmented using the Con-
fidence Connected approach. Five seed points were used at coordinate locations (118,85,92),

518 Chapter 9. Segmentation

Figure 9.5:White matter segmented using Confidence Connected region growing.

(63,87,94), (63,157,90), (111,188,90), (111,50,88). TheConfidenceConnnected filter used the
parameters, a neighborhood radius of 2, 5 iterations and anf of 2.5 (the same as in the previous
example). The results were then rendered using VolView.

Figure9.5shows the rendered volume. Figure9.6 shows an axial, saggital and a coronal slice
of the volume.

9.1.5 Isolated Connected

The source code for this section can be found in the file
Examples/Segmentation/IsolatedConnectedImageFilter.cxx.

Figure 9.6:Axial, sagittal and coronal slice segmented using Confidence Connected region growing.

9.1. Region Growing 519

The following example illustrates the use of theitk::IsolatedConnectedImageFilter.
This filter is a close variant of theitk::ConnectedThresholdImageFilter. In this filter two
seeds and a lower threshold are provided by the user. The filter will grow a region connected
to the first seed andnot connectedto the second one. In order to do this, the filter finds an
intensity value that could be used as upper threshold for thefirst seed. A binary search is used
to find the value that separates both seeds.

This example closely follows the previous ones. Only the relevant pieces of code are highlighted
here.

The header of the IsolatedConnectedImageFilter is included below.

#include "itkIsolatedConnectedImageFilter.h"

We define the image type using a pixel type and a particular dimension.

typedef float InternalPixelType;
const unsigned int Dimension = 2;
typedef itk::Image< InternalPixelType, Dimension > InternalImageType;

The IsolatedConnectedImageFilter is instantiated in the lines below.

typedef itk::IsolatedConnectedImageFilter<InternalImageType, InternalImageType>
ConnectedFilterType;

One filter of this class is constructed using theNew() method.

ConnectedFilterType::Pointer isolatedConnected = ConnectedFilterType::New();

Now it is time to connect the pipeline.

smoothing->SetInput(reader->GetOutput());
isolatedConnected->SetInput(smoothing->GetOutput());
caster->SetInput(isolatedConnected->GetOutput());
writer->SetInput(caster->GetOutput());

The IsolatedConnectedImageFilter expects the user to specify a threshold and two seeds. In this
example, we take all of them from the command line arguments.

isolatedConnected->SetLower(lowerThreshold);
isolatedConnected->SetSeed1(indexSeed1);
isolatedConnected->SetSeed2(indexSeed2);

As in the itk::ConnectedThresholdImageFilter we must now specify the intensity value
to be set on the output pixels and at least one seed point to define the initial region.

http://www.itk.org/Doxygen/html/classitk_1_1IsolatedConnectedImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ConnectedThresholdImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ConnectedThresholdImageFilter.html

520 Chapter 9. Segmentation

Adjacent Structures Seed1 Seed2 Lower Isolated value found
Gray matter vs White matter (61,140) (63,43) 150 183.31

Table 9.2:Parameters used for separating white matter from gray matter in Figure 9.7 using the Isolated-

ConnectedImageFilter.

isolatedConnected->SetReplaceValue(255);

The invocation of theUpdate() method on the writer triggers the execution of the pipeline.

try
{
writer->Update();
}

catch(itk::ExceptionObject & excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}

The intensity value allowing us to separate both regions canbe recovered with the method
GetIsolatedValue()

std::cout << "Isolated Value Found = ";
std::cout << isolatedConnected->GetIsolatedValue() << std::endl;

Let’s now run this example using the imageBrainProtonDensitySlice.png provided in the
directoryExamples/Data. We can easily segment the major anatomical structures by providing
seed pairs in the appropriate locations and defining values for the lower threshold. It is important
to keep in mind in this and the previous examples that the segmentation is being performed in the
smoothed version of the image. The selection of threshold values should therefore be performed
in the smoothed image since the distribution of intensitiescould be quite different from that of
the input image. As a reminder of this fact, Figure9.7 presents, from left to right, the input
image and the result of smoothing with theitk::CurvatureFlowImageFilter followed by
segmentation results.

This filter is intended to be used in cases where adjacent anatomical structures are difficult to
separate. Selecting one seed in one structure and the other seed in the adjacent structure creates
the appropriate setup for computing the threshold that willseparate both structures. Table9.2
presents the parameters used to obtain the images shown in Figure9.7.

http://www.itk.org/Doxygen/html/classitk_1_1CurvatureFlowImageFilter.html

9.1. Region Growing 521

Figure 9.7:Segmentation results of the IsolatedConnectedImageFilter.

9.1.6 Confidence Connected in Vector Images

The source code for this section can be found in the file
Examples/Segmentation/VectorConfidenceConnected.cxx.

This example illustrates the use of the confidence connectedconcept applied to images with
vector pixel types. The confidence connected algorithm is implemented for vector images
in the class itk::VectorConfidenceConnected. The basic difference between the scalar
and vector version is that the vector version uses the covariance matrix instead of a vari-
ance, and a vector mean instead of a scalar mean. The membership of a vector pixel
value to the region is measured using the Mahalanobis distance as implemented in the class
itk::Statistics::MahalanobisDistanceThresholdImageFunction.

#include "itkVectorConfidenceConnectedImageFilter.h"

We now define the image type using a particular pixel type and dimension. In this case the
float type is used for the pixels due to the requirements of the smoothing filter.

typedef unsigned char PixelComponentType;
typedef itk::RGBPixel< PixelComponentType > InputPixelType;
const unsigned int Dimension = 2;
typedef itk::Image< InputPixelType, Dimension > InputImageType;

We now declare the type of the region growing filter. In this case it is the
itk::VectorConfidenceConnectedImageFilter.

typedef itk::VectorConfidenceConnectedImageFilter< InputImageType,
OutputImageType > ConnectedFilterType;

http://www.itk.org/Doxygen/html/classitk_1_1VectorConfidenceConnected.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1MahalanobisDistanceThresholdImageFunction.html
http://www.itk.org/Doxygen/html/classitk_1_1VectorConfidenceConnectedImageFilter.html

522 Chapter 9. Segmentation

Then, we construct one filter of this class using theNew() method.

ConnectedFilterType::Pointer confidenceConnected = ConnectedFilterType::New();

Next we create a simple, linear data processing pipeline.

confidenceConnected->SetInput(reader->GetOutput());
writer->SetInput(confidenceConnected->GetOutput());

The VectorConfidenceConnectedImageFilter requires specifying two parameters. First, the
multiplier factor f defines how large the range of intensities will be. Small values of the mul-
tiplier will restrict the inclusion of pixels to those having similar intensities to those already in
the current region. Larger values of the multiplier relax the accepting condition and result in
more generous growth of the region. Values that are too largewill cause the region to grow into
neighboring regions that may actually belong to separate anatomical structures.

confidenceConnected->SetMultiplier(multiplier);

The number of iterations is typically determined based on the homogeneity of the image inten-
sity representing the anatomical structure to be segmented. Highly homogeneous regions may
only require a couple of iterations. Regions with ramp effects, like MRI images with inhomoge-
neous fields, may require more iterations. In practice, it seems to be more relevant to carefully
select the multiplier factor than the number of iterations.However, keep in mind that there is
no reason to assume that this algorithm should converge to a stable region. It is possible that by
letting the algorithm run for more iterations the region will end up engulfing the entire image.

confidenceConnected->SetNumberOfIterations(iterations);

The output of this filter is a binary image with zero-value pixels everywhere except on the
extracted region. The intensity value to be put inside the region is selected with the method
SetReplaceValue()

confidenceConnected->SetReplaceValue(255);

The initialization of the algorithm requires the user to provide a seed point. This point should
be placed in atypicalregion of the anatomical structure to be segmented. A small neighborhood
around the seed point will be used to compute the initial meanand standard deviation for the
inclusion criterion. The seed is passed in the form of aitk::Index to theSetSeed() method.

confidenceConnected->SetSeed(index);

http://www.itk.org/Doxygen/html/classitk_1_1Index.html

9.1. Region Growing 523

Figure 9.8:Segmentation results of the VectorConfidenceConnected filter for various seed points.

The size of the initial neighborhood around the seed is defined with the method
SetInitialNeighborhoodRadius(). The neighborhood will be defined as anN-Dimensional
rectangular region with 2r +1 pixels on the side, wherer is the value passed as initial neighbor-
hood radius.

confidenceConnected->SetInitialNeighborhoodRadius(3);

The invocation of theUpdate() method on the writer triggers the execution of the pipeline.It
is usually wise to put update calls in atry/catch block in case errors occur and exceptions are
thrown.

try
{
writer->Update();
}

catch(itk::ExceptionObject & excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}

Now let’s run this example using as input the imageVisibleWomanEyeSlice.png provided
in the directoryExamples/Data. We can easily segment the major anatomical structures by
providing seeds in the appropriate locations. For example,

Structure Seed Index Multiplier Iterations Output Image
Rectum (70,120) 7 1 Second from left in Figure9.8
Rectum (23,93) 7 1 Third from left in Figure9.8
Vitreo (66,66) 3 1 Fourth from left in Figure9.8

The coloration of muscular tissue makes it easy to distinguish them from the surrounding
anatomical structures. The optic vitrea on the other hand has a coloration that is not very

524 Chapter 9. Segmentation

homogeneous inside the eyeball and does not allow to generate a full segmentation based only
on color.

The values of the final mean vector and covariance matrix usedfor the last iteration can be
queried using the methodsGetMean() andGetCovariance().

typedef ConnectedFilterType::MeanVectorType MeanVectorType;

const MeanVectorType & mean = confidenceConnected->GetMean();

std::cout << "Mean vector = " << std::endl;
std::cout << mean << std::endl;

typedef ConnectedFilterType::CovarianceMatrixType CovarianceMatrixType;

const CovarianceMatrixType & covariance = confidenceConnected->GetCovariance();

std::cout << "Covariance matrix = " << std::endl;
std::cout << covariance << std::endl;

9.2 Segmentation Based on Watersheds

9.2.1 Overview

Watershed segmentation classifies pixels into regions using gradient descent on image features
and analysis of weak points along region boundaries. Imagine water raining onto a landscape
topology and flowing with gravity to collect in low basins. The size of those basins will grow
with increasing amounts of precipitation until they spill into one another, causing small basins
to merge together into larger basins. Regions (catchment basins) are formed by using local
geometric structure to associate points in the image domainwith local extrema in some fea-
ture measurement such as curvature or gradient magnitude. This technique is less sensitive
to user-defined thresholds than classic region-growing methods, and may be better suited for
fusing different types of features from different data sets. The watersheds technique is also
more flexible in that it does not produce a single image segmentation, but rather a hierarchy of
segmentations from which a single region or set of regions can be extracted a-priori, using a
threshold, or interactively, with the help of a graphical user interface [96, 97].

The strategy of watershed segmentation is to treat an imagef as a height function, i.e., the
surface formed by graphingf as a function of its independent parameters,~x∈U . The imagef
is often not the original input data, but is derived from thatdata through some filtering, graded
(or fuzzy) feature extraction, or fusion of feature maps from different sources. The assumption
is that higher values off (or − f) indicate the presence of boundaries in the original data.
Watersheds may therefore be considered as a final or intermediate step in a hybrid segmentation
method, where the initial segmentation is the generation ofthe edge feature map.

9.2. Segmentation Based on Watersheds 525

W
at

er
sh

ed
 D

ep
th

Intensity profile of input image Intensity profile of filtered image Watershed Segmentation

Figure 9.9: A fuzzy-valued boundary map, from an image or set of images, is segmented using local

minima and catchment basins.

Gradient descent associates regions with local minima off (clearly interior points) using the
watersheds of the graph off , as in Figure9.9. That is, a segment consists of all points inU
whose paths of steepest descent on the graph off terminate at the same minimum inf . Thus,
there are as many segments in an image as there are minima inf . The segment boundaries
are “ridges” [44, 45, 25] in the graph off . In the 1D case (U ⊂ ℜ), the watershed boundaries
are the local maxima off , and the results of the watershed segmentation is trivial. For higher-
dimensional image domains, the watershed boundaries are not simply local phenomena; they
depend on the shape of the entire watershed.

The drawback of watershed segmentation is that it produces aregion for each local minimum—
in practice too many regions—and an over segmentation results. To alleviate this, we can estab-
lish a minimum watershed depth. The watershed depth is the difference in height between the
watershed minimum and the lowest boundary point. In other words, it is the maximum depth of
water a region could hold without flowing into any of its neighbors. Thus, a watershed segmen-
tation algorithm can sequentially combine watersheds whose depths fall below the minimum
until all of the watersheds are of sufficient depth. This depth measurement can be combined
with other saliency measurements, such as size. The result is a segmentation containing regions
whose boundaries and size are significant. Because the merging process is sequential, it pro-
duces a hierarchy of regions, as shown in Figure9.10. Previous work has shown the benefit of
a user-assisted approach that provides a graphical interface to this hierarchy, so that a techni-
cian can quickly move from the small regions that lie within an area of interest to the union of
regions that correspond to the anatomical structure [97].

There are two different algorithms commonly used to implement watersheds: top-down and
bottom-up. The top-down, gradient descent strategy was chosen for ITK because we want to
consider the output of multi-scale differential operators, and thef in question will therefore
have floating point values. The bottom-up strategy starts with seeds at the local minima in
the image and grows regions outward and upward at discrete intensity levels (equivalent to a
sequence of morphological operations and sometimes calledmorphological watersheds[73].)
This limits the accuracy by enforcing a set of discrete gray levels on the image.

Figure9.11shows how the ITK image-to-image watersheds filter is constructed. The filter is
actually a collection of smaller filters that modularize theseveral steps of the algorithm in a
mini-pipeline. The segmenter object creates the initial segmentation via steepest descent from
each pixel to local minima. Shallow background regions are removed (flattened) before seg-
mentation using a simple minimum value threshold (this helps to minimize oversegmentation

526 Chapter 9. Segmentation

Node

Threshold of
Watershed depth

Image

Leaf

Boolean Operations
on Sub−Trees
(e.g. User Interaction)

Node Node Node

Node
Node

Node

Node

Node

Leaf Leaf Leaf Leaf Leaf Leaf Leaf Leaf LeafLeaf

Figure 9.10:A watershed segmentation combined with a saliency measure (watershed depth) produces

a hierarchy of regions. Structures can be derived from images by either thresholding the saliency measure

or combining subtrees within the hierarchy.

Height
Image

Labeled
Image

Image
Relabeler

Merge
Tree

Tree
Generator

Basic
Segmentation

Segmenter

Threshold

Maximum Flood Level

Output Flood Level

Data Object

Process Object

Parameter

Watershed Image Filter

Figure 9.11:The construction of the Insight watersheds filter.

9.2. Segmentation Based on Watersheds 527

of the image). The initial segmentation is passed to a secondsub-filter that generates a hier-
archy of basins to a user-specified maximum watershed depth.The relabeler object at the end
of the mini-pipeline uses the hierarchy and the initial segmentation to produce an output image
at any scalebelowthe user-specified maximum. Data objects are cached in the mini-pipeline
so that changing watershed depths only requires a (fast) relabeling of the basic segmentation.
The three parameters that control the filter are shown in Figure9.11connected to their relevant
processing stages.

9.2.2 Using the ITK Watershed Filter

The source code for this section can be found in the file
Examples/Segmentation/WatershedSegmentation1.cxx.

The following example illustrates how to preprocess and segment images using the
itk::WatershedImageFilter. Note that the care with which the data is preprocessed will
greatly affect the quality of your result. Typically, the best results are obtained by preprocessing
the original image with an edge-preserving diffusion filter, such as one of the anisotropic diffu-
sion filters, or with the bilateral image filter. As noted in Section9.2.1, the height function used
as input should be created such that higher positive values correspond to object boundaries. A
suitable height function for many applications can be generated as the gradient magnitude of
the image to be segmented.

The itk::VectorGradientMagnitudeAnisotropicDiffusionImageFilter class is used
to smooth the image and theitk::VectorGradientMagnitudeImageFilter is used to gen-
erate the height function. We begin by including all preprocessing filter header files and the
header file for the WatershedImageFilter. We use the vector versions of these filters because the
input data is a color image.

#include "itkVectorGradientAnisotropicDiffusionImageFilter.h"
#include "itkVectorGradientMagnitudeImageFilter.h"
#include "itkWatershedImageFilter.h"

We now declare the image and pixel types to use for instantiation of the filters. All of
these filters expect real-valued pixel types in order to workproperly. The preprocessing
stages are done directly on the vector-valued data and the segmentation is done using float-
ing point scalar data. Images are converted from RGB pixel type to numerical vector type using
itk::VectorCastImageFilter.

typedef itk::RGBPixel<unsigned char> RGBPixelType;
typedef itk::Image<RGBPixelType, 2> RGBImageType;
typedef itk::Vector<float, 3> VectorPixelType;
typedef itk::Image<VectorPixelType, 2> VectorImageType;
typedef itk::Image<unsigned long, 2> LabeledImageType;
typedef itk::Image<float, 2> ScalarImageType;

http://www.itk.org/Doxygen/html/classitk_1_1WatershedImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1VectorGradientMagnitudeAnisotropicDiffusionImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1VectorGradientMagnitudeImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1VectorCastImageFilter.html

528 Chapter 9. Segmentation

The various image processing filters are declared using the types created above and eventually
used in the pipeline.

typedef itk::ImageFileReader<RGBImageType> FileReaderType;
typedef itk::VectorCastImageFilter<RGBImageType, VectorImageType>
CastFilterType;

typedef itk::VectorGradientAnisotropicDiffusionImageFilter<VectorImageType,
VectorImageType> DiffusionFilterType;

typedef itk::VectorGradientMagnitudeImageFilter<VectorImageType>
GradientMagnitudeFilterType;

typedef itk::WatershedImageFilter<ScalarImageType> WatershedFilterType;

Next we instantiate the filters and set their parameters. Thefirst step in the image processing
pipeline is diffusion of the color input image using an anisotropic diffusion filter. For this class
of filters, the CFL condition requires that the time step be nomore than 0.25 for two-dimensional
images, and no more than 0.125 for three-dimensional images. The number of iterations and the
conductance term will be taken from the command line. See Section 6.7.3for more information
on the ITK anisotropic diffusion filters.

DiffusionFilterType::Pointer diffusion = DiffusionFilterType::New();
diffusion->SetNumberOfIterations(atoi(argv[4]));
diffusion->SetConductanceParameter(atof(argv[3]));
diffusion->SetTimeStep(0.125);

The ITK gradient magnitude filter for vector-valued images can optionally take several param-
eters. Here we allow only enabling or disabling of principalcomponent analysis.

GradientMagnitudeFilterType::Pointer
gradient = GradientMagnitudeFilterType::New();

gradient->SetUsePrincipleComponents(atoi(argv[7]));

Finally we set up the watershed filter. There are two parameters. Level controls watershed
depth, andThreshold controls the lower thresholding of the input. Both parameters are set as
a percentage (0.0 - 1.0) of the maximum depth in the input image.

WatershedFilterType::Pointer watershed = WatershedFilterType::New();
watershed->SetLevel(atof(argv[6]));
watershed->SetThreshold(atof(argv[5]));

The output of WatershedImageFilter is an image of unsigned long integer labels, where a label
denotes membership of a pixel in a particular segmented region. This format is not practical
for visualization, so for the purposes of this example, we will convert it to RGB pixels. RGB
images have the advantage that they can be saved as a simple png file and viewed using any
standard image viewer software. Theitk::Functor::ScalarToRGBPixelFunctor class is a

http://www.itk.org/Doxygen/html/classitk_1_1Functor_1_1ScalarToRGBPixelFunctor.html

9.2. Segmentation Based on Watersheds 529

Figure 9.12:Segmented section of Visible Human female head and neck cryosection data. At left is the

original image. The image in the middle was generated with parameters: conductance = 2.0, iterations =

10, threshold = 0.0, level = 0.05, principal components = on. The image on the right was generated with

parameters: conductance = 2.0, iterations = 10, threshold = 0.001, level = 0.15, principal components =

off.

special function object designed to hash a scalar value intoan itk::RGBPixel. Plugging this
functor into the itk::UnaryFunctorImageFilter creates an image filter for that converts
scalar images to RGB images.

typedef itk::Functor::ScalarToRGBPixelFunctor<unsigned long>
ColorMapFunctorType;

typedef itk::UnaryFunctorImageFilter<LabeledImageType,
RGBImageType, ColorMapFunctorType> ColorMapFilterType;

ColorMapFilterType::Pointer colormapper = ColorMapFilterType::New();

The filters are connected into a single pipeline, with readers and writers at each end.

caster->SetInput(reader->GetOutput());
diffusion->SetInput(caster->GetOutput());
gradient->SetInput(diffusion->GetOutput());
watershed->SetInput(gradient->GetOutput());
colormapper->SetInput(watershed->GetOutput());
writer->SetInput(colormapper->GetOutput());

Tuning the filter parameters for any particular applicationis a process of trial and error. The
thresholdparameter can be used to great effect in controlling oversegmentation of the image.
Raising the threshold will generally reduce computation time and produce output with fewer
and larger regions. The trick in tuning parameters is to consider the scale level of the objects
that you are trying to segment in the image. The best time/quality trade-off will be achieved
when the image is smoothed and thresholded to eliminate features just below the desired scale.

http://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html
http://www.itk.org/Doxygen/html/classitk_1_1UnaryFunctorImageFilter.html

530 Chapter 9. Segmentation

Figure9.12shows output from the example code. The input image is taken from the Visible
Human female data around the right eye. The images on the right are colorized watershed
segmentations with parameters set to capture objects such as the optic nerve and lateral rectus
muscles, which can be seen just above and to the left and rightof the eyeball. Note that a critical
difference between the two segmentations is the mode of the gradient magnitude calculation.

A note on the computational complexity of the watershed algorithm is warranted. Most of the
complexity of the ITK implementation lies in generating thehierarchy. Processing times for this
stage are non-linear with respect to the number of catchmentbasins in the initial segmentation.
This means that the amount of information contained in an image is more significant than the
number of pixels in the image. A very large, but very flat inputtake less time to segment than a
very small, but very detailed input.

9.3. Level Set Segmentation 531

9.3 Level Set Segmentation

Zero Set f(x,y)=0

Exterior f(x,y) < 0

Interior
f(x,y) > 0

Figure 9.13:Concept of zero set in a level set.

The paradigm of the level
set is that it is a numeri-
cal method for tracking the
evolution of contours and
surfaces. Instead of ma-
nipulating the contour di-
rectly, the contour is embed-
ded as the zero level set of a
higher dimensional function
called the level-set function,
ψ(X, t). The level-set func-
tion is then evolved under
the control of a differential
equation. At any time, the
evolving contour can be ob-
tained by extracting the zero
level-setΓ((X), t) = {ψ(X, t) = 0} from the output. The main advantages of using level sets is
that arbitrarily complex shapes can be modeled and topological changes such as merging and
splitting are handled implicitly.

Level sets can be used for image segmentation by using image-based features such as mean
intensity, gradient and edges in the governing differential equation. In a typical approach, a
contour is initialized by a user and is then evolved until it fits the form of an anatomical structure
in the image. Many different implementations and variants of this basic concept have been
published in the literature. An overview of the field has beenmade by Sethian [74].

The following sections introduce practical examples of some of the level set segmentation meth-
ods available in ITK. The remainder of this section describes features common to all of these
filters except theitk::FastMarchingImageFilter, which is derived from a different code
framework. Understanding these features will aid in using the filters more effectively.

Each filter makes use of a generic level-set equation to compute the update to the solutionψ of
the partial differential equation.

d
dt

ψ = −αA(x) ·∇ψ−βP(x) | ∇ψ | +γZ(x)κ | ∇ψ | (9.3)

whereA is an advection term,P is a propagation (expansion) term, andZ is a spatial modifier
term for the mean curvatureκ. The scalar constantsα, β, andγ weight the relative influence of
each of the terms on the movement of the interface. A segmentation filter may use all of these
terms in its calculations, or it may omit one or more terms. Ifa term is left out of the equation,
then setting the corresponding scalar constant weighting will have no effect.

All of the level-set based segmentation filtersmustoperate with floating point precision to pro-

http://www.itk.org/Doxygen/html/classitk_1_1FastMarchingImageFilter.html

532 Chapter 9. Segmentation

−0.4

−0.3

−1.3

−1.4

−1.4

−0.2−1.2

−1.1 −0.1

−0.6

0.6

0.4 0.3

−0.7

1.31.6

0.8

−0.3

0.3

−0.8

−0.7

0.7

−0.4−1.3

0.4

1.3 0.3 0.4 −0.6

−0.6

0.2

1.3

0.2 −0.8

−0.8

1.2

2.3

1.2

1.4

−0.6

0.4−0.5−1.5

0.9

−0.6

0.2

−0.8

0.7

−0.6 −1.7

−1.6

−0.7

−1.8

−1.8

−1.8−2.4

−2.4

−2.4

−2.5

−2.5 −1.5

−1.6

−1.6

2.4

1.7

1.8

Ψ(x, t)

Figure 9.14:The implicit level set surface Γ is the black line superimposed over the image grid. The

location of the surface is interpolated by the image pixel values. The grid pixels closest to the implicit

surface are shown in gray.

duce valid results. The third, optional template parameteris thenumerical typeused for calcu-
lations and as the output image pixel type. The numerical type isfloat by default, but can be
changed todouble for extra precision. A user-defined, signed floating point type that defines
all of the necessary arithmetic operators and has sufficientprecision is also a valid choice. You
should not use types such asint or unsigned char for the numerical parameter. If the input
image pixel types do not match the numerical type, those inputs will be cast to an image of
appropriate type when the filter is executed.

Most filters require two images as input, an initial modelψ(X, t = 0), and afeature image,
which is either the image you wish to segment or some preprocessed version. You must specify
the isovalue that represents the surfaceΓ in your initial model. The single image output of each
filter is the functionψ at the final time step. It is important to note that the contourrepresenting
the surfaceΓ is the zero level-set of the output image, and not the isovalue you specified for
the initial model. To representΓ using the original isovalue, simply add that value back to the
output.

The solutionΓ is calculated to subpixel precision. The best discrete approximation of the sur-
face is therefore the set of grid positions closest to the zero-crossings in the image, as shown
in Figure9.14. The itk::ZeroCrossingImageFilter operates by finding exactly those grid
positions and can be used to extract the surface.

There are two important considerations when analyzing the processing time for any particular
level-set segmentation task: the surface area of the evolving interface and the total distance that
the surface must travel. Because the level-set equations are usually solved only at pixels near the
surface (fast marching methods are an exception), the time taken at each iteration depends on
the number of points on the surface. This means that as the surface grows, the solver will slow
down proportionally. Because the surface must evolve slowly to prevent numerical instabilities

http://www.itk.org/Doxygen/html/classitk_1_1ZeroCrossingImageFilter.html

9.3. Level Set Segmentation 533

Binary
Threshold

Time−Crossing
Map

Fast
Marching

Sigmoid
Filter

Gradient
Magnitude

Anisotropic
Diffusion

Input
itk::Image

Binary
Image

Iterations Sigma Alpha,Beta Seeds Threshold

Figure 9.15:Collaboration diagram of the FastMarchingImageFilter applied to a segmentation task.

in the solution, the distance the surface must travel in the image dictates the total number of
iterations required.

Some level-set techniques are relatively insensitive to initial conditions and are there-
fore suitable for region-growing segmentation. Other techniques, such as the
itk::LaplacianSegmentationLevelSetImageFilter, can easily become “stuck” on image
features close to their initialization and should be used only when a reasonable prior segmenta-
tion is available as the initialization. For best efficiency, your initial model of the surface should
be the best guess possible for the solution. When extending the example applications given here
to higher dimensional images, for example, you can improve results and dramatically decrease
processing time by using a multi-scale approach. Start witha downsampled volume and work
back to the full resolution using the results at each intermediate scale as the initialization for the
next scale.

9.3.1 Fast Marching Segmentation

The source code for this section can be found in the file
Examples/Segmentation/FastMarchingImageFilter.cxx.

When the differential equation governing the level set evolution has a very simple form, a fast
evolution algorithm called fast marching can be used.

The following example illustrates the use of theitk::FastMarchingImageFilter. This filter
implements a fast marching solution to a simple level set evolution problem. In this example,
the speed term used in the differential equation is expectedto be provided by the user in the
form of an image. This image is typically computed as a function of the gradient magnitude.
Several mappings are popular in the literature, for example, the negative exponentialexp(−x)
and the reciprocal 1/(1+x). In the current example we decided to use a Sigmoid function since
it offers a good deal of control parameters that can be customized to shape a nice speed image.

The mapping should be done in such a way that the propagation speed of the front will be very
low close to high image gradients while it will move rather fast in low gradient areas. This
arrangement will make the contour propagate until it reaches the edges of anatomical structures
in the image and then slow down in front of those edges. The output of the FastMarchingIm-
ageFilter is atime-crossing mapthat indicates, for each pixel, how much time it would take for
the front to arrive at the pixel location.

The application of a threshold in the output image is then equivalent to taking a snapshot of

http://www.itk.org/Doxygen/html/classitk_1_1LaplacianSegmentationLevelSetImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1FastMarchingImageFilter.html

534 Chapter 9. Segmentation

the contour at a particular time during its evolution. It is expected that the contour will take
a longer time to cross over the edges of a particular anatomical structure. This should result
in large changes on the time-crossing map values close to thestructure edges. Segmentation
is performed with this filter by locating a time range in whichthe contour was contained for a
long time in a region of the image space.

Figure9.15shows the major components involved in the application of the FastMarchingIm-
ageFilter to a segmentation task. It involves an initial stage of smoothing using the
itk::CurvatureAnisotropicDiffusionImageFilter. The smoothed image is passed as
the input to theitk::GradientMagnitudeRecursiveGaussianImageFilter and then to the
itk::SigmoidImageFilter. Finally, the output of the FastMarchingImageFilter is passed to
a itk::BinaryThresholdImageFilter in order to produce a binary mask representing the
segmented object.

The code in the following example illustrates the typical setup of a pipeline for performing
segmentation with fast marching. First, the input image is smoothed using an edge-preserving
filter. Then the magnitude of its gradient is computed and passed to a sigmoid filter. The result
of the sigmoid filter is the image potential that will be used to affect the speed term of the
differential equation.

Let’s start by including the following headers. First we include the header of the Curvature-
AnisotropicDiffusionImageFilter that will be used for removing noise from the input image.

#include "itkCurvatureAnisotropicDiffusionImageFilter.h"

The headers of the GradientMagnitudeRecursiveGaussianImageFilter and SigmoidImageFilter
are included below. Together, these two filters will producethe image potential for regulating
the speed term in the differential equation describing the evolution of the level set.

#include "itkGradientMagnitudeRecursiveGaussianImageFilter.h"
#include "itkSigmoidImageFilter.h"

Of course, we will need theitk::Image class and the FastMarchingImageFilter class. Hence
we include their headers.

#include "itkImage.h"
#include "itkFastMarchingImageFilter.h"

The time-crossing map resulting from the FastMarchingImageFilter will be thresholded using
the BinaryThresholdImageFilter. We include its header here.

#include "itkBinaryThresholdImageFilter.h"

Reading and writing images will be done with theitk::ImageFileReader and
itk::ImageFileWriter.

http://www.itk.org/Doxygen/html/classitk_1_1CurvatureAnisotropicDiffusionImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1GradientMagnitudeRecursiveGaussianImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1SigmoidImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1BinaryThresholdImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1Image.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html

9.3. Level Set Segmentation 535

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"

We now define the image type using a pixel type and a particulardimension. In this case the
float type is used for the pixels due to the requirements of the smoothing filter.

typedef float InternalPixelType;
const unsigned int Dimension = 2;
typedef itk::Image< InternalPixelType, Dimension > InternalImageType;

The output image, on the other hand, is declared to be binary.

typedef unsigned char OutputPixelType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;

The type of the BinaryThresholdImageFilter filter is instantiated below using the internal image
type and the output image type.

typedef itk::BinaryThresholdImageFilter< InternalImageType,
OutputImageType > ThresholdingFilterType;

ThresholdingFilterType::Pointer thresholder = ThresholdingFilterType::New();

The upper threshold passed to the BinaryThresholdImageFilter will define the time snapshot
that we are taking from the time-crossing map. In an ideal application the user should be able
to select this threshold interactively using visual feedback. Here, since it is a minimal example,
the value is taken from the command line arguments.

thresholder->SetLowerThreshold(0.0);
thresholder->SetUpperThreshold(timeThreshold);

thresholder->SetOutsideValue(0);
thresholder->SetInsideValue(255);

We instantiate reader and writer types in the following lines.

typedef itk::ImageFileReader< InternalImageType > ReaderType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;

The CurvatureAnisotropicDiffusionImageFilter type is instantiated using the internal image
type.

typedef itk::CurvatureAnisotropicDiffusionImageFilter<
InternalImageType,
InternalImageType > SmoothingFilterType;

536 Chapter 9. Segmentation

Then, the filter is created by invoking theNew() method and assigning the result to a
itk::SmartPointer.

SmoothingFilterType::Pointer smoothing = SmoothingFilterType::New();

The types of the GradientMagnitudeRecursiveGaussianImageFilterand SigmoidImageFilter are
instantiated using the internal image type.

typedef itk::GradientMagnitudeRecursiveGaussianImageFilter<
InternalImageType,
InternalImageType > GradientFilterType;

typedef itk::SigmoidImageFilter<
InternalImageType,
InternalImageType > SigmoidFilterType;

The corresponding filter objects are instantiated with theNew() method.

GradientFilterType::Pointer gradientMagnitude = GradientFilterType::New();
SigmoidFilterType::Pointer sigmoid = SigmoidFilterType::New();

The minimum and maximum values of the SigmoidImageFilter output are defined with the
methodsSetOutputMinimum() andSetOutputMaximum(). In our case, we want these two
values to be 0.0 and 1.0 respectively in order to get a nice speed image to feed to theFast-
MarchingImageFilter. Additional details on the use of the SigmoidImageFilter are presented in
Section6.3.2.

sigmoid->SetOutputMinimum(0.0);
sigmoid->SetOutputMaximum(1.0);

We now declare the type of the FastMarchingImageFilter.

typedef itk::FastMarchingImageFilter< InternalImageType,
InternalImageType > FastMarchingFilterType;

Then, we construct one filter of this class using theNew() method.

FastMarchingFilterType::Pointer fastMarching = FastMarchingFilterType::New();

The filters are now connected in a pipeline shown in Figure9.15using the following lines.

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

9.3. Level Set Segmentation 537

smoothing->SetInput(reader->GetOutput());
gradientMagnitude->SetInput(smoothing->GetOutput());
sigmoid->SetInput(gradientMagnitude->GetOutput());
fastMarching->SetInput(sigmoid->GetOutput());
thresholder->SetInput(fastMarching->GetOutput());
writer->SetInput(thresholder->GetOutput());

The CurvatureAnisotropicDiffusionImageFilter class requires a couple of parameters to be de-
fined. The following are typical values for 2D images. However they may have to be adjusted
depending on the amount of noise present in the input image. This filter has been discussed in
Section6.7.3.

smoothing->SetTimeStep(0.125);
smoothing->SetNumberOfIterations(5);
smoothing->SetConductanceParameter(9.0);

The GradientMagnitudeRecursiveGaussianImageFilter performs the equivalent of a convolu-
tion with a Gaussian kernel followed by a derivative operator. The sigma of this Gaussian can
be used to control the range of influence of the image edges. This filter has been discussed in
Section6.4.2

gradientMagnitude->SetSigma(sigma);

The SigmoidImageFilter class requires two parameters to define the linear transformation to
be applied to the sigmoid argument. These parameters are passed using theSetAlpha() and
SetBeta() methods. In the context of this example, the parameters are used to intensify the
differences between regions of low and high values in the speed image. In an ideal case, the
speed value should be 1.0 in the homogeneous regions of anatomical structures and the value
should decay rapidly to 0.0 around the edges of structures. The heuristic for finding the values
is the following. From the gradient magnitude image, let’s call K1 the minimum value along
the contour of the anatomical structure to be segmented. Then, let’s callK2 an average value of
the gradient magnitude in the middle of the structure. Thesetwo values indicate the dynamic
range that we want to map to the interval[0 : 1] in the speed image. We want the sigmoid to map
K1 to 0.0 andK2 to 1.0. Given thatK1 is expected to be higher thanK2 and we want to map
those values to 0.0 and 1.0 respectively, we want to select a negative value for alpha so that the
sigmoid function will also do an inverse intensity mapping.This mapping will produce a speed
image such that the level set will march rapidly on the homogeneous region and will definitely
stop on the contour. The suggested value for beta is(K1+K2)/2 while the suggested value for
alpha is(K2−K1)/6, which must be a negative number. In our simple example the values are
provided by the user from the command line arguments. The user can estimate these values by
observing the gradient magnitude image.

sigmoid->SetAlpha(alpha);
sigmoid->SetBeta(beta);

538 Chapter 9. Segmentation

The FastMarchingImageFilter requires the user to provide aseed point from which the contour
will expand. The user can actually pass not only one seed point but a set of them. A good
set of seed points increases the chances of segmenting a complex object without missing parts.
The use of multiple seeds also helps to reduce the amount of time needed by the front to visit
a whole object and hence reduces the risk of leaks on the edgesof regions visited earlier. For
example, when segmenting an elongated object, it is undesirable to place a single seed at one
extreme of the object since the front will need a long time to propagate to the other end of the
object. Placing several seeds along the axis of the object will probably be the best strategy to
ensure that the entire object is captured early in the expansion of the front. One of the important
properties of level sets is their natural ability to fuse several fronts implicitly without any extra
bookkeeping. The use of multiple seeds takes good advantageof this property.

The seeds are passed stored in a container. The type of this container is defined as
NodeContainer among the FastMarchingImageFilter traits.

typedef FastMarchingFilterType::NodeContainer NodeContainer;
typedef FastMarchingFilterType::NodeType NodeType;
NodeContainer::Pointer seeds = NodeContainer::New();

Nodes are created as stack variables and initialized with a value and anitk::Index position.

NodeType node;
const double seedValue = 0.0;

node.SetValue(seedValue);
node.SetIndex(seedPosition);

The list of nodes is initialized and then every node is inserted using theInsertElement().

seeds->Initialize();
seeds->InsertElement(0, node);

The set of seed nodes is now passed to the FastMarchingImageFilter with the method
SetTrialPoints().

fastMarching->SetTrialPoints(seeds);

The FastMarchingImageFilter requires the user to specify the size of the image to be produced
as output. This is done using theSetOutputSize(). Note that the size is obtained here from
the output image of the smoothing filter. The size of this image is valid only after theUpdate()
methods of this filter has been called directly or indirectly.

fastMarching->SetOutputSize(
reader->GetOutput()->GetBufferedRegion().GetSize());

http://www.itk.org/Doxygen/html/classitk_1_1Index.html

9.3. Level Set Segmentation 539

Structure Seed Index σ α β Threshold Output Image from left
Left Ventricle (81,114) 1.0 -0.5 3.0 100 First
Right Ventricle (99,114) 1.0 -0.5 3.0 100 Second
White matter (56,92) 1.0 -0.3 2.0 200 Third
Gray matter (40,90) 0.5 -0.3 2.0 200 Fourth

Table 9.3:Parameters used for segmenting some brain structures shown in Figure 9.17 using the filter

FastMarchingImageFilter. All of them used a stopping value of 100.

Since the front representing the contour will propagate continuously over time, it is desirable
to stop the process once a certain time has been reached. Thisallows us to save computation
time under the assumption that the region of interest has already been computed. The value
for stopping the process is defined with the methodSetStoppingValue(). In principle, the
stopping value should be a little bit higher than the threshold value.

fastMarching->SetStoppingValue(stoppingTime);

The invocation of theUpdate() method on the writer triggers the execution of the pipeline.As
usual, the call is placed in atry/catch block should any errors occur or exceptions be thrown.

try
{
writer->Update();
}

catch(itk::ExceptionObject & excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}

Now let’s run this example using the input imageBrainProtonDensitySlice.png provided
in the directoryExamples/Data. We can easily segment the major anatomical structures by
providing seeds in the appropriate locations. The following table presents the parameters used
for some structures.

Figure9.16presents the intermediate outputs of the pipeline illustrated in Figure9.15. They
are from left to right: the output of the anisotropic diffusion filter, the gradient magnitude of the
smoothed image and the sigmoid of the gradient magnitude which is finally used as the speed
image for the FastMarchingImageFilter.

Notice that the gray matter is not being completely segmented. This illustrates the vulnerability
of the level set methods when the anatomical structures to besegmented do not occupy extended
regions of the image. This is especially true when the width of the structure is comparable to
the size of the attenuation bands generated by the gradient filter. A possible workaround for

540 Chapter 9. Segmentation

Figure 9.16: Images generated by the segmentation process based on the FastMarchingImageFilter.

From left to right and top to bottom: input image to be segmented, image smoothed with an edge-preserving

smoothing filter, gradient magnitude of the smoothed image, sigmoid of the gradient magnitude. This last

image, the sigmoid, is used to compute the speed term for the front propagation

9.3. Level Set Segmentation 541

Figure 9.17: Images generated by the segmentation process based on the FastMarchingImageFilter.

From left to right: segmentation of the left ventricle, segmentation of the right ventricle, segmentation of the

white matter, attempt of segmentation of the gray matter.

this limitation is to use multiple seeds distributed along the elongated object. However, note
that white matter versus gray matter segmentation is not a trivial task, and may require a more
elaborate approach than the one used in this basic example.

9.3.2 Shape Detection Segmentation

The source code for this section can be found in the file
Examples/Segmentation/ShapeDetectionLevelSetFilter.cxx.

The use of theitk::ShapeDetectionLevelSetImageFilter is illustrated in the following
example. The implementation of this filter in ITK is based on the paper by Malladi et al [54]. In
this implementation, the governing differential equationhas an additional curvature-based term.
This term acts as a smoothing term where areas of high curvature, assumed to be due to noise,
are smoothed out. Scaling parameters are used to control thetradeoff between the expansion
term and the smoothing term. One consequence of this additional curvature term is that the
fast marching algorithm is no longer applicable, because the contour is no longer guaranteed to
always be expanding. Instead, the level set function is updated iteratively.

The ShapeDetectionLevelSetImageFilter expects two inputs, the first being an initial Level Set
in the form of an itk::Image, and the second being a feature image. For this algorithm, the
feature image is an edge potential image that basically follows the same rules applicable to the
speed image used for the FastMarchingImageFilter discussed in Section9.3.1.

In this example we use an FastMarchingImageFilter to produce the initial level set as the dis-
tance function to a set of user-provided seeds. The FastMarchingImageFilter is run with a
constant speed value which enables us to employ this filter asa distance map calculator.

Figure9.18shows the major components involved in the application of the ShapeDetection-
LevelSetImageFilter to a segmentation task. The first stageinvolves smoothing using the
itk::CurvatureAnisotropicDiffusionImageFilter. The smoothed image is passed as
the input for the itk::GradientMagnitudeRecursiveGaussianImageFilter and then to

http://www.itk.org/Doxygen/html/classitk_1_1ShapeDetectionLevelSetImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1Image.html
http://www.itk.org/Doxygen/html/classitk_1_1CurvatureAnisotropicDiffusionImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1GradientMagnitudeRecursiveGaussianImageFilter.html

542 Chapter 9. Segmentation

Sigmoid
Filter

Gradient
Magnitude

Anisotropic
Diffusion

Input
itk::Image

Iterations Sigma Alpha,Beta

Edge
Image

Fast
Marching

Input
LevelSet

Distance

Seeds

Binary
Threshold

Binary
Image

Threshold

Output
LevelSet

Input
LevelSet

Edge
Potential

Shape
Detection

Figure 9.18:Collaboration diagram for the ShapeDetectionLevelSetImageFilter applied to a segmentation

task.

9.3. Level Set Segmentation 543

the itk::SigmoidImageFilter in order to produce the edge potential image. A set of user-
provided seeds is passed to an FastMarchingImageFilter in order to compute the distance map.
A constant value is subtracted from this map in order to obtain a level set in which thezero
setrepresents the initial contour. This level set is also passed as input to the ShapeDetection-
LevelSetImageFilter.

Finally, the level set at the output of the ShapeDetectionLevelSetImageFilter is passed to an Bi-
naryThresholdImageFilter in order to produce a binary maskrepresenting the segmented object.

Let’s start by including the headers of the main filters involved in the preprocessing.

#include "itkCurvatureAnisotropicDiffusionImageFilter.h"
#include "itkGradientMagnitudeRecursiveGaussianImageFilter.h"
#include "itkSigmoidImageFilter.h"

The edge potential map is generated using these filters as in the previous example.

We will need the Image class, the FastMarchingImageFilter class and the ShapeDetection-
LevelSetImageFilter class. Hence we include their headershere.

#include "itkImage.h"
#include "itkFastMarchingImageFilter.h"
#include "itkShapeDetectionLevelSetImageFilter.h"

The level set resulting from the ShapeDetectionLevelSetImageFilter will be thresholded at the
zero level in order to get a binary image representing the segmented object. The BinaryThresh-
oldImageFilter is used for this purpose.

#include "itkBinaryThresholdImageFilter.h"

We now define the image type using a particular pixel type and adimension. In this case the
float type is used for the pixels due to the requirements of the smoothing filter.

typedef float InternalPixelType;
const unsigned int Dimension = 2;
typedef itk::Image< InternalPixelType, Dimension > InternalImageType;

The output image, on the other hand, is declared to be binary.

typedef unsigned char OutputPixelType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;

The type of the BinaryThresholdImageFilter filter is instantiated below using the internal image
type and the output image type.

http://www.itk.org/Doxygen/html/classitk_1_1SigmoidImageFilter.html

544 Chapter 9. Segmentation

typedef itk::BinaryThresholdImageFilter< InternalImageType, OutputImageType >
ThresholdingFilterType;

ThresholdingFilterType::Pointer thresholder = ThresholdingFilterType::New();

The upper threshold of the BinaryThresholdImageFilter is set to 0.0 in order to display the zero
set of the resulting level set. The lower threshold is set to alarge negative number in order to
ensure that the interior of the segmented object will appearinside the binary region.

thresholder->SetLowerThreshold(-1000.0);
thresholder->SetUpperThreshold(0.0);

thresholder->SetOutsideValue(0);
thresholder->SetInsideValue(255);

The CurvatureAnisotropicDiffusionImageFilter type is instantiated using the internal image
type.

typedef itk::CurvatureAnisotropicDiffusionImageFilter<
InternalImageType,
InternalImageType > SmoothingFilterType;

The filter is instantiated by invoking theNew() method and assigning the result to a
itk::SmartPointer.

SmoothingFilterType::Pointer smoothing = SmoothingFilterType::New();

The types of the GradientMagnitudeRecursiveGaussianImageFilterand SigmoidImageFilter are
instantiated using the internal image type.

typedef itk::GradientMagnitudeRecursiveGaussianImageFilter<
InternalImageType,
InternalImageType > GradientFilterType;

typedef itk::SigmoidImageFilter<
InternalImageType,
InternalImageType > SigmoidFilterType;

The corresponding filter objects are created with the methodNew().

GradientFilterType::Pointer gradientMagnitude = GradientFilterType::New();
SigmoidFilterType::Pointer sigmoid = SigmoidFilterType::New();

The minimum and maximum values of the SigmoidImageFilter output are defined with the
methodsSetOutputMinimum() andSetOutputMaximum(). In our case, we want these two

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

9.3. Level Set Segmentation 545

values to be 0.0 and 1.0 respectively in order to get a nice speed image to feed to theFast-
MarchingImageFilter. Additional details on the use of the SigmoidImageFilter are presented in
Section6.3.2.

sigmoid->SetOutputMinimum(0.0);
sigmoid->SetOutputMaximum(1.0);

We now declare the type of the FastMarchingImageFilter thatwill be used to generate the initial
level set in the form of a distance map.

typedef itk::FastMarchingImageFilter< InternalImageType, InternalImageType >
FastMarchingFilterType;

Next we construct one filter of this class using theNew() method.

FastMarchingFilterType::Pointer fastMarching = FastMarchingFilterType::New();

In the following lines we instantiate the type of the ShapeDetectionLevelSetImageFilter and
create an object of this type using theNew() method.

typedef itk::ShapeDetectionLevelSetImageFilter< InternalImageType,
InternalImageType > ShapeDetectionFilterType;

ShapeDetectionFilterType::Pointer
shapeDetection = ShapeDetectionFilterType::New();

The filters are now connected in a pipeline indicated in Figure9.18with the following code.

smoothing->SetInput(reader->GetOutput());
gradientMagnitude->SetInput(smoothing->GetOutput());
sigmoid->SetInput(gradientMagnitude->GetOutput());

shapeDetection->SetInput(fastMarching->GetOutput());
shapeDetection->SetFeatureImage(sigmoid->GetOutput());

thresholder->SetInput(shapeDetection->GetOutput());

writer->SetInput(thresholder->GetOutput());

The CurvatureAnisotropicDiffusionImageFilter requiresa couple of parameters to be defined.
The following are typical values for 2D images. However they may have to be adjusted de-
pending on the amount of noise present in the input image. This filter has been discussed in
Section6.7.3.

546 Chapter 9. Segmentation

smoothing->SetTimeStep(0.125);
smoothing->SetNumberOfIterations(5);
smoothing->SetConductanceParameter(9.0);

The GradientMagnitudeRecursiveGaussianImageFilter performs the equivalent of a convolu-
tion with a Gaussian kernel followed by a derivative operator. The sigma of this Gaussian can
be used to control the range of influence of the image edges. This filter has been discussed in
Section6.4.2

gradientMagnitude->SetSigma(sigma);

The SigmoidImageFilter requires two parameters that definethe linear transformation to be
applied to the sigmoid argument. These parameters have beendiscussed in Sections6.3.2and
9.3.1.

sigmoid->SetAlpha(alpha);
sigmoid->SetBeta(beta);

The FastMarchingImageFilter requires the user to provide aseed point from which the level set
will be generated. The user can actually pass not only one seed point but a set of them. Note the
FastMarchingImageFilter is used here only as a helper in thedetermination of an initial level
set. We could have used theitk::DanielssonDistanceMapImageFilter in the same way.

The seeds are stored in a container. The type of this container is defined asNodeContainer
among the FastMarchingImageFilter traits.

typedef FastMarchingFilterType::NodeContainer NodeContainer;
typedef FastMarchingFilterType::NodeType NodeType;
NodeContainer::Pointer seeds = NodeContainer::New();

Nodes are created as stack variables and initialized with a value and anitk::Index position.
Note that we assign the negative of the value of the user-provided distance to the unique node
of the seeds passed to the FastMarchingImageFilter. In thisway, the value will increment as
the front is propagated, until it reaches the zero value corresponding to the contour. After this,
the front will continue propagating until it fills up the entire image. The initial distance is taken
from the command line arguments. The rule of thumb for the user is to select this value as the
distance from the seed points at which the initial contour should be.

NodeType node;
const double seedValue = - initialDistance;

node.SetValue(seedValue);
node.SetIndex(seedPosition);

http://www.itk.org/Doxygen/html/classitk_1_1DanielssonDistanceMapImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1Index.html

9.3. Level Set Segmentation 547

The list of nodes is initialized and then every node is inserted usingInsertElement().

seeds->Initialize();
seeds->InsertElement(0, node);

The set of seed nodes is now passed to the FastMarchingImageFilter with the method
SetTrialPoints().

fastMarching->SetTrialPoints(seeds);

Since the FastMarchingImageFilter is used here only as a distance map generator, it does
not require a speed image as input. Instead, the constant value 1.0 is passed using the
SetSpeedConstant() method.

fastMarching->SetSpeedConstant(1.0);

The FastMarchingImageFilter requires the user to specify the size of the image to be produced
as output. This is done using theSetOutputSize(). Note that the size is obtained here from
the output image of the smoothing filter. The size of this image is valid only after theUpdate()
methods of this filter have been called directly or indirectly.

fastMarching->SetOutputSize(
reader->GetOutput()->GetBufferedRegion().GetSize());

ShapeDetectionLevelSetImageFilter provides two parameters to control the competition be-
tween the propagation or expansion term and the curvature smoothing term. The methods
SetPropagationScaling() andSetCurvatureScaling() defines the relative weighting be-
tween the two terms. In this example, we will set the propagation scaling to one and let the
curvature scaling be an input argument. The larger the the curvature scaling parameter the
smoother the resulting segmentation. However, the curvature scaling parameter should not be
set too large, as it will draw the contour away from the shape boundaries.

shapeDetection->SetPropagationScaling(propagationScaling);
shapeDetection->SetCurvatureScaling(curvatureScaling);

Once activated, the level set evolution will stop if the convergence criteria or the maximum
number of iterations is reached. The convergence criteria are defined in terms of the root mean
squared (RMS) change in the level set function. The evolution is said to have converged if the
RMS change is below a user-specified threshold. In a real application, it is desirable to couple
the evolution of the zero set to a visualization module, allowing the user to follow the evolution
of the zero set. With this feedback, the user may decide when to stop the algorithm before the
zero set leaks through the regions of low gradient in the contour of the anatomical structure to
be segmented.

548 Chapter 9. Segmentation

Structure Seed Index Distance σ α β Output Image
Left Ventricle (81,114) 5.0 1.0 -0.5 3.0 First in Figure9.20
Right Ventricle (99,114) 5.0 1.0 -0.5 3.0 Second in Figure9.20
White matter (56,92) 5.0 1.0 -0.3 2.0 Third in Figure9.20
Gray matter (40,90) 5.0 0.5 -0.3 2.0 Fourth in Figure9.20

Table 9.4:Parameters used for segmenting some brain structures shown in Figure 9.19 using the filter

ShapeDetectionLevelSetFilter. All of them used a propagation scaling of 1.0 and curvature scaling of 0.05.

shapeDetection->SetMaximumRMSError(0.02);
shapeDetection->SetNumberOfIterations(800);

The invocation of theUpdate() method on the writer triggers the execution of the pipeline.As
usual, the call is placed in atry/catch block should any errors occur or exceptions be thrown.

try
{
writer->Update();
}

catch(itk::ExceptionObject & excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}

Let’s now run this example using as input the imageBrainProtonDensitySlice.png pro-
vided in the directoryExamples/Data. We can easily segment the major anatomical structures
by providing seeds in the appropriate locations. Table9.4presents the parameters used for some
structures. For all of the examples illustrated in this table, the propagation scaling was set to
1.0, and the curvature scaling set to 0.05.

Figure9.19presents the intermediate outputs of the pipeline illustrated in Figure9.18. They
are from left to right: the output of the anisotropic diffusion filter, the gradient magnitude of the
smoothed image and the sigmoid of the gradient magnitude which is finally used as the edge
potential for the ShapeDetectionLevelSetImageFilter.

Notice that in Figure9.20the segmented shapes are rounder than in Figure9.17due to the ef-
fects of the curvature term in the driving equation. As with the previous example, segmentation
of the gray matter is still problematic.

A larger number of iterations is reguired for segmenting large structures since it takes longer for
the front to propagate and cover the structure. This drawback can be easily mitigated by setting
many seed points in the initialization of the FastMarchingImageFilter. This will generate an
initial level set much closer in shape to the object to be segmented and hence require fewer
iterations to fill and reach the edges of the anatomical structure.

9.3. Level Set Segmentation 549

Figure 9.19:Images generated by the segmentation process based on the ShapeDetectionLevelSetIm-

ageFilter. From left to right and top to bottom: input image to be segmented, image smoothed with an

edge-preserving smoothing filter, gradient magnitude of the smoothed image, sigmoid of the gradient mag-

nitude. This last image, the sigmoid, is used to compute the speed term for the front propagation.

550 Chapter 9. Segmentation

Figure 9.20:Images generated by the segmentation process based on the ShapeDetectionLevelSetIm-

ageFilter. From left to right: segmentation of the left ventricle, segmentation of the right ventricle, segmen-

tation of the white matter, attempt of segmentation of the gray matter.

9.3.3 Geodesic Active Contours Segmentation

The source code for this section can be found in the file
Examples/Segmentation/GeodesicActiveContourImageFilter.cxx.

The use of the itk::GeodesicActiveContourLevelSetImageFilter is illustrated
in the following example. The implementation of this filter in ITK is based on
the paper by Caselles [14]. This implementation extends the functionality of the
itk::ShapeDetectionLevelSetImageFilter by the addition of a third advection term which
attracts the level set to the object boundaries.

GeodesicActiveContourLevelSetImageFilter expects two inputs. The first is an initial level set
in the form of an itk::Image. The second input is a feature image. For this algorithm,
the feature image is an edge potential image that basically follows the same rules used for
the ShapeDetectionLevelSetImageFilter discussed in Section 9.3.2. The configuration of this
example is quite similar to the example on the use of the ShapeDetectionLevelSetImageFilter.
We omit most of the redundant description. A look at the code will reveal the great degree of
similarity between both examples.

Figure9.21shows the major components involved in the application of the GeodesicActive-
ContourLevelSetImageFilter to a segmentation task. This pipeline is quite similar to the one
used by the ShapeDetectionLevelSetImageFilter in section9.3.2.

The pipeline involves a first stage of smoothing using the
itk::CurvatureAnisotropicDiffusionImageFilter. The smoothed image is passed
as the input to theitk::GradientMagnitudeRecursiveGaussianImageFilter and then
to the itk::SigmoidImageFilter in order to produce the edge potential image. A set of
user-provided seeds is passed to aitk::FastMarchingImageFilter in order to compute the
distance map. A constant value is subtracted from this map inorder to obtain a level set in
which thezero setrepresents the initial contour. This level set is also passed as input to the
GeodesicActiveContourLevelSetImageFilter.

http://www.itk.org/Doxygen/html/classitk_1_1GeodesicActiveContourLevelSetImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ShapeDetectionLevelSetImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1Image.html
http://www.itk.org/Doxygen/html/classitk_1_1CurvatureAnisotropicDiffusionImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1GradientMagnitudeRecursiveGaussianImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1SigmoidImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1FastMarchingImageFilter.html

9.3. Level Set Segmentation 551

Sigmoid
Filter

Gradient
Magnitude

Anisotropic
Diffusion

Input
itk::Image

Iterations Sigma Alpha,Beta

Edge
Image

Fast
Marching

Input
LevelSet

Distance

Seeds

Binary
Threshold

Binary
Image

Output
LevelSet

Geodesic
Active

ContoursLength
Penalty

Inflation
Strength

Figure 9.21:Collaboration diagram for the GeodesicActiveContourLevelSetImageFilter applied to a seg-

mentation task.

552 Chapter 9. Segmentation

Finally, the level set generated by the GeodesicActiveContourLevelSetImageFilter is passed to
a itk::BinaryThresholdImageFilter in order to produce a binary mask representing the
segmented object.

Let’s start by including the headers of the main filters involved in the preprocessing.

#include "itkImage.h"
#include "itkGeodesicActiveContourLevelSetImageFilter.h"

We now define the image type using a particular pixel type and dimension. In this case the
float type is used for the pixels due to the requirements of the smoothing filter.

typedef float InternalPixelType;
const unsigned int Dimension = 2;
typedef itk::Image< InternalPixelType, Dimension > InternalImageType;

In the following lines we instantiate the type of the GeodesicActiveContourLevelSetImageFilter
and create an object of this type using theNew() method.

typedef itk::GeodesicActiveContourLevelSetImageFilter< InternalImageType,
InternalImageType > GeodesicActiveContourFilterType;

GeodesicActiveContourFilterType::Pointer geodesicActiveContour =
GeodesicActiveContourFilterType::New();

For the GeodesicActiveContourLevelSetImageFilter, scaling parameters are used to trade off
between the propagation (inflation), the curvature (smoothing) and the advection terms. These
parameters are set using methodsSetPropagationScaling(), SetCurvatureScaling() and
SetAdvectionScaling(). In this example, we will set the curvature and advection scales to
one and let the propagation scale be a command-line argument.

geodesicActiveContour->SetPropagationScaling(propagationScaling);
geodesicActiveContour->SetCurvatureScaling(1.0);
geodesicActiveContour->SetAdvectionScaling(1.0);

The filters are now connected in a pipeline indicated in Figure9.21using the following lines:

smoothing->SetInput(reader->GetOutput());
gradientMagnitude->SetInput(smoothing->GetOutput());
sigmoid->SetInput(gradientMagnitude->GetOutput());

geodesicActiveContour->SetInput(fastMarching->GetOutput());
geodesicActiveContour->SetFeatureImage(sigmoid->GetOutput());

thresholder->SetInput(geodesicActiveContour->GetOutput());
writer->SetInput(thresholder->GetOutput());

http://www.itk.org/Doxygen/html/classitk_1_1BinaryThresholdImageFilter.html

9.3. Level Set Segmentation 553

Structure Seed Index Distance σ α β Propag. Output Image
Left Ventricle (81,114) 5.0 1.0 -0.5 3.0 2.0 First
Right Ventricle (99,114) 5.0 1.0 -0.5 3.0 2.0 Second
White matter (56,92) 5.0 1.0 -0.3 2.0 10.0 Third
Gray matter (40,90) 5.0 0.5 -0.3 2.0 10.0 Fourth

Table 9.5:Parameters used for segmenting some brain structures shown in Figure 9.23 using the filter

GeodesicActiveContourLevelSetImageFilter.

The invocation of theUpdate() method on the writer triggers the execution of the pipeline.As
usual, the call is placed in atry/catch block should any errors occur or exceptions be thrown.

try
{
writer->Update();
}

catch(itk::ExceptionObject & excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}

Let’s now run this example using as input the imageBrainProtonDensitySlice.png pro-
vided in the directoryExamples/Data. We can easily segment the major anatomical structures
by providing seeds in the appropriate locations. Table9.5presents the parameters used for some
structures.

Figure9.22presents the intermediate outputs of the pipeline illustrated in Figure9.21. They
are from left to right: the output of the anisotropic diffusion filter, the gradient magnitude of the
smoothed image and the sigmoid of the gradient magnitude which is finally used as the edge
potential for the GeodesicActiveContourLevelSetImageFilter.

Segmentations of the main brain structures are presented inFigure9.23. The results are quite
similar to those obtained with the ShapeDetectionLevelSetImageFilter in Section9.3.2.

Note that a relatively larger propagation scaling value wasrequired to segment the white mat-
ter. This is due to two factors: the lower contrast at the border of the white matter and the
complex shape of the structure. Unfortunately the optimal value of these scaling parameters
can only be determined by experimentation. In a real application we could imagine an interac-
tive mechanism by which a user supervises the contour evolution and adjusts these parameters
accordingly.

554 Chapter 9. Segmentation

Figure 9.22: Images generated by the segmentation process based on the GeodesicActiveCon-

tourLevelSetImageFilter. From left to right and top to bottom: input image to be segmented, image

smoothed with an edge-preserving smoothing filter, gradient magnitude of the smoothed image, sigmoid

of the gradient magnitude. This last image, the sigmoid, is used to compute the speed term for the front

propagation.

9.3. Level Set Segmentation 555

Figure 9.23:Images generated by the segmentation process based on the GeodesicActiveContourImage-

Filter. From left to right: segmentation of the left ventricle, segmentation of the right ventricle, segmentation

of the white matter, attempt of segmentation of the gray matter.

9.3.4 Threshold Level Set Segmentation

The source code for this section can be found in the file
Examples/Segmentation/ThresholdSegmentationLevelSetImageFilter.cxx.

The itk::ThresholdSegmentationLevelSetImageFilter is an extension of the threshold
connected-component segmentation to the level set framework. The goal is to define a range
of intensity values that classify the tissue type of interest and then base the propagation term
on the level set equation for that intensity range. Using thelevel set approach, the smoothness
of the evolving surface can be constrained to prevent some ofthe “leaking” that is common in
connected-component schemes.

The propagation termP from Equation9.3 is calculated from theFeatureImage input g with
UpperThreshold U andLowerThreshold L according to the following formula.

P(x) =

{

g(x)−L if g(x) < (U −L)/2+L
U −g(x) otherwise

(9.4)

Figure9.25 illustrates the propagation term function. Intensity values ing betweenL andH
yield positive values inP, while outside intensities yield negative values inP.

http://www.itk.org/Doxygen/html/classitk_1_1ThresholdSegmentationLevelSetImageFilter.html

556 Chapter 9. Segmentation

Fast
Marching

Input
LevelSet

Distance

Seeds

Binary
Threshold

Binary
Image

Input
itk::Image

LevelSet
OutputThreshold

Level−set
Segmentation

Weight

Curvature

Weight
Feature

Figure 9.24:Collaboration diagram for the ThresholdSegmentationLevelSetImageFilter applied to a seg-

mentation task.

Expands
ModelModel

Contracts Contracts
Model

UL

g(x)

P

P=0

Figure 9.25: Propagation term for threshold-based

level set segmentation. From Equation 9.4.

The threshold segmentation filter expects
two inputs. The first is an initial level set
in the form of an itk::Image. The sec-
ond input is the feature imageg. For many
applications, this filter requires little or no
preprocessing of its input. Smoothing the
input image is not usually required to pro-
duce reasonable solutions, though it may
still be warranted in some cases.

Figure9.24shows how the image process-
ing pipeline is constructed. The initial sur-
face is generated using the fast marching
filter. The output of the segmentation filter
is passed to aitk::BinaryThresholdImageFilter to create a binary representation of the
segmented object. Let’s start by including the appropriateheader file.

#include "itkThresholdSegmentationLevelSetImageFilter.h"

We define the image type using a particular pixel type and dimension. In this case we will use
2D float images.

typedef float InternalPixelType;
const unsigned int Dimension = 2;
typedef itk::Image< InternalPixelType, Dimension > InternalImageType;

The following lines instantiate a ThresholdSegmentationLevelSetImageFilter using theNew()
method.

http://www.itk.org/Doxygen/html/classitk_1_1Image.html
http://www.itk.org/Doxygen/html/classitk_1_1BinaryThresholdImageFilter.html

9.3. Level Set Segmentation 557

typedef itk::ThresholdSegmentationLevelSetImageFilter< InternalImageType,
InternalImageType > ThresholdSegmentationLevelSetImageFilterType;

ThresholdSegmentationLevelSetImageFilterType::Pointer thresholdSegmentation =
ThresholdSegmentationLevelSetImageFilterType::New();

For the ThresholdSegmentationLevelSetImageFilter, scaling parameters are used to balance
the influence of the propagation (inflation) and the curvature (surface smoothing) terms from
Equation9.3. The advection term is not used in this filter. Set the terms with methods
SetPropagationScaling() andSetCurvatureScaling(). Both terms are set to 1.0 in this
example.

thresholdSegmentation->SetPropagationScaling(1.0);
if (argc > 8)
{
thresholdSegmentation->SetCurvatureScaling(atof(argv[8]));
}

else
{
thresholdSegmentation->SetCurvatureScaling(1.0);
}

The convergence criteriaMaximumRMSError andMaximumIterations are set as in previous
examples. We now set the upper and lower threshold valuesU andL, and the isosurface value
to use in the initial model.

thresholdSegmentation->SetUpperThreshold(::atof(argv[7]));
thresholdSegmentation->SetLowerThreshold(::atof(argv[6]));
thresholdSegmentation->SetIsoSurfaceValue(0.0);

The filters are now connected in a pipeline indicated in Figure 9.24. Remember that before
calling Update() on the file writer object, the fast marching filter must be initialized with the
seed points and the output from the reader object. See previous examples and the source code
for this section for details.

thresholdSegmentation->SetInput(fastMarching->GetOutput());
thresholdSegmentation->SetFeatureImage(reader->GetOutput());
thresholder->SetInput(thresholdSegmentation->GetOutput());
writer->SetInput(thresholder->GetOutput());

Invoking theUpdate() method on the writer triggers the execution of the pipeline.As usual,
the call is placed in atry/catch block should any errors occur or exceptions be thrown.

try

558 Chapter 9. Segmentation

Figure 9.26: Images generated by the segmentation process based on the ThresholdSegmentation-

LevelSetImageFilter. From left to right: segmentation of the left ventricle, segmentation of the right ventri-

cle, segmentation of the white matter, attempt of segmentation of the gray matter. The parameters used in

this segmentations are presented in Table 9.6

Structure Seed Index Lower Upper Output Image
White matter (60,116) 150 180 Second from left
Ventricle (81,112) 210 250 Third from left
Gray matter (107,69) 180 210 Fourth from left

Table 9.6:Segmentation results using the ThresholdSegmentationLevelSetImageFilter for various seed

points. The resulting images are shown in Figure 9.26

.

{
reader->Update();
fastMarching->SetOutputSize(

reader->GetOutput()->GetBufferedRegion().GetSize());
writer->Update();
}

catch(itk::ExceptionObject & excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}

Let’s run this application with the same data and parametersas the example given for
itk::ConnectedThresholdImageFilter in Section9.1.1. We will use a value of 5 as the
initial distance of the surface from the seed points. The algorithm is relatively insensitive to
this initialization. Compare the results in Figure9.26with those in Figure9.1. Notice how the
smoothness constraint on the surface prevents leakage of the segmentation into both ventricles,
but also localizes the segmentation to a smaller portion of the gray matter.

http://www.itk.org/Doxygen/html/classitk_1_1ConnectedThresholdImageFilter.html

9.3. Level Set Segmentation 559

9.3.5 Canny-Edge Level Set Segmentation

The source code for this section can be found in the file
Examples/Segmentation/CannySegmentationLevelSetImageFilter.cxx.

The itk::CannySegmentationLevelSetImageFilter defines a speed term that minimizes
distance to the Canny edges in an image. The initial level setmodel moves through a gradient
advection field until it locks onto those edges. This filter ismore suitable for refining existing
segmentations than as a region-growing algorithm.

The two terms defined for the CannySegmentationLevelSetImageFilter are the advection term
and the propagation term from Equation9.3. The advection term is constructed by minimizing
the squared distance transform from the Canny edges.

min
Z

D2 ⇒ D∇D (9.5)

where the distance transform D is calculated using a
itk::DanielssonDistanceMapImageFilter applied to the output of the
itk::CannyEdgeDetectionImageFilter.

For cases in which some surface expansion is to be allowed, a non-zero value may be set for the
propagation term. The propagation term is simplyD. As with all ITK level set segmentation
filters, the curvature term controls the smoothness of the surface.

CannySegmentationLevelSetImageFilter expects two inputs. The first is an initial level set in
the form of an itk::Image. The second input is the feature imageg from which propagation
and advection terms are calculated. It is generally a good idea to do some preprocessing of the
feature image to remove noise.

Figure9.27shows how the image processing pipeline is constructed. We read two images: the
image to segment and the image that contains the initial implicit surface. The goal is to refine
the initial model from the second input and not to grow a new segmentation from seed points.
Thefeature image is preprocessed with a few iterations of an anisotropic diffusion filter.

Let’s start by including the appropriate header file.

#include "itkCannySegmentationLevelSetImageFilter.h"
#include "itkGradientAnisotropicDiffusionImageFilter.h"

We define the image type using a particular pixel type and dimension. In this case we will use
2D float images.

typedef float InternalPixelType;
const unsigned int Dimension = 2;
typedef itk::Image< InternalPixelType, Dimension > InternalImageType;

http://www.itk.org/Doxygen/html/classitk_1_1CannySegmentationLevelSetImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1DanielssonDistanceMapImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1CannyEdgeDetectionImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1Image.html

560 Chapter 9. Segmentation

Binary
Threshold

Binary
Image

Advection
Weight

 Maximum
Iterations

Input
itk::Image

Initial
Model

itk::Image
Anisotropic
Diffusion

 Gradient

LevelSet
OutputThreshold

Level−set
Segmentation

Canny
Variance

Canny
Threshold

Figure 9.27:Collaboration diagram for the CannySegmentationLevelSetImageFilter applied to a segmen-

tation task.

The input image will be processed with a few iterations of feature-preserving diffusion. We
create a filter and set the appropriate parameters.

typedef itk::GradientAnisotropicDiffusionImageFilter< InternalImageType,
InternalImageType> DiffusionFilterType;

DiffusionFilterType::Pointer diffusion = DiffusionFilterType::New();
diffusion->SetNumberOfIterations(5);
diffusion->SetTimeStep(0.125);
diffusion->SetConductanceParameter(1.0);

The following lines define and instantiate a CannySegmentationLevelSetImageFilter.

typedef itk::CannySegmentationLevelSetImageFilter< InternalImageType,
InternalImageType > CannySegmentationLevelSetImageFilterType;

CannySegmentationLevelSetImageFilterType::Pointer cannySegmentation =
CannySegmentationLevelSetImageFilterType::New();

As with the other ITK level set segmentation filters, the terms of the CannySegmentation-
LevelSetImageFilter level set equation can be weighted by scalars. For this application we will
modify the relative weight of the advection term. The propagation and curvature term weights
are set to their defaults of 0 and 1, respectively.

cannySegmentation->SetAdvectionScaling(::atof(argv[6]));
cannySegmentation->SetCurvatureScaling(1.0);
cannySegmentation->SetPropagationScaling(0.0);

9.3. Level Set Segmentation 561

The maximum number of iterations is specified from the command line. It may not be desirable
in some applications to run the filter to convergence. Only a few iterations may be required.

cannySegmentation->SetMaximumRMSError(0.01);
cannySegmentation->SetNumberOfIterations(::atoi(argv[8]));

There are two important parameters in the CannySegmentationLevelSetImageFilter to control
the behavior of the Canny edge detection. Thevarianceparameter controls the amount of Gaus-
sian smoothing on the input image. Thethresholdparameter indicates the lowest allowed value
in the output image. Thresholding is used to suppress Canny edges whose gradient magnitudes
fall below a certain value.

cannySegmentation->SetThreshold(::atof(argv[4]));
cannySegmentation->SetVariance(::atof(argv[5]));

Finally, it is very important to specify the isovalue of the surface in the initial model input
image. In a binary image, for example, the isosurface is found midway between the foreground
and background values.

cannySegmentation->SetIsoSurfaceValue(::atof(argv[7]));

The filters are now connected in a pipeline indicated in Figure9.27.

diffusion->SetInput(reader1->GetOutput());
cannySegmentation->SetInput(reader2->GetOutput());
cannySegmentation->SetFeatureImage(diffusion->GetOutput());
thresholder->SetInput(cannySegmentation->GetOutput());
writer->SetInput(thresholder->GetOutput());

Invoking theUpdate() method on the writer triggers the execution of the pipeline.As usual,
the call is placed in atry/catch block to handle any exceptions that may be thrown.

try
{
writer->Update();
}

catch(itk::ExceptionObject & excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}

We can use this filter to make some subtle refinements to the ventricle segmentation from
the previous example that used theitk::ThresholdSegmentationLevelSetImageFilter.

http://www.itk.org/Doxygen/html/classitk_1_1ThresholdSegmentationLevelSetImageFilter.html

562 Chapter 9. Segmentation

Figure 9.28:Results of applying the CannySegmentationLevelSetImageFilter to a prior ventricle seg-

mentation. Shown from left to right are the original image, the prior segmentation of the ventricle from

Figure 9.26, 15 iterations of the CannySegmentationLevelSetImageFilter, and the CannySegmentation-

LevelSetImageFilter run to convergence.

The application was run usingExamples/Data/BrainProtonDensitySlice.png and
Examples/Data/VentricleModel.png as inputs, athreshold of 7.0, variance of 0.1,
advection weight of 10.0, and an initial isosurface value of 127.5. One case was run for
15 iterations and the second was run to convergence. Comparethe results in the two rightmost
images of Figure9.28with the ventricle segmentation from Figure9.26shown in the middle.
Jagged edges are straightened and the small spur at the upperright-hand side of the mask has
been removed.

The free parameters of this filter can be adjusted to achieve awide range of shape variations
from the original model. Finding the right parameters for your particular application is usually
a process of trial and error. As with most ITK level set segmentation filters, examining the
propagation (speed) and advection images can help the process of tuning parameters. These
images are available usingSet/Get methods from the filter after it has been updated.

In some cases it is interesting to take a direct look at the speed image used internally by this
filter. This may help for setting the correct parameters for driving the segmentation. In order to
obtain such speed image, the methodGenerateSpeedImage() should be invoked first. Then we
can recover the speed image with theGetSpeedImage() method as illustrated in the following
lines.

cannySegmentation->GenerateSpeedImage();

typedef CannySegmentationLevelSetImageFilterType::SpeedImageType SpeedImageType;
typedef itk::ImageFileWriter<SpeedImageType> SpeedWriterType;
SpeedWriterType::Pointer speedWriter = SpeedWriterType::New();

speedWriter->SetInput(cannySegmentation->GetSpeedImage());

9.3. Level Set Segmentation 563

Binary
Threshold

Binary
Image

Input
itk::Image

Initial
Model

itk::Image
Anisotropic
Diffusion

 Gradient

Propagation
Weight

 Maximum
Iterations

LevelSet
Output

Level−set
Segmentation

Laplacian

Figure 9.29:An image processing pipeline using LaplacianSegmentationLevelSetImageFilter for segmen-

tation.

9.3.6 Laplacian Level Set Segmentation

The source code for this section can be found in the file
Examples/Segmentation/LaplacianSegmentationLevelSetImageFilter.cxx.

The itk::LaplacianSegmentationLevelSetImageFilter defines a speed term based on
second derivative features in the image. The speed term is calculated as the Laplacian of the
image values. The goal is to attract the evolving level set surface to local zero-crossings in the
Laplacian image. Likeitk::CannySegmentationLevelSetImageFilter, this filter is more
suitable for refining existing segmentations than as a stand-alone, region growing algorithm. It
is possible to perform region growing segmentation, but be aware that the growing surface may
tend to become “stuck” at local edges.

The propagation (speed) term for the LaplacianSegmentationLevelSetImageFilter is constructed
by applying theitk::LaplacianImageFilter to the input feature image. One nice property
of using the Laplacian is that there are no free parameters inthe calculation.

LaplacianSegmentationLevelSetImageFilter expects two inputs. The first is an initial level set
in the form of an itk::Image. The second input is the feature imageg from which the prop-
agation term is calculated (see Equation9.3). Because the filter performs a second derivative
calculation, it is generally a good idea to do some preprocessing of the feature image to remove
noise.

Figure9.29 shows how the image processing pipeline is constructed. We read two images:
the image to segment and the image that contains the initial implicit surface. The goal is to
refine the initial model from the second input to better matchthe structure represented by the
initial implicit surface (a prior segmentation). Thefeature image is preprocessed using an
anisotropic diffusion filter.

Let’s start by including the appropriate header files.

http://www.itk.org/Doxygen/html/classitk_1_1LaplacianSegmentationLevelSetImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1CannySegmentationLevelSetImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1LaplacianImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1Image.html

564 Chapter 9. Segmentation

#include "itkLaplacianSegmentationLevelSetImageFilter.h"
#include "itkGradientAnisotropicDiffusionImageFilter.h"

We define the image type using a particular pixel type and dimension. In this case we will use
2D float images.

typedef float InternalPixelType;
const unsigned int Dimension = 2;
typedef itk::Image< InternalPixelType, Dimension > InternalImageType;

The input image will be processed with a few iterations of feature-preserving diffusion. We
create a filter and set the parameters. The number of iterations and the conductance parameter
are taken from the command line.

typedef itk::GradientAnisotropicDiffusionImageFilter< InternalImageType,
InternalImageType> DiffusionFilterType;

DiffusionFilterType::Pointer diffusion = DiffusionFilterType::New();
diffusion->SetNumberOfIterations(atoi(argv[4]));
diffusion->SetTimeStep(0.125);
diffusion->SetConductanceParameter(atof(argv[5]));

The following lines define and instantiate a LaplacianSegmentationLevelSetImageFilter.

typedef itk::LaplacianSegmentationLevelSetImageFilter< InternalImageType,
InternalImageType > LaplacianSegmentationLevelSetImageFilterType;

LaplacianSegmentationLevelSetImageFilterType::Pointer laplacianSegmentation =
LaplacianSegmentationLevelSetImageFilterType::New();

As with the other ITK level set segmentation filters, the terms of the LaplacianSegmentation-
LevelSetImageFilter level set equation can be weighted by scalars. For this application we will
modify the relative weight of the propagation term. The curvature term weight is set to its
default of 1. The advection term is not used in this filter.

laplacianSegmentation->SetCurvatureScaling(1.0);
laplacianSegmentation->SetPropagationScaling(::atof(argv[6]));

The maximum number of iterations is set from the command line. It may not be desirable in
some applications to run the filter to convergence. Only a fewiterations may be required.

laplacianSegmentation->SetMaximumRMSError(0.002);
laplacianSegmentation->SetNumberOfIterations(::atoi(argv[8]));

Finally, it is very important to specify the isovalue of the surface in the initial model input
image. In a binary image, for example, the isosurface is found midway between the foreground
and background values.

9.3. Level Set Segmentation 565

laplacianSegmentation->SetIsoSurfaceValue(::atof(argv[7]));

The filters are now connected in a pipeline indicated in Figure9.29.

diffusion->SetInput(reader1->GetOutput());
laplacianSegmentation->SetInput(reader2->GetOutput());
laplacianSegmentation->SetFeatureImage(diffusion->GetOutput());
thresholder->SetInput(laplacianSegmentation->GetOutput());
writer->SetInput(thresholder->GetOutput());

Invoking theUpdate() method on the writer triggers the execution of the pipeline.As usual,
the call is placed in atry/catch block to handle any exceptions that may be thrown.

try
{
writer->Update();
}

catch(itk::ExceptionObject & excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}

We can use this filter to make some subtle refinements to the ventricle segmentation
from the example using the filteritk::ThresholdSegmentationLevelSetImageFilter.
This application was run usingExamples/Data/BrainProtonDensitySlice.png and
Examples/Data/VentricleModel.png as inputs. We used 10 iterations of the diffusion filter
with a conductance of 2.0. The propagation scaling was set to1.0 and the filter was run until
convergence. Compare the results in the rightmost images ofFigure9.30with the ventricle seg-
mentation from Figure9.26shown in the middle. Jagged edges are straightened and the small
spur at the upper right-hand side of the mask has been removed.

9.3.7 Geodesic Active Contours Segmentation With Shape Guidance

The source code for this section can be found in the file
Examples/Segmentation/GeodesicActiveContourShapePriorLevelSetImageFilter.cxx.

In medical imaging applications, the general shape, location and orientation of an anatomical
structure of interest is typically knowna priori. This information can be used to aid the seg-
mentation process especially when image contrast is low or when the object boundary is not
distinct.

In [48], Leventon et al. extended the geodesic active contours method
with an additional shape-influenced term in the driving PDE.The

http://www.itk.org/Doxygen/html/classitk_1_1ThresholdSegmentationLevelSetImageFilter.html

566 Chapter 9. Segmentation

Figure 9.30:Results of applying LaplacianSegmentationLevelSetImageFilter to a prior ventricle segmen-

tation. Shown from left to right are the original image, the prior segmentation of the ventricle from Fig-

ure 9.26, and the refinement of the prior using LaplacianSegmentationLevelSetImageFilter.

itk::GeodesicActiveContourShapePriorLevelSetFilter is a generalization of Leven-
ton’s approach and its use is illustrated in the following example.

To support shape-guidance, the generic level set equation (Eqn(9.3)) is extended to incorporate
a shape guidance term:

ξ(ψ∗(x)−ψ(x)) (9.6)

whereψ∗ is the signed distance function of the “best-fit” shape with respect to a shape model.
The new term has the effect of driving the contour towards thebest-fit shape. The scalarξ
weights the influence of the shape term in the overall evolution. In general, the best-fit shape
is not known ahead of time and has to be iteratively estimatedin conjunction with the contour
evolution.

As with the itk::GeodesicActiveContourLevelSetImageFilter, the GeodesicActive-
ContourShapePriorLevelSetImageFilter expects two inputimages: the first is an initial level
set and the second a feature image that represents the image edge potential. The configuration
of this example is quite similar to the example in Section9.3.3and hence the description will
focus on the new objects involved in the segmentation process as shown in Figure9.31.

The process pipeline begins with centering the input image using the the
itk::ChangeInformationImageFilter to simplify the estimation of the pose of the
shape, to be explained later. The centered image is then smoothed using non-linear diffusion
to remove noise and the gradient magnitude is computed from the smoothed image. For
simplicity, this example uses theitk::BoundedReciprocalImageFilter to produce the
edge potential image.

The itk::FastMarchingImageFilter creates an initial level set using three user specified

http://www.itk.org/Doxygen/html/classitk_1_1GeodesicActiveContourShapePriorLevelSetFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1GeodesicActiveContourLevelSetImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ChangeInformationImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1BoundedReciprocalImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1FastMarchingImageFilter.html

9.3. Level Set Segmentation 567

Anisotropic
Diffusion

Change
Information

(Center Image)

Gradient
Magnitude

Fast
Marching

Bounded
Reciprocal

Geodesic
ActiveContour

ShapePrior

Input
Image

Edge
Image

Output
Binary
Image

Seeds/
Distance

Sigma

Binary
Threshold

Prop./
Shape
Scaling

PCAShape
SignedDistance

Euler2DTransform

ShapePriorMAP
CostFunction

OnePlusOne
Evolutionary

Optimizer

NormalVariate
Generator

Initial
LevelSet

Mean
Shape
Image

Shape
Mode

Images

Figure 9.31: Collaboration diagram for the GeodesicActiveContourShapePriorLevelSetImageFilter ap-

plied to a segmentation task.

568 Chapter 9. Segmentation

seed positions and a initial contour radius. Three seeds areused in this example to facilitate the
segmentation of long narrow objects in a smaller number of iterations. The output of the Fast-
MarchingImageFilter is passed as the input to the GeodesicActiveContourShapePriorLevelSe-
tImageFilter. At then end of the segmentation process, the output level set is passed to the
itk::BinaryThresholdImageFilter to produce a binary mask representing the segmented
object.

The remaining objects in Figure9.31 are used for shape modeling and estimation.
The itk::PCAShapeSignedDistanceFunction represents a statistical shape model de-
fined by a mean signed distance and the firstK principal components modes; while the
itk::Euler2DTransform is used to represent the pose of the shape. In this implementa-
tion, the best-fit shape estimation problem is reformulatedas a minimization problem where
the itk::ShapePriorMAPCostFunction is the cost function to be optimized using the
itk::OnePlusOneEvolutionaryOptimizer.

It should be noted that, although particular shape model, transform cost function, and opti-
mizer are used in this example, the implementation is generic, allowing different instances of
these components to be plugged in. This flexibility allows a user to tailor the behavior of the
segmentation process to suit the circumstances of the targeted application.

Let’s start the example by including the headers of the new filters involved in the segmentation.

#include "itkGeodesicActiveContourShapePriorLevelSetImageFilter.h"
#include "itkChangeInformationImageFilter.h"
#include "itkBoundedReciprocalImageFilter.h"

Next, we include the headers of the objects involved in shapemodeling and estimation.

#include "itkPCAShapeSignedDistanceFunction.h"
#include "itkEuler2DTransform.h"
#include "itkShapePriorMAPCostFunction.h"
#include "itkOnePlusOneEvolutionaryOptimizer.h"
#include "itkNormalVariateGenerator.h"
#include "vnl/vnl_sample.h"
#include "itkNumericSeriesFileNames.h"

Given the numerous parameters involved in tuning this segmentation method it is not uncom-
mon for a segmentation process to run for several minutes andstill produce an unsatisfactory
result. For debugging purposes it is quite helpful to track the evolution of the segmentation as
it progresses. The following defines a customitk::Command class for monitoring the RMS
change and shape parameters at each iteration.

#include "itkCommand.h"

template<class TFilter>
class CommandIterationUpdate : public itk::Command

http://www.itk.org/Doxygen/html/classitk_1_1BinaryThresholdImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1PCAShapeSignedDistanceFunction.html
http://www.itk.org/Doxygen/html/classitk_1_1Euler2DTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1ShapePriorMAPCostFunction.html
http://www.itk.org/Doxygen/html/classitk_1_1OnePlusOneEvolutionaryOptimizer.html
http://www.itk.org/Doxygen/html/classitk_1_1Command.html

9.3. Level Set Segmentation 569

{
public:
typedef CommandIterationUpdate Self;
typedef itk::Command Superclass;
typedef itk::SmartPointer<Self> Pointer;
itkNewMacro(Self);

protected:
CommandIterationUpdate() {};

public:

void Execute(itk::Object *caller, const itk::EventObject & event)
{

Execute((const itk::Object *) caller, event);
}

void Execute(const itk::Object * object, const itk::EventObject & event)
{

const TFilter * filter =
dynamic_cast< const TFilter * >(object);

if(typeid(event) != typeid(itk::IterationEvent))
{ return; }

std::cout << filter->GetElapsedIterations() << ": ";
std::cout << filter->GetRMSChange() << " ";
std::cout << filter->GetCurrentParameters() << std::endl;

}

};

We define the image type using a particular pixel type and dimension. In this case we will use
2D float images.

typedef float InternalPixelType;
const unsigned int Dimension = 2;
typedef itk::Image< InternalPixelType, Dimension > InternalImageType;

The following line instantiate aitk::GeodesicActiveContourShapePriorLevelSetImageFilter
using theNew() method.

typedef itk::GeodesicActiveContourShapePriorLevelSetImageFilter<
InternalImageType,
InternalImageType > GeodesicActiveContourFilterType;

GeodesicActiveContourFilterType::Pointer geodesicActiveContour =
GeodesicActiveContourFilterType::New();

The itk::ChangeInformationImageFilter is the first filter in the preprocessing stage and
is used to force the image origin to the center of the image.

http://www.itk.org/Doxygen/html/classitk_1_1GeodesicActiveContourShapePriorLevelSetImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ChangeInformationImageFilter.html

570 Chapter 9. Segmentation

typedef itk::ChangeInformationImageFilter<
InternalImageType > CenterFilterType;

CenterFilterType::Pointer center = CenterFilterType::New();
center->CenterImageOn();

In this example, we will use the bounded reciprocal 1/(1+x) of the image gradient magnitude
as the edge potential feature image.

typedef itk::BoundedReciprocalImageFilter<
InternalImageType,
InternalImageType > ReciprocalFilterType;

ReciprocalFilterType::Pointer reciprocal = ReciprocalFilterType::New();

In the GeodesicActiveContourShapePriorLevelSetImageFilter, scaling parameters are used to
trade off between the propagation (inflation), the curvature (smoothing), the advection, and the
shape influence terms. These parameters are set using methods SetPropagationScaling(),
SetCurvatureScaling(), SetAdvectionScaling() andSetShapePriorScaling(). In this
example, we will set the curvature and advection scales to one and let the propagation and shape
prior scale be command-line arguments.

geodesicActiveContour->SetPropagationScaling(propagationScaling);
geodesicActiveContour->SetShapePriorScaling(shapePriorScaling);
geodesicActiveContour->SetCurvatureScaling(1.0);
geodesicActiveContour->SetAdvectionScaling(1.0);

Each iteration, the current “best-fit” shape is estimated from the edge potential image and the
current contour. To increase speed, only information within the sparse field layers of the current
contour is used in the estimation. The default number of sparse field layers is the same as the
ImageDimension which does not contain enough information to get a reliable best-fit shape
estimate. Thus, we override the default and set the number oflayers to 4.

geodesicActiveContour->SetNumberOfLayers(4);

The filters are then connected in a pipeline as illustrated inFigure9.31.

center->SetInput(reader->GetOutput());
smoothing->SetInput(center->GetOutput());
gradientMagnitude->SetInput(smoothing->GetOutput());
reciprocal->SetInput(gradientMagnitude->GetOutput());

geodesicActiveContour->SetInput(fastMarching->GetOutput());
geodesicActiveContour->SetFeatureImage(reciprocal->GetOutput());

9.3. Level Set Segmentation 571

thresholder->SetInput(geodesicActiveContour->GetOutput());
writer->SetInput(thresholder->GetOutput());

Next, we define the shape model. In this example, we use an implicit shape model based on the
principal components such that:

ψ∗(x) = µ(x)+∑
k

αkuk(x) (9.7)

whereµ(x) is the mean signed distance computed from training set of segmented objects and
uk(x) are the firstK principal components of the offset (signed distance - mean). The coeffi-
cients{αk} form the set ofshapeparameters.

Given a set of training data, theitk::ImagePCAShapeModelEstimator can be used to obtain
the mean and principal mode shape images required by PCAShapeSignedDistanceFunction.

typedef itk::PCAShapeSignedDistanceFunction<
double,
Dimension,
InternalImageType > ShapeFunctionType;

ShapeFunctionType::Pointer shape = ShapeFunctionType::New();

shape->SetNumberOfPrincipalComponents(numberOfPCAModes);

In this example, we will read the mean shape and principal mode images from file. We will
assume that the filenames of the mode images form a numeric series starting from index 0.

ReaderType::Pointer meanShapeReader = ReaderType::New();
meanShapeReader->SetFileName(argv[13]);
meanShapeReader->Update();

std::vector<InternalImageType::Pointer> shapeModeImages(numberOfPCAModes);

itk::NumericSeriesFileNames::Pointer fileNamesCreator =
itk::NumericSeriesFileNames::New();

fileNamesCreator->SetStartIndex(0);
fileNamesCreator->SetEndIndex(numberOfPCAModes - 1);
fileNamesCreator->SetSeriesFormat(argv[15]);
const std::vector<std::string> & shapeModeFileNames =

fileNamesCreator->GetFileNames();

for (unsigned int k = 0; k < numberOfPCAModes; k++)
{

http://www.itk.org/Doxygen/html/classitk_1_1ImagePCAShapeModelEstimator.html

572 Chapter 9. Segmentation

ReaderType::Pointer shapeModeReader = ReaderType::New();
shapeModeReader->SetFileName(shapeModeFileNames[k].c_str());
shapeModeReader->Update();
shapeModeImages[k] = shapeModeReader->GetOutput();
}

shape->SetMeanImage(meanShapeReader->GetOutput());
shape->SetPrincipalComponentImages(shapeModeImages);

Further we assume that the shape modes have been normalized by multiplying with the corre-
sponding singular value. Hence, we can set the principal component standard deviations to all
ones.

ShapeFunctionType::ParametersType pcaStandardDeviations(numberOfPCAModes);
pcaStandardDeviations.Fill(1.0);

shape->SetPrincipalComponentStandardDeviations(pcaStandardDeviations);

Next, we instantiate aitk::Euler2DTransform and connect it to the PCASignedDistance-
Function. The transform represent the pose of the shape. Theparameters of the transform
forms the set ofposeparameters.

typedef itk::Euler2DTransform<double> TransformType;
TransformType::Pointer transform = TransformType::New();

shape->SetTransform(transform);

Before updating the level set at each iteration, the parameters of the current best-fit shape is
estimated by minimizing theitk::ShapePriorMAPCostFunction. The cost function is com-
posed of four terms: contour fit, image fit, shape prior and pose prior. The user can specify the
weights applied to each term.

typedef itk::ShapePriorMAPCostFunction<
InternalImageType,
InternalPixelType > CostFunctionType;

CostFunctionType::Pointer costFunction = CostFunctionType::New();

CostFunctionType::WeightsType weights;
weights[0] = 1.0; // weight for contour fit term
weights[1] = 20.0; // weight for image fit term
weights[2] = 1.0; // weight for shape prior term
weights[3] = 1.0; // weight for pose prior term

costFunction->SetWeights(weights);

http://www.itk.org/Doxygen/html/classitk_1_1Euler2DTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1ShapePriorMAPCostFunction.html

9.3. Level Set Segmentation 573

Contour fit measures the likelihood of seeing the current evolving contour for a given set of
shape/pose parameters. This is computed by counting the number of pixels inside the current
contour but outside the current shape.

Image fit measures the likelihood of seeing certain image features for a given set of shape/pose
parameters. This is computed by assuming that (1 - edge potential) approximates a zero-mean,
unit variance Gaussian along the normal of the evolving contour. Image fit is then computed by
computing the Laplacian goodness of fit of the Gaussian:

∑(G(ψ(x))−|1−g(x)|)2 (9.8)

whereG is a zero-mean, unit variance Gaussian andg is the edge potential feature image.

The pose parameters are assumed to have a uniform distribution and hence do not contribute
to the cost function. The shape parameters are assumed to have a Gaussian distribution. The
parameters of the distribution are user-specified. Since weassumed the principal modes have
already been normalized, we set the distribution to zero mean and unit variance.

CostFunctionType::ArrayType mean(shape->GetNumberOfShapeParameters());
CostFunctionType::ArrayType stddev(shape->GetNumberOfShapeParameters());

mean.Fill(0.0);
stddev.Fill(1.0);
costFunction->SetShapeParameterMeans(mean);
costFunction->SetShapeParameterStandardDeviations(stddev);

In this example, we will use theitk::OnePlusOneEvolutionaryOptimizer to optimize the
cost function.

typedef itk::OnePlusOneEvolutionaryOptimizer OptimizerType;
OptimizerType::Pointer optimizer = OptimizerType::New();

The evolutionary optimization algorithm is based on testing random permutations of the pa-
rameters. As such, we need to provide the optimizer with a random number generator. In the
following lines, we create aitk::NormalVariateGenerator, seed it, and connect it to the
optimizer.

typedef itk::Statistics::NormalVariateGenerator GeneratorType;
GeneratorType::Pointer generator = GeneratorType::New() ;

generator->Initialize(20020702) ;

optimizer->SetNormalVariateGenerator(generator) ;

The cost function hasK + 3 parameters. The firstK parameters are the principal component
multipliers, followed by the 2D rotation parameter (in radians) and the x- and y- translation

http://www.itk.org/Doxygen/html/classitk_1_1OnePlusOneEvolutionaryOptimizer.html
http://www.itk.org/Doxygen/html/classitk_1_1NormalVariateGenerator.html

574 Chapter 9. Segmentation

parameters (in mm). We need to carefully scale the differenttypes of parameters to compensate
for the differences in the dynamic ranges of the parameters.

OptimizerType::ScalesType scales(shape->GetNumberOfParameters());
scales.Fill(1.0);
for(unsigned int k = 0; k < numberOfPCAModes; k++)
{
scales[k] = 20.0; // scales for the pca mode multiplier
}

scales[numberOfPCAModes] = 350.0; // scale for 2D rotation
optimizer->SetScales(scales);

Next, we specify the initial radius, the shrink and grow mutation factors and termination criteria
of the optimizer. Since the best-fit shape is re-estimated each iteration of the curve evolution,
we do not need to spend too much time finding the true minimizing solution each time; we only
need to head towards it. As such, we only require a small number of optimizer iterations.

double initRadius = 1.05;
double grow = 1.1 ;
double shrink = pow(grow, -0.25) ;
optimizer->Initialize(initRadius, grow, shrink) ;

optimizer->SetEpsilon(1.0e-6) ; // minimal search radius

optimizer->SetMaximumIteration(15) ;

Before starting the segmentation process we need to also supply the initial best-fit shape es-
timate. In this example, we start with the unrotated mean shape with the initial x- and y-
translation specified through command-line arguments.

ShapeFunctionType::ParametersType parameters(shape->GetNumberOfParameters());
parameters.Fill(0.0);
parameters[numberOfPCAModes + 1] = atof(argv[16]); // startX
parameters[numberOfPCAModes + 2] = atof(argv[17]); // startY

Finally, we connect all the components to the filter and add our observer.

geodesicActiveContour->SetShapeFunction(shape);
geodesicActiveContour->SetCostFunction(costFunction);
geodesicActiveContour->SetOptimizer(optimizer);
geodesicActiveContour->SetInitialParameters(parameters);

typedef CommandIterationUpdate<GeodesicActiveContourFilterType> CommandType;
CommandType::Pointer observer = CommandType::New();
geodesicActiveContour->AddObserver(itk::IterationEvent(), observer);

9.3. Level Set Segmentation 575

Figure 9.32: The input image to the GeodesicActiveContourShapePriorLevelSetImageFilter is a synthe-

sized MR-T1 mid-sagittal slice (217×180pixels, 1×1 mm spacing) of the brain (left) and the initial best-fit

shape (right) chosen to roughly overlap the corpus callosum in the image to be segmented.

The invocation of theUpdate() method on the writer triggers the execution of the pipeline.As
usual, the call is placed in atry/catch block to handle exceptions should errors occur.

try
{
writer->Update();
}

catch(itk::ExceptionObject & excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}

Deviating from previous examples, we will demonstrate thisexample using
BrainMidSagittalSlice.png (Figure 9.32, left) from the Examples/Data direc-
tory. The aim here is to segment the corpus callosum from the image using a
shape model defined byCorpusCallosumMeanShape.mha and the first three prin-
cipal components CorpusCallosumMode0.mha, CorpusCallosumMode1.mha and
CorpusCallosumMode12.mha. As shown in Figure9.33, the first mode captures scal-
ing, the second mode captures the shifting of mass between the rostrum and the splenium and
the third mode captures the degree of curvature. Segmentation results with and without shape
guidance are shown in Figure9.34.

A sigma value of 1.0 was used to compute the image gradient and the propagation and shape
prior scaling are respectively set to 0.5 and 0.02. An initial level set was created by placing
one seed point in the rostrum(60,102), one in the splenium(120,85) and one centrally in the
body(88,83) of the corpus callosum with an initial radius of 6 pixels at each seed position. The
best-fit shape was initially placed with a translation of(10,0)mm so that it roughly overlapped
the corpus callosum in the image as shown in Figure9.32(right).

From Figure9.34 it can be observed that without shape guidance (left), segmentation using
geodesic active contour leaks in the regions where the corpus callosum blends into the sur-

576 Chapter 9. Segmentation

−3σ mean +3σ

mode 0:

mode 1:

mode 2:

Figure 9.33:First three PCA modes of a low-resolution (58×31 pixels, 2×2 mm spacing) corpus callo-

sum model used in the shape guided geodesic active contours example.

Figure 9.34:Corpus callosum segmentation using geodesic active contours without (left) and with (center)

shape guidance. The image on the right represents the best-fit shape at the end of the segmentation

process.

rounding brain tissues. With shape guidance (center), the segmentation is constrained by the
global shape model to prevent leaking.

The final best-fit shape parameters after the segmentation process is:

Parameters: [-0.384988, -0.578738, 0.557793, 0.275202, 16.9992, 4.73473]

and is shown in Figure9.34 (right). Note that a 0.28 radian (15.8 degree) rotation has been
introduced to match the model to the corpus callosum in the image. Additionally, a negative
weight for the first mode shrinks the size relative to the meanshape. A negative weight for the
second mode shifts the mass to splenium, and a positive weight for the third mode increases the
curvature. It can also be observed that the final segmentation is a combination of the best-fit
shape with additional local deformation. The combination of both global and local shape allows
the segmentation to capture fine details not represented in the shape model.

9.4. Hybrid Methods 577

9.4 Hybrid Methods

9.4.1 Introduction

This section introduces the use of hybrid methods for segmentation of image data. Typically
we are dealing with radiological patient and the Visible Human data. The hybrid segmentation
approach integrates boundary-based and region-based segmentation methods that amplify the
strength but reduce the weakness of both techniques. The advantage of this approach comes
from combining region-based segmentation methods like thefuzzy connectedness and Voronoi
diagram classification with boundary-based deformable model segmentation. The synergy be-
tween fundamentally different methodologies tends to result in robustness and higher segmenta-
tion quality. A hybrid segmentation engine can be built, as illustrated in Figure9.35. It consists
of modules representing segmentation methods and implemented as ITK filters. We can de-
rive a variety of hybrid segmentation methods by exchangingthe filter used in each module.
It should be noted that under the fuzzy connectedness and deformable models modules, there
are several different filters that can be used as components.Below, we describe two examples
of hybrid segmentation methods, derived from the hybrid segmentation engine: integration of
fuzzy connectedness and Voronoi diagram classification (hybrid method 1), and integration of
Gibbs prior and deformable models (hybrid method 2). Details regarding the concepts behind
these methods have been discussed in the literature [4, 83, 41, 40, 39, 38]

9.4.2 Fuzzy Connectedness and Confidence Connectedness

Probably the simplest combination of hybrid filters is the pair
formed by the itk::ConfidenceConnectednessImageFilter and
itk::SimpleFuzzyConnectednessScalarImageFilter. In this combination the confi-
dence connectedness filter is used to produce a rough segmentation of an anatomical structure
and to compute and estimation of the mean and variance of grayvalues in such structure. The
values of mean and variance are then passed to the Simple Fuzzy Connectedness image filter in
order to compute an affinity map.

The source code for this section can be found in the file
Examples/Patented/FuzzyConnectednessImageFilter.cxx.

This example illustrates the use of theitk::SimpleFuzzyConnectednessScalarImageFilter.
This filter computes an affinity map from a seed point providedby the user. This affinity map
indicates for every pixels how homogeneous is the path that will link it to the seed point.

Please note that the Fuzzy Connectedness algorithm is covered by a Patent [84]. For this reason
the current example is located in theExamples/Patented subdirectory.

In order to use this algorithm we should first include the header files of the filter and the image
class.

#include "itkSimpleFuzzyConnectednessScalarImageFilter.h"

http://www.itk.org/Doxygen/html/classitk_1_1ConfidenceConnectednessImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1SimpleFuzzyConnectednessScalarImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1SimpleFuzzyConnectednessScalarImageFilter.html

578 Chapter 9. Segmentation

#include "itkImage.h"

Since the FuzzyConnectednessImageFilter requires an estimation of the gray
level mean and variance for the region to be segmented, we usehere the
itk::ConfidenceConnectedImageFilter as a preprocessor that produces a rough seg-
mentation and estimates from it the values of the mean and thevariance.

#include "itkConfidenceConnectedImageFilter.h"

Next, we declare the pixel type and image dimension and specify the image type to be used as
input.

typedef float InputPixelType;
const unsigned int Dimension = 2;
typedef itk::Image< InputPixelType, Dimension > InputImageType;

Fuzzy connectedness computes first the affinity map and then thresholds its values in order to
get a binary image as output. The type of the binary image is provided as the second template
parameter of the filter.

typedef unsigned char BinaryPixelType;
typedef itk::Image< BinaryPixelType, Dimension > BinaryImageType;

The Confidence connected filter type is instantiated using the input image type and a binary
image type for output.

typedef itk::ConfidenceConnectedImageFilter<
InputImageType,
BinaryImageType

> ConfidenceConnectedFilterType;

ConfidenceConnectedFilterType::Pointer confidenceConnectedFilter =
ConfidenceConnectedFilterType::New();

The fuzzy segmentation filter type is instantiated here using the input and binary image types
as template parameters.

typedef itk::SimpleFuzzyConnectednessScalarImageFilter<
InputImageType,
BinaryImageType

> FuzzySegmentationFilterType;

The fuzzy connectedness segmentation filter is created by invoking theNew() method and as-
signing the result to aitk::SmartPointer.

http://www.itk.org/Doxygen/html/classitk_1_1ConfidenceConnectedImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

9.4. Hybrid Methods 579

FuzzySegmentationFilterType::Pointer fuzzysegmenter =
FuzzySegmentationFilterType::New();

The affinity map can be accessed through the typeFuzzySceneType

typedef FuzzySegmentationFilterType::FuzzySceneType FuzzySceneType;

We instantiate reader and writer types

The output of the reader is passed as input to the ConfidenceConnected image filter. Then the
filter is executed in order to obtain estimations of the mean and variance gray values for the
region to be segmented.

confidenceConnectedFilter->SetInput(reader->GetOutput());
confidenceConnectedFilter->SetMultiplier(varianceMultiplier);
confidenceConnectedFilter->SetNumberOfIterations(2);
confidenceConnectedFilter->AddSeed(index);

confidenceConnectedFilter->Update();

The input that is passed to the fuzzy segmentation filter is taken from the reader.

fuzzysegmenter->SetInput(reader->GetOutput());

The parameters of the fuzzy segmentation filter are defined here. A seed point is provided
with the methodSetObjectsSeed() in order to initialize the region to be grown. Estimated
values for the mean and variance of the object intensities are also provided with the methods
SetMean() and SetVariance(), respectively. A threshold value for generating the binary
object is preset with the methodSetThreshold(). For details describing the role of the mean
and variance on the computation of the segmentation, pleasesee [82].

fuzzysegmenter->SetObjectSeed(index);
fuzzysegmenter->SetMean(meanEstimation);
fuzzysegmenter->SetVariance(varianceEstimation);
fuzzysegmenter->SetThreshold(0.5);

The execution of the fuzzy segmentation filter is triggered by theUpdate() method.

fuzzysegmenter->Update();

writer->SetInput(fuzzysegmenter->GetOutput());
writer->Update();

fwriter->SetInput(fuzzysegmenter->GetFuzzyScene());
fwriter->Update();

580 Chapter 9. Segmentation

9.4.3 Fuzzy Connectedness and Voronoi Classification

In this section we present a hybrid segmentation method thatrequires minimal manual initial-
ization by integrating the fuzzy connectedness and Voronoidiagram classification segmentation
algorithms. We start with a fuzzy connectedness filter to generate a sample of tissue from a
region to be segmented. From the sample, we automatically derive image statistics that con-
stitute the homogeneity operator to be used in the next stageof the method. The output of the
fuzzy connectedness filter is used as a prior to the Voronoi diagram classification filter. This
filter performs iterative subdivision and classification ofthe segmented image resulting in an
estimation of the boundary. The output of this filter is a 3D binary image that can be used to
display the 3D result of the segmentation, or passed to another filter (e.g. deformable model)
for further improvement of the final segmentation. Details describing the concepts behind these
methods have been published in [4, 83, 41, 40, 39, 38]

In Figure9.36, we describe the base class for simple fuzzy connectedness segmentation. This
method is non-scale based and non-iterative, and requires only one seed to initialize it. We
define affinity between two nearby elements in a image (e.g. pixels, voxels) via a degree of
adjacency, similarity in their intensity values, and theirsimilarity to the estimated object. The
closer the elements and the more similar their intensities,the greater the affinity between them.
We compute the strength of a path and fuzzy connectedness between each two pixels (voxels) in
the segmented image from the fuzzy affinity. Computation of the fuzzy connectedness value of
each pixel (voxel) is implemented by selecting a seed point and using dynamic programming.
The result constitutes the fuzzy map. Thresholding of the fuzzy map gives a segmented object
that is strongly connected to the seed point (for more details, see [82]). Two fuzzy connected-
ness filters are available in the toolkit:

• The itk::SimpleFuzzyConnectednessScalarImageFilter, an implementation of
the fuzzy connectedness segmentation of single-channel (grayscale) image.

• The itk::SimpleFuzzyConnectednessRGBImageFilter, an implementation of fuzzy
connectedness segmentation of a three-channel (RGB) image.

New classes can be derived from the base class by defining other affinity functions and targeting
multi-channel images with an arbitrary number of channels.Note that the simple fuzzy con-
nectedness filter can be used as a stand-alone segmentation method and does not necessarily
need to be combined with other methods as indicated by Figure9.37.

In Figure9.38we present the base class for Voronoi diagram classification. We initialize the
method with a number of random seed points and compute the Voronoi diagram over the seg-
mented 2D image. Each Voronoi region in the subdivision is classified as internal or external,
based on the homogeneity operator derived from the fuzzy connectedness algorithm. We define
boundary regions as the external regions that are adjacent to the internal regions. We further
subdivide the boundary regions by adding seed points to them. We converge to the final segmen-
tation using simple stopping criteria (for details, see [40]). Two Voronoi-based segmentation
methods are available in ITK: theitk::VoronoiSegmentationImageFilter for processing

http://www.itk.org/Doxygen/html/classitk_1_1SimpleFuzzyConnectednessScalarImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1SimpleFuzzyConnectednessRGBImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1VoronoiSegmentationImageFilter.html

9.4. Hybrid Methods 581

Deformable
Model (DM)

Gibb Prior / Markov
Random Field (MRF)

Voronoi
Diagram

Fuzzy
Connectedness (FC)

Vectorial
Scene

Binary Output

Binary Output

Binary Output

Binary Output

Figure 9.35:The hybrid segmentation engine.

itk::ImageToImageFilter

itk::SimpleFuzzyConnectednessImageFilterBase

itk::SimpleFuzzyConnectednessScalarImageFilter itk::SimpleFuzzyConnectednessRGBImageFilter

Figure 9.36:Inheritance diagram for the fuzzy connectedness filter.

single-channel (grayscale) images, and theitk::VoronoiSegmentationRGBImageFilter,
for segmenting three-channel (RGB) images. New classes canbe derived from the base class
by defining other homogeneity measurements and targeting multichannel images with an arbi-
trary number of channels. The other classes that are used forcomputing a 2D Voronoi diagram
are shown in Figure9.39. Note that the Voronoi diagram filter can be used as a stand-alone
segmentation method, as depicted in Figure9.40.

Figures9.41and9.42illustrate hybrid segmentation methods that integrate fuzzy connectedness
with Voronoi diagrams, and fuzzy connectedness, Voronoi diagrams and deformable models,
respectively.

Example of a Hybrid Segmentation Method

The source code for this section can be found in the file
Examples/Patented/HybridSegmentationFuzzyVoronoi.cxx.

This example illustrates the use of theitk::SimpleFuzzyConnectednessScalarImageFilter
and itk::VoronoiSegmentationImageFilter to build a hybrid segmentation that integrates
fuzzy connectedness with the Voronoi diagram classification.

http://www.itk.org/Doxygen/html/classitk_1_1VoronoiSegmentationRGBImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1SimpleFuzzyConnectednessScalarImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1VoronoiSegmentationImageFilter.html

582 Chapter 9. Segmentation

Input
itk::Image

Output
itk::Image

Estimated VarianceEstimated Mean

Other Parameters

FuzzyConnectednessImageFilter

Figure 9.37:Inputs and outputs to FuzzyConnectednessImageFilter segmentation algorithm.

itk::ImageToImageFilter

itk::VoronoiSegmentationRGBImageFilteritk::VoronoiSegmentationImageFilter

itk::VoronoiSegmenationImageFilterBase

Figure 9.38:Inheritance diagram for the Voronoi segmentation filters.

itk::CellInterface<>

itk::PolygonCell<>

itk::MeshSource<>

itk::VoronoiDiagram2DGenerator

itk::Mesh<>

itk::VoronoiDiagram2D<>

Figure 9.39:Classes used by the Voronoi segmentation filters.

Input
itk::Image

Output
itk::Image

Estimated VarianceEstimated Mean

Prior (binary mask)

VoronoiSegmentationImageFilter

Figure 9.40:Input and output to the VoronoiSegmentationImageFilter.

9.4. Hybrid Methods 583

Estimated VarianceEstimated Mean

FuzzyConnectednessImageFilter
Input

itk::Image VoronoiSegmentationImageFilter
Binary

itk::Image

Other Parameters

Output
itk::Image

Mean Tolerance STD Tolerance

Figure 9.41:Integration of the fuzzy connectedness and Voronoi segmentation filters.

Input
itk::Image

Binary
itk::ImageFuzzyConnectedness + VoronoiSegmentation Deformable Model

Output
itk::Image

Figure 9.42:Integration of the fuzzy connectedness, Voronoi, and deformable model segmentation meth-

ods.

Please note that the Fuzzy Connectedness algorithm is covered by a Patent [84]. For this reason
the current example is located in theExamples/Patented subdirectory.

First, we include the header files of the two filters.

#include "itkSimpleFuzzyConnectednessScalarImageFilter.h"
#include "itkVoronoiSegmentationImageFilter.h"

Next, we declare the pixel type and image dimension and specify the image type to be used as
input.

typedef float InputPixelType;
const unsigned int Dimension = 2;
typedef itk::Image< InputPixelType, Dimension > InputImageType;

Fuzzy connectedness segmentation is performed first to generate a rough segmenta-
tion that yields a sample of tissue from the region to be segmented. A binary re-
sult, representing the sample, is used as a prior for the nextstep. Here, we use the
itk::SimpleFuzzyConnectednessScalarImageFilter, but we may also utilize any other
image segmentation filter instead. The result produced by the fuzzy segmentation filter is stored
in a binary image. Below, we declare the type of the image using a pixel type and a spatial
dimension.

typedef unsigned char BinaryPixelType;
typedef itk::Image< BinaryPixelType, Dimension > BinaryImageType;

The fuzzy segmentation filter type is instantiated here using the input and binary image types
as template parameters.

http://www.itk.org/Doxygen/html/classitk_1_1SimpleFuzzyConnectednessScalarImageFilter.html

584 Chapter 9. Segmentation

typedef itk::SimpleFuzzyConnectednessScalarImageFilter<
InputImageType,
BinaryImageType

> FuzzySegmentationFilterType;

The fuzzy connectedness segmentation filter is created by invoking theNew() method and as-
signing the result to aitk::SmartPointer.

FuzzySegmentationFilterType::Pointer fuzzysegmenter =
FuzzySegmentationFilterType::New();

In the next step of the hybrid segmentation method, the priorgenerated from the fuzzy segmen-
tation is used to build a homogeneity measurement for the object. A VoronoiSegmentationIm-
ageFilter uses the homogeneity measurement to drive iterative subdivision of Voronoi regions
and to generate the final segmentation result (for details, please see [38]). In this example, the
result of the VoronoiSegmentationImageFilter is sent to a writer. Its output type is conveniently
declared as one that is compatible with the writer.

typedef unsigned char OutputPixelType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;

The following lines instantiate the Voronoi segmentation filter.

typedef itk::VoronoiSegmentationImageFilter<
InputImageType,
OutputImageType,
BinaryImageType>

VoronoiSegmentationFilterType;

VoronoiSegmentationFilterType::Pointer voronoisegmenter =
VoronoiSegmentationFilterType::New();

The input that is passed to the fuzzy segmentation filter is taken from the reader.

fuzzysegmenter->SetInput(reader->GetOutput());

The parameters of the fuzzy segmentation filter are defined here. A seed point is provided with
the methodSetObjectSeed() in order to initialize the region to be grown. Estimated values for
the mean and variance of the object intensities are also provided with the methodsSetMean()
andSetVariance(), respectively. A threshold value for generating the binaryobject is preset
with the methodSetThreshold(). For details describing the role of the mean and variance on
the computation of the segmentation, please see [82].

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

9.4. Hybrid Methods 585

Figure 9.43:Segmentation results for the hybrid segmentation approach.

Figure 9.44:Another segmentation result for the hybrid segmentation approach.

586 Chapter 9. Segmentation

fuzzysegmenter->SetObjectSeed(index);
fuzzysegmenter->SetMean(mean);
fuzzysegmenter->SetVariance(variance);
fuzzysegmenter->SetThreshold(0.5);

The execution of the fuzzy segmentation filter is triggered by theUpdate() method.

fuzzysegmenter->Update();

The input to the Voronoi diagram classification filter is obtained from the reader and the prior
is obtained from the fuzzy segmentation filter.

voronoisegmenter->SetInput(reader->GetOutput());
voronoisegmenter->TakeAPrior(fuzzysegmenter->GetOutput());

The tolerance levels for testing the mean and standard deviation are set with the methods
SetMeanPercentError() and SetSTDPercentError(). Note that the fuzzy segmentation
filter usesvarianceas parameter while the Voronoi segmentation filter uses the tolerance of the
standard deviationas a parameter. For more details on how these parameters should be selected,
please see [38].

voronoisegmenter->SetMeanPercentError(meanTolerance);
voronoisegmenter->SetSTDPercentError(stdTolerance);

The resolution of the Voronoi diagram classification can be chosen with the method
SetMinRegion().

voronoisegmenter->SetMinRegion(5);

The execution of the Voronoi segmentation filter is triggered with theUpdate() method.

voronoisegmenter->Update();

The output of the Voronoi diagram classification is an image mask with zeros every-
where and ones inside the segmented object. This image will appear black on many
image viewers since they do not usually stretch the gray levels. Here, we add a
itk::RescaleIntensityImageFilter in order to expand the dynamic range to more typi-
cal values.

typedef itk::RescaleIntensityImageFilter< OutputImageType,OutputImageType >
ScalerFilterType;

ScalerFilterType::Pointer scaler = ScalerFilterType::New();

http://www.itk.org/Doxygen/html/classitk_1_1RescaleIntensityImageFilter.html

9.4. Hybrid Methods 587

scaler->SetOutputMinimum(0);
scaler->SetOutputMaximum(255);

scaler->SetInput(voronoisegmenter->GetOutput());

The output of the rescaler is passed to the writer. The invocation of theUpdate() method on
the writer triggers the execution of the pipeline.

writer->SetInput(scaler->GetOutput());
writer->Update();

We execute this program on the imageBrainT1Slice.png available in the directory
Examples/Data. The following parameters are passed to the command line:

HybridSegmentationFuzzyVoronoi BrainT1Slice.png Output.png 140 125 140 25 0.2 2.0

(140,125) specifies the index position of a seed point in the image, while 140 and 25 are the
estimated mean and standard deviation, respectively, of the object to be segmented. Finally, 0.2
and 2.0 are the tolerance for the mean and standard deviation, respectively. Figure9.43shows
the input image and the binary mask resulting from the segmentation.

Note that in order to successfully segment other images, these parameters have to be adjusted
to reflect the data. For example, when segmenting the input imageFatMRISlice.png we apply
the following new set of parameters parameters.

HybridSegmentationFuzzyVoronoi FatMRISlice.png Output.png 80 200 140 300 0.3 3.0

Figure9.44shows the input image and the binary mask resulting from thissegmentation. Note
that, we can segment color (RGB) and other multi-channel images using an approach similar to
this example.

9.4.4 Deformable Models and Gibbs Prior

Another combination that can be used in a hybrid segmentation method is the set of Gibbs prior
filters with deformable models.

Deformable Model

The source code for this section can be found in the file
Examples/Segmentation/DeformableModel1.cxx.

588 Chapter 9. Segmentation

Gradient
Magnitude

Gradient
Filter

Input
Image

Vector
Field

Deformable
Mesh Filter

Marching
Cubes

Binary
Image

Threshold

Initial
Mesh

Final
Mesh

Stiffness TimeStep Threshold Scale

Figure 9.45:Collaboration diagram for the DeformableMesh3DFilter applied to a segmentation task.

This example illustrates the use of the itk::DeformableMesh3DFilter and
itk::BinaryMask3DMeshSource in the hybrid segmentation framework.

The purpose of the DeformableMesh3DFilter is to take an initial surface described by an
itk::Mesh and deform it in order to adapt it to the shape of an anatomicalstructure in an
image. Figure9.45illustrates a typical setup for a segmentation method basedon deformable
models. First, an initial mesh is generated using a binary mask and an isocontouring algorithm
(such as marching cubes) to produce an initial mesh. The binary mask used here contains a
simple shape which vaguely resembles the anatomical structure that we want to segment. The
application of the isocontouring algorithm produces a 3D mesh that has the shape of this initial
structure. This initial mesh is passed as input to the deformable model which will apply forces
to the mesh points in order to reshape the surface until make it fit to the anatomical structures
in the image.

The forces to be applied on the surface are computed from an approximate physical
model that simulates an elastic deformation. Among the forces to be applied we need
one that will pull the surface to the position of the edges in the anatomical structure.
This force component is represented here in the form of a vector field and is com-
puted as illustrated in the lower left of Figure9.45. The input image is passed to a
itk::GradientMagnitudeRecursiveGaussianImageFilter, which computes the magni-
tude of the image gradient. This scalar image is then passed to another gradient filter (
itk::GradientRecursiveGaussianImageFilter). The output of this second gradient fil-
ter is a vector field in which every vector points to the closest edge in the image and has a
magnitude proportional to the second derivative of the image intensity along the direction of
the gradient. Since this vector field is computed using Gaussian derivatives, it is possible to
regulate the smoothness of the vector field by playing with the value of sigma assigned to the
Gaussian. Large values of sigma will result in a large capture radius, but will have poor pre-
cision in the location of the edges. A reasonable strategy may involve the use of large sigmas
for the initial iterations of the model and small sigmas to refine the model when it is close to
the edges. A similar effect could be achieved using multiresolution and taking advantage of the
image pyramid structures already illustrated in the registration framework.

http://www.itk.org/Doxygen/html/classitk_1_1DeformableMesh3DFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1BinaryMask3DMeshSource.html
http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
http://www.itk.org/Doxygen/html/classitk_1_1GradientMagnitudeRecursiveGaussianImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1GradientRecursiveGaussianImageFilter.html

9.4. Hybrid Methods 589

We start by including the headers of the main classes required for this example. The Binary-
Mask3DMeshSource is used to produce an initial approximation of the shape to be segmented.
This filter takes a binary image as input and produces a Mesh asoutput using the marching cube
isocontouring algorithm.

#include "itkBinaryMask3DMeshSource.h"

Then we include the header of the DeformableMesh3DFilter that implements the deformable
model algorithm.

#include "itkDeformableMesh3DFilter.h"

We also need the headers of the gradient filters that will be used for computing the vector field.
In our case they are the GradientMagnitudeRecursiveGaussianImageFilter and GradientRecur-
siveGaussianImageFilter.

#include "itkGradientRecursiveGaussianImageFilter.h"
#include "itkGradientMagnitudeRecursiveGaussianImageFilter.h"

The main data structures required in this example are the Image and the Mesh classes. The
deformable modelper seis represented as a Mesh.

#include "itkImage.h"
#include "itkMesh.h"

ThePixelType of the image derivatives is represented with aitk::CovariantVector. We
include its header in the following line.

#include "itkCovariantVector.h"

The deformed mesh is converted into a binary image using the
itk::PointSetToImageFilter.

#include "itkPointSetToImageFilter.h"

In order to read both the input image and the mask image, we need theitk::ImageFileReader
class. We also need theitk::ImageFileWriter to save the resulting deformed mask image.

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"

http://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html
http://www.itk.org/Doxygen/html/classitk_1_1PointSetToImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html

590 Chapter 9. Segmentation

Here we declare the type of the image to be processed. This implies a decision about the
PixelType and the dimension. The DeformableMesh3DFilter is specialized for 3D, so the
choice is clear in our case.

const unsigned int Dimension = 3;
typedef double PixelType;
typedef itk::Image<PixelType, Dimension> ImageType;

The input to BinaryMask3DMeshSource is a binary mask that wewill read from a file. This
mask could be the result of a rough segmentation algorithm applied previously to the same
anatomical structure. We declare below the type of the binary mask image.

typedef itk::Image< unsigned char, Dimension > BinaryImageType;

Then we define the type of the deformable mesh. We represent the deformable model using the
Mesh class. Thedouble type used as template parameter here is to be used to assign values to
every point of the Mesh.

typedef itk::Mesh<double> MeshType;

The following lines declare the type of the gradient image:

typedef itk::CovariantVector< double, Dimension > GradientPixelType;
typedef itk::Image< GradientPixelType, Dimension > GradientImageType;

With it we can declare the type of the gradient filter and the gradient magnitude filter:

typedef itk::GradientRecursiveGaussianImageFilter<ImageType, GradientImageType>
GradientFilterType;

typedef itk::GradientMagnitudeRecursiveGaussianImageFilter<ImageType,ImageType>
GradientMagnitudeFilterType;

The filter implementing the isocontouring algorithm is the BinaryMask3DMeshSource filter.

typedef itk::BinaryMask3DMeshSource< BinaryImageType, MeshType > MeshSourceType;

Now we instantiate the type of the DeformableMesh3DFilter that implements the deformable
model algorithm. Note that both the input and output types ofthis filter areitk::Mesh classes.

typedef itk::DeformableMesh3DFilter<MeshType,MeshType> DeformableFilterType;

Let’s declare two readers. The first will read the image to be segmented. The second will
read the binary mask containing a first approximation of the segmentation that will be used to
initialize a mesh for the deformable model.

http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html

9.4. Hybrid Methods 591

typedef itk::ImageFileReader< ImageType > ReaderType;
typedef itk::ImageFileReader< BinaryImageType > BinaryReaderType;
ReaderType::Pointer imageReader = ReaderType::New();
BinaryReaderType::Pointer maskReader = BinaryReaderType::New();

In this example we take the filenames of the input image and thebinary mask from the command
line arguments.

imageReader->SetFileName(argv[1]);
maskReader->SetFileName(argv[2]);

We create here the GradientMagnitudeRecursiveGaussianImageFilter that will be used to com-
pute the magnitude of the input image gradient. As usual, we invoke itsNew() method and
assign the result to aitk::SmartPointer.

GradientMagnitudeFilterType::Pointer gradientMagnitudeFilter
= GradientMagnitudeFilterType::New();

The output of the image reader is connected as input to the gradient magnitude filter. Then the
value of sigma used to blur the image is selected using the methodSetSigma().

gradientMagnitudeFilter->SetInput(imageReader->GetOutput());
gradientMagnitudeFilter->SetSigma(1.0);

In the following line, we construct the gradient filter that will take the gradient magnitude of
the input image that will be passed to the deformable model algorithm.

GradientFilterType::Pointer gradientMapFilter = GradientFilterType::New();

The magnitude of the gradient is now passed to the next step ofgradient computation. This
allows us to obtain a second derivative of the initial image with the gradient vector pointing to
the maxima of the input image gradient. This gradient map will have the properties desirable
for attracting the deformable model to the edges of the anatomical structure on the image. Once
again we must select the value of sigma to be used in the blurring process.

gradientMapFilter->SetInput(gradientMagnitudeFilter->GetOutput());
gradientMapFilter->SetSigma(1.0);

At this point, we are ready to compute the vector field. This isdone simply by invoking the
Update() method on the second derivative filter. This was illustratedin Figure9.45.

gradientMapFilter->Update();

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

592 Chapter 9. Segmentation

Now we can construct the mesh source filter that implements the isocontouring algorithm.

MeshSourceType::Pointer meshSource = MeshSourceType::New();

Then we create the filter implementing the deformable model and set its input to the output of
the binary mask mesh source. We also set the vector field usingtheSetGradient() method.

DeformableFilterType::Pointer deformableModelFilter =
DeformableFilterType::New();

deformableModelFilter->SetGradient(gradientMapFilter->GetOutput());

Here we connect the output of the binary mask reader to the input of the Binary-
Mask3DMeshSource that will apply the isocontouring algorithm and generate the initial mesh
to be deformed. We must also select the value to be used for representing the binary object
in the image. In this case we select the value 200 and pass it tothe filter using its method
SetObjectValue().

BinaryImageType::Pointer mask = maskReader->GetOutput();
meshSource->SetInput(mask);
meshSource->SetObjectValue(200);

std::cout << "Creating mesh..." << std::endl;
try
{
meshSource->Update();
}

catch(itk::ExceptionObject & excep)
{
std::cerr << "Exception Caught !" << std::endl;
std::cerr << excep << std::endl;
}

deformableModelFilter->SetInput(meshSource->GetOutput());

Next, we set the parameters of the deformable model computation. Stiffness defines the
model stiffness in the vertical and horizontal directions on the deformable surface.Scale helps
to accommodate the deformable mesh to gradient maps of different size.

typedef itk::CovariantVector<double, 2> double2DVector;
typedef itk::CovariantVector<double, 3> double3DVector;

double2DVector stiffness;
stiffness[0] = 0.0001;
stiffness[1] = 0.1;

9.4. Hybrid Methods 593

double3DVector scale;
scale[0] = 1.0;
scale[1] = 1.0;
scale[2] = 1.0;

deformableModelFilter->SetStiffness(stiffness);
deformableModelFilter->SetScale(scale);

Other parameters to be set are the gradient magnitude, the time step and the step threshold. The
gradient magnitude controls the magnitude of the external force. The time step controls the
length of each step during deformation. Step threshold is the number of the steps the model will
deform.

deformableModelFilter->SetGradientMagnitude(0.8);
deformableModelFilter->SetTimeStep(0.01);
deformableModelFilter->SetStepThreshold(60);

Finally, we trigger the execution of the deformable model computation using theUpdate()
method of the DeformableMesh3DFilter. As usual, the call toUpdate() should be placed in a
try/catch block in case any exceptions are thrown.

try
{
deformableModelFilter->Update();
}

catch(itk::ExceptionObject & excep)
{
std::cerr << "Exception Caught !" << std::endl;
std::cerr << excep << std::endl;
}

The itk::PointSetToImageFilter takes the deformed mesh and produce a binary image
corresponding to the node of the mesh. Note that only the nodes are producing the image and not
the cells. See the section on SpatialObjects to produce a complete binary image from cells using
the itk::MeshSpatialObject combined with theitk::SpatialObjectToImageFilter.
However, using SpatialObjects is computationally more expensive.

typedef itk::PointSetToImageFilter<MeshType,ImageType> MeshFilterType;
MeshFilterType::Pointer meshFilter = MeshFilterType::New();
meshFilter->SetOrigin(mask->GetOrigin());
meshFilter->SetSize(mask->GetLargestPossibleRegion().GetSize());
meshFilter->SetSpacing(mask->GetSpacing());
meshFilter->SetInput(meshSource->GetOutput());
try
{

http://www.itk.org/Doxygen/html/classitk_1_1PointSetToImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1MeshSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectToImageFilter.html

594 Chapter 9. Segmentation

meshFilter->Update();
}

catch(itk::ExceptionObject & excep)
{
std::cerr << "Exception Caught !" << std::endl;
std::cerr << excep << std::endl;
}

The resulting deformed binary mask can be written on disk using theitk::ImageFileWriter.

typedef itk::ImageFileWriter<ImageType> WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetInput(meshFilter->GetOutput());
writer->SetFileName(argv[3]);
writer->Update();

Note that in order to successfully segment images, input parameters must be adjusted to reflect
the characteristics of the data. The output of the filter is anMesh. Users can use their own
visualization packages to see the segmentation results.

Gibbs Prior Image Filter

The source code for this section can be found in the file
Examples/Segmentation/GibbsPriorImageFilter1.cxx.

This example illustrates the use of theitk::RGBGibbsPriorFilter. The filter outputs a
binary segmentation that can be improved by the deformable model. It is the first part of our
hybrid framework.

First, we include the appropriate header file.

#include "itkRGBGibbsPriorFilter.h"

The input is a single channel 2D image; the channel number isNUMBANDS = 1, andNDIMENSION
is set to 3.

const unsigned short NUMBANDS = 1;
const unsigned short NDIMENSION = 3;

typedef itk::Image<itk::Vector<unsigned short,NUMBANDS>,NDIMENSION> VecImageType;

The Gibbs prior segmentation is performed first to generate arough segmentation that yields a
sample of tissue from a region to be segmented, which will be combined to form the input for
the isocontouring method. We define the pixel type of the output of the Gibbs prior filter to be
unsigned short.

http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
http://www.itk.org/Doxygen/html/classitk_1_1RGBGibbsPriorFilter.html

9.4. Hybrid Methods 595

typedef itk::Image< unsigned short, NDIMENSION > ClassImageType;

Then we define the classifier that is needed for the Gibbs priormodel to make correct segment-
ing decisions.

typedef itk::ImageClassifierBase< VecImageType, ClassImageType > ClassifierType;
typedef itk::ClassifierBase<VecImageType>::Pointer ClassifierBasePointer;

typedef ClassifierType::Pointer ClassifierPointer;
ClassifierPointer myClassifier = ClassifierType::New();

After that we can define the multi-channel Gibbs prior model.

typedef itk::RGBGibbsPriorFilter<VecImageType,ClassImageType>
GibbsPriorFilterType;

GibbsPriorFilterType::Pointer applyGibbsImageFilter =
GibbsPriorFilterType::New();

The parameters for the Gibbs prior filter are defined below.NumberOfClasses indicates how
many different objects are in the image. The maximum number of iterations is the number
of minimization steps.ClusterSize sets the lower limit on the object’s size. The boundary
gradient is the estimate of the variance between objects andbackground at the boundary region.

applyGibbsImageFilter->SetNumberOfClasses(NUM_CLASSES);
applyGibbsImageFilter->SetMaximumNumberOfIterations(MAX_NUM_ITER);
applyGibbsImageFilter->SetClusterSize(10);
applyGibbsImageFilter->SetBoundaryGradient(6);
applyGibbsImageFilter->SetObjectLabel(1);

We now set the input classifier for the Gibbs prior filter and the input to the classifier. The
classifier will calculate the mean and variance of the objectusing the class image, and the
results will be used as parameters for the Gibbs prior model.

applyGibbsImageFilter->SetInput(vecImage);
applyGibbsImageFilter->SetClassifier(myClassifier);
applyGibbsImageFilter->SetTrainingImage(trainingimagereader->GetOutput());

Finally we execute the Gibbs prior filter using the Update() method.

applyGibbsImageFilter->Update();

We execute this program on the imagebrainweb89.png. The following parameters are passed
to the command line:

596 Chapter 9. Segmentation

GibbsGuide.exe brainweb89.png brainweb89_train.png brainweb_gp.png

brainweb89train is a training image that helps to estimate the object statistics.

Note that in order to successfully segment other images, onehas to create suitable training
images for them. We can also segment color (RGB) and other multi-channel images.

9.5 Feature Extraction

Extracting salient features from images is an important task on image processing. It is typically
used for guiding segmentation methods, preparing data for registration methods, or as a mecha-
nism for recognizing anatomical structures in images. The following section introduce some of
the feature extraction methods available in ITK.

9.5.1 Hough Transform

The Hough transform is a widely used technique for detectionof geometrical features in images.
It is based on mapping the image into a parametric space in which it may be easier to identify if
particular geometrical features are present in the image. The transformation is specific for each
desired geometrical shape.

Line Extraction

The source code for this section can be found in the file
Examples/Segmentation/HoughTransform2DLinesImageFilter.cxx.

This example illustrates the use of theitk::HoughTransform2DLinesImageFilter to find
straight lines in a 2-dimensional image.

First, we include the header files of the filter.

#include "itkHoughTransform2DLinesImageFilter.h"

Next, we declare the pixel type and image dimension and specify the image type to be used as
input. We also specify the image type of the accumulator usedin the Hough transform filter.

typedef unsigned char PixelType;
typedef float AccumulatorPixelType;
const unsigned int Dimension = 2;

typedef itk::Image< PixelType, Dimension > ImageType;
typedef itk::Image< AccumulatorPixelType, Dimension > AccumulatorImageType;

http://www.itk.org/Doxygen/html/classitk_1_1HoughTransform2DLinesImageFilter.html

9.5. Feature Extraction 597

We setup a reader to load the input image.

typedef itk::ImageFileReader< ImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();

reader->SetFileName(argv[1]);
try
{
reader->Update();
}

catch(itk::ExceptionObject & excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}

ImageType::Pointer localImage = reader->GetOutput();

Once the image is loaded, we apply aitk::GradientMagnitudeImageFilter to segment
edges. This casts the input image using aitk::CastImageFilter.

typedef itk::CastImageFilter< ImageType, AccumulatorImageType >
CastingFilterType;

CastingFilterType::Pointer caster = CastingFilterType::New();

std::cout << "Applying gradient magnitude filter" << std::endl;

typedef itk::GradientMagnitudeImageFilter<AccumulatorImageType,
AccumulatorImageType > GradientFilterType;

GradientFilterType::Pointer gradFilter = GradientFilterType::New();

caster->SetInput(localImage);
gradFilter->SetInput(caster->GetOutput());
gradFilter->Update();

The next step is to apply a threshold filter on the gradient magnitude image to keep only bright
values. Only pixels with a high value will be used by the Houghtransform filter.

std::cout << "Thresholding" << std::endl;
typedef itk::ThresholdImageFilter<AccumulatorImageType> ThresholdFilterType;
ThresholdFilterType::Pointer threshFilter = ThresholdFilterType::New();

threshFilter->SetInput(gradFilter->GetOutput());
threshFilter->SetOutsideValue(0);
unsigned char threshBelow = 0;
unsigned char threshAbove = 255;
threshFilter->ThresholdOutside(threshBelow,threshAbove);
threshFilter->Update();

http://www.itk.org/Doxygen/html/classitk_1_1GradientMagnitudeImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1CastImageFilter.html

598 Chapter 9. Segmentation

We create the HoughTransform2DLinesImageFilter based on the pixel type of the input image
(the resulting image from the ThresholdImageFilter).

std::cout << "Computing Hough Map" << std::endl;
typedef itk::HoughTransform2DLinesImageFilter<AccumulatorPixelType,

AccumulatorPixelType> HoughTransformFilterType;

HoughTransformFilterType::Pointer houghFilter = HoughTransformFilterType::New();

We set the input to the filter to be the output of the ThresholdImageFilter. We set also the
number of lines we are looking for. Basically, the filter computes the Hough map, blurs it using
a certain variance and finds maxima in the Hough map. After a maximum is found, the local
neighborhood, a circle, is removed from the Hough map. SetDiscRadius() defines the radius of
this disc.

The output of the filter is the accumulator.

houghFilter->SetInput(threshFilter->GetOutput());
houghFilter->SetNumberOfLines(atoi(argv[3]));

if(argc > 4)
{
houghFilter->SetVariance(atof(argv[4]));
}

if(argc > 5)
{
houghFilter->SetDiscRadius(atof(argv[5]));
}

houghFilter->Update();
AccumulatorImageType::Pointer localAccumulator = houghFilter->GetOutput();

We can also get the lines asitk::LineSpatialObject. TheGetLines() function return a
list of those.

HoughTransformFilterType::LinesListType lines;
lines = houghFilter->GetLines(atoi(argv[3]));
std::cout << "Found " << lines.size() << " line(s)." << std::endl;

We can then allocate an image to draw the resulting lines as binary objects.

typedef unsigned char OutputPixelType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;

OutputImageType::Pointer localOutputImage = OutputImageType::New();

http://www.itk.org/Doxygen/html/classitk_1_1LineSpatialObject.html

9.5. Feature Extraction 599

OutputImageType::RegionType region;
region.SetSize(localImage->GetLargestPossibleRegion().GetSize());
region.SetIndex(localImage->GetLargestPossibleRegion().GetIndex());
localOutputImage->SetRegions(region);
localOutputImage->SetOrigin(localImage->GetOrigin());
localOutputImage->SetSpacing(localImage->GetSpacing());
localOutputImage->Allocate();
localOutputImage->FillBuffer(0);

We iterate through the list of lines and we draw them.

typedef HoughTransformFilterType::LinesListType::const_iterator LineIterator;
LineIterator itLines = lines.begin();
while(itLines != lines.end())
{

We get the list of points which consists of two points to represent a straight line. Then, from
these two points, we compute a fixed pointu and a unit vector~v to parameterize the line.

typedef HoughTransformFilterType::LineType::PointListType PointListType;

PointListType pointsList = (*itLines)->GetPoints();
PointListType::const_iterator itPoints = pointsList.begin();

double u[2];
u[0] = (*itPoints).GetPosition()[0];
u[1] = (*itPoints).GetPosition()[1];
itPoints++;
double v[2];
v[0] = u[0]-(*itPoints).GetPosition()[0];
v[1] = u[1]-(*itPoints).GetPosition()[1];

double norm = sqrt(v[0]*v[0]+v[1]*v[1]);
v[0] /= norm;
v[1] /= norm;

We draw a white pixels in the output image to represent the line.

ImageType::IndexType localIndex;
itk::Size<2> size = localOutputImage->GetLargestPossibleRegion().GetSize();
float diag = sqrt((float)(size[0]*size[0] + size[1]*size[1]));

for(int i=static_cast<int>(-diag); i<static_cast<int>(diag); i++)
{
localIndex[0]=(long int)(u[0]+i*v[0]);

600 Chapter 9. Segmentation

localIndex[1]=(long int)(u[1]+i*v[1]);

OutputImageType::RegionType region =
localOutputImage->GetLargestPossibleRegion();

if(region.IsInside(localIndex))
{
localOutputImage->SetPixel(localIndex, 255);
}

}
itLines++;
}

We setup a writer to write out the binary image created.

typedef itk::ImageFileWriter< OutputImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetFileName(argv[2]);
writer->SetInput(localOutputImage);

try
{
writer->Update();
}

catch(itk::ExceptionObject & excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}

Circle Extraction

The source code for this section can be found in the file
Examples/Segmentation/HoughTransform2DCirclesImageFilter.cxx.

This example illustrates the use of theitk::HoughTransform2DCirclesImageFilter to find
circles in a 2-dimensional image.

First, we include the header files of the filter.

#include "itkHoughTransform2DCirclesImageFilter.h"

Next, we declare the pixel type and image dimension and specify the image type to be used as
input. We also specify the image type of the accumulator usedin the Hough transform filter.

typedef unsigned char PixelType;

http://www.itk.org/Doxygen/html/classitk_1_1HoughTransform2DCirclesImageFilter.html

9.5. Feature Extraction 601

typedef float AccumulatorPixelType;
const unsigned int Dimension = 2;
typedef itk::Image< PixelType, Dimension > ImageType;
ImageType::IndexType localIndex;
typedef itk::Image< AccumulatorPixelType, Dimension > AccumulatorImageType;

We setup a reader to load the input image.

typedef itk::ImageFileReader< ImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(argv[1]);
try
{
reader->Update();
}

catch(itk::ExceptionObject & excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}

ImageType::Pointer localImage = reader->GetOutput();

We create the HoughTransform2DCirclesImageFilter based on the pixel type of the input image
(the resulting image from the ThresholdImageFilter).

std::cout << "Computing Hough Map" << std::endl;

typedef itk::HoughTransform2DCirclesImageFilter<PixelType,
AccumulatorPixelType> HoughTransformFilterType;

HoughTransformFilterType::Pointer houghFilter = HoughTransformFilterType::New();

We set the input of the filter to be the output of the ImageFileReader. We set also the number of
circles we are looking for. Basically, the filter computes the Hough map, blurs it using a certain
variance and finds maxima in the Hough map. After a maximum is found, the local neighbor-
hood, a circle, is removed from the Hough map. SetDiscRadiusRatio() defines the radius of this
disc proportional to the radius of the disc found. The Hough map is computed by looking at the
points above a certain threshold in the input image. Then, for each point, a Gaussian derivative
function is computed to find the direction of the normal at that point. The standard deviation
of the derivative function can be adjusted by SetSigmaGradient(). The accumulator is filled by
drawing a line along the normal and the length of this line is defined by the minimum radius
(SetMinimumRadius()) and the maximum radius (SetMaximumRadius()). Moreover, a sweep
angle can be defined by SetSweepAngle() (default 0.0) to increase the accuracy of detection.

The output of the filter is the accumulator.

houghFilter->SetInput(reader->GetOutput());

602 Chapter 9. Segmentation

houghFilter->SetNumberOfCircles(atoi(argv[3]));
houghFilter->SetMinimumRadius(atof(argv[4]));
houghFilter->SetMaximumRadius(atof(argv[5]));

if(argc > 6)
{
houghFilter->SetSweepAngle(atof(argv[6]));
}

if(argc > 7)
{
houghFilter->SetSigmaGradient(atoi(argv[7]));
}

if(argc > 8)
{
houghFilter->SetVariance(atof(argv[8]));
}

if(argc > 9)
{
houghFilter->SetDiscRadiusRatio(atof(argv[9]));
}

houghFilter->Update();
AccumulatorImageType::Pointer localAccumulator = houghFilter->GetOutput();

We can also get the circles asitk::EllipseSpatialObject. TheGetCircles() function
return a list of those.

HoughTransformFilterType::CirclesListType circles;
circles = houghFilter->GetCircles(atoi(argv[3]));
std::cout << "Found " << circles.size() << " circle(s)." << std::endl;

We can then allocate an image to draw the resulting circles asbinary objects.

typedef unsigned char OutputPixelType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;

OutputImageType::Pointer localOutputImage = OutputImageType::New();

OutputImageType::RegionType region;
region.SetSize(localImage->GetLargestPossibleRegion().GetSize());
region.SetIndex(localImage->GetLargestPossibleRegion().GetIndex());
localOutputImage->SetRegions(region);
localOutputImage->SetOrigin(localImage->GetOrigin());
localOutputImage->SetSpacing(localImage->GetSpacing());
localOutputImage->Allocate();
localOutputImage->FillBuffer(0);

http://www.itk.org/Doxygen/html/classitk_1_1EllipseSpatialObject.html

9.5. Feature Extraction 603

We iterate through the list of circles and we draw them.

typedef HoughTransformFilterType::CirclesListType CirclesListType;
CirclesListType::const_iterator itCircles = circles.begin();

while(itCircles != circles.end())
{
std::cout << "Center: ";
std::cout << (*itCircles)->GetObjectToParentTransform()->GetOffset()

<< std::endl;
std::cout << "Radius: " << (*itCircles)->GetRadius()[0] << std::endl;

We draw white pixels in the output image to represent each circle.

for(double angle = 0;angle <= 2*vnl_math::pi; angle += vnl_math::pi/60.0)
{
localIndex[0] =

(long int)((*itCircles)->GetObjectToParentTransform()->GetOffset()[0]
+ (*itCircles)->GetRadius()[0]*cos(angle));

localIndex[1] =
(long int)((*itCircles)->GetObjectToParentTransform()->GetOffset()[1]

+ (*itCircles)->GetRadius()[0]*sin(angle));
OutputImageType::RegionType region =

localOutputImage->GetLargestPossibleRegion();

if(region.IsInside(localIndex))
{
localOutputImage->SetPixel(localIndex, 255);
}

}
itCircles++;
}

We setup a writer to write out the binary image created.

typedef itk::ImageFileWriter< ImageType > WriterType;
WriterType::Pointer writer = WriterType::New();

writer->SetFileName(argv[2]);
writer->SetInput(localOutputImage);

try
{
writer->Update();
}

catch(itk::ExceptionObject & excep)

604 Chapter 9. Segmentation

{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}

CHAPTER

TEN

Statistics

This chapter introduces the statistics functionalities inInsight. The statistics subsystem’s pri-
mary purpose is to provide general capabilities for statistical pattern classification. However,
its use is not limited for classification. Users might want touse data containers and algorithms
in the statistics subsystem to perform other statistical analysis or to preprocessor image data for
other tasks.

The statistics subsystem mainly consists of three parts: data container classes, statistical algo-
rithms, and the classification framework. In this chapter, we will discuss each major part in that
order.

10.1 Data Containers

An itk::Statistics::Sample object is a data container of elements that we callmeasure-
ment vectors. A measurement vector is an array of values (of the same type)measured on an
object (In images, it can be a vector of the gray intensity value and/or the gradient value of a
pixel). Strictly speaking from the design of the Sample class, a measurement vector can be any
class derived fromitk::FixedArray, including FixedArray itself.

10.1.1 Sample Interface

The source code for this section can be found in the file
Examples/Statistics/ListSample.cxx.

This example illustrates the common interface of theSample class in Insight.

Different subclasses ofitk::Statistics::Sample expect different sets of template argu-
ments. In this example, we use theitk::Statistics::ListSample class that requires the
type of measurement vectors. The ListSample usesSTL vector to store measurement vectors.
This class conforms to the common interface of Sample. Most methods of the Sample class in-
terface are for retrieving measurement vectors, the size ofa container, and the total frequency. In

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Sample.html
http://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Sample.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ListSample.html
http://www.sgi.com/tech/stl/

606 Chapter 10. Statistics

Sample

ImageToListAdaptor

ScalarImageToListAdaptor JointDomainImageToListAdaptor

ListSampleBase Histogram Subsample MembershipSample

PointSetToListAdaptorListSample

Figure 10.1:Sample class inheritance diagram.

this example, we will see those information retrieving methods in addition to methods specific
to the ListSample class for data input.

To use the ListSample class, we include the header file for theclass.

We need another header for measurement vectors. We are goingto use theitk::Vector class
which is a subclass of theitk::FixedArray class.

#include "itkListSample.h"
#include "itkVector.h"

The following code snippet defines the measurement vector type as three componentfloat
itk::Vector. The MeasurementVectorType is the measurement vector type in the
SampleType. An object is instantiated at the third line.

typedef itk::Vector< float, 3 > MeasurementVectorType ;
typedef itk::Statistics::ListSample< MeasurementVectorType > SampleType ;
SampleType::Pointer sample = SampleType::New() ;

In the above code snippet, the namespace specifier for ListSample isitk::Statistics:: in-
stead of the usual namespace specifier for other ITK classes,itk::.

The newly instantiated object does not have any data in it. Wehave two different ways of storing
data elements. The first method is using thePushBack method.

MeasurementVectorType mv ;
mv[0] = 1.0 ;
mv[1] = 2.0 ;
mv[2] = 4.0 ;

sample->PushBack(mv) ;

The previous code increases the size of the container by one and storesmv as the first data
element in it.

http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html
http://www.itk.org/Doxygen/html/classitk_1_1Vector.html

10.1. Data Containers 607

The other way to store data elements is calling theResize method and then calling the
SetMeasurementVector() method with a measurement vector. The following code snippet
increases the size of the container to three and stores two measurement vectors at the second
and the third slot. The measurement vector stored using thePushBack method above is still at
the first slot.

sample->Resize(3) ;

mv[0] = 2.0 ;
mv[1] = 4.0 ;
mv[2] = 5.0 ;
sample->SetMeasurementVector(1, mv) ;

mv[0] = 3.0 ;
mv[1] = 8.0 ;
mv[2] = 6.0 ;
sample->SetMeasurementVector(2, mv) ;

Now that we have seen how to create an ListSample object and store measurement vectors
using the ListSample-specific interface. The following code shows the common interface of
the Sample class. TheSize method returns the number of measurement vectors in the sam-
ple. The primary data stored in Sample subclasses are measurement vectors. However, each
measurement vector has its associated frequency of occurrence within the sample. For the
ListSample and the adaptor classes (see Section10.1.2), the frequency value is always one.
itk::Statistics::Histogram can have a varying frequency (float type) for each measure-
ment vector. We retrieve measurement vectors using theGetMeasurementVector(unsigned
long instance identifier), and frequency using theGetFrequency(unsigned long
instance identifier).

for (unsigned long i = 0 ; i < sample->Size() ; ++i)
{
std::cout << "id = " << i

<< "\t measurement vector = "
<< sample->GetMeasurementVector(i)
<< "\t frequency = "
<< sample->GetFrequency(i)
<< std::endl ;

}

The output should look like the following:
id = 0 measurement vector = 1 2 4 frequency = 1
id = 1 measurement vector = 2 4 5 frequency = 1
id = 2 measurement vector = 3 8 6 frequency = 1

We can get the same result with its iterator.

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Histogram.html

608 Chapter 10. Statistics

SampleType::Iterator iter = sample->Begin() ;

while(iter != sample->End())
{
std::cout << "id = " << iter.GetInstanceIdentifier()

<< "\t measurement vector = "
<< iter.GetMeasurementVector()
<< "\t frequency = "
<< iter.GetFrequency()
<< std::endl ;

++iter ;
}

The last method defined in the Sample class is theGetTotalFrequency() method that re-
turns the sum of frequency values associated with every measurement vector in a container. In
the case of ListSample and the adaptor classes, the return value should be exactly the same
as that of theSize() method, because the frequency values are always one for eachmeasure-
ment vector. However, for theitk::Statistics::Histogram, the frequency values can vary.
Therefore, if we want to develop a general algorithm to calculate the sample mean, we must use
theGetTotalFrequency() method instead of theSize() method.

std::cout << "Size = " << sample->Size() << std::endl ;
std::cout << "Total frequency = "

<< sample->GetTotalFrequency() << std::endl ;

10.1.2 Sample Adaptors

There are two adaptor classes that provide the commonitk::Statistics::Sample in-
terfaces for itk::Image and itk::PointSet, two fundamental data container classes
found in ITK. The adaptor classes do not store any real data elements themselves.
These data comes from the source data container plugged intothem. First, we
will describe how to create anitk::Statistics::ImageToListAdaptor and then an
itk::statistics::PointSetToListAdaptor object.

ImageToListAdaptor

The source code for this section can be found in the file
Examples/Statistics/ImageToListAdaptor.cxx.

This example shows how to instantiate anitk::Statistics::ImageToListAdaptor object
and plug-in anitk::Image object as the data source for the adaptor.

In this example, we use the ImageToListAdaptor class that requires the input type of Image as
the template argument. To users of the ImageToListAdaptor,the pixels of the input image are

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Histogram.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Sample.html
http://www.itk.org/Doxygen/html/classitk_1_1Image.html
http://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ImageToListAdaptor.html
http://www.itk.org/Doxygen/html/classitk_1_1statistics_1_1PointSetToListAdaptor.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ImageToListAdaptor.html
http://www.itk.org/Doxygen/html/classitk_1_1Image.html

10.1. Data Containers 609

treated as measurement vectors. The ImageToListAdaptor isone of two adaptor classes among
the subclasses of theitk::Statistics::Sample. That means an ImageToListAdaptor object
does not store any real data. The data comes from other ITK data container classes. In this case,
an instance of the Image class is the source of the data.

To use an ImageToListAdaptor object, include the header filefor the class. Since we are
using an adaptor, we also should include the header file for the Image class. For illustra-
tion, we use theitk::RandomImageSource that generates an image with random pixel val-
ues. So, we need to include the header file for this class. Another convenient filter is the
itk::ScalarToArrayCastImageFilter which creates an image with pixels of array type
from one or more input images have pixels of scalar type. Since an element of a Sample object
is a measurementvector, you cannot plug-in an image of scalar pixels. However, if wewant
to use an image with scalar pixels without the help from the ScalarToArrayCastImageFilter,
we can use theitk::Statistics::ScalarImageToListAdaptor class that is derived from
the itk::Statistics::ImageToListAdaptor. The usage of the ScalarImageToListAdaptor
is identical to that of the ImageToListAdaptor.

#include "itkImageToListAdaptor.h"
#include "itkImage.h"
#include "itkRandomImageSource.h"
#include "itkScalarToArrayCastImageFilter.h"

We assume you already know how to create an image (see Section4.1.1). The following code
snippet will create a 2D image of float pixels filled with random values.

typedef itk::Image<float,2> FloatImage2DType;

itk::RandomImageSource<FloatImage2DType>::Pointer random;
random = itk::RandomImageSource<FloatImage2DType>::New();

random->SetMin(0.0);
random->SetMax(1000.0);

unsigned long size[2] = {20, 20};
random->SetSize(size);

float spacing[2] = {0.7, 2.1};
random->SetSpacing(spacing);

float origin[2] = {15, 400};
random->SetOrigin(origin);

We now have an instance of Image and need to cast it to an Image object with an array pixel
type (anything derived from theitk::FixedArray class such asitk::Vector, itk::Point,
itk::RGBPixel, and itk::CovariantVector).

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Sample.html
http://www.itk.org/Doxygen/html/classitk_1_1RandomImageSource.html
http://www.itk.org/Doxygen/html/classitk_1_1ScalarToArrayCastImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ScalarImageToListAdaptor.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ImageToListAdaptor.html
http://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html
http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1Point.html
http://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html
http://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html

610 Chapter 10. Statistics

Since in this example the image pixel type isfloat, we will use single element afloat
FixedArray as our measurement vector type. And that will also be our pixel type for the cast
filter.

typedef itk::FixedArray< float, 1 > MeasurementVectorType;
typedef itk::Image< MeasurementVectorType, 2 > ArrayImageType;
typedef itk::ScalarToArrayCastImageFilter< FloatImage2DType, ArrayImageType >
CasterType;

CasterType::Pointer caster = CasterType::New();
caster->SetInput(random->GetOutput());
caster->Update();

Up to now, we have spent most of our time creating an image suitable for the adaptor. Actually,
the hard part of this example is done. Now, we just define an adaptor with the image type and
instantiate an object.

typedef itk::Statistics::ImageToListAdaptor< ArrayImageType > SampleType;
SampleType::Pointer sample = SampleType::New();

The final task is to plug in the image object to the adaptor. After that, we can use the common
methods and iterator interfaces shown in Section10.1.1.

sample->SetImage(caster->GetOutput());

If we are interested only in pixel values, the ScalarImageToListAdaptor (scalar pix-
els) and the ImageToListAdaptor (vector pixels) would be sufficient. However, if we
want to perform some statistical analysis on spatial information (image index or pixel’s
physical location) and pixel values altogether, we want to have a measurement vector
that consists of a pixel’s value and physical position. In that case, we can use the
itk::Statistics::JointDomainImageToListAdaptor class. With that class, when we call
theGetMeasurementVector() method, the returned measurement vector is composed of the
physical coordinates and pixel values. The usage is almost the same as with ImageToListAdap-
tor. One important difference between JointDomainImageToListAdaptor and the other two im-
age adaptors is that the JointDomainImageToListAdaptor istheSetNormalizationFactors()
method. Each component of a measurement vector from the JointDomainImageToListAdaptor
is divided by the corresponding component value from the supplied normalization factors.

PointSetToListAdaptor

The source code for this section can be found in the file
Examples/Statistics/PointSetToListAdaptor.cxx.

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1JointDomainImageToListAdaptor.html

10.1. Data Containers 611

We will describe how to useitk::PointSet as a itk::Statistics::Sample using an
adaptor in this example.

The itk::Statistics::PointSetToListAdaptor class requires a PointSet as input. The
PointSet class is an associative data container. Each pointin a PointSet object can have an asso-
ciated optional data value. For the statistics subsystem, the current implementation of PointSet-
ToListAdaptor takes only the point part into consideration. In other words, the measurement
vectors from a PointSetToListAdaptor object are points from the PointSet object that is plugged
into the adaptor object.

To use an PointSetToListAdaptor class, we include the header file for the class.

#include "itkPointSetToListAdaptor.h"

Since we are using an adaptor, we also include the header file for the PointSet class.

#include "itkPointSet.h"
#include "itkVector.h"

Next we create a PointSet object (see Section4.2.1otherwise). The following code snippet will
create a PointSet object that stores points (its coordinatevalue type is float) in 3D space.

typedef itk::PointSet< short > PointSetType;
PointSetType::Pointer pointSet = PointSetType::New();

Note that theshort type used in the declaration ofPointSetType pertains to the pixel
type associated with every point, not to the type used to represent point coordinates. If
we want to change the type of point in terms of the coordinate value and/or dimension, we
have to modify theTMeshTraits (one of the optional template arguments for thePointSet
class). The easiest way of create a custom mesh traits instance is to specialize the exist-
ing itk::DefaultStaticMeshTraits. By specifying theTCoordRep template argument,
we can change the coordinate value type of a point. By specifying the VPointDimension
template argument, we can change the dimension of the point.As mentioned earlier, a
PointSetToListAdaptor object cares only about the points, and the type of measurement
vectors is the type of points. Therefore, we can define the measurement vector type as in the
following code snippet.

typedef PointSetType::PointType MeasurementVectorType;

To make the example a little bit realistic, we add two point into thepointSet.

PointSetType::PointType point;
point[0] = 1.0;
point[1] = 2.0;

http://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Sample.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1PointSetToListAdaptor.html
http://www.itk.org/Doxygen/html/classitk_1_1DefaultStaticMeshTraits.html

612 Chapter 10. Statistics

point[2] = 3.0;

pointSet->SetPoint(0UL, point);

point[0] = 2.0;
point[1] = 4.0;
point[2] = 6.0;

pointSet->SetPoint(1UL, point);

Now we have a PointSet object that has two points in it. And thepointSet is ready to be plugged
into the adaptor. First, we create an instance of the PointSetToListAdaptor class with the type
of the input PointSet object.

typedef itk::Statistics::PointSetToListAdaptor< PointSetType > SampleType;
SampleType::Pointer sample = SampleType::New();

Second, just as we did with the ImageToListAdaptor example in Section10.1.2, all we have to
do is to plug in the PointSet object to the adaptor. After that, we can use the common methods
and iterator interfaces shown in Section10.1.1.

sample->SetPointSet(pointSet);

The source code for this section can be found in the file
Examples/Statistics/PointSetToAdaptor.cxx.

We will describe how to useitk::PointSet as aSample using an adaptor in this example.

itk::Statistics::PointSetToListAdaptor class requires the type of input
itk::PointSet object. The itk::PointSet class is an associative data container.
Each point in aPointSet object can have its associated data value (optional). For the statistics
subsystem, current implementation ofPointSetToListAdaptor takes only the point part into
consideration. In other words, the measurement vectors from a PointSetToListAdaptor
object are points from thePointSet object that is plugged-into the adaptor object.

To use, anitk::PointSetToListAdaptor object, we include the header file for the class.

#include "itkPointSetToListAdaptor.h"

Since, we are using an adaptor, we also include the header filefor the itk::PointSet class.

#include "itkPointSet.h"

We assume you already know how to create anitk::PointSet object. The following code
snippet will create a 2D image of float pixels filled with random values.

http://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1PointSetToListAdaptor.html
http://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
http://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
http://www.itk.org/Doxygen/html/classitk_1_1PointSetToListAdaptor.html
http://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
http://www.itk.org/Doxygen/html/classitk_1_1PointSet.html

10.1. Data Containers 613

typedef itk::PointSet<float,2> FloatPointSet2DType ;

itk::RandomPointSetSource<FloatPointSet2DType>::Pointer random ;
random = itk::RandomPointSetSource<FloatPointSet2DType>::New() ;
random->SetMin(0.0) ;
random->SetMax(1000.0) ;

unsigned long size[2] = {20, 20} ;
random->SetSize(size) ;
float spacing[2] = {0.7, 2.1} ;
random->SetSpacing(spacing) ;
float origin[2] = {15, 400} ;
random->SetOrigin(origin) ;

We now have anitk::PointSet object and need to cast it to anitk::PointSet object with
array type (anything derived from theitk::FixedArray class) pixels.

Since, the itk::PointSet object’s pixel type isfloat, We will use single elementfloat
itk::FixedArray as our measurement vector type. And that will also be our pixel type for the
cast filter.

typedef itk::FixedArray< float, 1 > MeasurementVectorType ;
typedef itk::PointSet< MeasurementVectorType, 2 > ArrayPointSetType ;
typedef itk::ScalarToArrayCastPointSetFilter< FloatPointSet2DType,
ArrayPointSetType > CasterType ;

CasterType::Pointer caster = CasterType::New() ;
caster->SetInput(random->GetOutput()) ;
caster->Update() ;

Up to now, we spend most of time to prepare anitk::PointSet object suitable for the adaptor.
Actually, the hard part of this example is done. Now, we must define an adaptor with the image
type and instantiate an object.

typedef itk::Statistics::PointSetToListAdaptor< ArrayPointSetType > SampleType ;
SampleType::Pointer sample = SampleType::New() ;

The final thing we have to is to plug-in the image object to the adaptor. After that, we can use
the common methods and iterator interfaces shown in10.1.1.

sample->SetPointSet(caster->GetOutput()) ;

10.1.3 Histogram

The source code for this section can be found in the file
Examples/Statistics/Histogram.cxx.

http://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
http://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
http://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html
http://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
http://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html
http://www.itk.org/Doxygen/html/classitk_1_1PointSet.html

614 Chapter 10. Statistics

2.6

4.6

0.5

2.5

0.0

2.0

5.0

2.0 3.0

1.0

0.0

3.1 5.1 7.11.1

6.6

8.6

(0, 0)

(2, 2)

(0, 1)

(0, 2)

(1, 0) (2, 0)

(1, 1) (2, 1)

(1, 2)

Figure 10.2:Conceptual histogram data structure.

This example shows how to create anitk::Statistics::Histogram object and use it.

We call an instance in aHistogram object a bin. The Histogram differs from
the itk::Statistics::ListSample, itk::Statistics::ImageToListAdaptor, or
itk::Statistics::PointSetToListAdaptor in significant ways. Histogram can have a
variable number of values (float type) for each measurement vector, while the three other
classes have a fixed value (one) for all measurement vectors.Also those array-type contain-
ers can have multiple instances (data elements) that have identical measurement vector values.
However, in a Histogram object, there is one unique instancefor any given measurement vector.

#include "itkHistogram.h"

Here we create a histogram with 2-component measurement vectors.

typedef float MeasurementType ;
typedef itk::Statistics::Histogram< MeasurementType, 2 > HistogramType ;
HistogramType::Pointer histogram = HistogramType::New() ;

We initialize it as a 3×3 histogram with equal size intervals.

HistogramType::SizeType size ;
size.Fill(3) ;
HistogramType::MeasurementVectorType lowerBound ;
HistogramType::MeasurementVectorType upperBound ;
lowerBound[0] = 1.1 ;
lowerBound[1] = 2.6 ;
upperBound[0] = 7.1 ;
upperBound[1] = 8.6 ;

histogram->Initialize(size, lowerBound, upperBound) ;

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Histogram.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ListSample.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ImageToListAdaptor.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1PointSetToListAdaptor.html

10.1. Data Containers 615

Now the histogram is ready for storing frequency values. We will fill the each bin’s frequency
according to the Figure10.2. There are three ways of accessing data elements in the histogram:

• using instance identifiers—just like any other Sample object;

• using n-dimensional indices—just like an Image object;

• using an iterator—just like any other Sample object.

In this example, the index(0,0) refers the same bin as the instance identifier (0) refers to. The
instance identifier of the index (0, 1) is (3), (0, 2) is (6), (2, 2) is (8), and so on.

histogram->SetFrequency(0UL, 0.0) ;
histogram->SetFrequency(1UL, 2.0) ;
histogram->SetFrequency(2UL, 3.0) ;
histogram->SetFrequency(3UL, 2.0) ;
histogram->SetFrequency(4UL, 0.5) ;
histogram->SetFrequency(5UL, 1.0) ;
histogram->SetFrequency(6UL, 5.0) ;
histogram->SetFrequency(7UL, 2.5) ;
histogram->SetFrequency(8UL, 0.0) ;

Let us examine if the frequency is set correctly by calling theGetFrequency(index) method.
We can use theGetFrequency(instance identifier) method for the same purpose.

HistogramType::IndexType index ;
index[0] = 0 ;
index[1] = 2 ;
std::cout << "Frequency of the bin at index " << index

<< " is " << histogram->GetFrequency(index)
<< ", and the bin’s instance identifier is "
<< histogram->GetInstanceIdentifier(index) << std::endl ;

For test purposes, we create a measurement vector and an index that belongs to the center bin.

HistogramType::MeasurementVectorType mv ;
mv[0] = 4.1 ;
mv[1] = 5.6 ;
index.Fill(1) ;

We retrieve the measurement vector at the index value (1, 1),the center bin’s measurement
vector. The output is [4.1, 5.6].

std::cout << "Measurement vector at the center bin is "
<< histogram->GetMeasurementVector(index) << std::endl ;

616 Chapter 10. Statistics

Since all the measurement vectors are unique in the Histogram class, we can determine the
index from a measurement vector.

HistogramType::IndexType resultingIndex;
histogram->GetIndex(mv,resultingIndex);
std::cout << "Index of the measurement vector " << mv

<< " is " << resultingIndex << std::endl ;

In a similar way, we can get the instance identifier from the index.

std::cout << "Instance identifier of index " << index
<< " is " << histogram->GetInstanceIdentifier(index)
<< std::endl ;

If we want to check if an index is a valid one, we use the method
IsIndexOutOfBounds(index). The following code snippet fills the index variable with
(100, 100). It is obviously not a valid index.

index.Fill(100) ;
if (histogram->IsIndexOutOfBounds(index))
{
std::cout << "Index " << index << "is out of bounds." << std::endl ;
}

The following code snippets show how to get the histogram size and frequency dimension.

std::cout << "Number of bins = " << histogram->Size()
<< " Total frequency = " << histogram->GetTotalFrequency()
<< " Dimension sizes = " << histogram->GetSize() << std::endl ;

The Histogram class has a quantile calculation method,Quantile(dimension, percent).
The following code returns the 50th percentile along the first dimension. Note that the quantile
calculation considers only one dimension.

std::cout << "50th percentile along the first dimension = "
<< histogram->Quantile(0, 0.5) << std::endl ;

10.1.4 Subsample

The source code for this section can be found in the file
Examples/Statistics/Subsample.cxx.

The itk::Statistics::Subsample is a derived sample. In other words, it requires another
itk::Statistics::Sample object for storing measurement vectors. The Subsample class

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Subsample.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Sample.html

10.1. Data Containers 617

stores a subset of instance identifiers from another Sample object. AnySample’s subclass can
be the source Sample object. You can create a Subsample object out of another Subsample
object. The Subsample class is useful for storing classification results from a test Sample object
or for just extracting some part of interest in a Sample object. Another good use of Subsample
is sorting a Sample object. When we use anitk::Image object as the data source, we do not
want to change the order of data element in the image. However, we sometimes want to sort or
select data elements according to their order. Statistics algorithms for this purpose accepts only
Subsample objects as inputs. Changing the order in a Subsample object does not change the
order of the source sample.

To use a Subsample object, we include the header files for the class itself and a Sample class.
We will use theitk::Statistics::ListSample as the input sample.

#include "itkListSample.h"
#include "itkSubsample.h"

We need another header for measurement vectors. We are goingto use theitk::Vector class
in this example.

#include "itkVector.h"

The following code snippet will create a ListSample object with three-component float mea-
surement vectors and put three measurement vectors into thelist.

typedef itk::Vector< float, 3 > MeasurementVectorType;
typedef itk::Statistics::ListSample< MeasurementVectorType > SampleType;
SampleType::Pointer sample = SampleType::New();
MeasurementVectorType mv;
mv[0] = 1.0;
mv[1] = 2.0;
mv[2] = 4.0;

sample->PushBack(mv);

mv[0] = 2.0;
mv[1] = 4.0;
mv[2] = 5.0;
sample->PushBack(mv);

mv[0] = 3.0;
mv[1] = 8.0;
mv[2] = 6.0;
sample->PushBack(mv);

To create a Subsample instance, we define the type of the Subsample with the source sam-
ple type, in this case, the previously definedSampleType. As usual, after that, we call the

http://www.itk.org/Doxygen/html/classitk_1_1Image.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ListSample.html
http://www.itk.org/Doxygen/html/classitk_1_1Vector.html

618 Chapter 10. Statistics

New() method to create an instance. We must plug in the source sample, sample, using the
SetSample() method. However, with regard to data elements, the Subsample is empty. We
specify which data elements, among the data elements in the Sample object, are part of the
Subsample. There are two ways of doing that. First, if we wantto include every data element
(instance) from the sample, we simply call theInitializeWithAllInstances() method like
the following:

subsample->InitializeWithAllInstances();

This method is useful when we want to create a Subsample object for sorting all the data el-
ements in a Sample object. However, in most cases, we want to include only a subset of a
Sample object. For this purpose, we use theAddInstance(instance identifier) method
in this example. In the following code snippet, we include only the first and last instance in our
subsample object from the three instances of the Sample class.

typedef itk::Statistics::Subsample< SampleType > SubsampleType;
SubsampleType::Pointer subsample = SubsampleType::New();
subsample->SetSample(sample);

subsample->AddInstance(0UL);
subsample->AddInstance(2UL);

The Subsample is ready for use. The following code snippet shows how to useIterator
interfaces.

SubsampleType::Iterator iter = subsample->Begin();
while (iter != subsample->End())
{
std::cout << "instance identifier = " << iter.GetInstanceIdentifier()

<< "\t measurement vector = "
<< iter.GetMeasurementVector()
<< "\t frequency = "
<< iter.GetFrequency()
<< std::endl;

++iter;
}

As mentioned earlier, the instances in a Subsample can be sorted without changing the order in
the source Sample. For this purpose, the Subsample providesan additional instance indexing
scheme. The indexing scheme is just like the instance identifiers for the Sample. The index is
an integer value starting at 0, and the last value is one less than the number of all instances in
a Subsample. TheSwap(0, 1) method, for example, swaps two instance identifiers of the first
data element and the second element in the Subsample. Internally, theSwap() method changes

10.1. Data Containers 619

the instance identifiers in the first and second position. Using indices, we can print out the
effects of theSwap() method. We use theGetMeasurementVectorByIndex(index) to get the
measurement vector at the index position. However, if we want to use the common methods of
Sample that accepts instance identifiers, we call them afterwe get the instance identifiers using
GetInstanceIdentifier(index) method.

subsample->Swap(0, 1);

for (int index = 0 ; index < subsample->Size() ; ++index)
{
std::cout << "instance identifier = "

<< subsample->GetInstanceIdentifier(index)
<< "\t measurement vector = "
<< subsample->GetMeasurementVectorByIndex(index)
<< std::endl;

}

Since we are using a ListSample object as the source sample, the following code snippet will
return the same value (2) for theSize() and theGetTotalFrequency() methods. However,
if we used a Histogram object as the source sample, the two return values might be different
because a Histogram allows varying frequency values for each instance.

std::cout << "Size = " << subsample->Size() << std::endl;
std::cout << "Total frequency = "

<< subsample->GetTotalFrequency() << std::endl;

If we want to remove all instances that are associated with the Subsample, we call theClear()
method. After this invocation, theSize() and theGetTotalFrequency() methods return 0.

subsample->Clear();
std::cout << "Size = " << subsample->Size() << std::endl;
std::cout << "Total frequency = "

<< subsample->GetTotalFrequency() << std::endl;

10.1.5 MembershipSample

The source code for this section can be found in the file
Examples/Statistics/MembershipSample.cxx.

The itk::Statistics::MembershipSample is derived from the class
itk::Statistics::Sample that associates a class label with each measurement vector.
It needs another Sample object for storing measurement vectors. AMembershipSample object
stores a subset of instance identifiers from another Sample object. Anysubclass of Sample can
be the source Sample object. The MembershipSample class is useful for storing classification

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1MembershipSample.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Sample.html

620 Chapter 10. Statistics

results from a test Sample object. The MembershipSample class can be considered as an
associative container that stores measurement vectors, frequency values, andclass labels.

To use a MembershipSample object, we include the header filesfor the class itself and the
Sample class. We will use theitk::Statistics::ListSample as the input sample. We need
another header for measurement vectors. We are going to use the itk::Vector class which is
a subclass of theitk::FixedArray.

#include "itkListSample.h"
#include "itkMembershipSample.h"
#include "itkVector.h"

The following code snippet will create aListSample object with three-component float mea-
surement vectors and put three measurement vectors in theListSample object.

typedef itk::Vector< float, 3 > MeasurementVectorType;
typedef itk::Statistics::ListSample< MeasurementVectorType > SampleType;
SampleType::Pointer sample = SampleType::New();
MeasurementVectorType mv;

mv[0] = 1.0;
mv[1] = 2.0;
mv[2] = 4.0;
sample->PushBack(mv);

mv[0] = 2.0;
mv[1] = 4.0;
mv[2] = 5.0;
sample->PushBack(mv);

mv[0] = 3.0;
mv[1] = 8.0;
mv[2] = 6.0;
sample->PushBack(mv);

To create a MembershipSample instance, we define the type of the MembershipSample using
the source sample type using the previously definedSampleType. As usual, after that, we call
theNew() method to create an instance. We must plug in the source sample, Sample, using the
SetSample() method. We provide class labels for data instances in the Sample object using
the AddInstance() method. As the required initialization step for themembershipSample,
we must call theSetNumberOfClasses() method with the number of classes. We must add
all instances in the source sample with their class labels. In the following code snippet, we
set the first instance’ class label to 0, the second to 0, the third (last) to 1. After this, the
membershipSample has twoSubsample objects. And the class labels for these twoSubsample
objects are 0 and 1. The 0 classSubsample object includes the first and second instances, and
the 1 class includes the third instance.

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ListSample.html
http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html

10.1. Data Containers 621

typedef itk::Statistics::MembershipSample< SampleType >
MembershipSampleType;

MembershipSampleType::Pointer membershipSample =
MembershipSampleType::New();

membershipSample->SetSample(sample);
membershipSample->SetNumberOfClasses(2);

membershipSample->AddInstance(0U, 0UL);
membershipSample->AddInstance(0U, 1UL);
membershipSample->AddInstance(1U, 2UL);

TheSize() andGetTotalFrequency() returns the same information that Sample does.

std::cout << "Size = " << membershipSample->Size() << std::endl;
std::cout << "Total frequency = "

<< membershipSample->GetTotalFrequency() << std::endl;

The membershipSample is ready for use. The following code snippet shows how to use the
Iterator interface. The MembershipSample’sIterator has an additional method that returns
the class label (GetClassLabel()).

MembershipSampleType::ConstIterator iter = membershipSample->Begin();
while (iter != membershipSample->End())
{
std::cout << "instance identifier = " << iter.GetInstanceIdentifier()

<< "\t measurement vector = "
<< iter.GetMeasurementVector()
<< "\t frequency = "
<< iter.GetFrequency()
<< "\t class label = "
<< iter.GetClassLabel()
<< std::endl;

++iter;
}

To see the numbers of instances in each class subsample, we use theGetClassSampleSize()
method.

std::cout << "class label = 0 sample size = "
<< membershipSample->GetClassSampleSize(0) << std::endl;

std::cout << "class label = 1 sample size = "
<< membershipSample->GetClassSampleSize(1) << std::endl;

622 Chapter 10. Statistics

We call theGetClassSample() method to get the class subsample in themembershipSample.
The MembershipSampleType::ClassSampleType is actually a specialization of the
itk::Statistics::Subsample. We print out the instance identifiers, measurement vectors,
and frequency values that are part of the class. The output will be two lines for the two instances
that belong to the class 0.

MembershipSampleType::ClassSampleType::ConstPointer classSample =
membershipSample->GetClassSample(0);

MembershipSampleType::ClassSampleType::ConstIterator c_iter =
classSample->Begin();

while (c_iter != classSample->End())
{
std::cout << "instance identifier = " << c_iter.GetInstanceIdentifier()

<< "\t measurement vector = "
<< c_iter.GetMeasurementVector()
<< "\t frequency = "
<< c_iter.GetFrequency() << std::endl;

++c_iter;
}

10.1.6 MembershipSampleGenerator

The source code for this section can be found in the file
Examples/Statistics/MembershipSampleGenerator.cxx.

To use, anMembershipSample object, we include the header files for the class itself and a
Sample class. We will use theListSample as the input sample.

#include "itkListSample.h"
#include "itkMembershipSample.h"

We need another header for measurement vectors. We are goingto use theitk::Vector class
which is a subclass of theitk::FixedArray in this example.

#include "itkVector.h"

The following code snippet will create aListSample object with three-component float mea-
surement vectors and put three measurement vectors in theListSample object.

typedef itk::Vector< float, 3 > MeasurementVectorType ;
typedef itk::Statistics::ListSample< MeasurementVectorType > SampleType ;
SampleType::Pointer sample = SampleType::New() ;
MeasurementVectorType mv ;

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Subsample.html
http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html

10.1. Data Containers 623

mv[0] = 1.0 ;
mv[1] = 2.0 ;
mv[2] = 4.0 ;
sample->PushBack(mv) ;

mv[0] = 2.0 ;
mv[1] = 4.0 ;
mv[2] = 5.0 ;
sample->PushBack(mv) ;

mv[0] = 3.0 ;
mv[1] = 8.0 ;
mv[2] = 6.0 ;
sample->PushBack(mv) ;

To create aMembershipSample instance, we define the type of theMembershipSample with
the source sample type, in this case, previously definedSampleType. As usual, after that, we
call New() method to instantiate an instance. We must plug-in the source sample,sample
object using theSetSample(source sample) method. However, in regard ofclass labels, the
membershipSample is empty. We provide class labels for data instances in thesample object
using theAddInstance(class label, instance identifier) method. As the required
initialization step for themembershipSample, we must call theSetNumberOfClasses(number
of classes) method with the number of classes. We must add all instances in the source
sample with their class labels. In the following code snippet, we set the first instance’ class label
to 0, the second to 0, the third (last) to 1. After this, themembershipSample has twoSubclass
objects. And the class labels for these twoSubclass are 0 and 1. The0 classSubsample object
includes the first and second instances, and the1 class includes the third instance.

typedef itk::Statistics::MembershipSample< SampleType >
MembershipSampleType ;

MembershipSampleType::Pointer membershipSample =
MembershipSampleType::New() ;

membershipSample->SetSample(sample) ;
membershipSample->SetNumberOfClasses(2) ;

membershipSample->AddInstance(0U, 0UL) ;
membershipSample->AddInstance(0U, 1UL) ;
membershipSample->AddInstance(1U, 2UL) ;

TheSize() andGetTotalFrequency() returns the same values as thesample does.

std::cout << "Size = " << membershipSample->Size() << std::endl ;
std::cout << "Total frequency = "

<< membershipSample->GetTotalFrequency() << std::endl ;

624 Chapter 10. Statistics

The membershipSample is ready for use. The following code snippet shows how to use
Iterator interfaces. TheMembershipSample’ Iterator has an additional method that re-
turns the class label (GetClassLabel()).

MembershipSampleType::Iterator iter = membershipSample->Begin() ;
while (iter != membershipSample->End())
{
std::cout << "instance identifier = " << iter.GetInstanceIdentifier()

<< "\t measurement vector = "
<< iter.GetMeasurementVector()
<< "\t frequency = "
<< iter.GetFrequency()
<< "\t class label = "
<< iter.GetClassLabel()
<< std::endl ;

++iter ;
}

To see the numbers of instances in each class subsample, we use the
GetClassSampleSize(class label) method.

std::cout << "class label = 0 sample size = "
<< membershipSample->GetClassSampleSize(0) << std::endl ;

std::cout << "class label = 1 sample size = "
<< membershipSample->GetClassSampleSize(0) << std::endl ;

We call the GetClassSample(class label) method to get the class subsample in the
membershipSample. The MembershipSampleType::ClassSampleType is actually an spe-
cialization of theitk::Statistics::Subsample. We print out the instance identifiers, mea-
surement vectors, and frequency values that are part of the class. The output will be two lines
for the two instances that belongs to the class0. theGetClassSampleSize(class label)
method.

MembershipSampleType::ClassSampleType::Pointer classSample =
membershipSample->GetClassSample(0) ;

MembershipSampleType::ClassSampleType::Iterator c_iter =
classSample->Begin() ;

while (c_iter != classSample->End())
{
std::cout << "instance identifier = " << c_iter.GetInstanceIdentifier()

<< "\t measurement vector = "
<< c_iter.GetMeasurementVector()
<< "\t frequency = "
<< c_iter.GetFrequency() << std::endl ;

++c_iter ;
}

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Subsample.html

10.1. Data Containers 625

10.1.7 K-d Tree

The source code for this section can be found in the file
Examples/Statistics/KdTree.cxx.

The itk::Statistics::KdTree implements a data structure that separates samples in ak-
dimension space. Thestd::vector class is used here as the container for the measurement
vectors from a sample.

#include "itkVector.h"
#include "itkListSample.h"
#include "itkKdTree.h"
#include "itkKdTreeGenerator.h"
#include "itkWeightedCentroidKdTreeGenerator.h"
#include "itkEuclideanDistance.h"

We define the measurement vector type and instantiate aitk::Statistics::ListSample
object, and then put 1000 measurement vectors in the object.

typedef itk::Vector< float, 2 > MeasurementVectorType;

typedef itk::Statistics::ListSample< MeasurementVectorType > SampleType;
SampleType::Pointer sample = SampleType::New();
sample->SetMeasurementVectorSize(2);

MeasurementVectorType mv;
for (unsigned int i = 0 ; i < 1000 ; ++i)
{
mv[0] = (float) i;
mv[1] = (float) ((1000 - i) / 2);
sample->PushBack(mv);
}

The following code snippet shows how to create two KdTree objects. The first object
itk::Statistics::KdTreeGenerator has a minimal set of information (partition dimen-
sion, partition value, and pointers to the left and right child nodes). The second tree from the
itk::Statistics::WeightedCentroidKdTreeGenerator has additional information such
as the number of children under each node, and the vector sum of the measurement vectors be-
longing to children of a particular node. WeightedCentroidKdTreeGenerator and the resulting
k-d tree structure were implemented based on the description given in the paper by Kanungo et
al [43].

The instantiation and input variables are exactly the same for both tree generators. Using the
SetSample() method we plug-in the source sample. The bucket size input specifies the limit
on the maximum number of measurement vectors that can be stored in a terminal (leaf) node. A
bigger bucket size results in a smaller number of nodes in a tree. It also affects the efficiency of

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1KdTree.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ListSample.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1KdTreeGenerator.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1WeightedCentroidKdTreeGenerator.html

626 Chapter 10. Statistics

search. With many small leaf nodes, we might experience slower search performance because
of excessive boundary comparisons.

typedef itk::Statistics::KdTreeGenerator< SampleType > TreeGeneratorType;
TreeGeneratorType::Pointer treeGenerator = TreeGeneratorType::New();

treeGenerator->SetSample(sample);
treeGenerator->SetBucketSize(16);
treeGenerator->Update();

typedef itk::Statistics::WeightedCentroidKdTreeGenerator< SampleType >
CentroidTreeGeneratorType;

CentroidTreeGeneratorType::Pointer centroidTreeGenerator =
CentroidTreeGeneratorType::New();

centroidTreeGenerator->SetSample(sample);
centroidTreeGenerator->SetBucketSize(16);
centroidTreeGenerator->Update();

After the generation step, we can get the pointer to the kd-tree from the generator by calling
theGetOutput() method. To traverse a kd-tree, we have to use theGetRoot() method. The
method will return the root node of the tree. Every node in a tree can have its left and/or right
child node. To get the child node, we call theLeft() or theRight() method of a node (these
methods do not belong to the kd-tree but to the nodes).

We can get other information about a node by calling the methods described below in addition
to the child node pointers.

typedef TreeGeneratorType::KdTreeType TreeType;
typedef TreeType::NearestNeighbors NeighborsType;
typedef TreeType::KdTreeNodeType NodeType;

TreeType::Pointer tree = treeGenerator->GetOutput();
TreeType::Pointer centroidTree = centroidTreeGenerator->GetOutput();

NodeType* root = tree->GetRoot();

if (root->IsTerminal())
{
std::cout << "Root node is a terminal node." << std::endl;
}

else
{
std::cout << "Root node is not a terminal node." << std::endl;
}

10.1. Data Containers 627

unsigned int partitionDimension;
float partitionValue;
root->GetParameters(partitionDimension, partitionValue);
std::cout << "Dimension chosen to split the space = "

<< partitionDimension << std::endl;
std::cout << "Split point on the partition dimension = "

<< partitionValue << std::endl;

std::cout << "Address of the left chile of the root node = "
<< root->Left() << std::endl;

std::cout << "Address of the right chile of the root node = "
<< root->Right() << std::endl;

root = centroidTree->GetRoot();
std::cout << "Number of the measurement vectors under the root node"

<< " in the tree hierarchy = " << root->Size() << std::endl;

NodeType::CentroidType centroid;
root->GetWeightedCentroid(centroid);
std::cout << "Sum of the measurement vectors under the root node = "

<< centroid << std::endl;

std::cout << "Number of the measurement vectors under the left child"
<< " of the root node = " << root->Left()->Size() << std::endl;

In the following code snippet, we query the three nearest neighbors of thequeryPoint on the
two tree. The results and procedures are exactly the same forboth. First we define the point
from which distances will be measured.

MeasurementVectorType queryPoint;
queryPoint[0] = 10.0;
queryPoint[1] = 7.0;

Then we instantiate the type of a distance metric, create an object of this type and set the origin
of coordinates for measuring distances. TheGetMeasurementVectorSize() method returns
the length of each measurement vector stored in the sample.

typedef itk::Statistics::EuclideanDistance< MeasurementVectorType >
DistanceMetricType;

DistanceMetricType::Pointer distanceMetric = DistanceMetricType::New();

DistanceMetricType::OriginType origin(2);
for (unsigned int i = 0 ; i < sample->GetMeasurementVectorSize() ; ++i)
{
origin[i] = queryPoint[i];

628 Chapter 10. Statistics

}
distanceMetric->SetOrigin(origin);

We can now set the number of neighbors to be located and the point coordinates to be used as a
reference system.

unsigned int numberOfNeighbors = 3;
TreeType::InstanceIdentifierVectorType neighbors;
tree->Search(queryPoint, numberOfNeighbors, neighbors) ;

std::cout << "kd-tree knn search result:" << std::endl
<< "query point = [" << queryPoint << "]" << std::endl
<< "k = " << numberOfNeighbors << std::endl;

std::cout << "measurement vector : distance" << std::endl;
for (unsigned int i = 0 ; i < numberOfNeighbors ; ++i)
{
std::cout << "[" << tree->GetMeasurementVector(neighbors[i])

<< "] : "
<< distanceMetric->Evaluate(

tree->GetMeasurementVector(neighbors[i]))
<< std::endl;

}

As previously indicated, the interface for finding nearest neighbors in the centroid tree is very
similar.

centroidTree->Search(queryPoint, numberOfNeighbors, neighbors) ;
std::cout << "weighted centroid kd-tree knn search result:" << std::endl

<< "query point = [" << queryPoint << "]" << std::endl
<< "k = " << numberOfNeighbors << std::endl;

std::cout << "measurement vector : distance" << std::endl;
for (unsigned int i = 0 ; i < numberOfNeighbors ; ++i)
{
std::cout << "[" << centroidTree->GetMeasurementVector(neighbors[i])

<< "] : "
<< distanceMetric->Evaluate(

centroidTree->GetMeasurementVector(neighbors[i]))
<< std::endl;

}

KdTree also supports searching points within a hyper-spherical kernel. We specify the radius
and call theSearch() method. In the case of the KdTree, this is done with the following lines
of code.

double radius = 437.0;

10.2. Algorithms and Functions 629

tree->Search(queryPoint, radius, neighbors) ;

std::cout << "kd-tree radius search result:" << std::endl
<< "query point = [" << queryPoint << "]" << std::endl
<< "search radius = " << radius << std::endl;

std::cout << "measurement vector : distance" << std::endl;
for (unsigned int i = 0 ; i < neighbors.size() ; ++i)
{
std::cout << "[" << tree->GetMeasurementVector(neighbors[i])

<< "] : "
<< distanceMetric->Evaluate(

tree->GetMeasurementVector(neighbors[i]))
<< std::endl;

}

In the case of the centroid KdTree, theSearch() method is used as illustrated by the following
code.

centroidTree->Search(queryPoint, radius, neighbors) ;
std::cout << "weighted centroid kd-tree radius search result:" << std::endl

<< "query point = [" << queryPoint << "]" << std::endl
<< "search radius = " << radius << std::endl;

std::cout << "measurement vector : distance" << std::endl;
for (unsigned int i = 0 ; i < neighbors.size() ; ++i)
{
std::cout << "[" << centroidTree->GetMeasurementVector(neighbors[i])

<< "] : "
<< distanceMetric->Evaluate(

centroidTree->GetMeasurementVector(neighbors[i]))
<< std::endl;

}

10.2 Algorithms and Functions

In the previous section, we described the data containers inthe ITK statistics subsys-
tem. We also need data processing algorithms and statistical functions to conduct sta-
tistical analysis or statistical classification using these containers. Here we define an al-
gorithm to be an operation over a set of measurement vectors in a sample. A function
is an operation over individual measurement vectors. For example, if we implement a
class (itk::Statistics::EuclideanDistance) to calculate the Euclidean distance be-
tween two measurement vectors, we call it a function, while if we implemented a class (
itk::Statistics::MeanCalculator) to calculate the mean of a sample, we call it an al-
gorithm.

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1EuclideanDistance.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1MeanCalculator.html

630 Chapter 10. Statistics

10.2.1 Sample Statistics

We will show how to get sample statistics such as means and covariance from the (
itk::Statistics::Sample) classes. Statistics can tells us characteristics of a sample. Such
sample statistics are very important for statistical classification. When we know the form of
the sample distributions and their parameters (statistics), we can conduct Bayesian classifi-
cation. In ITK, sample mean and covariance calculation algorithms are implemented. Each
algorithm also has its weighted version (see Section10.2.1). The weighted versions are used in
the expectation-maximization parameter estimation process.

Mean and Covariance

The source code for this section can be found in the file
Examples/Statistics/SampleStatistics.cxx.

We include the header file for theitk::Vector class that will be our measurement vector
template in this example.

#include "itkVector.h"

We will use the itk::Statistics::ListSample as our sample template. We include the
header for the class too.

#include "itkListSample.h"

The following headers are for sample statistics algorithms.

#include "itkMeanCalculator.h"
#include "itkCovarianceCalculator.h"

The following code snippet will create a ListSample object with three-component float mea-
surement vectors and put five measurement vectors in the ListSample object.

const unsigned int MeasurementVectorLength = 3;
typedef itk::Vector< float, MeasurementVectorLength > MeasurementVectorType;
typedef itk::Statistics::ListSample< MeasurementVectorType > SampleType;
SampleType::Pointer sample = SampleType::New();
sample->SetMeasurementVectorSize(MeasurementVectorLength);
MeasurementVectorType mv;
mv[0] = 1.0;
mv[1] = 2.0;
mv[2] = 4.0;

sample->PushBack(mv);

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Sample.html
http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ListSample.html

10.2. Algorithms and Functions 631

mv[0] = 2.0;
mv[1] = 4.0;
mv[2] = 5.0;
sample->PushBack(mv);

mv[0] = 3.0;
mv[1] = 8.0;
mv[2] = 6.0;
sample->PushBack(mv);

mv[0] = 2.0;
mv[1] = 7.0;
mv[2] = 4.0;
sample->PushBack(mv);

mv[0] = 3.0;
mv[1] = 2.0;
mv[2] = 7.0;
sample->PushBack(mv);

To calculate the mean (vector) of a sample, we instantiate the
itk::Statistics::MeanCalculator class that implements the mean algorithm and
plug in the sample using theSetInputSample(sample*) method. By calling theUpdate()
method, we run the algorithm. We get the mean vector using theGetOutput() method. The
output from theGetOutput() method is the pointer to the mean vector.

typedef itk::Statistics::MeanCalculator< SampleType > MeanAlgorithmType;

MeanAlgorithmType::Pointer meanAlgorithm = MeanAlgorithmType::New();

meanAlgorithm->SetInputSample(sample);
meanAlgorithm->Update();

std::cout << "Sample mean = " << *(meanAlgorithm->GetOutput()) << std::endl;

To use the covariance calculation algorithm, we have two options. Since we already have
the mean calculated by the MeanCalculator, we can plug-in its output to an instance of
itk::Statistics::CovarianceCalculator using theSetMean() method. The other op-
tion is not to set the mean at all and just call theUpdate() method. The covariance calculation
algorithm will compute the mean and covariance together in one pass. If you have already set
the mean as in this example and you want to run one pass algorithm, simply pass a null pointer
as the mean vector.

typedef itk::Statistics::CovarianceCalculator< SampleType >
CovarianceAlgorithmType;

CovarianceAlgorithmType::Pointer covarianceAlgorithm =

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1MeanCalculator.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1CovarianceCalculator.html

632 Chapter 10. Statistics

CovarianceAlgorithmType::New();

covarianceAlgorithm->SetInputSample(sample);
covarianceAlgorithm->SetMean(meanAlgorithm->GetOutput());
covarianceAlgorithm->Update();

std::cout << "Sample covariance = " << std::endl ;
std::cout << *(covarianceAlgorithm->GetOutput()) << std::endl;

covarianceAlgorithm->SetMean(0);
covarianceAlgorithm->Update();

std::cout << "Using the one pass algorithm:" << std::endl;
std::cout << "Mean = " << std::endl ;
std::cout << *(covarianceAlgorithm->GetMean()) << std::endl;

std::cout << "Covariance = " << std::endl ;
std::cout << *(covarianceAlgorithm->GetOutput()) << std::endl;

Weighted Mean and Covariance

The source code for this section can be found in the file
Examples/Statistics/WeightedSampleStatistics.cxx.

We include the header file for theitk::Vector class that will be our measurement vector
template in this example.

#include "itkVector.h"

We will use the itk::Statistics::ListSample as our sample template. We include the
header for the class too.

#include "itkListSample.h"

The following headers are for the weighted covariance algorithms.

#include "itkWeightedMeanCalculator.h"
#include "itkWeightedCovarianceCalculator.h"

The following code snippet will create a ListSample instance with three-component float mea-
surement vectors and put five measurement vectors in the ListSample object.

typedef itk::Statistics::ListSample< MeasurementVectorType > SampleType;
SampleType::Pointer sample = SampleType::New();

http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ListSample.html

10.2. Algorithms and Functions 633

sample->SetMeasurementVectorSize(3);
MeasurementVectorType mv;
mv[0] = 1.0;
mv[1] = 2.0;
mv[2] = 4.0;

sample->PushBack(mv);

mv[0] = 2.0;
mv[1] = 4.0;
mv[2] = 5.0;
sample->PushBack(mv);

mv[0] = 3.0;
mv[1] = 8.0;
mv[2] = 6.0;
sample->PushBack(mv);

mv[0] = 2.0;
mv[1] = 7.0;
mv[2] = 4.0;
sample->PushBack(mv);

mv[0] = 3.0;
mv[1] = 2.0;
mv[2] = 7.0;
sample->PushBack(mv);

Robust versions of covariance algorithms require weight values for measurement vectors. We
have two ways of providing weight values for the weighted mean and weighted covariance
algorithms.

The first method is to plug in an array of weight values. The size of the weight value ar-
ray should be equal to that of the measurement vectors. In both algorithms, we use the
SetWeights(weights*).

typedef itk::Statistics::WeightedMeanCalculator< SampleType >
WeightedMeanAlgorithmType;

WeightedMeanAlgorithmType::WeightArrayType weightArray(sample->Size());
weightArray.Fill(0.5);
weightArray[2] = 0.01;
weightArray[4] = 0.01;

WeightedMeanAlgorithmType::Pointer weightedMeanAlgorithm =
WeightedMeanAlgorithmType::New();

weightedMeanAlgorithm->SetInputSample(sample);

634 Chapter 10. Statistics

weightedMeanAlgorithm->SetWeights(&weightArray);
weightedMeanAlgorithm->Update();

std::cout << "Sample weighted mean = "
<< *(weightedMeanAlgorithm->GetOutput()) << std::endl;

typedef itk::Statistics::WeightedCovarianceCalculator< SampleType >
WeightedCovarianceAlgorithmType;

WeightedCovarianceAlgorithmType::Pointer weightedCovarianceAlgorithm =
WeightedCovarianceAlgorithmType::New();

weightedCovarianceAlgorithm->SetInputSample(sample);
weightedCovarianceAlgorithm->SetMean(weightedMeanAlgorithm->GetOutput());
weightedCovarianceAlgorithm->SetWeights(&weightArray);
weightedCovarianceAlgorithm->Update();

std::cout << "Sample weighted covariance = " << std::endl ;
std::cout << *(weightedCovarianceAlgorithm->GetOutput()) << std::endl;

The second method for computing weighted statistics is to plug-in a function that re-
turns a weight value that is usually a function of each measurement vector. Since the
weightedMeanAlgorithm andweightedCovarianceAlgorithm already have the input sam-
ple plugged in, we only need to call theSetWeightFunction(weights*) method. For
the weightedCovarianceAlgorithm, we replace the mean vector input with the output
from the weightedMeanAlgorithm. If we do not provide the mean vector using the
SetMean() method or if we pass a null pointer as the mean vector as in thisexample, the
weightedCovarianceAlgorithm will perform the one pass algorithm to generate the mean
vector and the covariance matrix.

ExampleWeightFunction::Pointer weightFunction = ExampleWeightFunction::New();

weightedMeanAlgorithm->SetWeightFunction(weightFunction);
weightedMeanAlgorithm->Update();

std::cout << "Sample weighted mean = "
<< *(weightedMeanAlgorithm->GetOutput()) << std::endl;

weightedCovarianceAlgorithm->SetMean(weightedMeanAlgorithm->GetOutput());
weightedCovarianceAlgorithm->SetWeightFunction(weightFunction);
weightedCovarianceAlgorithm->Update();

std::cout << "Sample weighted covariance = " << std::endl ;
std::cout << *(weightedCovarianceAlgorithm->GetOutput()) << std::endl;

weightedCovarianceAlgorithm->SetMean(0);
weightedCovarianceAlgorithm->SetWeightFunction(weightFunction);

10.2. Algorithms and Functions 635

weightedCovarianceAlgorithm->Update();

std::cout << "Using the one pass algorithm:" << std::endl;
std::cout << "Sample weighted covariance = " << std::endl ;
std::cout << *(weightedCovarianceAlgorithm->GetOutput()) << std::endl;

std::cout << "Sample weighted mean = "
<< *(weightedCovarianceAlgorithm->GetMean()) << std::endl;

10.2.2 Sample Generation

ListSampleToHistogramFilter

The source code for this section can be found in the file
Examples/Statistics/ListSampleToHistogramFilter.cxx.

Sometimes we want to work with a histogram instead of a list ofmeasurement vectors
(e.g. itk::Statistics::ListSample, itk::Statistics::ImageToListAdaptor,
or itk::Statistics::PointSetToListSample) to use less memory or to
perform a particular type od analysis. In such cases, we can import data
from a list type sample to a itk::Statistics::Histogram object using the
itk::Statistics::ListSampleToHistogramFilter.

We use a ListSample object as the input for the filter. We include the header files for the
ListSample and Histogram classes, as well as the filter.

#include "itkListSample.h"
#include "itkHistogram.h"
#include "itkListSampleToHistogramFilter.h"

We need another header for the type of the measurement vectors. We are going to use the
itk::Vector class which is a subclass of theitk::FixedArray in this example.

#include "itkVector.h"

The following code snippet creates a ListSample object withtwo-componentint measurement
vectors and put the measurement vectors: [1,1] - 1 time, [2,2] - 2 times, [3,3] - 3 times, [4,4] -
4 times, [5,5] - 5 times into thelistSample.

typedef int MeasurementType;
const unsigned int MeasurementVectorLength = 2;
typedef itk::Vector< MeasurementType , MeasurementVectorLength >

MeasurementVectorType;
typedef itk::Statistics::ListSample< MeasurementVectorType > ListSampleType;
ListSampleType::Pointer listSample = ListSampleType::New();

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ListSample.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ImageToListAdaptor.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1PointSetToListSample.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Histogram.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ListSampleToHistogramFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html

636 Chapter 10. Statistics

listSample->SetMeasurementVectorSize(MeasurementVectorLength);

MeasurementVectorType mv;
for (unsigned int i = 1 ; i < 6 ; i++)
{
for (unsigned int j = 0 ; j < 2 ; j++)

{
mv[j] = (MeasurementType) i;
}

for (unsigned int j = 0 ; j < i ; j++)
{
listSample->PushBack(mv);
}

}

Here, we create a Histogram object with equal interval bins using theInitalize() method.

typedef float HistogramMeasurementType;
typedef itk::Statistics::Histogram< HistogramMeasurementType, 2 >
HistogramType;

HistogramType::Pointer histogram = HistogramType::New();

HistogramType::SizeType size;
size.Fill(5);

HistogramType::MeasurementVectorType lowerBound;
HistogramType::MeasurementVectorType upperBound;

lowerBound[0] = 0.5;
lowerBound[1] = 0.5;

upperBound[0] = 5.5;
upperBound[1] = 5.5;

histogram->Initialize(size, lowerBound, upperBound);

TheSize() andGetTotalFrequency() methods return the same values as thesample does.

typedef itk::Statistics::ListSampleToHistogramFilter< ListSampleType,
HistogramType > FilterType;

FilterType::Pointer filter = FilterType::New();

filter->SetListSample(listSample);
filter->SetHistogram(histogram);
filter->Update();

HistogramType::Iterator iter = histogram->Begin();

10.2. Algorithms and Functions 637

while (iter != histogram->End())
{
std::cout << "Measurement vectors = " << iter.GetMeasurementVector()

<< " frequency = " << iter.GetFrequency() << std::endl;
++iter;
}

std::cout << "Size = " << histogram->Size() << std::endl;
std::cout << "Total frequency = "

<< histogram->GetTotalFrequency() << std::endl;

ListSampleToHistogramGenerator

The source code for this section can be found in the file
Examples/Statistics/ListSampleToHistogramGenerator.cxx.

In previous sections (Section10.2.2 we described how to import data from a
itk::Statistics::ListSample to a itk::Statistics::Histogram. An alternative way
of creating a histogram is to useitk::Statistics::ListSampleToHistogramGenerator.
With this generator, we only provide the size of the histogram and the type of the measurement
vectors in the histogram. The generator will automaticallyfind the lower and upper space bound
and create equal interval bins in the histogram.

We use a ListSample object as the input for the filter. We include the header files for the
ListSample, Histogram, and the filter itself.

#include "itkListSample.h"
#include "itkHistogram.h"
#include "itkListSampleToHistogramGenerator.h"

We need another header for measurement vectors. We are goingto use theitk::Vector class
which is a subclass of theitk::FixedArray in this example.

#include "itkVector.h"

The following code snippet will create a ListSample object with two-component int measure-
ment vectors and put the measurement vectors: [1,1] - 1 time,[2,2] - 2 times, [3,3] - 3 times,
[4,4] - 4 times, [5,5] - 5 times into the ListSample.

typedef int MeasurementType;
const unsigned int MeasurementVectorLength = 2;
typedef itk::Vector< MeasurementType , MeasurementVectorLength >

MeasurementVectorType;
typedef itk::Statistics::ListSample< MeasurementVectorType > ListSampleType;
ListSampleType::Pointer listSample = ListSampleType::New();

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ListSample.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Histogram.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ListSampleToHistogramGenerator.html
http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html

638 Chapter 10. Statistics

listSample->SetMeasurementVectorSize(MeasurementVectorLength);

MeasurementVectorType mv;
for (unsigned int i = 1 ; i < 6 ; i++)
{
for (unsigned int j = 0 ; j < 2 ; j++)

{
mv[j] = (MeasurementType) i;
}

for (unsigned int j = 0 ; j < i ; j++)
{
listSample->PushBack(mv);
}

}

The ListSampleToHistogramGenerator will find the lower andupper bound from the input sam-
ple and create equal interval bins. Since a Histogram objectdoes not include the upper bound
value and we want to include [5,5] measurement vector, we increase the upper-bound by the
calculated bin interval/10.0 (divider). The divider is setby theSetMarginalScale(float)
method. If you want to create a non-uniform histogram, you should use the ListSampleToHis-
togramFilter (see Section10.2.2). The filter does not create a Histogram object. Instead, users
should create a Histogram object with varying intervals anduse the filter to fill the Histogram
objects with the measurement vectors from a ListSample object.

typedef float HistogramMeasurementType;
typedef itk::Statistics::ListSampleToHistogramGenerator< ListSampleType,

HistogramMeasurementType,
itk::Statistics::DenseFrequencyContainer,
MeasurementVectorLength > GeneratorType;

GeneratorType::Pointer generator = GeneratorType::New();

GeneratorType::HistogramType::SizeType size;
size.Fill(5);

generator->SetListSample(listSample);
generator->SetNumberOfBins(size);
generator->SetMarginalScale(10.0);
generator->Update();

The following code prints out the content of the resulting histogram.

GeneratorType::HistogramType::ConstPointer histogram = generator->GetOutput();
GeneratorType::HistogramType::ConstIterator iter = histogram->Begin();
while (iter != histogram->End())
{
std::cout << "Measurement vectors = " << iter.GetMeasurementVector()

10.2. Algorithms and Functions 639

<< " frequency = " << iter.GetFrequency() << std::endl;
++iter;
}

std::cout << "Size = " << histogram->Size() << std::endl;
std::cout << "Total frequency = "

<< histogram->GetTotalFrequency() << std::endl;

NeighborhoodSampler

The source code for this section can be found in the file
Examples/Statistics/NeighborhoodSampler.cxx.

When we want to create anitk::Statistics::Subsample object that includes only
the measurement vectors within a radius from a center in a sample, we can use
the itk::Statistics::NeighborhoodSampler. In this example, we will use the
itk::Statistics::ListSample as the input sample.

We include the header files for the ListSample and the NeighborhoodSampler classes.

#include "itkListSample.h"
#include "itkNeighborhoodSampler.h"

We need another header for measurement vectors. We are goingto use theitk::Vector class
which is a subclass of theitk::FixedArray.

#include "itkVector.h"

The following code snippet will create a ListSample object with two-component int measure-
ment vectors and put the measurement vectors: [1,1] - 1 time,[2,2] - 2 times, [3,3] - 3 times,
[4,4] - 4 times, [5,5] - 5 times into thelistSample.

typedef int MeasurementType;
const unsigned int MeasurementVectorLength = 2;
typedef itk::Vector< MeasurementType , MeasurementVectorLength >

MeasurementVectorType;
typedef itk::Statistics::ListSample< MeasurementVectorType > SampleType;
SampleType::Pointer sample = SampleType::New();
sample->SetMeasurementVectorSize(MeasurementVectorLength);

MeasurementVectorType mv;
for (unsigned int i = 1 ; i < 6 ; i++)
{
for (unsigned int j = 0 ; j < 2 ; j++)

{
mv[j] = (MeasurementType) i;

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Subsample.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1NeighborhoodSampler.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ListSample.html
http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html

640 Chapter 10. Statistics

}
for (unsigned int j = 0 ; j < i ; j++)

{
sample->PushBack(mv);
}

}

We plug-in the sample to the NeighborhoodSampler using theSetInputSample(sample*).
The two required inputs for the NeighborhoodSampler are a center and a radius. We set these
two inputs using theSetCenter(center vector*) and theSetRadius(double*) methods
respectively. And then we call theUpdate() method to generate the Subsample object. This
sampling procedure subsamples measurement vectors withina hyper-spherical kernel that has
the center and radius specified.

typedef itk::Statistics::NeighborhoodSampler< SampleType > SamplerType;
SamplerType::Pointer sampler = SamplerType::New();

sampler->SetInputSample(sample);
SamplerType::CenterType center(MeasurementVectorLength);
center[0] = 3;
center[1] = 3;
double radius = 1.5;
sampler->SetCenter(¢er);
sampler->SetRadius(&radius);
sampler->Update();

SamplerType::OutputType::Pointer output = sampler->GetOutput();

TheSamplerType::OutputType is in fact itk::Statistics::Subsample. The following
code prints out the resampled measurement vectors.

SamplerType::OutputType::Iterator iter = output->Begin();
while (iter != output->End())
{
std::cout << "instance identifier = " << iter.GetInstanceIdentifier()

<< "\t measurement vector = "
<< iter.GetMeasurementVector()
<< "\t frequency = "
<< iter.GetFrequency() << std::endl;

++iter;
}

SampleToHistogramProjectionFilter

The source code for this section can be found in the file
Examples/Statistics/SampleToHistogramProjectionFilter.cxx.

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Subsample.html

10.2. Algorithms and Functions 641

The itk::Statistics::SampleToHistogramProjectionFilter projects measurement
vectors of a sample onto a vector and fills up a 1-Ditk::Statistics::Histogram. The his-
togram will be formed around the mean value set by theSetMean() method. The histogram’s
measurement values are the distance between the mean and theprojected measurement vectors
normalized by the standard deviation set by theSetStandardDeviation() method. Such his-
togram can be used to analyze the multi-dimensional distribution or examine thegoodness-of-fit
of a projected distribution (histogram) with its expected distribution.

We will use the ListSample as the input sample.

#include "itkListSample.h"
#include "itkSampleToHistogramProjectionFilter.h"

We need another header for measurement vectors. We are goingto use theitk::Vector class
which is a subclass of theitk::FixedArray.

#include "itkVector.h"

The following code snippet will create a ListSample object with two-component int measure-
ment vectors and put the measurement vectors: [1,1] - 1 time,[2,2] - 2 times, [3,3] - 3 times,
[4,4] - 4 times, [5,5] - 5 times into thelistSample.

const unsigned int MeasurementVectorLength = 2;
typedef int MeasurementType;
typedef itk::Vector< MeasurementType , MeasurementVectorLength > MeasurementVectorType;
typedef itk::Statistics::ListSample< MeasurementVectorType > SampleType;
SampleType::Pointer sample = SampleType::New();
sample->SetMeasurementVectorSize(MeasurementVectorLength);

MeasurementVectorType mv;
for (unsigned int i = 1 ; i < 6 ; i++)
{
for (unsigned int j = 0 ; j < 2 ; j++)

{
mv[j] = (MeasurementType) i;
}

for (unsigned int j = 0 ; j < i ; j++)
{
sample->PushBack(mv);
}

}

We create a histogram that has six bins. The histogram’s range is [-2, 2). Since thesample has
measurement vectors between [1, 1] and [5,5], The histogramdoes not seem to cover the whole
range. However, the SampleToHistogramProjectionFilter normalizes the measurement vectors
with the given mean and the standard deviation. Therefore, the projected value is approximately
the distance between the measurement vector and the mean divided by the standard deviation.

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1SampleToHistogramProjectionFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Histogram.html
http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html

642 Chapter 10. Statistics

typedef itk::Statistics::Histogram< float, 1 > HistogramType;
HistogramType::Pointer histogram = HistogramType::New();

HistogramType::SizeType size;
size.Fill(6);
HistogramType::MeasurementVectorType lowerBound;
HistogramType::MeasurementVectorType upperBound;
lowerBound[0] = -2;
upperBound[0] = 2;

histogram->Initialize(size, lowerBound, upperBound);

We use theSetInputSample(sample*) and theSetHistogram(histogram*) methods to set
the input sample and the output histogram that have been created.

typedef itk::Statistics::SampleToHistogramProjectionFilter<SampleType, float>
ProjectorType;

ProjectorType::Pointer projector = ProjectorType::New();

projector->SetInputSample(sample);
projector->SetHistogram(histogram);

As mentioned above, this class projects measurement vectors onto the projection axis with
normalization using the mean and standard deviation.

y =
∑d

i=0(xi −µi)αi

σ
(10.1)

where,y is the projected value,x is theith component of the measurement vector,µi is theith
component of the mean vector,αi is theith component of the projection axis (a vector), andσ
is the standard deviation.

If the bin overlap value is set by theSetHistogramBinOverlap() method and it is greater than
0.001, the frequency will be weighted based on its closenessof the bin boundaries. In other
words, even if a measurement vector falls into a bin, depending on its closeness to the adjacent
bins, the frequencies of the adjacent bins will be also updated with weights. If we do not want
to use the bin overlapping function, we do not call theSetHistogramBinOverlap(double)
method. The default value for the histogram bin overlap is zero, so without calling the method,
the filter will not use bin overlapping [7] [8].

ProjectorType::MeanType mean(MeasurementVectorLength);
mean[0] = 3.66667;
mean[1] = 3.66667;

double standardDeviation = 3;

ProjectorType::ArrayType projectionAxis(MeasurementVectorLength);

10.2. Algorithms and Functions 643

projectionAxis[0] = 1;
projectionAxis[1] = 1;

projector->SetMean(&mean);
projector->SetStandardDeviation(&standardDeviation);
projector->SetProjectionAxis(&projectionAxis);
projector->SetHistogramBinOverlap(0.25);
projector->Update();

We print out the updated histogram after the projection.

float fSum = 0.0;
HistogramType::Iterator iter = histogram->Begin();
while (iter != histogram->End())
{
std::cout << "instance identifier = " << iter.GetInstanceIdentifier()

<< "\t measurement vector = "
<< iter.GetMeasurementVector()
<< "\t frequency = "
<< iter.GetFrequency() << std::endl;

fSum += iter.GetFrequency();
++iter;
}

std::cout << " sum of frequency = " << fSum << std::endl;

10.2.3 Sample Sorting

The source code for this section can be found in the file
Examples/Statistics/SampleSorting.cxx.

Sometimes we want to sort the measurement vectors in a sample. The sorted vectors may reveal
some characteristics of the sample. Theinsert sort, the heap sort, and theintrospective sort
algorithms [59] for samples are implemented in ITK. To learn pros and cons ofeach algorithm,
please refer to [24]. ITK also offers thequick selectalgorithm.

Among the subclasses of the itk::Statistics::Sample, only the class
itk::Statistics::Subsample allows users to change the order of the measurement
vector. Therefore, we must create a Subsample to do any sorting or selecting.

We include the header files for theitk::Statistics::ListSample and theSubsample
classes.

#include "itkListSample.h"
#include "itkSubsample.h"

The sorting and selecting related functions are in the include fileitkStatisticsAlgorithm.h.

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Sample.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Subsample.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ListSample.html

644 Chapter 10. Statistics

#include "itkStatisticsAlgorithm.h"

We need another header for measurement vectors. We are goingto use theitk::Vector class
which is a subclass of theitk::FixedArray in this example.

We define the types of the measurement vectors, the sample, and the subsample.

#include "itkVector.h"

We define two functions for convenience. The first one clears the content of the subsample and
fill it with the measurement vectors from the sample.

void initializeSubsample(SubsampleType* subsample, SampleType* sample)
{
subsample->Clear();
subsample->SetSample(sample);
subsample->InitializeWithAllInstances();

}

The second one prints out the content of the subsample using the Subsample’s iterator interface.

void printSubsample(SubsampleType* subsample, const char* header)
{
std::cout << std::endl;
std::cout << header << std::endl;
SubsampleType::Iterator iter = subsample->Begin();
while (iter != subsample->End())
{
std::cout << "instance identifier = " << iter.GetInstanceIdentifier()

<< "\t measurement vector = "
<< iter.GetMeasurementVector()
<< std::endl;

++iter;
}

}

The following code snippet will create a ListSample object with two-component int measure-
ment vectors and put the measurement vectors: [5,5] - 5 times, [4,4] - 4 times, [3,3] - 3 times,
[2,2] - 2 times,[1,1] - 1 time into thesample.

SampleType::Pointer sample = SampleType::New();

MeasurementVectorType mv;
for (unsigned int i = 5 ; i > 0 ; --i)
{

http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html

10.2. Algorithms and Functions 645

for (unsigned int j = 0 ; j < 2 ; j++)
{
mv[j] = (MeasurementType) i;
}

for (unsigned int j = 0 ; j < i ; j++)
{
sample->PushBack(mv);
}

}

We create a Subsample object and plug-in thesample.

SubsampleType::Pointer subsample = SubsampleType::New();
subsample->SetSample(sample);
initializeSubsample(subsample, sample);
printSubsample(subsample, "Unsorted");

The common parameters to all the algorithms are the Subsample object (subsample), the di-
mension (activeDimension) that will be considered for the sorting or selecting (only the com-
ponent belonging to the dimension of the measurement vectors will be considered), the begin-
ning index, and the ending index of the measurement vectors in thesubsample. The sorting
or selecting algorithms are applied only to the range specified by the beginning index and the
ending index. The ending index should be the actual last index plus one.

The itk::InsertSort function does not require any other optional arguments. Thefollowing
function call will sort the all measurement vectors in thesubsample. The beginning index is0,
and the ending index is the number of the measurement vectorsin thesubsample.

int activeDimension = 0 ;
itk::Statistics::InsertSort< SubsampleType >(subsample, activeDimension,

0, subsample->Size());
printSubsample(subsample, "InsertSort");

We sort thesubsample using the heap sort algorithm. The arguments are identical to those of
the insert sort.

initializeSubsample(subsample, sample);
itk::Statistics::HeapSort< SubsampleType >(subsample, activeDimension,

0, subsample->Size());
printSubsample(subsample, "HeapSort");

The introspective sort algorithm needs an additional argument that specifies when to stop the
introspective sort loop and sort the fragment of the sample using the heap sort algorithm. Since
we set the threshold value as16, when the sort loop reach the point where the number of
measurement vectors in a sort loop is not greater than16, it will sort that fragment using the
insert sort algorithm.

http://www.itk.org/Doxygen/html/classitk_1_1InsertSort.html

646 Chapter 10. Statistics

initializeSubsample(subsample, sample);
itk::Statistics::IntrospectiveSort< SubsampleType >

(subsample, activeDimension, 0, subsample->Size(), 16);
printSubsample(subsample, "IntrospectiveSort");

We query the median of the measurements along theactiveDimension. The last argu-
ment tells the algorithm that we want to get thesubsample->Size()/2-th element along the
activeDimension. The quick select algorithm changes the order of the measurement vectors.

initializeSubsample(subsample, sample);
SubsampleType::MeasurementType median =

itk::Statistics::QuickSelect< SubsampleType >(subsample,
activeDimension,
0, subsample->Size(),
subsample->Size()/2);

std::cout << std::endl;
std::cout << "Quick Select: median = " << median << std::endl;

10.2.4 Probability Density Functions

The probability density function (PDF) for a specific distribution returns the probability den-
sity for a measurement vector. To get the probability density from a PDF, we use the
Evaluate(input) method. PDFs for different distributions require different sets of distri-
bution parameters. Before calling theEvaluate() method, make sure to set the proper values
for the distribution parameters.

Gaussian Distribution

The source code for this section can be found in the file
Examples/Statistics/GaussianDensityFunction.cxx.

The Gaussian probability density functionitk::Statistics::GaussianDensityFunction
requires two distribution parameters—the mean vector and the covariance matrix.

We include the header files for the class and theitk::Vector.

#include "itkVector.h"
#include "itkGaussianDensityFunction.h"

We define the type of the measurement vector that will be inputto the Gaussian density function.

typedef itk::Vector< float, 2 > MeasurementVectorType;

The instantiation of the function is done through the usualNew() method and a smart pointer.

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1GaussianDensityFunction.html
http://www.itk.org/Doxygen/html/classitk_1_1Vector.html

10.2. Algorithms and Functions 647

typedef itk::Statistics::GaussianDensityFunction< MeasurementVectorType >
DensityFunctionType;

DensityFunctionType::Pointer densityFunction = DensityFunctionType::New();

The length of the measurement vectors in the density function, in this case a vector of length 2,
is specified using theSetMeasurementVectorSize() method.

densityFunction->SetMeasurementVectorSize(2);

We create the two distribution parameters and set them. The mean is [0, 0], and the covariance
matrix is a 2 x 2 matrix:

(

4 0
0 4

)

We obtain the probability density for the measurement vector: [0, 0] using the
Evaluate(measurement vector) method and print it out.

DensityFunctionType::MeanType mean(2);
mean.Fill(0.0);

DensityFunctionType::CovarianceType cov;
cov.SetSize(2, 2);
cov.SetIdentity();
cov *= 4;

densityFunction->SetMean(&mean);
densityFunction->SetCovariance(&cov);

MeasurementVectorType mv;
mv.Fill(0);

std::cout << densityFunction->Evaluate(mv) << std::endl;

10.2.5 Distance Metric

Euclidean Distance

The source code for this section can be found in the file
Examples/Statistics/EuclideanDistance.cxx.

The Euclidean distance function (itk::Statistics::EuclideanDistance requires as tem-
plate parameter the type of the measurement vector. We can use this function for any subclass
of the itk::FixedArray. As a subclass of theitk::Statistics::DistanceMetric, it has
two basic methods, theSetOrigin(measurement vector) and theEvaluate(measurement
vector). TheEvaluate() method returns the distance between its argument (a measurement
vector) and the measurement vector set by theSetOrigin() method.

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1EuclideanDistance.html
http://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1DistanceMetric.html

648 Chapter 10. Statistics

In addition to the two methods, EuclideanDistance has two more methods that return
the distance of two measurements —Evaluate(measurement vector, measurement
vector) and the coordinate distance between two measurements (not vectors) —
Evaluate(measurement, measurement). The argument type of the latter method is the type
of the component of the measurement vector.

We include the header files for the class and theitk::Vector.

#include "itkVector.h"
#include "itkArray.h"
#include "itkEuclideanDistance.h"

We define the type of the measurement vector that will be inputof the Euclidean distance
function. As a result, the measurement type isfloat.

typedef itk::Array< float > MeasurementVectorType;

The instantiation of the function is done through the usualNew() method and a smart pointer.

typedef itk::Statistics::EuclideanDistance< MeasurementVectorType >
DistanceMetricType;

DistanceMetricType::Pointer distanceMetric = DistanceMetricType::New();

We create three measurement vectors, theoriginPoint, the queryPointA,
and the queryPointB. The type of the originPoint is fixed in the
itk::Statistics::DistanceMetric base class asitk::Vector< double, length
of the measurement vector of the each distance metric instance>.

// The Distance metric does not know about the length of the measurement vectors.
// We must set it explicitly using the \code{SetMeasurementVectorSize()} method.

DistanceMetricType::OriginType originPoint(2);
MeasurementVectorType queryPointA(2);
MeasurementVectorType queryPointB(2);

originPoint[0] = 0;
originPoint[1] = 0;

queryPointA[0] = 2;
queryPointA[1] = 2;

queryPointB[0] = 3;
queryPointB[1] = 3;

In the following code snippet, we show the uses of the three differentEvaluate() methods.

http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1DistanceMetric.html

10.2. Algorithms and Functions 649

distanceMetric->SetOrigin(originPoint);
std::cout << "Euclidean distance between the origin and the query point A = "

<< distanceMetric->Evaluate(queryPointA)
<< std::endl;

std::cout << "Euclidean distance between the two query points (A and B) = "
<< distanceMetric->Evaluate(queryPointA, queryPointB)
<< std::endl;

std::cout << "Coordinate distance between "
<< "the first components of the two query points = "
<< distanceMetric->Evaluate(queryPointA[0], queryPointB[0])
<< std::endl;

10.2.6 Decision Rules

A decision rule is a function that returns the index of one data element in a vector of data
elements. The index returned depends on the internal logic of each decision rule. The decision
rule is an essential part of the ITK statistical classification framework. The scores from a set of
membership functions (e.g. probability density functions, distance metrics) are compared by a
decision rule and a class label is assigned based on the output of the decision rule. The common
interface is very simple. Any decision rule class must implement theEvaluate() method. In
addition to this method, certain decision rule class can have additional method that accepts prior
knowledge about the decision task. Theitk::MaximumRatioDecisionRule is an example of
such a class.

The argument type for theEvaluate() method isstd::vector< double >. The decision rule
classes are part of theitk namespace instead ofitk::Statistics namespace.

For a project that uses a decision rule, it must link theitkCommon library. Decision rules are
not templated classes.

Maximum Decision Rule

The source code for this section can be found in the file
Examples/Statistics/MaximumDecisionRule.cxx.

The itk::MaximumDecisionRule returns the index of the largest discriminant score among
the discriminant scores in the vector of discriminant scores that is the input argument of the
Evaluate() method.

To begin the example, we include the header files for the classand the MaximumDecisionRule.
We also include the header file for thestd::vector class that will be the container for the
discriminant scores.

#include "itkMaximumDecisionRule.h"

http://www.itk.org/Doxygen/html/classitk_1_1MaximumRatioDecisionRule.html
http://www.itk.org/Doxygen/html/classitk_1_1MaximumDecisionRule.html

650 Chapter 10. Statistics

#include <vector>

The instantiation of the function is done through the usualNew() method and a smart pointer.

typedef itk::MaximumDecisionRule DecisionRuleType;
DecisionRuleType::Pointer decisionRule = DecisionRuleType::New();

We create the discriminant score vector and fill it with threevalues. TheEvaluate(
discriminantScores) will return 2 because the third value is the largest value.

std::vector< double > discriminantScores;
discriminantScores.push_back(0.1);
discriminantScores.push_back(0.3);
discriminantScores.push_back(0.6);

std::cout << "MaximumDecisionRule: The index of the chosen = "
<< decisionRule->Evaluate(discriminantScores)
<< std::endl;

Minimum Decision Rule

The source code for this section can be found in the file
Examples/Statistics/MinimumDecisionRule.cxx.

TheEvaluate() method of theitk::MinimumDecisionRule returns the index of the smallest
discriminant score among the vector of discriminant scoresthat it receives as input.

To begin this example, we include the class header file. We also include the header file for the
std::vector class that will be the container for the discriminant scores.

#include "itkMinimumDecisionRule.h"
#include <vector>

The instantiation of the function is done through the usualNew() method and a smart pointer.

typedef itk::MinimumDecisionRule DecisionRuleType;
DecisionRuleType::Pointer decisionRule = DecisionRuleType::New();

We create the discriminant score vector and fill it with threevalues. The callEvaluate(
discriminantScores) will return 0 because the first value is the smallest value.

std::vector< double > discriminantScores;
discriminantScores.push_back(0.1);
discriminantScores.push_back(0.3);

http://www.itk.org/Doxygen/html/classitk_1_1MinimumDecisionRule.html

10.2. Algorithms and Functions 651

discriminantScores.push_back(0.6);

std::cout << "MinimumDecisionRule: The index of the chosen = "
<< decisionRule->Evaluate(discriminantScores)
<< std::endl;

Maximum Ratio Decision Rule

The source code for this section can be found in the file
Examples/Statistics/MaximumRatioDecisionRule.cxx.

TheEvaluate() method of theitk::MaximumRatioDecisionRule returns the index,i if

fi(
−→x)

f j (
−→x)

>
K j

Ki
for all j 6= i (10.2)

where thei is the index of a class which has membership functionfi and its prior value (usually,
thea priori probability of the class) isKi

We include the header files for the class as well as the header file for thestd::vector class
that will be the container for the discriminant scores.

#include "itkMaximumRatioDecisionRule.h"
#include <vector>

The instantiation of the function is done through the usualNew() method and a smart pointer.

typedef itk::MaximumRatioDecisionRule DecisionRuleType;
DecisionRuleType::Pointer decisionRule = DecisionRuleType::New();

We create the discriminant score vector and fill it with threevalues. We also create a vector
(aPrioris) for thea priori values. TheEvaluate(discriminantScores) will return 1.

std::vector< double > discriminantScores;
discriminantScores.push_back(0.1);
discriminantScores.push_back(0.3);
discriminantScores.push_back(0.6);

DecisionRuleType::APrioriVectorType aPrioris;
aPrioris.push_back(0.1);
aPrioris.push_back(0.8);
aPrioris.push_back(0.1);

decisionRule->SetAPriori(aPrioris);
std::cout << "MaximumRatioDecisionRule: The index of the chosen = "

<< decisionRule->Evaluate(discriminantScores)
<< std::endl;

http://www.itk.org/Doxygen/html/classitk_1_1MaximumRatioDecisionRule.html

652 Chapter 10. Statistics

10.2.7 Random Variable Generation

A random variable generation class returns a variate when theGetVariate() method is called.
When we repeatedly call the method for “enough” times, the set of variates we will get follows
the distribution form of the random variable generation class.

Normal (Gaussian) Distribution

The source code for this section can be found in the file
Examples/Statistics/NormalVariateGenerator.cxx.

The itk::Statistics::NormalVariateGenerator generates random variables according
to the standard normal distribution (mean = 0, standard deviation = 1).

To use the class in a project, we must link theitkStatistics library to the project.

To begin the example we include the header file for the class.

#include "itkNormalVariateGenerator.h"

The NormalVariateGenerator is a non-templated class. We simply call theNew() method to
create an instance. Then, we provide the seed value using theInitialize(seed value).

typedef itk::Statistics::NormalVariateGenerator GeneratorType;
GeneratorType::Pointer generator = GeneratorType::New();
generator->Initialize((int) 2003);

for (unsigned int i = 0 ; i < 50 ; ++i)
{
std::cout << i << " : \t" << generator->GetVariate() << std::endl;
}

10.3 Statistics applied to Images

10.3.1 Image Histograms

Scalar Image Histogram with Adaptor

The source code for this section can be found in the file
Examples/Statistics/ImageHistogram1.cxx.

This example shows how to compute the histogram of a scalar image. Since
the statistics framework classes operate on Samples and ListOfSamples, we

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1NormalVariateGenerator.html

10.3. Statistics applied to Images 653

need to introduce a class that will make the image look like a list of sam-
ples. This class is the itk::Statistics::ScalarImageToListAdaptor.
Once we have connected this adaptor to an image, we can proceed to use the
itk::Statistics::ListSampleToHistogramGenerator in order to compute the his-
togram of the image.

First, we need to include the headers for theitk::Statistics::ScalarImageToListAdaptor
and theitk::Image classes.

#include "itkScalarImageToListAdaptor.h"
#include "itkImage.h"

Now we include the headers for theListSampleToHistogramGenerator and the reader that
we will use for reading the image from a file.

#include "itkImageFileReader.h"
#include "itkListSampleToHistogramGenerator.h"

The image type must be defined using the typical pair of pixel type and dimension specification.

typedef unsigned char PixelType;
const unsigned int Dimension = 2;

typedef itk::Image<PixelType, Dimension > ImageType;

Using the same image type we instantiate the type of the imagereader that will provide the
image source for our example.

typedef itk::ImageFileReader< ImageType > ReaderType;

ReaderType::Pointer reader = ReaderType::New();

reader->SetFileName(argv[1]);

Now we introduce the central piece of this example, which is the use of the adaptor that will
present theitk::Image as if it was a list of samples. We instantiate the type of the adaptor
by using the actual image type. Then construct the adaptor byinvoking itsNew() method and
assigning the result to the corresponding smart pointer. Finally we connect the output of the
image reader to the input of the adaptor.

typedef itk::Statistics::ScalarImageToListAdaptor< ImageType > AdaptorType;

AdaptorType::Pointer adaptor = AdaptorType::New();

adaptor->SetImage(reader->GetOutput());

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ScalarImageToListAdaptor.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ListSampleToHistogramGenerator.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ScalarImageToListAdaptor.html
http://www.itk.org/Doxygen/html/classitk_1_1Image.html
http://www.itk.org/Doxygen/html/classitk_1_1Image.html

654 Chapter 10. Statistics

You must keep in mind that adaptors are not pipeline objects.This means that they do not
propagate update calls. It is therefore your responsibility to make sure that you invoke the
Update() method of the reader before you attempt to use the output of the adaptor. As usual,
this must be done inside a try/catch block because the read operation can potentially throw
exceptions.

try
{
reader->Update();
}

catch(itk::ExceptionObject & excp)
{
std::cerr << "Problem reading image file : " << argv[1] << std::endl;
std::cerr << excp << std::endl;
return -1;
}

At this point, we are ready for instantiating the type of the histogram generator. Note that the
adaptor type is used as template parameter of the generator.Having instantiated this type, we
proceed to create one generator by invoking itsNew() method.

typedef PixelType HistogramMeasurementType;

typedef itk::Statistics::ListSampleToHistogramGenerator<
AdaptorType,
HistogramMeasurementType

> GeneratorType;

GeneratorType::Pointer generator = GeneratorType::New();

We define now the characteristics of the Histogram that we want to compute. This typically
includes the size of each one of the component, but given thatin this simple example we are
dealing with a scalar image, then our histogram will have a single component. For the sake of
generality, however, we use theHistogramType as defined inside of the Generator type. We
define also the marginal scale factor that will control the precision used when assigning values
to histogram bins. Finally we invoke theUpdate() method in the generator.

typedef GeneratorType::HistogramType HistogramType;

HistogramType::SizeType size;
size.Fill(255);

generator->SetListSample(adaptor);
generator->SetNumberOfBins(size);
generator->SetMarginalScale(10.0);

generator->Update();

10.3. Statistics applied to Images 655

Now we are ready for using the image histogram for any furtherprocessing. The histogram is
obtained from the generator by invoking theGetOutput() method.

HistogramType::ConstPointer histogram = generator->GetOutput();

In this current example we simply print out the frequency values of all the bins in the image
histogram.

const unsigned int histogramSize = histogram->Size();

std::cout << "Histogram size " << histogramSize << std::endl;

for(unsigned int bin=0; bin < histogramSize; bin++)
{
std::cout << "bin = " << bin << " frequency = ";
std::cout << histogram->GetFrequency(bin, 0) <<std::endl;
}

Scalar Image Histogram with Generator

The source code for this section can be found in the file
Examples/Statistics/ImageHistogram2.cxx.

From the previous example you will have noticed that there isa significant number of operations
to perform to compute the simple histogram of a scalar image.Given that this is a relatively
common operation, it is convenient to encapsulate many of these operations in a single helper
class.

The itk::Statistics::ScalarImageToHistogramGenerator is the result of such encap-
sulation. This example illustrates how to compute the histogram of a scalar image using this
helper class.

We should first include the header of the histogram generatorand the image class.

#include "itkScalarImageToHistogramGenerator.h"
#include "itkImage.h"

The image type must be defined using the typical pair of pixel type and dimension specification.

typedef unsigned char PixelType;
const unsigned int Dimension = 2;

typedef itk::Image<PixelType, Dimension > ImageType;

We use now the image type in order to instantiate the type of the corresponding histogram
generator class, and invoke itsNew() method in order to construct one.

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ScalarImageToHistogramGenerator.html

656 Chapter 10. Statistics

typedef itk::Statistics::ScalarImageToHistogramGenerator<
ImageType > HistogramGeneratorType;

HistogramGeneratorType::Pointer histogramGenerator =
HistogramGeneratorType::New();

The image to be passed as input to the histogram generator is taken in this case from the output
of an image reader.

histogramGenerator->SetInput(reader->GetOutput());

We define also the typical parameters that specify the characteristics of the histogram to be
computed.

histogramGenerator->SetNumberOfBins(255);
histogramGenerator->SetMarginalScale(10.0);

Finally we trigger the computation of the histogram by invoking theCompute() method of the
generator. Note again, that a generator is not a pipeline object and therefore it is up to you to
make sure that the filters providing the input image have beenupdated.

histogramGenerator->Compute();

The resulting histogram can be obtained from the generator by invoking its GetOutput()
method. It is also convenient to get the Histogram type from the traits of the generator type
itself as shown in the code below.

typedef HistogramGeneratorType::HistogramType HistogramType;

const HistogramType * histogram = histogramGenerator->GetOutput();

In this case we simply print out the frequency values of the histogram. These values can be
accessed by using iterators.

HistogramType::ConstIterator itr = histogram->Begin();
HistogramType::ConstIterator end = histogram->End();

unsigned int binNumber = 0;
while(itr != end)
{
std::cout << "bin = " << binNumber << " frequency = ";
std::cout << itr.GetFrequency() << std::endl;
++itr;
++binNumber;
}

10.3. Statistics applied to Images 657

Color Image Histogram with Generator

The source code for this section can be found in the file
Examples/Statistics/ImageHistogram3.cxx.

By now, you are probably thinking that the statistics framework in ITK is too complex for simply
computing histograms from images. Here we illustrate that the benefit for this complexity is the
power that these methods provide for dealing with more complex and realistic uses of image
statistics than the trivial 256-bin histogram of 8-bit images that most software packages provide.
One of such cases is the computation of histograms from multi-component images such as
Vector images and color images.

This example shows how to compute the histogram of an RGB image by using the helper class
ImageToHistogramGenerator. In this first example we compute the histogram of each chan-
nel independently.

We start by including the header of theitk::Statistics::ImageToHistogramGenerator,
as well as the headers for the image class and the RGBPixel class.

#include "itkImageToHistogramGenerator.h"
#include "itkImage.h"
#include "itkRGBPixel.h"

The type of the RGB image is defined by first instantiating a RGBPixel and then using the image
dimension specification.

typedef unsigned char PixelComponentType;

typedef itk::RGBPixel< PixelComponentType > RGBPixelType;

const unsigned int Dimension = 2;

typedef itk::Image< RGBPixelType, Dimension > RGBImageType;

Using the RGB image type we can instantiate the type of the corresponding histogram generator
and construct one generator by invoking itsNew() method.

typedef itk::Statistics::ImageToHistogramGenerator<
RGBImageType > HistogramGeneratorType;

HistogramGeneratorType::Pointer histogramGenerator =
HistogramGeneratorType::New();

The parameters of the histogram must be defined now. Probablythe most important one is the
arrangement of histogram bins. This is provided to the histogram through a size array. The type
of the array can be taken from the traits of theHistogramGeneratorType type. We create one

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ImageToHistogramGenerator.html

658 Chapter 10. Statistics

instance of the size object and fill in its content. In this particular case, the three components of
the size array will correspond to the number of bins used for each one of the RGB components
in the color image. The following lines show how to define a histogram on the red component
of the image while disregarding the green and blue components.

typedef HistogramGeneratorType::SizeType SizeType;

SizeType size;

size[0] = 255; // number of bins for the Red channel
size[1] = 1; // number of bins for the Green channel
size[2] = 1; // number of bins for the Blue channel

histogramGenerator->SetNumberOfBins(size);

The marginal scale must be defined in the generator. This willdetermine the precision in the
assignment of values to the histogram bins.

histogramGenerator->SetMarginalScale(10.0);

The input of the generator is taken from an image reader, and the computation of the histogram
is triggered by invoking theCompute() method of the generator.

histogramGenerator->SetInput(reader->GetOutput());

histogramGenerator->Compute();

We can now access the results of the histogram computation bydeclaring a pointer to histogram
and getting its value from the generator using theGetOutput() method. Note that here we use
a const HistogramType pointer instead of a const smart pointer because we are sure that the
generator is not going to be destroyed while we access the values of the histogram. Depending
on what you are doing, it may be safer to assign the histogram to a const smart pointer as shown
in previous examples.

typedef HistogramGeneratorType::HistogramType HistogramType;

const HistogramType * histogram = histogramGenerator->GetOutput();

Just for the sake of exercising the experimental method [66], we verify that the resulting his-
togram actually have the size that we requested when we configured the generator. This can be
done by invoking theSize() method of the histogram and printing out the result.

const unsigned int histogramSize = histogram->Size();

std::cout << "Histogram size " << histogramSize << std::endl;

10.3. Statistics applied to Images 659

Strictly speaking, the histogram computed here is the jointhistogram of the three RGB compo-
nents. However, given that we set the resolution of the greenand blue channels to be just one
bin, the histogram is in practice representing just the red channel. In the general case, we can
alway access the frequency of a particular channel in a jointhistogram, thanks to the fact that
the histogram class offers aGetFrequency() method that accepts a channel as argument. This
is illustrated in the following lines of code.

unsigned int channel = 0; // red channel

std::cout << "Histogram of the red component" << std::endl;

for(unsigned int bin=0; bin < histogramSize; bin++)
{
std::cout << "bin = " << bin << " frequency = ";
std::cout << histogram->GetFrequency(bin, channel) << std::endl;
}

In order to reinforce the concepts presented above, we modify now the setup of the histogram
generator in order to compute the histogram of the green channel instead of the red one. This is
done by simply changing the number of bins desired on each channel and invoking the compu-
tation of the generator again by calling theCompute() method.

size[0] = 1; // number of bins for the Red channel
size[1] = 255; // number of bins for the Green channel
size[2] = 1; // number of bins for the Blue channel

histogramGenerator->SetNumberOfBins(size);

histogramGenerator->Compute();

The result can be verified now by setting the desired channel to green and invoking the
GetFrequency() method.

channel = 1; // green channel

std::cout << "Histogram of the green component" << std::endl;

for(unsigned int bin=0; bin < histogramSize; bin++)
{
std::cout << "bin = " << bin << " frequency = ";
std::cout << histogram->GetFrequency(bin, channel) << std::endl;
}

To finalize the example, we do the same computation for the case of the blue channel.

660 Chapter 10. Statistics

size[0] = 1; // number of bins for the Red channel
size[1] = 1; // number of bins for the Green channel
size[2] = 255; // number of bins for the Blue channel

histogramGenerator->SetNumberOfBins(size);

histogramGenerator->Compute();

and verify the output.

channel = 2; // blue channel

std::cout << "Histogram of the blue component" << std::endl;

for(unsigned int bin=0; bin < histogramSize; bin++)
{
std::cout << "bin = " << bin << " frequency = ";
std::cout << histogram->GetFrequency(bin, channel) << std::endl;
}

Color Image Histogram Writing

The source code for this section can be found in the file
Examples/Statistics/ImageHistogram4.cxx.

The statistics framework in ITK has been designed for managing multi-variate statistics in a
natural way. Theitk::Statistics::Histogram class reflects this concept clearly since it is
a N-variable joint histogram. This nature of the Histogram class is exploited in the following
example in order to build the joint histogram of a color imageencoded in RGB values.

Note that the same treatment could be applied further to any vector image thanks to the generic
programming approach used in the implementation of the statistical framework.

The most relevant class in this example is theitk::Statistics::ImageToHistogramGenerator.
This class will take care of adapting theitk::Image to a list of samples and then to a his-
togram generator. The user is only bound to provide the desired resolution on the histogram
bins for each one of the image components.

In this example we compute the joint histogram of the three channels of an RGB image. Our
output histogram will be equivalent to a 3D array of bins. This histogram could be used further
for feeding a segmentation method based on statistical pattern recognition. Such method was
actually used during the generation of the image in the coverof the Software Guide.

The first step is to include the header files for the histogram generator, the RGB pixel type and
the Image.

#include "itkImageToHistogramGenerator.h"

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Histogram.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ImageToHistogramGenerator.html
http://www.itk.org/Doxygen/html/classitk_1_1Image.html

10.3. Statistics applied to Images 661

#include "itkImage.h"
#include "itkRGBPixel.h"

We declare now the type used for the components of the RGB pixel, instantiate the type of the
RGBPixel and instantiate the image type.

typedef unsigned char PixelComponentType;

typedef itk::RGBPixel< PixelComponentType > RGBPixelType;

const unsigned int Dimension = 2;

typedef itk::Image< RGBPixelType, Dimension > RGBImageType;

Using the type of the color image, and in general of any vectorimage, we can now instantiate
the type of the histogram generator class. We then use that type for constructing an instance of
the generator by invoking itsNew() method and assigning the result to a smart pointer.

typedef itk::Statistics::ImageToHistogramGenerator<
RGBImageType > HistogramGeneratorType;

HistogramGeneratorType::Pointer histogramGenerator =
HistogramGeneratorType::New();

The resolution at which the statistics of each one of the color component will be evaluated is
defined by setting the number of bins along every component inthe joint histogram. For this
purpose we take theSizeType trait from the generator and use it to instantiate asize variable.
We set in this variable the number of bins to use for each component of the color image.

typedef HistogramGeneratorType::SizeType SizeType;

SizeType size;

size[0] = 255; // number of bins for the Red channel
size[1] = 255; // number of bins for the Green channel
size[2] = 255; // number of bins for the Blue channel

histogramGenerator->SetNumberOfBins(size);

The input to the histogram generator is taken from the outputof an image reader. Of course, the
output of any filter producing an RGB image could have been used instead of a reader.

histogramGenerator->SetInput(reader->GetOutput());

662 Chapter 10. Statistics

The marginal scale is defined in the histogram generator. This value will define the precision in
the assignment of values to the histogram bins.

histogramGenerator->SetMarginalScale(10.0);

Finally, the computation of the histogram is triggered by invoking theCompute() method of
the generator. Note that generators are not pipeline objects. It is therefore your responsibility to
make sure that you update the filter that provides the input image to the generator.

histogramGenerator->Compute();

At this point, we can recover the histogram by calling theGetOutput() method of the generator.
The result is assigned to a variable that is instantiated using theHistogramType trait of the
generator type.

typedef HistogramGeneratorType::HistogramType HistogramType;

const HistogramType * histogram = histogramGenerator->GetOutput();

We can verify that the computed histogram has the requested size by invoking itsSize()
method.

const unsigned int histogramSize = histogram->Size();

std::cout << "Histogram size " << histogramSize << std::endl;

The values of the histogram can now be saved into a file by walking through all of the histogram
bins and pushing them into a std::ofstream.

std::ofstream histogramFile;
histogramFile.open(argv[2]);

HistogramType::ConstIterator itr = histogram->Begin();
HistogramType::ConstIterator end = histogram->End();

typedef HistogramType::FrequencyType FrequencyType;

while(itr != end)
{
const FrequencyType frequency = itr.GetFrequency();
histogramFile.write((const char *)(&frequency), sizeof(frequency));
++itr;
}

histogramFile.close();

10.3. Statistics applied to Images 663

Note that here the histogram is saved as a block of memory in a raw file. At this point you can
use visualization software in order to explore the histogram in a display that would be equivalent
to a scatter plot of the RGB components of the input color image.

10.3.2 Image Information Theory

Many concepts from Information Theory have been used successfully in the domain of image
processing. This section introduces some of such concepts and illustrates how the statistical
framework in ITK can be used for computing measures that havesome relevance in terms of
Information Theory [75, 76, 47].

Computing Image Entropy

The concept of Entropy has been introduced into image processing as a crude mapping from
its application in Communications. The notions of Information Theory can be deceiving and
misleading when applied to images because their language from Communication Theory does
not necessarily maps to what people in the Imaging Communityuse.

For example, it is commonly said that

“The Entropy of an image is a measure of the amount of information contained in an image”.

This statement is fundamentallyincorrect.

The way the notion of Entropy is commonly measured in images is by first assuming that the
spatial location of a pixel in an image is irrelevant! That is, we simply take the statistical
distribution of the pixel values as it can be evaluated in a histogram and from that histogram we
estimate the frequency of the value associated to each bin. In other words, we simply assume
that the image is a set of pixels that are passing through a channel, just as things are commonly
considered for communication purposes.

Once the frequency of every pixel value has been estimated, Information Theory defines that the
amount of uncertainty that an observer will lose by taking one pixel and finding its real value to
be the one associated with the i-th bin of the histogram, is given by− log2 (pi), wherepi is the
frequency in that histogram bin. Since a reduction in uncertainty is equivalent to an increase in
the amount of information in the observer, we conclude that measuring one pixel and finding its
level to be in the i-th bin results in an acquisition of− log2 (pi) bits of information1.

Since we could have picked any pixel at random, our chances orpicking the ones that are asso-
ciated to the i-th histogram bin are given bypi . Therefore, the expected reduction in uncertainty

1Note thatbit is the unit of amount of information. Our modern culture has vulgarized the bit and its multiples, the
Byte, KiloByte, MegaByte, GigaByte and so on as simple measures of the amount of RAM memory and capacity of
a hard drive in a computer. In that sense, a confusion is created between the encoding of a piece of data and its actual
amount of information. For example a file composed of one million letters will take one million bytes in a hard disk,
but it does not necessarily has one million bytes of information, since in many cases parts of the file can be predicted
from others. This is the reason why data compression can manage to compact files.

664 Chapter 10. Statistics

that we can get from measuring the value of one pixel is given by

H = −∑
i

pi · log2 (pi) (10.3)

This quantityH is what is usually defined as theEntropy of the Image. It would be more accurate
to call it the Entropy of the random variable associated to the intensity value ofonepixel. The
fact thatH is unrelated to the spatial arrangement of the pixels in an image shows how little of
the realImage Informationis H actually representing. The Entropy of an image, as measured
above, is only a crude indication of how the intensity valuesare spread in the dynamic range
of intensities. For example, an image with maximum entropy will be the one that has a large
dynamic range and every value in that range is equally probable.

The common acceptation ofH as a representation of image information has terribly under-
mined the enormous potential on the application of Information Theory to image processing
and analysis.

The real concepts of Information Theory would require that we define the amount of information
in an image based on our expectations and prior knowledge from that image. In particular, the
Amount of Informationprovided by an image should measure the number of features that we
are not able to predict based on our prior knowledge about that image. For example, if we know
that we are going to analyze a CT scan of the abdomen of an adulthuman male in the age range
of 40 to 45, there is already a good deal that we could predict about the content of that image.
The real amount of information in the image is the representation of the features in the image
that we could not predict from knowing that it is a CT scan froma human adult male.

The application of Information Theory to image analysis is still in its early infancy and it is
an exciting an promising field to be explored further. All that being said, let’s now look closer
at how the concept of Entropy (which is not the amount of information in an image) can be
measured with the ITK statistics framework.

The source code for this section can be found in the file
Examples/Statistics/ImageEntropy1.cxx.

This example shows how to compute the entropy of an image. More formally this should be said
: The reduction in uncertainty gained when we measure the intensity ofonerandomly selected
pixel in this image, given that we already know the statistical distribution of the image intensity
values.

In practice it is almost never possible to know the real statistical distribution of intensities and
we are force to estimate it from the evaluation of the histogram from one or several images of
similar nature. We can use the counts in histogram bins in order to compute frequencies and
then consider those frequencies to be estimations of the probablility of a new value to belong to
the intensity range of that bin.

Since the first stage in estimating the entropy of an image is to compute its histogram,
we must start by including the headers of the classes that will perform such computa-
tion. In this case, we are going to use a scalar image as input,therefore we need the

10.3. Statistics applied to Images 665

itk::Statistics::ScalarImageToHistogramGenerator class, as well as the image class.

#include "itkScalarImageToHistogramGenerator.h"
#include "itkImage.h"

The pixel type and dimension of the image are explicitly declared and then used for instantiating
the image type.

typedef unsigned char PixelType;
const unsigned int Dimension = 2;

typedef itk::Image< PixelType, Dimension > ImageType;

The image type is used as template parameter for instantiating the histogram generator.

typedef itk::Statistics::ScalarImageToHistogramGenerator<
ImageType > HistogramGeneratorType;

HistogramGeneratorType::Pointer histogramGenerator =
HistogramGeneratorType::New();

The parameters of the desired histogram are defined. In particular, the number of bins and the
marginal scale. For convenience in this example, we read thenumber of bins from the command
line arguments. In this way we can easily experiment with different values for the number of
bins and see how that choice affects the computation of the entropy.

const unsigned int numberOfHistogramBins = atoi(argv[2]);

histogramGenerator->SetNumberOfBins(numberOfHistogramBins);
histogramGenerator->SetMarginalScale(10.0);

We can then connect as input the output image from a reader andtrigger the histogram compu-
tation by invoking theCompute() method in the generator.

histogramGenerator->SetInput(reader->GetOutput());

histogramGenerator->Compute();

The resulting histogram can be recovered from the generatorby using theGetOutput()
method. A histogram class can be declared using theHistogramType trait from the genera-
tor.

typedef HistogramGeneratorType::HistogramType HistogramType;

const HistogramType * histogram = histogramGenerator->GetOutput();

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ScalarImageToHistogramGenerator.html

666 Chapter 10. Statistics

We proceed now to compute theestimationof entropy given the histogram. The first conceptual
jump to be done here is that we assume that the histogram, which is the simple count of fre-
quency of occurrence for the gray scale values of the image pixels, can be normalized in order
to estimate the probability density functionPDF of the actual statistical distribution of pixel
values.

First we declare an iterator that will visit all the bins in the histogram. Then we obtain the
total number of counts using theGetTotalFrequency() method, and we initialize the entropy
variable to zero.

HistogramType::ConstIterator itr = histogram->Begin();
HistogramType::ConstIterator end = histogram->End();

double Sum = histogram->GetTotalFrequency();

double Entropy = 0.0;

We start now visiting every bin and estimating the probability of a pixel to have a value in the
range of that bin. The base 2 logarithm of that probability iscomputed, and then weighted by the
probability in order to compute the expected amount of information for any given pixel. Note
that a minimum value is imposed for the probability in order to avoid computing logarithms of
zeros.

Note that the log(2) factor is used to convert the natural logarithm in to a logarithm of base 2,
and make possible to report the entropy in its natural unit: the bit.

while(itr != end)
{
const double probability = itr.GetFrequency() / Sum;

if(probability > 0.99 / Sum)
{
Entropy += - probability * log(probability) / log(2.0);
}

++itr;
}

The result of this sum is considered to be our estimation of the image entropy. Note that the
Entrpy value will change depending on the number of histogram bins that we use for computing
the histogram. This is particularly important when dealingwith images whose pixel values have
dynamic ranges so large that our number of bins will always underestimate the variability of the
data.

std::cout << "Image entropy = " << Entropy << " bits " << std::endl;

As an illustration, the application of this program to the image

10.3. Statistics applied to Images 667

• Examples/Data/BrainProtonDensitySlice.png

results in the following values of entropy for different values of number of histogram bins.

Number of Histogram Bins 16 32 64 128 255
Estimated Entropy (bits) 3.02 3.98 4.92 5.89 6.88

This table highlights the importance of carefully considering the characteristics of the his-
tograms used for estimating Information Theory measures such as the entropy.

Computing Images Mutual Information

The source code for this section can be found in the file
Examples/Statistics/ImageMutualInformation1.cxx.

This example illustrates how to compute the Mutual Information between two images using
classes from the Statistics framework. Note that you could also use for this purpose the Image-
Metrics designed for the image registration framework.

For example, you could use:

• itk::MutualInformationImageToImageMetric

• itk::MattesMutualInformationImageToImageMetric

• itk::MutualInformationHistogramImageToImageMetric

• itk::MutualInformationImageToImageMetric

• itk::NormalizedMutualInformationHistogramImageToImageMetric

• itk::KullbackLeiblerCompareHistogramImageToImageMetric

Mutual Information as computed in this example, and as commonly used in the context of
image registration provides a measure of how much uncertainty on the value of a pixel in one
image is reduced by measuring the homologous pixel in the other image. Note that Mutual
Information as used here does not measures the amount of information that one image provides
on the other image, such measure would have required to take into account the spatial structures
in the images as well as the semantics of the image context in terms of an observer.

This implies that there is still an enormous unexploited potential on the use of the Mutual
Information concept in the domain of medical images. Probably the most interesting of which
would be the semantic description of image on terms of anatomical structures.

In this particular example we make use of classes from the Statistics framework in order to
compute the measure of Mutual Information between two images. We assume that both images

http://www.itk.org/Doxygen/html/classitk_1_1MutualInformationImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1MattesMutualInformationImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1MutualInformationHistogramImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1MutualInformationImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1NormalizedMutualInformationHistogramImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1KullbackLeiblerCompareHistogramImageToImageMetric.html

668 Chapter 10. Statistics

have the same number of pixels along every dimension and thatthey have the same origin and
spacing. Therefore the pixels from one image are perfectly aligned with those of the other
image.

We must start by including the header files of the image, histogram generator, reader and Join
image filter. We will read both images and use the Join image filter in order to compose an image
of two components using the information of each one of the input images in one component.
This is the natural way of using the Statistics framework in ITK given that the fundamental
statistical classes are expecting to receive multi-valuedmeasures.

#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkJoinImageFilter.h"
#include "itkImageToHistogramGenerator.h"

We define the pixel type and dimension of the images to be read.

typedef unsigned char PixelComponentType;
const unsigned int Dimension = 2;

typedef itk::Image< PixelComponentType, Dimension > ImageType;

Using the image type we proceed to instantiate the readers for both input images. Then, we take
their filenames from the command line arguments.

typedef itk::ImageFileReader< ImageType > ReaderType;

ReaderType::Pointer reader1 = ReaderType::New();
ReaderType::Pointer reader2 = ReaderType::New();

reader1->SetFileName(argv[1]);
reader2->SetFileName(argv[2]);

Using the itk::JoinImageFilter we use the two input images and put them together in an
image of two components.

typedef itk::JoinImageFilter< ImageType, ImageType > JoinFilterType;

JoinFilterType::Pointer joinFilter = JoinFilterType::New();

joinFilter->SetInput1(reader1->GetOutput());
joinFilter->SetInput2(reader2->GetOutput());

At this point we trigger the execution of the pipeline by invoking theUpdate() method on
the Join filter. We must put the call inside a try/catch block because the Update() call may
potentially result in exceptions being thrown.

http://www.itk.org/Doxygen/html/classitk_1_1JoinImageFilter.html

10.3. Statistics applied to Images 669

try
{
joinFilter->Update();
}

catch(itk::ExceptionObject & excp)
{
std::cerr << excp << std::endl;
return -1;
}

We prepare now the types to be used for the computation of the Joint histogram. For this
purpose, we take the type of the image resulting from the JoinImageFilter and use it as template
argument of theitk::ImageToHistogramGenerator. We then construct one by invoking the
New() method.

typedef JoinFilterType::OutputImageType VectorImageType;

typedef itk::Statistics::ImageToHistogramGenerator<
VectorImageType > HistogramGeneratorType;

HistogramGeneratorType::Pointer histogramGenerator = HistogramGeneratorType::New();

We pass the multiple components image as input to the histogram generator, and setup the
marginal scale value that will define the precision to be usedfor classifying values into the
histogram bins.

histogramGenerator->SetInput(joinFilter->GetOutput());

histogramGenerator->SetMarginalScale(10.0);

We must now define the number of bins to use for each one of the components in the joint
image. For this purpose we take theSizeType from the traits of the histogram generator type.
The array of number of bins is passed to the generator and we can then invoke theCompute()
method in order to trigger the computation of the joint histogram.

typedef HistogramGeneratorType::SizeType SizeType;

SizeType size;

size[0] = 255; // number of bins for the first channel
size[1] = 255; // number of bins for the second channel

histogramGenerator->SetNumberOfBins(size);
histogramGenerator->Compute();

http://www.itk.org/Doxygen/html/classitk_1_1ImageToHistogramGenerator.html

670 Chapter 10. Statistics

The histogram can be recovered from the generator by creating a variable with the histogram
type taken from the generator traits.

typedef HistogramGeneratorType::HistogramType HistogramType;

const HistogramType * histogram = histogramGenerator->GetOutput();

We now walk over all the bins of the joint histogram and compute their contribution to the
value of the joint Entropy. For this purpose we use histogramiterators, and theBegin() and
End() methods. Since the values returned from the histogram are measuring frequency we must
convert them to an estimation of probability by dividing them over the total sum of frequencies
returned by theGetTotalFrequency() method.

HistogramType::ConstIterator itr = histogram->Begin();
HistogramType::ConstIterator end = histogram->End();

const double Sum = histogram->GetTotalFrequency();

We initialize to zero the variable to use for accumulating the value of the joint entropy, and then
use the iterator for visiting all the bins of the joint histogram. For every bin we compute their
contribution to the reduction of uncertainty. Note that in order to avoid logarithmic operations
on zero values, we skip over those bins that have less than onecount. The entropy contribution
must be computed using logarithms in base two in order to be able express entropy inbits.

double JointEntropy = 0.0;

while(itr != end)
{
const double count = itr.GetFrequency();
if(count > 0.0)

{
const double probability = count / Sum;
JointEntropy += - probability * log(probability) / log(2.0);
}

++itr;
}

Now that we have the value of the joint entropy we can proceed to estimate the values of the
entropies for each image independently. This can be done by simply changing the number of
bins and then recomputing the histogram.

size[0] = 255; // number of bins for the first channel
size[1] = 1; // number of bins for the second channel

histogramGenerator->SetNumberOfBins(size);
histogramGenerator->Compute();

10.3. Statistics applied to Images 671

We initialize to zero another variable in order to start accumulating the entropy contributions
from every bin.

itr = histogram->Begin();
end = histogram->End();

double Entropy1 = 0.0;

while(itr != end)
{
const double count = itr.GetFrequency();
if(count > 0.0)

{
const double probability = count / Sum;
Entropy1 += - probability * log(probability) / log(2.0);
}

++itr;
}

The same process is used for computing the entropy of the other component. Simply by swap-
ping the number of bins in the histogram.

size[0] = 1; // number of bins for the first channel
size[1] = 255; // number of bins for the second channel

histogramGenerator->SetNumberOfBins(size);
histogramGenerator->Compute();

The entropy is computed in a similar manner, just by visitingall the bins on the histogram and
accumulating their entropy contributions.

itr = histogram->Begin();
end = histogram->End();

double Entropy2 = 0.0;

while(itr != end)
{
const double count = itr.GetFrequency();
if(count > 0.0)

{
const double probability = count / Sum;
Entropy2 += - probability * log(probability) / log(2.0);
}

++itr;
}

672 Chapter 10. Statistics

At this point we can compute any of the popular measures of Mutual Information. For example

double MutualInformation = Entropy1 + Entropy2 - JointEntropy;

or Normalized Mutual Information, where the value of MutualInformation gets divided by the
mean entropy of the input images.

double NormalizedMutualInformation1 =
2.0 * MutualInformation / (Entropy1 + Entropy2);

A second form of Normalized Mutual Information has been defined as the mean entropy of the
two images divided by their joint entropy.

double NormalizedMutualInformation2 = (Entropy1 + Entropy2) / JointEntropy;

You probably will find very interesting how the value of Mutual Information is strongly depen-
dent on the number of bins over which the histogram is defined.

10.4 Classification

In statistical classification, each object is represented by d features (a measurement vector), and
the goal of classification becomes finding compact and disjoint regions (decision regions[24])
for classes in ad-dimensional feature space. Such decision regions are defined by decision
rules that are known or can be trained. The simplest configuration of a classification consists
of a decision rule and multiple membership functions; each membership function represents a
class. Figure10.3illustrates this general framework.

Membership function

Membership function

Membership function A priori knowledgeM
ea

su
re

m
en

t v
ec

to
r

Decision Rule

Membership score

Class label

Figure 10.3:Simple conceptual classifier.

This framework closely follows that of Duda and Hart[24]. The classification process can be
described as follows:

1. A measurement vector is input to each membership function.

10.4. Classification 673

Membership Function Membership Function

Parameter Estimation

S
am

pl
e

(T
es

t)

M
em

be
rs

hi
pS

am
pl

e

Classifier

Membership scores

Parameter Estimation

parameters

Decision Rule

Figure 10.4:Statistical classification framework.

2. Membership functions feed the membership scores to the decision rule.

3. A decision rule compares the membership scores and returns a class label.

This simple configuration can be used to formulated various classification tasks by using dif-
ferent membership functions and incorporating task specific requirements and prior knowledge
into the decision rule. For example, instead of using probability density functions as member-
ship functions, through distance functions and a minimum value decision rule (which assigns a
class from the distance function that returns the smallest value) users can achieve a least squared
error classifier. As another example, users can add a rejection scheme to the decision rule so
that even in a situation where the membership scores suggesta “winner”, a measurement vector
can be flagged as ill defined. Such a rejection scheme can avoidrisks of assigning a class label
without a proper win margin.

10.4.1 k-d Tree Based k-Means Clustering

The source code for this section can be found in the file
Examples/Statistics/KdTreeBasedKMeansClustering.cxx.

K-means clustering is a popular clustering algorithm because it is simple and usually converges
to a reasonable solution. The k-means algorithm works as follows:

1. Obtains the initial k means input from the user.

2. Assigns each measurement vector in a sample container to its closest mean among the k
number of means (i.e., update the membership of each measurement vectors to the nearest
of the k clusters).

674 Chapter 10. Statistics

3. Calculates each cluster’s mean from the newly assigned measurement vectors (updates
the centroid (mean) of k clusters).

4. Repeats step 2 and step 3 until it meets the termination criteria.

The most common termination criteria is that if there is no measurement vector that changes its
cluster membership from the previous iteration, then the algorithm stops.

The itk::Statistics::KdTreeBasedKmeansEstimator is a variation of this logic. The
k-means clustering algorithm is computationally very expensive because it has to recalcu-
late the mean at each iteration. To update the mean values, wehave to calculate the dis-
tance between k means and each and every measurement vector.To reduce the computa-
tional burden, the KdTreeBasedKmeansEstimator uses a special data structure: the k-d tree
(itk::Statistics::KdTree) with additional information. The additional informationin-
cludes the number and the vector sum of measurement vectors under each node under the tree
architecture.

With such additional information and the k-d tree data structure, we can reduce the compu-
tational cost of the distance calculation and means. Instead of calculating each measurement
vectors and k means, we can simply compare each node of the k-dtree and the k means. This
idea of utilizing a k-d tree can be found in multiple articles[2] [61] [43]. Our implementation
of this scheme follows the article by the Kanungo et al [43].

We use theitk::Statistics::ListSample as the input sample, theitk::Vector as the
measurement vector. The following code snippet includes their header files.

#include "itkVector.h"
#include "itkListSample.h"

Since our k-means algorithm requires aitk::Statistics::KdTree object as an in-
put, we include the KdTree class header file. As mentioned above, we need a k-
d tree with the vector sum and the number of measurement vectors. Therefore
we use the itk::Statistics::WeightedCentroidKdTreeGenerator instead of the
itk::Statistics::KdTreeGenerator that generate a k-d tree without such additional in-
formation.

#include "itkKdTree.h"
#include "itkWeightedCentroidKdTreeGenerator.h"

The KdTreeBasedKmeansEstimator class is the implementation of the k-means algorithm. It
does not create k clusters. Instead, it returns the mean estimates for the k clusters.

#include "itkKdTreeBasedKmeansEstimator.h"

To generate the clusters, we must create k instances of
itk::Statistics::EuclideanDistance function as the membership functions for each

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1KdTreeBasedKmeansEstimator.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1KdTree.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ListSample.html
http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1KdTree.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1WeightedCentroidKdTreeGenerator.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1KdTreeGenerator.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1EuclideanDistance.html

10.4. Classification 675

cluster and plug that—along with a sample—into anitk::Statistics::SampleClassifier
object to get a itk::Statistics::MembershipSample that stores pairs of measurement
vectors and their associated class labels (k labels).

#include "itkMinimumDecisionRule.h"
#include "itkEuclideanDistance.h"
#include "itkSampleClassifier.h"

We will fill the sample with random variables from two normal distribution using the
itk::Statistics::NormalVariateGenerator.

#include "itkNormalVariateGenerator.h"

Since theNormalVariateGenerator class only supports 1-D, we define our measurement
vector type as one component vector. We then, create aListSample object for data inputs.
Each measurement vector is of length 1. We set this using theSetMeasurementVectorSize()
method.

typedef itk::Vector< double, 1 > MeasurementVectorType;
typedef itk::Statistics::ListSample< MeasurementVectorType > SampleType;
SampleType::Pointer sample = SampleType::New();
sample->SetMeasurementVectorSize(1);

The following code snippet creates a NormalVariateGenerator object. Since the random variable
generator returns values according to the standard normal distribution (The mean is zero, and
the standard deviation is one), before pushing random values into thesample, we change the
mean and standard deviation. We want two normal (Gaussian) distribution data. We have two
for loops. Each for loop uses different mean and standard deviation. Before we fill thesample
with the second distribution data, we callInitialize(random seed) method, to recreate the
pool of random variables in thenormalGenerator.

To see the probability density plots from the two distribution, refer to the Figure10.5.

typedef itk::Statistics::NormalVariateGenerator NormalGeneratorType;
NormalGeneratorType::Pointer normalGenerator = NormalGeneratorType::New();

normalGenerator->Initialize(101);

MeasurementVectorType mv;
double mean = 100;
double standardDeviation = 30;
for (unsigned int i = 0 ; i < 100 ; ++i)
{
mv[0] = (normalGenerator->GetVariate() * standardDeviation) + mean;
sample->PushBack(mv);
}

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1SampleClassifier.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1MembershipSample.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1NormalVariateGenerator.html

676 Chapter 10. Statistics

Figure 10.5:Two normal distributions’ probability density plot (The means are 100 and 200, and the

standard deviation is 30)

normalGenerator->Initialize(3024);
mean = 200;
standardDeviation = 30;
for (unsigned int i = 0 ; i < 100 ; ++i)
{
mv[0] = (normalGenerator->GetVariate() * standardDeviation) + mean;
sample->PushBack(mv);
}

We create a k-d tree. To see the details on the k-d tree generation, see the Section10.1.7.

typedef itk::Statistics::WeightedCentroidKdTreeGenerator< SampleType >
TreeGeneratorType;

TreeGeneratorType::Pointer treeGenerator = TreeGeneratorType::New();

treeGenerator->SetSample(sample);
treeGenerator->SetBucketSize(16);
treeGenerator->Update();

Once we have the k-d tree, it is a simple procedure to produce kmean estimates.

We create the KdTreeBasedKmeansEstimator. Then, we provide the initial mean values using
theSetParameters(). Since we are dealing with two normal distribution in a 1-D space, the

10.4. Classification 677

size of the mean value array is two. The first element is the first mean value, and the second is
the second mean value. If we used two normal distributions ina 2-D space, the size of array
would be four, and the first two elements would be the two components of the first normal
distribution’s mean vector. We plug-in the k-d tree using theSetKdTree().

The remaining two methods specify the termination condition. The estimation pro-
cess stops when the number of iterations reaches the maximumiteration value
set by the SetMaximumIteration(), or the distances between the newly calcu-
lated mean (centroid) values and previous ones are within the threshold set by
the SetCentroidPositionChangesThreshold(). The final step is to call the
StartOptimization() method.

The for loop will print out the mean estimates from the estimation process.

typedef TreeGeneratorType::KdTreeType TreeType;
typedef itk::Statistics::KdTreeBasedKmeansEstimator<TreeType> EstimatorType;
EstimatorType::Pointer estimator = EstimatorType::New();

EstimatorType::ParametersType initialMeans(2);
initialMeans[0] = 0.0;
initialMeans[1] = 0.0;

estimator->SetParameters(initialMeans);
estimator->SetKdTree(treeGenerator->GetOutput());
estimator->SetMaximumIteration(200);
estimator->SetCentroidPositionChangesThreshold(0.0);
estimator->StartOptimization();

EstimatorType::ParametersType estimatedMeans = estimator->GetParameters();

for (unsigned int i = 0 ; i < 2 ; ++i)
{
std::cout << "cluster[" << i << "] " << std::endl;
std::cout << " estimated mean : " << estimatedMeans[i] << std::endl;
}

If we are only interested in finding the mean estimates, we might stop. However, to illustrate
how a classifier can be formed using the statistical classification framework. We go a little bit
further in this example.

Since the k-means algorithm is an minimum distance classifier using the estimated k means and
the measurement vectors. We use the EuclideanDistance class as membership functions. Our
choice for the decision rule is theitk::Statistics::MinimumDecisionRule that returns the
index of the membership functions that have the smallest value for a measurement vector.

After creating a SampleClassifier object and a MinimumDecisionRule object, we plug-in the
decisionRule and thesample to the classifier. Then, we must specify the number of classes
that will be considered using theSetNumberOfClasses() method.

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1MinimumDecisionRule.html

678 Chapter 10. Statistics

The remainder of the following code snippet shows how to use user-specified class labels. The
classification result will be stored in a MembershipSample object, and for each measurement
vector, its class label will be one of the two class labels, 100 and 200 (unsigned int).

typedef itk::Statistics::EuclideanDistance< MeasurementVectorType >
MembershipFunctionType;

typedef itk::MinimumDecisionRule DecisionRuleType;
DecisionRuleType::Pointer decisionRule = DecisionRuleType::New();

typedef itk::Statistics::SampleClassifier< SampleType > ClassifierType;
ClassifierType::Pointer classifier = ClassifierType::New();

classifier->SetDecisionRule((itk::DecisionRuleBase::Pointer) decisionRule);
classifier->SetSample(sample);
classifier->SetNumberOfClasses(2);

std::vector< unsigned int > classLabels;
classLabels.resize(2);
classLabels[0] = 100;
classLabels[1] = 200;

classifier->SetMembershipFunctionClassLabels(classLabels);

Theclassifier is almost ready to do the classification process except that it needs two mem-
bership functions that represents two clusters respectively.

In this example, the two clusters are modeled by two Euclidean distance functions. The dis-
tance function (model) has only one parameter, its mean (centroid) set by theSetOrigin()
method. To plug-in two distance functions, we call theAddMembershipFunction() method.
Then invocation of theUpdate() method will perform the classification.

std::vector< MembershipFunctionType::Pointer > membershipFunctions;
MembershipFunctionType::OriginType origin(sample->GetMeasurementVectorSize());
int index = 0;
for (unsigned int i = 0 ; i < 2 ; i++)
{
membershipFunctions.push_back(MembershipFunctionType::New());
for (unsigned int j = 0 ; j < sample->GetMeasurementVectorSize(); j++)

{
origin[j] = estimatedMeans[index++];
}

membershipFunctions[i]->SetOrigin(origin);
classifier->AddMembershipFunction(membershipFunctions[i].GetPointer());
}

classifier->Update();

10.4. Classification 679

The following code snippet prints out the measurement vectors and their class labels in the
sample.

ClassifierType::OutputType* membershipSample = classifier->GetOutput();
ClassifierType::OutputType::ConstIterator iter = membershipSample->Begin();

while (iter != membershipSample->End())
{
std::cout << "measurement vector = " << iter.GetMeasurementVector()

<< "class label = " << iter.GetClassLabel()
<< std::endl;

++iter;
}

10.4.2 K-Means Classification

The source code for this section can be found in the file
Examples/Statistics/ScalarImageKmeansClassifier.cxx.

This example shows how to use the KMeans model for classifying the pixel of a scalar image.

The itk::Statistics::ScalarImageKmeansImageFilter is used for taking a scalar image
and applying the K-Means algorithm in order to define classesthat represents statistical distri-
butions of intensity values in the pixels. The classes are then used in this filter for generating a
labeled image where every pixel is assigned to one of the classes.

#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkScalarImageKmeansImageFilter.h"

First we define the pixel type and dimension of the image that we intend to classify. With this
image type we can =also declare theitk::ImageFileReader needed for reading the input
image, create one and set its input filename.

typedef signed short PixelType;
const unsigned int Dimension = 2;

typedef itk::Image<PixelType, Dimension > ImageType;

typedef itk::ImageFileReader< ImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(inputImageFileName);

With theImageType we instantiate the type of theitk::ScalarImageKmeansImageFilter
that will compute the K-Means model and then classify the image pixels.

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ScalarImageKmeansImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
http://www.itk.org/Doxygen/html/classitk_1_1ScalarImageKmeansImageFilter.html

680 Chapter 10. Statistics

typedef itk::ScalarImageKmeansImageFilter< ImageType > KMeansFilterType;

KMeansFilterType::Pointer kmeansFilter = KMeansFilterType::New();

kmeansFilter->SetInput(reader->GetOutput());

const unsigned int numberOfInitialClasses = atoi(argv[4]);

In general the classification will produce as output an imagewhose pixel values are integers
associated to the labels of the classes. Since typically these integers will be generated in order
(0,1,2,...N), the output image will tend to look very dark when displayed with naive viewers. It
is therefore convenient to have the option of spreading the label values over the dynamic range
of the output image pixel type. When this is done, the dynamicrange of the pixels is divide by
the number of classes in order to define the increment betweenlabels. For example, an output
image of 8 bits will have a dynamic range of [0:256], and when it is used for holding four
classes, the non-contiguous labels will be (0,64,128,192). The selection of the mode to use is
done with the methodSetUseContiguousLabels().

const unsigned int useNonContiguousLabels = atoi(argv[3]);

kmeansFilter->SetUseNonContiguousLabels(useNonContiguousLabels);

For each one of the classes we must provide a tentative initial value for the mean of the class.
Given that this is a scalar image, each one of the means is simply a scalar value. Note however
that in a general case of K-Means, the input image would be a vector image and therefore the
means will be vectors of the same dimension as the image pixels.

for(unsigned k=0; k < numberOfInitialClasses; k++)
{
const double userProvidedInitialMean = atof(argv[k+argoffset]);
kmeansFilter->AddClassWithInitialMean(userProvidedInitialMean);
}

The itk::ScalarImageKmeansImageFilter is predefined for producing an 8 bits scalar im-
age as output. This output image contains labels associatedto each one of the classes in the
K-Means algorithm. In the following lines we use theOutputImageType in order to instantiate
the type of a itk::ImageFileWriter. Then create one, and connect it to the output of the
classification filter.

typedef KMeansFilterType::OutputImageType OutputImageType;

typedef itk::ImageFileWriter< OutputImageType > WriterType;

WriterType::Pointer writer = WriterType::New();

http://www.itk.org/Doxygen/html/classitk_1_1ScalarImageKmeansImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html

10.4. Classification 681

writer->SetInput(kmeansFilter->GetOutput());

writer->SetFileName(outputImageFileName);

We are now ready for triggering the execution of the pipeline. This is done by simply invoking
theUpdate() method in the writer. This call will propagate the update request to the reader and
then to the classifier.

try
{
writer->Update();
}

catch(itk::ExceptionObject & excp)
{
std::cerr << "Problem encountered while writing image file : " << argv[2] << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}

At this point the classification is done, the labeled image issaved in a file, and we can take
a look at the means that were found as a result of the model estimation performed inside the
classifier filter.

KMeansFilterType::ParametersType estimatedMeans = kmeansFilter->GetFinalMeans();

const unsigned int numberOfClasses = estimatedMeans.Size();

for (unsigned int i = 0 ; i < numberOfClasses ; ++i)
{
std::cout << "cluster[" << i << "] ";
std::cout << " estimated mean : " << estimatedMeans[i] << std::endl;
}

Figure10.6illustrates the effect of this filter with three classes. Themeans were estimated by
ScalarImageKmeansModelEstimator.cxx.

10.4.3 Bayesian Plug-In Classifier

The source code for this section can be found in the file
Examples/Statistics/BayesianPluginClassifier.cxx.

In this example, we present a system that places measurementvectors into two Gaussian classes.
The Figure10.7shows all the components of the classifier system and the dataflow. This system
differs with the previous k-means clustering algorithms inseveral ways. The biggest difference

682 Chapter 10. Statistics

Figure 10.6:Effect of the KMeans classifier on a T1 slice of the brain.

is that this classifier uses theitk::Statistics::GaussianDensityFunctions as member-
ship functions instead of theitk::Statistics::EuclideanDistance. Since the member-
ship function is different, the membership function requires a different set of parameters, mean
vectors and covariance matrices. We choose theitk::Statistics::MeanCalculator (sam-
ple mean) and theitk::Statistics::CovarianceCalculator (sample covariance) for the
estimation algorithms of the two parameters. If we want morerobust estimation algorithm, we
can replace these estimation algorithms with more alternatives without changing other compo-
nents in the classifier system.

It is a bad idea to use the same sample for test and training (parameter estimation) of the param-
eters. However, for simplicity, in this example, we use a sample for test and training.

We use the itk::Statistics::ListSample as the sample (test and training). The
itk::Vector is our measurement vector class. To store measurement vectors into two sep-
arate sample containers, we use theitk::Statistics::Subsample objects.

#include "itkVector.h"
#include "itkListSample.h"
#include "itkSubsample.h"

The following two files provides us the parameter estimationalgorithms.

#include "itkMeanCalculator.h"
#include "itkCovarianceCalculator.h"

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1GaussianDensityFunction.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1EuclideanDistance.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1MeanCalculator.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1CovarianceCalculator.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ListSample.html
http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Subsample.html

10.4. Classification 683

(P
ar

am
et

er
 e

st
im

at
io

n)

(P
ar

am
et

er
 e

st
im

at
io

n)

S
am

pl
e

(L
ab

el
ed

)

Subsample (Class sample) Subsample (Class sample)

CovarianceCalculator

MeanCalculator

Covariance matrix

Mean

CovarianceCalculator

MeanCalculator

Mean

Measurement
vectors

Covariance matrix

GaussianDensityFunction GaussianDensityFunction

Probability density

Sample size Sample size

GaussianDensityFunction
Index of winning

SampleClassifier

S
am

pl
e

(T
es

t)

MaximumRatioDecisionRule

Sample size

Sample (Training)

Figure 10.7:Bayesian plug-in classifier for two Gaussian classes.

684 Chapter 10. Statistics

The following files define the components required by ITK statistical classification framework:
the decision rule, the membership function, and the classifier.

#include "itkMaximumRatioDecisionRule.h"
#include "itkGaussianDensityFunction.h"
#include "itkSampleClassifier.h"

We will fill the sample with random variables from two normal distribution using the
itk::Statistics::NormalVariateGenerator.

#include "itkNormalVariateGenerator.h"

Since the NormalVariateGenerator class only supports 1-D,we define our measurement vector
type as a one component vector. We then, create a ListSample object for data inputs.

We also create two Subsample objects that will store the measurement vectors insample into
two separate sample containers. Each Subsample object stores only the measurement vectors
belonging to a single class. This class sample will be used bythe parameter estimation algo-
rithms.

typedef itk::Vector< double, 1 > MeasurementVectorType;
typedef itk::Statistics::ListSample< MeasurementVectorType > SampleType;
SampleType::Pointer sample = SampleType::New();
sample->SetMeasurementVectorSize(1); // length of measurement vectors

// in the sample.

typedef itk::Statistics::Subsample< SampleType > ClassSampleType;
std::vector< ClassSampleType::Pointer > classSamples;
for (unsigned int i = 0 ; i < 2 ; ++i)
{
classSamples.push_back(ClassSampleType::New());
classSamples[i]->SetSample(sample);
}

The following code snippet creates a NormalVariateGenerator object. Since the random variable
generator returns values according to the standard normal distribution (the mean is zero, and the
standard deviation is one) before pushing random values into thesample, we change the mean
and standard deviation. We want two normal (Gaussian) distribution data. We have two for
loops. Each for loop uses different mean and standard deviation. Before we fill thesample
with the second distribution data, we callInitialize(random seed) method, to recreate the
pool of random variables in thenormalGenerator. In the second for loop, we fill the two class
samples with measurement vectors using theAddInstance() method.

To see the probability density plots from the two distributions, refer to Figure10.5.

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1NormalVariateGenerator.html

10.4. Classification 685

typedef itk::Statistics::NormalVariateGenerator NormalGeneratorType;
NormalGeneratorType::Pointer normalGenerator = NormalGeneratorType::New();

normalGenerator->Initialize(101);

MeasurementVectorType mv;
double mean = 100;
double standardDeviation = 30;
SampleType::InstanceIdentifier id = 0UL;
for (unsigned int i = 0 ; i < 100 ; ++i)
{
mv.Fill((normalGenerator->GetVariate() * standardDeviation) + mean);
sample->PushBack(mv);
classSamples[0]->AddInstance(id);
++id;
}

normalGenerator->Initialize(3024);
mean = 200;
standardDeviation = 30;
for (unsigned int i = 0 ; i < 100 ; ++i)
{
mv.Fill((normalGenerator->GetVariate() * standardDeviation) + mean);
sample->PushBack(mv);
classSamples[1]->AddInstance(id);
++id;
}

In the following code snippet, notice that the template argument for the MeanCalculator and
CovarianceCalculator isClassSampleType (i.e., type of Subsample) instead of SampleType
(i.e., type of ListSample). This is because the parameter estimation algorithms are applied to
the class sample.

typedef itk::Statistics::MeanCalculator< ClassSampleType > MeanEstimatorType;
typedef itk::Statistics::CovarianceCalculator< ClassSampleType >
CovarianceEstimatorType;

std::vector< MeanEstimatorType::Pointer > meanEstimators;
std::vector< CovarianceEstimatorType::Pointer > covarianceEstimators;

for (unsigned int i = 0 ; i < 2 ; ++i)
{
meanEstimators.push_back(MeanEstimatorType::New());
meanEstimators[i]->SetInputSample(classSamples[i]);
meanEstimators[i]->Update();

covarianceEstimators.push_back(CovarianceEstimatorType::New());

686 Chapter 10. Statistics

covarianceEstimators[i]->SetInputSample(classSamples[i]);
covarianceEstimators[i]->SetMean(meanEstimators[i]->GetOutput());
covarianceEstimators[i]->Update();
}

We print out the estimated parameters.

for (unsigned int i = 0 ; i < 2 ; ++i)
{
std::cout << "class[" << i << "] " << std::endl;
std::cout << " estimated mean : "

<< *(meanEstimators[i]->GetOutput())
<< " covariance matrix : "
<< *(covarianceEstimators[i]->GetOutput()) << std::endl;

}

After creating a SampleClassifier object and a MaximumRatioDecisionRule object, we plug in
thedecisionRule and thesample to the classifier. Then, we specify the number of classes that
will be considered using theSetNumberOfClasses() method.

The MaximumRatioDecisionRule requires a vector ofa priori probability values. Sucha priori
probability will be theP(ωi) of the following variation of the Bayes decision rule:

Decideωi if
p(−→x |ωi)

p(−→x |ω j)
>

P(ω j)

P(ωi)
for all j 6= i (10.4)

The remainder of the code snippet shows how to use user-specified class labels. The classifica-
tion result will be stored in a MembershipSample object, andfor each measurement vector, its
class label will be one of the two class labels, 100 and 200 (unsigned int).

typedef itk::Statistics::GaussianDensityFunction< MeasurementVectorType >
MembershipFunctionType;

typedef itk::MaximumRatioDecisionRule DecisionRuleType;
DecisionRuleType::Pointer decisionRule = DecisionRuleType::New();

DecisionRuleType::APrioriVectorType aPrioris;
aPrioris.push_back(classSamples[0]->GetTotalFrequency()

/ sample->GetTotalFrequency()) ;
aPrioris.push_back(classSamples[1]->GetTotalFrequency()

/ sample->GetTotalFrequency()) ;
decisionRule->SetAPriori(aPrioris);

typedef itk::Statistics::SampleClassifier< SampleType > ClassifierType;
ClassifierType::Pointer classifier = ClassifierType::New();

classifier->SetDecisionRule((itk::DecisionRuleBase::Pointer) decisionRule);

10.4. Classification 687

classifier->SetSample(sample);
classifier->SetNumberOfClasses(2);

std::vector< unsigned int > classLabels;
classLabels.resize(2);
classLabels[0] = 100;
classLabels[1] = 200;
classifier->SetMembershipFunctionClassLabels(classLabels);

Theclassifier is almost ready to perform the classification except that it needs two member-
ship functions that represent the two clusters.

In this example, we can imagine that the two clusters are modeled by two Euclidean dis-
tance functions. The distance function (model) has only oneparameter, the mean (cen-
troid) set by theSetOrigin() method. To plug-in two distance functions, we call the
AddMembershipFunction() method. Then invocation of theUpdate() method will perform
the classification.

std::vector< MembershipFunctionType::Pointer > membershipFunctions;
for (unsigned int i = 0 ; i < 2 ; i++)
{
membershipFunctions.push_back(MembershipFunctionType::New());
membershipFunctions[i]->SetMean(meanEstimators[i]->GetOutput());
membershipFunctions[i]->

SetCovariance(covarianceEstimators[i]->GetOutput());
classifier->AddMembershipFunction(membershipFunctions[i].GetPointer());
}

classifier->Update();

The following code snippet prints out pairs of a measurementvector and its class label in the
sample.

ClassifierType::OutputType* membershipSample = classifier->GetOutput();
ClassifierType::OutputType::ConstIterator iter = membershipSample->Begin();

while (iter != membershipSample->End())
{
std::cout << "measurement vector = " << iter.GetMeasurementVector()

<< "class label = " << iter.GetClassLabel() << std::endl;
++iter;
}

688 Chapter 10. Statistics

10.4.4 Expectation Maximization Mixture Model Estimation

The source code for this section can be found in the file
Examples/Statistics/ExpectationMaximizationMixtureModelEstimator.cxx.

In this example, we present an implementation of the expectation maximization (EM) process
to generates parameter estimates for a two Gaussian component mixture model.

The Bayesian plug-in classifier example (see Section10.4.3) used two Gaussian probability
density functions (PDF) to model two Gaussian distributionclasses (two models for two class).
However, in some cases, we want to model a distribution as a mixture of several different
distributions. Therefore, the probability density function (p(x)) of a mixture model can be
stated as follows :

p(x) =
c

∑
i=0

αi fi(x) (10.5)

wherei is the index of the component,c is the number of components,αi is the proportion of
the component, andfi is the probability density function of the component.

Now the task is to find the parameters(the component PDF’s parameters and the proportion
values) to maximize the likelihood of the parameters. If we know which component a measure-
ment vector belongs to, the solutions to this problem is easyto solve. However, we don’t know
the membership of each measurement vector. Therefore, we use the expectation of membership
instead of the exact membership. The EM process splits into two steps:

1. E step: calculate the expected membership values for eachmeasurement vector to each
classes.

2. M step: find the next parameter sets that maximize the likelihood with the expected mem-
bership values and the current set of parameters.

The E step is basically a step that calculates thea posterioriprobability for each measurement
vector.

The M step is dependent on the type of each PDF. Most of distributions be-
longing to exponential family such as Poisson, Binomial, Exponential, and Nor-
mal distributions have analytical solutions for updating the parameter set. The
itk::Statistics::ExpectationMaximizationMixtureModelEstimator class assumes
that such type of components.

In the following example we use theitk::Statistics::ListSample as the sample (test and
training). Theitk::Vector::is our measurement vector class. To store measurement vectors
into two separate sample container, we use theitk::Statistics::Subsample objects.

#include "itkVector.h"
#include "itkListSample.h"

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ExpectationMaximizationMixtureModelEstimator.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ListSample.html
http://www.itk.org/Doxygen/html/classitk_1_1Vector_1_1i.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Subsample.html

10.4. Classification 689

The following two files provides us the parameter estimationalgorithms.

#include "itkGaussianMixtureModelComponent.h"
#include "itkExpectationMaximizationMixtureModelEstimator.h"

We will fill the sample with random variables from two normal distribution using the
itk::Statistics::NormalVariateGenerator.

#include "itkNormalVariateGenerator.h"

Since the NormalVariateGenerator class only supports 1-D,we define our measurement vector
type as a one component vector. We then, create a ListSample object for data inputs.

We also create two Subsample objects that will store the measurement vectors in thesample
into two separate sample containers. Each Subsample objectstores only the measurement vec-
tors belonging to a single class. Thisclass samplewill be used by the parameter estimation
algorithms.

unsigned int numberOfClasses = 2;
typedef itk::Vector< double, 1 > MeasurementVectorType;
typedef itk::Statistics::ListSample< MeasurementVectorType > SampleType;
SampleType::Pointer sample = SampleType::New();
sample->SetMeasurementVectorSize(1); // length of measurement vectors

// in the sample.

The following code snippet creates a NormalVariateGenerator object. Since the random variable
generator returns values according to the standard normal distribution (the mean is zero, and the
standard deviation is one) before pushing random values into thesample, we change the mean
and standard deviation. We want two normal (Gaussian) distribution data. We have two for
loops. Each for loop uses different mean and standard deviation. Before we fill thesample
with the second distribution data, we callInitialize() method to recreate the pool of random
variables in thenormalGenerator. In the second for loop, we fill the two class samples with
measurement vectors using theAddInstance() method.

To see the probability density plots from the two distribution, refer to Figure10.5.

typedef itk::Statistics::NormalVariateGenerator NormalGeneratorType;
NormalGeneratorType::Pointer normalGenerator = NormalGeneratorType::New();

normalGenerator->Initialize(101);

MeasurementVectorType mv;
double mean = 100;
double standardDeviation = 30;
for (unsigned int i = 0 ; i < 100 ; ++i)

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1NormalVariateGenerator.html

690 Chapter 10. Statistics

{
mv[0] = (normalGenerator->GetVariate() * standardDeviation) + mean;
sample->PushBack(mv);
}

normalGenerator->Initialize(3024);
mean = 200;
standardDeviation = 30;
for (unsigned int i = 0 ; i < 100 ; ++i)
{
mv[0] = (normalGenerator->GetVariate() * standardDeviation) + mean;
sample->PushBack(mv);
}

In the following code snippet notice that the template argument for the MeanCalculator and
CovarianceCalculator isClassSampleType (i.e., type of Subsample) instead ofSampleType
(i.e., type of ListSample). This is because the parameter estimation algorithms are applied to
the class sample.

typedef itk::Array< double > ParametersType;
ParametersType params(2);

std::vector< ParametersType > initialParameters(numberOfClasses);
params[0] = 110.0;
params[1] = 800.0;
initialParameters[0] = params;

params[0] = 210.0;
params[1] = 850.0;
initialParameters[1] = params;

typedef itk::Statistics::GaussianMixtureModelComponent< SampleType >
ComponentType;

std::vector< ComponentType::Pointer > components;
for (unsigned int i = 0 ; i < numberOfClasses ; i++)
{
components.push_back(ComponentType::New());
(components[i])->SetSample(sample);
(components[i])->SetParameters(initialParameters[i]);
}

We run the estimator.

typedef itk::Statistics::ExpectationMaximizationMixtureModelEstimator<
SampleType > EstimatorType;

EstimatorType::Pointer estimator = EstimatorType::New();

10.4. Classification 691

estimator->SetSample(sample);
estimator->SetMaximumIteration(200);

itk::Array< double > initialProportions(numberOfClasses);
initialProportions[0] = 0.5;
initialProportions[1] = 0.5;

estimator->SetInitialProportions(initialProportions);

for (unsigned int i = 0 ; i < numberOfClasses ; i++)
{
estimator->AddComponent((ComponentType::Superclass*)

(components[i]).GetPointer());
}

estimator->Update();

We then print out the estimated parameters.

for (unsigned int i = 0 ; i < numberOfClasses ; i++)
{
std::cout << "Cluster[" << i << "]" << std::endl;
std::cout << " Parameters:" << std::endl;
std::cout << " " << (components[i])->GetFullParameters()

<< std::endl;
std::cout << " Proportion: ";
std::cout << " " << (*estimator->GetProportions())[i] << std::endl;
}

10.4.5 Classification using Markov Random Field

Markov Random Fields are probabilistic models that use the correlation between pixels in a
neighborhood to decide the object region. Theitk::Statistics::MRFImageFilter uses
the maximum a posteriori (MAP) estimates for modeling the MRF. The object traverses the
data set and uses the model generated by the Mahalanobis distance classifier to gets the the
distance between each pixel in the data set to a set of known classes, updates the distances by
evaluating the influence of its neighboring pixels (based ona MRF model) and finally, classifies
each pixel to the class which has the minimum distance to thatpixel (taking the neighborhood
influence under consideration). The energy function minimization is done using the iterated
conditional modes (ICM) algorithm [9].

The source code for this section can be found in the file
Examples/Statistics/ScalarImageMarkovRandomField1.cxx.

This example shows how to use the Markov Random Field approach for classifying the pixel of
a scalar image.

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1MRFImageFilter.html

692 Chapter 10. Statistics

The itk::Statistics::MRFImageFilter is used for refining an initial classification by in-
troducing the spatial coherence of the labels. The user should provide two images as input. The
first image is the one to be classified while the second image isan image of labels representing
an initial classification.

The following headers are related to reading input images, writing the output image, and making
the necessary conversions between scalar and vector images.

#include "itkImage.h"
#include "itkFixedArray.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkScalarToArrayCastImageFilter.h"

The following headers are related to the statistical classification classes.

#include "itkMRFImageFilter.h"
#include "itkDistanceToCentroidMembershipFunction.h"
#include "itkMinimumDecisionRule.h"
#include "itkImageClassifierBase.h"

First we define the pixel type and dimension of the image that we intend to classify. With
this image type we can also declare theitk::ImageFileReader needed for reading the input
image, create one and set its input filename. In this particular case we choose to usesigned
short as pixel type, which is typical for MicroMRI and CT data sets.

typedef signed short PixelType;
const unsigned int Dimension = 2;

typedef itk::Image<PixelType, Dimension > ImageType;

typedef itk::ImageFileReader< ImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(inputImageFileName);

As a second step we define the pixel type and dimension of the image of labels that provides
the initial classification of the pixels from the first image.This initial labeled image can be the
output of a K-Means method like the one illustrated in section 10.4.2.

typedef unsigned char LabelPixelType;

typedef itk::Image<LabelPixelType, Dimension > LabelImageType;

typedef itk::ImageFileReader< LabelImageType > LabelReaderType;
LabelReaderType::Pointer labelReader = LabelReaderType::New();
labelReader->SetFileName(inputLabelImageFileName);

http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1MRFImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html

10.4. Classification 693

Since the Markov Random Field algorithm is defined in generalfor images whose pixels
have multiple components, that is, images of vector type, wemust adapt our scalar image
in order to satisfy the interface expected by theMRFImageFilter. We do this by using the
itk::ScalarToArrayCastImageFilter. With this filter we will present our scalar image as
a vector image whose vector pixels contain a single component.

typedef itk::FixedArray<LabelPixelType,1> ArrayPixelType;

typedef itk::Image< ArrayPixelType, Dimension > ArrayImageType;

typedef itk::ScalarToArrayCastImageFilter<
ImageType, ArrayImageType > ScalarToArrayFilterType;

ScalarToArrayFilterType::Pointer
scalarToArrayFilter = ScalarToArrayFilterType::New();

scalarToArrayFilter->SetInput(reader->GetOutput());

With the input image typeImageType and labeled image typeLabelImageType we instantiate
the type of theitk::MRFImageFilter that will apply the Markov Random Field algorithm in
order to refine the pixel classification.

typedef itk::MRFImageFilter< ArrayImageType, LabelImageType > MRFFilterType;

MRFFilterType::Pointer mrfFilter = MRFFilterType::New();

mrfFilter->SetInput(scalarToArrayFilter->GetOutput());

We set now some of the parameters for the MRF filter. In particular, the number of classes to
be used during the classification, the maximum number of iterations to be run in this filter and
the error tolerance that will be used as a criterion for convergence.

mrfFilter->SetNumberOfClasses(numberOfClasses);
mrfFilter->SetMaximumNumberOfIterations(numberOfIterations);
mrfFilter->SetErrorTolerance(1e-7);

The smoothing factor represents the tradeoff between fidelity to the observed image and the
smoothness of the segmented image. Typical smoothing factors have values between 1 5. This
factor will multiply the weights that define the influence of neighbors on the classification of
a given pixel. The higher the value, the more uniform will be the regions resulting from the
classification refinement.

mrfFilter->SetSmoothingFactor(smoothingFactor);

Given that the MRF filter need to continually relabel the pixels, it needs access to a set of
membership functions that will measure to what degree everypixel belongs to a particular class.

http://www.itk.org/Doxygen/html/classitk_1_1ScalarToArrayCastImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1MRFImageFilter.html

694 Chapter 10. Statistics

The classification is performed by theitk::ImageClassifierBase class, that is instantiated
using the type of the input vector image and the type of the labeled image.

typedef itk::ImageClassifierBase<
ArrayImageType,
LabelImageType > SupervisedClassifierType;

SupervisedClassifierType::Pointer classifier =
SupervisedClassifierType::New();

The classifier need a decision rule to be set by the user. Note that we must useGetPointer() in
the call of theSetDecisionRule() method because we are passing a SmartPointer, and smart
pointer cannot perform polymorphism, we must then extract the raw pointer that is associated
to the smart pointer. This extraction is done with the GetPointer() method.

typedef itk::MinimumDecisionRule DecisionRuleType;

DecisionRuleType::Pointer classifierDecisionRule = DecisionRuleType::New();

classifier->SetDecisionRule(classifierDecisionRule.GetPointer());

We now instantiate the membership functions. In this case weuse the
itk::Statistics::DistanceToCentroidMembershipFunction class templated over
the pixel type of the vector image, that in our example happens to be a vector of dimension 1.

typedef itk::Statistics::DistanceToCentroidMembershipFunction<
ArrayPixelType >

MembershipFunctionType;

typedef MembershipFunctionType::Pointer MembershipFunctionPointer;

double meanDistance = 0;
vnl_vector<double> centroid(1);
for(unsigned int i=0; i < numberOfClasses; i++)
{
MembershipFunctionPointer membershipFunction =

MembershipFunctionType::New();

centroid[0] = atof(argv[i+numberOfArgumentsBeforeMeans]);

membershipFunction->SetCentroid(centroid);

classifier->AddMembershipFunction(membershipFunction);
meanDistance += static_cast< double > (centroid[0]);
}

meanDistance /= numberOfClasses;

http://www.itk.org/Doxygen/html/classitk_1_1ImageClassifierBase.html
http://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1DistanceToCentroidMembershipFunction.html

10.4. Classification 695

We set the Smoothing factor. This factor will multiply the weights that define the influence of
neighbors on the classification of a given pixel. The higher the value, the more uniform will be
the regions resulting from the classification refinement.

mrfFilter->SetSmoothingFactor(smoothingFactor);

and we set the neighborhood radius that will define the size ofthe clique to be used in the
computation of the neighbors’ influence in the classification of any given pixel. Note that despite
the fact that we call this a radius, it is actually the half size of an hypercube. That is, the
actual region of influence will not be circular but rather an N-Dimensional box. For example, a
neighborhood radius of 2 in a 3D image will result in a clique of size 5x5x5 pixels, and a radius
of 1 will result in a clique of size 3x3x3 pixels.

mrfFilter->SetNeighborhoodRadius(1);

We should now set the weights used for the neighbors. This is done by passing an array of values
that contains the linear sequence of weights for the neighbors. For example, in a neighborhood
of size 3x3x3, we should provide a linear array of 9 weight values. The values are packaged in
a std::vector and are supposed to bedouble. The following lines illustrate a typical set of
values for a 3x3x3 neighborhood. The array is arranged and then passed to the filter by using
the methodSetMRFNeighborhoodWeight().

std::vector< double > weights;
weights.push_back(1.5);
weights.push_back(2.0);
weights.push_back(1.5);
weights.push_back(2.0);
weights.push_back(0.0); // This is the central pixel
weights.push_back(2.0);
weights.push_back(1.5);
weights.push_back(2.0);
weights.push_back(1.5);

We now scale weights so that the smoothing function and the image fidelity functions have
comparable value. This is necessary since the label image and the input image can have different
dynamic ranges. The fidelity function is usually computed using a distance function, such as the
itk::DistanceToCentroidMembershipFunction or one of the other membership functions.
They tend to have values in the order of the means specified.

double totalWeight = 0;
for(std::vector< double >::const_iterator wcIt = weights.begin();

wcIt != weights.end(); ++wcIt)
{
totalWeight += *wcIt;
}

http://www.itk.org/Doxygen/html/classitk_1_1DistanceToCentroidMembershipFunction.html

696 Chapter 10. Statistics

for(std::vector< double >::iterator wIt = weights.begin();
wIt != weights.end(); wIt++)

{
*wIt = static_cast< double > ((*wIt) * meanDistance / (2 * totalWeight));
}

mrfFilter->SetMRFNeighborhoodWeight(weights);

Finally, the classifier class is connected to the Markof Random Fields filter.

mrfFilter->SetClassifier(classifier);

The output image produced by theitk::MRFImageFilter has the same pixel type as the
labeled input image. In the following lines we use theOutputImageType in order to instantiate
the type of a itk::ImageFileWriter. Then create one, and connect it to the output of the
classification filter after passing it through an intensity rescaler to rescale it to an 8 bit dynamic
range

typedef MRFFilterType::OutputImageType OutputImageType;

typedef itk::ImageFileWriter< OutputImageType > WriterType;

WriterType::Pointer writer = WriterType::New();

writer->SetInput(intensityRescaler->GetOutput());

writer->SetFileName(outputImageFileName);

We are now ready for triggering the execution of the pipeline. This is done by simply invoking
theUpdate() method in the writer. This call will propagate the update request to the reader and
then to the MRF filter.

try
{
writer->Update();
}

catch(itk::ExceptionObject & excp)
{
std::cerr << "Problem encountered while writing image file : " << argv[2] << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}

Figure10.8illustrates the effect of this filter with three classes. In this example the filter was
run with a smoothing factor of 3. The labeled image was produced by ScalarImageKmean-
sClassifier.cxx and the means were estimated by ScalarImageKmeansModelEstimator.cxx.

http://www.itk.org/Doxygen/html/classitk_1_1MRFImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html

10.4. Classification 697

Figure 10.8:Effect of the MRF filter on a T1 slice of the brain.

Part III

Developer’s Guide

CHAPTER

ELEVEN

Iterators

This chapter introduces theimage iterator, an important generic programming construct for
image processing in ITK. An iterator is a generalization of the familiar C programming language
pointer used to reference data in memory. ITK has a wide variety of image iterators, some of
which are highly specialized to simplify common image processing tasks.

The next section is a brief introduction that defines iterators in the context of ITK. Section11.2
describes the programming interface common to most ITK image iterators. Sections11.3–11.4
document specific ITK iterator types and provide examples ofhow they are used.

11.1 Introduction

Generic programming models define functionally independent components calledcontainers
andalgorithms. Container objects store data and algorithms operate on data. To access data in
containers, algorithms use a third class of objects callediterators. An iterator is an abstraction
of a memory pointer. Every container type must define its own iterator type, but all iterators are
written to provide a common interface so that algorithm codecan reference data in a generic
way and maintain functional independence from containers.

The iterator is so named because it is used foriterative, sequential access of container val-
ues. Iterators appear infor andwhile loop constructs, visiting each data point in turn. A C
pointer, for example, is a type of iterator. It can be moved forward (incremented) and backward
(decremented) through memory to sequentially reference elements of an array. Many iterator
implementations have an interface similar to a C pointer.

In ITK we use iterators to write generic image processing code for images instantiated with
different combinations of pixel type, pixel container type, and dimensionality. Because ITK
image iterators are specifically designed to work withimagecontainers, their interface and
implementation is optimized for image processing tasks. Using the ITK iterators instead of
accessing data directly through theitk::Image interface has many advantages. Code is more
compact and often generalizes automatically to higher dimensions, algorithms run much faster,

http://www.itk.org/Doxygen/html/classitk_1_1Image.html

702 Chapter 11. Iterators

and iterators simplify tasks such as multithreading and neighborhood-based image processing.

11.2 Programming Interface

This section describes the standard ITK image iterator programming interface. Some special-
ized image iterators may deviate from this standard or provide additional methods.

11.2.1 Creating Iterators

All image iterators have at least one template parameter that is the image type over which they
iterate. There is no restriction on the dimensionality of the image or on the pixel type of the
image.

An iterator constructor requires at least two arguments, a smart pointer to the image to iterate
across, and an image region. The image region, called theiteration region, is a rectilinear
area in which iteration is constrained. The iteration region must be wholly contained within
the image. More specifically, a valid iteration region is anysubregion of the image within the
currentBufferedRegion. See Section4.1for more information on image regions.

There is a const and a non-const version of most ITK image iterators. A non-const iterator
cannot be instantiated on a non-const image pointer. Const versions of iterators may read, but
may not write pixel values.

Here is a simple example that defines and constructs a simple image iterator for anitk::Image.

typedef itk::Image<float, 3> ImageType;
typedef itk::ImageRegionConstIterator< ImageType > ConstIteratorType;
typedef itk::ImageRegionIterator< ImageType > IteratorType;

ImageType::Pointer image = SomeFilter->GetOutput();

ConstIteratorType constIterator(image, image->GetRequestedRegion());
IteratorType iterator(image, image->GetRequestedRegion());

11.2.2 Moving Iterators

An iterator is described aswalking its iteration region. At any time, the iterator will reference,
or “point to”, one pixel location in the N-dimensional (ND) image.Forward iterationgoes from
the beginning of the iteration region to the end of the iteration region.Reverse iteration, goes
from just past the end of the region back to the beginning. There are two corresponding starting
positions for iterators, thebeginposition and theendposition. An iterator can be moved directly
to either of these two positions using the following methods.

http://www.itk.org/Doxygen/html/classitk_1_1Image.html

11.2. Programming Interface 703

Iteration region

BEGIN Position

END Position

itk::Image

Figure 11.1:Normal path of an iterator through a 2D image. The iteration region is shown in a darker

shade. An arrow denotes a single iterator step, the result of one ++ operation.

• GoToBegin() Points the iterator to the first valid data element in the region.

• GoToEnd() Points the iterator toone position pastthe last valid element in the region.

Note that the end position is not actually located within theiteration region. This is important to
remember because attempting to dereference an iterator at its end position will have undefined
results.

ITK iterators are moved back and forth across their iterations using the decrement and increment
operators.

• operator++() Increments the iterator one position in the positive direction. Only the
prefix increment operator is defined for ITK image iterators.

• operator--() Decrements the iterator one position in the negative direction. Only
the prefix decrement operator is defined for ITK image iterators.

Figure 11.1 illustrates typical iteration over an image region. Most iterators increment and
decrement in the direction of the fastest increasing image dimension, wrapping to the first po-
sition in the next higher dimension at region boundaries. Inother words, an iterator first moves
across columns, then down rows, then from slice to slice, andso on.

In addition to sequential iteration through the image, someiterators may define random access
operators. Unlike the increment operators, random access operators may not be optimized for
speed and require some knowledge of the dimensionality of the image and the extent of the
iteration region to use properly.

• operator+=(OffsetType) Moves the iterator to the pixel position at the current
index plus specifieditk::Offset.

http://www.itk.org/Doxygen/html/classitk_1_1Offset.html

704 Chapter 11. Iterators

• operator-=(OffsetType) Moves the iterator to the pixel position at the current
index minus specified Offset.

• SetPosition(IndexType) Moves the iterator to the givenitk::Index posi-
tion.

TheSetPosition() method may be extremely slow for more complicated iterator types. In
general, it should only be used for setting a starting iteration position, like you would use
GoToBegin() or GoToEnd().

Some iterators do not follow a predictable path through their iteration regions and have no
fixed beginning or ending pixel locations. A conditional iterator, for example, visits pixels only
if they have certain values or connectivities. Random iterators, increment and decrement to
random locations and may even visit a given pixel location more than once.

An iterator can be queried to determine if it is at the end or the beginning of its iteration region.

• bool IsAtEnd()True if the iterator points toone position pastthe end of the iteration
region.

• bool IsAtBegin() True if the iterator points to the first position in the iteration
region. The method is typically used to test for the end of reverse iteration.

An iterator can also report its current image index position.

• IndexType GetIndex() Returns the Index of the image pixel that the iterator cur-
rently points to.

For efficiency, most ITK image iterators do not perform bounds checking. It is possible to
move an iterator outside of its valid iteration region. Dereferencing an out-of-bounds iterator
will produce undefined results.

11.2.3 Accessing Data

ITK image iterators define two basic methods for reading and writing pixel values.

• PixelType Get() Returns the value of the pixel at the iterator position.

• void Set(PixelType) Sets the value of the pixel at the iterator position. Not
defined for const versions of iterators.

TheGet() andSet() methods are inlined and optimized for speed so that their useis equivalent
to dereferencing the image buffer directly. There are a few common cases, however, where using
Get() andSet() do incur a penalty. Consider the following code, which fetches, modifies, and
then writes a value back to the same pixel location.

http://www.itk.org/Doxygen/html/classitk_1_1Index.html

11.2. Programming Interface 705

it.Set(it.Get() + 1);

As written, this code requires one more memory dereference than is necessary. Some iterators
define a third data access method that avoids this penalty.

• PixelType &Value() Returns a reference to the pixel at the iterator position.

TheValue() method can be used as either an lval or an rval in an expression. It has all the
properties ofoperator*. TheValue() method makes it possible to rewrite our example code
more efficiently.

it.Value()++;

Consider using theValue() method instead ofGet() or Set() when a call tooperator= on a
pixel is non-trivial, such as when working with vector pixels, and operations are done in-place
in the image. The disadvantage of usingValue is that it cannot support image adapters (see
Section12on page745for more information about image adaptors).

11.2.4 Iteration Loops

Using the methods described in the previous sections, we cannow write a simple example to
do pixel-wise operations on an image. The following code calculates the squares of all values
in an input image and writes them to an output image.

ConstIteratorType in(inputImage, inputImage->GetRequestedRegion());
IteratorType out(outputImage, inputImage->GetRequestedRegion());

for (in.GoToBegin(), out.GoToBegin(); !in.IsAtEnd(); ++in, ++out)
{
out.Set(in.Get() * in.Get());
}

Notice that both the input and output iterators are initialized over the same region, the
RequestedRegion of inputImage. This is good practice because it ensures that the output
iterator walks exactly the same set of pixel indices as the input iterator, but does not require
that the output and input be the same size. The only requirement is that the input image must
contain a region (a starting index and size) that matches theRequestedRegion of the output
image.

Equivalent code can be written by iterating through the image in reverse. The syntax is slightly
more awkward because theendof the iteration region is not a valid position and we can only
test whether the iterator is strictlyequalto its beginning position. It is often more convenient to
write reverse iteration in awhile loop.

706 Chapter 11. Iterators

in.GoToEnd();
out.GoToEnd();
while (! in.IsAtBegin())
{
--in;
--out;
out.Set(in.Get() * in.Get());
}

11.3 Image Iterators

This section describes iterators that walk rectilinear image regions and reference a single pixel
at a time. The itk::ImageRegionIterator is the most basic ITK image iterator and the
first choice for most applications. The rest of the iteratorsin this section are specializations of
ImageRegionIterator that are designed make common image processing tasks more efficient or
easier to implement.

11.3.1 ImageRegionIterator

The source code for this section can be found in the file
Examples/Iterators/ImageRegionIterator.cxx.

The itk::ImageRegionIterator is optimized for iteration speed and is the first choice for
iterative, pixel-wise operations when location in the image is not important. ImageRegionIter-
ator is the least specialized of the ITK image iterator classes. It implements all of the methods
described in the preceding section.

The following example illustrates the use ofitk::ImageRegionConstIterator and Im-
ageRegionIterator. Most of the code constructs introducedapply to other ITK iterators as well.
This simple application crops a subregion from an image by copying its pixel values into to a
second, smaller image.

We begin by including the appropriate header files.

#include "itkImageRegionConstIterator.h"
#include "itkImageRegionIterator.h"

Next we define a pixel type and corresponding image type. ITK iterator classes expect the
image type as their template parameter.

const unsigned int Dimension = 2;

typedef unsigned char PixelType;

http://www.itk.org/Doxygen/html/classitk_1_1ImageRegionIterator.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageRegionIterator.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageRegionConstIterator.html

11.3. Image Iterators 707

typedef itk::Image< PixelType, Dimension > ImageType;

typedef itk::ImageRegionConstIterator< ImageType > ConstIteratorType;
typedef itk::ImageRegionIterator< ImageType> IteratorType;

Information about the subregion to copy is read from the command line. The subregion is
defined by anitk::ImageRegion object, with a starting grid index and a size (Section4.1).

ImageType::RegionType inputRegion;

ImageType::RegionType::IndexType inputStart;
ImageType::RegionType::SizeType size;

inputStart[0] = ::atoi(argv[3]);
inputStart[1] = ::atoi(argv[4]);

size[0] = ::atoi(argv[5]);
size[1] = ::atoi(argv[6]);

inputRegion.SetSize(size);
inputRegion.SetIndex(inputStart);

The destination region in the output image is defined using the input region size, but a different
start index. The starting index for the destination region is the corner of the newly generated
image.

ImageType::RegionType outputRegion;

ImageType::RegionType::IndexType outputStart;

outputStart[0] = 0;
outputStart[1] = 0;

outputRegion.SetSize(size);
outputRegion.SetIndex(outputStart);

After reading the input image and checking that the desired subregion is, in fact, contained in
the input, we allocate an output image. It is fundamental to set valid values to some of the basic
image information during the copying process. In particular, the starting index of the output
region is now filled up with zero values and the coordinates ofthe physical origin are computed
as a shift from the origin of the input image. This is quite important since it will allow us to
later register the extracted region against the original image.

ImageType::Pointer outputImage = ImageType::New();
outputImage->SetRegions(outputRegion);

http://www.itk.org/Doxygen/html/classitk_1_1ImageRegion.html

708 Chapter 11. Iterators

const ImageType::SpacingType& spacing = reader->GetOutput()->GetSpacing();
const ImageType::PointType& inputOrigin = reader->GetOutput()->GetOrigin();
double outputOrigin[Dimension];

for(unsigned int i=0; i< Dimension; i++)
{
outputOrigin[i] = inputOrigin[i] + spacing[i] * inputStart[i];
}

outputImage->SetSpacing(spacing);
outputImage->SetOrigin(outputOrigin);
outputImage->Allocate();

The necessary images and region definitions are now in place.All that is left to do is to create
the iterators and perform the copy. Note that image iterators are not accessed via smart pointers
so they are light-weight objects that are instantiated on the stack. Also notice how the input
and output iterators are defined over thesame corresponding region. Though the images are
different sizes, they both contain the same target subregion.

ConstIteratorType inputIt(reader->GetOutput(), inputRegion);
IteratorType outputIt(outputImage, outputRegion);

for (inputIt.GoToBegin(), outputIt.GoToBegin(); !inputIt.IsAtEnd();
++inputIt, ++outputIt)

{
outputIt.Set(inputIt.Get());
}

Thefor loop above is a common construct in ITK. The beauty of these four lines of code is
that they are equally valid for one, two, three, or even ten dimensional data, and no knowledge
of the size of the image is necessary. Consider the ugly alternative of ten nestedfor loops for
traversing an image.

Let’s run this example on the imageFatMRISlice.png found inExamples/Data. The com-
mand line arguments specify the input and output file names, then thex, y origin and thex, y
size of the cropped subregion.

ImageRegionIterator FatMRISlice.png ImageRegionIteratorOutput.png 20 70 210 140

The output is the cropped subregion shown in Figure11.2.

11.3.2 ImageRegionIteratorWithIndex

The source code for this section can be found in the file
Examples/Iterators/ImageRegionIteratorWithIndex.cxx.

11.3. Image Iterators 709

Figure 11.2:Cropping a region from an image. The original image is shown at left. The image on the

right is the result of applying the ImageRegionIterator example code.

The “WithIndex” family of iterators was designed for algorithms that use both the value and
the location of image pixels in calculations. Unlikeitk::ImageRegionIterator, which cal-
culates an index only when asked for,itk::ImageRegionIteratorWithIndex maintains its
index location as a member variable that is updated during the increment or decrement process.
Iteration speed is penalized, but the index queries are moreefficient.

The following example illustrates the use of ImageRegionIteratorWithIndex. The algorithm
mirrors a 2D image across itsx-axis (seeitk::FlipImageFilter for an ND version). The
algorithm makes extensive use of theGetIndex() method.

We start by including the proper header file.

#include "itkImageRegionIteratorWithIndex.h"

For this example, we will use an RGB pixel type so that we can process color images. Like
most other ITK image iterator, ImageRegionIteratorWithIndex class expects the image type as
its single template parameter.

const unsigned int Dimension = 2;

typedef itk::RGBPixel< unsigned char > RGBPixelType;
typedef itk::Image< RGBPixelType, Dimension > ImageType;

typedef itk::ImageRegionIteratorWithIndex< ImageType > IteratorType;

An ImageType smart pointer calledinputImage points to the output of the image reader. After
updating the image reader, we can allocate an output image ofthe same size, spacing, and origin
as the input image.

http://www.itk.org/Doxygen/html/classitk_1_1ImageRegionIterator.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageRegionIteratorWithIndex.html
http://www.itk.org/Doxygen/html/classitk_1_1FlipImageFilter.html

710 Chapter 11. Iterators

ImageType::Pointer outputImage = ImageType::New();
outputImage->SetRegions(inputImage->GetRequestedRegion());
outputImage->CopyInformation(inputImage);
outputImage->Allocate();

Next we create the iterator that walks the output image. Thisalgorithm requires no iterator for
the input image.

IteratorType outputIt(outputImage, outputImage->GetRequestedRegion());

This axis flipping algorithm works by iterating through the output image, querying the iterator
for its index, and copying the value from the input at an indexmirrored across thex-axis.

ImageType::IndexType requestedIndex =
outputImage->GetRequestedRegion().GetIndex();

ImageType::SizeType requestedSize =
outputImage->GetRequestedRegion().GetSize();

for (outputIt.GoToBegin(); !outputIt.IsAtEnd(); ++outputIt)
{
ImageType::IndexType idx = outputIt.GetIndex();
idx[0] = requestedIndex[0] + requestedSize[0] - 1 - idx[0];
outputIt.Set(inputImage->GetPixel(idx));
}

Let’s run this example on the imageVisibleWomanEyeSlice.png found in the
Examples/Data directory. Figure11.3shows how the original image has been mirrored across
its x-axis in the output.

11.3.3 ImageLinearIteratorWithIndex

The source code for this section can be found in the file
Examples/Iterators/ImageLinearIteratorWithIndex.cxx.

The itk::ImageLinearIteratorWithIndex is designed for line-by-line processing of an
image. It walks a linear path along a selected image direction parallel to one of the coordinate
axes of the image. This iterator conceptually breaks an image into a set of parallel lines that
span the selected image dimension.

Like all image iterators, movement of the ImageLinearIteratorWithIndex is constrained within
an image regionR. The lineℓ through which the iterator moves is defined by selecting a direc-
tion and an origin. The lineℓ extends from the origin to the upper boundary ofR. The origin
can be moved to any position along the lower boundary ofR.

Several additional methods are defined for this iterator to control movement of the iterator along
the lineℓ and movement of the origin ofℓ.

http://www.itk.org/Doxygen/html/classitk_1_1ImageLinearIteratorWithIndex.html

11.3. Image Iterators 711

Figure 11.3:Results of using ImageRegionIteratorWithIndex to mirror an image across an axis. The

original image is shown at left. The mirrored output is shown at right.

• NextLine() Moves the iterator to the beginning pixel location of the next line in the
image. The origin of the next line is determined by incrementing the current origin along
the fastest increasing dimension of the subspace of the image that excludes the selected
dimension.

• PreviousLine() Moves the iterator to thelast valid pixel locationin the previous
line. The origin of the previous line is determined by decrementing the current origin
along the fastest increasing dimension of the subspace of the image that excludes the
selected dimension.

• GoToBeginOfLine()Moves the iterator to the beginning pixel of the current line.

• GoToEndOfLine()Move the iterator toone pastthe last valid pixel of the current line.

• IsAtReverseEndOfLine()Returns true if the iterator points toone position before
the beginning pixel of the current line.

• IsAtEndOfLine()Returns true if the iterator points toone position pastthe last valid
pixel of the current line.

The following code example shows how to use the ImageLinearIteratorWithIndex. It imple-
ments the same algorithm as in the previous example, flippingan image across itsx-axis. Two
line iterators are iterated in opposite directions across thex-axis. After each line is traversed,
the iterator origins are stepped along they-axis to the next line.

712 Chapter 11. Iterators

Headers for both the const and non-const versions are needed.

#include "itkImageLinearConstIteratorWithIndex.h"
#include "itkImageLinearIteratorWithIndex.h"

The RGB image and pixel types are defined as in the previous example. The ImageLinearIt-
eratorWithIndex class and its const version each have single template parameters, the image
type.

typedef itk::ImageLinearIteratorWithIndex< ImageType > IteratorType;
typedef itk::ImageLinearConstIteratorWithIndex< ImageType > ConstIteratorType;

After reading the input image, we allocate an output image that of the same size, spacing, and
origin.

ImageType::Pointer outputImage = ImageType::New();
outputImage->SetRegions(inputImage->GetRequestedRegion());
outputImage->CopyInformation(inputImage);
outputImage->Allocate();

Next we create the two iterators. The const iterator walks the input image, and the non-const
iterator walks the output image. The iterators are initialized over the same region. The direction
of iteration is set to 0, thex dimension.

ConstIteratorType inputIt(inputImage, inputImage->GetRequestedRegion());
IteratorType outputIt(outputImage, inputImage->GetRequestedRegion());

inputIt.SetDirection(0);
outputIt.SetDirection(0);

Each line in the input is copied to the output. The input iterator moves forward across columns
while the output iterator moves backwards.

for (inputIt.GoToBegin(), outputIt.GoToBegin(); ! inputIt.IsAtEnd();
outputIt.NextLine(), inputIt.NextLine())

{
inputIt.GoToBeginOfLine();
outputIt.GoToEndOfLine();
--outputIt;
while (! inputIt.IsAtEndOfLine())

{
outputIt.Set(inputIt.Get());
++inputIt;
--outputIt;
}

}

11.3. Image Iterators 713

Running this example onVisibleWomanEyeSlice.png produces the same output image shown
in Figure11.3.

The source code for this section can be found in the file
Examples/Iterators/ImageLinearIteratorWithIndex2.cxx.

This example shows how to use theitk::ImageLinearIteratorWithIndex for computing
the mean across time of a 4D image where the first three dimensions correspond to spatial
coordinates and the fourth dimension corresponds to time. The result of the mean across time
is to be stored in a 3D image.

#include "itkImageLinearConstIteratorWithIndex.h"

First we declare the types of the images

typedef unsigned char PixelType;
typedef itk::Image< PixelType, 3 > Image3DType;
typedef itk::Image< PixelType, 4 > Image4DType;

typedef itk::ImageFileReader< Image4DType > Reader4DType;
typedef itk::ImageFileWriter< Image3DType > Writer3DType;

Reader4DType::Pointer reader4D = Reader4DType::New();
reader4D->SetFileName(argv[1]);

try
{
reader4D->Update();
}

catch(itk::ExceptionObject & excp)
{
std::cerr << "Error writing the image" << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}

Image4DType::ConstPointer image4D = reader4D->GetOutput();

Image3DType::Pointer image3D = Image3DType::New();
typedef Image3DType::IndexType Index3DType;
typedef Image3DType::SizeType Size3DType;
typedef Image3DType::RegionType Region3DType;
typedef Image3DType::SpacingType Spacing3DType;
typedef Image3DType::PointType Origin3DType;

typedef Image4DType::IndexType Index4DType;

http://www.itk.org/Doxygen/html/classitk_1_1ImageLinearIteratorWithIndex.html

714 Chapter 11. Iterators

typedef Image4DType::SizeType Size4DType;
typedef Image4DType::RegionType Region4DType;
typedef Image4DType::SpacingType Spacing4DType;
typedef Image4DType::PointType Origin4DType;

Index3DType index3D;
Size3DType size3D;
Spacing3DType spacing3D;
Origin3DType origin3D;

Image4DType::RegionType region4D = image4D->GetBufferedRegion();

Index4DType index4D = region4D.GetIndex();
Size4DType size4D = region4D.GetSize();
Spacing4DType spacing4D = image4D->GetSpacing();
Origin4DType origin4D = image4D->GetOrigin();

for(unsigned int i=0; i < 3; i++)
{
size3D[i] = size4D[i];
index3D[i] = index4D[i];
spacing3D[i] = spacing4D[i];
origin3D[i] = origin4D[i];
}

image3D->SetSpacing(spacing3D);
image3D->SetOrigin(origin3D);

Region3DType region3D;
region3D.SetIndex(index3D);
region3D.SetSize(size3D);

image3D->SetRegions(region3D);
image3D->Allocate();

typedef itk::NumericTraits< PixelType >::AccumulateType SumType;
typedef itk::NumericTraits< SumType >::RealType MeanType;

const unsigned int timeLength = region4D.GetSize()[3];

typedef itk::ImageLinearConstIteratorWithIndex<
Image4DType > IteratorType;

IteratorType it(image4D, region4D);
it.SetDirection(3); // Walk along time dimension
it.GoToBegin();
while(!it.IsAtEnd())

11.3. Image Iterators 715

{
SumType sum = itk::NumericTraits< SumType >::Zero;
it.GoToBeginOfLine();
index4D = it.GetIndex();
while(!it.IsAtEndOfLine())

{
sum += it.Get();
++it;
}

MeanType mean = static_cast< MeanType >(sum) /
static_cast< MeanType >(timeLength);

index3D[0] = index4D[0];
index3D[1] = index4D[1];
index3D[2] = index4D[2];

image3D->SetPixel(index3D, static_cast< PixelType >(mean));
it.NextLine();
}

As you can see, we avoid to use a 3D iterator to walk over the mean image. The reason is that
there is no guarantee that the 3D iterator will walk in the same order as the 4D. Iterators just
adhere to their contract of visiting all the pixel, but do notenforce any particular order for the
visits. The linear iterator guarantees to visit the pixels along a line of the image in the order in
which they are placed in the line, but do not states in what order one line will be visited with
respect to other lines. Here we simply take advantage of knowing the first three components of
the 4D iterator index, and use them to place the resulting mean value in the output 3D image.

11.3.4 ImageSliceIteratorWithIndex

The source code for this section can be found in the file
Examples/Iterators/ImageSliceIteratorWithIndex.cxx.

The itk::ImageSliceIteratorWithIndex class is an extension of
itk::ImageLinearIteratorWithIndex from iteration along lines to iteration along
both linesand planesin an image. Aslice is a 2D plane spanned by two vectors pointing along
orthogonal coordinate axes. The slice orientation of the slice iterator is defined by specifying
its two spanning axes.

• SetFirstDirection()Specifies the first coordinate axis direction of the slice plane.

• SetSecondDirection() Specifies the second coordinate axis direction of the slice
plane.

http://www.itk.org/Doxygen/html/classitk_1_1ImageSliceIteratorWithIndex.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageLinearIteratorWithIndex.html

716 Chapter 11. Iterators

Several new methods control movement from slice to slice.

• NextSlice()Moves the iterator to the beginning pixel location of the next slice in the
image. The origin of the next slice is calculated by incrementing the current origin index
along the fastest increasing dimension of the image subspace which excludes the first and
second dimensions of the iterator.

• PreviousSlice() Moves the iterator to thelast valid pixel locationin the previous
slice. The origin of the previous slice is calculated by decrementing the current origin
index along the fastest increasing dimension of the image subspace which excludes the
first and second dimensions of the iterator.

• IsAtReverseEndOfSlice() Returns true if the iterator points toone position be-
fore the beginning pixel of the current slice.

• IsAtEndOfSlice() Returns true if the iterator points toone position pastthe last
valid pixel of the current slice.

The slice iterator moves line by line usingNextLine() andPreviousLine(). The line direc-
tion is parallel to thesecondcoordinate axis direction of the slice plane (see also Section11.3.3).

The next code example calculates the maximum intensity projection along one of the coordinate
axes of an image volume. The algorithm is straightforward using ImageSliceIteratorWithIndex
because we can coordinate movement through a slice of the 3D input image with movement
through the 2D planar output.

Here is how the algorithm works. For each 2D slice of the input, iterate through all the pixels
line by line. Copy a pixel value to the corresponding position in the 2D output image if it is
larger than the value already contained there. When all slices have been processed, the output
image is the desired maximum intensity projection.

We include a header for the const version of the slice iterator. For writing values to the 2D
projection image, we use the linear iterator from the previous section. The linear iterator is
chosen because it can be set to follow the same path in its underlying 2D image that the slice
iterator follows over each slice of the 3D image.

#include "itkImageSliceConstIteratorWithIndex.h"
#include "itkImageLinearIteratorWithIndex.h"

The pixel type is defined asunsigned short. For this application, we need two image types,
a 3D image for the input, and a 2D image for the intensity projection.

typedef unsigned short PixelType;
typedef itk::Image< PixelType, 2 > ImageType2D;
typedef itk::Image< PixelType, 3 > ImageType3D;

A slice iterator type is defined to walk the input image.

11.3. Image Iterators 717

typedef itk::ImageLinearIteratorWithIndex< ImageType2D > LinearIteratorType;
typedef itk::ImageSliceConstIteratorWithIndex< ImageType3D > SliceIteratorType;

The projection direction is read from the command line. The projection image will be the size of
the 2D plane orthogonal to the projection direction. Its spanning vectors are the two remaining
coordinate axes in the volume. These axes are recorded in thedirection array.

unsigned int projectionDirection =
static_cast<unsigned int>(::atoi(argv[3]));

unsigned int i, j;
unsigned int direction[2];
for (i = 0, j = 0; i < 3; ++i)
{
if (i != projectionDirection)

{
direction[j] = i;
j++;
}

}

Thedirection array is now used to define the projection image size based on the input image
size. The output image is created so that its common dimension(s) with the input image are the
same size. For example, if we project along thex axis of the input, the size and origin of the
y axes of the input and output will match. This makes the code slightly more complicated, but
prevents a counter-intuitive rotation of the output.

ImageType2D::RegionType region;
ImageType2D::RegionType::SizeType size;
ImageType2D::RegionType::IndexType index;

ImageType3D::RegionType requestedRegion = inputImage->GetRequestedRegion();

index[direction[0]] = requestedRegion.GetIndex()[direction[0]];
index[1- direction[0]] = requestedRegion.GetIndex()[direction[1]];
size[direction[0]] = requestedRegion.GetSize()[direction[0]];
size[1- direction[0]] = requestedRegion.GetSize()[direction[1]];

region.SetSize(size);
region.SetIndex(index);

ImageType2D::Pointer outputImage = ImageType2D::New();

outputImage->SetRegions(region);
outputImage->Allocate();

718 Chapter 11. Iterators

Next we create the necessary iterators. The const slice iterator walks the 3D input image, and
the non-const linear iterator walks the 2D output image. Theiterators are initialized to walk
the same linear path through a slice. Remember that theseconddirection of the slice iterator
defines the direction that linear iteration walks within a slice.

SliceIteratorType inputIt(inputImage, inputImage->GetRequestedRegion());
LinearIteratorType outputIt(outputImage, outputImage->GetRequestedRegion());

inputIt.SetFirstDirection(direction[1]);
inputIt.SetSecondDirection(direction[0]);

outputIt.SetDirection(1 - direction[0]);

Now we are ready to compute the projection. The first step is toinitialize all of the projection
values to their nonpositive minimum value. The projection values are then updated row by row
from the first slice of the input. At the end of the first slice, the input iterator steps to the first
row in the next slice, while the output iterator, whose underlying image consists of only one
slice, rewinds to its first row. The process repeats until thelast slice of the input is processed.

outputIt.GoToBegin();
while (! outputIt.IsAtEnd())
{
while (! outputIt.IsAtEndOfLine())

{
outputIt.Set(itk::NumericTraits<unsigned short>::NonpositiveMin());
++outputIt;
}

outputIt.NextLine();
}

inputIt.GoToBegin();
outputIt.GoToBegin();

while(!inputIt.IsAtEnd())
{
while (!inputIt.IsAtEndOfSlice())

{
while (!inputIt.IsAtEndOfLine())
{
outputIt.Set(vnl_math_max(outputIt.Get(), inputIt.Get()));
++inputIt;
++outputIt;
}

outputIt.NextLine();
inputIt.NextLine();

}

11.3. Image Iterators 719

Figure 11.4:The maximum intensity projection through three slices of a volume.

outputIt.GoToBegin();
inputIt.NextSlice();
}

Running this example code on the 3D imageExamples/Data/BrainProtonDensity3Slices.mha
using thez-axis as the axis of projection gives the image shown in Figure11.4.

11.3.5 ImageRandomConstIteratorWithIndex

The source code for this section can be found in the file
Examples/Iterators/ImageRandomConstIteratorWithIndex.cxx.

itk::ImageRandomConstIteratorWithIndex was developed to randomly sample pixel val-
ues. When incremented or decremented, it jumps to a random location in its image region.

The user must specify a sample size when creating this iterator. The sample size, rather than a
specific image index, defines the end position for the iterator. IsAtEnd() returnstrue when
the current sample number equals the sample size.IsAtBegin() returnstrue when the cur-
rent sample number equals zero. An important difference from other image iterators is that
ImageRandomConstIteratorWithIndex may visit the same pixel more than once.

Let’s use the random iterator to estimate some simple image statistics. The next example calcu-
lates an estimate of the arithmetic mean of pixel values.

First, include the appropriate header and declare pixel andimage types.

#include "itkImageRandomConstIteratorWithIndex.h"

http://www.itk.org/Doxygen/html/classitk_1_1ImageRandomConstIteratorWithIndex.html

720 Chapter 11. Iterators

Sample Size
10 100 1000 10000

RatLungSlice1.mha 50.5 52.4 53.0 52.4
RatLungSlice2.mha 46.7 47.5 47.4 47.6
BrainT1Slice.png 47.2 64.1 68.0 67.8

Table 11.1:Estimates of mean image pixel value using the ImageRandomConstIteratorWithIndex at dif-

ferent sample sizes.

const unsigned int Dimension = 2;

typedef unsigned short PixelType;
typedef itk::Image< PixelType, Dimension > ImageType;
typedef itk::ImageRandomConstIteratorWithIndex< ImageType > ConstIteratorType;

The input image has been read asinputImage. We now create an iterator with a number of
samples set by command line argument. The call toReinitializeSeed seeds the random
number generator. The iterator is initialized over the entire valid image region.

ConstIteratorType inputIt(inputImage, inputImage->GetRequestedRegion());
inputIt.SetNumberOfSamples(::atoi(argv[2]));
inputIt.ReinitializeSeed();

Now take the specified number of samples and calculate their average value.

float mean = 0.0f;
for (inputIt.GoToBegin(); ! inputIt.IsAtEnd(); ++inputIt)
{
mean += static_cast<float>(inputIt.Get());
}

mean = mean / ::atof(argv[2]);

Table 11.3.5 shows the results of running this example on several of the data files from
Examples/Data with a range of sample sizes.

11.4 Neighborhood Iterators

In ITK, a pixel neighborhood is loosely defined as a small set of pixels that are locally adjacent
to one another in an image. The size and shape of a neighborhood, as well the connectivity
among pixels in a neighborhood, may vary with the application.

11.4. Neighborhood Iterators 721

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

END Position

BEGIN Position

Iteration Region Iterator
Neighborhood

itk::Image

Figure 11.5:Path of a 3x3 neighborhood iterator through a 2D image region. The extent of the neighbor-

hood is indicated by the hashing around the iterator position. Pixels that lie within this extent are accessible

through the iterator. An arrow denotes a single iterator step, the result of one ++ operation.

Many image processing algorithms are neighborhood-based,that is, the result at a pixeli is
computed from the values of pixels in the ND neighborhood ofi. Consider finite difference
operations in 2D. A derivative at pixel indexi = (j,k), for example, is taken as a weighted
difference of the values at(j + 1,k) and(j −1,k). Other common examples of neighborhood
operations include convolution filtering and image morphology.

This section describes a class of ITK image iterators that are designed for working with pixel
neighborhoods. An ITK neighborhood iterator walks an imageregion just like a normal image
iterator, but instead of only referencing a single pixel at each step, it simultaneously points to the
entire ND neighborhood of pixels. Extensions to the standard iterator interface provide read and
write access to all neighborhood pixels and information such as the size, extent, and location of
the neighborhood.

Neighborhood iterators use the same operators defined in Section 11.2and the same code con-
structs as normal iterators for looping through an image. Figure11.5shows a neighborhood
iterator moving through an iteration region. This iteratordefines a 3x3 neighborhood around
each pixel that it visits. Thecenterof the neighborhood iterator is always positioned over its
current index and all other neighborhood pixel indices are referenced as offsets from the center
index. The pixel under the center of the neighborhood iterator and all pixels under the shaded
area, orextent, of the iterator can be dereferenced.

In addition to the standard image pointer and iteration region (Section11.2), neighborhood

722 Chapter 11. Iterators

10 1 2

3 4 5

6 7 8

0 2

3 4 5

6 7 8

9 10 11

12 13 14

0 1 2

0

1

2

3

4

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

(−1, −1) (0, −1) (1,−1)

(−1,0) (0,0) (1,0)

(−1,1) (0,1) (1,1)

(0,1)

(1,2)

(−1,−2) (0,−2) (1,−2)

(−1,−1) (0,−1) (1,−1)

(−1,0) (0,0) (1,0)

(−1,1) (1,1)

(−1,2) (0,2)

(−1,0) (0,0) (1,0)

(0,−2)

(0,−1)

(0,0)

(0,1)

(0,2)

radius = [1,1]
size = [3,3]

radius = [1,2]
size = [3,5]

radius = [1,0]
size = [3,1]

radius = [3,1]
size = [7,3]

size = [1,5]

(−3,−1) (−2,−1) (−1,−1) (0,−1) (1,−1) (2,−1) (3,−1)

(−3,0) (−2,0) (−1,0) (0,0) (1,0) (2,0) (3,0)

(−3,1) (−2,1) (−1,1) (0,1) (1,1) (2,1) (3,1)

radius = [0,2]

Figure 11.6:Several possible 2D neighborhood iterator shapes are shown along with their radii and sizes.

A neighborhood pixel can be dereferenced by its integer index (top) or its offset from the center (bottom).

The center pixel of each iterator is shaded.

iterator constructors require an argument that specifies the extent of the neighborhood to cover.
Neighborhood extent is symmetric across its center in each axis and is given as an array ofN
distances that are collectively called theradius. Each elementd of the radius, where 0< d < N
andN is the dimensionality of the neighborhood, gives the extentof the neighborhood in pixels
for dimensionN. The length of each face of the resulting ND hypercube is 2d + 1 pixels, a
distance ofd on either side of the single pixel at the neighbor center. Figure11.6shows the
relationship between the radius of the iterator and the sizeof the neighborhood for a variety of
2D iterator shapes.

The radius of the neighborhood iterator is queried after construction by calling the
GetRadius() method. Some other methods provide some useful informationabout the iter-
ator and its underlying image.

• SizeType GetRadius() Returns the ND radius of the neighborhood as an

11.4. Neighborhood Iterators 723

itk::Size.

• const ImageType *GetImagePointer() Returns the pointer to the image ref-
erenced by the iterator.

• unsigned long Size() Returns the size in number of pixels of the neighborhood.

The neighborhood iterator interface extends the normal ITKiterator interface for setting and
getting pixel values. One way to dereference pixels is to think of the neighborhood as a linear
array where each pixel has a unique integer index. The index of a pixel in the array is deter-
mined by incrementing from the upper-left-forward corner of the neighborhood along the fastest
increasing image dimension: first column, then row, then slice, and so on. In Figure11.6, the
unique integer index is shown at the top of each pixel. The center pixel is always at position
n/2, wheren is the size of the array.

• PixelType GetPixel(const unsigned int i) Returns the value of the
pixel at neighborhood positioni.

• void SetPixel(const unsigned int i, PixelType p)Sets the value of
the pixel at positioni to p.

Another way to think about a pixel location in a neighborhoodis as an ND offset from the
neighborhood center. The upper-left-forward corner of a 3x3x3 neighborhood, for example, can
be described by offset(−1,−1,−1). The bottom-right-back corner of the same neighborhood
is at offset(1,1,1). In Figure11.6, the offset from center is shown at the bottom of each
neighborhood pixel.

• PixelType GetPixel(const OffsetType &o) Get the value of the pixel at
the position offseto from the neighborhood center.

• void SetPixel(const OffsetType &o, PixelType p) Set the value at
the position offseto from the neighborhood center to the valuep.

The neighborhood iterators also provide a shorthand for setting and getting the value at the
center of the neighborhood.

• PixelType GetCenterPixel()Gets the value at the center of the neighborhood.

• void SetCenterPixel(PixelType p) Sets the value at the center of the neigh-
borhood to the valuep

There is another shorthand for setting and getting values for pixels that lie some integer distance
from the neighborhood center along one of the image axes.

http://www.itk.org/Doxygen/html/classitk_1_1Size.html

724 Chapter 11. Iterators

• PixelType GetNext(unsigned int d) Get the value immediately adjacent to
the neighborhood center in the positive direction along thed axis.

• void SetNext(unsigned int d, PixelType p) Set the value immediately
adjacent to the neighborhood center in the positive direction along thed axis to the value
p.

• PixelType GetPrevious(unsigned int d) Get the value immediately adja-
cent to the neighborhood center in the negative direction along thed axis.

• void SetPrevious(unsigned int d, PixelType p) Set the value imme-
diately adjacent to the neighborhood center in the negativedirection along thed axis to
the valuep.

• PixelType GetNext(unsigned int d, unsigned int s) Get the value
of the pixel locateds pixels from the neighborhood center in the positive direction along
thed axis.

• void SetNext(unsigned int d, unsigned int s, PixelType p)
Set the value of the pixel locateds pixels from the neighborhood center in the positive
direction along thed axis to valuep.

• PixelType GetPrevious(unsigned int d, unsigned int s) Get the
value of the pixel locateds pixels from the neighborhood center in the positive direc-
tion along thed axis.

• void SetPrevious(unsigned int d, unsigned int s, PixelType
p) Set the value of the pixel locateds pixels from the neighborhood center in the positive
direction along thed axis to valuep.

It is also possible to extract or set all of the neighborhood values from an iterator at once using
a regular ITK neighborhood object. This may be useful in algorithms that perform a particu-
larly large number of calculations in the neighborhood and would otherwise require multiple
dereferences of the same pixels.

• NeighborhoodType GetNeighborhood()Return aitk::Neighborhood of the
same size and shape as the neighborhood iterator and contains all of the values at the
iterator position.

• void SetNeighborhood(NeighborhoodType &N) Set all of the values in the
neighborhood at the iterator position to those contained inNeighborhoodN, which must
be the same size and shape as the iterator.

Several methods are defined to provide information about theneighborhood.

• IndexType GetIndex()Return the image index of the center pixel of the neighbor-
hood iterator.

http://www.itk.org/Doxygen/html/classitk_1_1Neighborhood.html

11.4. Neighborhood Iterators 725

• IndexType GetIndex(OffsetType o) Return the image index of the pixel at
offseto from the neighborhood center.

• IndexType GetIndex(unsigned int i) Return the image index of the pixel
at array positioni.

• OffsetType GetOffset(unsigned int i) Return the offset from the neigh-
borhood center of the pixel at array positioni.

• unsigned long GetNeighborhoodIndex(OffsetType o)Return the array
position of the pixel at offseto from the neighborhood center.

• std::slice GetSlice(unsigned int n) Return astd::slice through the
iterator neighborhood along axisn.

A neighborhood-based calculation in a neighborhood close to an image boundary may require
data that falls outside the boundary. The iterator in Figure11.5, for example, is centered on
a boundary pixel such that three of its neighbors actually donot exist in the image. When the
extent of a neighborhood falls outside the image, pixel values for missing neighbors are supplied
according to a rule, usually chosen to satisfy the numericalrequirements of the algorithm. A
rule for supplying out-of-bounds values is called aboundary condition.

ITK neighborhood iterators automatically detect out-of-bounds dereferences and will return val-
ues according to boundary conditions. The boundary condition type is specified by the second,
optional template parameter of the iterator. By default, neighborhood iterators use a Neumann
condition where the first derivative across the boundary is zero. The Neumann rule simply re-
turns the closest in-bounds pixel value to the requested out-of-bounds location. Several other
common boundary conditions can be found in the ITK toolkit. They include a periodic condition
that returns the pixel value from the opposite side of the data set, and is useful when working
with periodic data such as Fourier transforms, and a constant value condition that returns a set
valuev for all out-of-bounds pixel dereferences. The constant value condition is equivalent to
padding the image with valuev.

Bounds checking is a computationally expensive operation because it occurs each time the
iterator is incremented. To increase efficiency, a neighborhood iterator automatically disables
bounds checking when it detects that it is not necessary. A user may also explicitly disable
or enable bounds checking. Most neighborhood based algorithms can minimize the need for
bounds checking through clever definition of iteration regions. These techniques are explored
in Section11.4.1.

• void NeedToUseBoundaryConditionOn()Explicitly turn bounds checking on.
This method should be used with caution because unnecessarily enabling bounds check-
ing may result in a significant performance decrease. In general you should allow the
iterator to automatically determine this setting.

• void NeedToUseBoundaryConditionOff() Explicitly disable bounds check-
ing. This method should be used with caution because disabling bounds checking when
it is needed will result in out-of-bounds reads and undefinedresults.

726 Chapter 11. Iterators

• void OverrideBoundaryCondition(BoundaryConditionType *b)
Overrides the templated boundary condition, using boundary condition objectb instead.
Objectb should not be deleted until it has been released by the iterator. This method can
be used to change iterator behavior at run-time.

• void ResetBoundaryCondition() Discontinues the use of any run-time speci-
fied boundary condition and returns to using the condition specified in the template argu-
ment.

• void SetPixel(unsigned int i, PixelType p, bool status) Sets
the value at neighborhood array positioni to valuep. If the positioni is out-of-bounds,
status is set tofalse, otherwisestatus is set totrue.

The following sections describe the two ITK neighborhood iterator classes,
itk::NeighborhoodIterator and itk::ShapedNeighborhoodIterator. Each has a
const and a non-const version. The shaped iterator is a refinement of the standard Neighbor-
hoodIterator that supports an arbitrarily-shaped (non-rectilinear) neighborhood.

11.4.1 NeighborhoodIterator

The standard neighborhood iterator class in ITK is theitk::NeighborhoodIterator. To-
gether with itsconst version, itk::ConstNeighborhoodIterator, it implements the com-
plete API described above. This section provides several examples to illustrate the use of Neigh-
borhoodIterator.

Basic neighborhood techniques: edge detection

The source code for this section can be found in the file
Examples/Iterators/NeighborhoodIterators1.cxx.

This example uses theitk::NeighborhoodIterator to implement a simple Sobel edge de-
tection algorithm [30]. The algorithm uses the neighborhood iterator to iterate through an input
image and calculate a series of finite difference derivatives. Since the derivative results cannot
be written back to the input image without affecting later calculations, they are written instead
to a second, output image. Most neighborhood processing algorithms follow this read-only
model on their inputs.

We begin by including the proper header files. Theitk::ImageRegionIterator will be used
to write the results of computations to the output image. A const version of the neighborhood
iterator is used because the input image is read-only.

#include "itkConstNeighborhoodIterator.h"
#include "itkImageRegionIterator.h"

http://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodIterator.html
http://www.itk.org/Doxygen/html/classitk_1_1ShapedNeighborhoodIterator.html
http://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodIterator.html
http://www.itk.org/Doxygen/html/classitk_1_1ConstNeighborhoodIterator.html
http://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodIterator.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageRegionIterator.html

11.4. Neighborhood Iterators 727

The finite difference calculations in this algorithm require floating point values. Hence, we
define the image pixel type to befloat and the file reader will automatically cast fixed-point
data tofloat.

We declare the iterator types using the image type as the template parameter. The second
template parameter of the neighborhood iterator, which specifies the boundary condition, has
been omitted because the default condition is appropriate for this algorithm.

typedef float PixelType;
typedef itk::Image< PixelType, 2 > ImageType;
typedef itk::ImageFileReader< ImageType > ReaderType;

typedef itk::ConstNeighborhoodIterator< ImageType > NeighborhoodIteratorType;
typedef itk::ImageRegionIterator< ImageType> IteratorType;

The following code creates and executes the ITK image reader. TheUpdate call on the reader
object is surrounded by the standardtry/catch blocks to handle any exceptions that may be
thrown by the reader.

ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(argv[1]);
try
{
reader->Update();
}

catch (itk::ExceptionObject &err)
{
std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std::endl;
return -1;
}

We can now create a neighborhood iterator to range over the output of the reader. For Sobel
edge-detection in 2D, we need a square iterator that extendsone pixel away from the neighbor-
hood center in every dimension.

NeighborhoodIteratorType::RadiusType radius;
radius.Fill(1);
NeighborhoodIteratorType it(radius, reader->GetOutput(),

reader->GetOutput()->GetRequestedRegion());

The following code creates an output image and iterator.

ImageType::Pointer output = ImageType::New();
output->SetRegions(reader->GetOutput()->GetRequestedRegion());

728 Chapter 11. Iterators

output->Allocate();

IteratorType out(output, reader->GetOutput()->GetRequestedRegion());

Sobel edge detection uses weighted finite difference calculations to construct an edge magnitude
image. Normally the edge magnitude is the root sum of squaresof partial derivatives in all
directions, but for simplicity this example only calculates thex component. The result is a
derivative image biased toward maximally vertical edges.

The finite differences are computed from pixels at six locations in the neighborhood. In this
example, we use the iteratorGetPixel() method to query the values from their offsets in the
neighborhood. The example in Section11.4.1uses convolution with a Sobel kernel instead.

Six positions in the neighborhood are necessary for the finite difference calculations. These
positions are recorded inoffset1 throughoffset6.

NeighborhoodIteratorType::OffsetType offset1 = {{-1,-1}};
NeighborhoodIteratorType::OffsetType offset2 = {{1,-1}};
NeighborhoodIteratorType::OffsetType offset3 = {{-1,0 }};
NeighborhoodIteratorType::OffsetType offset4 = {{1,0}};
NeighborhoodIteratorType::OffsetType offset5 = {{-1,1}};
NeighborhoodIteratorType::OffsetType offset6 = {{1,1}};

It is equivalent to use the six corresponding integer array indices instead. For example, the
offsets(-1,-1) and(1, -1) are equivalent to the integer indices0 and2, respectively.

The calculations are done in afor loop that moves the input and output iterators synchronously
across their respective images. Thesum variable is used to sum the results of the finite differ-
ences.

for (it.GoToBegin(), out.GoToBegin(); !it.IsAtEnd(); ++it, ++out)
{
float sum;
sum = it.GetPixel(offset2) - it.GetPixel(offset1);
sum += 2.0 * it.GetPixel(offset4) - 2.0 * it.GetPixel(offset3);
sum += it.GetPixel(offset6) - it.GetPixel(offset5);
out.Set(sum);
}

The last step is to write the output buffer to an image file. Writing is done inside atry/catch
block to handle any exceptions. The output is rescaled to intensity range[0,255] and cast to
unsigned char so that it can be saved and visualized as a PNG image.

typedef unsigned char WritePixelType;
typedef itk::Image< WritePixelType, 2 > WriteImageType;
typedef itk::ImageFileWriter< WriteImageType > WriterType;

11.4. Neighborhood Iterators 729

Figure 11.7: Applying the Sobel operator in different orientations to an MRI image (left) produces x
(center) and y (right) derivative images.

typedef itk::RescaleIntensityImageFilter<
ImageType, WriteImageType > RescaleFilterType;

RescaleFilterType::Pointer rescaler = RescaleFilterType::New();

rescaler->SetOutputMinimum(0);
rescaler->SetOutputMaximum(255);
rescaler->SetInput(output);

WriterType::Pointer writer = WriterType::New();
writer->SetFileName(argv[2]);
writer->SetInput(rescaler->GetOutput());
try
{
writer->Update();
}

catch (itk::ExceptionObject &err)
{
std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std::endl;
return -1;
}

The center image of Figure11.7 shows the output of the Sobel algorithm applied to
Examples/Data/BrainT1Slice.png.

730 Chapter 11. Iterators

Convolution filtering: Sobel operator

The source code for this section can be found in the file
Examples/Iterators/NeighborhoodIterators2.cxx.

In this example, the Sobel edge-detection routine is rewritten using convolution filtering. Con-
volution filtering is a standard image processing techniquethat can be implemented numerically
as the inner product of all image neighborhoods with a convolution kernel [30] [15]. In ITK,
we use a class of objects calledneighborhood operatorsas convolution kernels and a special
function object calleditk::NeighborhoodInnerProduct to calculate inner products.

The basic ITK convolution filtering routine is to step through the image with a neighborhood
iterator and use NeighborhoodInnerProduct to find the innerproduct of each neighborhood
with the desired kernel. The resulting values are written toan output image. This exam-
ple uses a neighborhood operator called theitk::SobelOperator, but all neighborhood
operators can be convolved with images using this basic routine. Other examples of neigh-
borhood operators include derivative kernels, Gaussian kernels, and morphological operators.
itk::NeighborhoodOperatorImageFilter is a generalization of the code in this section to
ND images and arbitrary convolution kernels.

We start writing this example by including the header files for the Sobel kernel and the inner
product function.

#include "itkSobelOperator.h"
#include "itkNeighborhoodInnerProduct.h"

Refer to the previous example for a description of reading the input image and setting up the
output image and iterator.

The following code creates a Sobel operator. The Sobel operator requires a direction for its
partial derivatives. This direction is read from the command line. Changing the direction of
the derivatives changes the bias of the edge detection, i.e.maximally vertical or maximally
horizontal.

itk::SobelOperator<PixelType, 2> sobelOperator;
sobelOperator.SetDirection(::atoi(argv[3]));
sobelOperator.CreateDirectional();

The neighborhood iterator is initialized as before, exceptthat now it takes its radius directly
from the radius of the Sobel operator. The inner product function object is templated over
image type and requires no initialization.

NeighborhoodIteratorType::RadiusType radius = sobelOperator.GetRadius();
NeighborhoodIteratorType it(radius, reader->GetOutput(),

reader->GetOutput()->GetRequestedRegion());

itk::NeighborhoodInnerProduct<ImageType> innerProduct;

http://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodInnerProduct.html
http://www.itk.org/Doxygen/html/classitk_1_1SobelOperator.html
http://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodOperatorImageFilter.html

11.4. Neighborhood Iterators 731

Using the Sobel operator, inner product, and neighborhood iterator objects, we can now write
a very simplefor loop for performing convolution filtering. As before, out-of-bounds pixel
values are supplied automatically by the iterator.

for (it.GoToBegin(), out.GoToBegin(); !it.IsAtEnd(); ++it, ++out)
{
out.Set(innerProduct(it, sobelOperator));
}

The output is rescaled and written as in the previous example. Applying this example in thex
andy directions produces the images at the center and right of Figure11.7. Note that x-direction
operator produces the same output image as in the previous example.

Optimizing iteration speed

The source code for this section can be found in the file
Examples/Iterators/NeighborhoodIterators3.cxx.

This example illustrates a technique for improving the efficiency of neighborhood calculations
by eliminating unnecessary bounds checking. As described in Section11.4, the neighborhood
iterator automatically enables or disables bounds checking based on the iteration region in
which it is initialized. By splitting our image into boundary and non-boundary regions, and then
processing each region using a different neighborhood iterator, the algorithm will only perform
bounds-checking on those pixels for which it is actually required. This trick can provide a sig-
nificant speedup for simple algorithms such as our Sobel edgedetection, where iteration speed
is a critical.

Splitting the image into the necessary regions is an easy task when you use the
itk::ImageBoundaryFacesCalculator. The face calculator is so named because it returns
a list of the “faces” of the ND dataset. Faces are those regions whose pixels all lie within a
distanced from the boundary, whered is the radius of the neighborhood stencil used for the
numerical calculations. In other words, faces are those regions where a neighborhood iterator
of radiusd will always overlap the boundary of the image. The face calculator also returns the
single inner region, in which out-of-bounds values are never required and bounds checking is
not necessary.

The face calculator object is defined initkNeighborhoodAlgorithm.h. We include this file
in addition to those from the previous two examples.

#include "itkNeighborhoodAlgorithm.h"

First we load the input image and create the output image and inner product function as in the
previous examples. The image iterators will be created in a later step. Next we create a face
calculator object. An empty list is created to hold the regions that will later on be returned by
the face calculator.

http://www.itk.org/Doxygen/html/classitk_1_1ImageBoundaryFacesCalculator.html

732 Chapter 11. Iterators

typedef itk::NeighborhoodAlgorithm
::ImageBoundaryFacesCalculator< ImageType > FaceCalculatorType;

FaceCalculatorType faceCalculator;
FaceCalculatorType::FaceListType faceList;

The face calculator function is invoked by passing it an image pointer, an image region, and a
neighborhood radius. The image pointer is the same image used to initialize the neighborhood
iterator, and the image region is the region that the algorithm is going to process. The radius is
the radius of the iterator.

Notice that in this case the image region is given as the region of theoutputimage and the image
pointer is given as that of theinput image. This is important if the input and output images differ
in size, i.e. the input image is larger than the output image.ITK image filters, for example,
operate on data from the input image but only generate results in theRequestedRegion of the
output image, which may be smaller than the full extent of theinput.

faceList = faceCalculator(reader->GetOutput(), output->GetRequestedRegion(),
sobelOperator.GetRadius());

The face calculator has returned a list of 2N+1 regions. The first element in the list is always
the inner region, which may or may not be important dependingon the application. For our
purposes it does not matter because all regions are processed the same way. We use an iterator
to traverse the list of faces.

FaceCalculatorType::FaceListType::iterator fit;

We now rewrite the main loop of the previous example so that each region in the list is processed
by a separate iterator. The iteratorsit andout are reinitialized over each region in turn. Bounds
checking is automatically enabled for those regions that require it, and disabled for the region
that does not.

IteratorType out;
NeighborhoodIteratorType it;

for (fit=faceList.begin(); fit != faceList.end(); ++fit)
{
it = NeighborhoodIteratorType(sobelOperator.GetRadius(),

reader->GetOutput(), *fit);
out = IteratorType(output, *fit);

for (it.GoToBegin(), out.GoToBegin(); ! it.IsAtEnd(); ++it, ++out)
{
out.Set(innerProduct(it, sobelOperator));
}

}

11.4. Neighborhood Iterators 733

The output is written as before. Results for this example arethe same as the previous example.
You may not notice the speedup except on larger images. When moving to 3D and higher
dimensions, the effects are greater because the volume to surface area ratio is usually larger. In
other words, as the number of interior pixels increases relative to the number of face pixels, there
is a corresponding increase in efficiency from disabling bounds checking on interior pixels.

Separable convolution: Gaussian filtering

The source code for this section can be found in the file
Examples/Iterators/NeighborhoodIterators4.cxx.

We now introduce a variation on convolution filtering that isuseful when a convolution kernel is
separable. In this example, we create a different neighborhood iterator for each axial direction
of the image and then take separate inner products with a 1D discrete Gaussian kernel. The idea
of using several neighborhood iterators at once has applications beyond convolution filtering
and may improve efficiency when the size of the whole neighborhood relative to the portion of
the neighborhood used in calculations becomes large.

The only new class necessary for this example is the Gaussianoperator.

#include "itkGaussianOperator.h"

The Gaussian operator, like the Sobel operator, is instantiated with a pixel type and a dimension-
ality. Additionally, we set the variance of the Gaussian, which has been read from the command
line as standard deviation.

itk::GaussianOperator< PixelType, 2 > gaussianOperator;
gaussianOperator.SetVariance(::atof(argv[3]) * ::atof(argv[3]));

The only further changes from the previous example are in themain loop. Once again we use
the results from face calculator to construct a loop that processes boundary and non-boundary
image regions separately. Separable convolution, however, requires an additional, outer loop
over all the image dimensions. The direction of the Gaussianoperator is reset at each iteration
of the outer loop using the new dimension. The iterators change direction to match because they
are initialized with the radius of the Gaussian operator.

Input and output buffers are swapped at each iteration so that the output of the previous iteration
becomes the input for the current iteration. The swap is not performed on the last iteration.

ImageType::Pointer input = reader->GetOutput();
for (unsigned int i = 0; i < ImageType::ImageDimension; ++i)
{
gaussianOperator.SetDirection(i);
gaussianOperator.CreateDirectional();

faceList = faceCalculator(input, output->GetRequestedRegion(),

734 Chapter 11. Iterators

Figure 11.8:Results of convolution filtering with a Gaussian kernel of increasing standard deviation σ
(from left to right, σ = 0, σ = 1, σ = 2, σ = 5). Increased blurring reduces contrast and changes the

average intensity value of the image, which causes the image to appear brighter when rescaled.

gaussianOperator.GetRadius());

for (fit=faceList.begin(); fit != faceList.end(); ++fit)
{
it = NeighborhoodIteratorType(gaussianOperator.GetRadius(),

input, *fit);

out = IteratorType(output, *fit);

for (it.GoToBegin(), out.GoToBegin(); ! it.IsAtEnd(); ++it, ++out)
{
out.Set(innerProduct(it, gaussianOperator));
}

}

// Swap the input and output buffers
if (i != ImageType::ImageDimension - 1)

{
ImageType::Pointer tmp = input;
input = output;
output = tmp;
}

}

The output is rescaled and written as in the previous examples. Figure11.8shows the results
of Gaussian blurring the imageExamples/Data/BrainT1Slice.png using increasing kernel
widths.

11.4. Neighborhood Iterators 735

Slicing the neighborhood

The source code for this section can be found in the file
Examples/Iterators/NeighborhoodIterators5.cxx.

This example introduces slice-based neighborhood processing. A slice, in this context, is a 1D
path through an ND neighborhood. Slices are defined for generic arrays by thestd::slice
class as a start index, a step size, and an end index. Slices simplify the implementation of
certain neighborhood calculations. They also provide a mechanism for taking inner products
with subregions of neighborhoods.

Suppose, for example, that we want to take partial derivatives in they direction of a neighbor-
hood, but offset those derivatives by one pixel position along the positivex direction. For a
3× 3, 2D neighborhood iterator, we can construct anstd::slice, (start = 2, stride =
3, end = 8), that represents the neighborhood offsets(1,−1), (1,0), (1,1) (see Figure11.6).
If we pass this slice as an extra argument to theitk::NeighborhoodInnerProduct function,
then the inner product is taken only along that slice. This “sliced” inner product with a 1D
itk::DerivativeOperator gives the desired derivative.

The previous separable Gaussian filtering example can be rewritten using slices and slice-
based inner products. In general, slice-based processing is most useful when doing many
different calculations on the same neighborhood, where defining multiple iterators as in Sec-
tion 11.4.1becomes impractical or inefficient. Good examples of slice-based neighborhood
processing can be found in any of the ND anisotropic diffusion function objects, such as
itk::CurvatureNDAnisotropicDiffusionFunction.

The first difference between this example and the previous example is that the Gaussian operator
is only initialized once. Its direction is not important because it is only a 1D array of coefficients.

itk::GaussianOperator< PixelType, 2 > gaussianOperator;
gaussianOperator.SetDirection(0);
gaussianOperator.SetVariance(::atof(argv[3]) * ::atof(argv[3]));
gaussianOperator.CreateDirectional();

Next we need to define a radius for the iterator. The radius in all directions matches that of the
single extent of the Gaussian operator, defining a square neighborhood.

NeighborhoodIteratorType::RadiusType radius;
radius.Fill(gaussianOperator.GetRadius()[0]);

The inner product and face calculator are defined for the mainprocessing loop as before, but
now the iterator is reinitialized each iteration with the squareradius instead of the radius of
the operator. The inner product is taken using a slice along the axial direction corresponding
to the current iteration. Note the use ofGetSlice() to return the proper slice from the iterator
itself. GetSlice() can only be used to return the slice along the complete extentof the axial
direction of a neighborhood.

http://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodInnerProduct.html
http://www.itk.org/Doxygen/html/classitk_1_1DerivativeOperator.html
http://www.itk.org/Doxygen/html/classitk_1_1CurvatureNDAnisotropicDiffusionFunction.html

736 Chapter 11. Iterators

ImageType::Pointer input = reader->GetOutput();
faceList = faceCalculator(input, output->GetRequestedRegion(), radius);

for (unsigned int i = 0; i < ImageType::ImageDimension; ++i)
{
for (fit=faceList.begin(); fit != faceList.end(); ++fit)

{
it = NeighborhoodIteratorType(radius, input, *fit);
out = IteratorType(output, *fit);
for (it.GoToBegin(), out.GoToBegin(); ! it.IsAtEnd(); ++it, ++out)
{
out.Set(innerProduct(it.GetSlice(i), it, gaussianOperator));
}

}

// Swap the input and output buffers
if (i != ImageType::ImageDimension - 1)

{
ImageType::Pointer tmp = input;
input = output;
output = tmp;
}

}

This technique produces exactly the same results as the previous example. A little experimenta-
tion, however, will reveal that it is less efficient since theneighborhood iterator is keeping track
of extra, unused pixel locations for each iteration, while the previous example only references
those pixels that it needs. In cases, however, where an algorithm takes multiple derivatives
or convolution products over the same neighborhood, slice-based processing can increase effi-
ciency and simplify the implementation.

Random access iteration

The source code for this section can be found in the file
Examples/Iterators/NeighborhoodIterators6.cxx.

Some image processing routines do not need to visit every pixel in an image. Flood-fill and
connected-component algorithms, for example, only visit pixels that are locally connected to
one another. Algorithms such as these can be efficiently written using the random access capa-
bilities of the neighborhood iterator.

The following example finds local minima. Given a seed point,we can search the neighborhood
of that point and pick the smallest valuem. While m is not at the center of our current neigh-
borhood, we move in the direction ofm and repeat the analysis. Eventually we discover a local
minimum and stop. This algorithm is made trivially simple inND using an ITK neighborhood
iterator.

11.4. Neighborhood Iterators 737

To illustrate the process, we create an image that descends everywhere to a single minimum:
a positive distance transform to a point. The details of creating the distance transform are not
relevant to the discussion of neighborhood iterators, but can be found in the source code of this
example. Some noise has been added to the distance transformimage for additional interest.

The variableinput is the pointer to the distance transform image. The local minimum algorithm
is initialized with a seed point read from the command line.

ImageType::IndexType index;
index[0] = ::atoi(argv[2]);
index[1] = ::atoi(argv[3]);

Next we create the neighborhood iterator and position it at the seed point.

NeighborhoodIteratorType::RadiusType radius;
radius.Fill(1);
NeighborhoodIteratorType it(radius, input, input->GetRequestedRegion());

it.SetLocation(index);

Searching for the local minimum involves finding the minimumin the current neighborhood,
then shifting the neighborhood in the direction of that minimum. Thefor loop below records
the itk::Offset of the minimum neighborhood pixel. The neighborhood iterator is then
moved using that offset. When a local minimum is detected,flag will remain false and the
while loop will exit. Note that this code is valid for an image of anydimensionality.

bool flag = true;
while (flag == true)
{
NeighborhoodIteratorType::OffsetType nextMove;
nextMove.Fill(0);

flag = false;

PixelType min = it.GetCenterPixel();
for (unsigned i = 0; i < it.Size(); i++)

{
if (it.GetPixel(i) < min)
{
min = it.GetPixel(i);
nextMove = it.GetOffset(i);
flag = true;
}

}
it.SetCenterPixel(255.0);
it += nextMove;
}

http://www.itk.org/Doxygen/html/classitk_1_1Offset.html

738 Chapter 11. Iterators

Figure 11.9:Paths traversed by the neighborhood iterator from different seed points to the local minimum.

The true minimum is at the center of the image. The path of the iterator is shown in white. The effect of

noise in the image is seen as small perturbations in each path.

Figure11.9shows the results of the algorithm for several seed points. The white line is the path
of the iterator from the seed point to the minimum in the center of the image. The effect of the
additive noise is visible as the small perturbations in the paths.

11.4.2 ShapedNeighborhoodIterator

This section describes a variation on the neighborhood iterator called ashapedneigh-
borhood iterator. A shaped neighborhood is defined like a bitmask, or stencil, with
different offsets in the rectilinear neighborhood of the normal neighborhood itera-
tor turned off or on to create a pattern. Inactive positions (those not in the sten-
cil) are not updated during iteration and their values cannot be read or written. The
shaped iterator is implemented in the classitk::ShapedNeighborhoodIterator,
which is a subclass of itk::NeighborhoodIterator. A const version,
itk::ConstShapedNeighborhoodIterator, is also available.

Like a regular neighborhood iterator, a shaped neighborhood iterator must be initialized with an
ND radius object, but the radius of the neighborhood of a shaped iterator only defines the set
of possibleneighbors. Any number of possible neighbors can then be activated or deactivated.
The shaped neighborhood iterator defines an API for activating neighbors. When a neighbor
location, defined relative to the center of the neighborhood, is activated, it is placed on the
active listand is then part of the stencil. An iterator can be “reshaped”at any time by adding or
removing offsets from the active list.

• void ActivateOffset(OffsetType &o) Include the offseto in the stencil of
active neighborhood positions. Offsets are relative to theneighborhood center.

• void DeactivateOffset(OffsetType &o)Remove the offseto from the sten-
cil of active neighborhood positions. Offsets are relativeto the neighborhood center.

http://www.itk.org/Doxygen/html/classitk_1_1ShapedNeighborhoodIterator.html
http://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodIterator.html
http://www.itk.org/Doxygen/html/classitk_1_1ConstShapedNeighborhoodIterator.html

11.4. Neighborhood Iterators 739

• void ClearActiveList() Deactivate all positions in the iterator stencil by clear-
ing the active list.

• unsigned int GetActiveIndexListSize()Return the number of pixel loca-
tions that are currently active in the shaped iterator stencil.

Because the neighborhood is less rigidly defined in the shaped iterator, the set of pixel access
methods is restricted. Only theGetPixel() andSetPixel() methods are available, and calling
these methods on an inactive neighborhood offset will return undefined results.

For the common case of traversing all pixel offsets in a neighborhood, the shaped iterator class
provides an iterator through the active offsets in its stencil. This stencil iteratorcan be incre-
mented or decremented and definesGet() andSet() for reading and writing the values in the
neighborhood.

• ShapedNeighborhoodIterator::Iterator Begin()Return a const or non-
const iterator through the shaped iterator stencil that points to the first valid location in
the stencil.

• ShapedNeighborhoodIterator::Iterator End() Return a const or non-
const iterator through the shaped iterator stencil that points one position pastthe last
valid location in the stencil.

The functionality and interface of the shaped neighborhooditerator is best described by exam-
ple. We will use the ShapedNeighborhoodIterator to implement some binary image morphology
algorithms (see [30], [15], et al.). The examples that follow implement erosion and dilation.

Shaped neighborhoods: morphological operations

The source code for this section can be found in the file
Examples/Iterators/ShapedNeighborhoodIterators1.cxx.

This example usesitk::ShapedNeighborhoodIterator to implement a binary erosion al-
gorithm. If we think of an imageI as a set of pixel indices, then erosion ofI by a smaller set
E, called thestructuring element, is the set of all indices at locationsx in I such that whenE is
positioned atx, every element inE is also contained inI .

This type of algorithm is easy to implement with shaped neighborhood iterators because we
can use the iterator itself as the structuring elementE and move it sequentially through all
positionsx. The result atx is obtained by checking values in a simple iteration loop through the
neighborhood stencil.

We need two iterators, a shaped iterator for the input image and a regular image iterator for
writing results to the output image.

#include "itkConstShapedNeighborhoodIterator.h"
#include "itkImageRegionIterator.h"

http://www.itk.org/Doxygen/html/classitk_1_1ShapedNeighborhoodIterator.html

740 Chapter 11. Iterators

Since we are working with binary images in this example, anunsigned char pixel type will
do. The image and iterator types are defined using the pixel type.

typedef unsigned char PixelType;
typedef itk::Image< PixelType, 2 > ImageType;

typedef itk::ConstShapedNeighborhoodIterator<
ImageType

> ShapedNeighborhoodIteratorType;

typedef itk::ImageRegionIterator< ImageType> IteratorType;

Refer to the examples in Section11.4.1or the source code of this example for a description of
how to read the input image and allocate a matching output image.

The size of the structuring element is read from the command line and used to define a radius
for the shaped neighborhood iterator. Using the method developed in section11.4.1to minimize
bounds checking, the iterator itself is not initialized until entering the main processing loop.

unsigned int element_radius = ::atoi(argv[3]);
ShapedNeighborhoodIteratorType::RadiusType radius;
radius.Fill(element_radius);

The face calculator object introduced in Section11.4.1is created and used as before.

typedef itk::NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<
ImageType > FaceCalculatorType;

FaceCalculatorType faceCalculator;
FaceCalculatorType::FaceListType faceList;
FaceCalculatorType::FaceListType::iterator fit;

faceList = faceCalculator(reader->GetOutput(),
output->GetRequestedRegion(),
radius);

Now we initialize some variables and constants.

IteratorType out;

const PixelType background_value = 0;
const PixelType foreground_value = 255;
const float rad = static_cast<float>(element_radius);

The outer loop of the algorithm is structured as in previous neighborhood iterator examples.
Each region in the face list is processed in turn. As each new region is processed, the input and
output iterators are initialized on that region.

11.4. Neighborhood Iterators 741

The shaped iterator that ranges over the input is our structuring element and its active stencil
must be created accordingly. For this example, the structuring element is shaped like a circle
of radiuselement radius. Each of the appropriate neighborhood offsets is activatedin the
doublefor loop.

for (fit=faceList.begin(); fit != faceList.end(); ++fit)
{
ShapedNeighborhoodIteratorType it(radius, reader->GetOutput(), *fit);
out = IteratorType(output, *fit);

// Creates a circular structuring element by activating all the pixels less
// than radius distance from the center of the neighborhood.

for (float y = -rad; y <= rad; y++)
{
for (float x = -rad; x <= rad; x++)
{
ShapedNeighborhoodIteratorType::OffsetType off;

float dis = ::sqrt(x*x + y*y);
if (dis <= rad)
{
off[0] = static_cast<int>(x);
off[1] = static_cast<int>(y);
it.ActivateOffset(off);
}

}
}

The inner loop, which implements the erosion algorithm, is fairly simple. Thefor loop steps
the input and output iterators through their respective images. At each step, the active stencil
of the shaped iterator is traversed to determine whether allpixels underneath the stencil contain
the foreground value, i.e. are contained within the setI . Note the use of the stencil iterator,ci,
in performing this check.

// Implements erosion
for (it.GoToBegin(), out.GoToBegin(); !it.IsAtEnd(); ++it, ++out)

{
ShapedNeighborhoodIteratorType::ConstIterator ci;

bool flag = true;
for (ci = it.Begin(); ci != it.End(); ci++)
{
if (ci.Get() == background_value)
{
flag = false;
break;

742 Chapter 11. Iterators

}
}

if (flag == true)
{
out.Set(foreground_value);
}

else
{
out.Set(background_value);
}

}
}

The source code for this section can be found in the file
Examples/Iterators/ShapedNeighborhoodIterators2.cxx.

The logic of the inner loop can be rewritten to perform dilation. Dilation of the setI by E is the
set of allx such thatE positioned atx contains at least one element inI .

// Implements dilation
for (it.GoToBegin(), out.GoToBegin(); !it.IsAtEnd(); ++it, ++out)

{
ShapedNeighborhoodIteratorType::ConstIterator ci;

bool flag = false;
for (ci = it.Begin(); ci != it.End(); ci++)
{
if (ci.Get() != background_value)
{
flag = true;
break;
}

}
if (flag == true)
{
out.Set(foreground_value);
}

else
{
out.Set(background_value);
}

}
}

The output image is written and visualized directly as a binary image of unsigned
chars. Figure 11.10 illustrates some results of erosion and dilation on the image
Examples/Data/BinaryImage.png. Applying erosion and dilation in sequence effects the
morphological operations of opening and closing.

11.4. Neighborhood Iterators 743

Figure 11.10:The effects of morphological operations on a binary image using a circular structuring

element of size 4. From left to right are the original image, erosion, dilation, opening, and closing. The

opening operation is erosion of the image followed by dilation. Closing is dilation of the image followed by

erosion.

CHAPTER

TWELVE

Image Adaptors

The purpose of animage adaptoris to make one image appear like another image, possibly of
a different pixel type. A typical example is to take an image of pixel typeunsigned char and
present it as an image of pixel typefloat. The motivation for using image adaptors in this
case is to avoid the extra memory resources required by usinga casting filter. When we use the
itk::CastImageFilter for the conversion, the filter creates a memory buffer large enough
to store thefloat image. Thefloat image requires four times the memory of the original
image and contains no useful additional information. Imageadaptors, on the other hand, do not
require the extra memory as pixels are converted only when they are read using image iterators
(see Chapter11).

Image adaptors are particularly useful when there is infrequent pixel access, since the actual
conversion occurs on the fly during the access operation. In such cases the use of image adap-
tors may reduce overall computation time as well as reduce memory usage. The use of image
adaptors, however, can be disadvantageous in some situations. For example, when the down-
stream filter is executed multiple times, a CastImageFilterwill cache its output after the first
execution and will not re-execute when the filter downstreamis updated. Conversely, an image
adaptor will compute the cast every time.

Another application for image adaptors is to perform lightweight pixel-wise operations replac-
ing the need for a filter. In the toolkit, adaptors are defined for many single valued and single
parameter functions such as trigonometric, exponential and logarithmic functions. For example,

• itk::ExpImageAdaptor

• itk::SinImageAdaptor

• itk::CosImageAdaptor

The following examples illustrate common applications of image adaptors.

http://www.itk.org/Doxygen/html/classitk_1_1CastImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ExpImageAdaptor.html
http://www.itk.org/Doxygen/html/classitk_1_1SinImageAdaptor.html
http://www.itk.org/Doxygen/html/classitk_1_1CosImageAdaptor.html

746 Chapter 12. Image Adaptors

Y
ImageCasting

Filter
Filter

B
Image

Z
Filter

A
Image

X

Filter
B

Image
Z

Filter
A

Image
X

Adaptor

Y

Figure 12.1: The difference between using a CastImageFilter and an ImageAdaptor. ImageAdaptors

convert pixel values when they are accessed by iterators. Thus, they do not produces an intermediate

image. In the example illustrated by this figure, the Image Y is not created by the ImageAdaptor; instead,

the image is simulated on the fly each time an iterator from the filter downstream attempts to access the

image data.

12.1 Image Casting

The source code for this section can be found in the file
Examples/DataRepresentation/Image/ImageAdaptor1.cxx.

This example illustrates how theitk::ImageAdaptor can be used to cast an image from one
pixel type to another. In particular, we willadaptanunsigned char image to make it appear
as an image of pixel typefloat.

We begin by including the relevant headers.

#include "itkImage.h"
#include "itkImageAdaptor.h"

First, we need to define apixel accessorclass that does the actual conversion. Note that in
general, the only valid operations for pixel accessors are those that only require the value of
the input pixel. As such, neighborhood type operations are not possible. A pixel accessor
must provide methodsSet() and Get(), and define the types ofInternalPixelType and
ExternalPixelType. TheInternalPixelType corresponds to the pixel type of the image to
be adapted (unsigned char in this example). TheExternalPixelType corresponds to the
pixel type we wish to emulate with the ImageAdaptor (float in this case).

class CastPixelAccessor
{
public:
typedef unsigned char InternalType;
typedef float ExternalType;

http://www.itk.org/Doxygen/html/classitk_1_1ImageAdaptor.html

12.1. Image Casting 747

static void Set(InternalType & output, const ExternalType & input)
{

output = static_cast<InternalType>(input);
}

static ExternalType Get(const InternalType & input)
{

return static_cast<ExternalType>(input);
}

};

The CastPixelAccessor class simply applies astatic cast to the pixel values. We now use
this pixel accessor to define the image adaptor type and create an instance using the standard
New() method.

typedef unsigned char InputPixelType;
const unsigned int Dimension = 2;
typedef itk::Image< InputPixelType, Dimension > ImageType;

typedef itk::ImageAdaptor< ImageType, CastPixelAccessor > ImageAdaptorType;
ImageAdaptorType::Pointer adaptor = ImageAdaptorType::New();

We also create an image reader templated over the input imagetype and read the input image
from file.

typedef itk::ImageFileReader< ImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();

The output of the reader is then connected as the input to the image adaptor.

adaptor->SetImage(reader->GetOutput());

In the following code, we visit the image using an iterator instantiated using the adapted image
type and compute the sum of the pixel values.

typedef itk::ImageRegionIteratorWithIndex< ImageAdaptorType > IteratorType;
IteratorType it(adaptor, adaptor->GetBufferedRegion());

double sum = 0.0;
it.GoToBegin();
while(!it.IsAtEnd())
{
float value = it.Get();
sum += value;
++it;
}

748 Chapter 12. Image Adaptors

Although in this example, we are just performing a simple summation, the key concept is that
access to pixels is performed as if the pixel is of typefloat. Additionally, it should be noted
that the adaptor is used as if it was an actual image and not as afilter. ImageAdaptors conform
to the same API as theitk::Image class.

12.2 Adapting RGB Images

The source code for this section can be found in the file
Examples/DataRepresentation/Image/ImageAdaptor2.cxx.

This example illustrates how to use theitk::ImageAdaptor to access the individual compo-
nents of an RGB image. In this case, we create an ImageAdaptorthat will accept a RGB image
as input and presents it as a scalar image. The pixel data willbe taken directly from the red
channel of the original image.

As with the previous example, the bulk of the effort in creating the image adaptor is associated
with the definition of the pixel accessor class. In this case,the accessor converts a RGB vector
to a scalar containing the red channel component. Note that in the following, we do not need to
define theSet() method since we only expect the adaptor to be used for readingdata from the
image.

class RedChannelPixelAccessor
{
public:
typedef itk::RGBPixel<float> InternalType;
typedef float ExternalType;

static ExternalType Get(const InternalType & input)
{

return static_cast<ExternalType>(input.GetRed());
}

};

TheGet() method simply calls theGetRed() method defined in theitk::RGBPixel class.

Now we use the internal pixel type of the pixel accessor to define the input image type, and then
proceed to instantiate the ImageAdaptor type.

typedef RedChannelPixelAccessor::InternalType InputPixelType;
const unsigned int Dimension = 2;
typedef itk::Image< InputPixelType, Dimension > ImageType;

typedef itk::ImageAdaptor< ImageType,
RedChannelPixelAccessor > ImageAdaptorType;

ImageAdaptorType::Pointer adaptor = ImageAdaptorType::New();

http://www.itk.org/Doxygen/html/classitk_1_1Image.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageAdaptor.html
http://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html

12.2. Adapting RGB Images 749

We create an image reader and connect the output to the adaptor as before.

typedef itk::ImageFileReader< ImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();

adaptor->SetImage(reader->GetOutput());

We create anitk::RescaleIntensityImageFilter and an itk::ImageFileWriter to
rescale the dynamic range of the pixel values and send the extracted channel to an image file.
Note that the image type used for the rescaling filter is theImageAdaptorType itself. That is,
the adaptor type is used in the same context as an image type.

typedef itk::Image< unsigned char, Dimension > OutputImageType;
typedef itk::RescaleIntensityImageFilter< ImageAdaptorType,

OutputImageType
> RescalerType;

RescalerType::Pointer rescaler = RescalerType::New();
typedef itk::ImageFileWriter< OutputImageType > WriterType;
WriterType::Pointer writer = WriterType::New();

Now we connect the adaptor as the input to the rescaler and setthe parameters for the intensity
rescaling.

rescaler->SetOutputMinimum(0);
rescaler->SetOutputMaximum(255);

rescaler->SetInput(adaptor);
writer->SetInput(rescaler->GetOutput());

Finally, we invoke theUpdate() method on the writer and take precautions to catch any excep-
tion that may be thrown during the execution of the pipeline.

try
{
writer->Update();
}

catch(itk::ExceptionObject & excp)
{
std::cerr << "Exception caught " << excp << std::endl;
return 1;
}

ImageAdaptors for the green and blue channels can easily be implemented by modifying the
pixel accessor of the red channel and then using the new pixelaccessor for instantiating the type
of an image adaptor. The following define a green channel pixel accessor.

http://www.itk.org/Doxygen/html/classitk_1_1RescaleIntensityImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html

750 Chapter 12. Image Adaptors

Figure 12.2:Using ImageAdaptor to extract the components of an RGB image. The image on the left is a

subregion of the Visible Woman cryogenic data set. The red, green and blue components are shown from

left to right as scalar images extracted with an ImageAdaptor.

class GreenChannelPixelAccessor
{
public:
typedef itk::RGBPixel<float> InternalType;
typedef float ExternalType;

static ExternalType Get(const InternalType & input)
{
return static_cast<ExternalType>(input.GetGreen());

}
};

A blue channel pixel accessor is similarly defined.

class BlueChannelPixelAccessor
{
public:
typedef itk::RGBPixel<float> InternalType;
typedef float ExternalType;

static ExternalType Get(const InternalType & input)
{
return static_cast<ExternalType>(input.GetBlue());

}
};

Figure12.2shows the result of extracting the red, green and blue components from a region of
the Visible Woman cryogenic data set.

12.3. Adapting Vector Images 751

12.3 Adapting Vector Images

The source code for this section can be found in the file
Examples/DataRepresentation/Image/ImageAdaptor3.cxx.

This example illustrates the use ofitk::ImageAdaptor to obtain access to the components
of a vector image. Specifically, it shows how to manage pixel accessors containing internal
parameters. In this example we create an image of vectors by using a gradient filter. Then, we
use an image adaptor to extract one of the components of the vector image. The vector type
used by the gradient filter is theitk::CovariantVector class.

We start by including the relevant headers.

#include "itkCovariantVector.h"
#include "itkGradientRecursiveGaussianImageFilter.h"

A pixel accessors class may have internal parameters that affect the operations performed on
input pixel data. Image adaptors support parameters in their internal pixel accessor by using the
assignment operator. Any pixel accessor which has internalparameters must therefore imple-
ment the assignment operator. The following defines a pixel accessor for extracting components
from a vector pixel. Them Index member variable is used to select the vector component to
be returned.

class VectorPixelAccessor
{
public:
typedef itk::CovariantVector<float,2> InternalType;
typedef float ExternalType;

void operator=(const VectorPixelAccessor & vpa)
{

m_Index = vpa.m_Index;
}

ExternalType Get(const InternalType & input) const
{

return static_cast<ExternalType>(input[m_Index]);
}

void SetIndex(unsigned int index)
{

m_Index = index;
}

private:
unsigned int m_Index;

};

TheGet() method simply returns thei-th component of the vector as indicated by the index.

http://www.itk.org/Doxygen/html/classitk_1_1ImageAdaptor.html
http://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html

752 Chapter 12. Image Adaptors

The assignment operator transfers the value of the index member variable from one instance of
the pixel accessor to another.

In order to test the pixel accessor, we generate an image of vectors using the
itk::GradientRecursiveGaussianImageFilter. This filter produces an output image of
itk::CovariantVector pixel type. Covariant vectors are the natural representation for gradi-
ents since they are the equivalent of normals to iso-values manifolds.

typedef unsigned char InputPixelType;
const unsigned int Dimension = 2;
typedef itk::Image< InputPixelType, Dimension > InputImageType;
typedef itk::CovariantVector< float, Dimension > VectorPixelType;
typedef itk::Image< VectorPixelType, Dimension > VectorImageType;
typedef itk::GradientRecursiveGaussianImageFilter< InputImageType,

VectorImageType> GradientFilterType;

GradientFilterType::Pointer gradient = GradientFilterType::New();

We instantiate the ImageAdaptor using the vector image typeas the first template parameter and
the pixel accessor as the second template parameter.

typedef itk::ImageAdaptor< VectorImageType,
VectorPixelAccessor > ImageAdaptorType;

ImageAdaptorType::Pointer adaptor = ImageAdaptorType::New();

The index of the component to be extracted is specified from the command line. In the follow-
ing, we create the accessor, set the index and connect the accessor to the image adaptor using
theSetPixelAccessor() method.

VectorPixelAccessor accessor;
accessor.SetIndex(atoi(argv[3]));
adaptor->SetPixelAccessor(accessor);

We create a reader to load the image specified from the commandline and pass its output as the
input to the gradient filter.

typedef itk::ImageFileReader< InputImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
gradient->SetInput(reader->GetOutput());

reader->SetFileName(argv[1]);
gradient->Update();

We now connect the output of the gradient filter as input to theimage adaptor. The adaptor
emulates a scalar image whose pixel values are taken from theselected component of the vector
image.

http://www.itk.org/Doxygen/html/classitk_1_1GradientRecursiveGaussianImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html

12.4. Adaptors for Simple Computation 753

Figure 12.3:Using ImageAdaptor to access components of a vector image. The input image on the left

was passed through a gradient image filter and the two components of the resulting vector image were

extracted using an image adaptor.

adaptor->SetImage(gradient->GetOutput());

As in the previous example, we rescale the scalar image before writing the image out to file.
Figure12.3shows the result of applying the example code for extractingboth components of a
two dimensional gradient.

12.4 Adaptors for Simple Computation

The source code for this section can be found in the file
Examples/DataRepresentation/Image/ImageAdaptor4.cxx.

Image adaptors can also be used to perform simple pixel-wisecomputations on image data. The
following example illustrates how to use theitk::ImageAdaptor for image thresholding.

A pixel accessor for image thresholding requires that the accessor maintain the threshold value.
Therefore, it must also implement the assignment operator to set this internal parameter.

class ThresholdingPixelAccessor
{
public:
typedef unsigned char InternalType;
typedef unsigned char ExternalType;

ExternalType Get(const InternalType & input) const
{

return (input > m_Threshold) ? 1 : 0;

http://www.itk.org/Doxygen/html/classitk_1_1ImageAdaptor.html

754 Chapter 12. Image Adaptors

}
void SetThreshold(const InternalType threshold)
{

m_Threshold = threshold;
}

void operator=(const ThresholdingPixelAccessor & vpa)
{

m_Threshold = vpa.m_Threshold;
}

private:
InternalType m_Threshold;

};

TheGet() method returns one if the input pixel is above the threshold and zero otherwise. The
assignment operator transfers the value of the threshold member variable from one instance of
the pixel accessor to another.

To create an image adaptor, we first instantiate an image typewhose pixel type is the same as
the internal pixel type of the pixel accessor.

typedef ThresholdingPixelAccessor::InternalType PixelType;
const unsigned int Dimension = 2;
typedef itk::Image< PixelType, Dimension > ImageType;

We instantiate the ImageAdaptor using the image type as the first template parameter and the
pixel accessor as the second template parameter.

typedef itk::ImageAdaptor< ImageType,
ThresholdingPixelAccessor > ImageAdaptorType;

ImageAdaptorType::Pointer adaptor = ImageAdaptorType::New();

The threshold value is set from the command line. A thresholdpixel accessor is created and
connected to the image adaptor in the same manner as in the previous example.

ThresholdingPixelAccessor accessor;
accessor.SetThreshold(atoi(argv[3]));
adaptor->SetPixelAccessor(accessor);

We create a reader to load the input image and connect the output of the reader as the input to
the adaptor.

typedef itk::ImageFileReader< ImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();

12.5. Adaptors and Writers 755

Figure 12.4:Using ImageAdaptor to perform a simple image computation. An ImageAdaptor is used to

perform binary thresholding on the input image on the left. The center image was created using a threshold

of 180, while the image on the right corresponds to a threshold of 220.

reader->SetFileName(argv[1]);
reader->Update();

adaptor->SetImage(reader->GetOutput());

As before, we rescale the emulated scalar image before writing it out to file. Figure12.4illus-
trates the result of applying the thresholding adaptor to a typical gray scale image using two
different threshold values. Note that the same effect couldhave been achieved by using the
itk::BinaryThresholdImageFilter but at the price of holding an extra copy of the image
in memory.

12.5 Adaptors and Writers

Image adaptors will not behave correctly when connected directly to a writer. The reason is
that writers tend to get direct access to the image buffer from their input, since image adaptors
do not have a real buffer their behavior in this circumstances is incorrect. You should avoid
instantiating theImageFileWriter or theImageSeriesWriter over an image adaptor type.

http://www.itk.org/Doxygen/html/classitk_1_1BinaryThresholdImageFilter.html

CHAPTER

THIRTEEN

How To Write A Filter

This purpose of this chapter is help developers create theirown filter (process object). This
chapter is divided into four major parts. An initial definition of terms is followed by an overview
of the filter creation process. Next, data streaming is discussed. The way data is streamed in
ITK must be understood in order to write correct filters. Finally, a section on multithreading
describes what you must do in order to take advantage of shared memory parallel processing.

13.1 Terminology

The following is some basic terminology for the discussion that follows. Chapter3 provides
additional background information.

• The data processing pipelineis a directed graph ofprocessand data objects. The
pipeline inputs, operators on, and outputs data.

• A filter , or process object, has one or more inputs, and one or more outputs.

• A source, or source process object, initiates the data processing pipeline, and has one or
more outputs.

• A mapper, or mapper process object, terminates the data processing pipeline. The map-
per has one or more outputs, and may write data to disk, interface with a display system,
or interface to any other system.

• A data object represents and provides access to data. In ITK, the data object (ITK class
itk::DataObject) is typically of type itk::Image or itk::Mesh.

• A region (ITK class itk::Region) represents a piece, or subset of the entire data set.

• An image region(ITK class itk::ImageRegion) represents a structured portion of data.
ImageRegion is implemented using theitk::Index and itk::Size classes

http://www.itk.org/Doxygen/html/classitk_1_1DataObject.html
http://www.itk.org/Doxygen/html/classitk_1_1Image.html
http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
http://www.itk.org/Doxygen/html/classitk_1_1Region.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageRegion.html
http://www.itk.org/Doxygen/html/classitk_1_1Index.html
http://www.itk.org/Doxygen/html/classitk_1_1Size.html

758 Chapter 13. How To Write A Filter

• A mesh region(ITK class itk::MeshRegion) represents an unstructured portion of
data.

• TheLargestPossibleRegionis the theoretical single, largest piece (region) that could rep-
resent the entire dataset. The LargestPossibleRegion is used in the system as the measure
of the largest possible data size.

• TheBufferedRegionis a contiguous block of memory that is less than or equal to insize
to the LargestPossibleRegion. The buffered region is what has actually been allocated by
a filter to hold its output.

• TheRequestedRegionis the piece of the dataset that a filter is required to produce. The
RequestedRegion is less than or equal in size to the BufferedRegion. The Requeste-
dRegion may differ in size from the BufferedRegion due to performance reasons. The
RequestedRegion may be set by a user, or by an application that needs just a portion of
the data.

• Themodified time (represented by ITK classitk::TimeStamp) is a monotonically in-
creasing integer value that characterizes a point in time when an object was last modified.

• Downstreamis the direction of dataflow, from sources to mappers.

• Upstream is the opposite of downstream, from mappers to sources.

• Thepipeline modified time for a particular data object is the maximum modified time of
all upstream data objects and process objects.

• The terminformation refers to metadata that characterizes data. For example, index and
dimensions are information characterizing an image region.

13.2 Overview of Filter Creation

Reader Gaussian
Filter

Image

ProcessObjectDataObject
ProcessObject

Figure 13.1: Relationship between DataObject and

ProcessObject.

Filters are defined with respect to the type
of data they input (if any), and the type
of data they output (if any). The key to
writing a ITK filter is to identify the num-
ber and types of input and output. Having
done so, there are often superclasses that
simplify this task via class derivation. For
example, most filters in ITK take a single
image as input, and produce a single im-
age on output. The superclassitk::ImageToImageFilter is a convenience class that provide
most of the functionality needed for such a filter.

Some common base classes for new filters include:

http://www.itk.org/Doxygen/html/classitk_1_1MeshRegion.html
http://www.itk.org/Doxygen/html/classitk_1_1TimeStamp.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageToImageFilter.html

13.3. Streaming Large Data 759

• ImageToImageFilter: the most common filter base for segmentation algorithms. Takes
an image and produces a new image, by default of the same dimensions. Override
GenerateOutputInformation to produce a different size.

• UnaryFunctorImageFilter: used when defining a filter that applies a function to an
image.

• BinaryFunctorImageFilter: used when defining a filter that applies an operation to
two images.

• ImageFunction: a functor that can be applied to an image, evaluatingf (x) at each point
in the image.

• MeshToMeshFilter: a filter that transforms meshes, such as tessellation, polygon reduc-
tion, and so on.

• LightObject: abstract base for filters that don’t fit well anywhere else inthe class hierar-
chy. Also useful for “calculator” filters; ie. a sink filter that takes an input and calculates
a result which is retrieved using aGet() method.

Once the appropriate superclass is identified, the filter writer implements the class defining the
methods required by most all ITK objects:New(), PrintSelf(), and protected constructor,
copy constructor, delete, and operator=, and so on. Also, don’t forget standard typedefs like
Self, Superclass, Pointer, andConstPointer. Then the filter writer can focus on the most
important parts of the implementation: defining the API, data members, and other implemen-
tation details of the algorithm. In particular, the filter writer will have to implement either a
GenerateData() (non-threaded) orThreadedGenerateData() method. (See Section3.2.7
for an overview of multi-threading in ITK.)

An important note: the GenerateData() method is required toallocate memory for the
output. The ThreadedGenerateData() method is not. In default implementation (see
itk::ImageSource, a superclass ofitk::ImageToImageFilter) GenerateData() allocates
memory and then invokesThreadedGenerateData().

One of the most important decisions that the developer must make is whether the filter can
stream data; that is, process just a portion of the input to produce a portion of the output. Often
superclass behavior works well: if the filter processes the input using single pixel access, then
the default behavior is adequate. If not, then the user may have to a) find a more specialized
superclass to derive from, or b) override one or more methodsthat control how the filter operates
during pipeline execution. The next section describes these methods.

13.3 Streaming Large Data

The data associated with multi-dimensional images is largeand becoming larger. This trend
is due to advances in scanning resolution, as well as increases in computing capability. Any

http://www.itk.org/Doxygen/html/classitk_1_1ImageSource.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageToImageFilter.html

760 Chapter 13. How To Write A Filter

Image
File

Reader
Filter

Gaussian Thresholding

Writer

Image
File

Renderer

Display

Image Image
Image

Figure 13.2:The Data Pipeline

practical segmentation and registration software system must address this fact in order to be
useful in application. ITK addresses this problem via its data streaming facility.

In ITK, streaming is the process of dividing data into pieces, or regions, and then processing this
data through the data pipeline. Recall that the pipeline consists of process objects that generate
data objects, connected into a pipeline topology. The inputto a process object is a data object
(unless the process initiates the pipeline and then it is a source process object). These data
objects in turn are consumed by other process objects, and soon, until a directed graph of data
flow is constructed. Eventually the pipeline is terminated by one or more mappers, that may
write data to storage, or interface with a graphics or other system. This is illustrated in figures
13.1and13.2.

A significant benefit of this architecture is that the relatively complex process of managing
pipeline execution is designed into the system. This means that keeping the pipeline up to
date, executing only those portions of the pipeline that have changed, multithreading execution,
managing memory allocation, and streaming is all built intothe architecture. However, these
features do introduce complexity into the system, the bulk of which is seen by class developers.
The purpose of this chapter is to describe the pipeline execution process in detail, with a focus
on data streaming.

13.3.1 Overview of Pipeline Execution

The pipeline execution process performs several importantfunctions.

1. It determines which filters, in a pipeline of filters, need to execute. This prevents redun-
dant execution and minimizes overall execution time.

13.3. Streaming Large Data 761

Reader
Filter

Gaussian Thresholding

Image Image Image

Update()

GenerateData()

Update()

GenerateData()

GenerateData()

Update()

Figure 13.3:Sequence of the Data Pipeline updating mechanism

2. It initializes the (filter’s) output data objects, preparing them for new data. In addition, it
determines how much memory each filter must allocate for its output, and allocates it.

3. The execution process determines how much data a filter must process in order to produce
an output of sufficient size for downstream filters; it also takes into account any limits on
memory or special filter requirements. Other factors include the size of data processing
kernels, that affect how much data input data (extra padding) is required.

4. It subdivides data into subpieces for multithreading. (Note that the division of data into
subpieces is exactly same problem as dividing data into pieces for streaming; hence mul-
tithreading comes for free as part of the streaming architecture.)

5. It may free (or release) output data if filters no longer need it to compute, and the user
requests that data is to be released. (Note: a filter’s outputdata object may be considered
a “cache”. If the cache is allowed to remain (ReleaseDataFlagOff()) between pipeline
execution, and the filter, or the input to the filter, never changes, then process objects
downstream of the filter just reuse the filter’s cache to re-execute.)

To perform these functions, the execution process negotiates with the filters that define the
pipeline. Only each filter can know how much data is required on input to produce a particular
output. For example, a shrink filter with a shrink factor of two requires an image twice as
large (in terms of its x-y dimensions) on input to produce a particular size output. An image
convolution filter would require extra input (boundary padding) depending on the size of the
convolution kernel. Some filters require the entire input toproduce an output (for example, a
histogram), and have the option of requesting the entire input. (In this case streaming does not
work unless the developer creates a filter that can request multiple pieces, caching state between
each piece to assemble the final output.)

Ultimately the negotiation process is controlled by the request for data of a particular size (i.e.,
region). It may be that the user asks to process a region of interest within a large image, or that

762 Chapter 13. How To Write A Filter

memory limitations result in processing the data in severalpieces. For example, an application
may compute the memory required by a pipeline, and then useitk::StreamingImageFilter
to break the data processing into several pieces. The data request is propagated through the
pipeline in the upstream direction, and the negotiation process configures each filter to produce
output data of a particular size.

The secret to creating a streaming filter is to understand howthis negotiation process works,
and how to override its default behavior by using the appropriate virtual functions defined in
itk::ProcessObject. The next section describes the specifics of these methods, and when to
override them. Examples are provided along the way to illustrate concepts.

13.3.2 Details of Pipeline Execution

Typically pipeline execution is initiated when a process object receives the
ProcessObject::Update() method invocation. This method is simply delegated to the
output of the filter, invoking theDataObject::Update() method. Note that this behavior is
typical of the interaction between ProcessObject and DataObject: a method invoked on one is
eventually delegated to the other. In this way the data request from the pipeline is propagated
upstream, initiating data flow that returns downstream.

TheDataObject::Update() method in turn invokes three other methods:

• DataObject::UpdateOutputInformation()

• DataObject::PropagateRequestedRegion()

• DataObject::UpdateOutputData()

UpdateOutputInformation()

TheUpdateOutputInformation() method determines the pipeline modified time. It may set
the RequestedRegion and the LargestPossibleRegion depending on how the filters are config-
ured. (The RequestedRegion is set to process all the data, i.e., the LargestPossibleRegion, if
it has not been set.) The UpdateOutputInformation() propagates upstream through the entire
pipeline and terminates at the sources.

During UpdateOutputInformation(), filters have a chance to over-
ride the ProcessObject::GenerateOutputInformation() method
(GenerateOutputInformation() is invoked by UpdateOutputInformation()). The
default behavior is for theGenerateOutputInformation() to copy the metadata describing
the input to the output (viaDataObject::CopyInformation()). Remember, information is
metadata describing the output, such as the origin, spacing, and LargestPossibleRegion (i.e.,
largest possible size) of an image.

A good example of this behavior isitk::ShrinkImageFilter. This filter takes an input image
and shrinks it by some integral value. The result is that the spacing and LargestPossibleRegion

http://www.itk.org/Doxygen/html/classitk_1_1StreamingImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ProcessObject.html
http://www.itk.org/Doxygen/html/classitk_1_1ShrinkImageFilter.html

13.3. Streaming Large Data 763

of the output will be different to that of the input. Thus,GenerateOutputInformation() is
overloaded.

PropagateRequestedRegion()

The PropagateRequestedRegion() call propagates upstream to satisfy a data request. In
typical application this data request is usually the LargestPossibleRegion, but if streaming is
necessary, or the user is interested in updating just a portion of the data, the RequestedRegion
may be any valid region within the LargestPossibleRegion.

The function ofPropagateRequestedRegion() is, given a request for data (the amount is
specified by RequestedRegion), propagate upstream configuring the filter’s input and output
process object’s to the correct size. Eventually, this means configuring the BufferedRegion, that
is the amount of data actually allocated.

The reason for the buffered region is this: the output of a filter may be consumed by more than
one downstream filter. If these consumers each request different amounts of input (say due to
kernel requirements or other padding needs), then the upstream, generating filter produces the
data to satisfy both consumers, that may mean it produces more data than one of the consumers
needs.

The ProcessObject::PropagateRequestedRegion() method invokes three methods that
the filter developer may choose to overload.

• EnlargeOutputRequestedRegion(DataObject *output) gives the (filter) subclass a
chance to indicate that it will provide more data than required for the output. This can
happen, for example, when a source can only produce the wholeoutput (i.e., the Largest-
PossibleRegion).

• GenerateOutputRequestedRegion(DataObject *output) gives the subclass a
chance to define how to set the requested regions for each of its outputs, given this out-
put’s requested region. The default implementation is to make all the output requested
regions the same. A subclass may need to override this methodif each output is a different
resolution. This method is only overridden if a filter has multiple outputs.

• GenerateInputRequestedRegion() gives the subclass a chance to request a larger re-
quested region on the inputs. This is necessary when, for example, a filter requires more
data at the “internal” boundaries to produce the boundary values - due to kernel operations
or other region boundary effects.

itk::RGBGibbsPriorFilter is an example of a filter that needs to invoke
EnlargeOutputRequestedRegion(). The designer of this filter decided that the fil-
ter should operate on all the data. Note that a subtle interplay between this method
and GenerateInputRequestedRegion() is occurring here. The default behavior of
GenerateInputRequestedRegion() (at least for itk::ImageToImageFilter) is to set the

http://www.itk.org/Doxygen/html/classitk_1_1RGBGibbsPriorFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageToImageFilter.html

764 Chapter 13. How To Write A Filter

input RequestedRegion to the output’s ReqestedRegion. Hence, by overriding the method
EnlargeOutputRequestedRegion() to set the output to the LargestPossibleRegion, ef-
fectively sets the input to this filter to the LargestPossibleRegion (and probably causing all
upstream filters to process their LargestPossibleRegion aswell. This means that the filter, and
therefore the pipeline, does not stream. This could be fixed by reimplementing the filter with
the notion of streaming built in to the algorithm.)

itk::GradientMagnitudeImageFilter is an example of a filter that needs to invoke
GenerateInputRequestedRegion(). It needs a larger input requested region because a kernel
is required to compute the gradient at a pixel. Hence the input needs to be “padded out” so the
filter has enough data to compute the gradient at each output pixel.

UpdateOutputData()

UpdateOutputData() is the third and final method as a result of theUpdate() method. The
purpose of this method is to determine whether a particular filter needs to execute in order to
bring its output up to date. (A filter executes when itsGenerateData() method is invoked.)
Filter execution occurs when a) the filter is modified as a result of modifying an instance vari-
able; b) the input to the filter changes; c) the input data has been released; or d) an invalid
RequestedRegion was set previously and the filter did not produce data. Filters execute in or-
der in the downstream direction. Once a filter executes, all filters downstream of it must also
execute.

DataObject::UpdateOutputData() is delegated to the DataObject’s source (i.e., the Pro-
cessObject that generated it) only if the DataObject needs to be updated. A comparison
of modified time, pipeline time, release data flag, and valid requested region is made. If
any one of these conditions indicate that the data needs regeneration, then the source’s
ProcessObject::UpdateOutputData() is invoked. These calls are made recursively up the
pipeline until a source filter object is encountered, or the pipeline is determined to be up to date
and valid. At this point, the recursion unrolls, and the execution of the filter proceeds. (This
means that the output data is initialized, StartEvent is invoked, the filtersGenerateData()
is called, EndEvent is invoked, and input data to this filter may be released, if requested. In
addition, this filter’s InformationTime is updated to the current time.)

The developer will never overrideUpdateOutputData(). The developer need only write the
GenerateData() method (non-threaded) orThreadedGenerateData() method. A discussion
of threading follows in the next section.

13.4 Threaded Filter Execution

Filters that can process data in pieces can typically multi-process using the data parallel, shared
memory implementation built into the pipeline execution process. To create a multithreaded
filter, simply define and implement aThreadedGenerateData() method. For example, a

http://www.itk.org/Doxygen/html/classitk_1_1GradientMagnitudeImageFilter.html

13.5. Filter Conventions 765

itk::ImageToImageFilter would create the method:

void ThreadedGenerateData(const OutputImageRegionType&
outputRegionForThread, int threadId)

The key to threading is to generate output for the output region given (as the first parameter in
the argument list above). In ITK, this is simple to do becausean output iterator can be created
using the region provided. Hence the output can be iterated over, accessing the corresponding
input pixels as necessary to compute the value of the output pixel.

Multi-threading requires caution when performing I/O (including usingcout or cerr) or in-
voking events. A safe practice is to allow only thread id zeroto perform I/O or generate events.
(The thread id is passed as argument intoThreadedGenerateData()). If more than one thread
tries to write to the same place at the same time, the program can behave badly, and possibly
even deadlock or crash.

13.5 Filter Conventions

In order to fully participate in the ITK pipeline, filters areexpected to follow certain conven-
tions, and provide certain interfaces. This section describes the minimum requirements for a
filter to integrate into the ITK framework.

The class declaration for a filter should include the macroITK EXPORT, so that on certain plat-
forms an export declaration can be included.

A filter should define public types for the class itself (Self) and itsSuperclass, andconst
and non-const smart pointers, thus:

typedef ExampleImageFilter Self;
typedef ImageToImageFilter<TImage,TImage> Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;

ThePointer type is particularly useful, as it is a smart pointer that will be used by all client
code to hold a reference-counted instantiation of the filter.

Once the above types have been defined, you can use the following convenience macros, which
permit your filter to participate in the object factory mechanism, and to be created using the
canonical::New():

/** Method for creation through the object factory. */
itkNewMacro(Self);

/** Run-time type information (and related methods). */
itkTypeMacro(ExampleImageFilter, ImageToImageFilter);

http://www.itk.org/Doxygen/html/classitk_1_1ImageToImageFilter.html

766 Chapter 13. How To Write A Filter

The default constructor should beprotected, and provide sensible defaults (usually zero) for
all parameters. The copy constructor and assignment operator should be declaredprivate and
not implemented, to prevent instantiating the filter without the factory methods (above).

Finally, the template implementation code (in the.txx file) should be included, bracketed by a
test for manual instantiation, thus:

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkExampleFilter.txx"
#endif

13.5.1 Optional

A filter can be printed to anstd::ostream (such asstd::cout) by implementing the following
method:

void PrintSelf(std::ostream& os, Indent indent) const;

and writing the name-value pairs of the filter parameters to the supplied output stream. This is
particularly useful for debugging.

13.5.2 Useful Macros

Many convenience macros are provided by ITK, to simplify filter coding. Some of these are
described below:

itkStaticConstMacro Declares a static variable of the given type, with the specified initial
value.

itkGetMacro Defines an accessor method for the specified scalar data member. The conven-
tion is for data members to have a prefix ofm .

itkSetMacro Defines a mutator method for the specified scalar data member,of the supplied
type. This will automatically set theModified flag, so the filter stage will be executed
on the nextUpdate().

itkBooleanMacro Defines a pair ofOnFlag and OffFlag methods for a boolean variable
m Flag.

itkGetObjectMacro, itkSetObjectMacro Defines an accessor and mutator for an ITK object.
The Get form returns a smart pointer to the object.

Much more useful information can be learned from browsing the source in
Code/Common/itkMacro.h and for theitk::Object and itk::LightObject classes.

http://www.itk.org/Doxygen/html/classitk_1_1Object.html
http://www.itk.org/Doxygen/html/classitk_1_1LightObject.html

13.6. How To Write A Composite Filter 767

Source Stage1 Stage2 Sink

Composite

Stage...n

Figure 13.4:A Composite filter encapsulates a number of other filters.

13.6 How To Write A Composite Filter

In general, most ITK filters implement one particular algorithm, whether it be image filtering,
an information metric, or a segmentation algorithm. In the previous section, we saw how to
write new filters from scratch. However, it is often very useful to be able to make a new filter
by combining two or more existing filters, which can then be used as a building block in a
complex pipeline. This approach follows the Composite pattern [28], whereby the composite
filter itself behaves just as a regular filter, providing its own (potentially higher level) interface
and using other filters (whose detail is hidden to users of theclass) for the implementation. This
composite structure is shown in Figure13.4, where the variousStage-n filters are combined
into one by theComposite filter. TheSource andSink filters only see the interface published
by theComposite. Using the Composite pattern, a composite filter can encapsulate a pipeline
of arbitrary complexity. These can in turn be nested inside other pipelines.

13.6.1 Implementing a Composite Filter

There are a few considerations to take into account when implementing a composite filter. All
the usual requirements for filters apply (as discussed above), but the following guidelines should
be considered:

1. The template arguments it takes must be sufficient to instantiate all of the component
filters. Each component filter needs a type supplied by eitherthe implementor or the
enclosing class. For example, anImageToImageFilter normally takes an input and
output image type (which may be the same). But if the output ofthe composite filter is a
classified image, we need to either decide on the output type inside the composite filter,
or restrict the choices of the user when she/he instantiatesthe filter.

2. The types of the component filters should be declared in theheader, preferably with
protected visibility. This is because the internal structure normally should not be visible
to users of the class, but should be to descendent classes that may need to modify or
customize the behavior.

3. The component filters should be private data members of thecomposite class, as in
FilterType::Pointer.

768 Chapter 13. How To Write A Filter

Gradient RescaleThreshold

Reader Writer

CompositeExampleImageFilter

Figure 13.5:Example of a typical composite filter. Note that the output of the last filter in the internal

pipeline must be grafted into the output of the composite filter.

4. The default constructor should build the pipeline by creating the stages and connect them
together, along with any default parameter settings, as appropriate.

5. The input and output of the composite filter need to be grafted on to the head and tail
(respectively) of the component filters.

This grafting process is illustrated in Figure13.5.

13.6.2 A Simple Example

The source code for this section can be found in the file
Examples/Filtering/CompositeFilterExample.cxx.

The composite filter we will build combines three filters: a gradient magnitude operator, which
will calculate the first-order derivative of the image; a thresholding step to select edges over
a given strength; and finally a rescaling filter, to ensure theresulting image data is visible by
scaling the intensity to the full spectrum of the output image type.

Since this filter takes an image and produces another image (of identical type), we will specialize
the ImageToImageFilter:

#include "itkImageToImageFilter.h"

Next we include headers for the component filters:

#include "itkGradientMagnitudeImageFilter.h"
#include "itkThresholdImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"

Now we can declare the filter itself. It is within the ITK namespace, and we decide to make
it use the same image type for both input and output, thus the template declaration needs only
one parameter. Deriving fromImageToImageFilter provides default behavior for several im-
portant aspects, notably allocating the output image (and making it the same dimensions as the
input).

13.6. How To Write A Composite Filter 769

namespace itk {

template <class TImageType>
class ITK_EXPORT CompositeExampleImageFilter :

public ImageToImageFilter<TImageType, TImageType>
{
public:

Next we have the standard declarations, used for object creation with the object factory:

typedef CompositeExampleImageFilter Self;
typedef ImageToImageFilter<TImageType,TImageType> Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;

Here we declare an alias (to save typing) for the image’s pixel type, which determines the type
of the threshold value. We then use the convenience macros todefine the Get and Set methods
for this parameter.

typedef typename TImageType::PixelType PixelType;

itkGetMacro(Threshold, PixelType);
itkSetMacro(Threshold, PixelType);

Now we can declare the component filter types, templated overthe enclosing image type:

protected:

typedef ThresholdImageFilter< TImageType > ThresholdType;
typedef GradientMagnitudeImageFilter< TImageType, TImageType > GradientType;
typedef RescaleIntensityImageFilter< TImageType, TImageType > RescalerType;

The component filters are declared as data members, all usingthe smart pointer types.

typename GradientType::Pointer m_GradientFilter;
typename ThresholdType::Pointer m_ThresholdFilter;
typename RescalerType::Pointer m_RescaleFilter;

PixelType m_Threshold;
};

} /* namespace itk */

770 Chapter 13. How To Write A Filter

The constructor sets up the pipeline, which involves creating the stages, connecting them to-
gether, and setting default parameters.

template <class TImageType>
CompositeExampleImageFilter<TImageType>
::CompositeExampleImageFilter()
{
m_GradientFilter = GradientType::New();
m_ThresholdFilter = ThresholdType::New();
m_RescaleFilter = RescalerType::New();

m_ThresholdFilter->SetInput(m_GradientFilter->GetOutput());
m_RescaleFilter->SetInput(m_ThresholdFilter->GetOutput());

m_Threshold = 1;

m_RescaleFilter->SetOutputMinimum(NumericTraits<PixelType>::NonpositiveMin());
m_RescaleFilter->SetOutputMaximum(NumericTraits<PixelType>::max());

}

TheGenerateData() is where the composite magic happens. First, we connect the first com-
ponent filter to the inputs of the composite filter (the actualinput, supplied by the upstream
stage). Then we graft the output of the last stage onto the output of the composite, which en-
sures the filter regions are updated. We force the composite pipeline to be processed by calling
Update() on the final stage, then graft the output back onto the output of the enclosing filter,
so it has the result available to the downstream filter.

template <class TImageType>
void
CompositeExampleImageFilter<TImageType>::
GenerateData()
{
m_GradientFilter->SetInput(this->GetInput());

m_ThresholdFilter->ThresholdBelow(this->m_Threshold);

m_RescaleFilter->GraftOutput(this->GetOutput());
m_RescaleFilter->Update();
this->GraftOutput(m_RescaleFilter->GetOutput());

}

Finally we define thePrintSelf method, which (by convention) prints the filter parameters.
Note how it invokes the superclass to print itself first, and also how the indentation prefixes each
line.

13.6. How To Write A Composite Filter 771

template <class TImageType>
void
CompositeExampleImageFilter<TImageType>::
PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os,indent);

os
<< indent << "Threshold:" << this->m_Threshold
<< std::endl;

}

} /* end namespace itk */

It is important to note that in the above example, none of the internal details of the pipeline
were exposed to users of the class. The interface consisted of the Threshold parameter (which
happened to change the value in the component filter) and the regular ImageToImageFilter
interface. This example pipeline is illustrated in Figure13.5.

CHAPTER

FOURTEEN

Software Process

An outstanding feature of ITK is the software process used todevelop, maintain and test the
toolkit. The Insight Toolkit software continues to evolve rapidly due to the efforts of developers
and users located around the world, so the software process is essential to maintaining its quality.
If you are planning to contribute to ITK, or use the CVS sourcecode repository, you need to
know something about this process (see1.3.1on page4 to learn more about obtaining ITK
using CVS). This information will help you know when and how to update and work with the
software as it changes. The following sections describe keyelements of the process.

14.1 CVS Source Code Repository

The Concurrent Versions System (CVS) is a tool for version control [27]. It is a very valuable
resource for software projects involving multiple developers. The primary purpose of CVS is
to keep track of changes to software. CVS date and version stamps every addition to files in the
repository. Additionally, a user may set a tag to mark a particular of the whole software. Thus,
it is possible to return to a particular state or point of timewhenever desired. The differences
between any two points is represented by a “diff” file, that isa compact, incremental representa-
tion of change. CVS supports concurrent development so thattwo developers can edit the same
file at the same time, that are then (usually) merged togetherwithout incident (and marked if
there is a conflict). In addition, branches off of the main development trunk provide parallel
development of software.

Developers and users can check out the software from the CVS repository. When developers
introduce changes in the system, CVS facilitates to update the local copies of other developers
and users by downloading only the differences between theirlocal copy and the version on the
repository. This is an important advantage for those who areinterested in keeping up to date
with the leading edge of the toolkit. Bug fixes can be obtainedin this way as soon as they have
been checked into the system.

ITK source code, data, and examples are maintained in a CVS repository. The principal ad-
vantage of a system like CVS is that it frees developers to trynew ideas and introduce changes

774 Chapter 14. Software Process

without fear of losing a previous working version of the software. It also provides a simple way
to incrementally update code as new features are added to therepository.

14.2 DART Regression Testing System

One of the unique features of the ITK software process is its use of the DART regression testing
system (http://public.kitware.com/Dart). In a nutshell, what DART does is to provide
quantifiable feedback to developers as they check in new codeand make changes. The feedback
consists of the results of a variety of tests, and the resultsare posted on a publicly-accessible
Web page (to which we refer as adashboard) as shown in Figure14.1. The most recent dash-
board is accessible fromhttp://www.itk.org/HTML/Testing.htm). Since all users and de-
velopers of ITK can view the Web page, the DART dashboard serves as a vehicle for developer
communication, especially when new additions to the software is found to be faulty. The dash-
board should be consulted before considering updating software via CVS.

Figure 14.1:On-line presentation of the quality dashboard generated by DART.

Note that DART is independent of ITK and can be used to manage quality control for any
software project. It is itself an open-source package and can be obtained from

http://public.kitware.com/Dart/HTML/Index.shtml

http://public.kitware.com/Dart
http://www.itk.org/HTML/Testing.htm
http://public.kitware.com/Dart/HTML/Index.shtml

14.2. DART Regression Testing System 775

DART supports a variety of test types. These include the following.

Compilation. All source and test code is compiled and linked. Any resulting errors and warn-
ings are reported on the dashboard.

Regression.Some ITK tests produce images as output. Testing requires comparing each tests
output against a valid baseline image. If the images match then the test passes. The
comparison must be performed carefully since many 3D graphics systems (e.g., OpenGL)
produce slightly different results on different platforms.

Memory. Problems relating to memory such as leaks, uninitialized memory reads, and reads/
writes beyond allocated space can cause unexpected resultsand program crashes. ITK
checks run-time memory access and management using Purify,a commercial package
produced by Rational. (Other memory checking programs willbe added in the future.)

PrintSelf. All classes in ITK are expected to print out all their instance variables (i.e., those
with associated Set and Get methods) correctly. This test checks to make sure that this is
the case.

Unit. Each class in ITK should have a corresponding unit test wherethe class functionalities are
exercised and quantitatively compared against expected results. These tests are typically
written by the class developer and should endeavor to cover all lines of code including
Set/Get methods and error handling.

Coverage. There is a saying among ITK developers:If it isn’t covered, then it’s broke.What
this means is that code that is not executed during testing islikely to be wrong. The
coverage tests identify lines that are not executed in the Insight Toolkit test suite, reporting
a total percentage covered at the end of the test. While it is nearly impossible to bring the
coverage to 100% because of error handling code and similar constructs that are rarely
encountered in practice, the coverage numbers should be 75%or higher. Code that is not
covered well enough requires additional tests.

Figure14.1shows the top-level dashboard web page. Each row in the dashboard corresponds to
a particular platform (hardware + operating system + compiler). The data on the row indicates
the number of compile errors and warnings as well as the results of running hundreds of small
test programs. In this way the toolkit is tested both at compile time and run time.

When a user or developer decides to update ITK source code from CVS it is important to first
verify that the current dashboard is in good shape. This can be rapidly judged by the general
coloration of the dashboard. A green state means that the software is building correctly and it is
a good day to start with ITK or to get an upgrade. A red state, onthe other hand, is an indication
of instability on the system and hence users should refrain from checking out or upgrading the
source code.

Another nice feature of DART is that it maintains a history ofchanges to the source code (by
coordinating with CVS) and summarizes the changes as part ofthe dashboard. This is useful
for tracking problems and keeping up to date with new additions to ITK.

776 Chapter 14. Software Process

14.3 Working The Process

The ITK software process functions across three cycles—thecontinuous cycle, the daily cycle,
and the release cycle.

The continuous cycle revolves around the actions of developers as they check code into CVS.
When changed or new code is checked into CVS, the DART continuous testing process kicks
in. A small number of tests are performed (including compilation), and if something breaks,
email is sent to all developers who checked code in during thecontinuous cycle. Developers
are expected to fix the problem immediately.

The daily cycle occurs over a 24-hour period. Changes to the source base made during the
day are extensively tested by the nightly DART regression testing sequence. These tests occur
on different combinations of computers and operating systems located around the world, and
the results are posted every day to the DART dashboard. Developers who checked in code
are expected to visit the dashboard and ensure their changesare acceptable—that is, they do
not introduce compilation errors or warnings, or break any other tests including regression,
memory, PrintSelf, and Set/Get. Again, developers are expected to fix problems immediately.

The release cycle occurs a small number of times a year. This requires tagging and branching
the CVS repository, updating documentation, and producingnew release packages. Although
additional testing is performed to insure the consistency of the package, keeping the daily CVS
build error free minimizes the work required to cut a release.

ITK users typically work with releases, since they are the most stable. Developers work with
the CVS repository, or sometimes with periodic release snapshots, in order to take advantage of
newly-added features. It is extremely important that developers watch the dashboard carefully,
and update their software only when the dashboard is in good condition (i.e., is “green”).
Failure to do so can cause significant disruption if a particular day’s software release is unstable.

14.4 The Effectiveness of the Process

The effectiveness of this process is profound. By providingimmediate feedback to developers
through email and Web pages (e.g., the dashboard), the quality of ITK is exceptionally high,
especially considering the complexity of the algorithms and system. Errors, when accidently
introduced, are caught quickly, as compared to catching them at the point of release. To wait
to the point of release is to wait too long, since the causal relationship between a code change
or addition and a bug is lost. The process is so powerful that it routinely catches errors in
vendor’s graphics drivers (e.g., OpenGL drivers) or changes to external subsystems such as
the VXL/VNL numerics library. All of these tools that make upthe process (CMake, CVS, and
DART) are open-source. Many large and small systems such as VTK (The Visualization Toolkit
http://www.vtk.org) use the same process with similar results. We encourage theadoption
of the process in your environment.

http://www.vtk.org

BIBLIOGRAPHY

[1] A. Alexandrescu.Modern C++ Design: Generic Programming and Design PatternsAp-
plied. Professional Computing Series. Addison-Wesley, 2001.7.8.3, 7.10, 8.8.1

[2] K. Alsabti, S. Ranka, and V. Singh. An efficient k-means clustering algorithm. InFirst
Workshop on High-Performance Data Mining, 1998. 10.4.1

[3] L. Alvarez and J.-M. Morel.A Morphological Approach To Multiscale Analysis: From
Principles to Equations, pages 229–254. Kluwer Academic Publishers, 1994.6.7.3

[4] E. Angelini, C. Imielinska, J. Jin, and A. Laine. Improving Statistics for Hybrid Seg-
mentation of High-Resolution Multichannel Images. InSPIE Medical Imaging 2002, San
Diego, 2002.9.4.1, 9.4.3

[5] ANSI-ISO. Programming Languages - C++. American National Standards Institue, 1998.
7.9

[6] M. H. Austern. Generic Programming and the STL:. Professional Computing Series.
Addison-Wesley, 1999.3.2.1, 7.8.3, 7.10, 8.8.1

[7] Stephen Aylward.Gaussian Goodness of Fit Cores. PhD thesis, Department of Computer
Science, University of North Carolina at Chapel Hill, 1997.10.2.2

[8] Stephen Aylward and Steve Pizer. Continuous gaussian mixture modeling. InInformation
Processing in Medical Imaging 1997 (IPMI’97), pages 176–189, 1997.10.2.2

[9] J. Besag. On the statistical analysis of dirty pictures.J. Royal Statist. Soc. B., 48:259–302,
1986. 10.4.5

[10] R. N. Bracewell.The Fourier Transform and its Applications. McGraw-Hill, 1999. 6.10.1

[11] R. N. Bracewell.Fourier Analysis and Imaging. Plenum US, 2004.6.10.1

778 Bibliography

[12] R. H. Byrd, P. Lu, and J. Nocedal. A limited memory algorithm for bound constrained
optimization. SIAM Journal on Scientific and Statistical Computing, 16(5):1190–1208,
1995. 8.11

[13] R. H. Byrd C. Zhu and J. Nocedal. L-bfgs-b: Algorithm 778: L-bfgs-b, fortran routines for
large scale bound constrained optimization.ACM Transactions on Mathematical Software,
23(4):550–560, November 1997.8.11

[14] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours.International Journal
on Computer Vision, 22(1):61–97, 1997.9.3.3

[15] K.R. Castleman.Digital Image Processing. Prentice Hall, Upper Saddle River, NJ, 1996.
11.4.1, 11.4.2

[16] A. Chung, W. Wells, A. Norbash, and W. Grimson. Multi-modal image registration by
minimising kullback-leibler distance. InMICCAI’02 Medical Image Computing and
Computer-Assisted Intervention, Lecture Notes in Computer Science, pages 525–532,
2002. 8.10.5

[17] A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, and G. Marchal. Au-
tomated multimodality image registration based on information theory. InInformation
Processing in Medical Imaging 1995, pages 263–274. Kluwer Academic Publishers, Dor-
drecht, The Netherlands, 1995.8.5

[18] P. E. Danielsson. Euclidean distance mapping.Computer Graphics and Image Processing,
14:227–248, 1980.6.8

[19] C. Darwin.On the Origin of Species. http://www.gutenberg.org, sixth edition, 1999.8.6

[20] M. H. Davis, A. Khotanzad, D. P. Flamig, and S. E. Harms. Aphysics-based coordinate
transformation for 3-d image matching.IEEE Transactions on Medical Imaging, 16(3),
June 1997.8.8.18

[21] R. Deriche. Fast algorithms for low level vision.IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12(1):78–87, 1990.6.4.2, 6.7.1, 6.7.1

[22] R. Deriche. Recursively implementing the gaussian andits derivatives. Technical Report
1893, Unite de recherche INRIA Sophia-Antipolis, avril 1993. Research Repport.6.4.2,
6.7.1, 6.7.1

[23] C. Dodson and T. Poston.Tensor Geometry: The Geometric Viewpoint and its Uses.
Springer, 1997.8.8.1, 11

[24] Richard O. Duda, Peter E. Hart, and David G. Stork.Pattern classification. A Wiley-
Interscience Publication, second edition, 2000.10.2.3, 10.4, 10.4

[25] David Eberly. Ridges in Image and Data Analysis. Kluwer Academic Publishers, Dor-
drecht, 1996.9.2.1

Bibliography 779

[26] Benoit Regrain Eric Boix, Mathieu Malaterre and Jean-Pierre Roux.The GDCM Library.
CNRS, INSERM, INSA Lyon, UCB Lyon, http://www-creatis.insa-lyon.fr/Public/Gdcm/.
7.12.1

[27] K. Fogel.Open Source Development with CVS. Corolis, 1999.1.4.2, 14.1

[28] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns, Elements of Reusable
Object-Oriented Software. Professional Computing Series. Addison-Wesley, 1995.3.2.6,
4.3.9, 7.2, 8.4, 13.6

[29] G. Gerig, O. Kübler, R. Kikinis, and F. A. Jolesz. Nonlinear anisotropic filtering of MRI
data.IEEE Transactions on Medical Imaging, 11(2):221–232, June 1992.6.7.3

[30] R.C. Gonzalez and R.E. Woods.Digital Image Processing. Addison-Wesley, Reading,
MA, 1993. 11.4.1, 11.4.1, 11.4.2

[31] H. Gray.Gray’s Anatomy. Merchant Book Company, sixteenth edition, 2003.4.1.5

[32] Stephen Grossberg. Neural dynamics of brightness perception: Features, boundaries, dif-
fusion, and resonance.Perception and Psychophysics, 36(5):428–456, 1984.6.7.3

[33] J. Hajnal, D. J. Hawkes, and D. Hill.Medical Image Registration. CRC Press, 2001.8.5,
8.10.6

[34] W. R. Hamilton. Elements of Quaternions. Chelsea Publishing Company, 1969.8.6.4,
8.8.1, 8.8.11, 8.11

[35] A. Hendersen.The Paraview Guide. Kitware, Inc, 2004.8.15

[36] M. Holden, D. L. G. Hill, E. R. E. Denton, J. M. Jarosz, T. C. S. Cox, and D. J.
Hawkes. Voxel similarity measures for 3d serial mr brain image registration. In A. Kuba,
M. Samal, and A. Todd-Pkropek, editors,Information Processing in Medical Imaging
1999 (IPMI’99), pages 472–477. Springer, 1999.8.10.3

[37] B. K. Horn. Closed-form solution of absolute orientation using unit quaternions.Journal
of the Optical Society of America, 4:629–642, April 1987.8.17

[38] C. Imielinska, M. Downes, and W. Yuan. Semi-Automated Color Segmentation of
Anatomical Tissue.Journal of Computerized Medical Imaging and Graphics, 24:173–
180, April 2000. 9.4.1, 9.4.3, 9.4.3, 9.4.3

[39] C. Imielinska, D. Metaxas, J. Udupa, Y. Jin, and T. Chen.Hybrid Segmentation of the
Visible Human Data. InProceedings of the Third Visible Human Project Conference,
Bethesda, MD, 5 October 2000.9.4.1, 9.4.3

[40] C. Imielinska, D. Metaxas, J.K. Udupa, Y. Jin, and T. Chen. Hybrid Segmentation of
Anatomical Data. InProceedings MICCAI, pages 1048–1057, Utrecht, The Netherlands,
2001. 9.4.1, 9.4.3

780 Bibliography

[41] Y. Jin, C. Imielinska, and A. Laine. A Homogeneity-Based Speed Term for Level-set
Shape Detection. InSPIE Medical Imaging, San Diego, 2002.9.4.1, 9.4.3

[42] C. J. Joly.A Manual of Quaternions. MacMillan and Co. Limited, 1905.8.6.4, 8.8.11

[43] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine Piatko, Ruth Silver-
man, and Angela Y. Wu. An efficient k-means clustering algorithm: Analysis and imple-
mentation. 10.1.7, 10.4.1

[44] J. Koënderink and A. van Doorn. The Structure of Two-Dimensional Scalar Fields with
Applications to Vision.Biol. Cybernetics, 33:151–158, 1979.9.2.1

[45] J. Koenderink and A. van Doorn. Local features of smoothshapes: Ridges and courses.
SPIE Proc. Geometric Methods in Computer Vision II, 2031:2–13, 1993.9.2.1

[46] L. Kohn, J. Corrigan, and M.Donaldson, editors.To Err is Human: Building a safer health
system. National Academy Press, 2001.7.12.4

[47] S. Kullback.Information Theory and Statistics. Dover Publications, 1997.10.3.2

[48] M. Leventon, W. Grimson, and O. Faugeras. Statistical shape influence in geodesic active
contours. InProc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
volume 1, pages 316–323, 2000.9.3.7

[49] T. Lindeberg. Scale-Space Theory in Computer Science. Kluwer Academic Publishers,
1994. 6.7.1

[50] H. Lodish, A. Berk, S. Zipursky, P. Matsudaira, D. Baltimore, and J. Darnell.Molecular
Cell Biology. W. H. Freeman and Company, 2000.4.1.5, 8.8.1

[51] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface construc-
tion algorithm.Computer Graphics, 21(4):163–169, July 1987.6.11.1

[52] F. Maes, A. Collignon, D. Meulen, G. Marchal, and P. Suetens. Multi-modality image reg-
istration by maximization of mutual information.IEEE Trans. on Med. Imaging, 16:187–
198, 1997.8.5

[53] D. Malacara. Color Vision and Colorimetry: Theory and Applications. SPIE PRESS,
2002. 4.1.5, 4.1.5

[54] R. Malladi, J. A. Sethian, and B. C. Vermuri. Shape modeling with front propagation: A
level set approach.IEEE Trans. on Pattern Analysis and Machine Intelligence, 17(2):158–
174, 1995.9.3.2

[55] D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellen, andW. Eubank. Non-rigid multi-
modality image registration. InMedical Imaging 2001: Image Processing, pages 1609–
1620, 2001.8.8.17, 8.10.4

Bibliography 781

[56] D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellen, andW. Eubank. PET-CT image
registration in the chest using free-form deformations.IEEE Trans. on Medical Imaging,
22(1):120–128, January 2003.8.5.2, 8.8.17

[57] E. H. Meijering, W. J. Niessen, J. P. Pluim, and M. A. Viergever. Quantitative compar-
ision os sinc-approximating kernels for medical image interpolation. In W. M. Wells,
A. Colchester, and S. Delp, editors,MICCAI’98 First International Conference on Med-
ical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer
Science, pages 972–980. Springer Verlag, September 1999.8.9.4

[58] D. Musser and A. Saini.STL Tutorial and Reference Guide. Professional Computing
Series. Addison-Wesley, 1996.3.2.1

[59] David R. Musser. Introspective sorting and selection algorithms. Software–Practice and
Experience, 8:983–993, 1997.10.2.3

[60] NEMA. The dicom standard. Technical report, NEMA, http://medial.nema.org/, 2004.
7.12.1

[61] Dan Pelleg and Andrew Moore. Accelerating exact k -means algorithms with geometric
reasoning. InFifth ACM SIGKDD International Conference On Knowledge Discovery
and Data Mining, pages 277–281, 1999.10.4.1

[62] G. P. Penney, J. Weese, J. A. Little, P. Desmedt, D. L. G. Hill, and D. J. Hawkes. A
comparision of similarity measures for use in 2d-3d medicalimage registration.IEEE
Transactions on Medical Imaging, 17(4):586–595, August 1998.8.10.3

[63] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion.IEEE
Transactions on Pattern Analysis Machine Intelligence, 12:629–639, 1990.6.7.3, 6.7.3,
6.7.3

[64] J. P. Pluim, J. B. A. Maintz, and M. A. Viergever. Mutual-Information-Based Registration
of Medical Images: A Survey.IEEE Transactions on Medical Imaging, 22(8):986–1004,
August 2003.8.5, 8.10.4

[65] K. Popper.Open Society and Its Enemies. Princenton University Press, 1971.8.5.1

[66] K. Popper.The Logic of Scientific Discovery. Routledge, 2002.8.5.1, 10.3.1

[67] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes in
C. Cambridge University Press, second edition, 1992.8.11

[68] K. Rohr, M. Fornefett, and H. S. Stiehl. Approximating thin-plate splines for elas-
tric registration: Integration of landmark errors and orientation attributes. In A. Kuba,
M. Samal, and A. Todd-Pkropek, editors,Information Processing in Medical Imaging
1999 (IPMI’99), pages 252–265. Springer, 1999.8.8.18

[69] K. Rohr, H. S. Stiehl, R. Sprengel, T. M. Buzug, J. Weese,and M. H Kuhn. Landmark-
based elastic registration using approximating thin-plate splines. IEEE Transactions on
Medical Imaging, 20(6):526–534, June 1997.8.8.18, 8.17

782 Bibliography

[70] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J. Hawkes. Non-
rigid registration using free-form deformations: Application to breast mr images.IEEE
Transaction on Medical Imaging, 18(8):712–721, 1999.8.8.17

[71] G. Sapiro and D. Ringach. Anisotropic diffusion of multivalued images with applications
to color filtering. IEEE Trans. on Image Processing, 5:1582–1586, 1996.6.7.3

[72] W. Schroeder, K. Martin, and B. Lorensen.The Visualization Toolkit, An Object Oriented
Approach to 3D Graphics. Kitware Inc, 1998.6.11.1

[73] J. P. Serra.Image Analysis and Mathematical Morphology. Academic Press Inc., 1982.
6.6.3, 9.2.1

[74] J.A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge University
Press, 1996.9.3

[75] C. E. Shannon. A mathematical theory of communication.Bell System Technical Journal,
27:379–423, July 1948.6.9.4, 10.3.2

[76] C. E. Shannon and W. Weaver.The Mathematical Theory of Communication. University
of Illinois Press, 1948.6.9.4, 10.3.2

[77] J. C. Spall. An overview of the simultaneous perturbation method for efficient optimiza-
tion. Johns Hopkins APL Technical Digest, 19:482–492, 1998.8.11

[78] M. Styner, C. Brehbuhler, G. Szekely, and G. Gerig. Parametric estimate of intensity
homogeneities applied to MRI.IEEE Trans. Medical Imaging, 19(3):153–165, March
2000. 8.11

[79] Baart M. ter Haar Romeny, editor.Geometry-Driven Diffusion in Computer Vision.
Kluwer Academic Publishers, 1994.6.7.3

[80] J. P. Thirion. Fast non-rigid matching of 3D medical image. Technical report, Research
Report RR-2547, Epidure Project, INRIA Sophia, May 1995.8.14

[81] J.-P. Thirion. Image matching as a diffusion process: an analogy with maxwell’s demons.
Medical Image Analysis, 2(3):243–260, 1998.8.14

[82] J. Udupa and S. Samarasekera. Fuzzy connectedness and object definition: Theory, algo-
rithms, and applications in image segmentation.Graphical Models and Image Processing,
58(3):246–261, 1996.9.4.2, 9.4.3, 9.4.3

[83] J. K. Udupa, V.R. Leblanc, H. Schmidt, C. Imielinska, K.P. Saha, G.J. Grevera, Y. Zhuge,
P. Molholt, L. Currie, and Y. Jin. A Methodology for Evaluating Image Segmentation
Algorithms. InSPIE Medical Imaging, San Diego, 2002.9.4.1, 9.4.3

[84] J. K. Udupa and S. Samarasekera. Extraction of fuzzy object information in multidimen-
sional images for quantifying ms lesions of the brain. Technical Report 5,812,691, United
States Patent Office http://www.uspto.gov, 1998.9.4.2, 9.4.3

Bibliography 783

[85] P. Viola and W. M. Wells III. Alignment by maximization of mutual information.IJCV,
24(2):137–154, 1997.8.5, 8.10.4

[86] J. Weickert, B.M. ter Haar Romeny, and M.A. Viergever. Conservative image transfor-
mations with restoration and scale-space properties. InProc. 1996 IEEE International
Conference on Image Processing (ICIP-96, Lausanne, Sept. 16-19, 1996), pages 465–468,
1996. 6.7.3

[87] R. T. Whitaker and G. Gerig.Vector-Valued Diffusion, pages 93–134. Kluwer Academic
Publishers, 1994.6.7.3, 6.7.3

[88] R. T. Whitaker and X. Xue. Variable-Conductance, Level-Set Curvature for Image Pro-
cessing. InInternational Conference on Image Processing, pages 142–145. IEEE, 2001.
6.7.3

[89] Ross T. Whitaker. Characterizing first and second orderpatches using geometry-limited
diffusion. InInformation Processing in Medical Imaging 1993 (IPMI’93), pages 149–167,
1993. 6.7.3

[90] Ross T. Whitaker. Geometry-Limited Diffusion. PhD thesis, The University of North
Carolina, Chapel Hill, North Carolina 27599-3175, 1993.6.7.3, 6.7.3

[91] Ross T. Whitaker. Geometry-limited diffusion in the characterization of geometric patches
in images. Computer Vision, Graphics, and Image Processing: Image Understanding,
57(1):111–120, January 1993.6.7.3

[92] Ross T. Whitaker and Stephen M. Pizer. Geometry-based image segmentation using
anisotropic diffusion. In Ying-Lie O, A. Toet, H.J.A.M Heijmans, D.H. Foster, and
P. Meer, editors,Shape in Picture: The mathematical description of shape in greylevel
images. Springer Verlag, Heidelberg, 1993.6.7.3

[93] Ross T. Whitaker and Stephen M. Pizer. A multi-scale approach to nonuniform diffusion.
Computer Vision, Graphics, and Image Processing: Image Understanding, 57(1):99–110,
January 1993.6.7.3

[94] G. Wyszecki. Color Science: Concepts and Methods, Quantitative Data andFormulae.
Wiley-Interscience, 2000.4.1.5, 4.1.5

[95] Terry S. Yoo and James M. Coggins. Using statistical pattern recognition techniques to
control variable conductance diffusion. InInformation Processing in Medical Imaging
1993 (IPMI’93), pages 459–471, 1993.6.7.3

[96] T.S. Yoo, U. Neumann, H. Fuchs, S.M. Pizer, T. Cullip, J.Rhoades, and R.T. Whitaker. Di-
rect visualization of volume data.IEEE Computer Graphics and Applications, 12(4):63–
71, 1992. 9.2.1

[97] T.S. Yoo, S.M. Pizer, H. Fuchs, T. Cullip, J. Rhoades, and R. Whitaker. Achieving direct
volume visualization with interactive semantic region selection. InInformation Processing
in Medical Images. Springer Verlag, 1991.9.2.1, 9.2.1

INDEX

Accept()
itk::Mesh,95

AddVisitor()
itk::Mesh,94

Amount of information
Image,664

Anisotropic data sets,248

BinaryMask3DMeshSource
Header,259
Instantiation,260
New(),592
Pointer,592
SetInput,260

BoundaryFeature,78
BSplineDeformableTransform,442, 448,

451, 453, 456, 459
Instantiation,441, 447, 450, 452, 458
New,441, 447, 450, 452, 458

BSplineInterpolateImageFunction,410
BufferedRegion,758

Casting Images,147
CellAutoPointer,65

TakeOwnership(),66, 68, 72, 75, 82
CellBoundaryFeature,78
CellDataContainer

Begin(),69, 73
ConstIterator,69, 73
End(),69, 73
Iterator,69, 73

CellDataIterator

increment,70, 73
Value(),70, 73

CellInterface
iterating points,92
PointIdsBegin(),92
PointIdsEnd(),92

CellInterfaceVisitor,89, 91
requirements,90, 91
Visit(), 90, 91

CellIterator
increment,67
Value(),67

CellMultiVisitorType,94
CellsContainer

Begin(),67, 77, 83, 87
End(),67, 77, 83, 87

CellType
creation,66, 68, 72, 75, 82
GetNumberOfPoints(),67
PointIdIterator,78, 83
PointIdsBegin(),78, 83
PointIdsEnd(),78, 83
Print(),67

CellVisitor, 89–91, 93
CenteredTransformInitializer

GeometryOn(),359, 370
MomentsOn(),359, 370

CMake,14
downloading,14

Command/Observer design pattern,24
Complex images

Instantiation,283

786 Index

Reading,283
Writing, 283

Configuration,13
with VTK, 15

const-correctness,57, 59
ConstIterator,57, 59
convolution

kernels,730
operators,730

convolution filtering,729
CreateStructuringElement()

itk::BinaryBallStructuringElement,
173, 176

CVS,773

Dart,774
Dashboard,774
data object,27, 757
data processing pipeline,28, 757
Deformable Models,588
DeformableMesh3DFilter,588

Instantiation,590
Update(),593

DeformationFieldSource,456
DICOM, 294

Changing Headers,312
Dictionary,305
GDCM, 305
Header,305, 308
Introduction,294
Printing Tags,305, 308
Series,294
Standard,294
Tags,305, 308

Dicom
HIPPA,302

Distance Map
itk::SignedDanielssonDistanceMap-

ImageFilter,220
down casting,67
Downloading,5

edge detection,726
EllipseSpatialObject

Instantiation,481

Entropy
Images,664
What’s wrong in images,663

error handling,24
event handling,24
exceptions,24

factory,22
filter, 28, 757

overview of creation,758
forward iteration,702

garbage collection,23
Gaussian blurring,733
GDCM

Dictionary,305
GDCMImageIO

header,305
GDCMSeriesFileNames

GetOutputFileNames(),304
SetOutputDirectory(),304

Generic Programming,701
generic programming,21, 701
GetBoundaryAssignment()

itk::Mesh,80
GetMetaDataDictionary()

ImageIOBase,306
GetNumberOfBoundaryFeatures()

itk::Mesh,80
GetNumberOfFaces()

TetrahedronCell,93
GetPointId(),92
GradientToMagnitudeImageFilter

header,281
Instantiation,282
New(),282
Pointer,282

GroupSpatialObject
Instantiation,481

Hello World,17
HIPAA

Dicom,302
Privacy,302

HistogramToIntensityImageFilter,346

Index 787

HistogramToLogProbabilityImageFilter,
346

HistogramToProbabilityImageFilter,346
Header,346

Image
Amount of information,664
Entropy,664

image region,757
Image Series

Reading,287
Writing, 287

ImageAdaptor
RGB blue channel,750
RGB green channel,749
RGB red channel,748

ImageAdaptors,745
ImageFileRead

Vector images,281
ImageFileWriter

Vector images,279
ImageIO

GetMetaDataDictionary(),310
ImageIOBase

GetMetaDataDictionary(),306
ImageLinearIteratorWithIndex

4D images,713
ImageSeriesWriter

SetFileNames(),304
ImageToSpatialObjectMetric

GetValue(),480
Installation,13
InvokeEvent(),24
Isosurface extraction

Mesh,259
it::GradientDifferenceImageToImage-

Metric, 425
iteration region,702
Iterators

advantages of,701
and 4D images,713
and bounds checking,704
and image lines,710
and image regions,702, 705, 706, 708

and image slices,715
const,702
construction of,702, 708
definition of,701
Get(),704
GetIndex(),704
GoToBegin(),702
GoToEnd(),703
image,701–742
image dimensionality,708
IsAtBegin(),704
IsAtEnd(),704
neighborhood,720–742
operator++(),703
operator+=(),703
operator–,703
operator-=(),703
programming interface,702–706
Set(),704
SetPosition(),704
speed,706, 708
Value(),705

iterators
neighborhood

and convolution,730
ITK

CVS repository,6, 773
downloading release,6
history,10
mailing list,6

itk::AddImageFilter
Instantiation,164

itk::AffineTransform,374, 407
Composition,237
Header,386
header,223, 374
Image Registration,386
Instantiation,374, 386
instantiation,223, 239
New(),239, 374, 388
Pointer,239, 374, 388
resampling,238
Rotate2D(),237, 240
SetIdentity(),229

788 Index

Translate(),225, 237, 239–241
itk::AmoebaOptimizer,426

SetMaximumNumberOfIterations(),
430

itk::ArrowSpatialObject,110
itk::AutomaticTopologyMeshSource,84

AddPoint(),85
AddTetrahedron(),85
header,84
IdentifierArrayType,84
IdentifierType,84

itk::AutoPointer,65
TakeOwnership(),66, 68, 72, 75, 82

itk::BilateralImageFilter,206
header,206
instantiation,206
New(),206
Pointer,206
SetDomainSigma(),207
SetRangeSigma(),207

itk::BinaryThresholdImageFilter
Header,140
Instantiation,140
SetInput(),141
SetInsideValue(),141
SetOutsideValue(),141

itk::BinaryBallStructuringElement
CreateStructuringElement(),173, 176
SetRadius(),173, 176

itk::BinaryDilateImageFilter
header,172
New(),173
Pointer,173
SetDilateValue(),174
SetKernel(),173
Update(),174

itk::BinaryErodeImageFilter
header,172
New(),173
Pointer,173
SetErodeValue(),174
SetKernel(),173
Update(),174

itk::BinaryMask3DMeshSource

Header,589
Instantiation,590
SetInput(),592
SetObjectValue(),592

itk::BinaryMedianImageFilter,178
GetOutput(),178
header,178
instantiation,178
Neighborhood,178
New(),178
Pointer,178
Radius,178
SetInput(),178

itk::BinomialBlurImageFilter,189
itk::BinomialBlurImageFilter

header,189
instantiation,189
New(),189
Pointer,189
SetInput(),189
SetRepetitions(),189
Update(),189

itk::BlobSpatialObject,110
itk::BSplineInterpolateImageFunction,411
itk::BSplineDeformableTransform, 409,

441, 447, 450, 452
DeformableRegistration,441, 447,

450, 452
header,441, 447, 450, 452

itk::CannySegmentationLevelSetImage-
Filter, 559

GenerateSpeedImage(),562
GetSpeedImage(),562
SetAdvectionScaling(),560

itk::CannyEdgeDetectionImageFilter,146
header,146

itk::CastImageFilter,147
header,147
New(),148
Pointer,148
SetInput(),148
Update(),149

itk::Cell
CellAutoPointer,65

Index 789

itk::CellInterface
GetPointId(),92

itk::CenteredRigid2DTransform,349, 358,
399

header,350, 358
Instantiation,350, 358
New(),350, 358
Pointer,350, 358
SmartPointer,358

itk::CenteredSimilarity2DTransform,364
header,364
Instantiation,364
New(),364
Pointer,364
SetAngle(),365
SetScale(),365

itk::CenteredTransformInitializer
header,369
In 3D, 369
Instantiation,369
New(),369
SmartPointer,369

itk::ChangeInformationImageFilter
CenterImageOn(),569

itk::Command,24
itk::ComplexToRealImageFilter,255
itk::ConfidenceConnectedImageFilter,514

header,514
SetInitialNeighborhoodRadius(),516
SetMultiplier(),515
SetNumberOfIterations(),516
SetReplaceValue(),516
SetSeed(),516

itk::ConjugateGradientOptimizer,426
itk::ConnectedThresholdImageFilter,504

header,504
SetLower(),505
SetReplaceValue(),505
SetSeed(),506
SetUpper(),505

itk::CorrelationCoefficientHistogram-
ImageToImageMetric,424

itk::CovariantVector,62
Concept,392

Header,60
Instantiation,60
itk::PointSet,60

itk::CurvatureAnisotropicDiffusionImage-
Filter, 198

header,198
instantiation,198
New(),198
Pointer,198
SetConductanceParameter(),199
SetNumberOfIterations(),199
SetTimeStep(),199
Update(),199

itk::CurvatureFlowImageFilter,200
header,200
instantiation,200
New(),201
Pointer,201
SetNumberOfIterations(),201
SetTimeStep(),201
Update(),201

itk::CylinderSpatialObject,112
itk::DanielssonDistanceMapImageFilter

GetOutput(),218
GetVoronoiMap(),218
Header,217
Instantiation,217
instantiation,217
New(),217
Pointer,217
SetInput(),218

itk::DanielssonDistanceMapImageFilter
InputIsBinaryOn(),218

itk::DataObjectDecorator
Get(),321
Use in Registration,321

itk::DefaultStaticMeshTraits
Header,70
Instantiation,71

itk::DeformableMesh3DFilter
Header,589
SetGradientMagnitude(),593
SetScale(),592
SetStepThreshold(),593

790 Index

SetStiffness(),592
SetTimeStep(),593

itk::DemonsRegistrationFilter,463
SetFixedImage(),463
SetMovingImage(),463
SetNumberOfIterations(),463
SetStandardDeviations(),463

itk::DerivativeImageFilter,156
GetOutput(),157
header,156
instantiation,156
New(),156
Pointer,156
SetDirection(),157
SetInput(),157
SetOrder(),157

itk::DiscreteGaussianImageFilter,187
header,187
instantiation,187
New(),187
Pointer,187
SetMaximumKernelWidth(),188
SetVariance(),188
Update(),188

itk::DTITubeSpatialObject,131
itk::ElasticBodyReciprocalSplineKernelTransform,

409
itk::ElasticBodySplineKernelTransform,

409
itk::EllipseSpatialObject,113

header,477
SetRadius(),481

itk::Euler2DTransform,398
itk::Euler3DTransform,404
itk::EventObject

CheckEvent,331
itk::ExtractImageFilter

header,275
SetExtractionRegion(),277

itk::FastMarchingImageFilter
Multiple seeds,538, 546
NodeContainer,538, 546
Nodes,538, 546
NodeType,538, 546

Seed initialization,538, 546
SetStoppingValue(),539
SetTrialPoints(),538, 547

itk::FFTRealToComplexConjugateImage-
Filter, 253, 256

itk::FFTWRealToComplexConjugate-
ImageFilter,253, 256

itk::FileImageReader
GetOutput(),141, 144, 508

itk::FlipImageFilter,221
GetOutput(),222
header,221
instantiation,221
Neighborhood,221
New(),221
Pointer,221
Radius,221
SetInput(),222

itk::FloodFillIterator
In Region Growing,504, 514

itk::GaussianSpatialObject,114
itk::GDCMImageIO

header,299
itk::GDCMSeriesFileNames

GetFileNames(),301
header,299
SetDirectory(),300

itk::GeodesicActiveContourLevelSet-
ImageFilter

SetAdvectionScaling(),552
SetCurvatureScaling(),552
SetPropagationScaling(),552

itk::GeodesicActiveContourShapePrior-
LevelSetImageFilter

Monitoring,568
SetAdvectionScaling(),570
SetCurvatureScaling(),570
SetPropagationScaling(),570

itk::GradientAnisotropicDiffusionImage-
Filter, 196

header,196
instantiation,196
New(),196
Pointer,196

Index 791

SetConductanceParameter(),196
SetNumberOfIterations(),196
SetTimeStep(),196
Update(),196

itk::GradientDescentOptimizer,426
MaximizeOn(),337

itk::GradientMagnitudeRecursive-
GaussianImageFilter,154

header,154
Instantiation,155
New(),155
Pointer,155
SetInput(),591
SetSigma(),155, 537, 546, 591
Update(),155

itk::GradientRecursiveGaussianImage-
Filter

header,279
itk::GradientMagnitudeImageFilter,152

header,152
instantiation,153
New(),153
Pointer,153
Update(),153

itk::GrayscaleDilateImageFilter
header,175
New(),176
Pointer,176
SetKernel(),176
Update(),177

itk::GrayscaleErodeImageFilter
header,175
New(),176
Pointer,176
SetKernel(),176
Update(),177

itk::GroupSpatialObject,115
header,477
New(),482
Pointer,482

itk::HistogramMatchingImageFilter,444,
462, 466

SetInput(),444, 463, 467

SetNumberOfHistogramLevels(),
445, 463, 467

SetNumberOfMatchPoints(), 445,
463, 467

SetReferenceImage(),444, 463, 467
SetSourceImage(),444, 463, 467
ThresholdAtMeanIntensityOn(),445,

463, 467
itk::IdentityTransform,395
itk::Image,27

Allocate(),37
GetBufferedRegion(),318
GetPixel(),39, 45
Header,35, 316
Index,36
IndexType,36
Instantiation,35, 316
itk::ImageRegion,36
New(),35
origin, 41
Pointer,35
read,37
RegionType,36
SetOrigin(),41
SetPixel(),39
SetRegions(),37
SetSpacing(),41
Size,36
SizeType,36
Spacing,41
TransformPhysicalPointToIndex(),42
Vector pixel,46

itk::ImageRandomConstIteratorWithIndex
and statistics,719
begin and end positions,719
example of using,719–720
ReinitializeSeed(),720
sample size,719
SetNumberOfSamples(),720

itk::ImageRegistrationMethod
Maximize vs Minimize,337
Multi-Modality, 333

itk::ImageSliceIteratorWithIndex
example of using,716–719

792 Index

IsAtEndOfSlice(),716
IsAtReverseEndOfSlice(),716
NextSlice(),716
PreviousSlice(),716
SetFirstDirection(),715
SetSecondDirection(),715

itk::ImageToImageMetric,415
GetDerivatives(),415
GetValue(),415
GetValueAndDerivatives(),415

itk::ImageToSpatialObjectRegistration-
Method

Instantiation,483
New(),483
Pointer,483
SetFixedImage(),485
SetInterpolator(),485
SetMetric(),485
SetMovingSpatialObject(),485
SetOptimizer(),485
SetTransform(),485
StartRegistration(),486

itk::ImageAdaptor
Header,746, 748, 751, 753
Instantiation,746, 748, 751, 753
performing computation,753
RGB blue channel,750
RGB green channel,749
RGB red channel,748

itk::ImageFileRead
Complex images,283
Vector images,277, 285

itk::ImageFileReader,263
GetOutput(),38
header,263, 268, 271, 289
Instantiation,37, 264, 268, 271
New(), 38, 264, 268, 272, 274, 275,

280, 282, 286
Pointer,38
RGB Image,45, 270
SetFileName(),38, 264, 268, 272,

274, 275, 280, 282, 286
SmartPointer,264, 268, 272, 274,

275, 280, 282, 286

Update(),38
itk::ImageFileWrite

Complex images,283
Vector images,277

itk::ImageFileWriter,263
header,263, 268, 271, 299
Instantiation,264, 268, 271, 287
New(), 264, 268, 272, 274, 275, 280,

282, 286
RGB Image,270, 292
SetFileName(),264, 268, 272, 274,

275, 280, 282, 286
SetImageIO(),269
SmartPointer,264, 268, 272, 274,

275, 280, 282, 286
UseInputMetaDataDictionaryOff(),

298
itk::ImageLinearIteratorWithIndex, 710–

715
example of using,711–713
GoToBeginOfLine(),711
GoToReverseBeginOfLine(),711
IsAtEndOfLine(),711
IsAtReverseEndOfLine(),711
NextLine(),710
PreviousLine(),711

itk::ImageMaskSpatialObject,118
header,432
Instantiation,432
New,432
Pointer,432
SetImage(),433

itk::ImageMomentsCalculator,358
itk::ImageRandomConstIteratorWithIndex,

719–720
itk::ImageRegionIterator,706–708

example of using,706–708
itk::ImageRegionIteratorWithIndex,708–

710
example of using,709–710

itk::ImageRegistrationMethod
AffineTransform,386
DataObjectDecorator,321
GetOutput(),321

Index 793

Monitoring,329
Multi-Modality, 341, 380, 431
Multi-Resolution,380
Pipeline,321
Resampling image,321
Scaling parameter space,386
SetFixedImageRegion(),318

itk::ImageSeriesReader
GetMetaDataDictionaryArray(),305
header,287, 299
Instantiation,287
RGB Image,292
SetFileNames(),301

itk::ImageSeriesWriter
header,289
SetMetaDataDictionaryArray(),305

itk::ImageSliceIteratorWithIndex, 715–
719

itk::ImageSpatialObject,116
itk::ImageToImageMetric

SetFixedImage(),433
itk::ImageToSpatialObjectMetric

header,478
Instantiation,484

itk::ImportImageFilter
Header,47
Instantiation,47
New(),47
Pointer,47
SetRegion(),47

itk::InterpolateImageFunction,411
Evaluate(),411
EvaluateAtContinuousIndex(),411
IsInsideBuffer(),411
SetInputImage(),411

itk::IsolatedConnectedImageFilter
GetIsolatedValue(),520
header,519
SetLower(),519
SetReplaceValue(),519
SetSeed1(),519
SetSeed2(),519

itk::KappaStatisticImageToImageMetric,
424

itk::KernelTransforms,409
itk::LandmarkSpatialObject,120
itk::LaplacianSegmentationLevelSet-

ImageFilter,563
SetPropagationScaling(),564

itk::LaplacianRecursiveGaussianImageFilter,
165

header,165
New(),166
Pointer,166
SetSigma(),167
Update(),167

itk::LBFGSOptimizer,426
itk::LBFGSBOptimizer,426
itk::LBFGSBOptimizer,452

header,452
itk::LBFGSOptimizer,441, 447, 450

header,441, 447, 450
itk::LevelSetMotionRegistrationFilter,445

SetFixedImage(),445
SetMovingImage(),445
SetNumberOfIterations(),445
SetStandardDeviations(),445

itk::LevenbergMarquardtOptimizer,426
itk::LinearInterpolateImageFunction,411
itk::LinearInterpolateImageFunction

header,478
itk::LineCell

Header,64
header,74, 81
Instantiation,65, 68, 71, 74, 76, 81, 82
SetPointId(),76, 82

itk::LineSpatialObject,121
itk::MapContainer

InsertElement(),52, 55
itk::MaskImageFilter,256
itk::MatchCardinalityImageToImage-

Metric, 424
itk::MattesMutualInformationImageTo-

ImageMetric,422
ReinitializeSeed(),384, 389, 454
SetNumberOfHistogramBins(),341,

422

794 Index

SetNumberOfSpatialSamples(),341,
422

UseAllPixelsOn(),342
itk::MeanReciprocalSquareDifference-

ImageToImageMetric,419
itk::MeanSquaresHistogramImageTo-

ImageMetric,423
itk::MeanSquaresImageToImageMetric,

416
itk::MeanImageFilter,168

GetOutput(),169
header,168
instantiation,169
Neighborhood,169
New(),169
Pointer,169
Radius,169
SetInput(),169

itk::MedianImageFilter,170
GetOutput(),171
header,170
instantiation,171
Neighborhood,171
New(),171
Pointer,171
Radius,171
SetInput(),171

itk::Mesh,27, 62
Accept(),91, 95
AddVisitor(), 91, 94
BoundaryFeature,78
Cell data,68
CellInterfaceVisitorImplementation,

90, 93
CellAutoPointer,65
CellFeatureCount,80
CellInterfaceVisitor,89–91, 93
CellIterator,83, 87
CellsContainer,77, 83, 87
CellsIterators,77
CellType,65
CellType casting,67
CellVisitor, 89–91, 93
Dynamic,62

GetBoundaryAssignment(),80
GetCellData(),69, 73
GetCells(),67, 77, 83, 87
GetNumberOfBoundaryFeatures(),

80
GetNumberOfCells(),67
GetNumberOfPoints(),64
GetPoints(),64, 77, 83
Header file,62
Inserting cells,66
Instantiation,63, 68, 74, 81
Iterating cell data,69, 73
Iterating cells,67
K-Complex,74, 84
MultiVisitor, 94
New(),63, 65, 68, 72, 74, 81
PixelType,68, 74, 81
Pointer,68, 72, 74, 81
Pointer(),63
PointIterator,83
PointsContainer,77, 83
PointsIterators,77
PointType,63, 65, 68, 72, 74, 81
PolyLine,81
SetBoundaryAssignment(),78
SetCell(),66, 68, 72, 75, 82
SetPoint(),63, 65, 68, 72, 74, 81
Static,62
traits,65

itk::MeshSpatialObject,123
itk::MinMaxCurvatureFlowImageFilter,

203
header,203
instantiation,203
New(),203
Pointer,203
SetNumberOfIterations(),204
SetTimeStep(),204
Update(),204

itk::MultiResolutionImageRegistration-
Method,380

SetNumberOfLevels(),385
SetTransform(),388
StartRegistration(),385

Index 795

itk::MultiResolutionPyramidImageFilter,
437

GetSchedule(),437
SetNumberOfLevels(),437
SetSchedule(),437
SetStartingShrinkFactors(),437

itk::MutualInformationImageToImage-
Metric, 421

SetFixedImageStandardDeviation(),
335, 422

SetMovingImageStandardDevia-
tion(), 335, 422

SetNumberOfSpatialSamples(),336,
422

Trade-offs,336
itk::NearestNeighborInterpolateImage-

Function,411
header,223
instantiation,224

itk::NeighborhoodConnectedImageFilter
SetLower(),512
SetReplaceValue(),512
SetSeed(),512
SetUppder(),512

itk::NormalizedCorrelationImageTo-
ImageMetric,419

itk::NormalizeImageFilter,147
header,147
New(),148
Pointer,148
SetInput(),148
Update(),149

itk::NormalVariateGenerator
Initialize(), 431, 484
New(),431, 484
Pointer,431, 484

itk::NumericSeriesFileNames
header,287

itk::OnePlusOneEvolutionaryOptimizer,
426

Instantiation,484
itk::OnePlusOneEvolutionaryOptimizer

Initialize(), 574
Multi-Modality, 431

SetEpsilon(),574
SetMaximumIteration(),574
SetNormalVariateGenerator(),573
SetScales(),574

itk::Optimizer,426
GetCurrentPosition(),426
MaximizeOff(),486
MaximizeOn(),486
SetInitialPosition(),426
SetScales(),389, 426
StartOptimization(),426

itk::OtsuThresholdImageFilter
SetInput(),508
SetInsideValue(),508
SetOutsideValue(),508

itk::OtsuMultipleThresholdsCalculator
GetOutput(),510

itk::PCAShapeSignedDistanceFunction
New(),571
SetPrincipalComponentStandard-

Deviations(),572
SetMeanImage(),571
SetNumberOfPrincipalComponents(),

571
SetPrincipalComponentsImages(),

571
SetTransform(),572

itk::PixelAccessor
performing computation,753
with parameters,751, 753

itk::Point
Concept,392

itk::PointSet,49
data iterator,57
Dynamic,49
GetNumberOfPoints(),51, 53
GetPoint(),51
GetPointData(),54, 55, 57, 59
GetPoints(),52, 53, 57, 59
Instantiation,50
iterating point data,57
iterating points,57
itk::CovariantVector,60
New(),50

796 Index

PixelType,53
PointDataContainer,54
PointDataIterator,61
Pointer,50
PointIterator,59
points iterator,57
PointsContainer,51
PointType,50
RGBPixel,56
SetPoint(),50, 56, 58, 61
SetPointData(),54–56, 58, 61
SetPoints(),52
Static,49
Vector pixels,58

itk::PowellOptimizer,426
itk::QuaternionRigidTransformGradient-

DescentOptimizer,426
itk::QuaternionRigidTransform,401
itk::ReadWriteSpatialObject,135
itk::RecursiveGaussianImageFilter,162,

190
header,162, 190
Instantiation,162, 166, 191
New(),162, 191
Pointer,162, 191
SetSigma(),164, 192
Update(),192

itk::RegionOfInterestImageFilter
header,273
SetRegionOfInterest(),274

itk::RegistrationMethod
GetCurrentIteration(),376
GetLastTransformParameters(),319,

376
GetValue(),376
SetFixedImage(),318
SetInitialTransformParameters(),318
SetInterpolator(),318
SetMetric(),318
SetMovingImage(),318
SetOptimizer(),318
SetTransform(),318, 350, 358, 364,

369, 374, 442, 448, 450, 452

itk::RegularSetpGradientDescent-
Optimizer

GetCurrentIteration(),320
SetMaximumStepLength(),319
SetNumberOfIterations(),319

itk::RegularStepGradientDescent-
Optimizer,426

MinimizeOn(),376
SetMinimumStepLength(),319
SetRelaxationFactor(),342

itk::ResampleImageFilter,223
GetOutput(),224
header,223
Image internal transform,228
instantiation,223
New(),223
Pointer,223
SetDefaultPixelValue(), 224, 227,

228, 235
SetInput(),224
SetInterpolator(),224
SetOutputOrigin(), 224, 229, 231,

234, 237
SetOutputSpacing(),224, 229, 231,

234, 235
SetSize(),224, 229, 231, 234, 237
SetTransform(),223, 229

itk::RescaleIntensityImageFilter,147
header,147, 271
New(),148
Pointer,148
SetInput(),148
SetOutputMaximum(),148, 271
SetOutputMinimum(),148, 271
Update(),149

itk::RGBPixel,44
GetBlue(),45
GetGreen(),45
GetRed(),45
header,44, 660
Image,44, 270, 291
Instantiation,44, 56, 270, 291
Statistics,660

itk::Rigid3DPerspectiveTransform,407

Index 797

itk::Sample
Histogram,614
Interfaces,605
PointSetToListAdaptor,612

itk::ScaleLogarithmicTransform,398
itk::ScaleTransform,396
itk::SceneSpatialObject,133
itk::SegmentationLevelSetImageFilter

SetAdvectionScaling(),552
SetCurvatureScaling(),547, 552, 557
SetMaximumRMSError(),547
SetNumberOfIterations(),547
SetPropagationScaling(),547, 552,

557, 564
itk::SegmentationLevelSetImageFilter

GenerateSpeedImage(),562
GetSpeedImage(),562
SetAdvectionScaling(),560

itk::ShapeDetectionLevelSetImageFilter
SetCurvatureScaling(),547
SetMaximumRMSError(),547
SetNumberOfIterations(),547

itk::ShapeDetectionLevelSetImageFilter
SetPropagationScaling(),547

itk::ShapePriorSegmentationLevelSet-
ImageFilter

Monitoring,568
SetAdvectionScaling(),570
SetCurvatureScaling(),570
SetPropagationScaling(),570

itk::ShapePriorMAPCostFunction
SetShapeParameterMeans(),573
SetShapeParameterStandardDevia-

tions(),573
SetWeights(),572

itk::ShapeSignedDistanceFunction
SetTransform(),572

itk::ShiftScaleImageFilter,147
header,147
New(),148
Pointer,148
SetInput(),148
SetScale(),148
SetShift(),148

Update(),149
itk::SigmoidImageFilter

GetOutput(),150
header,149
instantiation,150
New(),150
Pointer,150
SetAlpha(),150
SetBeta(),150
SetInput(),150
SetOutputMaximum(),150
SetOutputMinimum(),150

itk::SigmoidImageFilter ,149
itk::SignedDanielssonDistanceMapImage-

Filter
Header,219
Instantiation,219

itk::Similarity2DTransform,400
header,240
instantiation,241
New(),241
Pointer,241
SetAngle(),241
SetRotationCenter(),241
SetScale(),241, 242

itk::Similarity3DTransform,405
itk::SimpleFuzzyConnectednessScalar-

ImageFilter
SetInput(),579, 584
SetMean(),579, 584
SetObjectSeed(),584
SetObjectsSeed(),579
SetThreshold(),579, 584
SetVariance(),579, 584

itk::SimpleFuzzyConnectednessScalar-
ImageFilter

New(),578, 584
Pointer,578, 584

itk::SingleValuedNonLinearOptimizer,
426

itk::SpatialObjectHierarchy,102
itk::SpatialObjectToImageFilter

header,477
Instantiation,482

798 Index

New(),482
Pointer,482
SetInput(),483
SetSize(),483
Update(),125, 483

itk::SpatialObjectToImageStatisticsCalculator,
136

itk::SpatialObjectTransforms,105
itk::SpatialObjectTreeContainer,104
itk::SPSAOptimizer,426
itk::Statistics

Color Images,657
itk::Statistics::CovarianceCalculator,630
itk::Statistics::EuclideanDistance,647
itk::Statistics::ExpectationMaximization-

MixtureModelEstimator,688
itk::Statistics::GaussianMixtureModel-

Component,688
itk::Statistics::GaussianDensityFunction,

646, 681
itk::Statistics::HeapSort,643
itk::Statistics::Histogram

GetFrequency(),659
Iterators,656
Size(),658

itk::Statistics::ImageToListAdaptor,608
itk::Statistics::ImageToHistogramGenerator

Compute(),658
GetOutput(),658
header,657, 660

itk::Statistics::InsertSort,643
itk::Statistics::IntrospectiveSort,643
itk::Statistics::JointDomainImageToList-

Adaptor,608
itk::Statistics::KdTree,625
itk::Statistics::KdTreeBasedKmeans-

Estimator,673
itk::Statistics::KdTreeGenerator,625
itk::Statistics::ListSampleToHistogram-

Filter, 622, 635
itk::Statistics::ListSampleToHistogram-

Generator,622, 637
itk::Statistics::ListSample,605
itk::Statistics::ListSampleToHistogramGenerator

header,653
instantiation,654

itk::Statistics::MaximumDecisionRule,
649

itk::Statistics::MaximumRatioDecision-
Rule,651

itk::Statistics::MeanCalculator,630
itk::Statistics::MembershipSample-

Generator,622
itk::Statistics::MembershipSample,619
itk::Statistics::MinimumDecisionRule,650
itk::Statistics::NeighborhoodSampler,622
itk::Statistics::NeighborhoodSampler,639
itk::Statistics::NormalVariateGenerator,

652, 681
Initialize(), 573

itk::Statistics::PointSetToListAdaptor,611
itk::Statistics::QuickSelect,643
itk::Statistics::SampleToHistogram-

ProjectionFilter,622, 640
itk::Statistics::SampleClassifier,681
itk::Statistics::ScalarImageToListAdaptor,

608
itk::Statistics::ScalarImageToHistogramGenerator

Compute(),656
header,655

itk::Statistics::ScalarImageToListAdaptor
header,653
instantiation,653

itk::Statistics::SelectiveSubsample-
Generator,622

itk::Statistics::Subsample,616, 643
itk::Statistics::WeightedCentroidKdTree-

Generator,625
itk::Statistics::WeightedCovariance-

Calculator,632
itk::Statistics::WeightedMeanCalculator,

632
itk::SurfaceSpatialObject,125
itk::SymmetricForcesDemonsRegistrationFilter,

467
SetFixedImage(),467
SetMovingImage(),467
SetNumberOfIterations(),467

Index 799

SetStandardDeviations(),467
itk::TetrahedronCell

header,74
Instantiation,74, 75
SetPointId(),75

itk::ThinPlateR2LogRSplineKernelTransform,
409

itk::ThinPlateSplineKernelTransform,409
itk::ThresholdSegmentationLevelSet-

ImageFilter,555
SetCurvatureScaling(),557
SetPropagationScaling(),557

itk::ThresholdImageFilter
Header,144
Instantiation,144
SetInput(),144
SetOutsideValue(),144
ThresholdAbove(),144
ThresholdBelow(),144, 145
ThresholdOutside(),144

itk::Transform,392
GetJacobian(),395
SetParameters(),395
TransformCovariantVector(),392
TransformPoint(),392
TransformVector(),392

itk::TranslationTransform,396
GetNumberOfParameters(),318

itk::TreeContainer,96
itk::TriangleCell

header,74
Instantiation,74, 75
SetPointId(),75

itk::TubeSpatialObject,127
itk::Vector,46

Concept,392
header,46
Instantiation,46
itk::Image,46
itk::PointSet,58

itk::VectorConfidenceConnectedImage-
Filter

SetInitialNeighborhoodRadius(),522
SetMultiplier(),522

SetNumberOfIterations(),522
SetReplaceValue(),522
SetSeed(),522

itk::VectorCurvatureAnisotropicDiffusion-
ImageFilter,210

header,210, 214
instantiation,210, 215
New(),210, 215
Pointer,210, 215
RGB Images,214
SetNumberOfIterations(),211, 215
SetTimeStep(),211, 215
Update(),211, 215

itk::VectorGradientAnisotropicDiffusion-
ImageFilter,208

header,208, 211
instantiation,209, 212
New(),209, 212
Pointer,209, 212
RGB Images,211
SetNumberOfIterations(),209, 213
SetTimeStep(),209, 213
Update(),209, 213

itk::VectorIndexSelectionCastImageFilter
header,285
Instantiation,285
New(),285
Pointer,285
SetIndex(),285

itk::VectorCastImageFilter
instantiation,213, 215
New(),213, 215
Pointer,213, 215

itk::VectorContainer
InsertElement(),52, 55

itk::Versor
Definition,402

itk::VersorRigid3DTransformOptimizer,
426

itk::VersorTransformOptimizer,426
itk::VersorRigid3DTransform,369, 403

header,369
Instantiation,369
New(),369

800 Index

Pointer,369
itk::VersorRigid3DTransformOptimizer

header,369
itk::VersorTransform,402
itk::VersorTransformOptimizer,402
itk::VertexCell

header,74, 81
Instantiation,74, 81

itk::VesselTubeSpatialObject,129
itk::VnlFFTRealToComplexConjugate-

ImageFilter,256
itk::VnlFFTRealToComplexConjugate-

ImageFilter,253
itk::VolumeSplineKernelTransform,409
itk::VoronoiSegmentationImageFilter

New(),584
Pointer,584

itk::VoronoiSegmentationImageFilter
SetInput(),586
SetMeanPercentError(),586
SetMinRegion(),586
SetSTDPercentError(),586
TakeAPrior(),586

itk::VotingBinaryHoleFillingImageFilter,
181

GetOutput(),182
header,181
instantiation,181
Neighborhood,181
New(),181
Pointer,181
Radius,181
SetBackgroundValue(),181
SetForegroundValue(),181
SetInput(),182
SetMajorityThreshold(),182

itk::VotingBinaryIterativeHoleFilling-
ImageFilter,182

GetOutput(),185
header,182
instantiation,184
Neighborhood,184
New(),184
Pointer,184

Radius,184
SetBackgroundValue(),184
SetForegroundValue(),184
SetInput(),185
SetMajorityThreshold(),184
SetMaximumNumberOfIterations(),

184
itk::VTKImageIO

header,268
Instantiation,268
New(),268
SetFileTypeToASCII(),269
SmartPointer,268

itk::WarpImageFilter
SetInterpolator(),243

itk::WarpImageFilter,242, 446, 464, 468
SetDeformationField(),446, 464, 468
SetInput(),446, 464, 468
SetInterpolator(),446, 464, 468
SetOutputOrigin(),446, 464, 468
SetOutputSpacing(),446, 464, 468

itk::WindowedSincInterpolateImage-
Function,412

itksys
MakeDirectory,304
SystemTools,304

Joint Entropy
Statistics,667

Joint Histogram
Statistics,667

LaplacianRecursiveGaussianImageFilter
SetNormalizeAcrossScale(),166

LargestPossibleRegion,758
LinearInterpolateImageFunction,410
LineCell

GetNumberOfPoints(),67
Print(),67

mailing list,6
MakeDirectory

itksys,304
SystemTools,304

mapper,28, 757

Index 801

Marching Cubes,259
Medical Errors,302
Mesh

Isosurface extraction,259
mesh region,758
MetaDataDictionary,306, 310

Begin(),310
ConstIterator,310
End(),310
header,305
Iterator,310
MetaDataObject,310
String entries,310

MetaDataObject
GetMetaDataObjectValue(),307
header,305
Strings,310

Model to Image Registration
Observer,478

modified time,758
MultiVisitor, 94
Mutual Information

Statistics,667
MutualInformationHistogramImageTo-

ImageMetric
Header,346
SetHistogramSize(),348

NearestNeighborInterpolateImageFunction,
410

Neighborhood iterators
active neighbors,738
as stencils,738
boundary conditions,725
bounds checking,725
construction of,721
examples,726
inactive neighbors,738
radius of,721
shaped,738

NeighborhoodIterator
examples,726
GetCenterPixel(),723
GetImagePointer(),723

GetIndex(),724
GetNeighborhood(),724
GetNeighborhoodIndex(),725
GetNext(),723
GetOffset(),725
GetPixel(),723
GetPrevious(),724
GetRadius(),722
GetSlice(),725
NeedToUseBoundaryConditionOff(),

725
NeedToUseBoundaryConditionOn(),

725
OverrideBoundaryCondition(),725
ResetBoundaryCondition(),726
SetCenterPixel(),723
SetNeighborhood(),724
SetNext(),724
SetPixel(),723, 726
SetPrevious(),724
Size(),723

NeighborhoodIterators,723, 724
numerics,25

object factory,22
Open Science,340

pipeline
downstream,758
execution details,762
information,758
modified time,758
overview of execution,760
PropagateRequestedRegion,763
streaming large data,759
ThreadedFilterExecution,764
UpdateOutputData,764
UpdateOutputInformation,762
upstream,758

PixelAccessor
RGB blue channel,750
RGB green channel,749
RGB red channel,748

PointDataContainer
Begin(),55

802 Index

End(),55
increment ++,55
InsertElement(),55
Iterator,55
New(),54
Pointer,54

PointIdIterator,78, 83
PointIdsBegin(),78, 83, 92
PointIdsEnd(),78, 83, 92
PointsContainer

Begin(),53, 64, 77, 83
End(),53, 64, 77, 83
InsertElement(),52
Iterator,52, 53, 64
New(),52
Pointer,52
Size(),53

Print(),67
process object,28, 757
ProgressEvent(),24
Python,30

Quality Dashboard,774

reader,28
RecursiveGaussianImageFilter

SetDirection(),163, 191
SetNormalizeAcrossScale,250
SetNormalizeAcrossScale(),163, 192
SetOrder(),163, 191

region,757
Registration

Finite Element-Based,438
RegularStepGradientDescentOptimizer

SetMaximumStepLength(),352
SetMinimumStepLength(),352
SetNumberOfIterations(),352
SetRelaxationFactor(),352

RequestedRegion,758
Resampling,248
RescaleIntensityImageFilter

Instantiation,282, 286
New(),282, 286
Pointer,282, 286
SetOutputMaximum(),282, 286

SetOutputMinimum(),282, 286
reverse iteration,702, 705
RGB

reading Image,270, 291
writing Image,270, 291

scene graph,29
Series

Reading,287
Writing, 287

SetBoundaryAssignment()
itk::Mesh,78

SetCell()
itk::Mesh,66

SetConductanceParameter()
itk::CurvatureAnisotropicDiffusion-

ImageFilter,199
SetDilateValue()

itk::BinaryDilateImageFilter,174
SetDomainSigma()

itk::BilateralImageFilter,207
SetErodeValue()

itk::BinaryErodeImageFilter,174
SetFileName()

itk::ImageFileReader,264, 272, 274,
275, 280, 282, 286

itk::ImageFileWriter,264, 272, 274,
275, 280, 282, 286

SetHistogramSize(),MutualInformation-
HistogramImageToImageMetric,
348

SetInsideValue()
itk::BinaryThresholdImageFilter,141
itk::OtsuThresholdImageFilter,508

SetKernel()
itk::BinaryDilateImageFilter,173
itk::BinaryErodeImageFilter,173
itk::GrayscaleDilateImageFilter,176
itk::GrayscaleErodeImageFilter,176

SetNumberOfIterations()
itk::CurvatureAnisotropicDiffusion-

ImageFilter,199
itk::CurvatureFlowImageFilter,201

Index 803

itk::GradientAnisotropicDiffusion-
ImageFilter,196

itk::MinMaxCurvatureFlowImage-
Filter, 204

itk::VectorCurvatureAnisotropic-
DiffusionImageFilter, 211,
215

itk::VectorGradientAnisotropic-
DiffusionImageFilter, 209,
213

SetOutputMaximum()
itk::RescaleIntensityImageFilter,148

SetOutputMinimum()
itk::RescaleIntensityImageFilter,148

SetOutsideValue()
itk::BinaryThresholdImageFilter,141
itk::OtsuThresholdImageFilter,508
itk::ThresholdImageFilter,144

SetRadius()
itk::BinaryBallStructuringElement,

173, 176
SetRangeSigma()

itk::BilateralImageFilter,207
SetScale()

itk::ShiftScaleImageFilter,148
SetShift()

itk::ShiftScaleImageFilter,148
SetSigma()

itk::GradientMagnitudeRecursive-
GaussianImageFilter,155

itk::LaplacianRecursiveGaussianImageFilter,
167

itk::RecursiveGaussianImageFilter,
164, 192

SetTimeStep()
itk::CurvatureAnisotropicDiffusion-

ImageFilter,199
itk::CurvatureFlowImageFilter,201
itk::GradientAnisotropicDiffusion-

ImageFilter,196
itk::MinMaxCurvatureFlowImage-

Filter, 204
itk::VectorCurvatureAnisotropic-

DiffusionImageFilter, 211,

215
itk::VectorGradientAnisotropic-

DiffusionImageFilter, 209,
213

ShapedNeighborhoodIterator,738
ActivateOffset(),738
ClearActiveList(),738
DeactivateOffset(),738
examples of,739
GetActiveIndexListSize(),739
Iterator::Begin(),739
Iterator::End(),739

smart pointer,22
Sobel operator,726, 729
source,28, 757
spatial object,29
Statistics

Bayesian plugin classifier,681
Convert ListSample to Histogram,

637
Covariance,630
Expectation maximization,688
Gaussian (normal) probability density

function,646
Heap sort,643
Images,653
Importing ListSample to Histogram,

635
Insert sort,643
Introspective sort,643
Joint Entropy,667
Joint Histogram,667
k-means clustering (using k-d tree),

673
Mean,630
Mixture model estimation,688
Mutual Information,667
Order statistics,643
Projecting measurement vectors to 1-

D histogram,640
Quick select,643
Random number generation

Normal (Gaussian) distribution,
652

804 Index

Sampling measurement vectors using
radius,639

Sorting,643
Weighted covariance,632
Weighted mean,632

streaming,28
Subsampling,248
Supersampling,248
Surface Extraction,259
SystemTools,304

MakeDirectory,304

Tcl, 30
template,21
TetrahedronCell

GetNumberOfFaces(),93

Vector
Geometrical Concept,392

Vector images
Reading,277
Writing, 277

VNL, 25
Voronoi partitions,218

itk::DanielssonDistanceMapImage-
Filter, 218

WarpImageFilter,456
Watersheds,524

ImageFilter,527
Overview,524

WindowedSincInterpolateImageFunction,
410

wrapping,30

	I Introduction
	Welcome
	Organization
	How to Learn ITK
	Software Organization
	Obtaining the Software

	Downloading ITK
	Downloading Packaged Releases
	Downloading from CVS
	Join the Mailing List
	Directory Structure
	Documentation
	Data

	The Insight Community and Support
	A Brief History of ITK

	Installation
	Configuring ITK
	Preparing CMake
	Configuring ITK

	Getting Started With ITK
	Hello World !

	System Overview
	System Organization
	Essential System Concepts
	Generic Programming
	Include Files and Class Definitions
	Object Factories
	Smart Pointers and Memory Management
	Error Handling and Exceptions
	Event Handling
	Multi-Threading

	Numerics
	Data Representation
	Data Processing Pipeline
	Spatial Objects
	Wrapping

	II User's Guide
	DataRepresentation
	Image
	Creating an Image
	Reading an Image from a File
	Accessing Pixel Data
	Defining Origin and Spacing
	RGB Images
	Vector Images
	Importing Image Data from a Buffer

	PointSet
	Creating a PointSet
	Getting Access to Points
	Getting Access to Data in Points
	RGB as Pixel Type
	Vectors as Pixel Type
	Normals as Pixel Type

	Mesh
	Creating a Mesh
	Inserting Cells
	Managing Data in Cells
	Customizing the Mesh
	Topology and the K-Complex
	Representing a PolyLine
	Simplifying Mesh Creation
	Iterating Through Cells
	Visiting Cells
	More on Visiting Cells

	Path
	Creating a PolyLineParametricPath

	Containers

	Spatial Objects
	Introduction
	Hierarchy
	SpatialObject Tree Container
	Transformations
	Types of Spatial Objects
	ArrowSpatialObject
	BlobSpatialObject
	CylinderSpatialObject
	EllipseSpatialObject
	GaussianSpatialObject
	GroupSpatialObject
	ImageSpatialObject
	ImageMaskSpatialObject
	LandmarkSpatialObject
	LineSpatialObject
	MeshSpatialObject
	SurfaceSpatialObject
	TubeSpatialObject
	VesselTubeSpatialObject
	DTITubeSpatialObject

	SceneSpatialObject
	Read/Write SpatialObjects
	Statistics Computation via SpatialObjects

	Filtering
	Thresholding
	Binary Thresholding
	General Thresholding

	Edge Detection
	Canny Edge Detection

	Casting and Intensity Mapping
	Linear Mappings
	Non Linear Mappings

	Gradients
	Gradient Magnitude
	Gradient Magnitude With Smoothing
	Derivative Without Smoothing

	Second Order Derivatives
	Second Order Recursive Gaussian
	Laplacian Filters
	Laplacian Filter Finite Difference
	Laplacian Filter Recursive Gaussian

	Neighborhood Filters
	Mean Filter
	Median Filter
	Mathematical Morphology
	Binary Filters
	Grayscale Filters

	Voting Filters
	Binary Median Filter
	Hole Filling Filter
	Iterative Hole Filling Filter

	Smoothing Filters
	Blurring
	Discrete Gaussian
	Binomial Blurring
	Recursive Gaussian IIR

	Local Blurring
	Gaussian Blur Image Function

	Edge Preserving Smoothing
	Introduction to Anisotropic Diffusion
	Gradient Anisotropic Diffusion
	Curvature Anisotropic Diffusion
	Curvature Flow
	MinMaxCurvature Flow
	Bilateral Filter

	Edge Preserving Smoothing in Vector Images
	Vector Gradient Anisotropic Diffusion
	Vector Curvature Anisotropic Diffusion

	Edge Preserving Smoothing in Color Images
	Gradient Anisotropic Diffusion
	Curvature Anisotropic Diffusion

	Distance Map
	Geometric Transformations
	Filters You Should be Afraid to Use
	Change Information Image Filter
	Flip Image Filter
	Resample Image Filter
	Introduction
	Importance of Spacing and Origin
	A Complete Example
	Rotating an Image
	Rotating and Scaling an Image
	Resampling using a deformation field
	Subsampling and image in the same space
	Resampling an Anisotropic image to make it Isotropic

	Frequency Domain
	Computing a Fast Fourier Transform (FFT)
	Filtering on the Frequency Domain

	Extracting Surfaces
	Surface extraction

	Reading and Writing Images
	Basic Example
	Pluggable Factories
	Using ImageIO Classes Explicitly
	Reading and Writing RGB Images
	Reading, Casting and Writing Images
	Extracting Regions
	Extracting Slices
	Reading and Writing Vector Images
	The Minimal Example
	Producing and Writing Covariant Images
	Reading Covariant Images

	Reading and Writing Complex Images
	Extracting Components from Vector Images
	Reading and Writing Image Series
	Reading Image Series
	Writing Image Series
	Reading and Writing Series of RGB Images

	Reading and Writing DICOM Images
	Foreword
	Reading and Writing a 2D Image
	Reading a 2D DICOM Series and Writing a Volume
	Reading a 2D DICOM Series and Writing a 2D DICOM Series
	Printing DICOM Tags From One Slice
	Printing DICOM Tags From a Series
	Changing a DICOM Header

	Registration
	Registration Framework
	"Hello World" Registration
	Features of the Registration Framework
	Direction of the Transform Mapping
	Registration is done in physical space

	Monitoring Registration
	Multi-Modality Registration
	Viola-Wells Mutual Information
	Mattes Mutual Information
	Plotting joint histograms

	 Centered Transforms
	Rigid Registration in 2D
	Initializing with Image Moments
	Similarity Transform in 2D
	Rigid Transform in 3D
	Centered Affine Transform

	Multi-Resolution Registration
	Fundamentals
	Parameter Tuning

	Transforms
	Geometrical Representation
	Transform General Properties
	Identity Transform
	Translation Transform
	Scale Transform
	Scale Logarithmic Transform
	Euler2DTransform
	CenteredRigid2DTransform
	Similarity2DTransform
	QuaternionRigidTransform
	VersorTransform
	VersorRigid3DTransform
	Euler3DTransform
	Similarity3DTransform
	Rigid3DPerspectiveTransform
	AffineTransform
	BSplineDeformableTransform
	KernelTransforms

	Interpolators
	Nearest Neighbor Interpolation
	Linear Interpolation
	B-Spline Interpolation
	Windowed Sinc Interpolation

	Metrics
	Mean Squares Metric
	Exploring a Metric

	Normalized Correlation Metric
	Mean Reciprocal Square Differences
	Mutual Information Metric
	Parzen Windowing
	Viola and Wells Implementation
	Mattes et al. Implementation

	Kullback-Leibler distance metric
	Normalized Mutual Information Metric
	Mean Squares Histogram
	Correlation Coefficient Histogram
	Cardinality Match Metric
	Kappa Statistics Metric
	Gradient Difference Metric

	Optimizers
	Registration using Match Cardinality metric
	Registration using the One plus One Evolutionary Optimizer
	Registration using masks constructed with Spatial objects
	Rigid registrations incorporating prior knowledge

	Image Pyramids
	Deformable Registration
	Demons Deformable Registration
	Visualizing Deformation fields
	Visualizing 2D deformation fields
	Visualizing 3D deformation fields

	Model Based Registration
	Point Set Registration

	Segmentation
	Region Growing
	Connected Threshold
	Otsu Segmentation
	Neighborhood Connected
	Confidence Connected
	Application of the Confidence Connected filter on the Brain Web Data

	Isolated Connected
	Confidence Connected in Vector Images

	Segmentation Based on Watersheds
	Overview
	Using the ITK Watershed Filter

	Level Set Segmentation
	Fast Marching Segmentation
	Shape Detection Segmentation
	Geodesic Active Contours Segmentation
	Threshold Level Set Segmentation
	Canny-Edge Level Set Segmentation
	Laplacian Level Set Segmentation
	Geodesic Active Contours Segmentation With Shape Guidance

	Hybrid Methods
	Introduction
	Fuzzy Connectedness and Confidence Connectedness
	Fuzzy Connectedness and Voronoi Classification
	Example of a Hybrid Segmentation Method

	Deformable Models and Gibbs Prior
	Deformable Model
	Gibbs Prior Image Filter

	Feature Extraction
	Hough Transform
	Line Extraction
	Circle Extraction

	Statistics
	Data Containers
	Sample Interface
	Sample Adaptors
	ImageToListAdaptor
	PointSetToListAdaptor

	Histogram
	Subsample
	MembershipSample
	MembershipSampleGenerator
	K-d Tree

	Algorithms and Functions
	Sample Statistics
	Mean and Covariance
	Weighted Mean and Covariance

	Sample Generation
	ListSampleToHistogramFilter
	ListSampleToHistogramGenerator
	NeighborhoodSampler
	SampleToHistogramProjectionFilter

	Sample Sorting
	Probability Density Functions
	Gaussian Distribution

	Distance Metric
	Euclidean Distance

	Decision Rules
	Maximum Decision Rule
	Minimum Decision Rule
	Maximum Ratio Decision Rule

	Random Variable Generation
	Normal (Gaussian) Distribution

	Statistics applied to Images
	Image Histograms
	Scalar Image Histogram with Adaptor
	Scalar Image Histogram with Generator
	Color Image Histogram with Generator
	Color Image Histogram Writing

	Image Information Theory
	Computing Image Entropy
	Computing Images Mutual Information

	Classification
	k-d Tree Based k-Means Clustering
	K-Means Classification
	Bayesian Plug-In Classifier
	Expectation Maximization Mixture Model Estimation
	Classification using Markov Random Field

	III Developer's Guide
	Iterators
	Introduction
	Programming Interface
	Creating Iterators
	Moving Iterators
	Accessing Data
	Iteration Loops

	Image Iterators
	ImageRegionIterator
	ImageRegionIteratorWithIndex
	ImageLinearIteratorWithIndex
	ImageSliceIteratorWithIndex
	ImageRandomConstIteratorWithIndex

	Neighborhood Iterators
	NeighborhoodIterator
	Basic neighborhood techniques: edge detection
	Convolution filtering: Sobel operator
	Optimizing iteration speed
	Separable convolution: Gaussian filtering
	Slicing the neighborhood
	Random access iteration

	ShapedNeighborhoodIterator
	Shaped neighborhoods: morphological operations

	Image Adaptors
	Image Casting
	Adapting RGB Images
	Adapting Vector Images
	Adaptors for Simple Computation
	Adaptors and Writers

	How To Write A Filter
	Terminology
	Overview of Filter Creation
	Streaming Large Data
	Overview of Pipeline Execution
	Details of Pipeline Execution
	UpdateOutputInformation()
	PropagateRequestedRegion()
	UpdateOutputData()

	Threaded Filter Execution
	Filter Conventions
	Optional
	Useful Macros

	How To Write A Composite Filter
	Implementing a Composite Filter
	A Simple Example

	Software Process
	CVS Source Code Repository
	DART Regression Testing System
	Working The Process
	The Effectiveness of the Process

	Index

