The ITK Software Guide
Second Edition
Updated for ITK version 2.4

Luis Ibahez

Will Schroeder

Lydia Ng

Josh Cates

and the Insight Software Consortium

November 21, 2005

http://ww.itk.org
Email: insight-users@itk.org

http://www.itk.org

(@

The purpose of computing is Insight, not numbers.
Richard Hamming

Abstract

The Insight Toolkit(ITK) is an open-source software toolkit for performing registraand
segmentationSegmentatiors the process of identifying and classifying data found oigi-
tally sampled representation. Typically the sampled regméation is an image acquired from
such medical instrumentation as CT or MRI scannBegistrationis the task of aligning or de-
veloping correspondences between data. For example, im¢kiéal environment, a CT scan
may be aligned with a MRI scan in order to combine the inforamatontained in both.

ITK is implemented in C++. It is cross-platform, using a lbuénvironment known aSMake

to manage the compilation process in a platform-independay In addition, an automated
wrapping processdablg generates interfaces between C++ and interpreted pragiragran-
guages such as Tcl, Java, d@ython This enables developers to create software using a variety
of programming languages. ITK’'s C++ implementation stgledferred to as generic program-
ming, which is to say that it uses templates so that the same @an be appliedenericallyto

any class or type that happens to support the operations 8setl C++ templating means that
the code is highly efficient, and that many software problanesdiscovered at compile-time,
rather than at run-time during program execution.

Because ITK is an open-source project, developers fronmarthe world can use, debug, main-
tain, and extend the software. ITK uses a model of softwareldpment referred to as Extreme
Programming. Extreme Programming collapses the usuabaddtcreation methodology into

a simultaneous and iterative process of design-implernestirelease. The key features of Ex-
treme Programming are communication and testing. Comratinitamong the members of

the ITK community is what helps manage the rapid evolutiothefsoftware. Testing is what

keeps the software stable. In ITK, an extensive testingge®¢using a system known Bari)

is in place that measures the quality on a daily basis. TheTésting Dashboard is posted
continuously, reflecting the quality of the software at argnment.

This book is a guide to using and developing with ITK. The skEngode in thedirectory pro-
vides a companion to the material presented here. The nusttreersion of this document is
available online alit t p: / / www. i t k. or g/ | t kSof t war eCQui de. pdf .

http://www.itk.org
http://www.cmake.org
http://public.kitware.com/Cable/HTML/Index.html
http://www.python.org
http://public.kitware.com/dashboard.php
http://www.itk.org/cgi-bin/viewcvs.cgi/Examples/?root=Insight
http://www.itk.org/ItkSoftwareGuide.pdf

Contributors

The Insight Toolkit(ITK) has been created by the efforts of many talented individaats
prestigious organizations. It is also due in great partéovikion of the program established by
Dr. Terry Yoo and Dr. Michael Ackerman at the National Lilyraf Medicine.

This book lists a few of these contributors in the followirgrggraphs. Not all developers of
ITK are credited here, so please visit the Web pagédstpt//www.itk.org/HTML/About.htm
for the names of additional contributors, as well as chegltire CVS source logs for code
contributions.

The following is a brief description of the contributors tog software guide and their contri-
butions.

Luis Ib afezis principal author of this text. He assisted in the desiga layout of the text,
implemented the bulk of thé&TeX and CMake build process, and was responsible for the bulk
of the content. He also developed most of the example codafouthel nsi ght / Exanpl es
directory.

Will Schroeder helped design and establish the organization of this texd #me
I nsi ght / Exanpl es directory. He is principal content editor, and has auth@a®kral chap-
ters.

Lydia Ng authored the description for the registration frameword & components, the sec-
tion on the multiresolution framework, and the section ofodwaable registration methods.
She also edited the section on the resampling image filtettendections on various level set
segmentation algorithms.

Joshua Catesauthored the iterators chapter and the text and examplesiliag watershed
segmentation. He also co-authored the level-set segnmntaaterial.

Jisung Kim authored the chapter on the statistics framework.

Julien Jomier contributed the chapter on spatial objects and examplesaniehbased regis-
tration using spatial objects.

http://www.itk.org
http://www.itk.org/HTML/About.htm

Vi

Karthik Krishnan reconfigured the process for automatically generating éadgpm all the
examples. Added a large number of new examples and upd&é&iltering and Segmentation
chapters for the second edition.

Stephen Aylward contributed material describing spatial objects and tapplication.

Tessa Sundaramcontributed the section on deformable registration usimgfinite element
method.

YinPeng Jin contributed the examples on hybrid segmentation methods.

Celina Imielinska authored the section describing the principles of hybrihsentation meth-
ods.

Mark Foskey contributed the examples on the AutomaticTopologyMesh@ociass.

Mathieu Malaterre contributed the entire section on the description and uBB@OM readers
and writers based on the GDCM library. He also contributecgxemple on the use of the
VTKImagelO class.

Gavin Baker contributed the section on how to write composite filtersscdknown as minip-
ipeline filters.

CONTENTS

| Introduction 1
1 Welcome 3
1.1 Organization. 3
1.2 HowtolLearnITK. 4
1.3 Software Organization e 4
1.3.1 Obtainingthe Software 4
1.4 Downloading ITK e 5
1.4.1 Downloading Packaged Releases. 6
1.4.2 DownloadingfromCVS. 6
1.43 JointheMailingList. 6
1.4.4 Directory StruCcture. e e e 7
1.45 Documentation. 9
146 Data. 9
1.5 Thelnsight Community and Support 10
1.6 ABriefHistoryof ITK. e 10
2 Installation 13
2.1 Configuring ITK e 13
211 PreparingCMake e 14
212 Configuring ITK e 15
2.2 Getting Started With ITK 16

viii

Contents

221 HeloWorld!.

3 System Overview

3.1
3.2

3.3
3.4
35
3.6
3.7

System Organization
Essential System Concepts
3.2.1 GenericProgramming.
3.2.2 Include Files and Class Definitions

3.2.3 ObjectFactories.

3.2.4 Smart Pointers and Memory Management

3.2.5 Error Handling and Exceptions.

3.26 EventHandling.
3.2.7 Multi-Threading
NUMENICS. o o
Data Representation
Data Processing Pipeline.
Spatial Objects
Wrapping. e

User’'s Guide

DataRepresentation

4.1 Image. e
411 Creatinganlimage.
4.1.2 ReadinganlImagefromaFile.
413 AccessingPixelData
4.1.4 Defining Originand Spacing
415 RGBImMages. e
416 Vectorlmages e
4.1.7 Importing Image Data fromaBuffer.

4.2 PointSet
421 CreatingaPointSet.
4.2.2 Getting AccesstoPoints

4.2.3 Getting Accessto DatainPoints.

19

............ 19

............ 27

Contents ix
424 RGBasPixelType. e 56
425 VectorsasPixelType 57
426 NormalsasPixel Type 60

4.3 Mesh 62
43.1 CreatingaMesh. 62
432 InsertingCells e 64
4.3.3 ManagingDatainCells. 67
4.3.4 CustomizingtheMesh o 70
4.3.5 Topologyandthe K-Complex. 73
4.3.6 RepresentingaPolyLine. 81
4.3.7 Simplifying Mesh Creation, 84
4.3.8 lterating Through Cells 86
4.3.9 VisitingCells. e 89
4.3.10 MoreonVisitingCells. 91
4.4 Path. . . . 95
4.4.1 Creating a PolyLineParametricPath. 95
45 CONAINEIS. vt 96
5 Spatial Objects 101
51 IntroducCtion 101
5.2 Hierarchy. e 102
5.3 SpatialObject Tree Container 104
54 Transformations. 105
5.5 TypesofSpatialObjects 109
5.5.1 ArrowSpatialObject 110
5.5.2 BlobSpatialObject. 110
5.5.3 CylinderSpatialObject. 112
5.5.4 EllipseSpatialObject. 113
55,5 GaussianSpatialObject 114
5.5.6 GroupSpatialObject. 115
5.5.7 ImageSpatialObject. 116
5.5.8 ImageMaskSpatialObject. oL 118

Contents

5.5.9 LandmarkSpatialObject. 120
5.5.10 LineSpatialObject. e 121
5.5.11 MeshSpatialObject 123
5.5.12 SurfaceSpatialObject. 125
5.5.13 TubeSpatialObject. 127
VesselTubeSpatialObject. 129
DTITubeSpatialObject. 131
5.6 SceneSpatialObject. 133
5.7 Read/Write SpatialObjects. 135
5.8 Statistics Computation via SpatialObjects 136
Filtering 139
6.1 Thresholding. e 139
6.1.1 Binary Thresholding. 139
6.1.2 General Thresholding. 142
6.2 EdgeDetection e 145
6.2.1 CannyEdgeDetection 145
6.3 Casting and Intensity Mapping. 146
6.3.1 Linear Mappings. 146
6.3.2 NonlLinearMappings. i i 149
6.4 Gradients. 152
6.4.1 GradientMagnitude. 152
6.4.2 Gradient Magnitude With Smoothing 153
6.4.3 Derivative Without Smoothing 156
6.5 Second OrderDerivatives 158
6.5.1 Second Order Recursive Gaussian 158
6.5.2 LaplacianFilters. e 162
Laplacian Filter Finite Difference. 162
Laplacian Filter Recursive Gaussian. 162
6.6 Neighborhood Filters. e 167
6.6.1 MeanFilter. 168

6.6.2 MedianFilter. 169

Contents Xi
6.6.3 Mathematical Morphology. 171
Binary Filters. e 172
Grayscale Filters. e 174
6.6.4 \MotingFilters. 177
Binary Median Filter. 177
Hole Filling Filter e 179
Iterative Hole Filling Filter. 182
6.7 Smoothing Filters. 185
6.7.1 BIUMING. e 185
Discrete Gaussian. 185
Binomial Blurring 189
Recursive Gaussian lIR. 190
6.7.2 LocalBlurring 193
Gaussian Blurlmage Function. 193
6.7.3 Edge Preserving Smoothing 194
Introduction to Anisotropic Diffusion. 194
Gradient Anisotropic Diffusion 195
Curvature Anisotropic Diffusion L. 197
Curvature Flow. 200
MinMaxCurvature Flow 202
Bilateral Filter 205
6.7.4 Edge Preserving Smoothing in Vectorlmages 207
Vector Gradient Anisotropic Diffusion 208
Vector Curvature Anisotropic Diffusion 209
6.7.5 Edge Preserving Smoothing in Color Images. 211
Gradient Anisotropic Diffusion oo 211
Curvature Anisotropic Diffusion, . 214
6.8 Distance Map e 216
6.9 Geometric Transformations 220
6.9.1 Filters You Should be AfraidtoUse 220
6.9.2 Change Information Image Filter. 220

6.9.3 FliplmageFilter. 221

Xii Contents

6.9.4 ResamplelmageFilter Lo 222
Introduction. 222

Importance of Spacingand Origin. 228

AComplete Example 234
Rotatinganimage. 238

Rotating and Scalinganimage. 240

Resampling using a deformationfield. 242
Subsampling and image inthe same space. 244

Resampling an Anisotropic image to make it Isotropic. 247
6.10 Frequency Domain e 253
6.10.1 Computing a Fast Fourier Transform (FFT). 253
6.10.2 Filtering onthe Frequency Domain 256
6.11 ExtractingSurfaces. e e 259
6.11.1 Surfaceextraction. 259

7 Reading and Writing Images 263

7.1 BasicExample. 263
7.2 Pluggable Factories. e 267
7.3 Using ImagelO Classes Explicitly 267
7.4 Readingand Writing RGBImages. 269
7.5 Reading, Castingand Writinglmages. 270
7.6 ExtractingRegions 272
7.7 Extracting Slices. e 274
7.8 Reading and Writing VectorImages. e 277
7.8.1 TheMinimalExample. 277

7.8.2 Producing and Writing CovariantImages. 279

7.8.3 Reading Covariantlmages. 281

7.9 Reading and Writing ComplexImages 283
7.10 Extracting Components from Vector Images. 284
7.11 Readingand WritingImage Series 287
7.11.1 Readinglmage Series e 287

7.11.2 Writinglmage Series 289

Contents Xii
7.11.3 Reading and Writing Seriesof RGBImages 291
7.12 Reading and Writing DICOM Images. o v v v i ittt e e e 294
7121 FOreword. 294
7.12.2 Readingand Writinga2DImage 295
7.12.3 Reading a 2D DICOM Series and Writinga Volume. 298
7.12.4 Reading a 2D DICOM Series and Writing a 2D DICOM Series. 302
7.12.5 Printing DICOM Tags FromOne Slice. 305
7.12.6 Printing DICOM Tags Froma Series 308
7.12.7 ChangingaDICOMHeader 311
8 Registration 315
8.1 Registration Framework 315
8.2 "HelloWorld” Registration e 316
8.3 Features of the Registration Framework 324
8.3.1 Direction of the Transform Mapping. 327
8.3.2 Registration is done in physicalspace. 328
8.4 Monitoring Registration. 328
8.5 Multi-Modality Registration. 333
8.5.1 Viola-Wells Mutual Information. 333
8.5.2 Mattes Mutual Information L 340
8.5.3 Plotting joint histograms. 345
8.6 Centered Transforms. e 348
8.6.1 Rigid Registrationin2D. 349
8.6.2 InitializingwithImage Moments 355
8.6.3 Similarity Transformin2D. 364
8.6.4 Rigid Transformin3D. e 366
8.6.5 Centered Affine Transform, 374
8.7 Multi-Resolution Registration 377
8.7.1 Fundamentals 380
8.7.2 ParameterTuNiNg o v e e 386
8.8 Transforms. 392

8.8.1 Geometrical Representation 392

Xiv Contents
8.8.2 Transform General Properties 395
8.8.3 Identity Transform. 395
8.8.4 Translation Transform. 396
8.8,5 ScaleTransform. 396
8.8.6 Scale Logarithmic Transform. 398
8.8.7 Euler2DTransform. 398
8.8.8 CenteredRigid2DTransform 399
8.8.9 Similarity2DTransform 400
8.8.10 QuaternionRigidTransform. 401
8.8.11 \VersorTransform. 402
8.8.12 \VersorRigid3DTransform. 403
8.8.13 Euler3DTransform. 404
8.8.14 Similarity3DTransform 405
8.8.15 Rigid3DPerspectiveTransform. 407
8.8.16 AffineTransform 407
8.8.17 BSplineDeformableTransform. 409
8.8.18 KernelTransforms 409

8.9 Interpolators. 410
8.9.1 Nearest Neighbor Interpolation. 411
8.9.2 Linearinterpolation 411
8.9.3 B-SplinelInterpolation. 411
8.9.4 Windowed Sinc Interpolation. L. 412
8.10 MEtriCS. o e 415
8.10.1 MeanSquaresMetriC. e 416
ExploringaMetric. 416
8.10.2 Normalized CorrelationMetric. 419
8.10.3 Mean Reciprocal Square Differences. 419
8.10.4 Mutual Information Metric. L 420
Parzen Windowing. 420
Viola and Wells Implementation 421
Mattes etal. Implementation., . 422

8.10.5 Kullback-Leibler distancemetric. 422

Contents XV
8.10.6 Normalized Mutual Information Metric. 423
8.10.7 Mean Squares Histogram. 423
8.10.8 Correlation Coefficient Histogram 424
8.10.9 Cardinality MatchMetric 424
8.10.10 Kappa StatisticsMetric. 424
8.10.11 Gradient DifferenceMetric. o 425

8.11 Optimizers. e 426
8.11.1 Registration using Match Cardinality metric 429
8.11.2 Registration using the One plus One Evolutionaryr@ipér 431
8.11.3 Registration using masks constructed with Spatjglats. 432
8.11.4 Rigid registrations incorporating prior knowledge 434

8.12 Image Pyramids. 437

8.13 Deformable Registration. 438

8.14 Demons Deformable Registratian. 461

8.15 Visualizing Deformationfields. o 469
8.15.1 Visualizing 2D deformationfields 470
8.15.2 Visualizing 3D deformationfields 470

8.16 Model Based Registration 476

8.17 PointSetRegistration 488

9 Segmentation 503

9.1 Region Growing. ot e e 503
9.1.1 Connected Threshold. 504
9.1.2 OtsuSegmentation e e 507
9.1.3 Neighborhood Connected. 510
9.14 Confidence Connected 514

Application of the Confidence Connected filter on the BrairoWata. 517
9.1.5 Isolated Connected 518
9.1.6 Confidence Connected in VectorImages. 521

9.2 Segmentation BasedonWatersheds., 524

9.21 OVEIVIEW i i 524

9.2.2 Usingthe ITK Watershed Filter. 527

Xvi Contents
9.3 LevelSetSegmentation 531
9.3.1 FastMarching Segmentatian. 533
9.3.2 Shape Detection Segmentation 541
9.3.3 Geodesic Active Contours Segmentation. 550
9.3.4 Threshold Level Set Segmentation 555
9.3.5 Canny-Edge Level Set Segmentation. 559
9.3.6 Laplacian Level Set Segmentation. 563
9.3.7 Geodesic Active Contours Segmentation With ShapdaBoe. 565
9.4 HybridMethods 577
9.4.1 IntroduCtion. 577
9.4.2 Fuzzy Connectedness and Confidence Connectedness 577
9.4.3 Fuzzy Connectedness and Voronoi Classification. 580
Example of a Hybrid Segmentation Method. 581
9.4.4 Deformable Models and Gibbs Prior. 587
Deformable Model. 587
Gibbs PriorImage Filter. 594
9.5 Feature Extraction. 596
9.5.1 HoughTransform 596
Line Extraction. 596
Circle Extraction. 600
10 Statistics 605
10.1 DataContainers. v it e 605
10.1.1 Samplelinterface e 605
10.1.2 Sample Adaptors 608
ImageToListAdaptor. 608
PointSetToListAdaptor. 610
10.1.3 Histogram 613
10.1.4 Subsample. 616
10.1.5 MembershipSample. 619
10.1.6 MembershipSampleGenerator. 622

10.1.7 K-dTree o 625

Contents XVii

10.2 Algorithms and Functions 629
10.2.1 Sample Statistics e e 630
Meanand CovarianCe. i 630

Weighted Mean and Covariance. 632

10.2.2 Sample Generation 635
ListSampleToHistogramFilter. 635
ListSampleToHistogramGenerator. 637
NeighborhoodSampler L 639
SampleToHistogramProjectionFilter. 640

10.2.3 SampleSorting e 643
10.2.4 Probability Density Functions L oo 646
Gaussian Distribution 646

10.2.5 Distance Metric 647
Euclidean Distance 647

10.2.6 DecisionRules. e 649
Maximum DecisionRule 649

Minimum DecisionRule. 650

Maximum Ratio DecisionRule. 651

10.2.7 Random Variable Generation. 652
Normal (Gaussian) Distribution. 652

10.3 Statisticsappliedtolmages e 652
10.3.1 Image Histograms. 652
Scalar Image Histogram with Adaptor. 652

Scalar Image Histogram with Generator. 655

Color Image Histogram with Generator 657

Color Image Histogram Writing. 660

10.3.2 Image Information Theory 663
Computing Image Entropy 663

Computing Images Mutual Information 667
10.4 Classification e 672
10.4.1 k-d Tree Based k-Means Clustering. 673

10.4.2 K-Means Classification. 679

XViii

Contents

10.4.3 Bayesian Plug-In Classifier. 681
10.4.4 Expectation Maximization Mixture Model Estimation 688
10.4.5 Classification using Markov Random Field. 691

[l Developer’s Guide 699

11 Iterators 701
11.1 IntroduCtion o e e e 701
11.2 Programming Interface. L 702
11.2.1 Creatinglterators o o e e 702

11.2.2 Moving lterators. e e 702

11.2.3 AccessingData 704

11.2.4 lteration LOOPS. o o e 705
11.3 Imagelterators e e e e 706
11.3.1 ImageRegionlterator 706

11.3.2 ImageRegionlteratorWithindex., 708

11.3.3 ImageLinearlteratorWithindex 710

11.3.4 ImageSlicelteratorWithindex. 715

11.3.5 ImageRandomConstlteratorWithindex 719
11.4 Neighborhood Iterators. e 720
11.4.1 Neighborhoodlteratar. 726

Basic neighborhood techniques: edge detection. 726

Convolution filtering: Sobel operator. 730

Optimizing iterationspeed 731

Separable convolution: Gaussianfiltering. 733

Slicing the neighborhood o 735

Random accessiteration 736

11.4.2 ShapedNeighborhoodlterator. 738

Shaped neighborhoods: morphological operations 739

12 Image Adaptors 745
12,1 Image Casting. e e 746

12.2 Adapting RGBImages 748

Contents Xix
12.3 Adapting VectorIimages e 751
12.4 Adaptors for Simple Computation. 753
125 Adaptorsand Writers. e e 755

13 How To Write A Filter 757
13.1 Terminology o o e e e 757
13.2 Overview of Filter Creation. 758
13.3 StreamingLargeData 759

13.3.1 Overview of Pipeline Execution 760
13.3.2 Details of Pipeline Execution., 762
UpdateOutputinformation(). 762
PropagateRequestedRegion() 763
UpdateOutputData(). o e 764

13.4 Threaded Filter Execution 764
13.5 FilterConventions. 765
13.5.1 Optional. e 766
13.5.2 UsefulMacros. 766

13.6 How To Write A Composite Filter 767
13.6.1 Implementing a Composite Filter. 767
13.6.2 ASimple Example. 768

14 Software Process 773
14.1 CVS Source Code RepoSItory. o i e 773
14.2 DART Regression Testing System 774
14.3 Working The Process. e 776
14.4 The Effectiveness oftheProcess o .. 776

Index 785

2.1

4.1
4.2

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

LIST OF FIGURES

Cmake userinterface 15
ITK Image Geometrical Concepts i i i i 40
PointSet with Vectors as PixelType. 58
SpatialObject Transformations. e 106
SpatialObject Transform Computations. 109
BinaryThresholdimageFilter transfer function. 140
BinaryThresholdimageFilteroutput 142
ThresholdimagerFilter using the threshold-below mode.. 143
ThresholdimageFilter using the threshold-above made 143
ThresholdimageFilter using the threshold-outsideenod 143
Sigmoid Parameters. 150
Effect of the Sigmoid filter. 151
GradientMagnitudelmageFilteroutput. 154
GradientMagnitudeRecursiveGaussianimageFiltggudut 156
Effect of the Derivative filter. 157
Output of the LaplacianRecursiveGaussianimageFilte 166
Output of the LaplacianRecursiveGaussianimageFilte 168
Effect of the MedianlmageFilter L. 170
Effect of the Medianfilter.. 172

XXii List of Figures
6.15 Effect of erosion and dilation inabinaryimage. 175
6.16 Effect of erosion and dilationinagrayscaleimage. 177
6.17 Effect of the BinaryMedianfilter. 179
6.18 Effect of many iterations on the BinaryMedianfilter.. 180
6.19 Effect of the VotingBinaryHoleFilling filter.. 183
6.20 Effect of the VotingBinarylterativeHoleFilling filte. 186
6.21 DiscreteGaussianimageFilter Gaussiandiagram. 187
6.22 DiscreteGaussianlmageFilteroutputo oL 188
6.23 BinomialBlurimageFilteroutput. 190
6.24 Output of the SmoothingRecursiveGaussianimageFilte. 193
6.25 GradientAnisotropicDiffusionimageFilteroutput L. 197
6.26 CurvatureAnisotropicDiffusionlmageFilteroutput 199
6.27 CurvatureFlowlmageFilteroutput 202
6.28 MinMaxCurvatureFlow computation. 203
6.29 MinMaxCurvatureFlowlmageFilteroutput. 205
6.30 BilaterallmageFilteroutput 208
6.31 VectorGradientAnisotropicDiffusionimageFiltertput 210
6.32 VectorCurvatureAnisotropicDiffusionlmageFiltartput 212
6.33 VectorGradientAnisotropicDiffusionimageFilterB®B 214
6.34 VectorCurvatureAnisotropicDiffusionlmageFiltartputon RGB. 216
6.35 Various Anisotropic Diffusioncompared. 217
6.36 DanielssonDistanceMaplmageFilter output. 218
6.37 SignedDanielssonDistanceMaplmageFilteroutput 220
6.38 Effect of the MedianlmageFilter, 222
6.39 Effectofthe Resamplefilter L 225
6.40 Analysis of resampling in common coordinate system. 226
6.41 ResamplelmageFilter with a translation(by30,—50) 226
6.42 ResamplelmageFilter. Analysis of a translatior{-b$0,—-50) 227
6.43 ResamplelmageFilter highlighting image borders 228
6.44 ResamplelmageFilter selecting the origin of the dutpage. 230
6.45 ResamplelmageFilter selecting the origin of the auitpage. 230
6.46 ResamplelmageFilter selecting the origin of the inmatge 231

List of Figures XXiii

6.47
6.48
6.49
6.50
6.51
6.52
6.53
6.54

7.1
7.2
7.3

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20

ResamplelmageFilter use of naive viewers. 232
ResamplelmageFilter and outputimage spacing. 233
ResamplelmageFilter naive viewers. 233
ResamplelmageFilter with non-unitspacing 235
Effect of a rotation on the resampling filter. 236
Input and output image placed in a common referencersyst 236

Effect of the Resample filter rotatinganimage 239
Effect of the Resample filter rotating and scalingargena 242

Collaboration diagram of the ImagelOclasses 265
Use cases of ImagelO factories 266
Class diagram of ImagelO factories 266
Image Registration Concept 315
Registration Framework Components. e 316
Fixed and Moving images in registration framework 321

HelloWorld registration outputimages. 322
Pipeline structure of the registrationexample. 323
Trace of translations and metrics during registration. 325

Registration Coordinate Systems 326
Command/Observer and the Registration Framework. 331

Multi-Modality Registration Inputs 338
Multi-Modality Registrationoutputs 338
Multi-Modality Registration plot of translations 339
Multi-Modality Registration plotof metrics. 339
MattesMutuallnformationimageTolmageMetric outipobdges 343

MattesMutuallnformationimageTolmageMetric outplatts 343

MattesMutuallnformationimageTolmageMetric numbiins. 344

Multi-modality joint histograms. 349
Rigid2D Registration inputimages. 353
Rigid2D Registration outputimages.o 353
Rigid2D Registrationoutputplots 354
Rigid2D Registration inputimages. 356

XXV List of Figures
8.21 Rigid2D Registration outputimages. 356
8.22 Rigid2D Registrationoutputplots 357
8.23 Effect of changing the centerof rotatian. 361
8.24 CenteredTransforminitializer inputimages 362
8.25 CenteredTransformlnitializer outputimages 362
8.26 CenteredTransformlnitializer outputplots. 363
8.27 Fixed and Moving image registered with CenteredShity2DTransform 367
8.28 Output of the CenteredSimilarity2DTransformregistm 367
8.29 CenteredSimilarity2DTransform registrationplots. 368
8.30 CenteredTransformlnitializer inputimages 372
8.31 CenteredTransformlnitializer outputimages 373
8.32 CenteredTransforminitializer outputplots. 373
8.33 AffineTransform registration 378
8.34 AffineTransformoutputimages. e 378
8.35 AffineTransformoutputplots 379
8.36 Multi-Resolution Registration Components. 380
8.37 Conceptual representation of Multi-Resolutionregt®on 381
8.38 Multi-Resolution registration inputimages 386
8.39 Multi-Resolution registration output images. 387
8.40 Multi-Resolution Registration Inputimages. 390
8.41 Multi-Resolution Registration outputplots. 391
8.42 Geometrical representation objectsin ITK 392
8.43 Mapping moving image to fixed image in Registratian. 410
8.44 Need for interpolation in Registration 410
8.45 BSpline Interpolation Concepts. 412
8.46 Mean Squares MetricPlots. 418
8.47 Parzen Windowing in Mutual Information. 421
8.48 Class diagram of the Optimizer hierarchy. 427
8.49 FEM-based deformable registrationresults. L. 438
8.50 Demon’s deformable registrationoutput. 447
8.51 Demon’s deformable registrationoutput. 465
8.52 Demon’s deformable registrationoutput. oL 469

List of Figures XXV

8.53
8.54
8.55
8.56
8.57
8.58
8.59
8.60
8.61

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18
9.19
9.20
9.21
9.22

Deformation field magnitudes L 471
Calculator. 471
Visualized Deffield. 472
Visualized Deffield4. 473
Deformation field output. 475
Differenceimage. e 475
Model to Image Registration Framework Components 476
Model to Image Registration Framework Concept. 477
SpatialObject to Image Registrationresults. 487
ConnectedThreshold segmentationresults. 507
OtsuThresholdimageFilteroutput 509
NeighborhoodConnected segmentationresults 513
ConfidenceConnected segmentationresults 517
3DregionGrowingScreenshotl 518
3DregionGrowingScreenshotl L 518
IsolatedConnected segmentationresults oL 521
VectorConfidenceConnected segmentationresults 523
Watershed CatchmentBasins 525
Watersheds Hierarchy of Regions 526
Watersheds filter composition L 526
Watershed segmentationoutput 529
Zero SetConcept 531
Grid position of the embedded level-set surface.. 532
FastMarchinglmagerFilter collaboration diagram 533
FastMarchinglmageFilter intermediate output 540
FastMarchinglmageFilter segmentatians 541
ShapeDetectionLevelSetimageFilter collaboratiegrdm 542
ShapeDetectionLevelSetimageFilter intermediateuwu 549
ShapeDetectionLevelSetimageFilter segmentations. 550
GeodesicActiveContourLevelSetimageFilter coltation diagram. 551
GeodesicActiveContourLevelSetimageFilter inteti@e output. 554

XXVi List of Figures
9.23 GeodesicActiveContourlmageFilter segmentations 555
9.24 ThresholdSegmentationLevelSetimageFilter cotlaian diagram. 556
9.25 Propagation term for threshold-based level setsegiem 556
9.26 ThresholdSegmentationLevelSet segmentations. 558
9.27 CannySegmentationLevelSetimageFilter collabanadiagram. 560
9.28 Segmentation results of CannyLevelSetimageFilter. 562
9.29 LaplacianSegmentationLevelSetimageFilter coliation diagram. 563
9.30 Segmentation results of LaplacianLevelSetimagafilt 566
9.31 GeodesicActiveContourShapePriorLevelSetimagaFabllaboration diagram 567
9.32 GeodesicActiveContourShapePriorimageFilter impaige and initial model 575
9.33 Corpus callosum PCAmModes it 576
9.34 GeodesicActiveContourShapePriorimageFilter segatiens. 576
9.35 Hybrid Segmentation Engine. 581
9.36 FuzzyConectedness Filter Diagram. 581
9.37 Fuzzy Connectedness Segmentation Diagram. 582
9.38 Voronoi Filterclassdiagram 582
9.39 Voronoi Diagram Filterclasses. e 582
9.40 Voronoi Diagram Segmentation 582
9.41 Fuzzy Connectedness and Voronoi Diagram Classificatia 583
9.42 Fuzzy Connectedness, Voronoi diagram, and DefornMbtiels. 583
9.43 Segmentation results for the hybrid segmentationcagpr. 585
9.44 Segmentation result for the hybrid segmentationampro. 585
9.45 Deformable model collaboration diagram. 588
10.1 Sampleclassinheritancetree 606
10.2 Histogram. o o e e 614
10.3 Simple conceptual classifier 672
10.4 Statistical classification framework. oo 673
10.5 Two normal distributionsplat. 676
10.6 Output of the KMeans classifier 682
10.7 Bayesian plug-in classifier for two Gaussianclasses 683
10.8 Output of the ScalarimageMarkovRandomField 697

List of Figures XXVil

11.1 ITKimageiteration. e e 703
11.2 Copying an image subregion using ImageRegionlteratar. 709
11.3 Using the ImageRegionlteratorWithindex. 711
11.4 Maximum intensity projection using ImageSliceltersi¥ithindex 719
11.5 Neighborhood iterator. 721
11.6 Some possible neighborhood iterator shapes. 722
11.7 Sobeledge detectionresults. 729
11.8 Gaussian blurring by convolution filtering. L. 734
11.9 Findinglocal minima. e e 738
11.10Binary image morphology. 743
12.1 ImageAdaptor CONCEPt o v o e e e 746
12.2 Image AdaptortoRGBImage 750
12.3 Image Adaptorto Vectorlmage. L 753
12.4 Image Adaptor for performing computationso L 755
13.1 Relationship between DataObjects and ProcessObjects 758
13.2 The DataPipeline e 760
13.3 Sequence of the Data Pipeline updating mechanism 761
13.4 Composite FilterConcept. e 767
13.5 Composite Filter Example. 768

141

Dart Quality Dashboard. 774

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17

9.1
9.2
9.3

LIST OF TABLES

Geometrical Elementary Objects. 393
Identity Transform Characteristics 396
Translation Transform Characteristics. 396
Scale Transform Characteristics. 397
Scale Logarithmic Transform Characteristics. 398
Euler2D Transform Characteristics 399
CenteredRigid2D Transform Characteristics 400
Similarity2D Transform Characteristics 401
QuaternionRigid Transform Characteristics. 402
Versor Transform Characteristics 403
Versor Rigid3D Transform Characteristics 403
Euler3D Transform Characteristics 404
Similarity3D Transform Characteristics 405
Rigid3DPerspective Transform Characteristics. 406
Affine Transform Characteristics., 407
BSpline Deformable Transform Characteristics 408
LBFGS Optimizertrace i i e 474
ConnectedThreshold example parameters 506
IsolatedConnectedimageFilter example parameters. 520

FastMarching segmentation example parameters 539

XXX List of Tables

9.4 ShapeDetection example parameters.o 548
9.5 GeodesicActiveContour segmentation example parasnete 553
9.6 ThresholdSegmentationLevelSet segmentation paeasnet. 558

Part |

Introduction

CHAPTER

ONE

Welcome

Welcome to thénsight Segmentation and Registration Toolkit (ITK) SafexGuide This book
has been updated for ITK 2.4 and later versions of the Indigblkkit software.

ITK is an open-source, object-oriented software systeninf@ge processing, segmentation,
and registration. Although it is large and complex, ITK isdmed to be easy to use once
you learn about its basic object-oriented and implemestiatiethodology. The purpose of
this Software Guide is to help you learn just this, plus toifamze you with the important
algorithms and data representations found throughoubitikit. The material is taught using
an extensive set of examples that we encourage you to compieun while you read this
guide.

ITK is a large system. As a result it is not possible to congijetiocument all ITK objects
and their methods in this text. Instead, this guide willdadlince you to important system con-
cepts and lead you up the learning curve as fast and effigziastpossible. Once you master
the basics, we suggest that you take advantage of the mamyrces available including the
Doxygen documentation pages {p: / / www. i t k. or g/ HTM./ Docunent at i on. ht m) and the
community of ITK users (see Sectidnson pagel0.)

The Insight Toolkit is an open-source software system. Wiiatmeans is that the community
of ITK users and developers has great impact on the evolutiche software. Users and
developers can make significant contributions to ITK by g bug reports, bug fixes, tests,
new classes, and other feedback. Please feel free to aaetyibur ideas to the community (the
ITK user mailing list is the preferred method; a developerailing list is also available).

1.1 Organization

This software guide is divided into three parts, each of Wwhfurther divided into several

chapters. Partlis ageneral introduction to ITK, with—ig tiext chapter—a description of how
to install the Insight Toolkit on your computer. This inckglinstalling pre-compiled libraries
and executables, and compiling the software from the saxode. Part | also introduces basic

http://www.itk.org/HTML/Documentation.htm

4 Chapter 1. Welcome

system concepts such as an overview of the system archigeatud how to build applications
in the C++, Tcl, and Python programming languages. Partdtidees the system from the user
point of view. Dozens of examples are used to illustrate irgyd system features. Part Il is
for the ITK developer. Part Ill explains how to create youmoslasses, extend the system, and
interface to various windowing and GUI systems.

1.2 Howto Learn ITK

There are two broad categories of users of ITK. First aresaflevelopers, those who create
classes in C++. The second, users, employ existing C++eadassbuild applications. Class
developers must be proficient in C++, and if they are extendinmodifying ITK, they must
also be familiar with ITK’s internal structures and desigmaerial covered in Part Ill). Users
may or may not use C++, since the compiled C++ class librasydeenwrappedwith the
Tcl and Python interpreted languages. However, as a usemymst understand the external
interface to ITK classes and the relationships between them

The key to learning how to use ITK is to become familiar withptlette of objects and the ways
of combining them. If you are a new Insight Toolkit user, lmelgy installing the software. If
you are a class developer, you'll want to install the souamecand then compile it. Users may
only need the precompiled binaries and executables. Wemaemd that you learn the system
by studying the examples and then, if you are a class develsjuely the source code. Start
by reading Chapter 3, which provides an overview of some @k#y concepts in the system,
and then review the examples in Part Il. You may also wish topte and run the dozens of
examples distributed with the source code found in the thrgd nsi ght / Exanpl es. (Please
see the file nsi ght / Exanpl es/ README. t xt for a description of the examples contained in
the various subdirectories.) There are also several hdrdsts found in the source distribution
in I nsi ght/ Testi ng/ Code, most of which are minimally documented testing code. Hawev
they may be useful to see how classes are used together irebpi€cially since they are de-
signed to exercise as much of the functionality of each @agsossible.

1.3 Software Organization

The following sections describe the directory contentsysarize the software functionality in
each directory, and locate the documentation and data.

1.3.1 Obtaining the Software
There are three different ways to access the ITK source smteSectionl.4on pageb).

1. from periodic releases available on the ITK Web site,

1.4. Downloading ITK 5

2. from CD-ROM, and

3. from direct access to the CVS source code repository.

Official releases are available a few times a year and anmauoc the ITK Web pages and
mailing lists. However, they may not provide the latest arehtest features of the toolkit. In
general, the periodic releases and CD-ROM releases araihe, £xcept that the CD release
typically contains additional resources and data. CVSspeovides immediate access to the
latest toolkit additions, but on any given day the sourceecady not be stable as compared
to the official releases—i.e., the code may not compile, i rash, or it might even produce
incorrect results.

This software guide assumes that you are working with theiafflITK version 2.4 release
(available on the ITK Web site). If you are a new user, we higlecommend that you use
the released version of the software. It is stable, comgissnd better tested than the code
available from the CVS repository. Later, as you gain exgraré with ITK, you may wish to
work from the CVS repository. However, if you do so, pleaseabare of the ITK quality
testing dashboard. The Insight Toolkit is heavily testddgithe open-source DART regression
testing systemht t p: // publ i c. ki t war e. coml dashboar d. php). Before updating the CVS
repository, make sure that the dashboagkéenindicating stable code. If not green it is likely
that your software update is unstable. (Learn more aboufikeuality dashboard in Section
14.20n pager74)

1.4 Downloading ITK

ITK can be downloaded without cost from the following welesit
http://ww.itk. org/ HTM./ Downl oad. php

In order to track the kind of applications for which ITK is bgiused, you will be asked to
complete a form prior to downloading the software. The infation you provide in this form
will help developers to get a better idea of the interestsskilts of the toolkit users. It also
assists in future funding requests to sponsoring agencies.

Once you fill out this form you will have access to the downlpade where two options for
obtaining the software will be found. (This page can be boakk®d to facilitate subsequent
visits to the download site without having to complete anyrf@gain.) You can get the tarball
of a stable release or you can get the development versionghrCVS. The release version
is stable and dependable but may lack the latest featurémdbolkit. The CVS version will
have the latest additions but is inherently unstable and coagain components with work in
progress. The following sections describe the details ofi @ne of these two alternatives.

http://public.kitware.com/dashboard.php
http://www.itk.org/HTML/Download.php

6 Chapter 1. Welcome

1.4.1 Downloading Packaged Releases

Please read th€ettingStarted. txt! document first. It will give you an overview of the
download and installation processes. Then choose thdlttdragbetter fits your system. The
options are zi p and. tgz files. The first type is better suited for MS-Windows while the
second one is the preferred format for UNIX systems.

Once you unzip or untar the file a directory callei ght will be created in your disk and you
will be ready for starting the configuration process desatilm Sectior?.1.1on pagel4.

1.4.2 Downloading from CVS

The Concurrent Versions System (CVS) is a tool for softwaaesion control 27]. Generally
only developers should be using CVS, so here we assume thadnygov what CVS is and how
to use it. For more information about CVS please see Set#iohon page’ 73 (Note: please
make sure that you access the software via CVS only when #@lfality Dashboard indicates
that the code is stable. Learn more about the Quality Dastlaid4.2on pager74)

Access ITK via CVS using the following commands (under UNRAaCygwin):

cvs -d :pserver:anonymous@ww. i tk. org:/cvsroot/Insight |ogin
(respond with password "insight")

cvs -d :pserver:anonymous@ww.itk. org:/cvsroot/Insight co Insight

This will trigger the download of the software into a diregtmamed nsi ght . Any time you
want to update your version, it will be enough to change ihts directoryl nsi ght and type:

cvs update -d -P

Once you obtain the software you are ready to configure angitein (see Sectior2.1.1on
pageld). First, however, we recommend that you join the mailingdisd read the following
sections describing the organization of the software.

1.4.3 Join the Mailing List

It is strongly recommended that you join the users mailisg liThis is one of the primary
resources for guidance and help regarding the use of thieittodbu can subscribe to the users
list online at

http://ww.itk.org/ HTM./ Mai | i ngLi sts. htm

http://www.itk.org/HTML/GettingStarted. txt

http://www.itk.org/HTML/MailingLists.htm

1.4. Downloading ITK 7

The insight-users mailing list is also the best mechanigmxpressing your opinions about the
toolkit and to let developers know about features that yadidiseful, desirable or even unneces-
sary. ITK developers are committed to creating a self-&uistg open-source ITK community.
Feedback from users is fundamental to achieving this goal.

1.4.4 Directory Structure

To begin your ITK odyssey, you will first need to know somethabout ITK’s software orga-
nization and directory structure. Even if you are installpre-compiled binaries, it is helpful
to know enough to navigate through the code base to find exenmde, and documentation.

ITK is organized into several different modules, or CVS dtmeds. If you are using an official
release or CD release, you will see three important modthes$nsi ght , | nsi ght Docunent s

andl nsi ght Appl i cati ons modules. The source code, examples and applications ard fiou
thel nsi ght module; documentation, tutorials, and material relateiéalesign and marketing
of ITK are found inl nsi ght Docunent s; and fairly complex applications using ITK (and other
systems such as VTK, Qt, and FLTK) are available fiari ght Appl i cati ons. Usually you

will work with the | nsi ght module unless you are a developer, are teaching a courses or a
looking at the details of various design documents. Mitsé ght Appl i cat i ons module should
only be downloaded and compiled once thsi ght module is functioning properly.

Thel nsi ght module contains the following subdirectories:

e | nsight/Auxiliary—code that interfaces packages to ITK.
e | nsi ght/ Code—the heart of the software; the location of the majority & slource code.

I nsi ght / Docunent at i on—a compact subset of documentation to get users started with
ITK.

e | nsi ght/Exanpl es—a suite of simple, well-documented examples used by thidegu
and to illustrate important ITK concepts.

e | nsi ght/ Testi ng—a large number of small programs used to test ITK. These pkam
tend to be minimally documented but may be useful to dematestiarious system con-
cepts. These tests are used by DART to produce the ITK Quadishboard (see Section
14.2on pager74)

e Insight/UWilities—supporting software for the ITK source code. For example,
DART and Doxygen support, as well as libraries suchrasandz| i b.

e | nsight/Val i dati on—a series of validation case studies including the sourde osed
to produce the results.

e | nsi ght/ W appi ng—support for the CABLE wrapping tool. CABLE is used by ITK to
build interfaces between the C++ library and various iretgd languages (currently Tcl
and Python are supported).

Chapter 1. Welcome

The source code directory structure—foundl imsi ght / Code—is important to understand
since other directory structures (such as Theti ng andW appi ng directories) shadow the
structure of the nsi ght / Code directory.

I nsi ght / Code/ Common—core classes, macro definitions, typedefs, and other acdtw
constructs central to ITK.

I nsi ght / Code/ Nuner i cs—mathematical library and supporting classes. (Note:
ITK's mathematical library is based on the VXL/VNL softwarg@ackage
http://vxl.sourceforge. net.)

I nsi ght / Code/ Basi cFi | t er s—basic image processing filters.
I nsi ght / Code/ | O—classes that support the reading and writing of data.

I nsi ght / Code/ Al gori t hms—the location of most segmentation and registration algo-
rithms.

I nsi ght / Code/ Spat i al Obj ect —classes that represent and organize data using spatial
relationships (e.g., the leg bone is connected to the hig beta.)

I nsi ght / Code/ Pat ent ed—any patented algorithms are placed here. Using this code in
commercial application requires a patent license.

I nsi ght / Code/ Local —an empty directory used by developers and users to expetime
with new code.

Thel nsi ght Docunent s module contains the following subdirectories:

I nsi ght Docunent s/ Cour seWar e—material related to teaching ITK.

I nsi ght Docunent s/ Devel oper —historical documents covering the design and creation
of ITK including progress reports and design documents.

I nsi ght Docunent s/ Lat ex—IATEX styles to produce this work as well as other docu-
ments.

I nsi ght Docunent s/ Mar ket i ng—marketing flyers and literature used to succinctly de-
scribe ITK.

I nsi ght Docunent s/ Paper s—papers related to the many algorithms, data representa-
tions, and software tools used in ITK.

I nsi ght Docunent s/ Sof t war eQui de—IATEX files used to create this guide. (Note that
the code found imnsi ght / Exanpl es is used in conjunction with thesgTEX files.)

I nsi ght Docunent s/ Val i dat i on—validation case studies using ITK.

http://vxl.sourceforge.net

1.4. Downloading ITK 9

e | nsi ght Docunent s/ Web—the source HTML and other material used to produce the Web
pages found attt p: // www. i tk. org.

Similar to thel nsi ght module, access to theasi ght Docunent s module is also available via
CVS using the following commands (under UNIX and Cygwin):

cvs -d :pserver:anonymus@ww.itk.org:/cvsroot/Insight co InsightDocunents

The | nsi ght Appl i cati ons module contains large, relatively complex examples of 1T u
age. See the web pagesat p: // ww. i t K. or g/ HTM./ Appl i cat i ons. ht mfor a description.
Some of these applications require GUI toolkits such as QK or other packages such as
VTK (The Visualization Toolkitt t p: // www. vt k. or g). Do not attempt to compile and build
this module until you have successfully built the cbnsi ght module.

Similar to thel nsi ght andl nsi ght Docunment s module, access to thesi ght Appl i cati ons
module is also available via CVS using the following comma@uhder UNIX and Cygwin):

cvs -d: pserver:anonymus@uww. itk.org:/cvsroot/Insight \
co | nsightApplications

1.4.5 Documentation
Besides this text, there are other documentation resotlraegou should be aware of.

Doxygen Documentation. The Doxygen documentation is an essential resource whekirvgor
with ITK. These extensive Web pages describe in detail egkrys and method in the
system. The documentation also contains inheritance dfabooation diagrams, listing
of event invocations, and data members. The documentatibeavily hyper-linked to
other classes and to the source code. The Doxygen docuinentagvailable on the
companion CD, or on-line &ttt p: // www. i t k. or g. Make sure that you have the right
documentation for your version of the source code.

Header Files. Each ITK class is implemented with a .h and .cxx/.txx fileX file for templated
classes). All methods found in the .h header files are doctedeand provide a quick
way to find documentation for a particular method. (Indeedxyen uses the header
documentation to produces its output.)

1.4.6 Data

The Insight Toolkit was designed to support the Visible HamRroject and its as-
sociated data. This data is available from the National dripr of Medicine at
http://www. nl m ni h. gov/ research/visibl e/ visible human. htn .

Another source of data can be obtained from the ITK Web sigitla¢r of the following:

http://www.itk.org
http://www.itk.org/HTML/Applications.htm
http://www.vtk.org
http://www.itk.org
http://www.nlm.nih.gov/research/visible/visible_human.html

10 Chapter 1. Welcome

http://ww.itk.org/ HTM./ Dat a. ht m
ftp://public.Kkitware.com pub/itk/Datal.

1.5 The Insight Community and Support

ITK was created from its inception as a collaborative, comityueffort. Research, teaching,
and commercial uses of the toolkit are expected. If you wikidto participate in the commu-
nity, there are a number of possibilities.

e Users may actively report bugs, defects in the system ARgauisubmit feature requests.
Currently the best way to do this is through the ITK users imgilist.

e Developers may contribute classes or improve existingses|f you are a developer,
you may request permission to join the ITK developers mgilist. Please do so by
sending email to will.schroeder “at” kitware.com. To be@adeveloper you need to
demonstrate both a level of competence as well as trustivegs. You may wish to
begin by submitting fixes to the ITK users mailing list.

e Research partnerships with members of the Insight Soft@ansortium are encouraged.
Both NIH and NLM will likely provide limited funding over thaext few years, and will
encourage the use of ITK in proposed work.

e Forthose developing commercial applications with ITK,soit and consulting are avail-
able from Kitware aht t p: / / www. ki t war e. com. Kitware also offers short ITK courses
either at a site of your choice or periodically at Kitware.

e Educators may wish to use ITK in courses. Materials are béawgloped for this pur-
pose, e.g., a one-day, conference course and semestegrkohgate courses. Watch the
ITK web pages or check in tHensi ght Docunent s/ Cour seWar e directory for more in-
formation.

1.6 A Brief History of ITK

In 1999 the US National Library of Medicine of the Nationaklitutes of Health awarded
six three-year contracts to develop an open-source ratisirand segmentation toolkit, that
eventually came to be known as the Insight Toolkit (ITK) andred the basis of the Insight
Software Consortium. ITK’s NIH/NLM Project Manager was Drferry Yoo, who coordi-
nated the six prime contractors composing the Insight atinse. These consortium members
included three commercial partners—GE Corporate R&D, iy Inc., and MathSoft (the
company name is now Insightful)—and three academic partrémiversity of North Carolina
(UNC), University of Tennessee (UT) (Ross Whitaker subsatjy moved to University of
Utah), and University of Pennsylvania (UPenn). The Prilecipvestigators for these partners

http://www.itk.org/HTML/Data.htm
ftp://public.kitware.com/pub/itk/Data/
http://www.kitware.com

1.6. A Brief History of ITK 11

were, respectively, Bill Lorensen at GE CRD, Will SchroedeKitware, Vikram Chalana at
Insightful, Stephen Aylward with Luis Ibanez at UNC (Luisiew at Kitware), Ross Whitaker
with Josh Cates at UT (both now at Utah), and Dimitri MetaxtddRenn (now at Rutgers). In
addition, several subcontractors rounded out the comsoiticluding Peter Raitu at Brigham
& Women'’s Hospital, Celina Imielinska and Pat Molholt at Gmibia University, Jim Gee at
UPenn’s Grasp Lab, and George Stetten at the UniversityttshiRirgh.

In 2002 the first official public release of ITK was made aualia In addition, the National Li-

brary of Medicine awarded thirteen contracts to severadoations to extend ITK’s capabili-
ties. NLM funding of Insight Toolkit development is conting through 2003, with additional
application and maintenance support anticipated beyofd.20you are interested in potential
funding opportunities, we suggest that you contact Dr. yT&oo at the National Library of

Medicine for more information.

CHAPTER

TWO

Installation

This section describes the process for installing ITK onngystem. Keep in mind that ITK is
a toolkit, and as such, once it is installed in your computeré will be no application to run.
Rather, you will use ITK to build your own applications. WHaK does provide—besides the
toolkit proper—is a large set of test files and examples thiaintroduce you to ITK concepts

and will show you how to use ITK in your own projects.

Some of the examples distributed with ITK require third pditiraries that you may have to
download. For an initial installation of ITK you may want tgpnore these extra libraries and
just build the toolkit itself. In the past, a large fractioitloe traffic on the insight-users mailing
list has originated from difficulties in getting third pattraries compiled and installed rather
than with actual problems building ITK.

ITK has been developed and tested across different conntnsadf operating systems, com-
pilers, and hardware platforms including MS-Windows, Liran Intel-compatible hardware,
Solaris, IRIX, Mac OSX, and Cygwin. It is known to work witheffollowing compilers:

e Visual Studio 6, .NET 2002, .NET 2003
e GCC 2.95.%, 2.96, 3.x
e SGI MIPSpro 7.3x
e Borland 5.5
Given the advanced usage of C++ features in the toolkit, somgpilers may have difficulties

processing the code. If you are currently using an outdatetpder this may be an excellent
excuse for upgrading this old piece of software!

2.1 Configuring ITK

The challenge of supporting ITK across platforms has be&reddhrough the use of CMake,
a cross-platform, open-source build system. CMake is usedritrol the software compilation

14 Chapter 2. Installation

process using simple platform and compiler independerfiguoration files. CMake generates
native makefiles and workspaces that can be used in the camepilironment of your choice.
CMake is quite sophisticated—it supports complex envirents requiring system configura-
tion, compiler feature testing, and code generation.

CMake generates Makefiles under UNIX and Cygwin systems amérgtes Visual Studio
workspaces under Windows (and appropriate build files floeotompilers like Borland). The
information used by CMake is provided I@vakeLi sts.txt files that are present in every
directory of the ITK source tree. These files contain infaiiorathat the user provides to
CMake at configuration time. Typical information includesilps to utilities in the system and
the selection of software options specified by the user.

2.1.1 Preparing CMake
CMake can be downloaded at no cost from
http://ww. cnake. or g

ITK requires at least CMake version 2.0. You can downloadtyirversions for most of the
popular platforms including Windows, Solaris, IRIX, HP, Mand Linux. Alternatively you
can download the source code and build CMake on your systellowFthe instructions in the
CMake Web page for downloading and installing the software.

Running CMake initially requires that you provide two pis@é information: where the source
code directory is located (ITKSOURCE_DIR), and where the object code is to be produced
(ITK_BINARY _DIR). These are referred to as theurce directoryand thebinary directory

We recommend setting the binary directory to be differeanttihe source directory (aut-of-
sourcebuild), but ITK will still build if they are set to the same @dictory (anin-sourcebuild).

On Unix, the binary directory is created by the user and CMslkavoked with the path to the
source directory. For example:

mkdi r | nsi ght-binary
cd Insight-binary
ccmake ../ lnsight

On Windows, the CMake GUI is used to specify the source and birectories (Figure.1).

CMake runs in an interactive mode in that you iterativelgstbptions and configure according
to these options. The iteration proceeds until no more apti@main to be selected. At this
point, a generation step produces the appropriate buiklffileyour configuration.

This interactive configuration process can be better umaledsif you imagine that you are
walking through a decision tree. Every option that you deileitoduces the possibility that
new, dependent options may become relevant. These newnsyaie presented by CMake at
the top of the options list in its interface. Only when no ngsions appear after a configuration

http://www.cmake.org

2.1. Configuring ITK 15

iteration can you be sure that the necessary decisions lidveea made. At this point build
files are generated for the current configuration.

2.1.2 Configuring ITK

rws, | IPimse Pt Flires Plasins Pvormt [Feanms

+ CHgke 1.6 - patch 7

s b e SOUNDB 000 | i howna e e gt Broeas | BuldFor Wioua Shude 7 -
Wt b brkd T b I i e e dngighi x| Eromea e Sewariowd Wishuar

LCacha Vahsax

BALD_EsrMPLEE oM

BILD_FHSAED LIS OFF

EILD_TEET MG OH

Fighl cick on s cecha vl o sddiéonal oplians [deleia . g, snd bsip)
Pressp Conlbgune toipdaie and displyy ies sokies inned
Pz OF. la puransts relsciad busid flez ard xal

Conlpie Carodd Help

B s blirn) i,

Figure 2.1:CMake interface. Top) ccmake, the UNIX version based on cur ses. Bottom) CVakeSet up,
the MS-Windows version based on MFC.

Figure2.1 shows the CMake interface for UNIX and MS-Windows. In ordespeed up the
build process you may want to disable the compilation of éséiig and examples. This is done
with the variable®U LD_TESTI NG=OFF andBUI LD_EXAVPLES=0FF. The examples distributed

16 Chapter 2. Installation

with the toolkit are a helpful resource for learning how te UK components but are not
essential for the use of the toolkit itself. The testing mecincludes a large number of small
programs that exercise the capabilities of ITK classes.tDtlee large number of tests, enabling
the testing option will considerably increase the builddinit is not desirable to enable this
option for a first build of the toolkit.

An additional resource is available in thesi ght Appl i cati ons module, which contains mul-
tiple applications incorporating GUIs and different levef visualization. However, due to the
large number of applications and the fact that some of thgnorethird party libraries, building
this module should be postponed until you are familiar wité basic structure of the toolkit
and the building process.

Begin running CMake by using ccmake on Unix, and CMakeSetupgVindows. Remember
to run ccmake from the binary directory on Unix. On Windowseafy the source and binary
directories in the GUI, then begin to set the build varialifethe GUI as necessary. Most
variables should have default values that are sensibleh e you change a set of variables
in CMake, it is necessary to proceed to another configuratem In the Windows version this
is done by clicking on the “Configure” button. In the UNIX virs this is done in an interface
using the curses library, where you can configure by hittirey‘t” key.

When no new options appear in CMake, you can proceed to gerdekefiles or Visual Studio
projects (or appropriate build file(s) depending on your piden). This is done in Windows by
clicking on the “Ok” button. In the UNIX version this is dong hitting the “g” key. After the
generation process CMake will quit silently. To initiate thuild process on UNIX, simply type
make in the binary directory. Under Windows, load the workspaaenad! TK. dsw (if using
MSDEV) or| TK. sl n (if using the .NET compiler) from the binary directory youesified in
the CMake GUI.

The build process will typically take anywhere from 15 to 3uates depending on the perfor-
mance of your system. If you decide to enable testing as pareacmormal build process, about
600 small test programs will be compiled. This will verifyatithe basic components of ITK
have been correctly built on your system.

2.2 Getting Started With ITK

The simplest way to create a new project with ITK is to createw directory somewhere in
your disk and create two files in it. The first one i€MakeLi sts. t xt file that will be used by
CMake to generate a Makefile (if you are using UNIX) or a Visbaldio workspace (if you are
using MS-Windows). The second file is an actual C++ prograahhll exercise some of the
large number of classes available in ITK. The details ofétiéss are described in the following
section.

Once both files are in your directory you can run CMake in otdezonfigure your project.
Under UNIX, you can cd to your newly created directory ancetypecnmake . ”. Note the “”
in the command line for indicating that tif@hkeLi sts. txt file is in the current directory.

2.2. Getting Started With ITK 17

The curses interface will require you to provide the diregtwhere ITK was built. This is
the same path that you indicated for thEK_BI NARY_DI R variable at the time of configuring
ITK. Under Windows you can run CMakeSetup and provide yowviypereated directory as
being both the source directory and the binary directoryéanr new project (i.e., an in-source
build). Then CMake will require you to provide the path to bieary directory where ITK was
built. The ITK binary directory will contain a file namddKConf i g. cmake generated during
the configuration process at the time ITK was built. From fiks CMake will recover all the
information required to configure your new ITK project.

2.2.1 Hello World !

Here is the content of the two files to write in your new projeldtese two files can be found
in thel nsi ght / Exanpl es/ I nstal | ati on directory. TheCVakeLi sts.txt file contains the
following lines:

PROJECT(Hel | oVr | d)

FI ND_PACKAGE(| TK)
| F(1 TK_FOUND)
| NCLUDE(${ | TK_USE_FI LE})
ELSE(| TK_FOUND)
MESSAGE(FATAL_ERROR
"I TK not found. Please set ITK DIR")
ENDI F(| TK_FOUND)

ADD_EXECUTABLE(Hel | oVr | d Hel | oVr d. cxx)

TARGET_LI NK_LI BRARI ES(Hel | oWr | d | TKConmon)

The first line defines the name of your project as it appeardsnaV Studio (it will have no
effect under UNIX). The second line loads a CMake file with edafined strategy for finding
ITK L. If the strategy for finding ITK fails, CMake will prompt yowf the directory where ITK
is installed in your system. In that case you will write thiormation in thd TK_BI NARY_DI R
variable. The line | NCLUDE(${ USE_I TK_FI LE}) loads theUsel TK. cnake file to set all the
configuration information from ITK. The lin&DD_EXECUTABLE defines as its first argument the
name of the executable that will be produced as result oftfuiect. The remaining arguments
of ADD_EXECUTABLE are the names of the source files to be compiled and linkedll¥ithe
TARGET_LI NK_LI BRAR! ES line specifies which ITK libraries will be linked againstshproject.

The source code for this section can be found in the file
Exanpl es/ I nstal | ati on/ Hel | oWor | d. cxx.

The following code is an implementation of a small Insightgmam. It tests including header
files and linking with ITK libraries.

1Similar files are provided in CMake for other commonly uséuddiies, all of them namefél nd*. cnake

18 Chapter 2. Installation

#include "itklmge.h"
#i ncl ude <iostream>

int main()
{
typedef itk::Image< unsigned short, 3 > | mgeType;

| mgeType: : Pointer image = | mageType:: New();
std::cout << "ITK Hello World !" << std::endl;

return 0;

}

This code instantiates &X8image whose pixels are represented with typesi gned short .
The image is then constructed and assigned td k ; Smart Poi nt er . Although later in the
text we will discussSnar t Poi nt er’s in detail, for now think of it as a handle on an instance of
an object (see sectid2.4for more information). The tk: : | mage class will be described in
Sectiord.1

At this point you have successfully installed and compil€H,land created your first simple
program. If you have difficulties, please join the insiglsers mailing list (Sectioi.4.30n
page6) and pose questions there.

2Also known as asolume

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
http://www.itk.org/Doxygen/html/classitk_1_1Image.html

CHAPTER

THREE

System Overview

The purpose of this chapter is to provide you with an ovenaéuhe Insight Toolkitsystem.
We recommend that you read this chapter to gain an appr@citti the breadth and area of
application of ITK.

3.1 System Organization

The Insight Toolkit consists of several subsystems. A bdescription of these subsys-
tems follows. Later sections in this chapter—and in somessamdditional chapters—
cover these concepts in more detail. (Note: in the previdwapter two other modules—
I nsi ght Docunent at i on andl nsi ght Appl i cati ons were briefly described.)

Essential System ConceptsLike any software system, ITK is built around some core desig
concepts. Some of the more important concepts include gepeygramming, smart
pointers for memory management, object factories for addptobject instantiation,
event management using the command/observer design gawmadnd multithreading
support.

Numerics ITK uses VXL's VNL numerics libraries. These are easy-te-@&++ wrappers
around the Netlib Fortran numerical analysis routirigs §: / / www. net | i b. or g).

Data Representation and AccessTwo principal classes are used to represent data: the
itk::1mage and itk:: Mesh classes. In addition, various types of iterators and con-
tainers are used to hold and traverse the data. Other inmbbualess popular classes are
also used to represent data such as histograms and BLOX $mage

Data Processing Pipeline.The data representation classes (knowudats objecty are oper-
ated on hyfilters that in turn may be organized into data flpipelines These pipelines
maintain state and therefore execute only when necessangy also support multi-
threading, and are streaming capable (i.e., can operatéegespof data to minimize
the memory footprint).

http://www.netlib.org
http://www.itk.org/Doxygen/html/classitk_1_1Image.html
http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html

20 Chapter 3. System Overview

IO Framework. Associated with the data processing pipeline svarces filters that initiate
the pipeline, andnappersfilters that terminate the pipeline. The standard examgpiles
sources and mappers aeadersandwriters respectively. Readers input data (typically
from a file), and writers output data from the pipeline.

Spatial Objects. Geometric shapes are represented in ITK using the spafji@ttotierarchy.
These classes are intended to support modeling of anatostigatures. Using a com-
mon basic interface, the spatial objects are capable oésepting regions of space in a
variety of different ways. For example: mesh structuresigmmasks, and implicit equa-
tions may be used as the underlying representation schepa¢ialSobjects are a natural
data structure for communicating the results of segmemtatiethods and for introducing
anatomical priors in both segmentation and registratiothots.

Registration Framework. A flexible framework for registration supports four diffeteypes
of registration: image registration, multiresolutionigtration, PDE-based registration,
and FEM (finite element method) registration.

FEM Framework. ITK includes a subsystem for solving general FEM problemggdrticular
non-rigid registration. The FEM package includes mesh defin(nodes and elements),
loads, and boundary conditions.

Level Set Framework. The level set framework is a set of classes for creatingdittersolve
partial differential equations on images using an itemfinite difference update scheme.
The level set framework consists of finite difference saviaecluding a sparse level set
solver, a generic level set segmentation filter, and sewprtific subclasses including
threshold, Canny, and Laplacian based methods.

Wrapping. ITK uses a unique, powerful system for producing interfgces, “wrappers”) to
interpreted languages such as Tcl and Python. The GG tool is used to produce
an XML description of arbitrarily complex C++ code; CSWIGtigen used to transform
the XML description into wrappers using ti$aVIG package.

Auxiliary / Utilities Several auxiliary subsystems are available to supplentéet alasses in
the system. For example, calculators are classes thatrpesjoecialized operations in
support of filters (e.g., MeanCalculator computes the méansample). Other utilities
include a partial DICOM parser, MetalO file support, pndh ZELTK / Qt image viewers,
and interfaces to the Visualization Toolkit (VTK) system.

3.2 Essential System Concepts

This section describes some of the core concepts and imptatien features found in ITK.

http://www.swig.org/

3.2. Essential System Concepts 21

3.2.1 Generic Programming

Generic programming is a method of organizing librariesststing of generic—or reusable—
software component&§]. The idea is to make software that is capable of “pluggirggtber”

in an efficient, adaptable manner. The essential ideas @rigpgorogramming areontainerso
hold datajteratorsto access the data, agdneric algorithmshat use containers and iterators to
create efficient, fundamental algorithms such as sortirepg@c programming is implemented
in C++ with thetemplateprogramming mechanism and the use of the STL Standard Templa
Library [6].

C++ templating is a programming technique allowing useraiite software in terms of one
or more unknown types. To create executable code, the user of the software musifysjpd
typesT (known astemplate instantiationand successfully process the code with the compiler.
TheT may be a native type such fisoat orint, orT may be a user-defined type (ed.ass).

At compile-time, the compiler makes sure that the templ&ypes are compatible with the
instantiated code and that the types are supported by tlessmy methods and operators.

ITK uses the techniques of generic programming in its imgetation. The advantage of this
approach is that an almost unlimited variety of data typesapported simply by defining the
appropriate template types. For example, in ITK it is pdssib create images consisting of
almost any type of pixel. In addition, the type resolutiopé&formed at compile-time, so the
compiler can optimize the code to deliver maximal perforoganThe disadvantage of generic
programming is that many compilers still do not support ¢hedvanced concepts and cannot
compile ITK. And even if they do, they may produce completeigecipherable error messages
due to even the simplest syntax errors. If you are not famiiith templated code and generic
programming, we recommend the two books cited above.

3.2.2 Include Files and Class Definitions

In ITK classes are defined by a maximum of two files: a heatldile and an implementation
file—. cxx if a non-templated class, and axx if a templated class. The header files contain
class declarations and formatted comments that are usée I[Boxygen documentation system
to automatically produce HTML manual pages.

In addition to class headers, there are a few other impadnesader files.
i tkMacro. h is found in theCode/ Conmon directory and defines standard system-wide
macros (such aSet / Get , constants, and other parameters).

i tkNunericTraits. h is found in theCode/ Common directory and defines numeric char-
acteristics for native types such as its maximum and minirpossible values.

i t kW n32Header . h is found in theCode/ Cormon and is used to define operating system
parameters to control the compilation process.

22 Chapter 3. System Overview

3.2.3 Obiject Factories

Most classes in ITK are instantiated throughadoject factorymechanism. That is, rather than
using the standard C++ class constructor and destrucstarioes of an ITK class are created
with the static clasdew() method. In fact, the constructor and destructor [@aret ect ed:

so it is generally not possible to construct an ITK instancdte heap. (Note: this behavior
pertains to classes that are derived frotk: : Li ght Obj ect . In some cases the need for speed
or reduced memory footprint dictates that a class not bevel@from LightObject and in this
case instances may be created on the heap. An example of slads &i t k: : Event Obj ect .)

The object factory enables users to control run-time irtitdon of classes by registering one or
more factories withi t k: : Obj ect Fact or yBase. These registered factories support the method
Creat el nstance(cl assnanme) which takes as input the name of a class to create. The factory
can choose to create the class based on a number of facttudiimgcthe computer system
configuration and environment variables. For example, iardiqular application an ITK user
may wish to deploy their own class implemented using spieeidimage processing hardware
(i.e., torealize a performance gain). By using the objextoigy mechanism, it is possible at run-
time to replace the creation of a particular ITK filter withchua custom class. (Of course, the
class must provide the exact same API as the one it is reglacio do this, the user compiles
her class (using the same compiler, build options, etc.)issetts the object code into a shared
library or DLL. The library is then placed in a directory rafed to by thé TK_AUTOLOAD_PATH
environment variable. On instantiation, the object fagteill locate the library, determine that

it can create a class of a particular name with the factorg, @se the factory to create the
instance. (Note: if th&r eat el nst ance() method cannot find a factory that can create the
named class, then the instantiation of the class falls batket usual constructor.)

In practice object factories are used mainly (and genetadlysparently) by the ITK in-
put/output (I0) classes. For most users the greatest inipact the use of thélew() method

to create a class. Generally tNew() method is declared and implemented via the macro
i t kNewVacr o() found inCommon/ it kMacr o. h.

3.2.4 Smart Pointers and Memory Management

By their nature object-oriented systems represent ancatgen data through a variety of ob-
ject types, or classes. When a particular class is instadtig produce an instance of that
class, memory allocation occurs so that the instance cam d&ta attribute values and method
pointers (i.e., the vtable). This object may then be refegdrby other classes or data structures
during normal operation of the program. Typically duringgram execution all references to
the instance may disappear at which point the instance neudéleted to recover memory re-
sources. Knowing when to delete an instance, however, fisuif Deleting the instance too
soon results in program crashes; deleting it too late andangteaks (or excessive memory
consumption) will occur. This process of allocating an@asing memory is known as memory
management.

In ITK, memory management is implemented through referenoating. This compares to an-

http://www.itk.org/Doxygen/html/classitk_1_1LightObject.html
http://www.itk.org/Doxygen/html/classitk_1_1EventObject.html
http://www.itk.org/Doxygen/html/classitk_1_1ObjectFactoryBase.html

3.2. Essential System Concepts 23

other popular approach—garbage collection—used by mastgss including Java. In refer-
ence counting, a count of the number of references to eatdnicesis kept. When the reference
goes to zero, the object destroys itself. In garbage cadleca background process sweeps the
system identifying instances no longer referenced in tistesy and deletes them. The problem
with garbage collection is that the actual point in time ataklmemory is deleted is variable.
This is unacceptable when an object size may be gigantittifia large 3D volume gigabytes
in size). Reference counting deletes memory immediatatgdall references to an object
disappear).

Reference counting is implemented througRegi st er () /Del et e() member function inter-
face. All instances of an ITK object haveRagi st er () method invoked on them by any other
object that references an them. TRegi st er () method increments the instances’ reference
count. When the reference to the instance disappedid, &t e() method is invoked on the
instance that decrements the reference count—this is @&guivto arlnRegi st er () method.
When the reference count returns to zero, the instance igoged.

This protocol is greatly simplified by using a helper clasiéecka it k: : Smart Poi nter. The
smart pointer acts like a regular pointer (e.g. supportsaipes- > and*) but automagically
performs aRegi st er () when referring to an instance, and@niegi st er () when it no longer
points to the instance. Unlike most other instances in ITiRa8Pointers can be allocated on
the program stack, and are automatically deleted when thgesthat the SmartPointer was
created is closed. As a result, you shordctly if ever call Register() or Delete(p ITK. For
example:

MyRegi strati onFunction()
{ <----- Start of scope

/] here an interpolator is created and associated to the
/] SmartPointer "interp".
I nterpol ator Type: : Pointer interp = InterpolatorType:: New();

b End of scope

In this example, reference counted objects are created {matNew() method) with a reference
count of one. Assignment to the SmartPointerer p does not change the reference count. At
the end of scopé,nterp is destroyed, the reference count of the actual interpolaibfect
(referred to byi nterp) is decremented, and if it reaches zero, then the intempoiatalso
destroyed.

Note that in ITK SmartPointers are always used to refer ttamses of classes derived from
i tk::LightObject. Method invocations and function calls often return “readinters to in-
stances, but they are immediately assigned to a SmartPoRé&v pointers are used for non-
LightObject classes when the need for speed and/or memangugs a smaller, faster class.

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
http://www.itk.org/Doxygen/html/classitk_1_1LightObject.html

24 Chapter 3. System Overview

3.2.5 Error Handling and Exceptions

In general, ITK uses exception handling to manage errolisgprogram execution. Exception
handling is a standard part of the C++ language and gendeMBs the form as illustrated
below:

try
{

/l...try executing sone code here...

}
catch (itk::Excepti onObject exp)

{

[l...if an exception is thrown catch it here

}

where a particular class may throw an exceptions as denat@dtbelow (this code snippet is
taken fromi t k; : Byt eSwapper :

switch (sizeof(T))

{
/Inon-error cases go here followed by error case
defaul t:

Byt eSwapperError e(__FILE _, _LINE);

e. Set Locati on(" SwapBE") ;
e. Set Descri ption("Cannot swap nunber of bytes requested");
throw e;

}

Note that i tk: : Byt eSwapper Error is a subclass ofi tk: : Excepti onChj ect. (In fact in
ITK all exceptions should be derived from ExceptionObjec¢h this example a special con-
structor and C++ preprocessor variabled| LE__ and__LI NE__ are used to instantiate the
exception object and provide additional information totiser. You can choose to catch a par-
ticular exception and hence a specific ITK error, or you capanyITK exception by catching
ExceptionObject.

3.2.6 Event Handling

Event handling in ITK is implemented using the Subject/Obsedesign pattern2g] (some-
times referred to as the Command/Observer design patterit)is approach, objects indicate
that they are watching for a particular event—invoked by di@aar instance-by register-
ing with the instance that they are watching. For exampleréilin ITK periodically invoke
the i tk:: ProgressEvent . Objects that have registered their interest in this evennatified
when the event occurs. The notification occurs via an invocatf a command (i.e., function
callback, method invocation, etc.) that is specified duthegregistration process. (Note that
events in ITK are subclasses of EventObject; looktikEvent Cbj ect . h to determine which
events are available.)

http://www.itk.org/Doxygen/html/classitk_1_1ByteSwapper.html
http://www.itk.org/Doxygen/html/classitk_1_1ByteSwapperError.html
http://www.itk.org/Doxygen/html/classitk_1_1ExceptionObject.html
http://www.itk.org/Doxygen/html/classitk_1_1ProgressEvent.html

3.3. Numerics 25

To recap via example: various objects in ITK will invoke sifiecevents as they execute (from
ProcessObiject):

thi s->I nvokeEvent (ProgressEvent());

To watch for such an event, registration is required thab@ates a command (e.g., callback
function) with the eventhj ect : : AddCbserver () method:

unsi gned | ong progressTag =
filter->AddChserver(ProgressEvent(), itk::Command*);

When the event occurs, all registered observers are notifeednvocation of the associ-
atedCommand: : Execut e() method. Note that several subclasses of Command are deailab
supporting const and non-const member functions as well-ag/I€ functions. (Look in
Common/ Command. h to find pre-defined subclasses of Command. If nothing swtabiound,
derivation is another possibility.)

3.2.7 Multi-Threading

Multithreading is handled in ITK through a high-level desigbstraction. This approach pro-
vides portable multithreading and hides the complexityifiedng thread implementations on
the many systems supported by ITK. For example, the cldads : Mul ti Thr eader provides
support for multithreaded execution usisgroc() on an SGI, ompt hread_creat e on any
platform supporting POSIX threads.

Multithreading is typically employed by an algorithm dugiits execution phase. MultiThreader
can be used to execute a single method on multiple threads specify a method per thread.
For example, in the classt k; : | mageSour ce (a superclass for most image processing filters)
theGener at eDat a() method uses the following methods:

mul ti Threader - >Set Nunber Of Threads(int);
mul ti Threader - >Set Si ngl eMet hod(Thr eadFunct i onType, void* data);
mul ti Thr eader - >Si ngl eMet hodExecut e();

In this example each thread invokes the same method. Théhmedtded filter takes care to
divide the image into different regions that do not overlapvirite operations.

The general philosophy in ITK regarding thread safety i¢ #tzessing different instances of
a class (and its methods) is a thread-safe operation. Ingokethods on the same instance in
different threads is to be avoided.

3.3 Numerics

ITK uses the VNL numerics library to provide resources fomauical programming combining
the ease of use of packages like Mathematica and Matlab heétspeed of C and the elegance

http://www.itk.org/Doxygen/html/classitk_1_1MultiThreader.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageSource.html

26 Chapter 3. System Overview

of C++. It provides a C++ interface to the high-quality Fartiroutines made available in the
public domain by numerical analysis researchers. ITK eddahe functionality of VNL by
including interface classes between VNL and ITK proper.

The VNL numerics library includes classes for

Matrices and vectors. Standard matrix and vector support and operations on thipss.t

Specialized matrix and vector classesSeveral special matrix and vector class with special
numerical properties are available. Clas$ _di agonal _matri x provides a fast and
convenient diagonal matrix, while fixed size matrices anttoves allow "fast-as-C” com-
putations (seenl _matri x_fixed<T, n, m> and example subclasses! _doubl e_3x3
andvnl _doubl e_3).

Matrix decompositions. Classes vnl _svd<T>, vnl _symretric_ei gensystenxT>, and
vnl _general i zed_ei gensyst em

Real polynomials. Classvnl _real _pol ynom al stores the coefficients of a real polyno-
mial, and provides methods of evaluation of the polynomiakmy x, while class
vnl _rpol y_roots provides a root finder.

Optimization. Classes vnl _| evenber g_nar quar dt, vnl _anoeba,
vnl _conj ugat e_gradi ent, vnl _I bf gs allow optimization of user-supplied func-
tions either with or without user-supplied derivatives.

Standardized functions and constants.Classvnl _nat h defines constants (pi, e, eps...) and
simple functions (sqr, abs, rnd...). Classneric_linits is from the 1ISO stan-
dard document, and provides a way to access basic limits gpa t For example
nuneric_limts<short>::mx() returns the maximum value of a short.

Most VNL routines are implemented as wrappers around thb-giglity Fortran routines
that have been developed by the numerical analysis comynowér the last forty years and
placed in the public domain. The central repository for ghpeograms is the "netlib” server
http://ww. netlib.org/ . The National Institute of Standards and Technology (NI}
vides an excellent search interface to this repositorysiGiside to Available Mathematical
Software (GAMSatht t p: // gans. ni st. gov, both as a decision tree and a text search.

ITK also provides additional numerics functionality. A wuiof optimizers, that use
VNL under the hood and integrate with the registration frenmk are available. A
large collection of statistics functions—not availablerfr VNL—are also provided in the
I nsight/Nunerics/Statistics directory. In addition, a complete finite element (FEM)
package is available, primarily to support the deformaédgstration in ITK.

http://www.netlib.org/
http://gams.nist.gov

3.4. Data Representation 27

3.4 Data Representation

There are two principle types of data represented in ITK:gesaand meshes. This func-
tionality is implemented in the classes Image and Mesh, bbtivhich are subclasses of
itk::DataQoject. InITK, data objects are classes that are meant to be passeddathe
system and may participate in data flow pipelines (see Se8tlwon page28 for more infor-
mation).

itk::1mge represents an-dimensional, regular sampling of data. The sampling tibads
parallel to each of the coordinate axes, and the origin os#mpling, inter-pixel spacing, and
the number of samples in each direction (i.e., image dinoe)sian be specified. The sample, or
pixel, type in ITK is arbitrary—a template paramei®¥ xel specifies the type upon template
instantiation. (The dimensionality of the image must alsospecified when the image class
is instantiated.) The key is that the pixel type must suppertain operations (for example,
addition or difference) if the code is to compile in all cagkes example, to be processed by a
particular filter that uses these operations). In practied TK user will use a C++ simple type
(e.g.,i nt, float) or a pre-defined pixel type and will rarely create a new typgixel class.

One of the important ITK concepts regarding images is theteregular, continuous pieces of
the image are known asgions Regions are used to specify which part of an image to process
for example in multithreading, or which part to hold in memdn ITK there are three common
types of regions:

1. Lar gest Possi bl eRegi on—the image in its entirety.
2. Buf f er edRegi on—the portion of the image retained in memory.

3. Request edRegi on—the portion of the region requested by a filter or other clalsen
operating on the image.

The Mesh class represents miglimensional, unstructured grid. The topology of the mesh i
represented by a set oéllsdefined by a type and connectivity list; the connectivity ilisturn
refers to points. The geometry of the mesh is defined byntbdanensional points in combi-
nation with associated cell interpolation functiom&sh is designed as an adaptive represen-
tational structure that changes depending on the opesatierformed on it. At a minimum,
points and cells are required in order to represent a mesht isupossible to add additional
topological information. For example, links from the paitd the cells that use each point can
be added; this provides implicit neighborhood informatgsuming the implied topology is the
desired one. Itis also possible to specify boundary celidi@Hy, to indicate different connec-
tivity from the implied neighborhood relationships, or tore information on the boundaries of
cells.

The mesh is defined in terms of three template parameters:piYehatype associated with
the points, cells, and cell boundaries; 2) the dimensiomefaoints (which in turn limits the
maximum dimension of the cells); and 3) a “mesh traits” temtgoparameter that specifies the
types of the containers and identifiers used to access timspoklls, and/or boundaries. By

http://www.itk.org/Doxygen/html/classitk_1_1DataObject.html
http://www.itk.org/Doxygen/html/classitk_1_1Image.html

28 Chapter 3. System Overview

using the mesh traits carefully, it is possible to createhmsdetter suited for editing, or those
better suited for “read-only” operations, allowing a traafébetween representation flexibility,
memory, and speed.

Mesh is a subclass adft k: : Poi nt Set . The PointSet class can be used to represent point clouds
or randomly distributed landmarks, etc. The PointSet diassno associated topology.

3.5 Data Processing Pipeline

While data objects (e.g., images and meshes) are used tsezprdataprocess objectsre
classes that operate on data objects and may produce newlgatas. Process objects are
classed asources filter objects or mappers Sources (such as readers) produce data, filter
objects take in data and process it to produce new data, apgersmaccept data for output
either to a file or some other system. Sometimes the fiten is used broadly to refer to all
three types.

The data processing pipeline ties together data objeas (mages and meshes) and process
objects. The pipeline supports an automatic updating nresimethat causes a filter to execute
if and only if its input or its internal state changes. Furtliee data pipeline suppoidtreaming

the ability to automatically break data into smaller pieqa®cess the pieces one by one, and
reassemble the processed data into a final result.

Typically data objects and process objects are connectgditer using th&et | nput () and
Cet Qut put () methods as follows:

typedef itk::Image<float,2> Floatlmage2DType;

i tk::Random mageSour ce<Fl oat | mage2DType>: : Poi nter random
random = i tk:: Random mageSour ce<Fl oat | mage2DType>: : New() ;
random >Set M n(0. 0);
random >Set Max(1. 0) ;

i tk::ShrinklmgeFilter<Float|mage2DType, Fl oat | mage2DType>: : Poi nter shri nk;
shrink = itk:: ShrinklmgeFilter<Float|mage2DType, Fl oat | mage2DType>: : New() ;
shrink->Set | nput (random >Get Qut put ());

shri nk->Set Shri nkFact ors(2);

itk::ImageFileWiter::Pointer<Floatlmage2DType> writer;

witer = itk::lmageFileWiter:: Pointer<Floatlnage2DType>:: New();
writer->Setlnput (shrink->CGetQutput());

witer->SetFileName(‘‘test.raw’);

writer->Update();

In this example the source object itk::Randonl mageSource is connected to
the itk::ShrinklmgeFilter, and the shrink filter is connected to the mapper

http://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
http://www.itk.org/Doxygen/html/classitk_1_1RandomImageSource.html
http://www.itk.org/Doxygen/html/classitk_1_1ShrinkImageFilter.html

3.6. Spatial Objects 29

itk::ImageFileWiter. When theUpdate() method is invoked on the writer, the
data processing pipeline causes each of these filters im, anadeninating in writing the final
data to a file on disk.

3.6 Spatial Objects

The ITK spatial object framework supports the philosoptat the task of image segmentation
and registration is actually the task of object processifbe image is but one medium for
representing objects of interest, and much processing atadathalysis can and should occur at
the object level and not based on the medium used to repréageobject.

ITK spatial objects provide a common interface for accapsdie physical location and geo-
metric properties of and the relationship between objectsscene that is independent of the
form used to represent those objects. That is, the inteepa¢sentation maintained by a spatial
object may be a list of points internal to an object, the sigfamesh of the object, a continuous
or parametric representation of the object’s internal {oim surfaces, and so forth.

The capabilities provided by the spatial objects framevaaports their use in object segmen-
tation, registration, surface/volume rendering, and iothigplay and analysis functions. The
spatial object framework extends the concept of a “scenghjrinat is common to computer

rendering packages so as to support these new functions. thiéitspatial objects framework

you can:

1. Specify a spatial object’s parent and children objeatsthis way, a liver may contain
vessels and those vessels can be organized in a tree structur

2. Query if a physical point is inside an object or (optiopp#iny of its children.

3. Request the value and derivatives, at a physical poity @fssociated intensity function,
as specified by an object or (optionally) its children.

4. Specify the coordinate transformation that maps a patgett's coordinate system into
a child object’s coordinate system.

5. Compute the bounding box of a spatial object and (optighigs children.

6. Query the resolution at which the object was originallynpoited. For example, you
can query the resolution (i.e., voxel spacing) of the imaggduto generate a particular
instance of ai t k: : Bl obSpat i al Obj ect .

Currently implemented types of spatial objects includeotBIEllipse, Group, Image, Line,
Surface, and Tube. Thétk: : Scene object is used to hold a list of spatial objects that may
in turn have children. Each spatial object can be assignetba property. Each spatial object
type has its own capabilities. For exampié k: : TubeSpat i al Gbj ect s indicate to what point
on their parent tube they connect.

http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
http://www.itk.org/Doxygen/html/classitk_1_1BlobSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1Scene.html
http://www.itk.org/Doxygen/html/classitk_1_1TubeSpatialObject.html

30 Chapter 3. System Overview

There are a limited number of spatial objects and their mitho ITK, but their number is
growing and their potential is huge. Using the nominal gpaibject capabilities, methods
such as marching cubes or mutual information registratian,be applied to objects regardless
of their internal representation. By having a common AP¢ same method can be used to
register a parametric representation of a heart with awiddal's CT data or to register two
hand segmentations of a liver.

3.7 Wrapping

While the core of ITK is implemented in C++, Tcl and Pythondiitgs can be automatically
generated and ITK programs can be created using these progng languages. This capabil-
ity is under active development and is for the advanced udgr However, this brief description
will give you an idea of what is possible and where to look ifiyare interested in this facility.

The wrapping process in ITK is quite complex due to the usesokgic programming (i.e., ex-
tensive use of C++ templates). Systems like VTK that use tiven wrapping facility are non-
templated and customized to the coding methodology fourtddrsystem. Even systems like
SWIG that are designed for general wrapper generation hffieutly with ITK code because
general C++ is difficult to parse. As a result, the ITK wrapgenerator uses a combination of
tools to produce language bindings.

1. gcexmlis a modified version of the GNU compiler gec thatjuees an XML description
of an input C++ program.

2. CABLE processes XML information from gcexml and produaéslitional input to the
next tool (i.e., CSWIG indicating what is to be wrapped).

3. CSWIG is a modified version of SWIG that has SWIG’s usuasgareplaced with an
XML parser (XML produced from CABLE and gccxml.) CSWIG pramis the appropri-
ate language bindings (either Tcl or Python). (Note: sinddGis capable of producing
language bindings for eleven different interpreted laggsancluding Java, and Perl, it
is expected that support for some of these languages willlbedain the future.)

To learn more about the wrapping process, please read the féilend in

W appi ng/ CSwi g/ README. Also note that there are some simple test scripts found in
W appi ng/ CSwi g/ Tests. Additional tests and examples are found in the TestingéCdd
directories.

The result of the wrapping process is a set of shared litsfalliss that can be used by the
interpreted languages. There is almost a direct transléteam C++, with the differences be-
ing the particular syntactical requirements of each lagguaFor example, in the directory
Testing/ Code/ Al gorithns, the test t kCur vat ur eFl owTest Tcl 2. t ¢l has a code fragment
that appears as follows:

set reader [itklmageFil eReader F2_New|

3.7. Wrapping 31

$reader SetFileNane "${I TK_TEST_| NPUT}/ ct headl. png"

set cf [itkCurvatureFl owl mageFilter F2F2_Newj
$cf Setlnput [$reader GetCQutput]
$cf SetTimeStep 0.25
$cf SetNunberOflterations 10

The same code in C++ would appear as follows:

itk:: | mgeFi| eReader <I mageType>: : Poi nter reader =
itk:: I mageFi| eReader <l mageType>:: New();
reader - >Set Fi | eNane(" ct headl. png");

i tk::CurvatureFl ow mageFi | t er <l nageType, | nageType>: : Pointer cf =
i tk::CurvatureFl ow mageFil ter<l mageType, | mageType>: : New() ;
cf->Set | nput (reader->Get Qut put ());
cf->Set Ti meSt ep(0. 25);
cf->Set Number Of I terati ons(10);

This example demonstrates an important difference betv@en and a wrapped language

such as Tcl. Templated classes must be instantiated priawrdpping. That is, the tem-

plate parameters must be specified as part of the wrappinggso In the example above, the
Cur vat ur eFl owl mageFi | t er F2F2 indicates that this filter has been instantiated using amtinp

and output image type of two-dimensional float values (€3)., Typically just a few common
types are selected for the wrapping process to avoid an srplof types and hence, library
size. To add a new type requires rerunning the wrapping geatoeproduce new libraries.

The advantage of interpreted languages is that they do quiresthe lengthy compile/link cycle

of a compiled language like C++. Moreover, they typicallyrmwith a suite of packages that

provide useful functionality. For example, the Tk package (Tcl/Tk and Python/Tk) provides
tools for creating sophisticated user interfaces. In theréuit is likely that more applications
and tests will be implemented in the various interpretedlmyes supported by ITK.

Part |l

User’'s Guide

CHAPTER

FOUR

DataRepresentation

This chapter introduces the basic classes responsiblefoesenting data in ITK. The most
common classes are thea k: : | mage, the i tk: : Mesh and thei tk; : Poi nt Set .

4.1 Image

The itk:: 1 mage class follows the spirit oGeneric Programmingvhere types are separated
from the algorithmic behavior of the class. ITK supports gaswith any pixel type and any
spatial dimension.

4.1.1 Creating an Image
The source code for this section can be found in the file
Exanpl es/ Dat aRepr esent ati on/ | mage/ | magel. cxx.

This example illustrates how to manually constructiark: : | nage class. The following is the
minimal code needed to instantiate, declare and createnthgs class.

First, the header file of the Image class must be included.

#include "itklmge.h"

Then we must decide with what type to represent the pixelsvamat the dimension of the
image will be. With these two parameters we can instantfeerhage class. Here we create a
3D image withunsi gned short pixel data.

typedef itk::Image< unsigned short, 3 > |nmageType;

The image can then be created by invokingXhe() operator from the corresponding image
type and assigning the result toi&k: : Smart Poi nt er .

http://www.itk.org/Doxygen/html/classitk_1_1Image.html
http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
http://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
http://www.itk.org/Doxygen/html/classitk_1_1Image.html
http://www.boost.org/more/generic_programming.html
http://www.itk.org/Doxygen/html/classitk_1_1Image.html
http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

36 Chapter 4. DataRepresentation

| mageType: : Pointer image = | mageType:: New();

InITK, images exist in combination with one or masgjions A region is a subset of the image
and indicates a portion of the image that may be processethbydasses in the system. One of
the most common regions is thargestPossibleRegiowhich defines the image in its entirety.
Other important regions found in ITK are tBaifferedRegioywhich is the portion of the image
actually maintained in memory, and tRequestedRegiomwhich is the region requested by a
filter or other class when operating on the image.

In ITK, manually creating an image requires that the imadestantiated as previously shown,
and that regions describing the image are then associatedtwi

A region is defined by two classes: thek:: |1 ndex and itk::Si ze classes. The origin of
the region within the image with which it is associated ismedi by Index. The extent, or size,
of the region is defined by Size. Index is represented by amedsional array where each
component is an integer indicating—in topological imagerdmmates—the initial pixel of the
image. When an image is created manually, the user is reigpoifar defining the image size
and the index at which the image grid starts. These two paexmmake it possible to process
selected regions.

The starting point of the image is defined by an Index clagsslan n-dimensional array where
each component is an integer indicating the grid coordmatt¢he initial pixel of the image.

| mgeType: : I ndexType start;

start[0] = 0; // first index on X
start[1] = 0; // first index on Y
start[2] = 0; // first index on Z

The region size is represented by an array of the same dioreasthe image (using the Size
class). The components of the array are unsigned integéicaiing the extent in pixels of the
image along every dimension.

| mgeType: : Si zeType si ze;

size[0] =200; // size along X
size[1] =200; // size along Y
size[2] =200; /I size along Z

Having defined the starting index and the image size, thes@arameters are used to create an
ImageRegion object which basically encapsulates botheqsc The region is initialized with
the starting index and size of the image.

| mgeType: : Regi onType region;

region. Set Si ze(size);
region. Setlndex(start);

http://www.itk.org/Doxygen/html/classitk_1_1Index.html
http://www.itk.org/Doxygen/html/classitk_1_1Size.html

4.1. Image 37

Finally, the region is passed to theage object in order to define its extent and origin. The
Set Regi ons method sets the LargestPossibleRegion, BufferedRegiamh RequestedRegion
simultaneously. Note that none of the operations perfotiméus point have allocated memory
for the image pixel data. It is necessary to invokeAhleocat e() method to do this. Allocate
does not require any arguments since all the informationled@déor memory allocation has
already been provided by the region.

i mage- >Set Regi ons(region);
i mge->Al | ocate();

In practice it is rare to allocate and initialize an imageadity. Images are typically read from
a source, such a file or data acquisition hardware. The fallgpwxample illustrates how an
image can be read from a file.

4.1.2 Reading an Image from a File

The source code for this section can be found in the file
Exanpl es/ Dat aRepr esent ati on/ | mage/ | mage2. cxx.

The first thing required to read an image from a file is to inelude header file of the
itk:: I mageFil eReader class.

#include "itklmgeFi| eReader. h"

Then, the image type should be defined by specifying the tgpd to represent pixels and the
dimensions of the image.

typedef unsigned char Pi xel Type;
const unsigned int D nension = 3;

typedef itk::Image< Pixel Type, Dinmension > |nmageType;

Using the image type, it is now possible to instantiate thagereader class. The image type
is used as a template parameter to define how the data willgresented once it is loaded
into memory. This type does not have to correspond exactiheotype stored in the file.
However, a conversion based on C-style type casting is ssethe type chosen to represent
the data on disk must be sufficient to characterize it acelyratReaders do not apply any
transformation to the pixel data other than casting fronpikel type of the file to the pixel type
of the ImageFileReader. The following illustrates a typinatantiation of the ImageFileReader

type.

typedef itk::ImageFil eReader< | mageType > Reader Type;

http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html

38 Chapter 4. DataRepresentation

The reader type can now be used to create one reader objedt:A Smar t Poi nt er (defined
by the: : Poi nt er notation) is used to receive the reference to the newly edeagader. The
New() method is invoked to create an instance of the image reader.

Reader Type: : Poi nter reader = Reader Type:: New();

The minimum information required by the reader is the filerarhthe image to be loaded in
memory. This is provided through ti%et Fi | eName() method. The file format here is inferred
from the filename extension. The user may also explicithcEpahe data format explicitly
using thei tk: : | magel O (See Chapter.1 263for more information

const char * filenane = argv[1];
reader - >Set Fi | eNane(filenane);

Reader objects are referred to as pipeline source objéweg;respond to pipeline update re-
guests and initiate the data flow in the pipeline. The pigelipdate mechanism ensures that
the reader only executes when a data request is made to they sead the reader has not read
any data. In the current example we explicitly invoke thdat e() method because the output
of the reader is not connected to other filters. In normaliagpbn the reader’s output is con-
nected to the input of an image filter and the update invoratiothe filter triggers an update
of the reader. The following line illustrates how an expligbdate is invoked on the reader.

reader - >Updat e() ;

Access to the newly read image can be gained by callinGah@ut put () method on the reader.
This method can also be called before the update requesttisosine reader. The reference to
the image will be valid even though the image will be emptyilihé reader actually executes.

| mgeType: : Pointer image = reader->Get Qutput();

Any attempt to access image data before the reader execilitggld an image with no pixel
data. It is likely that a program crash will result since thege will not have been properly
initialized.

4.1.3 Accessing Pixel Data

The source code for this section can be found in the file
Exanpl es/ Dat aRepr esent ati on/ | mage/ | mage3. cxx.

This example illustrates the use of tBet Pi xel () and Get Pi xel () methods. These two
methods provide direct access to the pixel data containgldeinmage. Note that these two
methods are relatively slow and should not be used in sitmativhere high-performance access

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageIO.html

4.1. Image 39

is required. Image iterators are the appropriate mechawisfficiently access image pixel data.
(See Chaptet1 on pager01for information about image iterators.)

The individual position of a pixel inside the image is idéetl by a unique index. An index
is an array of integers that defines the position of the pil@@each coordinate dimension
of the image. The IndexType is automatically defined by thegenand can be accessed using
the scope operator likét k: : I ndex. The length of the array will match the dimensions of the
associated image.

The following code illustrates the declaration of an indexiable and the assignment of values
to each of its components. Please note thdex does not use SmartPointers to access it. This
is becauséndex is a light-weight object that is not intended to be sharedvbeh objects. It

is more efficient to produce multiple copies of these smgkats than to share them using the
SmartPointer mechanism.

The following lines declare an instance of the index type iitthlize its content in order to
associate it with a pixel position in the image.

| mgeType: : I ndexType pixel | ndex;

pi xel I ndex[0]
pi xel I ndex[1]
pi xel I ndex| 2]

27; /1 x position
29; /1y position
37; Il z position

Having defined a pixel position with an index, it is then pbssito access the content of the
pixel in the image. Thé&et Pi xel () method allows us to get the value of the pixels.

| mgeType: : Pi xel Type pi xel Val ue = i mage- >CGet Pi xel (pi xel I ndex);

TheSet Pi xel () method allows us to set the value of the pixel.
i mge->Set Pi xel (pi xel | ndex, pi xel Val ue+l)

Please note thaiet Pi xel () returns the pixel value using copy and not reference seosnti
Hence, the method cannot be used to modify image data values.

Remember that botBet Pi xel () andGet Pi xel () are inefficient and should only be used for
debugging or for supporting interactions like queryinggbixalues by clicking with the mouse.

4.1.4 Defining Origin and Spacing

The source code for this section can be found in the file
Exanpl es/ Dat aRepr esent ati on/ | mage/ | mnage4. cxx.

http://www.itk.org/Doxygen/html/classitk_1_1Index.html

40 Chapter 4. DataRepresentation

Size=7x6
200+ Spac.ing:(20.0,30.0) Spacing[0]
Physical extent=(140.0, 180.0) . !
€ 20.0 ! ! Linear Interpolation Region
250 I S | | p g
- = ,,,,O Q 6ﬂDelaunay Region

olo|o|o|o|o|Gt-f 5 J

200 $ 300 E i
olololololo|lot-t g ‘/ﬂ Pixel Coverage

2 s Voronoi Region

ololololololo Canl e

150+
O]0|0|0|0]0|0

1001+ ololololololo [] O O Pixel Coordinates

4 @ ©|0|0]|0|0|0 !

50 1 i
i Image Origin
| Origin=(60.0,70.0)

o e | |

0 50 100 150 200

Figure 4.1:Geometrical concepts associated with the ITK image.

Even thougHTK can be used to perform general image processing tasks,ithargmpurpose
of the toolkit is the processing of medical image data. Irt teapect, additional information
about the images is considered mandatory. In particulaimtfeemation associated with the
physical spacing between pixels and the position of the @riagspace with respect to some
world coordinate system are extremely important.

Image origin and spacing are fundamental to many applicatidRegistration, for example,
is performed in physical coordinates. Improperly definedcgpy and origins will result in
inconsistent results in such processes. Medical imagésnuitspatial information should not
be used for medical diagnosis, image analysis, featura&idn, assisted radiation therapy or
image guided surgery. In other words, medical images lackpatial information are not only
useless but also hazardous.

Figure4.lillustrates the main geometrical concepts associatedtivéhi t k: : | mage. In this
figure, circles are used to represent the center of pixele. vetue of the pixel is assumed to
exist as a Dirac Delta Function located at the pixel centxelRpacing is measured between
the pixel centers and can be different along each dimen$tomimage origin is associated with
the coordinates of the first pixel in the imagepixelis considered to be the rectangular region
surrounding the pixel center holding the data value. Thislmaviewed as the Voronoi region
of the image grid, as illustrated in the right side of the fegutinear interpolation of image
values is performed inside the Delaunay region whose ce@arerpixel centers.

Image spacing is represented iRiaedAr r ay whose size matches the dimension of the image.
In order to manually set the spacing of the image, an arrap@fcorresponding type must
be created. The elements of the array should then be inélvith the spacing between the
centers of adjacent pixels. The following code illustrates methods available in the Image

http://www.itk.org
http://www.itk.org/Doxygen/html/classitk_1_1Image.html

4.1. Image 41

class for dealing with spacing and origin.

| mgeType: : Spaci ngType spaci ng;

/] Note: neasurenent units (e.g., mm inches, etc.) are defined by the application.
spacing[0] = 0.33; // spacing along X
spaci ng[1] 0.33; // spacing along Y
spaci ng[2] 1.20; // spacing along Z

The array can be assigned to the image using¢h&paci ng() method.
i mage- >Set Spaci ng(spacing);

The spacing information can be retrieved from an image bygugieCet Spaci ng() method.
This method returns a reference téiaxedAr ray. The returned object can then be used to read
the contents of the array. Note the use ofthest keyword to indicate that the array will not
be modified.

const | mageType: : Spaci ngType& sp = i mage- >CGet Spaci ng();

std::cout << "Spacing = ";
std::cout << sp[0] << ", " <<sp[1] << ", " << sp[2] << std::endl;

The image origin is managed in a similar way to the spacingPont of the appropriate
dimension must first be allocated. The coordinates of thgirodan then be assigned to every
component. These coordinates correspond to the posititimedirst pixel of the image with
respect to an arbitrary reference system in physical speisghe user’s responsibility to make
sure that multiple images used in the same application ang asconsistent reference system.
This is extremely important in image registration appioas.

The following code illustrates the creation and assignréatvariable suitable for initializing
the image origin.

| mageType: : Poi nt Type ori gin;

origin[0] =0.0; // coordinates of the
origin(l] =0.0; [/ first pixel in ND
origin[2] =0.0;

i mge->SetOrigin(origin);

The origin can also be retrieved from an image by using@ex i gi n() method. This will
return a reference toRoi nt . The reference can be used to read the contents of the ammss. N
again the use of theonst keyword to indicate that the array contents will not be medifi

42 Chapter 4. DataRepresentation

const | mageType: : Poi nt Type& orgn = image->CGet Origin();

std::cout << "Origin ="
std::cout << orgn[0] << ", " << orgn[l] << ", " << orgn[2] << std::endl;

Once the spacing and origin of the image have been init@litee image will correctly map

pixel indices to and from physical space coordinates. Thevfing code illustrates how a point
in physical space can be mapped into an image index for theoparof reading the content of
the closest pixel.

First, aitk:: Poi nt type must be declared. The point type is templated over {he iged to
represent coordinates and over the dimension of the spati@s Iparticular case, the dimension
of the point must match the dimension of the image.

typedef itk::Point< double, |mageType::|mageD mension > Point Type;

The Point class, like antk: : I ndex, is a relatively small and simple object. For this reason,
it is not reference-counted like the large data objects K. ITonsequently, it is also not ma-
nipulated with i tk: : Smart Poi nt er s. Point objects are simply declared as instances of any
other C++ class. Once the point is declared, its componam$e accessed using traditional
array notation. In particular, thlgl operator is available. For efficiency reasons, no bounds
checking is performed on the index used to access a partjpoilat component. It is the user’s
responsibility to make sure that the index is in the raf@®imension- 1}.

Poi nt Type point;

point[0] = 1.45; /'l x coordinate
point[1] = 7.21; /]y coordinate
point[2] = 9.28; /'l z coordinate

The image will map the point to an index using the values ottimeent spacing and origin. An
index object must be provided to receive the results of thppimg. The index object can be
instantiated by using thendexType defined in the Image type.

| mgeType: : I ndexType pi xel | ndex;

TheTr ansf or nPhysi cal Poi nt Tol ndex() method of the image class will compute the pixel
index closest to the point provided. The method checks figrittdex to be contained inside
the current buffered pixel data. The method returns a baaledicating whether the resulting
index falls inside the buffered region or not. The outputexaghould not be used when the
returned value of the methodfial se.

The following lines illustrate the point to index mappingdaifie subsequent use of the pixel
index for accessing pixel data from the image.

http://www.itk.org/Doxygen/html/classitk_1_1Point.html
http://www.itk.org/Doxygen/html/classitk_1_1Index.html
http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

4.1. Image 43

bool islnside = imge->TransfornPhysi cal Poi nt Tol ndex(point, pixellndex);

if (islnside)
{
| mgeType: : Pi xel Type pi xel Val ue = i mage->Get Pi xel (pi xel I ndex);

pi xel Val ue += 5;

i mage- >Set Pi xel (pi xel I ndex, pixel Val ue);

}

Remember thaBet Pi xel () andSet Pi xel () are very inefficient methods for accessing pixel
data. Image iterators should be used when massive acceigsltdata is required.

4.1.5 RGB Images

The term RGB (Red, Green, Blue) stands for a color representeommonly used in digital
imaging. RGB is a representation of the human physiologiaphbility to analyze visual light
using three spectral-selective senséi3; P4]. The human retina possess different types of light
sensitive cells. Three of them, known esnes are sensitive to color3[l] and their regions
of sensitivity loosely match regions of the spectrum thdt be perceived as red, green and
blue respectively. Theodson the other hand provide no color discrimination and favighh
resolution and high sensitivity A fifth type of receptors, thganglion cells also known as
circadiart receptors are sensitive to the lighting conditions thafedintiate day from night.
These receptors evolved as a mechanism for synchroniznghysiology with the time of the
day. Cellular controls for circadian rythms are presentviarg cell of an organism and are
known to be exquisitively precis&(].

The RGB space has been constructed as a representationysdialpgical response to light by
the three types ofonesin the human eye. RGB is not a Vector space. For example, imegat
numbers are not appropriate in a color space because thidyeatihe equivalent of “negative
stimulation” on the human eye. In the context of colorimgtiggative color values are used as
an artificial construct for color comparison in the sens¢ tha

ColorA=ColorB—ColorC (4.2)
just as a way of saying that we can prod@morB by combiningColorA andColorC. How-

ever, we must be aware that (at least in emitted light) it ispossible tosubstract light So
when we mention Equatiof 1we actually mean

ColorB= ColorA+ColorC (4.2)

1The human eye is capable of perceiving a single isolatecophot
2The termCircadianrefers to the cycle of day and night, that is, events thatepeated with 24 hours intervals.

44 Chapter 4. DataRepresentation

On the other hand, when dealing with printed color and witintpas opposed to emitted light
like in computer screens, the physical behavior of colawved for subtraction. This is because
strictly speaking the objects that we see as red are thoselibarb all light frequencies except
those in the red section of the spectrdd][

The concept of addition and subtraction of colors has to befally interpreted. In fact, RGB
has a different definition regarding whether we are talkingud the channels associated to the
three color sensors of the human eye, or to the three phosfithord in most computer monitors
or to the color inks that are used for printing reproductiGolor spaces are usually non linear
and do not even from a Group. For example, not all visible rsoban be represented in RGB

space 94].

ITK introduces thei tk: : RGBPi xel type as a support for representing the values of an RGB
color space. As such, the RGBPixel class embodies a diffe@rcept from the one of an
itk::Vector in space. For this reason, the RGBPixel lack many of the operahat may

be naively expected from it. In particular, there are no aefinperations for subtraction or
addition.

When you anticipate to perform the operation of “Mean” on aBR@e you are assuming that
in the color space provides the action of finding a color imttiédle of two colors, can be found
by using a linear operation between their numerical remtesien. This is unfortunately not the
case in color spaces due to the fact that they are based onantphysiological responsgj.

If you decide to interpret RGB images as simply three inddpenhchannels then you should
rather use thd tk: : Vect or type as pixel type. In this way, you will have access to theo$et
operations that are defined in Vector spaces. The currenéimgntation of the RGBPixel in
ITK presumes that RGB color images are intended to be usepglications where a formal
interpretation of color is desired, therefore only the @giens that are valid in a color space are
available in the RGBPixel class.

The following example illustrates how RGB images can beasgnted in ITK.

The source code for this section can be found in the file
Exanpl es/ Dat aRepr esent ati on/ | mage/ RGBI nage. cxx.

Thanks to the flexibility offered by th&eneric Programmingtyle on which ITK is based, it is
possible to instantiate images of arbitrary pixel type. Tdiwing example illustrates how a
color image with RGB pixels can be defined.

A class intended to support the RGB pixel type is availabléTid. You could also define
your own pixel class and use it to instantiate a custom imgge.t In order to use the
i tk::RGBPi xel class, itis necessary to include its header file.

#include "itkRG&BPi xel . h"

The RGB pixel class is templated over a type used to repres@htone of the red, green and
blue pixel components. A typical instantiation of the teatptl class is as follows.

typedef itk::RGBPi xel < unsigned char > Pi xel Type;

http://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html
http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.boost.org/more/generic_programming.html
http://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html

4.1. Image 45

The type is then used as the pixel template parameter of tagam
typedef itk::Image< Pixel Type, 3 > |mageType;

The image type can be used to instantiate other filter, famgka, ani t k: : | mageFi | eReader
object that will read the image from a file.

typedef itk::ImageFil eReader< | mageType > Reader Type;

Access to the color components of the pixels can now be pagdusing the methods provided
by the RGBPixel class.

Pi xel Type onePi xel = image->CetPi xel (pixel I ndex);

Pi xel Type: : Val ueType red
Pi xel Type:: Val ueType green
Pi xel Type: : Val ueType bl ue

onePi xel . Get Red() ;
onePi xel . Get Green();
onePi xel . Get Bl ue();

The subindex notation can also be used since the : RGBPi xel inherits thg | operator from
the itk::FixedArray class.

red = onePixel[0]; // extract Red conponent
green = onePixel[1]; // extract Geen conponent
blue = onePixel[2]; // extract Blue conponent

std::cout << "Pixel values:" << std::endl;

std::cout << "Red ="
<< itk::NunericTraits<Pixel Type:: Val ueType>:: Print Type(red)
<< std::endl;

std::cout << "Geen ="
<< itk::NunericTraits<Pixel Type:: Val ueType>:: Print Type(green)
<< std::endl;

std::cout << "Blue ="
<< itk::NunericTraits<Pixel Type:: Val ueType>:: Print Type(bl ue)
<< std::endl;

4.1.6 Vector Images
The source code for this section can be found in the file
Exanpl es/ Dat aRepr esent ati on/ | mage/ Vect or | mage. cxx.

Many image processing tasks require images of non-scadaliype. A typical example is an
image of vectors. This is the image type required to reptebengradient of a scalar image.

http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
http://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html
http://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html

46 Chapter 4. DataRepresentation

The following code illustrates how to instantiate and usénaage whose pixels are of vector
type.

For convenience we use thetk: : Vect or class to define the pixel type. The Vector class
is intended to represent a geometrical vector in space. fiotsintended to be used as
an array container like thetd: :vector in STL. If you are interested in containers, the
i tk::VectorContainer class may provide the functionality you want.

The first step is to include the header file of the Vector class.
#include "itkVector.h"

The Vector class is templated over the type used to représerbordinate in space and over
the dimension of the space. In this example, we want the véattension to match the image

dimension, but this is by no means a requirement. We could bafined a four-dimensional

image with three-dimensional vectors as pixels.

typedef itk::Vector< float, 3 > Pi xel Type;
typedef itk::Inmage< Pixel Type, 3 > | mgeType;

The Vector class inherits the operafdr from the itk:: Fi xedArray class. This makes it
possible to access the Vector’'s components using indexiota

| mgeType: : Pi xel Type pi xel Val ue;

pi xel Val ue[0]
pi xel Val ue[1]
pi xel Val ue[2]

1. 345; /'l x conponent
6. 841; /'l 'y conponent
3.295; /'l x conponent

We can now store this vector in one of the image pixels by dejiain index and invoking the
Set Pi xel () method.

i mage->Set Pi xel (pi xel | ndex, pi xel Val ue);

4.1.7 Importing Image Data from a Buffer

The source code for this section can be found in the file
Exanpl es/ Dat aRepr esent ati on/ | mage/ | mage5. cxx.

This example illustrates how to import data into thek: : | mage class. This is particularly
useful for interfacing with other software systems. Mangtems use a contiguous block of
memory as a buffer for image pixel data. The current examgdeiraes this is the case and
feeds the buffer into amtk: : I nport | mageFi | t er , thereby producing an Image as output.

http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.sgi.com/tech/stl/Vector.html
http://www.sgi.com/tech/stl/
http://www.itk.org/Doxygen/html/classitk_1_1VectorContainer.html
http://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html
http://www.itk.org/Doxygen/html/classitk_1_1Image.html
http://www.itk.org/Doxygen/html/classitk_1_1ImportImageFilter.html

4.1. Image 47

For fun we create a synthetic image with a centered spherkoaly allocated buffer and pass
this block of memory to the ImportimagerFilter. This examiglset up so that on execution, the
user must provide the name of an output file as a command+iuerent.

First, the header file of the ImportimageFilter class mushbkided.

#include "itklmge.h"
#include "itklmportlmgeFilter.h"

Next, we select the data type to use to represent the imagispWe assume that the external
block of memory uses the same data type to represent thespixel

typedef unsigned char Pixel Type;
const unsigned int Dimension = 3;
typedef itk::Image< Pixel Type, Dinension > |nmageType;

The type of the ImportimageFilter is instantiated in thedwing line.

typedef itk::InportlmageFilter< Pixel Type, Dinension > InportFilterType;
A filter object created using théeew() method is then assigned t&aar t Poi nt er .

I mportFilterType:: Pointer inportFilter = InportFilterType:: New();

This filter requires the user to specify the size of the imagéd produced as output. The
Set Regi on() method is used to this end. The image size should exactlymtlagcnumber of
pixels available in the locally allocated buffer.

I mport Fil terType:: SizeType size;

size[0] =200; // size along X
size[1l] =200; // size along Y
size[2] =200; /I size along Z

I mport FilterType:: I ndexType start;
start.Fill(0);

I mport Fi | ter Type: : Regi onType region;
region. Setlndex(start);
region. SetSize(size);

inportFilter->SetRegion(region);

The origin of the output image is specified with Bt Ori gi n() method.

48 Chapter 4. DataRepresentation

doubl e origin[Dinension];

origin[0] =0.0; /1 X coordinate
origin[1] = 0.0; /1 Y coordinate
origin[2] =0.0; /'l Z coordinate

inportFilter->SetOrigin(origin);
The spacing of the image is passed with $aeSpaci ng() method.

doubl e spacing[Dimension |;

spacing[0] = 1.0; /] along X direction
spacing[1] = 1.0; /] along Y direction
spacing[2] = 1.0; /] along Z direction

i nport Fi | ter->Set Spaci ng(spacing);

Next we allocate the memory block containing the pixel dathe passed to the Importimage-
Filter. Note that we use exactly the same size that was speeiith theSet Regi on() method.

In a practical application, you may get this buffer from sastiger library using a different data
structure to represent the images.

const unsigned int number O Pixels = size[0] * size[l] * size[2];
Pi xel Type * local Buf fer = new Pi xel Type[nunber Of Pi xel s |;

Here we fill up the buffer with a binary sphere. We use sinfgle() loops here similar to
those found in the C or FORTRAN programming languages. NwtelTK does not usgor ()
loops in its internal code to access pixels. All pixel acdasks are instead performed using
itk::1magelteratorsthat support the management of n-dimensional images.

const double radius2 = radius * radius;
Pi xel Type * it = local Buffer;

for(unsigned int z=0; z < size[2]; z++)

const double dz = static_cast<double>(z) - static_cast<doubl e>(size[2])/2.0;
for(unsigned int y=0; y < size[l]; y++)
{
const double dy = static_cast<double>(y) - static_cast<doubl e>(size[1])/2.0;
for(unsigned int x=0; x < size[0]; x++)

const double dx = static_cast<double>(x) - static_cast<doubl e>(size[0])/2.0;
const double d2 = dx*dx + dy*dy + dz*dz;

*it++ = (d2 <radius2) ? 255 : O;

}

http://www.itk.org/Doxygen/html/classitk_1_1ImageIterator.html

4.2. PointSet 49

The buffer is passed to the ImportimageFilter with 8&¢ 1 nport Poi nter (). Note that the
last argument of this method specifies who will be respoadiin deleting the memory block
once it is no longer in use. Aal se value indicates that the ImportimageFilter will not try to
delete the buffer when its destructor is calledt rAie value, on the other hand, will allow the
filter to delete the memory block upon destruction of the imfitter.

For the ImportimageFilter to appropriately delete the mgnimock, the memory must be al-
located with the C++ew() operator. Memory allocated with other memory allocatiorchee
nisms, such as @al | oc orcal | oc, will not be deleted properly by the ImportimageFilter. In
other words, it is the application programmer’s respofisiio ensure that ImportimageFilter
is only given permission to delete the Cwew operator-allocated memory.

const bool inportlmageFilterWI!|OwnTheBuffer = true;
i nportFilter->SetlnportPointer(|ocalBuffer, numberOPixels,
i nport|mageFilterWI! | OmTheBuffer);

Finally, we can connect the output of this filter to a pipeliRer simplicity we just use a writer
here, but it could be any other filter.

witer->Setlnput(inportFilter->GetQutput());

Note that we do not callel et e on the buffer since we pass ue as the last argument of
Set | nport Poi nter (). Now the buffer is owned by the ImportimageFilter.

4.2 PointSet

4.2.1 Creating a PointSet

The source code for this section can be found in the file
Exanpl es/ Dat aRepr esent ati on/ Mesh/ Poi nt Set 1. cxx.

Theitk:: PointSet is a basic class intended to represent geometry in the forensait of
points in n-dimensional space. It is the base class for ttke: Mesh providing the methods
necessary to manipulate sets of point. Points can haves/aisaciated with them. The type of
such values is defined by a template parameter oftke: Poi nt Set class (i.e.TPi xel Type.
Two basic interaction styles of PointSets are availableTK. [These styles are referred to as
staticanddynamic The first style is used when the number of points in the seh@w in
advance and is not expected to change as a consequence oétiifgutations performed on
the set. The dynamic style, on the other hand, is intendedgpast insertion and removal of
points in an efficient manner. Distinguishing between the $tyles is meant to facilitate the
fine tuning of aPoi nt Set 's behavior while optimizing performance and memory managy&.

In order to use the PointSet class, its header file shoulddbedad.

#include "itkPointSet.h"

50 Chapter 4. DataRepresentation

Then we must decide what type of value to associate with tlir@goThis is generally called
thePi xel Type in order to make the terminology consistent with ithé&: : | mage. The PointSet
is also templated over the dimension of the space in whiclpthets are represented. The
following declaration illustrates a typical instantiatiof the PointSet class.

typedef itk::PointSet< unsigned short, 3 > Point Set Type;

A Poi nt Set object is created by invoking tiéew() method on its type. The resulting object
must be assigned toSaar t Poi nt er . The PointSet is then reference-counted and can be shared
by multiple objects. The memory allocated for the PointSédithve released when the number

of references to the object is reduced to zero. This simplgma¢hat the user does not need to
be concerned with invoking thHeel et e() method on this class. In fact, tidel et e() method
shouldnever be called directly within any of the reference-counted IT&sses.

Poi nt Set Type: : Poi nter pointsSet = Poi nt Set Type: : New() ;

Following the principles of Generic Programming, @ nt Set class has a set of associated
defined types to ensure that interacting objects can bereeclgith compatible types. This
set of type definitions is commonly known as a setrafts. Among them we can find the
Poi nt Type type, for example. This is the type used by the point set toeemt points in space.
The following declaration takes the point type as defineth@Pbi nt Set traits and renames it
to be conveniently used in the global namespace.

typedef Poi nt Set Type: : Poi nt Type Poi nt Type;

ThePoi nt Type can now be used to declare point objects to be inserted iPoihe Set . Points

are fairly small objects, so it is inconvenient to managethéth reference counting and smart
pointers. They are simply instantiated as typical C++ @asdhe Point class inherits thg
operator from the tk: : Array class. This makes it possible to access its components using
index notation. For efficiency’s sake no bounds checkingeisggmed during index access.

It is the user’s responsibility to ensure that the index used the range/0, Dimension- 1}.

Each of the components in the point is associated with spamalmates. The following code
illustrates how to instantiate a point and initialize itsq@onents.

Poi nt Type p0;

p0[0] = -1.0; /1 x coordinate
po[1] = -1.0; /1y coordinate
p0[2] = 0.0; Il z coordinate

Points are inserted in the PointSet by using3bePoi nt () method. This method requires the
user to provide a unique identifier for the point. The ideatifs typically an unsigned integer
that will enumerate the points as they are being inserted.fdllowing code shows how three
points are inserted into the PointSet.

4.2. PointSet 51

poi nt sSet - >Set Poi nt (0, p0
poi ntsSet->SetPoint(1, pl
poi nt sSet - >Set Poi nt (2, p2

);
);
,)
It is possible to query the PointSet in order to determine hwamy points have been inserted
into it. This is done with th&et Nunber O Poi nt s() method as illustrated below.

const unsigned i nt nunber O Poi nts = poi nt sSet - >Get Nunber Of Poi nts() ;
std::cout << nunberOf Points << std::endl;

Points can be read from the PointSet by using®#tdPoi nt () method and the integer identifier.
The point is stored in a pointer provided by the user. If thenidier provided does not match
an existing point, the method will retufral se and the contents of the point will be invalid.
The following code illustrates point access using defempiowgramming.

Poi nt Type pp;
bool pointExists = pointsSet->GetPoint(1, & pp);

i f(pointExists)
{

std::cout << "Point is =" << pp << std::endl;

}

CGet Poi nt () and Set Poi nt() are not the most efficient methods to access points in the
PointSet. It is preferable to get direct access to the iatgpoint container defined by the
traits and use iterators to walk sequentially over the list of poijais shown in the following
example).

4.2.2 Getting Access to Points

The source code for this section can be found in the file
Exanpl es/ Dat aRepr esent at i on/ Mesh/ Poi nt Set 2. cxx.

Theitk:: Point Set class uses an internal container to manage the storagekof Poi nt s. It

is more efficient, in general, to manage points by using tkesscmethods provided directly on
the points container. The following example illustrates/to interact with the point container
and how to use point iterators.

The type is defined by theaits of the PointSet class. The following line conveniently mkee
PointsContainer type from the PointSet traits and dectanglihe global namespace.

typedef Poi nt Set Type: : Poi nt sCont ai ner Poi nt sCont ai ner;

The actual type of the PointsContainer depends on what styleointSet is being used.
The dynamic PointSet use thea tk:: MapCont ai ner while the static PointSet uses the

http://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
http://www.itk.org/Doxygen/html/classitk_1_1Point.html
http://www.itk.org/Doxygen/html/classitk_1_1MapContainer.html

52 Chapter 4. DataRepresentation

itk::VectorContainer. The vector and map containers are basically ITK wrappersrat
theSTL classest d: : map andst d: : vect or . By default, the PointSet uses a static style, hence
the default type of point container is an VectorContainesttBthe map and vector container
are templated over the type of the elements they contairhisncase they are templated over
PointType. Containers are reference counted object. Theyhan created with thdew()
method and assigned to &t k: : Smart Poi nt er after creation. The following line creates a
point container compatible with the type of the PointSeirfrghich the trait has been taken.

Poi nt sCont ai ner: : Poi nter points = PointsContainer::New);
Points can now be defined using P nt Type trait from the PointSet.

typedef Point Set Type: : Poi nt Type Poi nt Type;
Poi nt Type p0;
Poi nt Type p1l;
po[o] = -1.0; pO[1]
p1[0] 1.0; p1[1]

0.0; po[2]
0.0; p1[2]

0.0; // Point O
1

{-1,0,
0.0; /I Point {

0,0}
1,0,0 }
The created points can be inserted in the PointsContainigrg ube generic method
I nsert El ement () which requires an identifier to be provided for each point.

unsigned int pointld = 0;
poi nts->I nsertEl ement (pointld++ , p0);
poi nts->I nsertEl ement (pointld++ , pl);

Finally the PointsContainer can be assigned to the PointBkis will substitute any previ-
ously existing PointsContainer on the PointSet. The assén is done using thget Poi nt s()
method.

poi nt Set - >Set Poi nt s(points);

The PointsContainer object can be obtained from the PdintS$eg theGet Poi nt s() method.
This method returns a pointer to the actual container ownethé PointSet which is then
assigned to a SmartPointer.

Poi nt sCont ai ner: : Pointer points2 = point Set->CGet Poi nts();

The most efficient way to sequentially visit the points is e uhe iterators provided by
PointsContainer. Theét erat or type belongs to the traits of the PointsContainer classes. |
behaves pretty much like the STL iteratdrsThe Points iterator is not a reference counted
class, so it is created directly from the traits without gsBmartPointers.

3If you dig deep enough into the code, you will discover thasthiterators are actually ITK wrappers around STL
iterators.

http://www.itk.org/Doxygen/html/classitk_1_1VectorContainer.html
http://www.sgi.com/tech/stl/
http://www.sgi.com/tech/stl/Map.html
http://www.sgi.com/tech/stl/Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

4.2. PointSet 53

typedef PointsContainer::|terator Pointslterator;

The subsequent use of the iterator follows what you may éxfpem a STL iterator. The
iterator to the first point is obtained from the containerviiieBegi n() method and assigned
to another iterator.

Pointslterator pointlterator = points->Begin();

The ++ operator on the iterator can be used to advance from one fooihé next. The actual
value of the Point to which the iterator is pointing can beadted with theval ue() method.
The loop for walking through all the points can be controllgdcomparing the current iterator
with the iterator returned by thénd() method of the PointsContainer. The following lines
illustrate the typical loop for walking through the points.

Pointslterator end = points->End();
while(pointlterator != end)

{

Poi nt Type p = pointlterator.Value(); // access the point
std::cout << p << std::endl; Il print the point
++pointlterator; /'l advance to next point
}

Note that as in STL, the iterator returned by #el() method is not a valid iterator. This is
called a past-end iterator in order to indicate that it isuakle resulting from advancing one
step after visiting the last element in the container.

The number of elements stored in a container can be quertbdhéSi ze() method. In the
case of the PointSet, the following two lines of code are\egjant, both of them returning the
number of points in the PointSet.

std::cout << pointSet->Get Number Of Poi nts() << std::endl;
std::cout << pointSet->CGetPoints()->Size() << std::endl;

4.2.3 Getting Access to Data in Points

The source code for this section can be found in the file
Exanpl es/ Dat aRepr esent at i on/ Mesh/ Poi nt Set 3. cxx.

The itk::PointSet class was designed to interact with the Image class. Foréaison

it was found convenient to allow the points in the set to hatles that could be computed
from images. The value associated with the point is refeassl xel Type in order to make

it consistent with image terminology. Users can define thpe tyts they please thanks to the
flexibility offered by the Generic Programming approachdiisethe toolkit. ThePi xel Type is
the first template parameter of the PointSet.

http://www.itk.org/Doxygen/html/classitk_1_1PointSet.html

54 Chapter 4. DataRepresentation

The following code defines a particular type for a pixel typel énstantiates a PointSet class
with it.

typedef unsigned short Pixel Type;
typedef itk::PointSet< Pixel Type, 3 > Point Set Type;

Data can be inserted into the PointSet usind#td>oi nt Dat a() method. This method requires
the user to provide an identifier. The data in question wilbbsociated to the point holding
the same identifier. It is the user’s responsibility to wettie appropriate matching between
inserted data and inserted points. The following line tHates the use of th&et Poi nt Dat a()
method.

unsigned int datald 0;
Pi xel Type val ue 79;
poi nt Set - >Set Poi nt Dat a(datal d++, val ue);

Data associated with points can be read from the PointSeq tiseGet Poi nt Dat a() method.
This method requires the user to provide the identifier topbiat and a valid pointer to a
location where the pixel data can be safely written. In chseidentifier does not match any
existing identifier on the PointSet the method will rettiahse and the pixel value returned will
be invalid. It is the user’s responsibility to check the raed boolean value before attempting
to use it.

const bool found = point Set - >CGet Poi nt Data(datald, & value);

if(found)
{
std::cout << "Pixel value =" << value << std::endl;
}

The Set Poi nt Data() and Get Poi nt Data() methods are not the most efficient way to
get access to point data. It is far more efficient to use theatibes provided by the
Poi nt Dat aCont ai ner .

Data associated with points is internally storedPannt Dat aCont ai ner s. In the same way as
with points, the actual container type used depend on whéibestyle of the PointSet is static

or dynamic. Static point sets will use airt k: : Vect or Cont ai ner while dynamic point sets
will use ani tk: : MapCont ai ner . The type of the data container is defined as one of the traits
in the PointSet. The following declaration illustrates hitbv@ type can be taken from the traits
and used to conveniently declare a similar type on the glo&adespace.

typedef Poi nt Set Type: : Poi nt Dat aCont ai ner Poi nt Dat aCont ai ner;
Using the type it is now possible to create an instance of éta dontainer. This is a standard

reference counted object, henceforth it usesNéwg) method for creation and assigns the
newly created object to a SmartPointer.

http://www.itk.org/Doxygen/html/classitk_1_1VectorContainer.html
http://www.itk.org/Doxygen/html/classitk_1_1MapContainer.html

4.2. PointSet 55

Poi nt Dat aCont ai ner: : Poi nter poi nt Data = Poi nt Dat aCont ai ner:: New() ;

Pixel data can be inserted in the container with the metimseér t El ement (). This method
requires an identified to be provided for each point data.

unsigned int pointld = 0;

Pi xel Type val ue0
Pi xel Type val uel

34;
67,

poi nt Dat a- >l nsert El enent (poi nt1d++ , value0);
poi nt Dat a- >| nsert El ement (poi ntld++ , valuel);

Finally the PointDataContainer can be assigned to the Beint This will substitute any
previously existing PointDataContainer on the PointSehe &ssignment is done using the
Set Poi nt Dat a() method.

poi nt Set - >Set Poi nt Dat a(poi ntData);

The PointDataContainer can be obtained from the Point3eg tiseCet Poi nt Dat a() method.
This method returns a pointer (assigned to a SmartPoimténgetactual container owned by the
PointSet.

Poi nt Dat aCont ai ner: : Poi nter pointData2 = poi nt Set - >CGet Poi nt Data() ;

The most efficient way to sequentially visit the data asgediwith points is to use the iterators

provided byPoi nt Dat aCont ai ner. Thel t erat or type belongs to the traits of the PointsCon-
tainer classes. The iterator is not a reference countes, dast is just created directly from the

traits without using SmartPointers.

typedef Poi nt Dat aCont ai ner::Iterator Poi nt Dat al terat or;

The subsequent use of the iterator follows what you may éxfpem a STL iterator. The
iterator to the first point is obtained from the containertwilieBegi n() method and assigned
to another iterator.

Point Datal terator pointDatalterator = pointData2->Begin();

The ++ operator on the iterator can be used to advance from one datatp the next. The
actual value of the PixelType to which the iterator is paigtcan be obtained with théal ue()
method. The loop for walking through all the point data carcbetrolled by comparing the
current iterator with the iterator returned by tBed() method of the PointsContainer. The
following lines illustrate the typical loop for walking tbugh the point data.

56 Chapter 4. DataRepresentation

Poi nt Dat al terat or end = poi nt Dat a2- >End() ;
while(pointDatalterator != end)

{

Pi xel Type p = pointDatalterator.Value(); // access the pixel data
std::cout << p << std::endl; /1 print the pixel data

++poi nt Datal terator; /'l advance to next pixel/point
}

Note that as in STL, the iterator returned by #el() method is not a valid iterator. This is
called apast-endterator in order to indicate that it is the value resultingni advancing one
step after visiting the last element in the container.

4.2.4 RGB as Pixel Type

The source code for this section can be found in the file
Exanpl es/ Dat aRepr esent at i on/ Mesh/ RGBPoi nt Set . cxX.

The following example illustrates how a point set can be patarized to manage a particular
pixel type. In this case, pixels of RGB type are used. Thedbes is then to include the header
files of thei tk: : RGBPi xel anditk:: Point Set classes.

#include "itkRGBPi xel . h"
#include "itkPointSet.h"

Then, the pixel type can be defined by selecting the type tsbd to represent each one of the
RGB components.

typedef itk::RG@BPixel< float > Pi xel Type;

The newly defined pixel type is now used to instantiate thefS@it type and subsequently
create a point set object.

typedef itk::PointSet< Pixel Type, 3 > Point Set Type;
Poi nt Set Type: : Poi nter pointSet = Poi nt Set Type: : New() ;

The following code is generating a sphere and assigning R&bBesg to the points. The compo-
nents of the RGB values in this example are computed to reptése position of the points.

Poi nt Set Type: : Pi xel Type pi xel ;
Poi nt Set Type: : Poi nt Type point;
unsigned int pointld = 0;
const double radius = 3.0;

http://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html
http://www.itk.org/Doxygen/html/classitk_1_1PointSet.html

4.2. PointSet 57

for(unsigned int i=0; i<360; i++)

const double angle =i * atan(1.0) / 45.0;
point[0] = radius * sin(angle);
point[1] = radius * cos(angle);
point[2] = 1.0;

pi xel . Set Red(point[0] * 2.0)
pi xel . SetGreen(point[1l] * 2.0)
pi xel . SetBlue(point[2] * 2.0)
poi nt Set - >Set Poi nt (pointld, point);

poi nt Set - >Set Poi nt Dat a(pointld, pixel);
poi nt | d++;

}

All the points on the PointSet are visited using the follogvoode.

typedef Poi nt Set Type: : Poi nt sCont ai ner: : Const | t erat or Pointlterator;
Pointlterator pointlterator = pointSet->Cet Points()->Begin();
Pointlterator pointEnd = poi nt Set - >Get Poi nt s() - >End() ;
whi | e(pointlterator != pointEnd)

{

Poi nt Set Type: : Poi nt Type point = pointlterator. Val ue();

std::cout << point << std::endl;

++pointlterator;

}

Note that here th€onst | t er at or was used instead of the¢er at or since the pixel values are
not expected to be modified. ITK supports const-correctaetse API level.

All the pixel values on the PointSet are visited using théofeing code.

typedef Poi nt Set Type: : Poi nt Dat aCont ai ner: : Const | t er at or Poi nt Datal terator;
Poi nt Datal terat or pixellterator = point Set->Get Poi nt Data()->Begin();
Poi nt Dat al t erat or pi xel End = poi nt Set - >Get Poi nt Dat a() - >End() ;
whil e(pixellterator != pixel End)
{
Poi nt Set Type: : Pi xel Type pixel = pixellterator.Value();
std::cout << pixel << std::endl;
++pi xel I terator;

}

Again, please note the use of thenst | t erat or instead of the terat or.

4.2.5 Vectors as Pixel Type

The source code for this section can be found in the file
Exanpl es/ Dat aRepr esent ati on/ Mesh/ Poi nt Set Wt hVect or s. cxx.

58 Chapter 4. DataRepresentation

This example illustrates how a point set can be parametktizaanage a particular pixel type.
It is quite common to associate vector values with pointgpfaiducing geometric representa-
tions. The following code shows how vector values can be asequixel type on the PointSet
class. Thei tk:: Vector class is used here as the pixel type. This class is appreoiatepre-
senting the relative position between two points. It cohkhtbe used to manage displacements,
for example.

In order to use the vector class it is necessary to includeesigsler file along with the header of
the point set.

#include "itkVector.h"
#include "itkPointSet.h"

The Vector class is templated over the type used e
to represent the spatial coordinates and over the ,/

space dimension. Since the PixelType is indepen-

dent of the PointType, we are free to select any ./ \
dimension for the vectors to be used as pixel type. i N
However, for the sake of producing an interesting \ ’
example, we will use vectors that represent dis-

placements of the points in the PointSet. Those \. /
vectors are then selected to be of the same dimen- \. /’

sion as the PointSet. T
Figure 4.2:Vectors as PixelType.

const unsigned int Dinmension = 3;
typedef itk::Vector< float, Dinension > Pi xel Type;

Then we use the PixelType (which are actually Vectors) ttaintsate the PointSet type and
subsequently create a PointSet object.

typedef itk::PointSet< Pixel Type, Dimension > Point Set Type;
Poi nt Set Type: : Poi nter pointSet = Poi nt Set Type: : New() ;

The following code is generating a sphere and assigningveatues to the points. The com-
ponents of the vectors in this example are computed to reptéise tangents to the circle as
shown in Figuret.2

Poi nt Set Type: : Pi xel Type tangent;
Poi nt Set Type: : Poi nt Type point;

unsigned int pointld = 0;
const doubl e radius = 300.0;

for(unsigned int i=0; i<360; i++)

http://www.itk.org/Doxygen/html/classitk_1_1Vector.html

4.2. PointSet 59

const double angle =i * atan(1.0) / 45.0;
point[0] = radius * sin(angle);

poi nt[1] radius * cos(angle);
point[2] =1.0; // flat on the Z plane
tangent[0] = cos(angle);

tangent[1] = -sin(angle);

tangent[2] = 0.0; // flat on the Z plane

poi nt Set - >Set Poi nt (pointld, point);
poi nt Set - >Set Poi nt Dat a(pointld, tangent);
poi nt | d++;

}

We can now visit all the points and use the vector on the piaklas to apply a displacement
on the points. This is along the spirit of what a deformablelel@ould do at each one of its
iterations.

typedef Poi nt Set Type: : Poi nt Dat aCont ai ner: : Const I terator PointDatalterator;
Poi ntDat al terator pixellterator = point Set->CetPointData()->Begin();

Poi nt Dat al t erat or pi xel End = poi nt Set - >Get Poi nt Dat a() - >End() ;
typedef Point Set Type: : Poi nt sContai ner::|terator Pointlterator;
Pointlterator pointlterator = pointSet->Cet Points()->Begin();
Pointlterator pointEnd = poi nt Set - >Get Poi nt s() - >End() ;

while(pixellterator != pixelEnd && pointliterator != pointEnd)
{

pointiterator.Value() = pointlterator.Value() + pixellterator.Value();
++pi xel I terator;
++pointlterator;

}

Note that theConst | t erat or was used here instead of the norrhiér at or since the pixel
values are only intended to be read and not modified. ITK stpponst-correctness at the API
level.

The itk:: Vector class has overloaded theoperator with thei t k: : Poi nt . In other words,
vectors can be added to points in order to produce new pdihts.property is exploited in the
center of the loop in order to update the points positionk wisingle statement.

We can finally visit all the points and print out the new values

pointlterator = pointSet->CGet Points()->Begin();
poi nt End = poi nt Set - >Get Poi nt s() - >End() ;
while(pointlterator != pointEnd)

{

std::cout << pointlterator.Value() << std::endl;

http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1Point.html

60 Chapter 4. DataRepresentation

++pointlterator;

}

Note that i tk: : Vect or is not the appropriate class for representing normals tases and
gradients of functions. This is due to the way in which vestbehave under affine trans-
forms. ITK has a specific class for representing normals andtion gradients. This is the
itk::Covariant Vector class.

4.2.6 Normals as Pixel Type

The source code for this section can be found in the file
Exanpl es/ Dat aRepr esent ati on/ Mesh/ Poi nt Set W t hCovari ant Vect or s. cxx.

It is common to represent geometric object by using pointtheir surfaces and normals as-
sociated with those points. This structure can be easitpirtited with thei t k: : Poi nt Set
class.

The natural class for representing normals to surfaces aadiemts of functions is the
itk::CovariantVector. A covariant vector differs from a vector in the way they beha
under affine transforms, in particular under anisotropatieg. If a covariant vector represents
the gradient of a function, the transformed covariant vewib still be the valid gradient of the
transformed function, a property which would not hold witregular vector.

The following code shows how vector values can be used aktppeson the PointSet class. The
CovariantVector class is used here as the pixel type. Thmpbellustrates how a deformable
model could move under the influence of the gradient of pa@kfunction.

In order to use the CovariantVector class it is necessanydade its header file along with the
header of the point set.

#include "itkCovariantVector.h"
#include "itkPointSet.h"

The CovariantVector class is templated over the type usedpi@sent the spatial coordinates
and over the space dimension. Since the PixelType is indigpeof the PointType, we are free
to select any dimension for the covariant vectors to be usguixal| type. However, we want to
illustrate here the spirit of a deformable model. It is thequired for the vectors representing
gradients to be of the same dimension as the points in space.

const unsigned int Dimension = 3;
typedef itk::CovariantVector< float, Dimension > Pi xel Type;

Then we use the PixelType (which are actually CovariantMsgtto instantiate the PointSet
type and subsequently create a PointSet object.

http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html
http://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
http://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html

4.2. PointSet 61

typedef itk::PointSet< Pixel Type, Dinension > PointSet Type;
Poi nt Set Type: : Poi nter pointSet = Poi nt Set Type: : New() ;

The following code generates a sphere and assigns gradikrgsvto the points. The com-
ponents of the CovariantVectors in this example are contpiateepresent the normals to the
circle.

Poi nt Set Type: : Pi xel Type gradient;
Poi nt Set Type: : Poi nt Type point;

unsigned int pointld = 0;
const doubl e radius = 300.0;

for(unsigned int i=0; i<360; i++)

const double angle =i * atan(1.0) / 45.0;
point[0] = radius * sin(angle);

point[1] = radius * cos(angle);

point[2] =1.0; // flat on the Z plane
gradient[0] = sin(angle);

gradient[1] = cos(angle);

gradient[2] =0.0; // flat on the Z plane
poi nt Set - >Set Poi nt (pointld, point);

poi nt Set - >Set Poi nt Data(pointld, gradient);
poi nt | d++;

}

We can now visit all the points and use the vector on the piaklas to apply a deformation
on the points by following the gradient of the function. Thgsalong the spirit of what a
deformable model could do at each one of its iterations. Tmbee formal we should use the
function gradients as forces and multiply them by localsstrensors in order to obtain local
deformations. The resulting deformations would finally lsedito apply displacements on the
points. However, to shorten the example, we will ignore toisiplexity for the moment.

typedef Point Set Type: : Poi nt Dat aCont ai ner: : Const I terator PointDatalterator;
Poi nt Dat al terator pixel lterator = point Set->Get Poi nt Data()->Begin();
Poi nt Dat al t erat or pi xel End poi nt Set - >Cet Poi nt Dat a() - >End() ;

typedef Poi nt Set Type: : Poi nt sContai ner::|terator Pointlterator;
Pointlterator pointlterator = pointSet->CetPoints()->Begin();
Pointlterator pointEnd = poi nt Set - >Get Poi nt s() - >End();

while(pixellterator != pixel End && pointliterator != pointEnd)
{
Poi nt Set Type: : Poi nt Type poi nt
Poi nt Set Type: : Pi xel Type gradi ent

pointlterator. Val ue();
pi xel I'terator. Val ue();

62 Chapter 4. DataRepresentation

for(unsigned int i=0; i<Dimension; i++)
{
point[i] += gradient[i];
}

pointlterator.Value() = point;

++pi xel I terator;

++pointlterator;

}

The CovariantVector class does not overloadth&perator with thei t k: : Poi nt. In other
words, CovariantVectors can not be added to points in oalget new points. Further, since
we are ignoring physics in the example, we are also forceatie illegal addition manually
between the components of the gradient and the coordintties points.

Note that the absence of some basic operators on the ITK ggoatesses is completely inten-
tional with the aim of preventing the incorrect use of themeatatical concepts they represent.

4.3 Mesh

4.3.1 Creating a Mesh

The source code for this section can be found in the file
Exanpl es/ Dat aRepr esent ati on/ Mesh/ Meshl. cxx.

The itk::Msh class is intended to represent shapes in space. It deriogs fhe

i tk::PointSet class and hence inherits all the functionality related tmisoand access to
the pixel-data associated with the points. The mesh claasasn-dimensional which allows a
great flexibility in its use.

In practice a Mesh class can be seen as a PointSet to whish(akslb known as elements) of
many different dimensions and shapes have been added.iiC#lls mesh are defined in terms
of the existing points using their point-identifiers.

In the same way as for the PointSet, two basic styles of Mesiteeavailable in ITK. They are
referred to astaticanddynamic The first one is used when the number of points in the set can
be known in advance and it is not expected to change as a agrse®|of the manipulations
performed on the set. The dynamic style, on the other haridteaded to support insertion
and removal of points in an efficient manner. The reason fddmgathe distinction between
the two styles is to facilitate fine tuning its behavior wittetaim of optimizing performance
and memory management. In the case of the Mesh, the dyngatiicspect is extended to the
management of cells.

In order to use the Mesh class, its header file should be iedlud

#include "itkMesh. h"

http://www.itk.org/Doxygen/html/classitk_1_1Point.html
http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
http://www.itk.org/Doxygen/html/classitk_1_1PointSet.html

4.3. Mesh 63

Then, the type associated with the points must be selectbdsed for instantiating the Mesh
type.

typedef float Pi xel Type;

The Mesh type extensively uses the capabilities provide@Gbegeric Programmingln par-
ticular the Mesh class is parameterized over the PixelTymkthe dimension of the space.
PixelType is the type of the value associated with everytjast as is done with the PointSet.
The following line illustrates a typical instantiation dfe Mesh.

const unsigned int Dinmension = 3;
typedef itk::Msh< Pixel Type, Dinension > MeshType;

Meshes are expected to take large amounts of memory. Forelson they are reference
counted objects and are managed using SmartPointers. Towifg line illustrates how a
mesh is created by invoking thiew() method of the MeshType and the resulting object is
assignedto atk:: Smart Poi nter .

MeshType: : Pointer nesh = MeshType:: New();

The management of points in the Mesh is exactly the same & iRdintSet. The type point
associated with the mesh can be obtained througlPdhet Type trait. The following code
shows the creation of points compatible with the mesh tyfimee above and the assignment
of values to its coordinates.

MeshType: : Poi nt Type p0;
MeshType: : Poi nt Type pil;
MeshType: : Poi nt Type p2;
MeshType: : Poi nt Type p3;

p0[0]= -1.0; pO[1]= -1.0; pO[2]=0.0; // first point (-1, -1, 0)
p1[0]= 1.0; pi[1]= -1.0; pi[2]= 0.0; // second point (1, -1, 0)
p2[0]= 1.0; p2[1]= 1.0; p2[2]=0.0; // third point (1, 1, 0)
p3[0]= -1.0; p3[1]= 1.0; p3[2]=0.0; // fourth point (-1, 1, 0)

The points can now be inserted in the Mesh usingS#tePoi nt () method. Note that points
are copied into the mesh structure. This means that theilugtaihces of the points can now be
modified without affecting the Mesh content.

mesh- >Set Poi nt
nesh- >Set Poi nt
nesh- >Set Poi nt
mesh- >Set Poi nt

(0
(1
(2
(3

T T T T
w N - O
— — ~— —

http://www.boost.org/more/generic_programming.html
http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

64 Chapter 4. DataRepresentation

The current number of points in the Mesh can be queried wighG#h Nunber Of Poi nt s()
method.

std::cout << "Points =" << mesh->Get Nunber Of Poi nts() << std::endl;
The points can now be efficiently accessed using the Itetattite PointsContainer as it was
done in the previous section for the PointSet. First, thatatérator type is extracted through
the mesh traits.

typedef MeshType: : Poi ntsContai ner::|terator Pointslterator;
A point iterator is initialized to the first point with tH&egi n() method of the PointsContainer.

Pointslterator pointlterator = mesh->CGet Points()->Begin();
The ++ operator on the iterator is now used to advance from one pmithite next. The actual
value of the Point to which the iterator is pointing can beaaed with theVal ue() method.
The loop for walking through all the points is controlled lyngparing the current iterator with
the iterator returned by thHed() method of the PointsContainer. The following lines illasér
the typical loop for walking through the points.

Pointslterator end = nesh->Cet Points()->End();
while(pointlterator != end)

{

MeshType: : Point Type p = pointlterator.Value(); // access the point
std::cout << p << std::endl; [l print the point

++poi ntlterator; /] advance to next point
}

4.3.2 Inserting Cells

The source code for this section can be found in the file
Exanpl es/ Dat aRepr esent at i on/ Mesh/ Mesh2. cxx.

A itk::Mesh can contain a variety of cell types. Typical cells are thek: : Li neCel |,
itk::TriangleCell, itk::Quadrilateral Cell anditk:: TetrahedronCell . Additional
flexibility is provided for managing cells at the price of d biore of complexity than in the
case of point management.

The following code creates a polygonal line in order to iitate the simplest case of cell man-
agement in a Mesh. The only cell type used here is the LineCbk header file of this class
has to be included.

#include "itkLineCell.h"

http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
http://www.itk.org/Doxygen/html/classitk_1_1LineCell.html
http://www.itk.org/Doxygen/html/classitk_1_1TriangleCell.html
http://www.itk.org/Doxygen/html/classitk_1_1QuadrilateralCell.html
http://www.itk.org/Doxygen/html/classitk_1_1TetrahedronCell.html

4.3. Mesh 65

In order to be consistent with the Mesh, cell types have todwigured with a number of
custom types taken from the mesh traits. The set of traiévael to cells are packaged by the
Mesh class into th€el | Type trait. This trait needs to be passed to the actual cell typtsea
moment of their instantiation. The following line shows htamextract the Cell traits from the
Mesh type.

typedef MeshType:: Cel | Type Cel | Type;
The LineCell type can now be instantiated using the traksridrom the Mesh.
typedef itk::LineCell< CellType > Li neType;

The main difference in the way cells and points are managéukbylesh is that points are stored
by copy on the PointsContainer while cells are stored in talésContainer using pointers. The
reason for using pointers is that cells use C++ polymorpluerthe mesh. This means that the
mesh is only aware of having pointers to a generic cell whsdhé base class of all the specific
cell types. This architecture makes it possible to combifierént cell types in the same mesh.
Points, on the other hand, are of a single type and have a sreaibry footprint, which makes
it efficient to copy them directly into the container.

Managing cells by pointers add another level of complexithe Mesh since it is now necessary
to establish a protocol to make clear who is responsiblelfocating and releasing the cells’
memory. This protocol is implemented in the form of a spedifice of pointer called the
Cel | Aut oPoi nt er. This pointer, based on thet k: : Aut oPoi nt er , differs in many respects
from the SmartPointer. The CellAutoPointer has an intepaathter to the actual object and a
boolean flag that indicates if the CellAutoPointer is reslolie for releasing the cell memory
whenever the time comes for its own destruction. It is saéd #Cel | Aut oPoi nt er ownsthe
cell when it is responsible for its destruction. Many CelidRointer can point to the same cell
but at any given time, onlgne CellAutoPointer can own the cell.

The Cel | Aut oPoi nt er trait is defined in the MeshType and can be extracted asréitest in
the following line.

typedef Cel | Type:: Cel | Aut oPoi nt er Cel | Aut oPoi nter;

Note that the CellAutoPointer is pointing to a generic ogli. It is not aware of the actual type
of the cell, which can be for example LineCell, TriangleGglTetrahedronCell. This fact will
influence the way in which we access cells later on.

At this point we can actually create a mesh and insert sonrgson it.

MeshType:: Pointer mesh = MeshType:: New();

MeshType: : Poi nt Type pO;
MeshType: : Poi nt Type p1l;

http://www.itk.org/Doxygen/html/classitk_1_1AutoPointer.html

66 Chapter 4. DataRepresentation

MeshType: : Poi nt Type p2;

poO[0] = -1.0; pO[1] = 0.0; pO[2] = 0.0;
p1[0] = 1.0; pi[1] = 0.0; p1[2] = 0.0;
p2[0] = 1.0; p2[1] = 1.0; p2[2] = 0.0;
mesh->Set Point(0, p0);
mesh->SetPoint(1, pl);
mesh->SetPoint(2, p2);

The following code creates two CellAutoPointers and ifitis them with newly created cell
objects. The actual cell type created in this case is Line@&ite that cells are created with
the normahew C++ operator. The CellAutoPointer takes ownership of tleeired pointer by
using the methodakeOwner shi p(). Even though this may seem verbose, it is necessary in
order to make it explicit from the code that the respongibdf memory release is assumed by
the AutoPointer.

Cel | Aut oPoi nter |ine0;
Cel | Aut oPoi nter |inel;

|'ine0. TakeOaner shi p(new LineType);
|'inel. TakeOanership(new LineType);

The LineCells should now be associated with points in thehm@&sis is done using the iden-
tifiers assigned to points when they were inserted in the mEshkry cell type has a specific
number of points that must be associated withfor example a LineCell requires two points, a
TriangleCell requires three and a TetrahedronCell regdiaer. Cells use an internal numbering
system for points. Itis simply an index in the ran@NumberO f Points- 1}. The association
of points and cells is done by ttset Poi nt 1 d() method which requires the user to provide the
internal index of the point in the cell and the correspondogntidentifier in the Mesh. The
internal cell index is the first parameterSt Poi nt 1 d() while the mesh point-identifier is the
second.

|'i ne0->Set Point I d(O,
1

0); /I line between points 0 and 1
|'i ne0- >Set Poi nt I d(1

)

linel->SetPointld(0, 1); // line between points 1 and 2
linel->SetPointld(1, 2);

Cells are inserted in the mesh using Be Cel | () method. It requires an identifier and the
AutoPointer to the cell. The Mesh will take ownership of tledl €0 which the AutoPointer is
pointing. This is done internally by thget Cel | () method. In this way, the destruction of the
CellAutoPointer will not induce the destruction of the agated cell.

4Some cell types like polygons have a variable number of paiasociated with them.

4.3. Mesh 67

mesh->SetCel I (0, line0);
mesh->SetCel I (1, linel);

After serving as an argument of tiset Cel | () method, a CellAutoPointer no longer holds
ownership of the cell. It is important not to use this samdALegbPointer again as argument to
Set Cel | () without first securing ownership of another cell.

The number of Cells currently inserted in the mesh can be iegiewith the
Cet Nunber O Cel | s() method.

std::cout << "Cells =" << nmesh->GetNunberf CelIs() << std::endl;

In a way analogous to points, cells can be accessed usirgdteito the CellsContainer in the
mesh. The trait for the cell iterator can be extracted froerttesh and used to define a local

type.

typedef MeshType:: CellsContainer::lterator Celllterator;

Then the iterators to the first and past-end cell in the mesitbeabtained respectively with the
Begi n() andEnd() methods of the CellsContainer. The CellsContainer of thelnereturned
by theGet Cel | s() method.

Celllterator celllterator
Celllterator end

mesh->Get Cel | s() - >Begi n();
mesh->Get Cel | s()->End();

Finally a standard loop is used to iterate over all the caltste the use of thial ue() method
used to get the actual pointer to the cell from the Celllmratiote also that the values returned
are pointers to the generic CellType. These pointers halge tlown-casted in order to be used
as actual LineCell types. Safe down-casting is performet e dynani c_cast operator
which will throw an exception if the conversion cannot besbaperformed.

while(celllterator !'= end)

{
MeshType:: Cel | Type * cellptr = celllterator. Value();

Li neType * line = dynam c_cast<LineType *>(cellptr);
std::cout << l|ine->CetNunber OfPoints() << std::endl;
++cell lterator;

}

4.3.3 Managing Data in Cells

The source code for this section can be found in the file
Exanpl es/ Dat aRepr esent at i on/ Mesh/ Mesh3. cxx.

68 Chapter 4. DataRepresentation

In the same way that custom data can be associated with pothismesh, it is also possible to
associate custom data with cells. The type of the data agsdowith the cells can be different
from the data type associated with points. By default, h@rehese two types are the same.
The following example illustrates how to access data aasetiwith cells. The approach is
analogous to the one used to access point data.

Consider the example of a mesh containing lines on whichegaduie associated with each line.
The mesh and cell header files should be included first.

#include "itkMesh. h"
#include "itkLineCell.h"

Then the PixelType is defined and the mesh type is instadtiaité it.

typedef float Pi xel Type;
typedef itk::Mesh< Pixel Type, 2 > MeshType;

The i tk::LineCell type can now be instantiated using the traits taken from thetv

typedef MeshType:: Cel | Type Cel | Type;
typedef itk::LineCell< CellType > Li neType;

Let’'s now create a Mesh and insert some points into it. Nodé ttie dimension of the points
matches the dimension of the Mesh. Here we insert a sequépo@ts that look like a plot of
the log) function.

MeshType: : Pointer mesh = MeshType:: New();

typedef MeshType: : Poi nt Type Poi nt Type;
Poi nt Type point;

const unsigned int number O Points = 10;
for(unsigned int id=0; id<nunberCf Points; id++)

{

point[0] = static_cast<PointType:: Val ueType>(id); // x
point[1] = log(static_cast<double>(id)); Iy
mesh->Set Point (id, point);

}

A set of line cells is created and associated with the exjgtimints by using point identifiers.
In this simple case, the point identifiers can be deduced @relimdentifiers since the line cells
are ordered in the same way.

Cel | Type:: Cel | Aut oPoi nter |ine;

http://www.itk.org/Doxygen/html/classitk_1_1LineCell.html

4.3. Mesh 69

const unsigned int number Of Cel | s = nunber O Poi nt s- 1;
for(unsigned int cellld=0; cellld<numberOCells; cellld++)

{
|'ine. TakeOaner shi p(new Li neType);

line->SetPointld(0, cellld); // first point
line->SetPointld(1, cellld+l); // second point
mesh->Set Cel | (cellld, line); /] insert the cell

}

Data associated with cells is inserted in thiek: : Mesh by using theSet Cel | Dat a() method.
It requires the user to provide an identifier and the valuestinkerted. The identifier should
match one of the inserted cells. In this simple example, ¢fuaie of the cell identifier is used
as cell data. Note the use sifati c_cast to Pi xel Type in the assignment.

for(unsigned int cellld=0; cellld<numberCfCells; cellld++)

{
mesh->Set Cel | Data(cellld, static_cast<Pixel Type>(cellld * cellld));

}

Cell data can be read from the Mesh with e Cel | Dat a() method. It requires the user to
provide the identifier of the cell for which the data is to b&ieved. The user should provide
also a valid pointer to a location where the data can be copied

for(unsigned int cellld=0; cellld<numberCfCells; cellld++)
{

Pi xel Type val ue;
mesh->Get Cel | Data(cellld, &value);
std::cout << "Cell " << cellld << " =" << value << std::endl;

}

Neither Set Cel | Data() or Cet Cel | Data() are efficient ways to access cell data. More
efficient access to cell data can be achieved by using thetdtsr built into the
Cel | Dat aCont ai ner .

typedef MeshType:: Cel | Dat aContai ner:: Constlterator CellDatalterator;

Note that theConst It erator is used here because the data is only going to be read. This
approach is exactly the same already illustrated for geetiztess to point data. The iterator to
the first cell data item can be obtained with Begi n() method of the CellDataContainer. The
past-end iterator is returned by thed() method. The cell data container itself can be obtained
from the mesh with the methdgkt Cel | Dat a() .

Cel | Datalterator cellDatalterator = nmesh->GetCellData()->Begin();
Cel | Datal terator end = mesh- >CGet Cel | Dat a() - >End() ;

http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html

70 Chapter 4. DataRepresentation

Finally a standard loop is used to iterate over all the cefh dmtries. Note the use of the
Val ue() method used to get the actual value of the data eRitxel Type elements are copied
into the local variableel | Val ue.

while(cellDatalterator != end)
{

Pi xel Type cel | Val ue = cel | Datalterator. Val ue();
std::cout << cellValue << std::endl;
++cel | Datal terator;

}

4.3.4 Customizing the Mesh

The source code for this section can be found in the file
Exanpl es/ Dat aRepr esent ati on/ Mesh/ MeshTrai ts. cxx.

This section illustrates the full power &feneric Programmingrhis is sometimes perceived as
too much of a good thirg

The toolkit has been designed to offer flexibility while kegpthe complexity of the code to
a moderate level. This is achieved in the Mesh by hiding mb#s garameters and defining
reasonable defaults for them.

The generic concept of a mesh integrates many differentesiesn It is possible in principle
to use independent types for every one of such elements. Huobanism used in generic
programming for specifying the many different types invaavin a concept is calletfaits.
They are basically the list of all types that interact with turrent class.

The itk:: Mesh is templated over three parameters. So far only two of theve baen dis-
cussed, namely thei xel Type and theDi nensi on. The third parameter is a class providing
the set of traits required by the mesh. When the third pammigbomitted a default class is
used. This default class is thiet k: : Def aul t Stati cMeshTraits. If you want to customize
the types used by the mesh, the way to proceed is to modifyefaaild traits and provide them
as the third parameter of the Mesh class instantiation.

There are two ways of achieving this. The first is to use thetigxj DefaultStaticMeshTraits

class. This class is itself templated over six parametetstdinizing those parameters could
provide enough flexibility to define a very specific kind of tne§'he second way is to write

a traits class from scratch, in which case the easiest wasotepd is to copy the DefaultStat-
icMeshTraits into another file and edit its content. Only fin& approach is illustrated here.

The second is discouraged unless you are familiar with GeRengramming, feel comfortable

with C++ templates and have access to an abundant supplybfr®ian) coffee.

The first step in customizing the mesh is to include the hefideof the Mesh and its static
traits.

#include "itkMesh. h"

http://www.boost.org/more/generic_programming.html
http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
http://www.itk.org/Doxygen/html/classitk_1_1DefaultStaticMeshTraits.html

4.3. Mesh 71

#include "itkDefaul t Stati cMeshTraits. h"

Then the MeshTraits class is instantiated by selectingythestof each one of its six template
arguments. They are in order

PixelType. The type associated with every point.

PointDimension. The dimension of the space in which the mesh is embedded.
MaxTopologicalDimension. The highest dimension of the mesh cells.

CoordRepType. The type used to represent space coordinates.

InterpolationWeightType. The type used to represent interpolation weights.
CellPixelType. The type associated with every cell.

Let's define types and values for each one of those elemeatsexample the following code
will use points in 3D space as nodes of the Mesh. The maximameision of the cells will be
two which means that this is a 2D manifold better know asiidace The data type associated
with points is defined to be a four-dimensional vector. Tlyjset could represent values of
membership for a four-classes segmentation method. The galected for the cells are<43
matrices which could have for example the derivative of tleenibership values with respect to

coordinates in space. Finallydaubl e type is selected for representing space coordinates on
the mesh points and also for the weight used for interpajataiues.

const unsigned int PointDinension = 3;
const unsi gned int MaxTopol ogi cal Di nension = 2;

typedef itk::Vector<doubl e, 4> Pi xel Type;
typedef itk::Matrix<double,4, 3> Cel | Dat aType;

typedef doubl e Coordi nat eType;
typedef doubl e Interpol ationWi ght Type;

typedef itk::DefaultStaticMeshTraits<
Pi xel Type, Poi nt Di mensi on, MaxTopol ogi cal Di nensi on,
Coor di nat eType, | nterpol ati onVWéi ght Type, Cel | DataType > MeshTraits;

typedef itk::Mesh< Pixel Type, PointDinension, MeshTraits > MeshType;
Theitk::LineCell type can now be instantiated using the traits taken from teetv

typedef MeshType:: Cel | Type Cel | Type;
typedef itk::LineCell< CellType > Li neType;

http://www.itk.org/Doxygen/html/classitk_1_1LineCell.html

72 Chapter 4. DataRepresentation

Let's now create an Mesh and insert some points on it. Notetfieadimension of the points
matches the dimension of the Mesh. Here we insert a sequépo@ts that look like a plot of
thelog() function.

MeshType:: Pointer nesh = MeshType:: New();

typedef MeshType: : Poi nt Type Poi nt Type;
Poi nt Type point;

const unsigned int number O Points = 10;
for(unsigned int id=0; id<nunberCfPoints; id++)

{

point[0] = 1.565; Il Initialize points here
point[1] = 3.647, [l with arbitrary val ues
point[2] = 4.129;

mesh->Set Point (id, point);

}

A set of line cells is created and associated with the exjgimints by using point identifiers. In
this simple case, the point identifiers can be deduced frdindeatifiers since the line cells are
ordered in the same way. Note that in the code above, thes/aksigned to point components
are arbitrary. In a more realistic example, those valuedavo® computed from another source.

Cel | Type: : Cel | Aut oPoi nter line;
const unsigned int number Of Cel | s = nunber O Poi nt s- 1;
for(unsigned int cellld=0; cellld<numberCfCells; cellld++)
{
|'i ne. TakeOaner shi p(new Li neType);
line->SetPointld(0, cellld); // first point
line->SetPointld(1, cellld+l); // second point
mesh->Set Cel | (cellld, line); /] insert the cell
}

Data associated with cells is inserted in the Mesh by usieds¢hCel | Dat a() method. It
requires the user to provide an identifier and the value tanbertied. The identifier should
match one of the inserted cells. In this simple example, gfuaie of the cell identifier is used
as cell data. Note the usesifati c_cast to Pi xel Type in the assignment.

for(unsigned int cellld=0; cellld<numberCfCells; cellld++)
{
Cel | Dat aType val ue;
mesh->Set Cel | Data(cellld, value);

}

4.3. Mesh 73

Cell data can be read from the Mesh with e Cel | Dat a() method. It requires the user to
provide the identifier of the cell for which the data is to b&ieved. The user should provide
also a valid pointer to a location where the data can be copied

for(unsigned int cellld=0; cellld<numberOCells; cellld++)

{
Cel | Dat aType val ue;

mesh->Get Cel | Data(cellld, &value);
std::cout << "Cell " << cellld << " =" << value << std::endl;

}

NeitherSet Cel | Data() or Cet Cel | Data() are efficient ways to access cell data. Efficient
access to cell data can be achieved by using the Iteratdtsrbaithe CellDataContainer.

typedef MeshType:: Cel | Dat aContai ner:: Constlterator CellDatalterator;

Note that theConst It erator is used here because the data is only going to be read. This
approach is exactly the same already illustrated for geetiztess to point data. The iterator to
the first cell data item can be obtained with Begi n() method of the CellDataContainer. The
past-end iterator is returned by thed() method. The cell data container itself can be obtained
from the mesh with the methdgkt Cel | Dat a() .

Cel | Datalterator cellDatalterator
Cel | Datalterator end

mesh- >Get Cel | Dat a() - >Begi n() ;
mesh->Get Cel | Dat a() - >End() ;

Finally a standard loop is used to iterate over all the cefh dmtries. Note the use of the
Val ue() method used to get the actual value of the data eRitiel Type elements are returned
by copy.

while(cellDatalterator != end)

{

Cel | Dat aType cel | Value = cel |l Datalterator. Val ue();
std::cout << cellValue << std::endl;

++cel | Datal terator;

}

4.3.5 Topology and the K-Complex
The source code for this section can be found in the file
Exanpl es/ Dat aRepr esent at i on/ Mesh/ MeshKConpl ex. cxx.

Thei tk:: Mesh class supports the representation of formal topologigsaiticular the concept
of K-Complexcan be correctly represented in the Mesh. An informal dédimiof K-Complex

http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html

74 Chapter 4. DataRepresentation

may be as follows: a K-Complex is a topological structure frich for every cell of dimension
N, its boundary faces which are cells of dimenshbr 1 also belong to the structure.

This section illustrates how to instantiate a K-Complexdure using the mesh. The example
structure is composed of one tetrahedron, its four triafages, its six line edges and its four
vertices.

The header files of all the cell types involved should be ldaaeng with the header file of the
mesh class.

#include "itkMesh. h"

#include "itkVertexCell.h"
#include "itkLineCell.h"
#include "itkTriangleCell.h"
#include "itkTetrahedronCell.h"

Then the PixelType is defined and the mesh type is instadtité it. Note that the dimension
of the space is three in this case.

typedef float Pi xel Type;
typedef itk::Mesh< Pixel Type, 3 > MeshType;

The cell type can now be instantiated using the traits takam the Mesh.

typedef MeshType:: Cel | Type Cel | Type;
typedef itk::VertexCell< CellType > Vert exType;
typedef itk::LineCell< CellType > Li neType;

typedef itk::TriangleCell< CellType > Triangl eType;
typedef itk::TetrahedronCell< Cell Type > TetrahedronType;

The mesh is created and the points associated with the egdi@ inserted. Note that there is
an important distinction between the points in the mesh bedit k: : Vert exCel | concept.

A VertexCell is a cell of dimension zero. Its main differeraecompared to a point is that the
cell can be aware of neighborhood relationships with otleisc Points are not aware of the
existence of cells. In fact, from the pure topological pahtiiew, the coordinates of points

in the mesh are completely irrelevant. They may as well berabsom the mesh structure

altogether. VertexCells on the other hand are necessagptesent the full set of neighborhood
relationships on the K-Complex.

The geometrical coordinates of the nodes of a regular tetiaim can be obtained by taking
every other node from a regular cube.

MeshType:: Pointer mesh = MeshType:: New();

MeshType: : Poi nt Type point0;

http://www.itk.org/Doxygen/html/classitk_1_1VertexCell.html

4.3. Mesh 75

MeshType: : Poi nt Type point1;
MeshType: : Poi nt Type point 2;
MeshType: : Poi nt Type point 3;

point0[0] = -1; pointO[1] = -1; point0[2] = -1;
pointl1[0] = 1; pointl[1] = 1; pointl[2] = -1;
point2[0] = 1; point2[1l] =-1; point2[2] = 1;
point3[0] =-1; point3[1] = 1; point3[2] = 1;
mesh->Set Point (0, point0);
mesh->SetPoint(1, pointl);
mesh->Set Point(2, point2);
mesh->Set Point (3, point3);

We proceed now to create the cells, associate them with tinéspnd insert them on the mesh.
Starting with the tetrahedron we write the following code.

Cel | Type: : Cel | Aut oPoi nter cell pointer;

cel | poi nt er. TakeOwaner shi p(

cel | poi nter->SetPointld(0
cel I pointer->SetPointld(1
cel | poi nter->SetPointld(2,
cel | poi nter->SetPointld(3
mesh->Set Cel | (0, cellpoin

-
(]
=

Four triangular faces are created and associated with teb m@av. The first triangle connects
points 0,1,2.

cel | poi nter. TakeOwner shi p(ne
cel I poi nter->SetPointld(0, 0);
cel I pointer->SetPointld(1, 1);
cel | pointer->SetPointld(2, 2)
mesh->Set Cel | (1, cellpoin)

- -

er

The second triangle connects points 0, 2, 3

cel | poi nter. TakeOwner shi p(ne
cel I pointer->SetPointld(0, 0
cel | pointer->SetPointld(1, 2
cel I pointer->SetPointld(2, 3
mesh->Set Cel | (2, cellpoin

- -
@D
=

The third triangle connects points 0, 3, 1

76 Chapter 4. DataRepresentation

cel | poi nt er. TakeOwner shi p
cel | poi nter->SetPointld(0,

(new Triangl eType);
0, 0
cel I pointer->SetPointld(1, 3
2, 1
n

cel | poi nt er->Set Poi nt | d(;
mesh->Set Cel | (3, cellpointer

1

1
1

)
)
)
)

The fourth triangle connects points 3, 2,1

cel | poi nter. TakeOwner shi p(ne
cel I pointer->SetPointld(0, 3
cel I pointer->SetPointlid(1, 2
cel I pointer->SetPointld(2, 1
mesh->Set Cel | (4, cellpoin

=
(]
=

Note how theCel | Aut oPoi nt er is reused every time. Reminder: thie k: : Aut oPoi nt er
loses ownership of the cell when it is passed as an argumehe&et Cel | () method. The

AutoPointer is attached to a new cell by using TlageOaner shi p() method.

The construction of the K-Complex continues now with theation of the six lines on the

tetrahedron edges.

cel | poi nter. TakeOaner shi p(new Li neType);
cel | pointer->SetPointld(0, 0

cel Il pointer->SetPointld(1, 1
mesh->Set Cel | (5, cellpointer

):
):
)
cel | poi nter. TakeOaner shi p(new Li neType);
cel I pointer->SetPointid(0, 1

cel I pointer->SetPointld(1, 2
mesh->Set Cel | (6, cellpointer

)
):
)
cel | poi nter. TakeOaner shi p(new Li neType);
cel | poi nter->SetPointld(0, 2
0

cel | poi nter->SetPointld(1,

);
);
mesh->Set Cel | (7, cellpointer);

1

cel | poi nter. TakeOaner shi p(new Li neType);
cel I pointer->SetPointld(0, 1

cel I pointer->SetPointld(1, 3
mesh->Set Cel | (8, cellpointer

);
);
);
cel | poi nter. TakeOaner shi p(new Li neType);
cel | poi nter->SetPointld(0, 3

cel I pointer->SetPointld(1, 2
mesh->Set Cel | (9, cellpointer

)
)
)

cel | poi nter. TakeOaner shi p(new Li neType);

http://www.itk.org/Doxygen/html/classitk_1_1AutoPointer.html

4.3. Mesh 77

cel | pointer->SetPointld(0, 3);
cel I pointer->SetPointld(1, 0);
mesh->Set Cel | (10, cellpointer);

Finally the zero dimensional cells represented by thé: : Vert exCel | are created and in-
serted in the mesh.

cel | poi nter. TakeOwner shi p(new VertexType);
cel I poi nter->SetPointld(0, 0);
mesh->Set Cel | (11, cellpointer);

cel | poi nter. TakeOwner shi p(new VertexType);
cel I pointer->SetPointld(0, 1);
mesh->Set Cel | (12, cellpointer);

cel | poi nter. TakeOwner shi p(new VertexType);
cel I poi nter->SetPointld(0, 2);
mesh->Set Cel | (13, cellpointer);

cel | poi nter. TakeOwner shi p(new VertexType);
cel | poi nter->SetPointld(0, 3);
mesh->Set Cel | (14, cell pointer);

At this point the Mesh contains four points and fifteen celisimerated from 0 to 14. The
points can be visited using PointContainer iterators

typedef MeshType: : PointsContainer:: Constlterator Pointlterator;
Pointlterator pointlterator = nmesh->GCetPoints()->Begin();
Pointlterator pointEnd = mesh- >CGet Poi nt s() - >End() ;

while(pointlterator != pointEnd)
{

std::cout << pointlterator.Value() << std::endl;
++pointlterator;

}
The cells can be visited using CellsContainer iterators

typedef MeshType:: Cel I sContainer::Constlterator Celllterator;

Celllterator celllterator
Celllterator cellEnd

= mesh->CGet Cel | s()->Begin();
= mesh->Get Cel | s()->End();
while(celllterator !'= cellEnd)

{
Cel | Type * cell = celllterator. Value();

http://www.itk.org/Doxygen/html/classitk_1_1VertexCell.html

78 Chapter 4. DataRepresentation

std::cout << cell->CGet Nunber Of Points() << std::endl;
++cel | lterator;

}

Note that cells are stored as pointer to a generic cell tyaistthe base class of all the specific
cell classes. This means that at this level we can only hasesado the virtual methods defined
in theCel | Type.

The point identifiers to which the cells have been associatedbe visited using iterators
defined in theCel | Type trait. The following code illustrates the use of the Poittddators.
ThePoi nt | dsBegi n() method returns the iterator to the first point-identifierhe tell. The
Poi nt 1 dsEnd() method returns the iterator to the past-end point-identifiehe cell.

typedef Cel | Type:: Pointldlterator Pointldlterator;

Pointldliterator pointlditer
Pointldlterator pointldend

cel | ->Poi nt | dsBegi n();
cel | ->Poi nt I dsEnd();

while(pointlditer !'= pointldend)
{

std::cout << *pointlditer << std::endl;
++pointlditer;

}

Note that the point-identifier is obtained from the iterateing the more traditionai t er at or
notation instead th¥al ue() notation used by cell-iterators.

Up to here, the topology of the K-Complex is not completelfirtd since we have only intro-
duced the cells. ITK allows the user to define explicitly tieggmborhood relationships between
cells. It is clear that a clever exploration of the point itiféers could have allowed a user to
figure out the neighborhood relationships. For example tti@agle cells sharing the same two
point identifiers will probably be neighbor cells. Some o tirawbacks on this implicit dis-
covery of neighborhood relationships is that it takes cotimgitime and that some applications
may not accept the same assumptions. A specific case is gwigarlation. This application
typically simulates bistoury cuts in a mesh representingrgan. A small cut in the surface
may be made by specifying that two triangles are not consiti&r be neighbors any more.

Neighborhood relationships are represented in the meskhédwation ofBoundaryFeature
Every cell has an internal list of cell-identifiers pointitggother cells that are considered to be
its neighbors. Boundary features are classified by dimensior example, a line will have two
boundary features of dimension zero corresponding to ibsvievtices. A tetrahedron will have
boundary features of dimension zero, one and two, correpgio its four vertices, six edges
and four triangular faces. It is up to the user to specify thenections between the cells.

Let’s take in our current example the tetrahedron cell thet mssociated with the cell-identifier
0 and assign to it the four vertices as boundaries of dimermon. This is done by invoking
the Set Boundar yAssi gnnment () method on the Mesh class.

4.3. Mesh 79

MeshType:: Cel | Identifier cellld = 0; // the tetrahedron
int dinension = 0; Il vertices

MeshType: : Cel | Featurel dentifier featureld = 0;

mesh- >Set Boundar yAssi gnment (di mension, cellld, featureld++, 11);
mesh- >Set Boundar yAssi gnment (di mension, cellld, featureld++, 12);
mesh- >Set Boundar yAssi gnment (di mension, cellld, featureld++, 13);
mesh- >Set Boundar yAssi gnment (di mension, cellld, featureld++, 14);

Thefeaturel d is simply a number associated with the sequence of the boyiedls of the
same dimension in a specific cell. For example, the zero{usinaeal features of a tetrahe-
dron are its four vertices. Then the zero-dimensional featds for this cell will range from
zero to three. The one-dimensional features of the tetraheate its six edges, hence its one-
dimensional feature-lds will range from zero to five. Themensional features of the tetra-
hedron are its four triangular faces. The two-dimensioeatdre ids will then range from zero
to three. The following table summarizes the use on indicebdundary assignments.

| Dimension|| CellType | Featureldrange Celllds |

0 VertexCell [0:3] {11,12,13,14
1 LineCell [0:5] {5,6,7,8,9,10
2 TriangleCell [0:3] {1,2,3,4

In the code example above, the values of featureld rangeZssmto three. The cell identifiers
of the triangle cells in this example are the numbglr®,3,4, while the cell identifiers of the
vertex cells are the numbef$1,12,13,14.

Let's now assign one-dimensional boundary features ofgtneltedron. Those are the line cells
with identifiers{5,6,7,8,9,10. Note that the feature identifier is reinitialized to zenocs the
count is independent for each dimension.

cellld =0; // still the tetrahedron
dimension = 1; // one-dinensional features = edges
featureld = 0; // reinitialize the count

mesh- >Set Boundar yAssi gnment
mesh- >Set Boundar yAssi gnment
mesh- >Set Boundar yAssi gnment
mesh- >Set Boundar yAssi gnment
mesh- >Set Boundar yAssi gnment
mesh- >Set Boundar yAssi gnment

dimension, cellld, featureld++,
di mension, cellld, featureld++,
di mension, cellld, featureld++,
dimension, cellld, featureld++,
di mension, cellld, featureld++,
di mension, cellld, featureld++ 1

O © oo ~N o Ul
— — — — — —

(
(
(
(
(
(

Finally we assign the two-dimensional boundary featurah@tetrahedron. These are the four
triangular cells with identifier§1,2,3,4. The featureld is reset to zero since feature-Ids are
independent on each dimension.

80 Chapter 4. DataRepresentation

cellld =0; // still the tetrahedron
dimension = 2; // two-dinensional features = triangles
featureld = 0; // reinitialize the count

di mension, cellld, featureld++,
di mension, cellld, featureld++,
dimension, cellld, featureld++,
di mension, cellld, featureld++,

mesh- >Set Boundar yAssi gnment
mesh- >Set Boundar yAssi gnment
mesh- >Set Boundar yAssi gnment
mesh- >Set Boundar yAssi gnment

—_~ e~ —~
B wp
— — — —

At this point we can query the tetrahedron cell for inforroatabout its boundary features. For
example, the number of boundary features of each dimensiobe obtained with the method
Cet Nurmber Of Boundar yFeat ures() .

cellld =0; // still the tetrahedron

MeshType: : Cel | Feat ureCount n0O; // nunber of zero-dinensional features
MeshType: : Cel | Feat ureCount nl; // nunber of one-dinensional features
MeshType: : Cel | FeatureCount n2; // nunber of two-dinensional features

n0 = mesh->CGet Nunber Of Cel | Boundar yFeatures(0, cellld);
nl = mesh->CGet Nunber O Cel | BoundaryFeatures(1, cellld);
n2 = nmesh->CGet Nunber O Cel | BoundaryFeatures(2, cellld);

The boundary assignments can be recovered with the m&tt&dundar yAssi gnent (). For
example, the zero-dimensional features of the tetraheclarbe obtained with the following
code.

dinension = 0;
for(unsigned int b0=0; b0 < nO; bO++)
{
MeshType:: Cel | Identifier id;
bool found = nesh->Get Boundar yAssi gnnent (di mensi on, cellld, b0, &d);
if(found) std::cout << id << std::endl;

}

The following code illustrates how to set the edge boundddeone of the triangular faces.

cellld = 2 /] one of the triangles
dimension = 1, /] boundary edges
featureld = O0; [l start the count of features

mesh- >Set Boundar yAssi gnment (di mension, cellld, featureld++, 7
mesh- >Set Boundar yAssi gnment (di mension, cellld, featureld++, 9);
mesh- >Set Boundar yAssi gnment (di mension, cellld, featureld++ 10

4.3. Mesh 81

4.3.6 Representing a PolyLine

The source code for this section can be found in the file

Exanpl es/ Dat aRepr esent at i on/ Mesh/ MeshPol yLi ne. cxx.

This section illustrates how to represent a clasgfodyLinestructure using the t k: : Mesh

A PolyLine only involves zero and one dimensional cells, eithiare represented by the
itk::VertexCell andtheitk::LineCell.

#include "itkMesh. h"
#include "itkVertexCell.h"
#include "itkLineCell.h"

Then the PixelType is defined and the mesh type is instadtité it. Note that the dimension
of the space is two in this case.

typedef float Pi xel Type;
typedef itk::Msh< Pixel Type, 2 > MeshType;

The cell type can now be instantiated using the traits takam the Mesh.

typedef MeshType:: Cel | Type Cel | Type;
typedef itk::VertexCell< CellType > Vert exType;
typedef itk::LineCell< CellType > Li neType;

The mesh is created and the points associated with the egdi@ inserted. Note that there is
an important distinction between the points in the mesh bedit k: : Vert exCel | concept.

A VertexCell is a cell of dimension zero. Its main differeraecompared to a point is that the
cell can be aware of neighborhood relationships with otleisc Points are not aware of the
existence of cells. In fact, from the pure topological pahtiiew, the coordinates of points

in the mesh are completely irrelevant. They may as well berbsom the mesh structure

altogether. VertexCells on the other hand are necessagptesent the full set of neighborhood
relationships on the Polyline.

In this example we create a polyline connecting the fourieestof a square by using three of
the square sides.

MeshType:: Pointer mesh = MeshType:: New();

MeshType: : Poi nt Type point0;
MeshType: : Poi nt Type point1;
MeshType: : Poi nt Type point 2;
MeshType: : Poi nt Type point 3;

http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
http://www.itk.org/Doxygen/html/classitk_1_1VertexCell.html
http://www.itk.org/Doxygen/html/classitk_1_1LineCell.html
http://www.itk.org/Doxygen/html/classitk_1_1VertexCell.html

82 Chapter 4. DataRepresentation

pointO[0] = -1; pointO[1] = -1;
pointl1[0] = 1; pointl[1] = -1;
point2[0] = 1; point2[1l] = 1;
point3[0] =-1; point3[1] = 1;
mesh->Set Point (0, point0)
mesh->SetPoint (1, pointl);
mesh->Set Point(2, point2)
mesh->Set Point (3, point3)

We proceed now to create the cells, associate them with tinésond insert them on the mesh.

Cel | Type:: Cel | Aut oPoi nter cel | pointer;

cel | poi nter. TakeOaner shi p(new Li neType);
cel | pointer->SetPointld(0, 0

cel Il pointer->SetPointld(1, 1
mesh->Set Cel | (0, cellpointer

):
):
)
cel | poi nter. TakeOaner shi p(new Li neType);
cel I pointer->SetPointid(0, 1

cel I pointer->SetPointld(1, 2
mesh->Set Cel | (1, cellpointer

)
)
).

1

cel | poi nter. TakeOaner shi p(new Li neType);
cel | poi nter->SetPointld(0, 2

cel I pointer->SetPointid(1, 0
mesh->Set Cel | (2, cellpointer

);
)
).

1

Finally the zero dimensional cells represented by thé: : Vert exCel | are created and in-
serted in the mesh.

cel | poi nter. TakeOwner shi p(new VertexType);
cel I poi nter->SetPointld(0, 0);
mesh->Set Cel | (3, cellpointer);

cel | poi nter. TakeOwner shi p(new VertexType);
cel I pointer->SetPointld(0, 1);
mesh->Set Cel | (4, cellpointer);

cel | poi nter. TakeOwner shi p(new VertexType);
cel I pointer->SetPointld(0, 2);
mesh->Set Cel | (5, cellpointer);

cel | poi nter. TakeOwner shi p(new VertexType);
cel I poi nter->SetPointld(0, 3);
mesh->Set Cel | (6, cellpointer);

http://www.itk.org/Doxygen/html/classitk_1_1VertexCell.html

4.3. Mesh 83

At this point the Mesh contains four points and three cellse Points can be visited using
PointContainer iterators

typedef MeshType: : PointsContainer:: Constlterator Pointlterator;
Pointlterator pointlterator = nesh->Get Points()->Begin();
Pointlterator pointEnd mesh- >Get Poi nt s() - >End() ;

while(pointlterator !'= pointEnd)
{

std::cout << pointlterator.Value() << std::endl;
++poi ntlterator;

}
The cells can be visited using CellsContainer iterators

typedef MeshType:: Cel I sContainer::Constlterator Celllterator;

Celllterator celllterator
Celllterator cellEnd

mesh->Get Cel | s() - >Begi n();
mesh->Get Cel | s()->End();

while(celllterator != cellEnd)

{

Cel | Type * cell = celllterator. Value();

std::cout << cell->CGet Nunber Of Points() << std::endl;
++cel | lterator;

}

Note that cells are stored as pointer to a generic cell typiittthe base class of all the specific
cell classes. This means that at this level we can only hasesado the virtual methods defined
in theCel | Type.

The point identifiers to which the cells have been associatetdbe visited using iterators
defined in theCel | Type trait. The following code illustrates the use of the Poittddator.
ThePoi nt | dsBegi n() method returns the iterator to the first point-identifierhe tell. The
Poi nt I dsEnd() method returns the iterator to the past-end point-identifithe cell.

typedef Cel | Type:: Pointldlterator Pointldlterator;

Pointldlterator pointlditer
Pointldlterator pointldend

cel | ->Poi nt | dsBegi n();
cel | ->Poi nt I dsEnd();

while(pointlditer != pointldend)
{
std::cout << *pointlditer << std::endl;
++pointlditer;

}

84 Chapter 4. DataRepresentation

Note that the point-identifier is obtained from the iteratsing the more traditiondi t er at or
notation instead th#al ue() notation used by cell-iterators.

4.3.7 Simplifying Mesh Creation

The source code for this section can be found in the file
Exanpl es/ Dat aRepr esent at i on/ Mesh/ Aut omat i cMesh. cxx.

The itk:: Mesh class is extremely general and flexible, but there is sometea@®nvenience.
If convenience is exactly what you need, then it is possiblgdt it, in exchange for some
of that flexibility, by means of thei t k: : Aut omati cTopol ogyMeshSour ce class. This class
automatically generates an explicit K-Complex, based ercétis you add. It explicitly includes
all boundary information, so that the resulting mesh cardsé\etraversed. It merges all shared
edges, vertices, and faces, so no geometric feature appeaeghan once.

This section shows how you can use the AutomaticTopologyi8earce to instantiate a mesh
representing a K-Complex. We will first generate the samaltedron from Sectio#.3.5 after
which we will add a hollow one to illustrate some additioredtures of the mesh source.

The header files of all the cell types involved should be ldaaeng with the header file of the
mesh class.

#include "itkMesh. h"

#include "itkVertexCell.h"

#include "itkLineCell.h"

#include "itkTriangleCell.h"

#include "itkTetrahedronCel | .h"

#include "itkAutomaticTopol ogyMeshSource. h"

We then define the necessary types and instantiate the meastesoTwo new types are
IdentifierType andldentifierArrayType. Every cell in a mesh has an identifier, whose
type is determined by the mesh traits. AutomaticTopologgivBource requires that the iden-
tifier type of all vertices and cells hasi gned | ong, which is already the default. However,
if you created a new mesh traits class to use string tags asfides, the resulting mesh would
not be compatible withi t k: : Aut omat i cTopol ogyMeshSource. AnldentifierArrayType

is simply anitk:: Array of | denti fier Type objects.

typedef float Pi xel Type;
typedef itk::Mesh< Pixel Type, 3 > MeshType;
typedef MeshType: : Poi nt Type Poi nt Type;
typedef MeshType:: Cel | Type Cel | Type;

typedef itk::AutomaticTopol ogyMeshSource< MeshType > MeshSour ceType;
typedef MeshSourceType::IdentifierType I dentifierType;
typedef MeshSourceType::IdentifierArrayType I dentifierArrayType;

http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
http://www.itk.org/Doxygen/html/classitk_1_1AutomaticTopologyMeshSource.html
http://www.itk.org/Doxygen/html/classitk_1_1AutomaticTopologyMeshSource.html
http://www.itk.org/Doxygen/html/classitk_1_1Array.html

4.3. Mesh 85

MeshSour ceType: : Poi nter neshSource;

meshSour ce = MeshSour ceType: : New() ;

Now let us generate the tetrahedron. The following line adecgenerates all the vertices,
edges, and faces, along with the tetrahedral solid, and théds to the mesh along with the
connectivity information.

meshSour ce- >AddTet r ahedr on(
meshSour ce- >AddPoi nt (-
meshSour ce- >AddPoi nt (
meshSour ce- >AddPoi nt (
meshSour ce- >AddPoi nt (-

)

1

1
1
1
1

\
el
\
s

~— — — —

The functionAut omat i cTopol ogyMeshSour ce: : AddTet rahedron() takes point identifiers
as parameters; the identifiers must correspond to points haee already been added.
Aut omat i cTopol ogyMeshSour ce: : AddPoi nt () returns the appropriate identifier type for the
point being added. It first checks to see if the point is alydadhe mesh. If so, it returns the
ID of the point in the mesh, and if not, it generates a new umidl adds the point with that
ID, and returns the ID.

Actually, AddTet r ahedron() behaves in the same way. If the tetrahedron has already been
added, it leaves the mesh unchanged and returns the ID thetthhedron already has. If not,

it adds the tetrahedron (and all its faces, edges, and &s}tiand generates a new ID, which it
returns.

It is also possible to add all the points first, and then addraber of cells using the point IDs
directly. This approach corresponds with the way the dastoied in many file formats for 3D
polygonal models.

First we add the points (in this case the vertices of a largieatiedron). This example also
illustrates thatddPoi nt () can take a singl®oi nt Type as a parameter if desired, rather than
a sequence of floats. Another possibility (not illustratedp pass in a C-style array.

Poi nt Type p;

IdentifierArrayType idArray(4);

p[0] =-2

pl1]=-2

pl 2] =-2

idArray[0] = nmeshSource->AddPoint(p);
plo] =2

pl 1] = 2

pl2]=-2

86 Chapter 4. DataRepresentation

idArray[1] = nmeshSource->AddPoint(p);
plo] =2
pl1]=-2
pl 2] =2
idArray[2] = nmeshSource->AddPoint(p);
pl 0] =-2
pl1] =2
pl2] =2
idArray[3] = neshSource->AddPoint(p);

Now we add the cells. This time we are just going to create thentary of a tetrahedron, so
we must add each face separately.

meshSour ce- >AddTri angl e
meshSour ce- >AddTri angl e
meshSour ce- >AddTri angl e
meshSour ce- >AddTri angl e

idArray[0], idArray[1l], idArray[2]
idArray[1], idArray[2], idArray[3]
idArray[2], idArray[3], idArray[Q]
idArray[3], idArray[0], idArray[1]

1

—~ e~~~

)

);
)
).

1

Actually, we could have called, e.gMdTriangle(4, 5, 6), since IDs are assigned se-
guentially starting at zero, andiArray[0] contains the ID for the fifth point added. But you
should only do this if you are confident that you know what the are. If you add the same
point twice and don't realize it, your count will differ frothat of the mesh source.

You may be wondering what happens if you call, galgiEdge(0, 1) followed byAddEdge(1,
0) . The answer is that they do count as the same edge, and somendylge is added. The order
of the vertices determines an orientation, and the firshtait@n specified is the one that is kept.

Once you have built the mesh you want, you can access it bpg&#t Qut put () . Here we
send it tocout , which prints some summary data for the mesh.

In contrast to the case with typical filtef&t Qut put () does nottrigger an update process. The
mesh is always maintained in a valid state as cells are addédd;an be accessed at any time. It
would, however, be a mistake to modify the mesh by some otleansiuntil AutomaticTopol-
ogyMeshSource is done with it, since the mesh source woeltl ltlave an inaccurate record of
which points and cells are currently in the mesh.

4.3.8 lterating Through Cells

The source code for this section can be found in the file
Exanpl es/ Dat aRepr esent ati on/ Mesh/ MeshCel | sl terati on. cxx.

Cells are stored in the t k: : Mesh as pointers to a generic ceiltk: : Cel | Interface. This
implies that only the virtual methods defined on this baskatass can be invoked. In order
to use methods that are specific to each cell type it is negessdown-cast the pointer to the

http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
http://www.itk.org/Doxygen/html/classitk_1_1CellInterface.html

4.3. Mesh 87

actual type of the cell. This can be done safely by taking athge of thezet Type() method
that allows to identify the actual type of a cell.

Let’s start by assuming a mesh defined with one tetrahedrdalkhits boundary faces. That is,
four triangles, six edges and four vertices.

The cells can be visited using CellsContainer iteratorse ifdratorval ue() corresponds to a
raw pointer to theel | Type base class.

typedef MeshType:: Cel | sContainer::Constlterator Celllterator;

Celllterator celllterator = mesh->GetCel | s()->Begin();
Cell'lterator cellEnd = mesh->Get Cel | s() - >End();

while(celllterator !'= cellEnd)

{
Cel | Type * cell = celllterator. Value();

std::cout << cell->GetNunber O Points() << std::endl;
++cell lterator;

}

In order to perform down-casting in a safe manner, the c@létyan be queried first using
the Get Type() method. Codes for the cell types have been defined wittnamtype on the
itkCellInterface. h header file. These codes are :

e VERTEX_CELL

LINE_CELL

TRIANGLE_CELL

QUADRILATERAL _CELL
POLYGON_CELL

TETRAHEDRON_CELL

HEXAHEDRON_CELL

QUADRATIC_EDGE_CELL
e QUADRATIC_TRIANGLE_CELL

The methodzet Type() returns one of these codes. It is then possible to test thedf/the
cell before down-casting its pointer to the actual type. &le, the following code visits
all the cells in the mesh and tests which ones are actuallypefitt NE_CELL. Only those cells
are down-casted tio neType cells and a method specific for theneType is invoked.

88 Chapter 4. DataRepresentation

celllterator
cel | End

mesh->Get Cel | s() - >Begin();
mesh->Get Cel | s() - >End();

while(celllterator != cellEnd)

{

Cel | Type * cell = celllterator. Value();

if(cell->CetType() == Cell Type::LINE_CELL)
{
LineType * line = static_cast<LineType *>(cell);
std::cout << "dinmension = " << |ine->CetDinmension();
std::cout << " # points =" << |ine->Get Nunber Of Poi nts();
std::cout << std::endl;

}

++cel | [terator;

}

In order to perform different actions on different cell tgpa@swi t ch statement can be used
with cases for every cell type. The following code illuséisn iteration over the cells and the
invocation of different methods on each cell type.

celllterator = mesh->Get Cells()->Begin();

cel |l End = mesh->CGet Cel | s() - >End();
while(celllterator != cellEnd)
{
Cel I Type * cell = celllterator. Value();
switch(cell->Get Type())
{
case Cel | Type:: VERTEX_ CELL:
{
std::cout << "VertexCell : " << std::endl;
VertexType * line = dynam c_cast <VertexType *>(cell);
std::cout << "dinmension = " << |ine->CetDimension() << std::endl;
std::cout << "# points =" << |ine->Get Nunber Of Points() << std::endl;
br eak;

}
case Cel | Type:: LI NE_CELL:

{
std::cout << "LineCell : " << std::endl;
Li neType * line = dynam c_cast<LineType *>(cell);
std::cout << "dimension =" << |ine->CetDi nension() << std::endl;
std::cout << "# points =" << |ine->CetNunberfPoints() << std::endl;
br eak;
}
case Cel | Type:: TRI ANGLE_CELL:
{
std::cout << "TriangleCell : " << std::endl;

Triangl eType * |ine = dynam c_cast<Triangl eType *>(cell);

4.3. Mesh 89

std::cout << "dinension
std::cout << "# points
br eak;

}

defaul t:
{
std::cout << "Cell with more than three points" << std::endl;
std::cout << "dinension = " << cell->GetDinension() << std::endl;
std::cout << "# points " << cel | ->Get Nunber O Poi nts() << std::endl;
break;
}

}

++cell lterator;

}

" << |ine->GetDinension() << std::endl;
" << |ine->Get Nunber O Poi nts() << std::endl;

4.3.9 Visiting Cells
The source code for this section can be found in the file
Exanpl es/ Dat aRepr esent ati on/ Mesh/ MeshCel | Vi si t or. cxx.

In order to facilitate access to particular cell types, avemence mechanism has been built-in
on the itk:: Mesh. This mechanism is based on thesitor Patternpresented in48]. The
visitor pattern is designed to facilitate the process ofkimgl through an heterogeneous list of
objects sharing a common base class.

The first requirement for using theCellVisitor mechanism it to include the
Cel I InterfaceVisitor headerfile.

#include "itkCellInterfaceVisitor.h"

The typical mesh types are now declared

typedef float Pi xel Type;
typedef itk::Mesh< Pixel Type, 3 > MeshType;
typedef MeshType:: Cel | Type Cel | Type;
typedef itk::VertexCell< CellType > Vert exType;
typedef itk::LineCell< CellType > Li neType;

typedef itk::TriangleCell< CellType > Triangl eType;
typedef itk::TetrahedronCell< Cell Type > TetrahedronType;

Then, a custom CellVisitor class should be declared. Ingaiticular example, the visitor class
is intended to act only offri angl eType cells. The only requirement on the declaration of the
visitor class is that it must provide a method nardlesi t () . This method expects as arguments

http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html

90 Chapter 4. DataRepresentation

a cell identifier and a pointer to ttepecificcell type for which this visitor is intended. Nothing
prevents a visitor class from providinggsi t () methods for several different cell types. The
multiple methods will be differentiated by the natural C+€chanism of function overload.
The following code illustrates a minimal cell visitor class

class Custoniriangl eVisitor

{
public:
typedef itk::TriangleCell<Cell Type> Triangl eType;
public:
void Visit(unsigned long cellld, TriangleType * t)
{
std::cout << "Cell # " << cellld << " is a TriangleType ";
std::cout << t->CetNunberOf Points() << std::endl;
}
¥

This newly defined class will now be used to instantiate awsifor. In this particular example
we create a clagaust onilri angl eVi si t or which will be invoked each time a triangle cell is
found while the mesh iterates over the cells.

typedef itk::CelllnterfaceVisitorlnplenentation<
Pi xel Type,
MeshType:: Cel | Traits,
Triangl eType,
Cust omTri angl eVi si t or
> TriangleVisitorlnterfaceType;

Note that the actualel | I nterfaceVisitorlnpl enentation is templated over the Pixel-
Type, the CellTraits, the CellType to be visited and the tdistlass that defines with will be
done with the cell.

A visitor implementation class can now be created using tirenal invocation to itdNew()
method and assigning the result ta &k: : Smart Poi nt er .

Triangl eVisitorlnterfaceType::Pointer triangleVisitor =
Triangl eVisitorlnterfaceType:: New();

Many different visitors can be configured in this way. Theafedll visitors can be registered
with the MultiVisitor class provided for the mesh. An instanof the MultiVisitor class will
walk through the cells and delegate action to every regidteisitor when the appropriate cell
type is encountered.

typedef Cell Type::MiltiVisitor CellMiltiVisitorType;
Cel IMul'tiVisitorType::Pointer nultiVisitor = Cel | MultiVisitorType:: New();

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

4.3. Mesh 91

The visitor is registered with the Mesh using ekl Vi si t or () method.
mul tiVisitor->AddVisitor(triangleVisitor);

Finally, the iteration over the cells is triggered by callithe methodAccept() on the
itk:: Mesh.

mesh->Accept (nultiVisitor);

TheAccept () method will iterate over all the cells and for each one wiliia the MultiVisitor
to attempt an action on the cell. If no visitor is interestedtee current cell type the cell is just
ignored and skipped.

MultiVisitors make it possible to add behavior to the celighout having to create new methods
on the cell types or creating a complex visitor class thatdgabout every CellType.

4.3.10 More on Visiting Cells
The source code for this section can be found in the file
Exanpl es/ Dat aRepr esent at i on/ Mesh/ MeshCel | Vi si t or 2. cxX.

The following section illustrates a realistic example ok thse of Cell visitors on the
itk::Mesh. A set of different visitors is defined here, each visitoroassted with a partic-
ular type of cell. All the visitors are registered with a Muisitor class which is passed to the
mesh.

The first step is to include theel | I nt er f aceVi si t or header file.
#include "itkCellInterfaceVisitor.h"

The typical mesh types are now declared

typedef float Pi xel Type;
typedef itk::Mesh< Pixel Type, 3 > MeshType;
typedef MeshType:: Cel | Type Cel | Type;
typedef itk::VertexCell< CellType > Vert exType;
typedef itk::LineCell< CellType > Li neType;

typedef itk::TriangleCell< CellType > Triangl eType;
typedef itk::TetrahedronCell< CellType > TetrahedronType;

Then, custom CellVisitor classes should be declared. Therequirement on the declaration
of each visitor class is to provide a method nar¥fesi t () . This method expects as arguments
a cell identifier and a pointer to ttspecificcell type for which this visitor is intended.

http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html

92 Chapter 4. DataRepresentation

The following Vertex visitor simply prints out the identifief the point with which the cell
is associated. Note that the cell uses the metddoi nt | d() without any arguments. This
method is only defined on the VertexCell.

class CustonVertexVisitor
{
public:
void Visit(unsigned long cellld, VertexType * t)

{
std::cout << "cell " << cellld << " is a Vertex " << std::endl;
std::cout << " associated with point id =",
std::cout << t->CetPointld() << std::endl;

}

The following Line visitor computes the length of the lineotid that this visitor is slightly more
complicated since it needs to get access to the actual mestiénto get point coordinates from
the point identifiers returned by the line cell. This is dogéblding a pointer to the mesh and
querying the mesh each time point coordinates are requlileel mesh pointer is set up in this
case with theSet Mesh() method.

class CustonLineVisitor
{
public:
CustonlineVisitor(): mMsh(0) {}

voi d Set Mesh(MeshType * nesh) { m Mesh = nesh; }

void Visit(unsigned long cellld, LineType * t)
{
std::cout << "cell " << cellld << " is a Line " << std::endl;
LineType:: Pointlditerator pit = t->PointldsBegin();
MeshType: : Poi nt Type po;
MeshType: : Poi nt Type p1;
m Mesh->Cet Poi nt (*pit++, &p0);
m Mesh->CGet Poi nt (*pit++, &pl);
const doubl e Iength = p0. Eucl i deanDi stanceTo(pl);
std::cout << " length =" << length << std::endl;

}

private:
MeshType: : Poi nter m Mesh;
¥

The Triangle visitor below prints out the identifiers of it®ipts. Note the use of the
Poi nt I dl t erat or and thePoi nt | dsBegi n() andPoi nt | dsEnd() methods.

4.3. Mesh 93

class Custoniriangl eVisitor

{
public:
void Visit(unsigned long cellld, TriangleType * t)
{
std::cout << "cell " << cellld << " is a Triangle " << std::endl;
Li neType:: Pointldlterator pit = t->PointldsBegin();
Li neType:: Pointldlterator end = t->PointldsEnd();
while(pit '=end)
{
std::cout << " point id =" << *pit << std::endl;
+Hpit;
}
}
b

The TetrahedronVisitor below simply returns the numberaufef on this figure. Note that
Cet Nunber O Faces() is a method exclusive of 3D cells.

cl ass Cust onilet rahedronVi si t or

{
public:
void Visit(unsigned long cellld, TetrahedronType * t)
{
std::cout << "cell " << cellld << " is a Tetrahedron " << std::endl;
std::cout << " nunber of faces = ";
std::cout << t->CetNunberOf Faces() << std::endl;
}

b

With the cell visitors we proceed now to instantiate Celiddisimplementations. The visitor
classes defined above are used as template arguments off thisitme implementation.

typedef itk::CelllnterfaceVisitorlnplenentation<
Pi xel Type, MeshType::Cell Traits, VertexType, CustonVertexVisitor
> VertexVisitorlnterfaceType;

typedef itk::CelllnterfaceVisitorlnplenentation<
Pi xel Type, MeshType::CellTraits, LineType, CustonlineVisitor
> LineVisitorlnterfaceType;

typedef itk::CelllnterfaceVisitorlnplenmentation<
Pi xel Type, MeshType::CellTraits, TriangleType, CustonilriangleVisitor
> TriangleVisitorlnterfaceType;

typedef itk::CelllnterfaceVisitorlnplenentation<
Pi xel Type, MeshType:: Cel |l Traits, TetrahedronType, CustoniletrahedronVisitor

94 Chapter 4. DataRepresentation

> TetrahedronVisitorlnterfaceType;

Note that the actualel | I nterfaceVisitorlnpl enentation is templated over the Pixel-
Type, the CellTraits, the CellType to be visited and the tdistlass defining what to do with
the cell.

A visitor implementation class can now be created using tirenal invocation to itdNew()
method and assigning the result ta &k: : Smart Poi nt er .

VertexVisitorlnterfaceType::Pointer vertexVisitor =
VertexVisitorlnterfaceType:: New();

LineVisitorlInterfaceType::Pointer lineVisitor =
LineVisitorlnterfaceType:: New();

Triangl eVisitorlnterfaceType::Pointer triangleVisitor =
Triangl eVisitorlnterfaceType:: New();

TetrahedronVisitorlnterfaceType:: Pointer tetrahedronVisitor =
TetrahedronVisitorlnterfaceType:: New();

Remember that the LineVisitor requires the pointer to thehmabject since it needs to get
access to actual point coordinates. This is done by involtieget Mesh() method defined
above.

|'ineVisitor->Set Mesh(mesh);

Looking carefully you will notice that theSetMesh() method is declared in
CustonlineVisitor but we are invoking it onLineVisitorlnterfaceType. This is
possible thanks to the way in which the Visitorinterfacelempentation is defined. This
class derives from the visitor type provided by the user a&sftlurth template parameter.
Li neVisitorlnterfaceType is then a derived class €fist onli neVisitor.

The set of visitors should now be registered with the MuKitdr class that will walk through
the cells and delegate action to every registered visit@nthe appropriate cell type is encoun-
tered. The following lines create a MultiVisitor object.

typedef Cell Type::MiltiVisitor CellMiltiVisitorType;
Cel IMul'tiVisitorType::Pointer nultiVisitor = Cel | MultiVisitorType:: New();

Every visitor implementation is registered with the MeshnggheAddVi si t or () method.

1

vertexVisitor)
lineVisitor);
triangleVisitor);
tetrahedronVisitor);

mul tiVisitor->AddVisitor
mul ti Visitor->AddVisitor
mul tiVisitor->AddVisitor
mul tiVisitor->AddVisitor

—~ e~ —~ —

1

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

4.4. Path 95

Finally, the iteration over the cells is triggered by cailithe methodAccept () on the Mesh
class.

mesh->Accept (nultiVisitor);

TheAccept () method will iterate over all the cells and for each one wiliia the MultiVisitor
to attempt an action on the cell. If no visitor is interestadtoe current cell type, the cell is just
ignored and skipped.

4.4 Path

4.4.1 Creating a PolyLineParametricPath

The source code for this section can be found in the file
Exanpl es/ Dat aRepr esent ati on/ Pat h/ Pol yLi nePar anet ri cPat hl. cxx.

This example illustrates how to use thék: : Pol yLi nePar anet ri cPat h. This class will typ-
ically be used for representing in a concise way the outpahdimage segmentation algorithm
in 2D. ThePol yLi nePar anet ri cPat h however could also be used for representing any open
or close curve in N-Dimensions as a linear piece-wise appraton.

First, the header file of thieol yLi nePar anet ri cPat h class must be included.
#include "itkPol yLi neParanetricPath. h"

The path is instantiated over the dimension of the imagehitndase 2D. //

const unsigned int Dimension = 2;
typedef itk::Image< unsigned char, Dinension > |nmageType;

typedef itk::PolyLineParanetricPath< Di mension > PathType;

| mgeType: : Const Poi nter image = reader->CGet Qut put ();

Pat hType: : Pointer path = PathType:: New();

path->Initialize();

typedef PathType:: Continuousl ndexType Cont i nuousl ndexType;

http://www.itk.org/Doxygen/html/classitk_1_1PolyLineParametricPath.html

96 Chapter 4. DataRepresentation

Cont i nuousl ndexType ci ndex;

typedef |nmageType: : Poi nt Type | magePoi nt Type;

| magePoi nt Type origin = imge->GetOrigin();

| mgeType: : Spaci ngType spaci ng = i mage- >CGet Spaci ng();

| mgeType: : Si zeType si ze = i mage- >Cet Buf f er edRegi on() . Get Si ze();
| magePoi nt Type poi nt;

poi nt[0]
poi nt[1]

origin[0] + spacing[0] * size[0];
origin[1] + spacing[1] * size[1];

i mage- >Tr ansf or nPhysi cal Poi nt ToCont i nuousl ndex(origin, cindex);
pat h- >AddVertex(cindex);
i mage- >Tr ansf or nPhysi cal Poi nt ToCont i nuous! ndex(poi nt, cindex);

pat h- >AddVertex(cindex);

45 Containers

The source code for this section can be found in the file
Exanpl es/ Dat aRepr esent ati on/ Cont ai ner s/ Tr eeCont ai ner. cxx.

This example shows how to use the k: : TreeCont ai ner and the associated Treelterators.
The itk::TreeContai ner implements the notion of tree and is templated over the tyfpe o
node so it can virtually handle any objects. Each node is@sggbto have only one parent so

no cycle is present in the tree. No checking is done to ensoyela-free tree.

Let's begin by including the appropriate header file.

#include <itkTreeContainer.h>
#include "itkTreeContainer.h"

#include "itkChildTreelterator.h"
#include "itkLeaf Treelterator.h"
#include "itkLevel OrderTreelterator.h"
#include "itklnOrderTreelterator.h"
#include "itkPostOrderTreelterator. h"

http://www.itk.org/Doxygen/html/classitk_1_1TreeContainer.html
http://www.itk.org/Doxygen/html/classitk_1_1TreeContainer.html

4.5. Containers 97

#include "itkPreOrderTreelterator.h"
#include "itkRootTreelterator.h"
#include "itkTreelteratorC one.h"

First, we create a tree of integers. The TreeContainer iplaed over the type of nodes.

typedef int NodeType;
typedef itk::TreeContai ner<NodeType> TreeType;
TreeType: : Pointer tree = TreeType:: New();

Next we set the value of the root node usBeg Root () .
tree->Set Root (0) ;

Then we use thédd() function to add nodes to the tree The first argument is theavaifiihe
new node and the second argument is the value of the pareat Hado nodes have the same
values then the first one is picked. In this particular cagehetter to use an iterator to fill the
tree.

tree->Add(1,0)
tree->Add(2, 0)
tree->Add(3,0)
tree->Add(4, 2);
tree->Add(5, 2)
tree->Add(6, 5)
tree->Add(7,1)

We define ani tk: : Level Order Treel t erat or to parse the tree in level order. This particular
iterator takes three arguments. The first one is the acemtdrbe parsed, the second one is the
maximum depth level and the third one is the starting node GthNode() function return a
node given its value. Once again the first node that correfsptmthe value is returned.

itk::Level OrderTreel terator<TreeType> level lt(tree, 10, tree->Cet Node(2));
| evel I't. GoToBegin();
while(!levellt.lsAtEnd())

{

std::cout << levellt.Get() << " ("<< levellt.GetLevel() << ")" << std::endl;;
++ evel I't;

}

std::cout << std::endl;

The Treelterators have useful functions to test the prgméithe current pointed node. Among
these functionsi sLeaf returns true if the current node is a led§Root returns true if the
node is a rootHasPar ent returns true if the node has a parent &dnt Chi | dr en returns the
number of children for this particular node.

http://www.itk.org/Doxygen/html/classitk_1_1LevelOrderTreeIterator.html

98 Chapter 4. DataRepresentation

level I't.IsLeaf();

| evel I't.lsRoot();

| evel I't. HasParent ();

| evel I't. Count Children();

The itk::ChildTreelterator provides another way to iterate through a tree by listing all
the children of a node.

itk::ChildTreelterator<TreeType> childlt(tree);
childlt.GoToBegin();
while(tchildlt.lsAtEnd())

{

std::cout << childlt.Get() << std::endl;;
++childlt;

}

std::cout << std::endl;

The Get Type() function returns the type of iterator used. The list of entate types is as
follow: PREORDER, INORDER, POSTORDER, LEVELORDER, CHILRQOT and LEAF.

if(childlt.GetType() !=itk::TreelteratorBase<TreeType>::CH LD)
{
std::cout << "[FAILURE]" << std::endl;
return EXI T_FAI LURE;

}

Every Treelterator has @ one() function which returns a copy of the current iterator. Note
that the user should delete the created iterator by hand.

childlt.GoToParent();
itk::TreelteratorBase<TreeType>* childltC one = childlt.done();
del ete childltd one;

The i tk::Leaf Treel terator iterates through the leaves of the tree.

itk::Leaf Treelterator<TreeType> leaflt(tree);
| eafIt. GoToBegin();
while(!leaflt.IsAtEnd())

{

std::cout << leaflt.Get() << std::endl;;
++ eafl t;

1

std::cout << std::endl;
The itk::InOrderTreel terator iterates through the tree in the order from left to right.

itk::InOrderTreelterator<TreeType> InOrderlt(tree);

http://www.itk.org/Doxygen/html/classitk_1_1ChildTreeIterator.html
http://www.itk.org/Doxygen/html/classitk_1_1LeafTreeIterator.html
http://www.itk.org/Doxygen/html/classitk_1_1InOrderTreeIterator.html

4.5. Containers 99

InOrderlt. GoToBegin();
while(!InOderlt.|sAtEnd())

{

std::cout << InOrderlt.Get() << std::endl;;
++ nOrderlt;

}

std::cout << std::endl;

The itk::PreOrderTreel terator iterates through the tree from left to right but do a depth
first search.

itk::PreCrderTreelterator<TreeType> PreOrderlt(tree);
PreOrderlt. GoToBegin();
while(!PreOrderlt.|sAtEnd())
{
std::cout << PreOrderlt.Get() << std::endl;;
++PreOrderlt;
}

std::cout << std::endl;

The itk:: Post Order Treel t erator iterates through the tree from left to right but goes from
the leaves to the root in the search.

itk::PostOrder Treel terator<TreeType> PostOrderlt(tree);
Post Order | t. GoToBegin();
whi | e(! PostOrderlt.|sAtEnd())

{

std::cout << PostOrderlt.Cet() << std::endl;;

++Post Order I t;

1

std::cout << std::endl;

The itk:: Root Treelterator goes from one node to the root. The second arguments is the
starting node. Here we go from the leaf node (value = 6) upeaalot.

itk::RootTreelterator<TreeType> Rootlt(tree,tree->Get Node(6));
Root It. GoToBegi n() ;
while(!RootIt.|IsAtEnd())

{

std::cout << Rootlt.Get() << std::endl;;

++Root I t;

}

std::cout << std::endl;
All the nodes of the tree can be removed by usingdtear () function.

tree->Clear();

http://www.itk.org/Doxygen/html/classitk_1_1PreOrderTreeIterator.html
http://www.itk.org/Doxygen/html/classitk_1_1PostOrderTreeIterator.html
http://www.itk.org/Doxygen/html/classitk_1_1RootTreeIterator.html

100 Chapter 4. DataRepresentation

We show how to use a Treelterator to form a tree by creatingsiotheAdd() function is used
to add a node and put a value on it. T®doChi | d() is used to jump to a node.

itk::PreCrderTreelterator<TreeType> PreOrderlt2(tree);
PreOrderlt2. Add(0);

PreOrderlt2. Add(1);

PreOrderlt2. Add(2);

PreOrderlt2. Add(3);

PreOrderlt2. GoToChil d(2);

PreOrderlt2. Add(4);

PreOrderlt2. Add(5);

The i tk:: Treelteratord one can be used to have a generic copy of an iterator.

typedef itk::TreelteratorBase<TreeType> |teratorType;

typedef itk::Treelteratord one<lteratorType> IteratorC oneType;
itk::PreCrderTreelterator<TreeType> anlterator(tree);

IteratorC oneType aClone = anlterator;

http://www.itk.org/Doxygen/html/classitk_1_1TreeIteratorClone.html

CHAPTER

FIVE

Spatial Objects

This chapter introduces the basic classes that desctike: Spat i al Qbj ect s.

5.1 Introduction

We promote the philosophy that many of the goals of medicabeprocessing are more effec-
tively addressed if we consider them in the broader conteabject processing. ITK’s Spatial
Object class hierarchy provides a consistent API for quegryinanipulating, and interconnect-
ing objects in physical space. Via this API, methods can lwkeddo be invariant to the data
structure used to store the objects being processed. Byatisy the representations of objects
to support their representation by data structures otlaar itthages, a broad range of medical
image analysis research is supported; key examples argloismn the following.

Model-to-image registration. A mathematical instance of an object can be registered with a
image to localize the instance of that object in the imagang/SpatialObjects, mutual
information, cross-correlation, and boundary-to-imagsrios can be applied without
modification to perform spatial object-to-image registnat

Model-to-model registration. Iterative closest point, landmark, and surface distancai-mi
mization methods can be used with any ITK transform, to hgishd non-rigidly register
image, FEM, and Fourier descriptor-based representaionisjects as SpatialObjects.

Atlas formation. Collections of images or SpatialObjects can be integratepresent ex-
pected object characteristics and their common modes itiar. Labels can be associ-
ated with the objects of an atlas.

Storing segmentation results from one or multiple scansResults of segmentations are best
stored in physical/world coordinates so that they can bebdoed and compared with
other segmentations from other images taken at other té&modu Segmentation results
from hand drawn contours, pixel labelings, or model-togmaegistrations are treated
consistently.

http://www.itk.org/Doxygen/html/classitk_1_1SpatialObject.html

102 Chapter 5. Spatial Objects

Capturing functional and logical relationships between olfjects. SpatialObjects can have
parent and children objects. Queries made of an object (@sith determine if a point
is inside of the object) can be made to integrate the respdn@m the children object.
Transformations applied to a parent can also be propagattftetchildren. Thus, for
example, when a liver model is moved, its vessels move with it

Conversion to and from images.Basic functions are provided to render any SpatialObjact (o
collection of SpatialObjects) into an image.

0. SpatialObject reading and writing to disk is independerthefSpatialObject class hierar-
chy. Meta object IO (throught k: : Met al nagel O) methods are provided, and others are
easily defined.

Tubes, blobs, images, surfacesAre a few of the many SpatialObject data containers and types
provided. New types can be added, generally by only definimegar two member func-
tions in a derived class.

In the remainder of this chapter several examples are usedetoonstrate the many
spatial objects found in ITK and how they can be organizea ihterarchies using
i tk::SceneSpatial Obj ect . Further the examples illustrate how to use SpatialObjacist
formations to control and calculate the position of objéttspace.

5.2 Hierarchy

Spatial objects can be combined to form a hierarchy as a Bgelesign, a SpatialObject can
have one parent and only one. Moreover, each transformrisdstaithin each object, therefore
the hierarchy cannot be described as a Directed Acyclic IG@AG) but effectively as a tree.
The user is responsible for maintaining the tree struchoehecking is done to ensure a cycle-
free tree.

The source code for this section can be found in the file
Exanpl es/ Spati al Cbj ect s/ Spati al Chj ect Hi erar chy. cxx.

This example describes howt k: : Spati al Cbj ect can form a hierarchy. This first example
also shows how to create and manipulate spatial objects.

#include "itkSpatial Cbject.h”

First, we create two spatial objects and give them the nafnest bject and Second
vj ect, respectively.

typedef itk::Spatial Object<3> Spatial Obj ect Type;

Spati al Ohj ect Type:: Pointer objectl = Spatial Object Type :: New();

http://www.itk.org/Doxygen/html/classitk_1_1MetaImageIO.html
http://www.itk.org/Doxygen/html/classitk_1_1SceneSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1SpatialObject.html

5.2. Hierarchy 103

obj ect 1- >Get Property()->Set Name("First Cbject");

Spati al Ohj ect Type: : Pointer object2 = Spatial Object Type :: New();
obj ect 2- >Cet Property() - >Set Nane(" Second Obj ect");

We then add the second object to the first one by usinddt8pat i al bj ect () method. As
a resultobj ect 2 becomes a child of object1.

obj ect 1- >AddSpat i al Ohj ect (obj ect 2);

We can query if an object has a parent by using the HasParaetf)od. If it has one, the
Cet Par ent () method returns a constant pointer to the parent. In our dage ask the parent’s
name of the object2 we should obtakir st bj ect .

i f (obj ect2->HasParent ())
{

std::cout << "Nane of the parent of the object2: ";
std::cout << object2->CetParent()->CetProperty()->GetNane() << std::endl;

}

To access the list of children of the object, tBe Chi | dren() method returns a pointer to the
(STL) list of children.

Spati al bj ect Type: : Chi | drenLi st Type * childrenList = object1->GetChildren();
std::cout << "objectl has " << childrenList->size() << " child" << std::endl;

Spati al Ohj ect Type:: Chil drenLi st Type:: const _iterator it = childrenList->begin();
while(it !'= childrenList->end())

{
std::cout << "Nane of the child of the object 1. "

std::cout << (*it)->CGetProperty()->CetName() << std::endl;
it++;

}

Do NOT forget to delete the list of children since B Chi | dren() function creates an inter-
nal list.

del ete childrenList;
An object can also be removed by using BeeoveSpat i al Obj ect () method.
obj ect 1- >RenoveSpat i al Qbj ect (obj ect 2) ;

We can query the number of children an object has wittGgt&unber O Chi | dren() method.

104 Chapter 5. Spatial Objects

std::cout << "Nunber of children for objectl: ";
std::cout << object1->CGetNunberOf Children() << std::endl;

Thed ear () method erases all the information regarding the object disasghe data. This
method is usually overloaded by derived classes.

obj ect1->C ear();

The output of this first example looks like the following:

Nane of the parent of the object2: First Object
objectl has 1 child

Nane of the child of the object 1: Second bject
Nunber of children for objectl: 0

5.3 SpatialObject Tree Container

The source code for this section can be found in the file
Exanpl es/ Spati al Obj ect s/ Spati al Cbj ect TreeCont ai ner. cxx.

This example describes how to use thiek: : Spati al Cbj ect Tr eeCont ai ner to form a hier-
archy of SpatialObjects. First we include the approprigader file.

#include "itkSpatial Object TreeContai ner. h"

Next we define the type of node and the type of tree we plan to Beth are templated over
the dimensionality of the space. Let’s create a 2-dimerdimae.

typedef itk::GoupSpatial Object<2> NodeType;
typedef itk::Spatial CbjectTreeContainer<2> TreeType;

Then, we can create three nodes and set their corresporaingfication numbers (using
Set | d).

NodeType: : Poi nter object0 = NodeType:: New();
obj ect 0->Set 1d(0);
NodeType: : Pointer objectl = NodeType:: New();
obj ect 1->Set 1d(1);
NodeType: : Poi nter object2 = NodeType:: New();
obj ect 2->Set 1d(2);

The hierarchy is formed using tgdSpat i al Qbj ect () function.

http://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectTreeContainer.html

5.4. Transformations 105

obj ect 0- >AddSpat i al Cbj ect (obj ect1);
obj ect 1- >AddSpat i al Ohj ect (obj ect 2);

After instantiation of the tree we set its root using 8s¢Root () function.

TreeType: :Pointer tree = TreeType:: New();
tree->Set Root (obj ect 0. Get Pointer());

The tree iterators described in a previous section of thidgyean be used to parse the hierarchy.
For example, viaantk:: Level Order Treel t erat or templated over the type of tree, we can
parse the hierarchy of SpatialObjects. We set the maximueth le 10 which is enough in this
case since our hierarchy is only 2 deep.

itk::Level OrderTreelterator<TreeType> |evel It(tree, 10);
I evel I't. GoToBegin();
while(!levellt.lsAtEnd())

{

std::cout << levellt.Get()->Cetld() << " ("<< levellt.CetLevel ()
<< ")" << std::endl;;

++ evel I't;

}

Tree iterators can also be used to add spatial objects tagrerthy. Here we show how to use
theitk::PreCrder Treelterator to add a fourth object to the tree.

NodeType: : Poi nter object4 = NodeType:: New();
itk::PreOrderTreelterator<TreeType> prelt(tree);
prelt.Add(obj ect 4. Get Pointer());

5.4 Transformations

The source code for this section can be found in the file
Exanpl es/ Spati al Obj ect s/ Spat i al Cbj ect Transf or ns. cxx.

This example describes the different transformationsaata with a spatial object.
Figure5.1shows our set of transformations.

Like the first example, we create two spatial objects and tjieen the nameBi r st Chj ect
andSecond Qbj ect, respectively.

typedef itk:: Spatial Object<2> Spati al Obj ect Type;
typedef Spatial Obj ect Type:: Transfornifype TransfornType;

Spati al Ohj ect Type: : Pointer objectl = Spatial Object Type :: New();
obj ect 1- >Get Property()->Set Name("First Cbject");

http://www.itk.org/Doxygen/html/classitk_1_1LevelOrderTreeIterator.html
http://www.itk.org/Doxygen/html/classitk_1_1PreOrderTreeIterator.html

106 Chapter 5. Spatial Objects

World < IndexToWorld
X i Transform
ObjectToWorld
Transform
Parent Node , _ ObjectToParent
Transform
NodeToParentNode
Transform

Node

ObjectToNode IndexToObject
Transform Transform

Object Index

Figure 5.1:Set of transformations associated with a Spatial Object

Spati al Cbj ect Type: : Pointer object2 = Spatial Obj ect Type :: New();
obj ect 2- >Get Property() - >Set Name(" Second Obj ect");
obj ect 1- >AddSpat i al Ohj ect (obj ect 2);

Instances ofi t k: : Spati al Cbj ect maintain three transformations internally that can be used
to compute the position and orientation of data and obje€tsese transformations are: an
IndexToObjectTransform, an ObjectToParentTransforrd,amObjectToWorldTransform. As

a convenience to the user, the global transformation InoMoFldTransform and its inverse,
WorldTolndexTransform, are also maintained by the classthidds are provided by SpatialOb-
ject to access and manipulate these transforms.

The two main transformations, IndexToObjectTransform@bgectToParentTransform, are ap-
plied successively. ObjectToParentTransform is appbezhtldren.

The IndexToObjectTransform transforms points from therimal data coordinate system of the
object (typically the indices of the image from which theextijwas defined) to “physical” space
(which accounts for the spacing, orientation, and offseéhefindices).

The ObjectToParentTransform transforms points from theattspecific “physical” space to
the “physical” space of its parent object. As one can see franfigure 5.1, the ObjectToPar-
entTransform is composed of two transforms: ObjectToNode3form and NodeToParentN-
odeTransform. The ObjectToNodeTransform is not appligtiéachildren, but the ObjectToN-
odeTransformis. Therefore, if one sets the ObjectToP@ransform, the ObjectToNodeTrans-
form is modified.

http://www.itk.org/Doxygen/html/classitk_1_1SpatialObject.html

5.4. Transformations 107

The ObjectToWorldTransform maps points from the referesys¢em of the SpatialObject into
the global coordinate system. This is useful when the posibif the object is known only in
the global coordinate frame. Note that by setting this fi@ms, the ObjectToParent transform
is recomputed.

These transformations use thék: : Fi xedCent er Of Rot at i onAf fi neTransform. They are
created in the constructor of the spatidlk: : Spati al Chj ect .

First we define an index scaling factor of 2 for the object2isi®idone by setting the Scale of
the IndexToObjectTransform.

doubl e scal e[2];

scal e[0] =2;

scal e[1] =2;

obj ect 2- >Get | ndexToOhj ect Transf or () - >Set Scal e(scal e) ;

Next, we apply an offset on the ObjectToParentTransforrh@thild object Therefore, object2
is now translated by a vector [4,3] regarding to its parent.

Transfornype: : O f set Type Cbj ect 2ToOhj ect 1Of f set ;

bj ect 2Tohj ect 1O fset[0] = 4;

bj ect 2Tohj ect 1OFfset[1] = 3;

obj ect 2- >Get Obj ect ToPar ent Transf or n() - >Set Of f set (Cbj ect 2ToOhj ect 1O f set) ;

To realize the previous operations on the transformation® should invoke the
Conput eCbj ect ToWor | dTr ansf or () that recomputes all dependent transformations.

obj ect 2- >Conput eChj ect ToWor | dTransforn() ;

We can now display the ObjectToWorldTransform for both otge One should notice that the
FixedCenterOfRotationAffineTransform derives fronak: : Af fi neTransf or mand therefore
the only valid members of the transformation are a Matrix andffset. For instance, when
we invoke theScal e() method the internal Matrix is recomputed to reflect this gean

The FixedCenterOfRotationAffine Transform performs thiéofeing computation

X' =R (S X—C)+C+V (5.1)

WhereR is the rotation matrixSis a scaling factorC is the center of rotation and is a
translation vector or offset. Therefore the affine malufixand the affine offset are defined as:

M=R-S (5.2)

T=C+V-R-C (5.3)

http://www.itk.org/Doxygen/html/classitk_1_1FixedCenterOfRotationAffineTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1SpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1AffineTransform.html

108 Chapter 5. Spatial Objects

This means thaBet Scal e() andGet Of f set () as well as theéet Mat ri x() might not be set
to the expected value, especially if the transformationlte$rom a composition with another
transformation since the composition is done using the iMatrd the Offset of the affine trans-
formation.

Next, we show the two affine transformations correspondirthé two objects.

std::cout << "object2 IndexToChject Matrix: " << std::endl;

std::cout << object2->CetlndexToOhj ect Transforn()->Get Matrix() << std::endl;
std::cout << "object2 IndexToObject Offset: ";

std::cout << object2->CetlndexToOhj ect Transforn()->GetOFfset() << std::endl;
std::cout << "object2 IndexToWorld Matrix: " << std::endl;

std::cout << object2->Cet|ndexToWor!| dTransforn()->Cet Matrix() << std::endl;
std::cout << "object2 IndexToWorld Offset: "

std::cout << object2->CetlndexToWor| dTransforn()->Get Offset() << std::endl;

Then, we decide to translate the first object which is themgarkthe second by a vector [3,3].
This is still done by setting the offset of the ObjectToP#&feansform. This can also be done
by setting the ObjectToWorldTransform because the firstahjoes not have any parent and
therefore is attached to the world coordinate frame.

TransfornType: : O f set Type Cbj ect 1ToWor | dOf f set ;

bj ect 1ToWor [dOfF fset[0] = 3;

bj ect 1ToWor [dOFfset[1] = 3;

obj ect 1- >Get Ohj ect ToPar ent Transf orn{) - >Set O f set (Obj ect 1ToWor | dOf f set) ;

Next we invokeConput eChj ect ToWor | dTr ansf orn{) on the modified object. This will prop-
agate the transformation through all its children.

obj ect 1- >Conput eChj ect ToWor | dTransforn() ;

Figure5.2shows our set of transformations.

Finally, we display the resulting affine transformations.

std::cout << "objectl IndexToWorld Matrix: " << std::endl;

std::cout << object1->CetlndexToWor!| dTransforn()->GetMatrix() << std::endl;
std::cout << "objectl IndexToWwrld Offset: ";

std::cout << object1->CetlndexToWor!| dTransforn()->Get Offset() << std::endl;
std::cout << "object2 IndexToWorld Matrix: " << std::endl;

std::cout << object2->Cet|ndexToWor!| dTransforn()->Cet Matrix() << std::endl;
std::cout << "object2 IndexToWorld Offset: "

std::cout << object2->CGetlndexToWr| dTransforn()->Get Offset() << std::endl;

The output of this second example looks like the following:

5.5. Types of Spatial Objects 109

Object 2

Object 1

Figure 5.2: Physical positions of the two objects in the world frame (shapes are merely for illustration
purposes).

obj ect2 I ndexToChj ect Matrix:

20

02

obj ect2 I ndexToGhject Offset: 0 0
obj ect2 I ndexToWorld Matrix:

20

02

object2 IndexToWrld Ofset: 4 3
objectl I ndexToWrld Matrix:

10

01

objectl IndexToWwrld Offset: 3 3
obj ect2 I ndexToWorld Matrix:

20

02

object2 IndexToWrld Ofset: 7 6

5.5 Types of Spatial Objects

This section describes in detail the variety of spatial cigjgmplemented in ITK.

110 Chapter 5. Spatial Objects

5.5.1 ArrowSpatialObject

The source code for this section can be found in the file
Exanpl es/ Spati al Cbj ect s/ ArrowSpati al Qbj ect. cxx.

This example shows how to createiak: : ArrowSpati al Cbj ect . Let's begin by including
the appropriate header file.

#include <itkArrowSpatial Qbject. h>

The i tk:: ArrowSpati al Obj ect , like many SpatialObjects, is templated over the dimension
ality of the object.

typedef itk::ArrowSpatial Object<3> ArrowType;
ArrowType: : Poi nter nyArrow = ArrowType:: New();

The length of the arrow in the local coordinate frame is dosiagithe SetLength() function.
By default the length is set to 1.

myArr ow >Set Lengt h(2) ;

The direction of the arrow can be set using the SetDirectiin{ction. The SetDirection()
function modifies the ObjectToParentTransform (not theekidObjectTransform). By default
the direction is set along the X axis (first direction).

ArrowType: : Vect or Type direction;
direction.Fill(0);

direction[1] = 1.0;

myArrow >Set Di rection(direction);

5.5.2 BlobSpatialObject
The source code for this section can be found in the file
Exanpl es/ Spati al Cbj ect s/ Bl obSpati al Obj ect . cxx.

itk:: Bl obSpatial Obj ect definesan N-dimensional blob. Like other SpatialObjedtsdlass
derives fromi tk: :itkSpatial Cbj ect . A blob is defined as a list of points which compose
the object.

Let'’s start by including the appropriate header file.
#include "itkBl obSpatial Qbject. h"

BlobSpatialObject is templated over the dimension of theesp A BlobSpatialObject contains
a list of SpatialObjectPoints. Basically, a SpatialObfeint has a position and a color.

http://www.itk.org/Doxygen/html/classitk_1_1ArrowSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1ArrowSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1BlobSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1itkSpatialObject.html

5.5. Types of Spatial Objects 111

#include "itkSpatial ObjectPoint.h"
First we declare some type definitions.

typedef itk::Bl obSpati al Object<3> Bl obType;
typedef Bl obType: : Pointer Bl obPoi nter;;
typedef itk::Spatial ObjectPoint<3> Bl obPoint Type;

Then, we create a list of points and we set the position of @a@fit in the local coordinate
system using th&et Posi tion() method. We also set the color of each point to be red.

Bl obType: : Poi nt Li st Type list;

for(unsigned int i=0; i<4; i++)
{
Bl obPoi nt Type p;
p. Set Position(i,i+1,i+2);
p. Set Red(1);
p. Set Geen(0);
p. Set Bl ue(0);
p. Set Al pha(1.0);
|'ist.push_back(p);
}

Next, we create the blob and set its name usingst&ane() function. We also set its Identi-
fication number witlSet | d() and we add the list of points previously created.

Bl obPoi nter bl ob = Bl obType:: New();

bl ob- >Get Property()->Set Nane("M/ Bl ob");
bl ob->Set 1d(1);

bl ob->Set Poi nt s(1ist);

TheGet Poi nt s() method returns a reference to the internal list of pointhiefdbject.
Bl obType: : Poi nt Li st Type poi ntLi st = bl ob->Get Poi nts();
std::cout << "The blob contains " << pointList.size();

std::cout << " points" << std::endl;

Then we can access the points using standard STL iteratatsGetrPosition() and
Get Col or () functions return respectively the position and the colahefpoint.

Bl obType: : Poi nt Li st Type: : const _iterator it = bl ob->GetPoints().begin();
while(it !'= blob->CGetPoints().end())

{

std::cout << "Position =" << (*it).GetPosition() << std::endl;
std::cout << "Color =" << (*it).GetColor() << std::endl;

it++

}

112 Chapter 5. Spatial Objects

5.5.3 CylinderSpatialObject

The source code for this section can be found in the file
Exanpl es/ Spati al Cbj ect s/ Cyl i nder Spati al Obj ect. cxx.

This example shows how to creaté gk: : Cyl i nder Spati al Qbj ect . Let’s begin by including
the appropriate header file.

#include "itkCylinderSpatial Object.h"

An itk::CylinderSpatial Qbject exists only in 3D, therefore, it is not templated.
typedef itk::CylinderSpatial Object Cyli nder Type;

We create a cylinder using the standard smart pointers.
Cylinder Type: : Poi nter nyCylinder = CylinderType:: New();

The radius of the cylinder is set using tBet Radi us() function. By default the radius is set to
1.

doubl e radius = 3.0;
myCyl i nder - >Set Radi us(radi us);

The height of the cylinder is set using tBet Hei ght () function. By default the cylinder is
defined along the X axis (first dimension).

doubl e hei ght = 12.0;
myCyl i nder - >Set Hei ght (hei ght) ;

Like any otheritk:: Spatial Obj ect s, thel sl nsi de() function can be used to query if a
pointis inside or outside the cylinder.

i tk:: Point<doubl e, 3> i nsi dePoi nt;

i nsi dePoi nt[0] =1,

i nsi dePoi nt [1] =2;

i nsi dePoi nt [2] =0;

std::cout << "Is ny point "<< insidePoint << " inside the cylinder? : "
<< nmyCylinder->l sl nside(insidePoint) << std::endl;

We can print the cylinder information using tRei nt () function.

myCyl i nder->Print(std::cout);

http://www.itk.org/Doxygen/html/classitk_1_1CylinderSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1CylinderSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1SpatialObject.html

5.5. Types of Spatial Objects 113

5.5.4 EllipseSpatialObject
The source code for this section can be found in the file
Exanpl es/ Spati al Cbj ect s/ El | i pseSpati al Obj ect. cxx.

itk::EllipseSpatial Ohject defines an n-Dimensional ellipse. Like other spatial olsject
this class derives fromt k: : Spat i al Gbj ect . Let’s start by including the appropriate header
file.

#include "itkEllipseSpatial Object.h"

Like most of the SpatialObjects, thiet k: : El | i pseSpat i al Obj ect is templated over the di-
mension of the space. In this example we create a 3-dimezistipse.

typedef itk::EllipseSpatial Chject<3> EllipseType;
El i pseType:: Pointer nyEl lipse = EllipseType:: New();

Then we set a radius for each dimension. By default the raslisest to 1.

El i pseType:: ArrayType radius;
for(unsigned int i = 0; i<3; i+4)
{
radius[i] =1i;

}

nyEl | i pse->Set Radi us(radi us);
Or if we have the same radius in each dimension we can do
nyEl |'i pse- >Set Radi us(2.0);
We can then display the current radius by using@teRadi us() function:

El i pseType:: ArrayType nyCurrentRadius = nyEl|ipse->Cet Radi us();
std::cout << "Current radius is " << nyCurrentRadius << std::endl;

Like other SpatialObjects, we can query the object if a piinhside the object by using the
Isinside(itk::Point) function. This function expects theint to be in world coordinates.

i tk:: Point<doubl e, 3> i nsi dePoi nt;

insidePoint.Fill(1.0);

i f(nmyEllipse->lslnside(insidePoint))
{

http://www.itk.org/Doxygen/html/classitk_1_1EllipseSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1SpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1EllipseSpatialObject.html

114 Chapter 5. Spatial Objects

std::cout << "The point " << insidePoint;
std::cout << " is really inside the ellipse" << std::endl;

}

i tk:: Poi nt<doubl e, 3> out si dePoi nt ;

outsidePoint.Fill(3.0);

i f(!nyEl lipse->lslnside(outsidePoint))
{

std::cout << "The point " << outsidePoint;
std::cout << " is really outside the ellipse" << std::endl;

}

All spatial objects can be queried for a value at a point. Mdt&al uabl eAt () functionreturns
a boolean to know if the object is evaluable at a particulamtpo

i f(myEllipse->l sEval uabl eAt (i nsi dePoint))
{

std::cout << "The point " << insidePoint;
std::cout << " is evaluable at the point " << insidePoint << std::endl;

}

If the object is evaluable at that point, thal ueAt () function returns the current value at that
position. Most of the objects returns a boolean value whickeit to true when the point is
inside the object and false when it is outside. However, dona objects, it is more interesting
to return a value representing, for instance, the distarara the center of the object or the
distance from from the boundary.

doubl e val ue;
nyEl | i pse->Val ueAt (i nsi dePoi nt, val ue) ;
std::cout << "The value inside the ellipse is: " << value << std::endl;

Like other spatial objects, we can also query the bounding d&fothe object by using
Cet Boundi ngBox() . The resulting bounding box is expressed in the local frame.

myEl | i pse- >Conput eBoundi ngBox() ;
El li pseType: : Boundi ngBoxType * boundi ngBox = nyEl | i pse- >Get Boundi ngBox() ;
std::cout << "Bounding Box: " << boundi ngBox->Get Bounds() << std::endl;

5.5.5 GaussianSpatialObject

The source code for this section can be found in the file
Exanpl es/ Spati al Obj ect s/ Gaussi anSpat i al Obj ect. cxx.

This example shows how to createé gk : Gaussi anSpat i al Obj ect which defines a Gaussian
in a N-dimensional space. This object is particularly us&ugquery the value at a point in
physical space. Let’s begin by including the appropriateee file.

http://www.itk.org/Doxygen/html/classitk_1_1GaussianSpatialObject.html

5.5. Types of Spatial Objects 115

#include "itkGaussi anSpatial Obj ect. h"

The i tk:: Gaussi anSpati al Obj ect is templated over the dimensionality of the object.

typedef itk::GaussianSpatial Object<3> Gaussi anType;
Gaussi anType: : Poi nter nyGaussi an = Gaussi anType:: New();

TheSet Maxi mun() function is used to set the maximum value of the Gaussian.
myGaussi an- >Set Maxi mun(2) ;

The radius of the Gaussian is defined by $eeRadi us() method. By default the radius is set
to 1.0.

myGaussi an- >Set Radi us(3) ;

The standardal ueAt () function is used to determine the value of the Gaussian atteplar
pointin physical space.

i tk::Point<doubl e, 3> pt;

pt[0]=1;

pt1]=2;

pt[2]=1;

doubl e val ue;

myGaussi an- >Val ueAt (pt, val ue);

std::cout << "ValueAt(" << pt << ") =" << value << std::endl;

5.5.6 GroupSpatialObject
The source code for this section can be found in the file
Exanpl es/ Spati al Obj ect s/ GroupSpat i al Qbj ect . cxx.

A itk::GoupSpatial Obj ect does not have any data associated with it. It can be used to
group objects or to add transforms to a current object. s elxample we show how to use a
GroupSpatialObject.

Let’s begin by including the appropriate header file.
#incl ude <itkG oupSpatial Object. h>

The i tk:: G oupSpatial Obj ect is templated over the dimensionality of the object.

typedef itk::GoupSpatial Object<3> GoupType;
G oupType: : Pointer nyGoup = GoupType:: New();

http://www.itk.org/Doxygen/html/classitk_1_1GaussianSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1GroupSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1GroupSpatialObject.html

116 Chapter 5. Spatial Objects

Next, we create antk:: El | i pseSpati al Obj ect and add it to the group.

typedef itk::EllipseSpatial Ghject<3> EllipseType;
El i pseType:: Pointer nyEl lipse = EllipseType:: New();
nyEl | i pse- >Set Radi us(2);

myG oup- >AddSpat i al Obj ect (nyEl i pse);

We then translate the group by 10mm in each direction. Thezehe ellipse is translated in
physical space at the same time.

G oupType: : Vect or Type of fset;

of fset.Fill(10);

myG oup- >Get Cbj ect ToPar ent Transf orn() - >Set O f set (of f set) ;
my G oup- >Conput eCbj ect ToWor | dTr ansf or n() ;

We can then query if a point is inside the group usingltblensi de() function. We need to
specify in this case that we want to consider all the hiemgritterefore we set the depth to 2.

G oupType: : Poi nt Type point;

point.Fill(10);

std::cout << "ls ny point " << point << " inside?: "
<< nyGoup->lslnside(point,2) << std::endl;

Like any other SpatialObjects we can remove the ellipse friti@ group using the
RenoveSpati al Cbj ect () method.

nmyG oup- >RenoveSpat i al Cbj ect (nyEl | i pse);

5.5.7 ImageSpatialObject

The source code for this section can be found in the file
Exanpl es/ Spati al Cbj ect s/ | mageSpat i al Qbj ect . cxx.

An itk::1mgeSpatial Cbject contains anitk:: | mage but adds the notion of spatial trans-
formations and parent-child hierarchy. Let’s begin thetrample by including the appropri-
ate header file.

#include "itklmageSpatial Ooject.h"
We first create a simple 2D image of size 10 by 10 pixels.

typedef itk::Image<short, 2> | mge;
I mage: : Pointer image = I mage:: New();

http://www.itk.org/Doxygen/html/classitk_1_1EllipseSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1Image.html

5.5. Types of Spatial Objects 117

I mage: : Si zeType size = {{ 10, 10 }};
| mage: : Regi onType region;

region. Set Si ze(si ze);

i mage- >Set Regi ons(regi on);

i mge->Al | ocate();

Next we fill the image with increasing values.

typedef itk::|mageRegionlterator<lmge> |terator;
Iterator it(inmage,region);

short pixel Val ue =0;

it.GoToBegin();

for(; lit.IsSAtEnd(); ++it, ++pixel Value)

{
i t.Set(pixelValue);

}

We can now define the ImageSpatialObject which is templatedtbe dimension and the pixel
type of the image.

typedef itk::|mageSpatial Object<2, short> | mageSpatial Object;
| mgeSpati al Obj ect:: Pointer inmugeSO = | mageSpati al Object:: New();

Then we set the itkimage to the ImageSpatialObject by usiaget | nage() function.

i mageSO- >Set | mage(i mage) ;

At this point we can useésl nsi de(), Val ueAt () andDerivativeAt () functionsinherentin
SpatialObjects. Thesl nsi de() value can be useful when dealing with registration.

typedef itk:: Poi nt<doubl e, 2> Point;
Poi nt i nsi dePoi nt;
insidePoint.Fill(9);

i f(1mgeSO >l sl nside(insidePoint))
{
std::cout << insidePoint << " is inside the imge." << std::endl;

}

TheVal ueAt () returns the value of the closest pixel, i.e no interpolattora given physical
point.

doubl e returnedVal ue;
i mageSO >Val ueAt (i nsi dePoi nt, ret urnedVval ue) ;

std::cout << "ValueAt(" << insidePoint << ") =" << returnedVal ue << std::endl;

118 Chapter 5. Spatial Objects

The derivative at a specified position in space can be cordpugig theDer i vati veAt ()
function. The first argument is the point in physical cooad@s where we are evaluating the
derivatives. The second argumentis the order of the d@ivaind the third argument is the re-
sult expressed as @t k: : Vect or . Derivatives are computed iteratively using finite diffeces
and, like theval ueAt (), no interpolator is used.

| mgeSpati al Obj ect: : Qut put Vect or Type returnedDerivative;
i mageSO- >Deri vativeAt (insidePoint, 1, returnedDerivative);
std::cout << "First derivative at " << insidePoint;
std::cout << " =" << returnedDerivative << std::endl;

5.5.8 ImageMaskSpatialObject

The source code for this section can be found in the file
Exanpl es/ Spati al Obj ect s/ | mageMaskSpat i al Obj ect . cxx.

An itk:: I mageMaskSpati al Obj ect is similar to the i tk:: | nageSpati al bj ect and de-
rived from it. However, the main difference is that th& nsi de() returns true if the pixel
intensity in the image is not zero.

The supported pixel types does not includék: : RGBPi xel , itk:: RGBAPi xel , etc... So
far it only allows to manage images of simple types like unsi short, unsigned int, or
i tk::Vector. Let's begin by including the appropriate header file.

#include "itkl mageMaskSpatial Object. h"

The ImageMaskSpatialObject is templated over the dimeadiy.
typedef itk::ImageMaskSpatial Cbject <3> | nmageMaskSpati al Qbj ect;

Next we create ant k: : | mage of size 50x50x50 filled with zeros except a bright square & th
middle which defines the mask.

typedef | nageMaskSpati al Qbj ect:: Pi xel Type Pi xel Type;
typedef | nageMaskSpatial Qbject:: | mgeType |nageType;
typedef itk::ImageRegionlterator<lmgeType> |terator;

| mageType: : Pointer image = | mageType:: New();
| mgeType: : Si zeType size = {{ 50, 50, 50 }};
| mgeType: : I ndexType index = {{ 0, 0, 0 }};
| mgeType: : Regi onType region;

region. Set Si ze(si ze);
regi on. Set | ndex(i ndex);

http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageMaskSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html
http://www.itk.org/Doxygen/html/classitk_1_1RGBAPixel.html
http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1Image.html

5.5. Types of Spatial Objects 119

i mage- >Set Regi ons(region);
i mge->Al | ocate();

Pi xel Type p = itk::NunericTraits< Pixel Type >::Zero;
i mage->Fi | | Buffer(p);

| mgeType: : Regi onType i nsi deRegi on;

| mgeType: : Si zeType insideSize = {{ 30, 30, 30 }};
| mgeType: : I ndexType insidelndex = {{ 10, 10, 10 }};
i nsi deRegi on. Set Si ze(insideSize);

i nsi deRegi on. Set I ndex(i nsidel ndex);

Iterator it(inmage, insideRegion);
it.GoToBegin();

while('it.IsAtEnd())
{
it.Set(itk::NumericTraits< Pixel Type > :max());
++Ht

}
Then, we create an ImageMaskSpatialObject.
| mgeMaskSpat i al Cbj ect: : Poi nter maskSO = | mageMaskSpati al Cbj ect:: New();
and we pass the corresponding pointer to the image.
maskSO- >Set | mage(i mage) ;

We can then test if a physicalt k: : Poi nt is inside or outside the mask image. This is par-
ticularly useful during the registration process when anpart of the image should be used to
compute the metric.

| mgeMaskSpat i al Cbj ect: : Poi nt Type inside;

inside. Fill(20);

std::cout << "lIs ny point " << inside << " inside ny nmask? "
<< maskSO >l sl nsi de(inside) << std::endl;

| mgeMaskSpat i al Cbj ect: : Poi nt Type outsi de;

outside. Fill(45);

std::cout << "Is ny point " << outside << " outside ny mask? "
<< I'maskSO >l sl nsi de(out side) << std::endl;

http://www.itk.org/Doxygen/html/classitk_1_1Point.html

120 Chapter 5. Spatial Objects

5.5.9 LandmarkSpatialObject
The source code for this section can be found in the file
Exanpl es/ Spati al Cbj ect s/ Landnar kSpat i al Obj ect. cxx.

i tk::LandmarkSpati al Obj ect contains a list ofi t k; : Spati al Obj ect Poi nt s which have
a position and a color. Let’s begin this example by includimgappropriate header file.

#include "itkLandmarkSpati al Ooj ect. h"

LandmarkSpatialObject is templated over the dimensioh@tpace.

Here we create a 3-dimensional landmark.

typedef itk::LandmarkSpatial Obj ect<3> LandmarkType;
typedef LandmarkType: : Poi nt er Landmar kPoi nt er;
typedef itk:: Spatial Object Poi nt <3> Landmar kPoi nt Type;

Landmar kPoi nter [andmark = LandmarkType:: New();
Next, we set some properties of the object like its name andéntification number.

| andmar k- >Get Property() - >Set Nanme(" Landmar k1") ;
| andmar k->Set 1d(1);

We are now ready to add points into the landmark. We first eradist of SpatialObjectPoint
and for each point we set the position and the color.

Landmar kType: : Poi nt Li st Type list;

for(unsigned int i=0; i<5; i++)
{
Landmar kPoi nt Type p;
p. Set Position(i,i+1,i+2);
p. Set Col or(1,0,0,1);
|'ist.push_back(p);
}

Then we add the list to the object using $et Poi nt s() method.
| andmar k- >Set Poi nt s(1ist);

The current point list can be accessed usingGtePoi nt s() method. The method returns a
reference to the (STL) list.

http://www.itk.org/Doxygen/html/classitk_1_1LandmarkSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectPoint.html

5.5. Types of Spatial Objects 121

unsigned int nPoints = | andmark->Cet Poi nts(). size();
std::cout << "Nunber of Points in the |andmark: " << nPoints << std::endl;

Landmar kType: : Poi nt Li st Type: : const _iterator it = | andmark->Cet Points().begin();
while(it !'= landmark->GetPoints().end())

{

std::cout << "Position: " << (*it).GetPosition() << std::endl;
std::cout << "Color: " << (*it).GetColor() << std::endl;

it++

}

5.5.10 LineSpatialObject

The source code for this section can be found in the file
Exanpl es/ Spati al Obj ect s/ Li neSpati al Obj ect . cxx.

itk::LineSpatial Object defines a line in an n-dimensional space. A line is defined as a
list of points which compose the line, i.e a polyline. We Imetlie example by including the
appropriate header files.

#include "itkLineSpatial Qbject.h"
#include "itkLi neSpati al Obj ect Point. h"

LineSpatialObject is templated over the dimension of theesp A LineSpatialObject contains
a list of LineSpatialObjectPoints. A LineSpatialObjedtRdas a positionp — 1 normals and a
color. Each normal is expressed astk: : Covari ant Vect or of size N.

First, we define some type definitions and we create our line.
typedef itk::LineSpatial Object<3> Li neType;
typedef LineType:: Pointer Li nePoi nter;

typedef itk::LineSpatial QbjectPoint<3> LinePointType;
typedef itk::CovariantVector<double,3> VectorType;

Li nePoi nter Line = LineType::New);

We create a point list and we set the position of each poiritéridcal coordinate system using
theSet Posi tion() method. We also set the color of each point to red.

The two normals are set using tBet Nor nal () function; the first argument is the normal itself
and the second argument is the index of the normal.

Li neType: : Poi nt Li st Type list;

for(unsigned int i=0; i<3; i++)

{

http://www.itk.org/Doxygen/html/classitk_1_1LineSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html

122 Chapter 5. Spatial Objects

Li nePoi nt Type p;
p. Set Position(i,i+1,i+2);
p. SetColor(1,0,0,1);

Vect or Type normal 1,
Vect or Type nor mal 2;
for(unsigned int j=0;j<3;j++)

{

normal 1[j] = ;

normel 2[j] =) *2;

}

p. Set Nor mal (normal 1, 0) ;
p. Set Nor mal (normal 2, 1);
l'i st.push_back(p):

}

Next, we set the name of the object usigeg Nane(). We also set its identification number
with Set 1 d() and we set the list of points previously created.

Li ne- >Get Property()->Set Nane("Li nel");
Li ne->Set 1 d(1);
Li ne- >Set Poi nts(list);

TheGet Poi nt s() method returns a reference to the internal list of pointfiefdbject.

Li neType: : Poi nt Li st Type poi ntLi st = Line->GetPoints();
std::cout << "Nunber of points representing the line: ";
std::cout << pointList.size() << std::endl;

Then we can access the points using standard STL iteratotse Gt Position() and
Get Col or () functions return respectively the position and the colothef point. Using the
GetNormal(unsigned int) function we can access each normal

Li neType: : Poi nt Li st Type: : const _iterator it = Line->GetPoints().begin();
while(it !'= Line->GetPoints().end())

{

std::cout << "Position =" << (*it).GetPosition() << std::endl;
std::cout << "Color =" << (*it).GetColor() << std::endl;

std::cout << "First normal =" << (*it).GetNormal (0) << std::endl;
std::cout << "Second normal =" << (*it).GetNormal (1) << std::endl;
std::cout << std::endl;

it++

}

5.5. Types of Spatial Objects 123

5.5.11 MeshSpatialObject

The source code for this section can be found in the file
Exanpl es/ Spati al Cbj ect s/ MeshSpati al Obj ect . cxx.

A itk::MeshSpatial Object contains a pointer to an tk:: Mesh but adds the notion of
spatial transformations and parent-child hierarchy. Tdxample shows how to create an
i tk::MeshSpatial Qbj ect , use it to form a binary image and how to write the mesh on disk.

Let's begin by including the appropriate header file.

#include <itkMeshSpati al Object. h>

#include <itkSpatial Obj ect Reader. h>
#include <itkSpatial ObjectWiter.h>
#include <itkSpatial Object Tol nageFil ter. h>

The MeshSpatialObject wraps ank: : Mesh, therefore we first create a mesh.

typedef itk::Defaul tDynam cMeshTraits< float , 3, 3 > MeshTrait;

typedef itk::Msh<float, 3, MeshTrait> MeshType;

typedef MeshType::CellTraits Cel [Traits;
typedef itk::Celllnterface< float, CellTraits > Cel I'lI nterfaceType;
typedef itk::TetrahedronCel | <CelllInterfaceType> TetraCel | Type;
typedef MeshType: : Poi nt Type Poi nt Type;

typedef MeshType:: Cel | Type Cel | Type;

typedef Cel | Type:: Cel | Aut oPoi nt er Cel | Aut oPoi nter;

MeshType: : Poi nter nmyMesh = MeshType: : New();

MeshType: : Coor dRepType t est Poi nt Coords[4] [3]
={{0,0,0}, {9,0,0}, {9,9,0}, {0,0,9} };

unsigned long tetraPoints[4] = {0,1,2,4};

int i;

for(i=0; i <4 ; ++)
{
myMesh- >Set Poi nt (i, Poi nt Type(test Poi nt Coords[i]));
}

myMesh- >Set Cel | sAl | ocat i onMet hod(

MeshType: : Cel | sAl | ocat edDynani cal | yCel | ByCel |);
Cel | Aut oPoi nter testCell1;
testCel | 1. TakeOaner shi p(new TetraCel | Type);
testCel | 1->Set Poi nt 1 ds(tetraPoints);

myMesh->Set Cel | (0, testCelll);

http://www.itk.org/Doxygen/html/classitk_1_1MeshSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
http://www.itk.org/Doxygen/html/classitk_1_1MeshSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html

124 Chapter 5. Spatial Objects

We then create a MeshSpatialObject which is templated tnetyppe of mesh previously de-
fined...

typedef itk::MeshSpatial Gbject <MeshType> MeshSpat i al Obj ect Type;
MeshSpat i al Qbj ect Type: : Poi nter nyMeshSpatial Obj ect =
MeshSpat i al hj ect Type: : New() ;

... and pass the Mesh pointer to the MeshSpatialObject
myMeshSpat i al Obj ect - >Set Mesh(nyMesh) ;

The actual pointer to the passed mesh can be retrieved UmgttMesh() function.
myMeshSpat i al Obj ect - >Get Mesh();

Like any other SpatialObjects. Tt Boundi ngBox(), Val ueAt (), I sl nside() functions
can be used to access important information.

std::cout << "Mesh bounds : " <<
myMeshSpat i al Obj ect - >Get Boundi ngBox () - >Get Bounds() << std::endl;
MeshSpat i al Obj ect Type: : Poi nt Type nyPhysi cal Poi nt;
nmyPhysi cal Point. Fill(1);
std::cout << "Is ny physical point inside? : " <<
myMeshSpat i al Obj ect - >l sl nsi de(nyPhysi cal Point) << std::endl;

Now that we have defined the MeshSpatialObject, we can sav@dtual mesh using the
itk::Spatial ObjectWiter. To be able to do so, we need to specify the type of Mesh we are
writing.

typedef itk::Spatial CbjectWiter<3,float, MeshTrait> WiterType;
WiterType:: Pointer witer = WiterType:: New();

Then we set the mesh spatial object and the name of the fileadirttie theUpdat e() function.
writer->Setlnput(myMeshSpatial Cbject);
writer->SetFileNanme("nmyMesh. neta");
writer->Update();

Reading the saved mesh is done usingithk: : Spat i al Obj ect Reader . Once again we need
to specify the type of mesh we intend to read.

typedef itk:: Spatial Object Reader<3, float, MeshTrait> Reader Type;
Reader Type: : Poi nter reader = Reader Type:: New();

We set the name of the file we want to read and call update

http://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectWriter.html
http://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectReader.html

5.5. Types of Spatial Objects 125

reader - >Set Fi | eNane(" nyMesh. neta");
reader - >Updat e();

Next, we show how to create a binary image of a MeshSpatialdbjsing the
itk::Spatial Object Tol mageFilter. The resulting image will have ones inside and zeros
outside the mesh. First we define and instantiate the SPaijettTolmageFilter.

typedef itk::Image<unsigned char, 3> | mageType;

typedef itk:: G oupSpatial Object<3> G oupType;

typedef itk::Spatial ObjectTol mageFilter< G oupType, |nmageType >
Spati al Qbj ect Tol mageFi | t er Type;

Spati al Ohj ect Tol mageFi | ter Type:: Pointer imageFilter =
Spati al Obj ect Tol mageFi | ter Type: : New();

Then we pass the output of the reader, i.e the MeshSpated©lbp the filter.
i mageFi | ter->Set|nput(reader->GetGoup());

Finally we trigger the execution of the filter by calling tblpdat e() method. Note that de-
pending on the size of the mesh, the computation time capasersignificantly.

i mageFi | ter->Update();
Then we can get the resulting binary image usingG#teOut put () function.

| mageType: : Poi nter nyBi naryMeshl mage = i nageFil ter->Get Qutput();

5.5.12 SurfaceSpatialObject

The source code for this section can be found in the file
Exanpl es/ Spati al Cbj ect s/ Sur faceSpati al Obj ect . cxx.

itk::SurfaceSpatial Object defines a surface in n-dimensional space. A SurfaceSpétialO
jectis defined by a list of points which lie on the surface. liEpaint has a position and a unique
normal. The example begins by including the appropriatelbetie.

#include "itkSurfaceSpatial Qbject.h"
#include "itkSurfaceSpatial ObjectPoint.h"

SurfaceSpatialObject is templated over the dimension efsipace. A SurfaceSpatialObject
contains a list of SurfaceSpatialObjectPoints. A Surfapedi@lObjectPoint has a position, a
normal and a color.

First we define some type definitions

http://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectToImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1SurfaceSpatialObject.html

126 Chapter 5. Spatial Objects

typedef itk::SurfaceSpatial Object<3> Sur f aceType;
typedef SurfaceType:: Pointer Sur facePoi nter;
typedef itk::SurfaceSpatial GbjectPoint<3> SurfacePoint Type;
typedef itk:: Covariant Vect or <doubl e, 3> Vect or Type;

SurfacePointer Surface = SurfaceType:: New();

We create a point list and we set the position of each poiritéridcal coordinate system using
theSet Posi tion() method. We also set the color of each point to red.

SurfaceType: : Poi nt Li st Type list;

for(unsigned int i=0; i<3; i++)
{
Sur f acePoi nt Type p;
p. Set Position(i,i+1,i+2);
p. Set Col or(1,0,0,1);
Vect or Type nor mal ;
for(unsigned int j=0;j<3;j+t+)
{
normal [j]=f;
}
p. Set Nor nal (nornal) ;
l'i st.push_back(p):

}

Next, we create the surface and set his name uSehilane(). We also set its Identification
number withSet | d() and we add the list of points previously created.

Sur f ace- >Get Property()->Set Name(" Surfacel");
Surface->Set1d(1);
Surface->Set Poi nts(list);

TheGet Poi nt s() method returns a reference to the internal list of pointfiefdbject.

Sur faceType: : Poi nt Li st Type pointList = Surface->GetPoints();
std::cout << "Nunber of points representing the surface: ";
std::cout << pointList.size() << std::endl;

Then we can access the points using standard STL iter&girBosi ti on() andGet Col or ()
functions return respectively the position and the colothef point. Get Nor nal () returns the
normal as ai tk: : Covari ant Vect or .

SurfaceType: : Poi nt Li st Type: : const _iterator it = Surface->GetPoints().begin();
while(it !'= Surface->GetPoints().end())

http://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html

5.5. Types of Spatial Objects 127

{

std::cout << "Position = " << (*it).GetPosition() << std::endl;
std::cout << "Normal =" << (*it).GetNormal () << std::endl;
std::cout << "Color =" << (*it).GetColor() << std::endl;
std::cout << std::endl;

it++

}

5.5.13 TubeSpatialObject

itk::TubeSpatial Cbject represents a base class for the representation of tubular
structures using SpatialObjects. The classad k: : Vessel TubeSpati al Chj ect and

i tk::DTI TubeSpatial Obj ect derive from this base class. VesselTubeSpatialObjecerepr
sents blood vessels extracted for an image and DTITubephject is used to represent fiber
tracts from diffusion tensor images.

The source code for this section can be found in the file
Exanpl es/ Spati al Obj ect s/ TubeSpati al Obj ect . cxx.

i tk::TubeSpatial Qbj ect defines an n-dimensional tube. A tube is defined as a list of cen
terline points which have a position, a radius, some noriaadsother properties. Let's start by
including the appropriate header file.

#include "itkTubeSpatial Qbject. h"
#include "itkTubeSpati al Ooj ect Poi nt. h"

TubeSpatialObject is templated over the dimension of teespA TubeSpatialObject contains
a list of TubeSpatialObjectPoints.

First we define some type definitions and we create the tube.

typedef itk::TubeSpati al Object<3> TubeType;
typedef TubeType: : Poi nter TubePoi nter;;
typedef itk:: TubeSpati al Qbject Poi nt <3> TubePoi nt Type;

typedef TubePoi nt Type:: Covari ant Vector Type Vect or Type;

TubePoi nter tube = TubeType:: New();

We create a point list and we set:

1. The position of each point in the local coordinate systesimgithe Set Position()
method.

2. The radius of the tube at this position usBeg Radi us() .
3. The two normals at the tube is set usBeg Nor mal 1() andSet Nor mal 2() .

http://www.itk.org/Doxygen/html/classitk_1_1TubeSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1VesselTubeSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1DTITubeSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1TubeSpatialObject.html

128 Chapter 5. Spatial Objects

4. The color of the pointis set to red in our case.

TubeType: : Poi nt Li st Type |ist;
for(i=0; i<5; i++)
{
TubePoi nt Type p;
p. SetPosition(i,i+1,i+2);
p. Set Radi us(1);
Vect or Type nor mal 1;
Vect or Type nor mal 2;
for(unsigned int j=0;j<3;j++)
{
normal 1[j]=j;
normel 2[j] =) *2;

}

p. Set Nor mal 1(nor el 1) ;
p. Set Nor mal 2(nor el 2) ;
p. SetColor(1,0,0,1);

I'i st.push_back(p);
}

Next, we create the tube and set its name uSatdlane() . We also set its identification number
with Set1d() and, at the end, we add the list of points previously created.

t ube- >Get Property()->Set Nane(" Tubel");
tube->Set1d(1);
t ube- >Set Poi nts(list);

TheGet Poi nt s() method return a reference to the internal list of points efdhject.

TubeType: : Poi nt Li st Type pointList = tube->GetPoints();
std::cout << "Nunber of points representing the tube: ";
std::cout << pointList.size() << std::endl;

The Conput eTangent AndNor mal s() function computes the normals and the tangent for each
point using finite differences.

t ube- >Conput eTangent AndNor nal s() ;

Then we can access the points using STL iterat@asPosi ti on() andGet Col or () functions
return respectively the position and the color of the pot Radi us() returns the radius at
that point.Get Nor mal 1() andGet Nor mal 1() functionsreturna tk:: Covari ant Vect or and
Cet Tangent () returnsaitk:: Vector.

http://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html
http://www.itk.org/Doxygen/html/classitk_1_1Vector.html

5.5. Types of Spatial Objects 129

TubeType: : Poi nt Li st Type: : const _iterator it = tube->CGetPoints().begin();
i =0;
while(it !'= tube->CGetPoints().end())
{
std::cout << std::endl;
std::cout << "Point #' << i << std::endl;
std::cout << "Position: " << (*it).GetPosition() << std::endl;
std::cout << "Radius: " << (*it).GetRadius() << std::endl;
std::cout << "Tangent: " << (*it).GetTangent() << std::endl;

std::cout << "First Normal: " << (*it).GetNormal 1() << std::endl;
std::cout << "Second Normal: " << (*it).GetNormal2() << std::endl;
std::cout << "Color =" << (*it).GetColor() << std::endl;
it++;
i ++;
}

VesselTubeSpatialObject

The source code for this section can be found in the file
Exanpl es/ Spati al Cbj ect s/ Vessel TubeSpati al Cbj ect. cxx.

i tk::Vessel TubeSpatial Obj ect derives fromitk:: TubeSpati al Qbj ect . It represents a
blood vessel segmented from an image. A VesselTubeSphjedOis described as a list of
centerline points which have a position, a radius, normals,

Let'’s start by including the appropriate header file.

#include "itkVessel TubeSpati al Qbj ect. h"
#include "itkVessel TubeSpati al Obj ect Poi nt. h"

VesselTubeSpatialObjectis templated over the dimendithespace. A VesselTubeSpatialOb-
ject contains a list of VesselTubeSpatialObjectPoints.

First we define some type definitions and we create the tube.

typedef itk::Vessel TubeSpatial Obj ect <3> Vessel TubeType;
typedef itk::Vessel TubeSpati al Qbj ect Poi nt <3> Vessel TubePoi nt Type;

Vessel TubeType: : Poi nter Vessel Tube = Vessel TubeType:: New();

We create a point list and we set:

1. The position of each point in the local coordinate systesimgithe Set Position()
method.

2. The radius of the tube at this position usBeg Radi us() .

http://www.itk.org/Doxygen/html/classitk_1_1VesselTubeSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1TubeSpatialObject.html

130 Chapter 5. Spatial Objects

3. The medialness value describing how the point lies in tiddia of the vessel using
Set Medi al ness() .

4. The ridgeness value describing how the point lies on tigerusingSet Ri dgeness() .
5. The branchness value describing if the point is a branait psingSet Br anchness() .

6. The three alpha values corresponding to the eigenvaliiethe Hessian using
Set Al phal() ,Set Al pha2() andSet Al pha3().

7. The mark value usinget Mar k() .

8. The color of the point is set to red in this example with aadty of 1.

Vessel TubeType: : Poi nt Li st Type |ist;
for(i=0; i<5; i++)

Vessel TubePoi nt Type p;

.SetPosition(i,i+l,i+2);

. Set Radi us(1);

. Set Al phal(i);

. Set Al pha2(i +1)

. Set Al pha3(i +2)

. Set Medi al ness(
i
(

. Set Ri dgeness(
. Set Branchness
. Set Mark(true);
.SetColor(1,0,0,1);
i st.push_back(p);

i’);
)
i)

-~ T T T T T T T T T T o

Next, we create the tube and set its name uSatdlane() . We also set its identification number
with Set 1 d() and, at the end, we add the list of points previously created.

Vessel Tube- >Get Property()->Set Nane(" Vessel Tube");
Vessel Tube->Set1d(1);
Vessel Tube->Set Poi nts(list);

TheGet Poi nt s() method return a reference to the internal list of points efdhject.

Vessel TubeType: : Poi nt Li st Type pointList = Vessel Tube->Get Poi nts();
std::cout << "Nunber of points representing the blood vessel: ";
std::cout << pointList.size() << std::endl;

Then we can access the points using STL iterat@asPosi ti on() andGet Col or () functions
return respectively the position and the color of the point.

5.5. Types of Spatial Objects 131

Vessel TubeType: : Poi nt Li st Type: : const _iterator
it = Vessel Tube->Cet Poi nts(). begin();

i =0;

while(it !'= Vessel Tube->CetPoints().end())
{
std::cout << std::endl;
std::cout << "Point #' << i << std::endl;
std::cout << "Position: " << (*it).GetPosition() << std::endl;
std::cout << "Radius: " << (*it).GetRadius() << std::endl;
std::cout << "Medialness: " << (*it).GetMedialness() << std::endl;
std::cout << "Ridgeness: " << (*it).GetRidgeness() << std::endl;
std::cout << "Branchness: " << (*it).GetBranchness() << std::endl;
std::cout << "Mark: " << (*it).GetMark() << std::endl;
std::cout << "Alphal: " << (*it).GetAl phal() << std::endl;
std::cout << "Alpha2: " << (*it).GetAl pha2() << std::endl;
std::cout << "Alpha3: " << (*it).GetAl pha3() << std::endl;
std::cout << "Color =" << (*it).GetColor() << std::endl;
it++
i ++;

}

DTITubeSpatialObject
The source code for this section can be found in the file
Exanpl es/ Spati al Cbj ect s/ DTl TubeSpat i al Obj ect . cxx.

i tk:: DTl TubeSpatial Ohj ect derives fromitk:: TubeSpati al Obj ect . It represents a fiber
tracts from Diffusion Tensor Imaging. A DTITubeSpatial®tiis described as a list of center-
line points which have a position, a radius, normals, thetioaal anisotropy (FA) value, the
ADC value, the geodesic anisotropy (GA) value, the eigaremhnd vectors as well as the full
tensor matrix.

Let'’s start by including the appropriate header file.

#include "itkDTI TubeSpati al Obj ect. h"
#include "itkDTI TubeSpati al Qbj ect Poi nt. h"

DTITubeSpatialObject is templated over the dimension efgphace. A DTITubeSpatialObject
contains a list of DTITubeSpatialObjectPoints.

First we define some type definitions and we create the tube.

typedef itk:: DTl TubeSpati al Qbj ect <3> DTI TubeType;
typedef itk:: DTl TubeSpati al Qbj ect Poi nt <3> DTI TubePoi nt Type;

DTl TubeType: : Poi nter dti Tube = DTl TubeType:: New();

http://www.itk.org/Doxygen/html/classitk_1_1DTITubeSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1TubeSpatialObject.html

132 Chapter 5. Spatial Objects

We create a point list and we set:

1. The position of each point in the local coordinate systesimgithe Set Position()
method.

. The radius of the tube at this position usBeg Radi us() .

. The FA value usingddFi el d(DTl TubePoi nt Type: : FA).

. The ADC value usingddFi el d(DTl TubePoi nt Type: : ADC) .
. The GA value usingddFi el d(DTI TubePoi nt Type: : GA) .

o o B~ wWwN

. The full tensor matrix supposed to be symmetric definitesitp@ value using
Set Tensor Mat ri x().

7. The color of the point is set to red in our case.

DTl TubeType: : Poi nt Li st Type list;
for(i=0; i<5; i++)
{
DTl TubePoi nt Type p;
p. Set Position(i,i+1,i+2);
. Set Radi us(1);
. AddFi el d(DTl TubePoi nt Type: : FA i);
. AddFi el d(DTl TubePoi nt Type: : ADC, 2*i) ;
. AddFi el d(DTl TubePoi nt Type: : GA, 3*i);
. AddFi el d("Lanbdal", 4*i);
(
(

T T T T T T

. AddFi el d("Lanbda2", 5*i);
p. AddFi el d("Lanbda3", 6*i);
float* v = new float[6];
for(unsigned int k=0;k<6; k++)
{
V[k] = k;
}
p. Set Tensor Mat ri x(v);
delete v;
p. Set Col or (1,0,0,1);
|'ist.push_back(p);
}

Next, we create the tube and set its name uSatdiame() . We also set its identification number
with Set 1 d() and, at the end, we add the list of points previously created.

dti Tube- >Get Property() - >Set Name(" DTl Tube");
dti Tube->Set 1d(1);
dti Tube->Set Poi nts(list);

5.6. SceneSpatialObject 133

TheGet Poi nt s() method return a reference to the internal list of points efdbject.

DTl TubeType: : Poi nt Li st Type pointList = dti Tube->Get Poi nts();
std::cout << "Nunber of points representing the fiber tract: "
std::cout << pointList.size() << std::endl;

Then we can access the points using STL iterat@asPosi ti on() andCGet Col or () functions
return respectively the position and the color of the point.

DTl TubeType: : Poi nt Li st Type: : const _iterator it = dti Tube->GetPoints().begin();
i =0;
while(it != dtiTube->GetPoints().end())
{
std::cout << std::endl;
std::cout << "Point #' << i << std::endl;
std::cout << "Position: " << (*it).GetPosition() << std::endl;
std::cout << "Radius: " << (*it).GetRadius() << std::endl;
std::cout << "FA: " << (*it).GetField(DTl TubePoint Type::FA) << std::endl;
std::cout << "ADC. " << (*it).GetField(DTl TubePoi nt Type:: ADC) << std::endl;
std::cout << "GA: " << (*it).GetField(DTlTubePointType::GA) << std::endl;
std::cout << "Lanbdal: " << (*it).GetField("Lanbdal") << std::endl;
std::cout << "Lanbda2: " << (*it).GetField("Lanbda2") << std::endl;
std::cout << "Lanbda3: " << (*it).GetField("Lanbda3") << std::endl;
std::cout << "TensorMatrix: " << (*it).GetTensorMatrix()[0] << " : ";
std::cout << (*it).GetTensorMatrix()[1] << " : ";
std::cout << (*it).GetTensorMatrix()[2] << " : ";
std::cout << (*it).GetTensorMatrix()[3] << " : ";
std::cout << (*it).GetTensorMatrix()[4] << " : ";
std::cout << (*it).GetTensorMatrix()[5] << std::endl;
std::cout << "Color =" << (*it).GetColor() << std::endl;
it++
i ++;

}

5.6 SceneSpatialObject

The source code for this section can be found in the file
Exanpl es/ Spati al Cbj ect s/ SceneSpat i al Qbj ect . cxx.

This example describes how to use thek: : SceneSpat i al Qbj ect . A SceneSpatialObject
contains a collection of SpatialObjects. This example mediy including the appropriate
header file.

#include "itkSceneSpatial Object.h"

http://www.itk.org/Doxygen/html/classitk_1_1SceneSpatialObject.html

134 Chapter 5. Spatial Objects

An SceneSpatialObject is templated over the dimension efsfface which requires all the
objects referenced by the SceneSpatialObject to have ithe demension.

First we define some type definitions and we create the Scatiafbject.

typedef itk::SceneSpatial Object<3> SceneSpati al Obj ect Type;
SceneSpat i al Chj ect Type: : Poi nter scene = SceneSpati al Obj ect Type: : New() ;

Then we create twatk: : El | i pseSpati al Obj ect s.

typedef itk::EllipseSpatial Gbject<3> EllipseType;

El i pseType:: Pointer ellipsel = EllipseType::New);
el I'i psel->Set Radi us(1);

el l'ipsel->Setld(1);

El i pseType:: Pointer ellipse2 = EllipseType::New();
el i pse2->Set1d(2);

el I'i pse2->Set Radi us(2);

Then we add the two ellipses into the SceneSpatialObject.

scene- >AddSpati al Obj ect (el I'i psel);
scene- >AddSpati al Obj ect (el |'i pse2);

We can query the number of objectin the SceneSpatialObjéttheGet Nunber OF Chj ect s()
function. This function takes two optional arguments: teettl at which we should count the
number of objects (default is set to infinity) and the namehefdbject to count (default is set
to NULL). This allows the user to count, for example, onlypks.

std::cout << "Nunber of objects in the SceneSpatial (bject ="
std::cout << scene->Get Number Of Qhj ects() << std::endl;

TheCet Obj ect Byl d() returns the first object in the SceneSpatialObject thatlmaspecified
identification number.

std::cout << "Object in the SceneSpatial Chject with an ID==2: " << std::endl;
scene- >CGet Obj ect Byl d(2) ->Print(std::cout);

Objects can also be removed from the SceneSpatialObjexg tretRenoveSpat i al Obj ect ()
function.

scene- >RenoveSpati al Obj ect (el |'i psel);
The list of current objects in the SceneSpatialObject caretreved using th€et Ghj ect s()

method. Like theZet Nunmber Of Obj ect s() method,Get Obj ect s() can take two arguments: a
search depth and a matching name.

http://www.itk.org/Doxygen/html/classitk_1_1EllipseSpatialObject.html

5.7. Read/Write SpatialObjects 135

SceneSpat i al Cbj ect Type: : Cbj ect Li st Type * nyCbj ectList = scene->Cet Objects();
std::cout << "Nunber of objects in the SceneSpatial (bject ="
std::cout << nyQhjectlList->size() << std::endl;

In some cases, it is useful to define the hierarchy by uBamgnt |1 d() and the current identi-
fication number. This results in having a flat list of Spatiaji€zts in the SceneSpatialObject.
Therefore, the SceneSpatialObject providesRineH er ar chy() method which reorganizes
the Parent-Child hierarchy based on identification numbers

scene- >Fi xHi erarchy();
The scene can also be cleared by usingithear () function.

scene->C ear ();

5.7 Read/Write SpatialObjects

The source code for this section can be found in the file
Exanpl es/ Spati al Cbj ect s/ ReadW i t eSpati al Obj ect . cxx.

Reading and writing SpatialObjects is a fairly simple task. The classes
itk::Spatial ObjectReader and itk::Spatial CbjectWiter are used to read and
write these objects, respectively. (Note these classe® ms& of the MetalO auxiliary 1/O
routines and therefore have eet a file suffix.)

We begin this example by including the appropriate headss. fil

#include "itkSpatial CbjectWiter.h"
#include "itkSpatial Obj ect Reader. h"

Next, we create a SpatialObjectWriter that is templated twedimension of the object(s) we
want to write.

typedef itk::Spatial CbjectWiter<3> WiterType;
WiterType:: Pointer witer = WiterType:: New();

For this example, we create annk: : El | i pseSpat i al Obj ect .

typedef itk::EllipseSpatial Object<3> EllipseType;
El i pseType:: Pointer ellipse = EllipseType:: New();
el I'i pse->Set Radi us(3);

http://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectReader.html
http://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectWriter.html
http://www.itk.org/Doxygen/html/classitk_1_1EllipseSpatialObject.html

136 Chapter 5. Spatial Objects

Finally, we set to the writer the object to write using e | nput () method and we set the
name of the file withSet Fi | eName() and call theUpdat e() method to actually write the in-
formation.

writer->Setlnput(ellipse);
writer->SetFileName("ellipse. neta");
writer->Update();

Now we are ready to open the freshly created object. We fiesitera SpatialObjectReader
which is also templated over the dimension of the object efile. This means that the file
should contain only objects with the same dimension.

typedef itk::Spatial Object Reader<3> Reader Type;
Reader Type: : Poi nter reader = Reader Type:: New();

Next we set the name of the file to read usiegFi | eNane() and we call théjpdat e() method
to read the file.

reader->Set Fil eNane("el | i pse. meta");
reader - >Updat e();

To get the objects in the file you can call tGet Scene() method or theé&et Group() method.
Cet Scene() returns an pointer to at k: : SceneSpat i al Obj ect .

Reader Type: : SceneType * scene = reader->Cet Scene();
std::cout << "Nunber of objects in the scene: ";
std::cout << scene->Get Number Of Ghj ects() << std::endl;
Reader Type: : G oupType * group = reader->CGet G oup();
std::cout << "Nunber of objects in the group: ";
std::cout << group->Get Nunber O Chil dren() << std::endl;

5.8 Statistics Computation via SpatialObjects

The source code for this section can be found in the file
Exanpl es/ Spati al Cbj ect s/ Spati al Chj ect Tol nageSt ati sti csCal cul at or. cxx.

This example describes how to use thek: : Spati al Obj ect Tol mageSt ati sti csCal cul at or
to compute statistics of anitk::Inmage only in a region defined inside a given
itk::Spatial Object.

#include "itkSpatial Object Tol mageSt ati sticsCal cul ator. h"

We first create a test image using thek: : Random mageSour ce

http://www.itk.org/Doxygen/html/classitk_1_1SceneSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectToImageStatisticsCalculator.html
http://www.itk.org/Doxygen/html/classitk_1_1Image.html
http://www.itk.org/Doxygen/html/classitk_1_1SpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1RandomImageSource.html

5.8. Statistics Computation via SpatialObjects 137

typedef itk::Image<unsigned char, 2> | mageType;

typedef itk::Randonm mageSour ce<l nageType> Randoni mageSour ceType;

Randont mageSour ceType: : Poi nter randonl mageSour ce = Randoni mageSour ceType: : New() ;
unsi gned |ong size[2];

size[0] = 10;

size[1] = 10;

random mageSour ce- >Set Si ze(si ze);

random mageSour ce- >Updat e() ;

| mgeType: : Pointer image = random nageSour ce- >CGet Qut put () ;

Next we create antk: : El | i pseSpati al Obj ect with a radius of 2. We also move the ellipse
to the center of the image by increasing the offset of theXmd®bjectTransform.

typedef itk::EllipseSpatial Gbject<2> EllipseType;

El lipseType::Pointer ellipse = EllipseType:: New();

el I'i pse->Set Radi us(2);

El |ipseType:: Vector Type of f set;

of fset.Fill(5);

el I'i pse->Get | ndexToOhj ect Transforn()->Set Of f set (of f set);
el I'i pse->Conput eChj ect ToPar ent Transforn() ;

Then we can create thiet k: : Spati al Chj ect Tol mageSt ati sticsCal cul at or

typedef itk::Spatial Object Tol mageSt ati sticsCal cul ator<
| mgeType, EllipseType > Cal cul ator Type;
Cal cul at or Type: : Poi nter cal cul ator = Cal cul ator Type:: New();

We pass a pointer to the image to the calculator.
cal cul at or->Set | mage(i nage) ;

And we also pass the SpatialObject. The statistics will hamated inside the SpatialObject
(Internally the calculator is using thel nsi de() function).

cal cul at or->Set Spati al Obj ect (el lipse);

At the end we trigger the computation via thgdat e() function and we can retrieve the mean
and the covariance matrix usifigt Mean() andGet Covari anceMatri x() respectively.

cal cul at or->Updat e();
std::cout << "Sanple mean = " << cal cul ator->CGet Mean() << std::endl
std::cout << "Sanple covariance = " << cal cul ator->Get Covari anceMat rix();

http://www.itk.org/Doxygen/html/classitk_1_1EllipseSpatialObject.html
http://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectToImageStatisticsCalculator.html

CHAPTER

SIX

Filtering

This chapter introduces the most commonly used filters fdoritie toolkit. Most of these
filters are intended to process images. They will accept omeare images as input and will
produce one or more images as output. ITK is based on a daing@@rchitecture in which
the output of one filter is passed as input to another filtexe (Sectior8.50n page28 for more
information.)

6.1 Thresholding

The thresholding operation is used to change or identifglpiglues based on specifying one
or more values (called ththresholdvalue). The following sections describe how to perform
thresholding operations using ITK.

6.1.1 Binary Thresholding

The source code for this section can be found in the file
Exanpl es/ Fi | teri ng/ Bi naryThr eshol dl mageFi | t er. cxx.

140 Chapter 6. Filtering

This example illustrates the use ﬁ;‘;’;‘;fr

of the binary threshold image fil- Inside Y
ter. This filter is used to transform yaue |
an image into a binary image by
changing the pixel values according

to the rule illustrated in Figuré.1

The user defines two thresholds—

Upper and Lower—and two inten- outside ¢
sity values—Inside and Outside. Value
For each pixel in the input image, ‘ ‘
the value of the pixel is compared * M

Input
. Lower Upper .
with the lower and upper thresh- Threshold Threshold Intensity

olds. If the pixel value is inside therjgure 6.1: Transfer function of the BinaryThresholdimage-
range defined bylLowerUppel Eiter.

the output pixel is assigned the In-

sideValue. Otherwise the output pixels are assigned to thsideValue. Thresholding is com-
monly applied as the last operation of a segmentation mipeli

The first step required to use th¢k: : Bi naryThr eshol dl mageFi | t er is to include its header
file.

#include "itkBinaryThreshol dl nageFilter.h"
The next step is to decide which pixel types to use for thetiapd output images.

typedef unsigned char | nputPixel Type;
typedef unsigned char Qutput Pi xel Type;

The input and output image types are now defined using thepeaive pixel types and dimen-
sions.

typedef itk::Image< InputPixel Type, 2 > |nputlmageType;
typedef itk::lmage< CutputPixel Type, 2 > QutputlnageType;

The filter type can be instantiated using the input and outpage types defined above.

typedef itk::BinaryThreshol dl nageFilter<
I nput | mageType, CQutput|mageType > FilterType;

An itk::lmgeFil eReader class is also instantiated in order to read image data froie.a fi
(See Sectioir on page263for more information about reading and writing data.)

typedef itk::lmageFileReader< InputlnageType > Reader Type;

http://www.itk.org/Doxygen/html/classitk_1_1BinaryThresholdImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html

6.1. Thresholding 141

An itk::lmageFileWiter isinstantiated in order to write the output image to a file.
typedef itk::ImageFileWiter< InputlmgeType > WiterType;

Both the filter and the reader are created by invoking tNew() methods and assigning the
resulttoitk:: SnartPointers.

Reader Type: : Poi nter reader
FilterType::Pointer filter

Reader Type: : New() ;
FilterType:: New();

The image obtained with the reader is passed as input to trerBihresholdimagekFilter.
filter->Set!|nput(reader->CetQutput());

The methodSet Qut si deVal ue() defines the intensity value to be assigned to those pixels
whose intensities are outside the range defined by the lawckupper thresholds. The method
Set I nsi deVal ue() defines the intensity value to be assigned to pixels witmgitees falling
inside the threshold range.

filter->SetQutsideVal ue(outsideValue);
filter->SetlnsideValue(insideValue);

The method$et Lower Thr eshol d() andSet Upper Threshol d() define the range of the input
image intensities that will be transformed into thesi deVal ue. Note that the lower and upper
thresholds are values of the type of the input image pixefélethe inside and outside values
are of the type of the output image pixels.

filter->SetLower Threshol d(| ower Threshold);
filter->SetUpper Threshol d(upper Threshol d);

The execution of the filter is triggered by invoking thgdat e() method. If the filter's output
has been passed as input to subsequent filterspttet () call on any posterior filters in the
pipeline will indirectly trigger the update of this filter.

filter->Update();

Figure6.2illustrates the effect of this filter on a MRI proton densityage of the brain. This
figure shows the limitations of this filter for performing segntation by itself. These limita-
tions are particularly noticeable in noisy images and ingesalacking spatial uniformity as is
the case with MRI due to field bias.

The following classes provide similar functionality:

e itk:: Threshol dl mageFilter

http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
http://www.itk.org/Doxygen/html/classitk_1_1ThresholdImageFilter.html

142 Chapter 6. Filtering

Figure 6.2:Effect of the BinaryThresholdimageFilter on a slice from a MRI proton density image of the
brain.

6.1.2 General Thresholding

The source code for this section can be found in the file
Exanpl es/ Fi | teri ng/ Threshol dl mageFi | t er. cxx.

This example illustrates the use of thék: : Threshol dI mageFi | t er . This filter can be used
to transform the intensity levels of an image in three défemways.

e First, the user can define a single threshold. Any pixels watlhies below this threshold
will be replaced by a user defined value, called hereGitesi deVal ue. Pixels with
values above the threshold remain unchanged. This typeestiblding is illustrated in
Figure6.3

e Second, the user can define a particular threshold such lthaeagpixels with values
above the threshold will be replaced by ta si deVal ue. Pixels with values below the
threshold remain unchanged. This is illustrated in Figl#e

e Third, the user can provide two thresholds. All the pixeldwmimtensity values inside the
range defined by the two thresholds will remain unchangexkel®iwith values outside
this range will be assigned to ti@at si deVal ue. This is illustrated in Figuré.5.

The following methods choose among the three operating sofdhe filter.

e Threshol dBel ow()

http://www.itk.org/Doxygen/html/classitk_1_1ThresholdImageFilter.html

6.1. Thresholding 143

QOutput
Intensity
Unchanged
Intensities
Outside !
Value T !
Threshold Input '
Below Intensity
Figure 6.3:ThresholdimageFilter using the threshold-below mode.
Output
Intensity
Outside ® --------------~- _
Value !

Unchanged

- Input
Intensities

Intensity

Threshold
Above

Figure 6.4 ThresholdimageFilter using the threshold-above mode.

QOutput
Intensity
I
I
I
I
I
I
|
7 Unchanged |
. ' Intensities |
Outside . |
Value T |
I
Lower Upper Input
Threshold Threshold ~ Intensity

Figure 6.5:ThresholdimageFilter using the threshold-outside mode.

144 Chapter 6. Filtering

e Threshol dAbove()
e Threshol dQut si de()

The first step required to use this filter is to include its feedie.
#include "itkThreshol dl mageFilter.h"

Then we must decide what pixel type to use for the image. Tités i templated over a single
image type because the algorithm only modifies pixel valuéside the specified range, passing
the rest through unchanged.

typedef unsigned char Pixel Type;

The image is defined using the pixel type and the dimension.
typedef itk::Image< Pixel Type, 2 > [|nmageType;

The filter can be instantiated using the image type definedeabo
typedef itk::Threshol dl mageFilter< I mageType > FilterType;

An itk:: I mageFil eReader class is also instantiated in order to read image data frofa.a fi
typedef itk::ImageFil eReader< | mageType > Reader Type;

An itk::ImageFil eWiter isinstantiated in order to write the output image to a file.
typedef itk::ImageFileWiter< InageType > WiterType;

Both the filter and the reader are created by invoking tNew() methods and assigning the
result to SmartPointers.

Reader Type: : Poi nter reader
FilterType::Pointer filter

Reader Type: : New() ;
FilterType:: New();

The image obtained with the reader is passed as input tottke: Thr eshol dl mageFi | ter.
filter->Setlnput(reader->GetCQutput());

The methodSet Qut si deVal ue() defines the intensity value to be assigned to those pixels
whose intensities are outside the range defined by the lavckupper thresholds.

http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
http://www.itk.org/Doxygen/html/classitk_1_1ThresholdImageFilter.html

6.2. Edge Detection 145

filter->SetQutsideValue(0);

The methodrhr eshol dBel ow() defines the intensity value below which pixels of the input
image will be changed to theut si deVal ue.

filter->Threshol dBel ow(180);

The filter is executed by invoking tHdpdat e() method. If the filter is part of a larger image
processing pipeline, callingpdat e() on a downstream filter will also trigger update of this
filter.

filter->Update();

The output of this example is shown in Figlee. The second operating mode of the filter is
now enabled by calling the methddr eshol dAbove() .

filter->Threshol dAbove(180);
filter->Update();

Updating the filter with this new setting produces the oughdwn in Figures.4. The third
operating mode of the filter is enabled by callifftg eshol dQut si de() .

filter->Threshol dQutside(170,190);
filter->Update();

The output of this third, “band-pass” thresholding modehisven in Figure6.5.

The examples in this section also illustrate the limitagiohthe thresholding filter for perform-
ing segmentation by itself. These limitations are partidylnoticeable in noisy images and in
images lacking spatial uniformity, as is the case with MRe tlufield bias.

The following classes provide similar functionality:

e itk::BinaryThreshol dl nageFi | ter

6.2 Edge Detection

6.2.1 Canny Edge Detection

The source code for this section can be found in the file
Exanpl es/ Fi | t eri ng/ CannyEdgeDet ect i onl nageFi | t er. cxx.

http://www.itk.org/Doxygen/html/classitk_1_1BinaryThresholdImageFilter.html

146 Chapter 6. Filtering

This example introduces the use of thek: : CannyEdgeDet ect i onl mageFi | t er . This filter
is widely used for edge detection since it is the optimal Sotusatisfying the constraints of
good sensitivity, localization and noise robustness.

The first step required for using this filter is to include iealder file
#include "itkCannyEdgeDet ecti onl mageFil ter.h"

This filter operates on image of pixel type float. It is thenes=ary to cast the type of the input
images that are usually of integer type. Thek: : Cast | nageFi | ter is used here for that
purpose. Its image template parameters are defined fongdstim the input type to the float
type using for processing.

typedef itk::CastlmageFilter< CharlmgeType, Real | mageType> Cast ToReal Filter Type;

The i tk:: CannyEdgeDet ecti onl mageFi | t er is instantiated using the float image type.

6.3 Casting and Intensity Mapping

The filters discussed in this section perform pixel-wisemsity mappings. Casting is used to
convert one pixel type to another, while intensity mappialge take into account the different
intensity ranges of the pixel types.

6.3.1 Linear Mappings

The source code for this section can be found in the file
Exanpl es/ Fi | tering/ Castingl mageFi | ters. cxx.

Due to the use oBeneric Programminigp the toolkit, most types are resolved at compile-time.
Few decisions regarding type conversion are left to ruretihhis up to the user to anticipate
the pixel type-conversions required in the data pipelimemedical imaging applications it is
usually not desirable to use a general pixel type since tlaig rasult in the loss of valuable
information.

This section introduces the mechanisms for explicit cgstihimages that flow through the
pipeline. The following four filters are treated in this sent itk:: CastlnmageFilter,
itk::Rescal el ntensitylmageFilter, itk::ShiftScal el mageFilter and
itk::NormalizelmageFilter. These filters are not directly related to each other ex-
cept that they all modify pixel values. They are presentegtioer here with the purpose of
comparing their individual features.

The CastimagerFilter is a very simple filter that acts pixederon an input image, casting every
pixel to the type of the output image. Note that this filter slo®t perform any arithmetic

http://www.itk.org/Doxygen/html/classitk_1_1CannyEdgeDetectionImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1CastImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1CannyEdgeDetectionImageFilter.html
http://www.boost.org/more/generic_programming.html
http://www.itk.org/Doxygen/html/classitk_1_1CastImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1RescaleIntensityImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ShiftScaleImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1NormalizeImageFilter.html

6.3. Casting and Intensity Mapping 147

operation on the intensities. Applying CastimageFiltezgsiivalent to performing & Styl e
cast on every pixel.

out put Pi xel = static_cast<QutputPixel Type>(inputPixel)

The RescalelntensitylmageFilter linearly scales thelpixieies in such a way that the minimum
and maximum values of the input are mapped to minimum and maxi values provided by

the user. This is a typical process for forcing the dynamigeaof the image to fit within a

particular scale and is common for image display. The linearsformation applied by this
filter can be expressed as

(outMax— outMin)
(inpMax— inpMin)

out putPixel= (inputPixel—inpMin) x -+ outMin

The ShiftScalelmageFilter also applies a linear transétion to the intensities of the input
image, but the transformation is specified by the user inahm f a multiplying factor and a
value to be added. This can be expressed as

out putPixel= (inputPixel+ Shift) x Scale

The parameters of the linear transformation applied by thiedlizelmageFilter are computed
internally such that the statistical distribution of grayels in the output image have zero mean
and a variance of one. This intensity correction is paréidyluseful in registration applications
as a preprocessing step to the evaluation of mutual infeomatetrics. The linear transforma-
tion of NormalizelmageFilter is given as

(inputPixel— mean

vvariance

As usual, the first step required to use these filters is tadectheir header files.

out putPixel=

#include "itkCastlmageFilter.h"

#include "itkRescal el ntensitylmgeFilter.h"
#include "itkShiftScal el mgeFilter.h"
#include "itkNormalizel mageFilter.h"

Let's define pixel types for the input and output images.

typedef unsigned char I nput Pi xel Type;
typedef float Qut put Pi xel Type;

Then, the input and output image types are defined.

148 Chapter 6. Filtering

typedef itk::lmage< InputPixel Type, 3 > InputlmageType;
typedef itk::Image< QutputPixel Type, 3 > QutputlnageType;

The filters are instantiated using the defined image types.

typedef itk::CastlmageFilter<
I nput I mageType, CQutputlmageType > CastFilterType;

typedef itk::RescalelntensitylmgeFilter<
I nput | mageType, CQutput|mageType > Rescal eFilterType;

typedef itk::ShiftScal el mageFilter<
I nput | mageType, CQutput|mageType > Shift Scal eFilterType;

typedef itk::Normalizel mgeFilter<
I nput | mageType, CQutput|mageType > NormalizeFilterType;

Object filters are created by invoking théew() operator and assigning the result to
itk:: SmartPointers.

CastFil terType:: Pointer castFilter
Rescal eFi | t er Type: : Poi nter rescal eFil ter Rescal eFi | ter Type:: New();
ShiftScal eFilterType:: Pointer shiftFilter ShiftScal eFilterType:: New();
Normal i zeFi |l ter Type:: Pointer normalizeFilter = NormalizeFilterType:: New();

CastFilterType:: New();

The output of a reader filter (whose creation is not shown)herw connected as input to the
various casting filters.

cast Fi | ter->Set | nput (reader->CGet Qutput ());
shiftFilter->Set|nput(reader->CGet Qutput ());
rescal eFi | ter->Set|nput(reader->CGet Qutput ());

normal i zeFi | ter->SetInput(reader->GetQutput())

Next we proceed to setup the parameters required by eaah Tilhe CastimageFilter and the
NormalizelmageFilter do not require any parameters. Thee&elntensitylmageFilter, on the
other hand, requires the user to provide the desired minimadhnmaximum pixel values of
the output image. This is done by using 8& Qut put M ni mun{) andSet Qut put Maxi mun{()
methods as illustrated below.

rescal eFil ter->Set Qut put M ni nunm(10);
rescal eFi | ter->Set Qut put Maxi num(250);

The ShiftScalelmageFilter requires a multiplication fadiscale) and a post-scaling additive
value (shift). The methodSet Scal e() andSet Shift() are used, respectively, to set these
values.

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

6.3. Casting and Intensity Mapping 149

shiftFilter->SetScale(1.2);
shiftFilter->SetShift(25);

Finally, the filters are executed by invoking tbgdat e() method.

castFilter->Update();
shiftFilter->Update();
rescal eFil ter->Update();
normal i zeFi | ter->Update();

6.3.2 Non Linear Mappings

The following filter can be seen as a variant of the castingréltIts main difference is the use
of a smooth and continuous transition function of non-lirfeam.

The source code for this section can be found in the file
Exanpl es/ Fil tering/ Si gnoi dl mageFi | ter. cxx.

The itk:: Signoi dl nageFi | ter is commonly used as an intensity transform. It maps a spe-
cific range of intensity values into a new intensity range gking a very smooth and con-
tinuous transition in the borders of the range. Sigmoidsvddely used as a mechanism for
focusing attention on a particular set of values and prairely attenuating the values outside
that range. In order to extend the flexibility of the Sigmoitefi its implementation in ITK
includes four parameters that can be tuned to select it¢ anpioutput intensity ranges. The
following equation represents the Sigmoid intensity tfarmaation, applied pixel-wise.

I’:(Max—Min)-;JrMin (6.1)

(1+e ()

In the equation abové,is the intensity of the input pixel, the intensity of the output pixel,
Min, Maxare the minimum and maximum values of the output imag#gfines the width of the
input intensity range, an@ defines the intensity around which the range is centeredir&&6
illustrates the significance of each parameter.

This filter will work on images of any dimension and will takévantage of multiple processors
when available.

The header file corresponding to this filter should be inaifitst.
#include "itkSi gnoi dl mageFilter.h"
Then pixel and image types for the filter input and output nbestiefined.

typedef unsigned char [InputPixel Type;

http://www.itk.org/Doxygen/html/classitk_1_1SigmoidImageFilter.html

150 Chapter 6. Filtering

' OutputMaximul

ir —

Alpha=-1

08F N\

Beta = -

1 o8 Beta= 0

4 osl
04 Alpha=2 \ I\ Alpha=0.25 4 04f

Alpha=1 |
/J \ Alpha=0.5
| > 1 02r Beta=2 -
| g S~ Beta=z4

T 0

)) 77OutputMinimum
-10 5 0 5 1 -10 -5 0 5 i

Figure 6.6:Effects of the various parameters in the SigmoidimageFilter. The alpha parameter defines the
width of the intensity window. The beta parameter defines the center of the intensity window.

typedef unsigned char QutputPixel Type;

typedef itk::lmage< InputPixel Type, 2 > InputlmageType;
typedef itk::Image< QutputPixel Type, 2 > QutputlnageType;

Using the image types, we instantiate the filter type andterte filter object.

typedef itk::Signoidl mageFilter<
I nput | mageType, CQutput|mageType > Signoi dFilterType;
Si grmoi dFi | ter Type: : Pointer signoidFilter = SignoidFilterType:: New();

The minimum and maximum values desired in the output are elkfusing the methods
Set Qut put M ni mun{) andSet Qut put Maxi nunt) .

si gnoi dFi |l ter->Set Qut put M ni mun{ out put M ni num);
si gnoi dFi | ter->Set Qut put Maxi mun{ out put Maxi num);

The coefficientsx and3 are set with the methodt Al pha() andSet Bet a(). Note thata

is proportional to the width of the input intensity windows Aule of thumb, we may say that
the window is the interval—3a,3a]. The boundaries of the intensity window are not sharp.
Thea curve approaches its extrema smoothly, as shown in FigéreYou may want to think
about this in the same terms as when taking a range in a paputdtmeasures by defining an
interval of[—-30,+30] around the population mean.

si gnoi dFil ter->Set Al pha(alpha);
signoidFilter->SetBeta(beta);

The input to the SigmoidimageFilter can be taken from angofitter, such as an image file
reader, for example. The output can be passed down thempégeliother filters, like an image
file writer. An update call on any downstream filter will trigggthe execution of the Sigmoid
filter.

6.3. Casting and Intensity Mapping 151

Figure 6.7:Effect of the Sigmoid filter on a slice from a MRI proton density brain image.

si gnoi dFi | ter->Set I nput (reader->GetQutput());
writer->Set!|nput(signoidFilter->CetCQutput());
writer->Update();

Figure6.7illustrates the effect of this filter on a slice of MRI brainagpe using the following
parameters.

e Minimum =10

e Maximum = 240
e 0=10

e B=170

As can be seen from the figure, the intensities of the whitdenatere expanded in their dy-
namic range, while intensity values lower th@r- 3a and higher thar + 3a became pro-

gressively mapped to the minimum and maximum output valdéss is the way in which a

Sigmoid can be used for performing smooth intensity winamuwi

Note that botha and 3 can be positive and negative. A negativewill have the effect of
negatingthe image. This is illustrated on the left side of Fig@é. An application of the
Sigmoid filter as preprocessing for segmentation is preskintSectiord.3.1

Sigmoid curves are common in the natural world. They reprtese plot of sensitivity to a
stimulus. They are also the integral curve of the Gaussiah therefore, appear naturally as
the response to signals whose distribution is Gaussian.

152 Chapter 6. Filtering

6.4 Gradients

Computation of gradients is a fairly common operation ingearocessing. The term “gradi-
ent” may refer in some contexts to the gradient vectors arathiers to the magnitude of the
gradient vectors. ITK filters attempt to reduce this ambighy including themagnitudeerm
when appropriate. ITK provides filters for computing botk tmage of gradient vectors and
the image of magnitudes.

6.4.1 Gradient Magnitude

The source code for this section can be found in the file
Exanpl es/ Fi | teri ng/ Gradi ent Magni t udel mageFi | t er. cxx.

The magnitude of the image gradient is extensively used egamanalysis, mainly to help
in the determination of object contours and the separatiohommogeneous regions. The

i tk::Gadi ent Magni t udel mageFi | t er computes the magnitude of the image gradient at
each pixel location using a simple finite differences apphoaFor example, in the case of
2D the computation is equivalent to convolving the image witisks of type

-1

(2] of]

then adding the sum of their squares and computing the sgo@iref the sum.

This filter will work on images of any dimension thanks to theternal use of
i tk::Nei ghborhoodlterator anditk:: Nei ghborhoodQperator .

The first step required to use this filter is to include its feadie.
#include "itkG adi ent Magni t udel mageFilter.h"
Types should be chosen for the pixels of the input and outpages.

t ypedef fl oat | nput Pi xel Type;
t ypedef fl oat Qut put Pi xel Type;

The input and output image types can be defined using the tppes.

typedef itk::Image< InputPixel Type, 2 > |nputlmageType;
typedef itk::lmage< QutputPixel Type, 2 > QutputlnageType;

http://www.itk.org/Doxygen/html/classitk_1_1GradientMagnitudeImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodIterator.html
http://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodOperator.html

6.4. Gradients 153

The type of the gradient magnitude filter is defined by the inmage and the output image
types.

typedef itk:: G adientMagnitudel mageFilter<
I nput I mageType, CQutputlmageType > FilterType;

A filter object is created by invoking th&ew() method and assigning the result to a
i tk::SmartPointer.

FilterType::Pointer filter = FilterType:: New();

The input image can be obtained from the output of another.fiiere, the source is an image
reader.

filter->Setlnput(reader->GetCQutput());
Finally, the filter is executed by invoking thépdat e() method.
filter->Update();

If the output of this filter has been connected to other filtera pipeline, updating any of the
downstream filters will also trigger an update of this filfeor example, the gradient magnitude
filter may be connected to an image writer.

rescal er->SetInput(filter->CGetQutput());
writer->Setlnput(rescaler->GtQutput());
writer->Update();

Figure6.8illustrates the effect of the gradient magnitude filter on RINroton density image
of the brain. The figure shows the sensitivity of this filtentuisy data.

Attention should be paid to the image type chosen to repteakenoutput image since the
dynamic range of the gradient magnitude image is usuallflenthan the dynamic range of
the inputimage. As always, there are exceptions to this fotexample, synthetic images that
contain high contrast objects.

This filter does not apply any smoothing to the image beforapating the gradients. The
results can therefore be very sensitive to noise and may edielst choice for scale space
analysis.

6.4.2 Gradient Magnitude With Smoothing

The source code for this section can be found in the file
Exanpl es/ Fi | teri ng/ Gradi ent Magni t udeRecur si veGaussi anl mageFi | t er. cxx.

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

154 Chapter 6. Filtering

Figure 6.8:Effect of the GradientMagnitudelmageFilter on a slice from a MRI proton density image of the
brain.

Differentiation is an ill-defined operation over digitaltdaln practice it is convenient to define
a scale in which the differentiation should be performedsT$husually done by preprocessing
the data with a smoothing filter. It has been shown that a Gauksrnel is the most convenient
choice for performing such smoothing. By choosing a paldicualue for the standard devi-
ation (0) of the Gaussian, an associated scale is selected thaeghayh frequency content,
commonly considered image noise.

The itk:: G adi ent Magni t udeRecur si veGaussi anl mageFi | t er computes the magnitude
of the image gradient at each pixel location. The computatiprocess is equivalent to first
smoothing the image by convolving it with a Gaussian kernel gtnen applying a differential
operator. The user selects the valueof

Internally this is done by applying an lIR filter that approximates a convolution with the
derivative of the Gaussian kernel. Traditional convolatigll produce a more accurate result,
but the IIR approach is much faster, especially using lagR1, 22].

GradientMagnitudeRecursiveGaussianimageFilter wilftkvon images of any dimension by
taking advantage of the natural separability of the Gandganel and its derivatives.

The first step required to use this filter is to include its fegdie.
#include "itkG adi ent Magni t udeRecur si veGaussi anl mageFi | ter. h"

Types should be instantiated based on the pixels of the anpibutput images.

Linfinite Impulse Response

http://www.itk.org/Doxygen/html/classitk_1_1GradientMagnitudeRecursiveGaussianImageFilter.html

6.4. Gradients 155

t ypedef fl oat | nput Pi xel Type;
t ypedef fl oat Qut put Pi xel Type;

With them, the input and output image types can be instatiat

typedef itk::lmage< InputPixel Type, 2 > InputlmageType;
typedef itk::Image< QutputPixel Type, 2 > QutputlnageType;

The filter type is now instantiated using both the inputimagd the output image types.

typedef itk:: G adientMagnitudeRecursiveGussi anl mageFilter<
I nput | mageType, QutputlmageType > FilterType;

A filter object is created by invoking th&ew() method and assigning the result to a
itk:: SmartPointer.

FilterType::Pointer filter = FilterType:: New();

The inputimage can be obtained from the output of another.fiiere, an image reader is used
as source.

filter->Setlnput(reader->GetCQutput());

The standard deviation of the Gaussian smoothing kernelisset.
filter->SetSigma(sigm);

Finally the filter is executed by invoking thépdat e() method.
filter->Update();

If connected to other filters in a pipeline, this filter willtamatically update when any down-
stream filters are updated. For example, we may connect tadiemt magnitude filter to an
image file writer and then update the writer.

rescal er->SetInput(filter->GetQutput());
writer->Set|nput(rescaler->GetCQutput());
writer->Update();

Figure6.9illustrates the effect of this filter on a MRI proton densityage of the brain using
values of 3 (left) and 5 (right). The figure shows how the deiitsi to noise can be regulated
by selecting an appropriate This type of scale-tunable filter is suitable for performstale-
space analysis.

/ Attention should be paid to the image type chosen to reptdbe output image since the
dynamic range of the gradient magnitude image is usuallylenthan the dynamic range of
the input image.

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

156 Chapter 6. Filtering

Figure 6.9:Effect of the GradientMagnitudeRecursiveGaussianimageFilter on a slice from a MRI proton
density image of the brain.

6.4.3 Derivative Without Smoothing

The source code for this section can be found in the file
Exanpl es/ Fil tering/ Derivativel mageFilter.cxx.

The i tk::Derivativel mageFilter is used for computing the partial derivative of an image,
the derivative of an image along a particular axial direttio

The header file corresponding to this filter should be inadifitst.
#include "itkDerivativel mageFilter.h"

Next, the pixel types for the input and output images mustdimdd and, with them, the image
types can be instantiated. Note that it is important to $elesigned type for the image, since
the values of the derivatives will be positive as well as iigga

typedef float InputPixel Type;
typedef float QutputPixel Type;

const unsigned int Dimension = 2;

typedef itk::I1mage< InputPixel Type, Dinmension > |nputlnmgeType;
typedef itk::Image< QutputPixel Type, Dinmension > QutputlmageType;

Using the image types, it is now possible to define the filtpetsgnd create the filter object.

http://www.itk.org/Doxygen/html/classitk_1_1DerivativeImageFilter.html

6.4. Gradients 157

Figure 6.10:Effect of the Derivative filter on a slice from a MRI proton density brain image.

typedef itk::Derivativel mgeFilter<
I nput | mageType, CQutput|mageType > FilterType;

FilterType::Pointer filter = FilterType:: New();

The order of the derivative is selected with 8e Or der () method. The direction along which
the derivative will be computed is selected with 8e¢ Di r ecti on() method.

filter->Set O der(atoi (argv[4]));
filter->SetDirection(atoi(argv[5]));

The input to the filter can be taken from any other filter, foamyple a reader. The output
can be passed down the pipeline to other filters, for exanaplberiter. An update call on any
downstream filter will trigger the execution of the derivatfilter.

filter->Set!|nput(reader->CetQutput());
writer->Setlnput(filter->GetQutput())
writer->Update();

Figure6.10illustrates the effect of the DerivativelmageFilter on @eslof MRI brain image.
The derivative is taken along thedirection. The sensitivity to noise in the image is evident
from this result.

158 Chapter 6. Filtering

6.5 Second Order Derivatives

6.5.1 Second Order Recursive Gaussian

The source code for this section can be found in the file
Exanpl es/ Fi | teri ng/ SecondDer i vati veRecur si veGaussi anl mageFi | t er. cxx.

This example illustrates how to compute second derivativksa 3D image using the
i tk::RecursiveGaussi anl mageFilter.

In this example, all the second derivatives are computeédpaddently in the same way as if
they were intended to be used for building the Hessian matiiie image.

#include "itkRecursiveGussianl mageFilter.h"
#include "itklmageFi| eReader. h"

#include "itklmgeFileWiter.h"

#include "itklmageDuplicator.h"

#include "itklmge.h"

#include <string>

int main(int argc, char * argv [])

{

if(argc < 3)
{
std::cerr << "Usage: " << std::endl;
std::cerr << "SecondDerivativeRecursiveGaussi anl mageFilter inputlmge outputPrefix
return EXI T_FAI LURE,
}

typedef float Pi xel Type;

typedef float Qut put Pi xel Type;

const unsigned int Dinension = 3;

typedef itk::Image< Pixel Type, Di nension > | nageType;
typedef itk::Image< QutputPixel Type, Dinension > CQutputlnmgeType;

typedef itk::ImageFil eReader< | nageType > Reader Type;
typedef itk::ImageFileWiter< QutputlnmageType > WiterType;

typedef itk::ImageDuplicator< QutputlmageType > DuplicatorType;
typedef itk::RecursiveGussianl mageFilter<

| mageType,
| mgeType > FilterType;

[sigma] "

<< st

http://www.itk.org/Doxygen/html/classitk_1_1RecursiveGaussianImageFilter.html

6.5. Second Order Derivatives 159

Reader Type: : Poi nter reader
WiterType:: Pointer witer

Reader Type: : New() ;
WiterType:: New();

Dupl i cat or Type: : Poi nter duplicator = DuplicatorType::New);
reader->Set Fil eNane(argv[1]);

std::string outputPrefix = argv[2];
std::string outputFileNane;

try
{
reader - >Updat e() ;
}
catch(itk::ExceptionChject & excp)
{
std::cerr << "Problemreading the input file" << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAI LURE;

}

Fil terType:: Pointer ga
Fi |l terType:: Pointer gh
FilterType:: Pointer gc

FilterType:: New();
FilterType:: New();
FilterType:: New();

ga->SetDirection(0);
gh->SetDirection(1);
gc->SetDirection(2);
if(argc > 3)

{

const float sigma = atof(argv[3]);
ga- >Set Si gna(sigma);

gbh- >Set Si gna(sigma);

gc->Set Signa(signma);

}

ga- >Set ZeroOrder () ;

gb- >Set Zer oOrder () ;

gc- >Set SecondOr der () ;

| mageType: : Pointer inputlmge = reader->CGet Qut put();

ga- >Set | nput (i nputlnmage);
gb->Set | nput (ga->Get Qutput ());
gc->Set | nput (gh->Get Qutput ());

dupl i cator->Set|nput|mage(gc->CetCQutput());

160 Chapter 6. Filtering

gc->Updat e() ;
dupl i cator->Updat e();

| mgeType: : Pointer 1zz = duplicator->CGetQutput();

writer->Setlnput(lzz);

out put Fi | eName = outputPrefix + "-1zz.nhd";
writer->SetFileName(outputFileNanme.c_str());
writer->Update();

gc->SetDirection(1); // gc now works along Y
gb->SetDirection(2); [// gb now works along Z

gc->Updat e() ;
dupl i cator->Updat e();

| mgeType: : Pointer |yy = duplicator->CGetQutput();

writer->Setlnput(lyy);

out put Fi | eName = outputPrefix + "-lyy.nhd";
writer->SetFileName(outputFileNanme.c_str());
writer->Update();

/'l gc now works al ong X

gc->SetDirection(0)
1 /'l ga now works along Y

ga->SetDirection(1);
gc->Update();
dupl i cat or->Updat e();

| mgeType: : Pointer |xx = duplicator->CGetQutput();

writer->Setlnput(Ixx);

out put Fi | eName = outputPrefix + "-1xx.nhd";
writer->SetFileName(outputFileName.c_str());
writer->Update();

ga->SetDirection(0);
gh->SetDirection(1);
gc->SetDirection(2);
ga- >Set Zer oOr der ()

gb->Set FirstOrder();
gc->Set FirstOrder();

6.5. Second Order Derivatives 161

gc->Updat e() ;
dupl i cator->Updat e();

| mgeType: : Pointer Iyz = duplicator->CGetQutput();

writer->Setlnput(lyz);

out put Fi | eName = outputPrefix + "-1yz. nmhd";
writer->SetFileName(outputFileName.c_str());
writer->Update();

ga->SetDirection(1);
gh->SetDirection(0);
gc->SetDirection(2);

ga- >Set ZeroOrder () ;
gb->Set FirstOrder();
gc->Set FirstOrder();

gc->Update();
dupl i cator->Updat e();

| mgeType: : Pointer Ixz = duplicator->CGetQutput();

writer->Setlnput(Ixz);

out put Fi | eName = outputPrefix + "-1xz.nhd";
writer->SetFileName(outputFileName.c_str());
writer->Update();

ga->SetDirection(2);
gh->SetDirection(0);
gc->SetDirection(1);

ga- >Set ZeroOrder () ;
gb->Set FirstOrder();
gc->SetFirstOrder();

gc->Updat e() ;
dupl i cator->Updat e();

| mgeType: : Pointer Ixy = duplicator->CGetQutput();

writer->Setlnput(Ixy);

out put Fi | eName = outputPrefix + "-1xy.nhd";
writer->SetFileName(outputFileNanme.c_str());
writer->Update();

162 Chapter 6. Filtering

6.5.2 Laplacian Filters
Laplacian Filter Finite Difference
Laplacian Filter Recursive Gaussian

The source code for this section can be found in the file
Exanpl es/ Fi | teri ng/ Lapl aci anRecur si veGaussi anl mageFi | t er 1. cxx.

This example illustrates how to use thék: : Recur si veGaussi anl nageFi | t er for comput-
ing the Laplacian of a 2D image.

The first step required to use this filter is to include its fegdie.
#include "itkRecursiveGussianl mageFilter.h"
Types should be selected on the desired input and outputtppes.

t ypedef fl oat | nput Pi xel Type;
t ypedef fl oat Qut put Pi xel Type;

The input and output image types are instantiated usingitet types.

typedef itk::lmage< InputPixel Type, 2 > InputlmageType;
typedef itk::Image< QutputPixel Type, 2 > QutputlnageType;

The filter type is now instantiated using both the input image the output image types.

typedef itk::RecursiveGussianl mageFilter<
I nput I mageType, CQut putlmageType > FilterType;

This filter applies the approximation of the convolutionraja single dimension. It is therefore
necessary to concatenate several of these filters to pratueething in all directions. In this
example, we create a pair of filters since we are processifyimage. The filters are created
by invoking theNew() method and assigning the result to 8k: : Smart Poi nt er .

We need two filters for computing the X component of the Lajpla@nd two other filters for
computing the Y component.

FilterType::Pointer filterX1l
FilterType::Pointer filterYl

FilterType:: New();
FilterType:: New();

FilterType::Pointer filterXx2
FilterType::Pointer filterY2

FilterType:: New();
FilterType:: New();

http://www.itk.org/Doxygen/html/classitk_1_1RecursiveGaussianImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

6.5. Second Order Derivatives 163

Since each one of the newly created filters has the potentipetform filtering along any
dimension, we have to restrict each one to a particular tiinec This is done with the
SetDirection() method.

filterXl->SetDirection(0); // 0 --> X direction
filterYl->SetDirection(1); /[1-->Ydirection

filterX2->SetDirection(0); // 0 --> X direction
filterY2->SetDirection(1); 1-->Ydirection

Theitk:: RecursiveCGaussi anl mageFi | t er can approximate the convolution with the Gaus-
sian or with its first and second derivatives. We select on¢he$e options by using the
Set Order () method. Note that the argument is emum whose values can béer oOr der,

Fi rst Order andSecondOrder. For example, to compute thepartial derivative we should
selectri r st Order for xandZer oOr der fory. Here we want only to smooth kandy, so we
selectZer oOr der in both directions.

filterXl->SetOrder(FilterType::ZeroOrder);
filterYl->SetOrder(FilterType::SecondOrder);

filterX2->SetOrder(FilterType::SecondOrder);
filterY2->SetOrder(FilterType::ZeroOrder);

There are two typical ways of normalizing Gaussians depeain their application. For scale-
space analysis it is desirable to use a normalization tHapreiserve the maximum value of the
input. This normalization is represented by the followingation.

1
oV 21
In applications that use the Gaussian as a solution of tties@hh equation it is desirable to

use a normalization that preserve the integral of the sigitak last approach can be seen as a
conservation of mass principle. This is represented bydhewing equation.

(6.2)

1
02/2m

The itk::RecursiveGaussianlmageFilter has a boolean flag that allows users to
select between these two normalization options. Selecisomlone with the method

Set Nor mal i zeAcr ossScal e(). Enable this flag to analyzing an image across scale-space.
In the current example, this setting has no impact becausarevactually renormalizing the
output to the dynamic range of the reader, so we simply distiel flag.

(6.3)

const bool nornmlizeAcrossScale = fal se;

http://www.itk.org/Doxygen/html/classitk_1_1RecursiveGaussianImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1RecursiveGaussianImageFilter.html

164 Chapter 6. Filtering

filterXl->Set Nornal i zeAcrossScal e(normalizeAcrossScal e)
filterYl->Set NornalizeAcrossScal e(normalizeAcrossScale);
filterX2->Set NornalizeAcrossScal e(normalizeAcrossScale);
filterY2->Set NornalizeAcrossScal e(normalizeAcrossScale);

The input image can be obtained from the output of another.filHere, an image reader is
used as the source. The image is passed totiileer and then to they filter. The reason
for keeping these two filters separate is that it is usual #esspace applications to compute
not only the smoothing but also combinations of derivataedifferent orders and smoothing.
Some factorization is possible when separate filters agttoggenerate the intermediate results.
Here this capability is less interesting, though, since wly want to smooth the image in all
directions.

filterXl->Set|nput(reader->GetQutput());
filterYl->Setlnput(filterXl->GetQutput());

filterY2->Set|nput(reader->GetQutput());
filterX2->Setlnput(filterY2->GetQutput());

It is now time to select the of the Gaussian used to smooth the data. Notedhatst be
passed to both filters and that sigma is considered to be Immaikrs. That is, at the moment
of applying the smoothing process, the filter will take intm@unt the spacing values defined
in the image.

filterXl->Set Si gma(
filterYl->SetSi gma(
filterX2->SetSigma(signma
filterY2->SetSi gma(

Finally the two components of the Laplacian should be addedether. The
i tk::Addl mageFi | ter is used for this purpose.

typedef itk::Addl mageFilter<
Qut put | mageType,
Qut put | mageType,
Qut put | mageType > AddFi | t er Type;

AddFi | ter Type: : Pointer addFilter = AddFilterType:: New();

addFil ter->Setlnputl(filterYl->GetQutput());
addFi | ter->SetInput2(filterX2->GetQutput());

The filters are triggered by invokirigpdat e() on the Add filter at the end of the pipeline.

http://www.itk.org/Doxygen/html/classitk_1_1AddImageFilter.html

6.5. Second Order Derivatives 165

try
{
addFi | ter->Updat e() ;

}
catch(itk::ExceptionChject & err)

{

std::cout << "ExceptionCbject caught !" << std::endl;
std::cout << err << std::endl;
return EXI T_FAI LURE,

}
The resulting image could be saved to a file usingithk: : | mageFi | eWiter class.

typedef float WitePixel Type;

typedef itk::lnmage< WitePixel Type, 2 > Witel mageType;
typedef itk::lmageFileWiter< WitelmageType > WiterType;
WiterType:: Pointer witer = WiterType:: New();
writer->SetInput(addFilter->GetQutput());
writer->SetFileName(argv[2]);

writer->Update();

Figure6.11illustrates the effect of this filter on a MRI proton densityage of the brain using

o values of 3 (left) and 5 (right). The figure shows how the at&gion of noise can be regulated
by selecting the appropriate standard deviation. This tffsale-tunable filter is suitable for
performing scale-space analysis.

The source code for this section can be found in the file
Exanpl es/ Fi | teri ng/ Lapl aci anRecur si veGaussi anl mageFi | t er 2. cxx.

The previous exampled showed how to use thek: : Recursi veCGaussi anl mageFi | t er

for computing the equivalent of a Laplacian of an image afieroothing with a Gaus-

sian. The elements used in this previous example have begraged together in the

i tk::Lapl aci anRecur si veGaussi anl nageFi | t er in order to simplify its usage. This cur-

rent example shows how to use this convenience filter foreaaig the same results as the
previous example.

The first step required to use this filter is to include its fegdie.
#include "itkLapl aci anRecur si veGaussi anl mageFi | ter. h"

Types should be selected on the desired input and outputtppes.

http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
http://www.itk.org/Doxygen/html/classitk_1_1RecursiveGaussianImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1LaplacianRecursiveGaussianImageFilter.html

166 Chapter 6. Filtering

Figure 6.11:Effect of the LaplacianRecursiveGaussianimageFilter on a slice from a MRI proton density
image of the brain.

t ypedef fl oat | nput Pi xel Type;
typedef fl oat Qut put Pi xel Type;

The input and output image types are instantiated usingiket types.

typedef itk::lmage< InputPixel Type, 2 > InputlmageType;
typedef itk::Image< QutputPixel Type, 2 > QutputlnageType;

The filter type is now instantiated using both the input image the output image types.

typedef itk::Laplaci anRecursiveGaussi anl mageFi | ter<
I nput | mageType, QutputlmageType > FilterType;

This filter packages all the componentsillustrated in thevjous example. The filter is created
by invoking theNew() method and assigning the result to 8k: : Smart Poi nt er .

FilterType::Pointer laplacian = FilterType::New);
The option for normalizing across scale space can also betsdlin this filter.

| apl aci an- >Set Nor mal i zeAcrossScal e(false);

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

6.6. Neighborhood Filters 167

The inputimage can be obtained from the output of another.fiiere, an image reader is used
as the source.

| apl aci an->Set | nput (reader->CGetQutput ());

It is now time to select the of the Gaussian used to smooth the data. Notedhatst be
passed to both filters and that sigma is considered to be limeiers. That is, at the moment
of applying the smoothing process, the filter will take intw@unt the spacing values defined
in the image.

| apl aci an->Set Si gma(sigma);

Finally the pipeline is executed by invoking tbigdat e() method.

try
{
| apl aci an->Updat e();
}

catch(itk::ExceptionCbject & err)
{

std::cout << "ExceptionChject caught !" << std::endl;
std::cout << err << std::endl;
return EXI T_FAI LURE;

}

Figure6.12illustrates the effect of this filter on a MRI proton densityage of the brain using

o values of 3 (left) and 5 (right). The figure shows how the attgion of noise can be regulated
by selecting the appropriate standard deviation. This tffgeale-tunable filter is suitable for
performing scale-space analysis.

6.6 Neighborhood Filters

The concept of locality is frequently encountered in imagecpssing in the form of filters that
compute every output pixel using information from a smatjioa in the neighborhood of the
input pixel. The classical form of these filters are the 3 filters in 2D images. Convolution
masks based on these neighborhoods can perform diversertasiing from noise reduction,
to differential operations, to mathematical morphology.

The Insight toolkit implements an elegant approach to neghood-based image filtering. The
input image is processed using a special iterator calledithie : Nei ghbor hoodl t er at or .
This iterator is capable of moving over all the pixels in armga and, for each position, it can
address the pixels in a local neighborhood. Operators dieedethat apply an algorithmic
operation in the neighborhood of the input pixel to produselae for the output pixel. The
following section describes some of the more commonly usteddithat take advantage of this
construction. (See Chaptet on pager01for more information about iterators.)

http://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodIterator.html

168 Chapter 6. Filtering

Figure 6.12:Effect of the LaplacianRecursiveGaussianimageFilter on a slice from a MRI proton density
image of the brain.

6.6.1 Mean Filter

The source code for this section can be found in the file
Exanpl es/ Fi | teri ng/ Meanl mageFi | ter. cxx.

The itk:: Meanl mageFi | ter is commonly used for noise reduction. The filter computes the
value of each output pixel by finding the statistical meanhaf heighborhood of the corre-
sponding input pixel. The following figure illustrates treeél effect of the MeanimageFilter
in a 2D case. The statistical mean of the neighborhood on the Iptissed as the output value
associated with the pixel at the center of the neighborhood.

28 | 26 | 50
27 | 25 | 29 | —[3022}—| 30 |
25 | 30 | 32

Note that this algorithm is sensitive to the presence of ienstl in the neighbor-
hood. This filter will work on images of any dimension thanks the internal use of
i tk::Smart Nei ghborhoodl terator and itk:: Nei ghborhoodQperator. The size of the
neighborhood over which the mean is computed can be set hystre

The header file corresponding to this filter should be inaifitst.

#include "itkMeanl mageFilter.h"

http://www.itk.org/Doxygen/html/classitk_1_1MeanImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1SmartNeighborhoodIterator.html
http://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodOperator.html

6.6. Neighborhood Filters 169

Then the pixel types for input and outputimage must be defimedwith them, the image types
can be instantiated.

typedef unsigned char [InputPixel Type;
typedef unsigned char QutputPixel Type;

typedef itk::lmage< InputPixel Type, 2 > InputlmageType;
typedef itk::Image< QutputPixel Type, 2 > QutputlnageType;

Using the image types it is now possible to instantiate therfiype and create the filter object.

typedef itk::Manl mageFilter<
I nput | mageType, CQutput|mageType > FilterType;

FilterType::Pointer filter = FilterType:: New();

The size of the neighborhood is defined along every dimensyguassing &i zeType object
with the corresponding values. The value on each dimensiarséd as the semi-size of a
rectangular box. For example, iD2 size of 12 will result in a 3x 5 neighborhood.

I nput | mageType: : Si zeType i ndexRadi us;

i ndexRadi us[0]
i ndexRadi us[1]

1; /1 radius along x
1; /] radius along y

filter->SetRadius(indexRadius);

The input to the filter can be taken from any other filter, foamyple a reader. The output
can be passed down the pipeline to other filters, for exanaphejter. An update call on any
downstream filter will trigger the execution of the mean filte

filter->Setlnput(reader->GetQutput());
writer->Setlnput(filter->CGetQutput());
writer->Update();

Figure6.13illustrates the effect of this filter on a slice of MRI brainagre using neighborhood

radii of 1, 1 which corresponds to a33 classical neighborhood. It can be seen from this picture
that edges are rapidly degraded by the diffusion of intgnsitues among neighbors.

6.6.2 Median Filter

The source code for this section can be found in the file
Exanpl es/ Fi | teri ng/ Medi anl mageFi | t er. cxx.

170 Chapter 6. Filtering

Figure 6.13Effect of the MeanimageFilter on a slice from a MRI proton density brain image.

The itk:: Medi anl mageFi | t er is commonly used as a robust approach for noise reduction.
This filter is particularly efficient againsalt-and-peppenoise. In other words, it is robust to
the presence of gray-level outliers. MedianimageFiltenpates the value of each output pixel
as the statistical median of the neighborhood of valuesrattlie corresponding input pixel.
The following figure illustrates the local effect of this diitin a 2D case. The statistical median

of the neighborhood on the left is passed as the output vasecated with the pixel at the
center of the neighborhood.

28 26 50

27 | 25 | 20 | —~| 28 |

25 30 32

This filter will work on images of any dimension thanks to theternal use of
i tk::Nei ghborhoodlterator and itk:: Nei ghborhoodQperator. The size of the neigh-
borhood over which the median is computed can be set by the use

The header file corresponding to this filter should be inaifitst.
#include "itkMedianl mageFilter.h"
Then the pixel and image types of the input and output mustfiaet.

typedef unsigned char | nputPixel Type;

http://www.itk.org/Doxygen/html/classitk_1_1MedianImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodIterator.html
http://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodOperator.html

6.6. Neighborhood Filters 171

typedef unsigned char QutputPixel Type;

typedef itk::Image< InputPixel Type, 2 > InputlmageType;
typedef itk::lmage< CutputPixel Type, 2 > QutputlnageType;

Using the image types, it is now possible to define the filtpetsgnd create the filter object.

typedef itk::MedianlmgeFilter<
I nput | mageType, CQutput|mageType > FilterType;

FilterType::Pointer filter = FilterType:: New();

The size of the neighborhood is defined along every dimensyguassing &i zeType object
with the corresponding values. The value on each dimensiarséd as the semi-size of a
rectangular box. For example, iD2a size of 12 will result in a 3x 5 neighborhood.

I nput | mageType: : Si zeType i ndexRadi us;

i ndexRadi us[0]
i ndexRadi us[1]

1; /1 radius along x
1; /] radius along y

filter->SetRadius(indexRadius);

The input to the filter can be taken from any other filter, foamyple a reader. The output
can be passed down the pipeline to other filters, for exanapleiter. An update call on any
downstream filter will trigger the execution of the mediatefil

filter->Set!|nput(reader->CetQutput());
writer->Setlnput(filter->GetQutput());
writer->Update();

Figure6.14illustrates the effect of the MedianimageFilter filter onliaesof MRI brain image
using a neighborhood radius of1l, which corresponds to ax33 classical neighborhood. The
filtered image demonstrates the moderate tendency of them#iter to preserve edges.

6.6.3 Mathematical Morphology

Mathematical morphology has proved to be a powerful resfmcimage processing and anal-
ysis [73]. ITK implements mathematical morphology filters using ¢N@orhoodlterators and

i tk:: Nei ghbor hoodCperat or s. The toolkit contains two types of image morphology algo-
rithms, filters that operate on binary images and filters dipatrate on grayscale images.

http://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodOperator.html

172 Chapter 6. Filtering

Figure 6.14 Effect of the MedianimageFilter on a slice from a MRI proton density brain image.

Binary Filters

The source code for this section can be found in the file
Exanpl es/ Fi | tering/ Mat hemat i cal Mor phol ogyBi naryFi | ters. cxx.

The following section illustrates the use of filters that fpen basic mathematical
morphology operations on binary images. Thetk:: Bi naryErodel mageFilter and
itk::BinaryDi|atel mgeFilter are described here. The filter names clearly specify the
type of image on which they operate. The header files reqtirednstruct a simple example
of the use of the mathematical morphology filters are inaiigkeow.

#include "itkBinaryErodel mageFilter.h"
#include "itkBinaryDilatel mageFilter.h"
#include "itkBinaryBal | StructuringEl enent. h"

The following code defines the input and output pixel types their associated image types.

const unsigned int Dimension = 2;

typedef unsigned char I nputPixel Type;
typedef unsigned char Qut put Pi xel Type;

typedef itk::lmge< InputPixel Type, Dinension > [|nputlnageType;
typedef itk::Imge< QutputPixel Type, Dinension > Qutputl|nmageType;

http://www.itk.org/Doxygen/html/classitk_1_1BinaryErodeImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1BinaryDilateImageFilter.html

6.6. Neighborhood Filters 173

Mathematical morphology operations are implemented byyapgpan operator over the neigh-
borhood of each input pixel. The combination of the rule dmelteighborhood is known as
structuring elementAlthough some rules have become de facto standards foreipianress-
ing, there is a good deal of freedom as to what kind of algorittrule should be applied to the
neighborhood. The implementation in ITK follows the typginae of minimum for erosion and
maximum for dilation.

The structuring element is implemented as a Neighborhoed®r. In particular, the default
structuring elementis thet k: : Bi naryBal | St ruct uri ngEl enent class. This class is instan-
tiated using the pixel type and dimension of the input image.

typedef itk::BinaryBallStructuringEl ement<
I nput Pi xel Type,
Di nension > StructuringEl enent Type;

The structuring element type is then used along with thetimma output image types for
instantiating the type of the filters.

typedef itk::BinaryErodel mageFilter<
| nput | mageType,
Qut put | mageType,
StructuringEl enent Type > ErodeFilterType;

typedef itk::BinaryDilatelnageFilter<
| nput | mageType,
Qut put | mageType,
StructuringEl enent Type > DilateFilterType;

The filters can now be created by invoking thew() method and assigning the result to
itk:: Smart Pointers.

ErodeFi | ter Type:: Pointer binaryErode = ErodeFilterType:: New();
DilateFilterType::Pointer binaryDilate = DilateFilterType:: New();

The structuring element is not a reference counted classus This created as a C++
stack object instead of usinkew() and SmartPointers. The radius of the neighborhood
associated with the structuring element is defined with SéeRadi us() method and the
CreateStructuringEl enent () method is invoked in order to initialize the operator. The
resulting structuring element is passed to the mathenhaticaphology filter through the
Set Ker nel () method, as illustrated below.

StructuringEl enent Type structuringEl enent;

structuringEl enent. SetRadius(1); // 3x3 structuring el enent

http://www.itk.org/Doxygen/html/classitk_1_1BinaryBallStructuringElement.html
http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

174 Chapter 6. Filtering

structuringEl enent. CreateStructuringEl enent();

bi naryEr ode- >Set Kernel (structuringEl ement);
bi naryDi | at e- >Set Kernel (structuringEl ement);

A binary image is provided as input to the filters. This imagghhbe, for example, the output
of a binary threshold image filter.

t hreshol der - >Set | nput (reader->Get Qutput ());

0.

I nput Pi xel Type background ;
255;

I nput Pi xel Type foreground

t hreshol der - >Set Qut si deVal ue(background);
t hreshol der - >Set | nsi deVal ue(foreground);

t hreshol der - >Set Lower Thr eshol d(| ower Threshol d);
t hreshol der - >Set Upper Thr eshol d(upper Threshol d);

bi naryEr ode- >Set | nput (t hreshol der->Get Qut put ());
binaryDi | at e->Set I nput (threshol der->Get Qutput ());

The values that correspond to “objects” in the binary image specified with the methods
Set ErodeVal ue() andSetDi | at eVal ue(). The value passed to these methods will be con-
sidered the value over which the dilation and erosion rulidsapply.

bi nar yEr ode- >Set Er odeVal ue(foreground);
binaryDi | ate->SetDi | ateVal ue(foreground);

The filter is executed by invoking itdpdat e() method, or by updating any downstream filter,
like, for example, an image writer.

writerDilation->Setlnput(binaryDilate->GetQutput());
writerDilation->Update();

Figure6.15illustrates the effect of the erosion and dilation filterssdsinary image from a MRI
brain slice. The figure shows how these operations can betasethove spurious details from
segmented images.

Grayscale Filters

The source code for this section can be found in the file
Exanpl es/ Fi | teri ng/ Mat hemat i cal Mor phol ogyG ayscal eFi |l ters. cxx.

6.6. Neighborhood Filters 175

Figure 6.15Effect of erosion and dilation in a binary image.

The following section illustrates the use of filters for merhing basic mathematical mor-
phology operations on grayscale images. Thek: : G ayscal eErodel mageFilter and
itk::Gayscal eDi| at el mageFi |l ter are covered in this example. The filter names clearly
specify the type of image on which they operate. The hea@sri@quired for a simple example
of the use of grayscale mathematical morphology filters ezsgnted below.

#include "itkG ayscal eErodel mageFilter.h"
#include "itkGayscal eDi| atel mageFilter.h"
#include "itkBinaryBal | StructuringEl enent. h"

The following code defines the input and output pixel types their associated image types.

const unsigned int Dimension = 2;

typedef unsigned char I nputPixel Type;
typedef unsigned char Qutput Pi xel Type;

typedef itk::lmge< InputPixel Type, Dinension > |nputlnageType;
typedef itk::lmge< QutputPixel Type, Dinension > CQutputlnmgeType;

Mathematical morphology operations are based on the aiglicof an operator over a neigh-
borhood of each input pixel. The combination of the rule dmlteighborhood is known as
structuring elementAlthough some rules have become the de facto standard meipracess-
ing there is a good deal of freedom as to what kind of algorithmie should be applied on the
neighborhood. The implementation in ITK follows the typgingde of minimum for erosion and
maximum for dilation.

The structuring element is implemented ast&: : Nei ghbor hoodCper at or . In particular, the
default structuring element is the k: : Bi naryBal | Struct uri ngEl enent class. This class is
instantiated using the pixel type and dimension of the inpaige.

http://www.itk.org/Doxygen/html/classitk_1_1GrayscaleErodeImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1GrayscaleDilateImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodOperator.html
http://www.itk.org/Doxygen/html/classitk_1_1BinaryBallStructuringElement.html

176 Chapter 6. Filtering

typedef itk::BinaryBallStructuringEl ement<
I nput Pi xel Type,
Di nension > StructuringEl enent Type;

The structuring element type is then used along with thetimma output image types for
instantiating the type of the filters.

typedef itk::Gayscal eErodel mageFilter<
I nput | mageType,
Qut put | mageType,
StructuringEl enent Type > ErodeFilterType;

typedef itk::Gayscal eDilatel mageFilter<
| nput | mageType,
Qut put | mageType,
StructuringEl enent Type > DilateFilterType;

The filters can now be created by invoking tfea) method and assigning the result to Smart-
Pointers.

ErodeFi | ter Type: : Poi nter grayscal eErode
Di |l ateFilterType:: Pointer grayscaleDilate

ErodeFi | ter Type: : New();
DilateFilterType:: New();

The structuring element is not a reference counted classus This created as a C++
stack object instead of usingkew() and SmartPointers. The radius of the neighborhood
associated with the structuring element is defined with SéeRadi us() method and the
CreateStructuringE enent () method is invoked in order to initialize the operator. The
resulting structuring element is passed to the mathentaticaphology filter through the
Set Ker nel () method, as illustrated below.

StructuringEl enent Type structuringEl ement;
structuringEl enent. SetRadius(1); // 3x3 structuring el enent
structuringEl enent. CreateStructuringEl enent();

grayscal eErode- >Set Kernel (structuringEl enent);
grayscal eDi | at e- >Set Kernel (structuringEl enent);

A grayscale image is provided as input to the filters. Thisgenaight be, for example, the
output of a reader.

grayscal eErode->Set I nput (reader->CGet Qutput ());
grayscal eDi | at e- >Set | nput (reader->CGet Qutput ());

6.6. Neighborhood Filters 177

Figure 6.16Effect of erosion and dilation in a grayscale image.

The filter is executed by invoking itdpdat e() method, or by updating any downstream filter,
like, for example, an image writer.

writerDilation->Setlnput(grayscal eDilate->GetQutput());
writerDilation->Update();

Figure6.16illustrates the effect of the erosion and dilation filtersadsinary image from a MRI
brain slice. The figure shows how these operations can betasethove spurious details from
segmented images.

6.6.4 Voting Filters

Voting filters are quite a generic family of filters. In facth the Dilate and Erode filters from
Mathematical Morphology are very particular cases of tteater family of voting filters. In a
voting filter, the outcome of a pixel is decided by counting ttumber of pixels in its neighbor-
hood and applying a rule to the result of that counting.Faneple, the typical implementation
of Erosion in terms of a voting filter will be to say that a foregnd pixel will become back-
ground if the numbers of background neighbors is greateqoalghan 1. In this context, you
could imagine variations of Erosion in which the count cobdchanged to require at least 3
foreground.

Binary Median Filter

One of the particular cases of Voting filters is the BinaryMedmageFilter. This filter is equiv-
alent to applying a Median filter over a binary image. The &¢taving a binary image as input
makes possible to optimize the execution of the filter siheee is no real need for sorting the
pixels according to their frequency in the neighborhood.

178 Chapter 6. Filtering

The source code for this section can be found in the file
Exanpl es/ Fi | t eri ng/ Bi nar yMedi anl mageFi | t er. cxx.

The itk:: Bi naryMedi anl mageFi | t er is commonly used as a robust approach for noise re-
duction. BinaryMedianimageFilter computes the value aheautput pixel as the statistical
median of the neighborhood of values around the correspgridput pixel. When the input
images are binary, the implementation can be optimized lmplsi counting the number of
pixels ON/OFF around the current pixel.

This filter will work on images of any dimension thanks to theternal use of
i tk::Nei ghborhoodlterator and itk:: Nei ghborhoodQperator. The size of the neigh-
borhood over which the median is computed can be set by the use

The header file corresponding to this filter should be inaifitst.
#include "itkBi naryMedi anl mageFilter.h"
Then the pixel and image types of the input and output mustfiaet.

typedef unsigned char [InputPixel Type;
typedef unsigned char QutputPixel Type;

typedef itk::Image< InputPixel Type, 2 > |nputlmageType;
typedef itk::lmage< QutputPixel Type, 2 > QutputlnageType;

Using the image types, it is now possible to define the filtpetsgnd create the filter object.

typedef itk::BinaryMedi anl mageFilter<
I nput | mageType, Qutput|mageType > FilterType;

FilterType::Pointer filter = FilterType:: New();

The size of the neighborhood is defined along every dimensygquassing &i zeType object
with the corresponding values. The value on each dimensiarséd as the semi-size of a
rectangular box. For example, iD2a size of 12 will result in a 3x 5 neighborhood.

I nput | mageType: : Si zeType i ndexRadi us;

i ndexRadi us[0] = radiusX; // radius along x
i ndexRadi us[1] = radiusY; // radius along y

filter->SetRadius(indexRadius);

The input to the filter can be taken from any other filter, foample a reader. The output
can be passed down the pipeline to other filters, for exanapleiter. An update call on any
downstream filter will trigger the execution of the mediatefil

http://www.itk.org/Doxygen/html/classitk_1_1BinaryMedianImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodIterator.html
http://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodOperator.html

6.6. Neighborhood Filters 179

Figure 6.17 Effect of the BinaryMedianimageFilter on a slice from a MRI proton density brain image that
has been thresholded in order to produce a binary image.

filter->SetInput(reader->GetQutput());
witer->Setlnput(filter->CetQutput());
writer->Update();

Figure6.17illustrates the effect of the BinaryMedianimageFilterilbn a slice of MRI brain
image using a neighborhood radius g22which corresponds to a»65 classical neighbor-
hood. The filtered image demonstrates the capability offiltes for reducing noise both in the
background and foreground of the image, as well as smooth&gontours of the regions.

The typical effect of median filtration on a noisy digital igeis a dramatic reduction in impulse
noise spikes. The filter also tends to preserve brightnéssetfices across signal steps, resulting
in reduced blurring of regional boundaries. The filter alsods to preserve the positions of
boundaries in an image.

Figure6.18below shows the effect of running the median filter with a 3k&sical window
size 1, 10 and 50 times. There is a tradeoff in noise reduetiohthe sharpness of the image
when the window size is increased.

Hole Filling Filter

Another variation of Voting filters is the Hole Filling filterThis filter converts background
pixels into foreground only when the number of foregrounefs is a majority of the neighbors.
By selecting the size of the majority, this filter can be tutedll-in holes of different size. To

180 Chapter 6. Filtering

)

Figure 6.18 Effect of 1, 10 and 50 iterations of the BinaryMedianimageFilter using a 3x3 window.

6.6. Neighborhood Filters 181

be more precise, the effect of the filter is actually relatethe curvature of the edge in which
the pixel is located.

The source code for this section can be found in the file
Exanpl es/ Fi | teri ng/ Vot i ngBi naryHol eFi | i ngl nageFi | ter. cxx.

The itk::VotingBinaryHol eFillingl nageFilter applies a voting operation in order to
fill-in cavities. This can be used for smoothing contours fmmdilling holes in binary images.

The header file corresponding to this filter should be inaifitst.
#include "itkVotingBinaryHol eFillinglmageFilter.h"
Then the pixel and image types of the input and output mustfiaet.

typedef unsigned char InputPixel Type;
typedef unsigned char QutputPixel Type;

typedef itk::Image< InputPixel Type, 2 > InputlmageType;
typedef itk::lmage< CutputPixel Type, 2 > QutputlnageType;

Using the image types, it is now possible to define the filtpetsind create the filter object.

typedef itk::VotingBinaryHol eFillinglnmageFilter<
I nput | mageType, CQutput|mageType > FilterType;

FilterType::Pointer filter = FilterType:: New();

The size of the neighborhood is defined along every dimersyguassing &i zeType object
with the corresponding values. The value on each dimensiarséd as the semi-size of a
rectangular box. For example, iD2a size of 12 will result in a 3x 5 neighborhood.

I nput | mageType: : Si zeType i ndexRadi us;

i ndexRadi us[0]
i ndexRadi us[1]

radi usX; // radius along x
radiusY; // radius along y

filter->SetRadius(indexRadius);

Since the filter is expecting a binary image as input, we nuestigy the levels that are going to
be considered background and foreground. This is done tétBet For egr oundVal ue() and
Set Backgr oundVal ue() methods.

filter->SetBackgroundValue(0);
filter->SetForegroundVal ue(255);

http://www.itk.org/Doxygen/html/classitk_1_1VotingBinaryHoleFillingImageFilter.html

182 Chapter 6. Filtering

We must also specify the majority threshold that is goingeéaubed as the decision criterion
for converting a background pixel into a foreground pixelheTrule of conversion is that a
background pixel will be converted into a foreground pixehe number of foreground neigh-
bors surpass the number of background neighbors by the ityajatue. For example, in a 2D
image, with neighborhood or radius 1, the neighborhood male size 3 3. If we set the
majority value to 2, then we are requiring that the numbepoédround neighbors should be at
least (3x3 -1)/2 + majority. This is done with tBet Maj ori t yThr eshol d() method.

filter->SetMajorityThreshold(2);

The input to the filter can be taken from any other filter, foamyple a reader. The output
can be passed down the pipeline to other filters, for exanaphejter. An update call on any
downstream filter will trigger the execution of the mediatefil

filter->Set|nput(reader->CetQutput());
writer->Setlnput(filter->GetQutput());
writer->Update();

Figure6.19illustrates the effect of the VotingBinaryHoleFillinglmeaFilter filter on a thresh-
olded slice of MRI brain image using neighborhood radii 0f,12 2 and 33 that correspond
respectively to neighborhoods of sizex3, 5x 5, 7x 7. The filtered image demonstrates the
capability of this filter for reducing noise both in the baokgnd and foreground of the image,
as well as smoothing the contours of the regions.

Iterative Hole Filling Filter

The Hole Filling filter can be used in an iterative way, by sy it repeatedly until no pixel
changes. In this context, the filter can be seen as a binaiatizer of a Level Set filter.

The source code for this section can be found in the file
Exanpl es/ Fil tering/ VotingBinarylterativeHol eFillinglmageFilter.cxx.

Theitk::VotingBinarylterativeHol eFillinglmageFilter appliesa voting operationin
order to fill-in cavities. This can be used for smoothing cams and for filling holes in binary
images. This filter runs internally at k: : Vot i ngBi nar yHol eFi | | i ngl mageFi | t er until no
pixels change or the maximum number of iterations has besrhesl.

The header file corresponding to this filter should be inalifitst.
#include "itkVotingBinarylterativeHol eFillinglmgeFilter.h"

Then the pixel and image types must be defined. Note that ttés fequires the input and
output images to be of the same type, therefore a single itypgds required for the template
instantiation.

http://www.itk.org/Doxygen/html/classitk_1_1VotingBinaryIterativeHoleFillingImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1VotingBinaryHoleFillingImageFilter.html

6.6. Neighborhood Filters 183

Figure 6.19:Effect of the VotingBinaryHoleFillingimageFilter on a slice from a MRI proton density brain
image that has been thresholded in order to produce a binary image. The output images have used radius
1,2 and 3 respectively.

184 Chapter 6. Filtering

typedef unsigned char Pixel Type;

typedef itk::Image< Pixel Type, 2 > |mgeType;
Using the image types, it is now possible to define the filtpetsind create the filter object.

typedef itk::VotingBinarylterativeHoleFillinglmgeFilter<
I mageType > FilterType;

FilterType::Pointer filter = FilterType:: New();

The size of the neighborhood is defined along every dimensyguassing &i zeType object
with the corresponding values. The value on each dimensiarséd as the semi-size of a
rectangular box. For example, iD2a size of 12 will result in a 3x 5 neighborhood.

| mgeType: : Si zeType i ndexRadi us;

i ndexRadi us[0]
i ndexRadi us[1]

radi usX; // radius along x
radiusY; // radius along y

filter->SetRadius(indexRadius);

Since the filter is expecting a binary image as input, we mestigy the levels that are going to
be considered background and foreground. This is done tétBet For egr oundVal ue() and
Set Backgr oundVal ue() methods.

filter->SetBackgroundValue(0);
filter->SetForegroundVal ue(255);

We must also specify the majority threshold that is goingeaubed as the decision criterion
for converting a background pixel into a foreground pixeheTrule of conversion is that a
background pixel will be converted into a foreground pixehe number of foreground neigh-
bors surpass the number of background neighbors by the ityajatue. For example, in a 2D
image, with neighborhood or radius 1, the neighborhood male size 3 3. If we set the
majority value to 2, then we are requiring that the numbepoédround neighbors should be at
least (3x3 -1)/2 + majority. This is done with tBet Maj ori t yThr eshol d() method.

filter->SetMajorityThreshold(2);

Finally we specify the maximum number of iterations thas filter should be run. The number
of iteration will determine the maximum size of holes andittas that this filter will be able to
fill-in. The more iterations you ran, the larger the cavitiegt will be filled in.

filter->Set Maxi mumNunber Of | terations(nunberOflterations);

6.7. Smoothing Filters 185

The input to the filter can be taken from any other filter, foample a reader. The output
can be passed down the pipeline to other filters, for exanapleiter. An update call on any
downstream filter will trigger the execution of the mediatefil

filter->Setlnput(reader->GetCQutput());
writer->Setlnput(filter->CGetQutput());
writer->Update();

Figure6.20illustrates the effect of the VotingBinarylterativeHolbiRgImageFilter filter on a
thresholded slice of MRI brain image using neighborhoodi i&dL, 1, 2,2 and 33 that corre-
spond respectively to neighborhoods of size3® 5x 5, 7x 7. The filtered image demonstrates
the capability of this filter for reducing noise both in theckground and foreground of the
image, as well as smoothing the contours of the regions.

6.7 Smoothing Filters

Real image data has a level of uncertainty that is manifeistede variability of measures
assigned to pixels. This uncertainty is usually interpdetenoise and considered an undesirable
component of the image data. This section describes severthlods that can be applied to
reduce noise on images.

6.7.1 Blurring

Blurring is the traditional approach for removing noisenframages. It is usually implemented
in the form of a convolution with a kernel. The effect of biag on the image spectrum is
to attenuate high spatial frequencies. Different kerngénaate frequencies in different ways.
One of the most commonly used kernels is the Gaussian. Twtemgntations of Gaussian
smoothing are available in the toolkit. The first one is based traditional convolution while
the other is based on the application of IIR filters that apjpnate the convolution with a
Gaussian?1, 22].

Discrete Gaussian

The source code for this section can be found in the file
Exanpl es/ Fil tering/ Di scret eGaussi anl mageFi | ter. cxx.

186 Chapter 6. Filtering

Figure 6.20Effect of the VotingBinarylterativeHoleFillinglmageFilter on a slice from a MRI proton density
brain image that has been thresholded in order to produce a binary image. The output images have used
radius 1,2 and 3 respectively.

6.7. Smoothing Filters 187

1 T T

Theitk::DiscreteGaussianl mageFilter — °f AT
computes the convolution of the input im- 7171 \

Error

08

age with a Gaussian kernel. This is o+
done inND by taking advantage of the osf
separability of the Gaussian kernel. A Zj
one-dimensional Gaussian function is .|
discretized on a convolution kernel. The -
size of the kernel is extended until there oif
are enough discrete points in the Gaussian °2 1s 1 ©s o o0s 1 15
to ensure that a user-provided maximum L kememwiatn —]

error is not exceeded. Since the size of the Figure 6.21Discretized Gaussian.
kernel is unknown a priori, it is necessary

to impose a limit to its growth. The user can thus provide a&ab be the maximum admissible
size of the kernel. Discretization error is defined as thiedéhce between the area under the
discrete Gaussian curve (which has finite support) and #eewander the continuous Gaussian.

Gaussian kernels in ITK are constructed according to theryhef Tony Lindeberg49] so that
smoothing and derivative operations commute before amd discretization. In other words,
finite difference derivatives on an imagethat has been smoothed by convolution with the
Gaussian are equivalent to finite differences computedimnconvolving with a derivative of
the Gaussian.

The first step required to use this filter is to include its fegdie.
#include "itkDi screteGaussianl mageFilter.h"

Types should be chosen for the pixels of the input and outpages. Image types can be
instantiated using the pixel type and dimension.

t ypedef fl oat | nput Pi xel Type;
t ypedef fl oat Qut put Pi xel Type;

typedef itk::Image< InputPixel Type, 2 > |nputlmageType;
typedef itk::lmage< CutputPixel Type, 2 > QutputlnageType;

The discrete Gaussian filter type is instantiated using tipeitiand output image types. A
corresponding filter object is created.

typedef itk::DiscreteGussianl mgeFilter<
I nput | mageType, QutputlmageType > FilterType;

FilterType::Pointer filter = FilterType:: New();

The inputimage can be obtained from the output of another.filiere, an image reader is used
as its input.

http://www.itk.org/Doxygen/html/classitk_1_1DiscreteGaussianImageFilter.html

188 Chapter 6. Filtering

Figure 6.22:Effect of the DiscreteGaussianimageFilter on a slice from a MRI proton density image of the
brain.

filter->Setlnput(reader->GetCQutput());

The filter requires the user to provide a value for the vagaassociated with the Gaussian
kernel. The metho@et Vari ance() is used for this purpose. The discrete Gaussian is con-
structed as a convolution kernel. The maximum kernel sinebesset by the user. Note that the
combination of variance and kernel-size values may reswattruncated Gaussian kernel.

filter->SetVariance(gaussianVariance);
filter->Set Maxi munKer nel Wdt h(nmaxKernel Wdth);

Finally, the filter is executed by invoking thépdat e() method.
filter->Update();

If the output of this filter has been connected to other filtyan the pipeline, updating any
of the downstream filters would have triggered the execuifdhis one. For example, a writer
could have been used after the filter.

rescal er->SetInput(filter->GetQutput());
writer->Set!|nput(rescaler->GetCQutput());
writer->Update();

6.7. Smoothing Filters 189

Figure6.22illustrates the effect of this filter on a MRI proton densityage of the brain.

Note that large Gaussian variances will produce large datieo kernels and correspondingly
slower computation times. Unless a high degree of accusamgjuired, it may be more desir-
able to use the approximating k: : Recur si veGaussi anl mageFi | t er with large variances.

Binomial Blurring

The source code for this section can be found in the file
Exanpl es/ Fi | teri ng/ Bi noni al Bl ur | mageFi | ter. cxx.

The itk::Binom al Bl url mageFi | t er computes a nearest neighbor average along each di-
mension. The process is repeated a number of times, as sgdnjfthe user. In principle, after
a large number of iterations the result will approach thevotution with a Gaussian.

The first step required to use this filter is to include its fegdie.
#include "itkBinom al Bl url mageFilter.h"

Types should be chosen for the pixels of the input and outpages. Image types can be
instantiated using the pixel type and dimension.

t ypedef fl oat | nput Pi xel Type;
t ypedef fl oat Qut put Pi xel Type;

typedef itk::Image< InputPixel Type, 2 > |nputlmageType;
typedef itk::lmage< CutputPixel Type, 2 > QutputlnageType;

The filter type is now instantiated using both the input image the output image types. Then
a filter object is created.

typedef itk::Binomal Bl urlnageFilter<
I nput I mageType, CQut putlmageType > FilterType;
FilterType::Pointer filter = FilterType:: New();

The input image can be obtained from the output of another.filHere, an image reader is
used as the source. The number of repetitions is set witts¢hBepetitions() method.
Computation time will increase linearly with the number epetitions selected. Finally, the
filter can be executed by calling thdat e() method.

filter->Set!|nput(reader->CetQutput());
filter->SetRepetitions(repetitions);
filter->Update();

http://www.itk.org/Doxygen/html/classitk_1_1RecursiveGaussianImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1BinomialBlurImageFilter.html

190 Chapter 6. Filtering

Figure 6.23Effect of the BinomialBlurimageFilter on a slice from a MRI proton density image of the brain.

Figure6.23illustrates the effect of this filter on a MRI proton densityage of the brain.

Note that the standard deviationof the equivalent Gaussian is fixed. In the spatial spectrum,
the effect of every iteration of this filter is like a multipéition with a sinus cardinal function.

Recursive Gaussian IIR
The source code for this section can be found in the file
Exanpl es/ Fi | t eri ng/ Snoot hi ngRecur si veGaussi anl mageFi | ter. cxx.

The classical method of smoothing an image by convolutiah &iGaussian kernel has the
drawback that it is slow when the standard deviatioof the Gaussian is large. This is due to
the larger size of the kernel, which results in a higher nunobeomputations per pixel.

The itk:: RecursiveGaussi anl mageFi | ter implements an approximation of convolution
with the Gaussian and its derivatives by using@iitters. In practice this filter requires a
constant number of operations for approximating the cartianl, regardless of the value
[21, 22].

The first step required to use this filter is to include its fezdie.
#include "itkRecursiveGaussianl mageFilter.h"

Types should be selected on the desired input and outputtppes.

?Infinite Impulse Response

http://www.itk.org/Doxygen/html/classitk_1_1RecursiveGaussianImageFilter.html

6.7. Smoothing Filters 191

t ypedef fl oat | nput Pi xel Type;
t ypedef fl oat Qut put Pi xel Type;

The input and output image types are instantiated usingitet types.

typedef itk::lmage< InputPixel Type, 2 > InputlmageType;
typedef itk::Image< QutputPixel Type, 2 > QutputlnageType;

The filter type is now instantiated using both the inputimagd the output image types.

typedef itk::RecursiveGussianl mageFilter<
I nput | mageType, QutputlmageType > FilterType;

This filter applies the approximation of the convolutionraj@ single dimension. It is therefore
necessary to concatenate several of these filters to pretueething in all directions. In this
example, we create a pair of filters since we are processifyimage. The filters are created
by invoking theNew() method and assigning the result to 8k: : Smart Poi nter .

FilterType::Pointer filterX
FilterType::Pointer filterY

FilterType:: New();
FilterType:: New();

Since each one of the newly created filters has the potentipetform filtering along any
dimension, we have to restrict each one to a particular tiinec This is done with the
SetDirection() method.

/1 0 -->Xdirection

filterX->SetDirection(0)
1 [l 1 -->Ydirection

filterY->SetDirection(1);
Theitk:: RecursiveCGaussi anl mageFi | t er can approximate the convolution with the Gaus-
sian or with its first and second derivatives. We select on¢ghe$e options by using the
Set Order () method. Note that the argument is eamum whose values can béer oOr der,

Fi rst Order andSecondOrder. For example, to compute thepartial derivative we should
selectri r st Order for xandZer oOr der fory. Here we want only to smooth kandy, so we
selectzer oOr der in both directions.

filterX->SetOrder(FilterType::ZeroOrder);
filterY->SetOrder(FilterType::ZeroOrder);

There are two typical ways of normalizing Gaussians depenain their application. For scale-
space analysis it is desirable to use a normalization tHapreiserve the maximum value of the
input. This normalization is represented by the followingation.

1

e (6.4)

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
http://www.itk.org/Doxygen/html/classitk_1_1RecursiveGaussianImageFilter.html

192 Chapter 6. Filtering

In applications that use the Gaussian as a solution of ttiesihfh equation it is desirable to
use a normalization that preserve the integral of the sigrtak last approach can be seen as a
conservation of mass principle. This is represented bydhewing equation.

1
02/2m

The itk::RecursiveGaussianl nageFilter has a boolean flag that allows users to
select between these two normalization options. Selecisonlone with the method

Set Nor mal i zeAcr ossScal e(). Enable this flag to analyzing an image across scale-space.
In the current example, this setting has no impact becausarevactually renormalizing the
output to the dynamic range of the reader, so we simply distel flag.

(6.5)

filterX->Set Normal i zeAcrossScal e(false);
filterY->Set NormalizeAcrossScal e(false);

The input image can be obtained from the output of another.filHere, an image reader is
used as the source. The image is passed txtfileer and then to they filter. The reason
for keeping these two filters separate is that it is usual #esspace applications to compute
not only the smoothing but also combinations of derivataedifferent orders and smoothing.
Some factorization is possible when separate filters agttoggenerate the intermediate results.
Here this capability is less interesting, though, since wy want to smooth the image in all
directions.

filterX->Setlnput(reader->GetQutput());
filterY->SetlInput(filterX->GetCQutput());

It is now time to select the of the Gaussian used to smooth the data. Notedhatst be
passed to both filters and that sigma is considered to be Imeikers. That is, at the moment
of applying the smoothing process, the filter will take intw@unt the spacing values defined
in the image.

filterX->SetSigma(sigm);
filterY->SetSigma(sigm);

Finally the pipeline is executed by invoking tbiedat e() method.
filterY->Update();

Figure6.24illustrates the effect of this filter on a MRI proton densityage of the brain using

o values of 3 (left) and 5 (right). The figure shows how the atgion of noise can be regulated
by selecting the appropriate standard deviation. This tffgeale-tunable filter is suitable for
performing scale-space analysis.

http://www.itk.org/Doxygen/html/classitk_1_1RecursiveGaussianImageFilter.html

6.7. Smoothing Filters 193

Figure 6.24 Effect of the SmoothingRecursiveGaussianimageFilter on a slice from a MRI proton density
image of the brain.

The RecursiveGaussianFilters can also be applied on eatiponent images. For instance,
the above filter could have applied with RGBPixel as the piype. Each component is then
independently filtered. However the Rescalelntensitykefalter will not work on RGBPixels
since it does not mathematically make sense to rescale tpatamf multi-componentimages.

6.7.2 Local Blurring
In some cases it is desirable to compute smoothing in restriegions of the image, or to do

it using different parameters that are computed locallye fitlowing sections describe options
for applying local smoothing in images.

Gaussian Blur Image Function

The source code for this section can be found in the file
Exanpl es/ Fi | t eri ng/ Gaussi anBl ur | mageFuncti on. cxx.

194 Chapter 6. Filtering

6.7.3 Edge Preserving Smoothing
Introduction to Anisotropic Diffusion

The drawback of image denoising (smoothing) is that it teéodidur away the sharp boundaries
in the image that help to distinguish between the largelesaaatomical structures that one
is trying to characterize (which also limits the size of tineosthing kernels in most applica-
tions). Even in cases where smoothing does not obliteratadaries, it tends to distort the fine
structure of the image and thereby changes subtle aspetis ahatomical shapes in question.

Perona and Malikg3] introduced an alternative to linear-filtering that theyi@a anisotropic
diffusion Anisotropic diffusion is closely related to the earlier nlwoof Grossberg 32],
who used similar nonlinear diffusion processes to modeldmunision. The motivation for
anisotropic diffusion (also calleabnuniformor variable conductancdiffusion) is that a Gaus-
sian smoothed image is a single time slice of the solutiorhéoheat equation, that has the
original image as its initial conditions. Thus, the solatio

Q90K _ 5. gy, (6.6)
whereg(x,y,0) = f(x,y) is the input image, ig(x,y;t) = G(v/2t) ® f(x,y), whereG(o) is a
Gaussian with standard deviation

Anisotropic diffusion includes a variable conductancenehat, in turn, depends on the dif-
ferential structure of the image. Thus, the variable cotahee can be formulated to limit the
smoothing at “edges” in images, as measured by high gradhiaghitude, for example.

o = 0-¢(|0g|)0g, (6.7)

where, for notational convenience, we leave off the inddpehparameters af and use the
subscripts with respect to those parameters to indicat@pderivatives. The function(|0g|)
is a fuzzy cutoff that reduces the conductance at areas @ |ag|, and can be any one of a
number of functions. The literature has shown

I0g|?

o(|Og) = a7 6.8)

to be quite effective. Notice that conductance term intoedua free paramet&r the conduc-
tance parameteithat controls the sensitivity of the process to edge cehtiehus, anisotropic
diffusion entails two free parameters: the conductancamaterk, and the time parametet,
that is analogous ta, the effective width of the filter when using Gaussian kesnel

Equation6.7 is a nonlinear partial differential equation that can bevedlon a discrete grid
using finite forward differences. Thus, the smoothed imagebitained only by an iterative
process, not a convolution or non-stationary, linear filt§pically, the number of iterations
required for practical results are small, and large 2D irsag® be processed in several tens of
seconds using carefully written code running on moderneg@murpose, single-processor
computers. The technique applies readily and effectivel3D images, but requires more
processing time.

6.7. Smoothing Filters 195

In the early 1990's several research group9, [89] demonstrated the effectiveness of
anisotropic diffusion on medical images. In a series of papa the subjec3, 91, 92, 89, 90,
87], Whitaker described a detailed analytical and empiricellgsis, introduced a smoothing
term in the conductance that made the process more robushtéd a numerical scheme that
virtually eliminated directional artifacts in the originglgorithm, and generalized anisotropic
diffusion to vector-valued images, an image processingrtigeie that can be used on vector-
valued medical data (such as the color cryosection dataedfidible Human Project).

For a vector-valued inpu : U — O™ the process takes the form
R =0-c(pF)F, (6.9)

wherepF is adissimilaritymeasure oF , a generalization of the gradient magnitude to vector-
valued images, that can incorporate linear and nonlineadaate transformations on the range
of F. In this way, the smoothing of the multiple images assodiati¢h vector-valued data is
coupled through the conductance term, that fuses the irdbomin the differentimages. Thus
vector-valued, nonlinear diffusion can combine low-leiebge features (e.g. edges) across
all “channels” of a vector-valued image in order to preserwvenhance those features in all of
image “channels”.

Vector-valued anisotropic diffusion is useful for denngidata from devices that produce mul-
tiple values such as MRI or color photography. When perfagmionlinear diffusion on a color
image, the color channels are diffused separately, buedirtkrough the conductance term.
Vector-valued diffusion it is also useful for processingistered data from different devices or
for denoising higher-order geometric or statistical feastfrom scalar-valued image37 95].

The output of anisotropic diffusion is an image or set of iesthat demonstrates reduced noise
and texture but preserves, and can also enhance, edgesintaggs are useful for a variety
of processes including statistical classification, vieagion, and geometric feature extraction.
Previous work has showrd()] that anisotropic diffusion, over a wide range of conductan
parameters, offers quantifiable advantages over linearifiy for edge detection in medical
images.

Since the effectiveness of nonlinear diffusion was first destrated, numerous variations of
this approach have surfaced in the literatufg][These include alternatives for constructing
dissimilarity measure<[l], directional (i.e., tensor-valued) conductance ter@& 3] and level
set interpretations3Q).

Gradient Anisotropic Diffusion
The source code for this section can be found in the file
Exanpl es/ Fi | teri ng/ Gradi ent Ani sot ropi cDi f fusi onl mageFi | ter. cxx.

The itk::GadientAnisotropicDiffusionlmgeFilter implements anN-dimensional
version of the classic Perona-Malik anisotropic diffuséguation for scalar-valued imagés].

The conductance term for this implementation is chosen as@ibn of the gradient magnitude

http://www.itk.org/Doxygen/html/classitk_1_1GradientAnisotropicDiffusionImageFilter.html

196 Chapter 6. Filtering

of the image at each point, reducing the strength of difiusibedge pixels.

[BU)|)2
IBUel

Cx)=e ! (6.10)
The numerical implementation of this equation is similatttat described in the Perona-Malik
paper B3], but uses a more robust technique for gradient magnitutim&son and has been
generalized tdN-dimensions.

The first step required to use this filter is to include its fegdie.
#include "itkG adi ent Ani sotropicDiffusionlnageFilter.h"

Types should be selected based on the pixel types requirédtsfinput and output images. The
image types are defined using the pixel type and the dimension

t ypedef fl oat | nput Pi xel Type;
t ypedef fl oat Qut put Pi xel Type;

typedef itk::lmage< InputPixel Type, 2 > InputlmageType;
typedef itk::Image< QutputPixel Type, 2 > QutputlnageType;

The filter type is now instantiated using both the input imagd the output image types. The
filter object is created by thidew() method.

typedef itk:: G adientAnisotropicDiffusionl mageFilter<
I nput I mageType, CQutputlmageType > FilterType;
FilterType::Pointer filter = FilterType:: New();

The inputimage can be obtained from the output of another.filiere, an image reader is used
as source.

filter->Set!|nput(reader->CetQutput());

This filter requires three parameters, the number of itnatito be performed, the time
step and the conductance parameter used in the computdtitme devel set evolution.
These parameters are set using the metBedsunber Of It erati ons(), Set Ti neStep() and
Set Conduct ancePar anet er () respectively. The filter can be executed by invoking Update(

filter->SetNunberOfIterations(numberOflterations);
filter->SetTimeStep(timeStep);
filter->SetConductanceParaneter(conductance);

filter->Update();

6.7. Smoothing Filters 197

Figure 6.25:Effect of the GradientAnisotropicDiffusionimageFilter on a slice from a MRI Proton Density
image of the brain.

Typical values for the time step are26 in 2D images and @25 in D images. The number of
iterations is typically set to 5; more iterations resultumther smoothing and will increase the
computing time linearly.

Figure6.25illustrates the effect of this filter on a MRI proton densitgage of the brain. In
this example the filter was run with a time step d2®, and 5 iterations. The figure shows how
homogeneous regions are smoothed and edges are preserved.

The following classes provide similar functionality:

e itk::Bilateral | mageFilter
e itk::CurvatureAni sotropicDiffusionl mageFilter

e itk::CurvatureFl om nageFilter

Curvature Anisotropic Diffusion
The source code for this section can be found in the file
Exanpl es/ Fi | tering/ Curvat ur eAni sot ropi cDi f f usi onl mageFi | ter. cxx.

The itk:: CurvatureAnisotropicDiffusionl mageFilter performs anisotropic diffusion
on an image using a modified curvature diffusion equation ML

MCDE does not exhibit the edge enhancing properties of iclasssotropic diffusion, which

http://www.itk.org/Doxygen/html/classitk_1_1BilateralImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1CurvatureAnisotropicDiffusionImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1CurvatureFlowImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1CurvatureAnisotropicDiffusionImageFilter.html

198 Chapter 6. Filtering

can under certain conditions undergo a “negative” diffasiwhich enhances the contrast of
edges. Equations of the form of MCDE always undergo podiliffesion, with the conductance
term only varying the strength of that diffusion.

Qualitatively, MCDE compares well with other non-lineaffdsion techniques. It is less sensi-
tive to contrast than classic Perona-Malik style diffusiand preserves finer detailed structures
in images. There is a potential speed trade-off for usingfilmction in place of itkGradient-
NDAnisotropicDiffusionFunction. Each iteration of thelstion takes roughly twice as long.
Fewer iterations, however, may be required to reach an &anlepsolution.

The MCDE equation is given as:

of
ft_|Df|D-c(|Df|)m (6.11)
where the conductance modified curvature term is
of
g m (6.12)

The first step required for using this filter is to include iealder file
#include "itkCurvatureAnisotropicDiffusionlmgeFilter.h"

Types should be selected based on the pixel types requirétsfinput and output images. The
image types are defined using the pixel type and the dimension

t ypedef fl oat | nput Pi xel Type;
t ypedef fl oat Qut put Pi xel Type;

typedef itk::Image< InputPixel Type, 2 > |nputlmageType;
typedef itk::lmage< CutputPixel Type, 2 > QutputlnageType;

The filter type is now instantiated using both the input imagd the output image types. The
filter object is created by thidew() method.

typedef itk:: CurvatureAnisotropicDiffusionlmgeFilter<
I nput | mageType, CQutput|mageType > FilterType;

FilterType::Pointer filter = FilterType:: New();

The inputimage can be obtained from the output of another.filiere, an image reader is used
as source.

filter->Set!|nput(reader->CetQutput());

6.7. Smoothing Filters 199

Figure 6.26 Effect of the CurvatureAnisotropicDiffusionimageFilter on a slice from a MRI Proton Density
image of the brain.

This filter requires three parameters, the number of it@natio be performed, the time step used
in the computation of the level set evolution and the valueooiductance. These parameters are
set using the metho®et Nunber Of I terati ons(), Set Ti meSt ep() andSet Conduct ance()
respectively. The filter can be executed by invokipdat () .

filter->SetNunberOf Iterations(numberCflterations);
filter->SetTimeStep(timeStep);
filter->SetConductanceParaneter(conductance);
i f (usel mageSpaci ng)

{

filter->Usel mageSpaci ngOn();

}
filter->Update();

Typical values for the time step are 0.125 i Bnages and 0.0625 inCBimages. The number
of iterations can be usually around 5, more iterations vedfluit in further smoothing and will
increase linearly the computing time. The conductancerpater is usually around@.

Figure6.26illustrates the effect of this filter on a MRI proton densityage of the brain. In
this example the filter was run with a time step of®5, 5 iterations and a conductance value
of 3.0. The figure shows how homogeneous regions are smoothedigad are preserved.

The following classes provide similar functionality:

e itk::Bilateral | mageFilter

http://www.itk.org/Doxygen/html/classitk_1_1BilateralImageFilter.html

200 Chapter 6. Filtering

e itk::CurvatureFl ow mageFilter
e itk::GadientAnisotropicDiffusionl mageFilter

Curvature Flow

The source code for this section can be found in the file
Exanpl es/ Fi | teri ng/ Curvat ur eFl oM nageFi | t er. cxx.

The itk:: CurvatureFl oW nageFi |l ter performs edge-preserving smoothing in a similar
fashion to the classical anisotropic diffusion. The filtees a level set formulation where the
iso-intensity contours in a image are viewed as level selterevpixels of a particular inten-
sity form one level set. The level set function is then evdluader the control of a diffusion
equation where the speed is proportional to the curvatutigeofontour:

I, = |01 (6.13)

wherek is the curvature.

Areas of high curvature will diffuse faster than areas of lmwvature. Hence, small jagged
noise artifacts will disappear quickly, while large scalterfaces will be slow to evolve, thereby
preserving sharp boundaries between objects. Howevérpitld be noted that although the
evolution at the boundary is slow, some diffusion still acclihus, continual application of
this curvature flow scheme will eventually result is the reail@f information as each contour
shrinks to a point and disappears.

The first step required to use this filter is to include its feedie.
#include "itkCurvatureFl o mageFilter.h"
Types should be selected based on the pixel types requirduganput and output images.

t ypedef fl oat | nput Pi xel Type;
t ypedef fl oat Qut put Pi xel Type;

With them, the input and output image types can be instautiat

typedef itk::Image< InputPixel Type, 2 > |nputlmageType;
typedef itk::lmage< CutputPixel Type, 2 > QutputlnageType;

The CurvatureFlow filter type is now instantiated using bibih input image and the output
image types.

typedef itk:: CurvatureFl ow mageFilter<
I nput I mageType, CQutputlmageType > FilterType;

http://www.itk.org/Doxygen/html/classitk_1_1CurvatureFlowImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1GradientAnisotropicDiffusionImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1CurvatureFlowImageFilter.html

6.7. Smoothing Filters 201

A filter object is created by invoking th&ew() method and assigning the result to a
itk:: SmartPointer.

FilterType::Pointer filter = FilterType:: New();

The inputimage can be obtained from the output of another.filiere, an image reader is used
as source.

filter->Set!|nput(reader->CetQutput());

The CurvatureFlow filter requires two parameters, the nurobigerations to be performed and
the time step used in the computation of the level set ewmiutThese two parameters are set
using the methodSet Nunber Of I terati ons() andSet Ti meSt ep() respectively. Then the
filter can be executed by invokingpdat e() .

filter->SetNunberOf Iterations(numberOflterations);
filter->SetTimeStep(timeStep);
filter->Update();

Typical values for the time step arel@5 in 2D images and @625 in D images. The number
of iterations can be usually around 10, more iterations mdult in further smoothing and
will increase linearly the computing time. Edge-presegvi®havior is not guaranteed by this
filter, some degradation will occur on the edges and willéase as the number of iterations is
increased.

If the output of this filter has been connected to other filtenan the pipeline, updating any of
the downstream filters will triggered the execution of thig oFor example, a writer filter could
have been used after the curvature flow filter.

rescal er->SetInput(filter->GetQutput());
writer->Setlnput(rescaler->GtQutput());
writer->Update();

Figure6.27illustrates the effect of this filter on a MRI proton densityage of the brain. In
this example the filter was run with a time step d&®and 10 iterations. The figure shows how
homogeneous regions are smoothed and edges are preserved.

The following classes provide similar functionality:

e itk:: G adientAnisotropichDiffusionlnageFilter
e itk::CurvatureAnisotropicDiffusionlmgeFilter

e itk::Bilateral | mageFilter

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
http://www.itk.org/Doxygen/html/classitk_1_1GradientAnisotropicDiffusionImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1CurvatureAnisotropicDiffusionImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1BilateralImageFilter.html

202 Chapter 6. Filtering

Figure 6.27:Effect of the CurvatureFlowlmageFilter on a slice from a MRI proton density image of the
brain.

MinMaxCurvature Flow

The source code for this section can be found in the file
Exanpl es/ Fi | teri ng/ M nMaxCur vat ur eFl owl mageFi | t er. cxx.

The MinMax curvature flow filter applies a variant of the cunra flow algorithm where dif-
fusion is turned on or off depending of the scale of the ndis¢ bne wants to remove. The
evolution speed is switched between (iy0) and maxk,0) such that:

Il = F |01 (6.14)

whereF is defined as

(6.15)

[maxk,0) : Average< Threshold
| min(k,0) : Average> Threshold

TheAveragss the average intensity computed over a neighborhood aéraspecified radius of
the pixel. The choice of the radius governs the scale of tigerio be removed. ThEhreshold

is calculated as the average of pixel intensities along itteetibn perpendicular to the gradient
at theextremaof the local neighborhood.

A speed ofF = maxk,0) will cause small dark regions in a predominantly light regio
shrink. Conversely, a speed Bf= min(k,0), will cause light regions in a predominantly dark
region to shrink. Comparison between the neighborhoodagesand the threshold is used to

6.7. Smoothing Filters 203

/)

\ L)V{a;ent

\

Figure 6.28:Elements involved in the computation of min-max curvature flow.

select the the right speed function to use. This switchiegemts the unwanted diffusion of the
simple curvature flow method.

Figure6.28 shows the main elements involved in the computation. Thefstjuare pixels
represent the neighborhood over which the average inygasieing computed. The gray pixels
are those lying close to the direction perpendicular to tiaglignt. The pixels which intersect
the neighborhood bounds are used to compute the threshlolel imvathe equation above. The
integer radius of the neighborhood is selected by the user.

The first step required to use the k: : M nMaxCur vat ur eFl owt mageFi | t er is to include its
header file.

#include "itkM nMaxCurvat ur eFl owl mageFi | ter. h"

Types should be selected based on the pixel types requirgtsfinput and output images. The
input and output image types are instantiated.

t ypedef fl oat | nput Pi xel Type;
t ypedef fl oat Qut put Pi xel Type;

typedef itk::lmage< InputPixel Type, 2 > InputlmageType;
typedef itk::Image< QutputPixel Type, 2 > QutputlnageType;

The itk:: M nMaxCurvat ureFl ow mageFi | t er type is now instantiated using both the input
image and the output image types. The filter is then created tiseNew() method.

http://www.itk.org/Doxygen/html/classitk_1_1MinMaxCurvatureFlowImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1MinMaxCurvatureFlowImageFilter.html

204 Chapter 6. Filtering

typedef itk:: M nMxCurvatureFl ow mageFilter<
I nput | mageType, CQutput|mageType > FilterType;
FilterType::Pointer filter = FilterType:: New();

The inputimage can be obtained from the output of another.filiere, an image reader is used
as source.

filter->Set!|nput(reader->CetQutput());

The itk:: M nMxCurvatureFl owl mageFi |l ter requires the two normal parameters of the
CurvatureFlow image, the number of iterations to be perémtrand the time step used in the
computation of the level set evolution. In addition to thehe radius of the neighborhood is
also required. This last parameter is passed usin§eh&t enci | Radi us() method. Note that
the radius is provided as an integer number since it is iefipto a number of pixels from the
center to the border of the neighborhood. Then the filter esexlecuted by invokingpdat e() .

filter->SetTinmeStep(timeStep);
filter->SetNunberCfIterations(numberOflterations);
filter->SetStencil Radius(radius);
filter->Update();

Typical values for the time step arel@5 in 2D images and @625 in D images. The number
of iterations can be usually around 10, more iterations@ault in further smoothing and will
increase the computing time linearly. The radius of the@taan be typically 1. Thedge-
preservingcharacteristic is not perfect on this filter, some degradatiill occur on the edges
and will increase as the number of iterations is increased.

If the output of this filter has been connected to other filtan the pipeline, updating any
of the downstream filters would have triggered the execuifdhis one. For example, a writer
filter could have been used after the curvature flow filter.

rescal er->SetlInput(filter->GetQutput());
writer->Setlnput(rescaler->GetQutput());
writer->Update();

Figure6.29illustrates the effect of this filter on a MRI proton densitydge of the brain. In this
example the filter was run with a time step o105, 10 iterations and a radius of 1. The figure
shows how homogeneous regions are smoothed and edges seevpte Notice also, that the
results in the figure has sharper edges than the same exasipdesimple curvature flow in
Figure6.27.

The following classes provide similar functionality:

e itk::CurvatureFl ow mageFilter

http://www.itk.org/Doxygen/html/classitk_1_1MinMaxCurvatureFlowImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1CurvatureFlowImageFilter.html

6.7. Smoothing Filters 205

Figure 6.29:Effect of the MinMaxCurvatureFlowlmageFilter on a slice from a MRI proton density image
of the brain.

Bilateral Filter

The source code for this section can be found in the file
Exanpl es/ Filtering/ Bil ateral | mageFilter. cxx.

The itk::Bilateral | mageFilter performs smoothing by using both domain and range
neighborhoods. Pixels that are close to a pixel in the imageadn and similar to a pixel in the
image range are used to calculate the filtered value. Two Sgaug&ernels (one in the image
domain and one in the image range) are used to smooth the.ifgeesult is an image that is
smoothed in homogeneous regions yet has edges preseneckesiit is similar to anisotropic
diffusion but the implementation in non-iterative. Anatleenefit to bilateral filtering is that
any distance metric can be used for kernel smoothing the@émaigge. Bilateral filtering is
capable of reducing the noise in an image by an order of madgmiivhile maintaining edges.
The bilateral operator used here was described by Tomadilanduchi Bilateral Filtering for
Gray and Color ImagesEEE ICCV. 1998.)

The filtering operation can be described by the followingagpn
h(x) = k(x)~* / F(w)c(x,w)s(f (x), f (w))dw (6.16)
JW

wherex holds the coordinates of ldD point, f(x) is the input image anti(x) is the output
image. The convolution kernet$) ands() are associated with the spatial and intensity domain
respectively. Th&\D integral is computed oven which is a neighborhood of the pixel located

http://www.itk.org/Doxygen/html/classitk_1_1BilateralImageFilter.html

206 Chapter 6. Filtering

atx. The normalization factdk(x) is computed as

k(x) = /wc(x,w)s(f(x)7 f(w))dw (6.17)

The defaultimplementation of this filter uses Gaussianddsrior bothc() ands(). Theckernel
can be described as

Jlx—w||?
cxw)—e & (6.18)

whereqg is provided by the user and defines how close pixel neighliangld be in order to be
considered for the computation of the output value. $kernel is given by

(<f<x>—f<w>2)
s(f(x), f(w))=e (6.19)

wheregds is provided by the user and defines how close should the neighbtensity be in
order to be considered for the computation of the outputevalu

The first step required to use this filter is to include its fegdite.

#include "itkBilateral | mageFilter.h"
The image types are instantiated using pixel type and diiloens

t ypedef unsi gned char I nput Pi xel Type;
t ypedef unsi gned char Qut put Pi xel Type;

typedef itk::Image< InputPixel Type, 2 > |nputlmageType;
typedef itk::Image< QutputPixel Type, 2 > QutputlnageType;

The bilateral filter type is now instantiated using both thput image and the output image
types and the filter object is created.

typedef itk::Bilateral | mageFilter<
I nput | mageType, CQutput|mageType > FilterType;
FilterType::Pointer filter = FilterType:: New();

The inputimage can be obtained from the output of another.fiiere, an image reader is used
as a source.

filter->Set!|nput(reader->CetQutput());

6.7. Smoothing Filters 207

The Bilateral filter requires two parameters. First, th be used for the Gaussian kernel on
image intensities. Second, the setosfto be used along each dimension in the space domain.
This second parameter is supplied as an arrdy oét ordoubl e values. The array dimension
matches the image dimension. This mechanism makes possileleforce more coherence
along some directions. For example, more smoothing can be dlmng theX direction than
along they direction.

In the following code example, the values are taken from the command line. Note the use of
| mgeType: : | mageDi nensi on to get access to the image dimension at compile time.

const unsigned int Dimension = |nputlmageType:: | nageDi nensi on;
doubl e domai nSi gnas[Di nension];
for(unsigned int i=0; i<Dimension; i++)

{

domai nSi gmas[i] = atof (argv[3]);

}

const doubl e rangeSigma = atof (argv[4]);
The filter parameters are set with the methods SetRange§igm&SetDomainSigmay().

filter->Set Domai nSi gma(domai nSi gmas);
filter->SetRangeSigma(rangeSigm);

The output of the filter is connected here to a intensity desditer and then to a writer. Invok-
ing Updat e() on the writer triggers the execution of both filters.

rescal er->SetInput(filter->GetQutput());
writer->Set!|nput(rescaler->GetCQutput());
writer->Update();

Figure6.30illustrates the effect of this filter on a MRI proton densitydge of the brain. In this
example the filter was run with a range sigma df &nd a domaim of 6.0. The figure shows
how homogeneous regions are smoothed and edges are pteserve

The following classes provide similar functionality:

e itk:: G adientAnisotropichDiffusionlnageFilter
e itk::CurvatureAnisotropicDiffusionl mgeFilter

e itk::CurvatureFl om nageFilter

6.7.4 Edge Preserving Smoothing in Vector Images

Anisotropic diffusion can also be applied to images whoselpiare vectors. In this case
the diffusion is computed independently for each vector ponent. The following classes
implement versions of anisotropic diffusion on vector iresg

http://www.itk.org/Doxygen/html/classitk_1_1GradientAnisotropicDiffusionImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1CurvatureAnisotropicDiffusionImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1CurvatureFlowImageFilter.html

208 Chapter 6. Filtering

Figure 6.30:Effect of the BilaterallmageFilter on a slice from a MRI proton density image of the brain.

Vector Gradient Anisotropic Diffusion

The source code for this section can be found in the file
Exanpl es/ Fi | tering/ Vect or G adi ent Ani sot ropi cDi f fusi onl mageFi | ter. cxx.

The itk::VectorGadientAnisotropicDiffusionlmageFilter implements an N-
dimensional version of the classic Perona-Malik anisatrajiffusion equation for vector-
valued images. Typically in vector-valued diffusion, v@ctomponents are diffused indepen-
dently of one another using a conductance term that is lid@dss the components. The
diffusion equation was illustrated $7.3

This filter is designed to process images idafk: : Vect or type. The code relies on various
typedefs and overloaded operators defined in Vector. It ifepy reasonable, however, to

apply this filter to images of other, user-defined types ag Emthe appropriate typedefs and
operator overloads are in place. As a general rule, foll@ettample of Vector in defining your

data types.

The first step required to use this filter is to include its fegdie.

#include "itkVectorG adi ent Ani sotropicDiffusionl mageFilter.h"

Types should be selected based on required pixel type fointheg and output images. The
image types are defined using the pixel type and the dimension

t ypedef fl oat | nput Pi xel Type;

http://www.itk.org/Doxygen/html/classitk_1_1VectorGradientAnisotropicDiffusionImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1Vector.html

6.7. Smoothing Filters 209

typedef itk::CovariantVector<float, 2> Vect or Pi xel Type;
typedef itk::Image< InputPixel Type, 2 > |nputlmageType;
typedef itk::Image< VectorPixel Type, 2 > VectorlnageType;

The filter type is now instantiated using both the input imagd the output image types. The
filter object is created by thidew() method.

typedef itk::VectorG adientAnisotropicDiffusionl mageFilter<
Vector | nageType, Vector!|nageType > FilterType;
FilterType::Pointer filter = FilterType:: New();

The inputimage can be obtained from the output of another.fiiere, an image reader is used
as source and its data is passed through a gradient filted@n tr generate an image of vectors.

gradi ent->Set I nput (reader->CGetQutput());
filter->Setlnput(gradient->CGetQutput());

This filter requires two parameters, the number of iteratimnbe performed and the time step
used in the computation of the level set evolution. Thesarpaters are set using the methods
Set Number Of I terati ons() andSet Ti meSt ep() respectively. The filter can be executed by
invoking Updat e() .

filter->SetNunberOfIterations(numberOflterations);
filter->SetTinmeStep(timeStep);
filter->SetConductanceParaneter(1.0);
filter->Update();

Typical values for the time step arel@5 in 2D images and @625 in D images. The number
of iterations can be usually around 5, more iterations we#luit in further smoothing and will
linearly increase the computing time.

Figure6.31illustrates the effect of this filter on a MRI proton densityage of the brain. The
images show th& component of the gradient before (left) and after (righ¢) #pplication of
the filter. In this example the filter was run with a time stef® @5, and 5 iterations.

Vector Curvature Anisotropic Diffusion

The source code for this section can be found in the file
Exanpl es/ Fi | teri ng/ Vect or Cur vat ur eAni sot ropi cDi f f usi onl nageFi | t er. cxx.

The itk::VectorCurvatureAnisotropicDiffusionl mageFilter performs anisotropic
diffusion on a vector image using a modified curvature difoequation (MCDE). The MCDE
is the same described §17.3

http://www.itk.org/Doxygen/html/classitk_1_1VectorCurvatureAnisotropicDiffusionImageFilter.html

210 Chapter 6. Filtering

Figure 6.31 Effect of the VectorGradientAnisotropicDiffusionimageFilter on the X component of the gra-
dient from a MRI proton density brain image.

Typically in vector-valued diffusion, vector components diffused independently of one an-
other using a conductance term that is linked across the coems.

This filter is designed to process images idafk: : Vect or type. The code relies on various
typedefs and overloaded operators defined in Vector. It ifepiy reasonable, however, to
apply this filter to images of other, user-defined types ag mthe appropriate typedefs and
operator overloads are in place. As a general rule, folleavekample of the Vector class in
defining your data types.

The first step required to use this filter is to include its fegdie.
#include "itkVectorCurvatureAni sotropicDiffusionlmgeFilter.h"

Types should be selected based on required pixel type fointhe and output images. The
image types are defined using the pixel type and the dimension

typedef float I nput Pi xel Type;

typedef itk::CovariantVector<float, 2> Vect or Pi xel Type;
typedef itk::lmage< InputPixel Type, 2 > InputlmageType;
typedef itk::Image< VectorPixel Type, 2 > VectorlnageType;

The filter type is now instantiated using both the input imagd the output image types. The
filter object is created by thgew() method.

http://www.itk.org/Doxygen/html/classitk_1_1Vector.html

6.7. Smoothing Filters 211

typedef itk::VectorCurvatureAnisotropicDiffusionl mageFilter<
Vector | nageType, Vector!|nageType > FilterType;
FilterType::Pointer filter = FilterType:: New();

The inputimage can be obtained from the output of another.fiiere, an image reader is used
as source and its data is passed through a gradient filted@n tr generate an image of vectors.

gradi ent->Set | nput (reader->CGetQutput());
filter->Set!|nput(gradient->CetCQutput());

This filter requires two parameters, the number of iteratimnbe performed and the time step
used in the computation of the level set evolution. Thesarpaters are set using the methods
Set Nunber Of I terati ons() andSet Ti meSt ep() respectively. The filter can be executed by
invoking Updat e() .

filter->SetNunberOf Iterations(numberCflterations);
filter->SetTimeStep(timeStep);
filter->SetConductanceParaneter(1.0);
filter->Update();

Typical values for the time step arel@5 in 2D images and @625 in D images. The number
of iterations can be usually around 5, more iterations we#luit in further smoothing and will
increase linearly the computing time.

Figure6.32illustrates the effect of this filter on a MRI proton densityage of the brain. The
images show th& component of the gradient before (left) and after (righ¢) #pplication of
the filter. In this example the filter was run with a time ste® @5, and 5 iterations.

6.7.5 Edge Preserving Smoothing in Color Images
Gradient Anisotropic Diffusion
The source code for this section can be found in the file

Exanpl es/ Fi | t eri ng/ RGBG adi ent Ani sot r opi cDi f f usi onl mageFi | ter. cxx.

The vector anisotropic diffusion approach can equally Welhpplied to colorimages. As in the
vector case, each RGB component is diffused independdritéy/following example illustrates
the use of the Vector curvature anisotropic diffusion fiberan image withi t k: : RGBPi xel

type.
The first step required to use this filter is to include its fegdie.

#include "itkVectorG adi ent Ani sotropicDiffusionl mageFilter.h"

Also the headers fdrmage andRGBPi xel type are required.

http://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html

212 Chapter 6. Filtering

Figure 6.32:Effect of the VectorCurvatureAnisotropicDiffusionimageFilter on the X component of the
gradient from a MRIproton density brain image.

#include "itkRGBPi xel . h"
#include "itkl mage. h"

Itis desirable to perform the computation on the RGB imagegfd oat representation. How-
ever for input and output purposessi gned char RGB components are commonly used. Itis
necessary to cast the type of color components along thérmpeefore writing them to a file.
The i tk:: VectorCast|mageFilter is used to achieve this goal.

#include "itklmgeFi| eReader. h"
#include "itklmageFileWiter.h"
#include "itkVectorCastlmageFilter.h"

The image type is defined using the pixel type and the dimansio

typedef itk::RGBPixel< float > | nput Pi xel Type;
typedef itk::Image< InputPixel Type, 2 > [InputlmageType;

The filter type is now instantiated and a filter object is ceddiy theNew() method.

typedef itk::VectorG adientAnisotropicDiffusionlmageFilter<
I nput | rageType, | nputlmgeType > FilterType;
FilterType::Pointer filter = FilterType:: New();

http://www.itk.org/Doxygen/html/classitk_1_1VectorCastImageFilter.html

6.7. Smoothing Filters 213

The inputimage can be obtained from the output of another.fiiere, an image reader is used
as source.

typedef itk::ImageFil eReader< |nputlmageType > Reader Type;
Reader Type: : Poi nter reader = Reader Type:: New();

reader->Set Fil eNanme(argv[1]);

filter->Setlnput(reader->GetCQutput());

This filter requires two parameters, the number of iteratimnbe performed and the time step
used in the computation of the level set evolution. Thesamaters are set using the methods
Set Number Of I terati ons() andSet Ti meSt ep() respectively. The filter can be executed by
invoking Updat e() .

filter->SetNunberOfIterations(numberCflterations);
filter->SetTimeStep(timeStep);
filter->SetConductanceParaneter(1.0);
filter->Update();

The filter output is now cast tounsi gned char RGB components by using the
i tk::VectorCastlnmageFilter.

typedef itk::RG@BPixel < unsigned char > WitePixel Type;
typedef itk::Image< WitePixel Type, 2 > Witel mageType;
typedef itk::VectorCastlmageFilter<

I nput | mageType, WitelmageType > Caster Type;
Caster Type: : Poi nter caster = CasterType:: New();

Finally, the writer type can be instantiated. One writerrsated and connected to the output of
the cast filter.

typedef itk::ImageFileWiter< WitelmgeType > WiterType;
WiterType:: Pointer witer = WiterType:: New();
caster->Setlnput(filter->CGetQutput());

writer->Setlnput(caster->GetQutput());
writer->SetFileName(argv[2]);

writer->Update();

Figure6.33illustrates the effect of this filter on a RGB image from a aggoic section of the
Visible Woman data set. In this example the filter was run witime step of @25, and 20
iterations. The inputimage has 5¥®&70 pixels and the processing took 4 minutes on a Pentium
4 2Ghz.

http://www.itk.org/Doxygen/html/classitk_1_1VectorCastImageFilter.html

214 Chapter 6. Filtering

Figure 6.33:Effect of the VectorGradientAnisotropicDiffusionimageFilter on a RGB image from a cryo-
genic section of the Visible Woman data set.

Curvature Anisotropic Diffusion

The source code for this section can be found in the file
Exanpl es/ Fi | t eri ng/ RGBCur vat ur eAni sot ropi cDi f f usi onl mageFi | ter. cxx.

The vector anisotropic diffusion approach can equally Welhpplied to colorimages. Asin the
vector case, each RGB component is diffused independdrité/following example illustrates
the use of theitk: : Vect or Cur vat ur eAni sot r opi cDi f f usi onl mageFi [t er on an image
with itk:: RGBPi xel type.

The first step required to use this filter is to include its fegdie.
#include "itkVectorCurvat ureAni sotropicDiffusionl mageFilter.h"
Also the headers fdrmage andRGBPi xel type are required.

#include "itkRGBPi xel . h"
#include "itklmge.h"

Itis desirable to perform the computation on the RGB imagpegfd oat representation. How-
ever for input and output purposessi gned char RGB components are commonly used. Itis
necessary to cast the type of color components in the pgb#ifore writing them to a file. The

i tk::VectorCastlmgeFilter is used to achieve this goal.

http://www.itk.org/Doxygen/html/classitk_1_1VectorCurvatureAnisotropicDiffusionImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html
http://www.itk.org/Doxygen/html/classitk_1_1VectorCastImageFilter.html

6.7. Smoothing Filters 215

#include "itklmageFi| eReader. h"
#include "itklmageFileWiter.h"
#include "itkVectorCast|mageFilter.h"

The image type is defined using the pixel type and the dimansio

typedef itk::RGBPixel< float > | nput Pi xel Type;
typedef itk::Image< InputPixel Type, 2 > |nputlmageType;

The filter type is now instantiated and a filter object is ceddiy theNew() method.

typedef itk::VectorCurvatureAnisotropicDiffusionl mageFilter<
I nput | mageType, |nputlmgeType > FilterType;
FilterType::Pointer filter = FilterType:: New();

The inputimage can be obtained from the output of another.fiiere, an image reader is used

as source.

typedef itk::ImageFileReader< |nputlmageType > Reader Type;
Reader Type: : Poi nter reader = Reader Type:: New();

reader->Set Fil eNanme(argv[1]);

filter->Setlnput(reader->GetCQutput());

This filter requires two parameters, the number of iteratimnbe performed and the time step
used in the computation of the level set evolution. Thesarpaters are set using the methods
Set Number Of I terati ons() andSet Ti meSt ep() respectively. The filter can be executed by

invoking Updat e() .

filter->SetNunberOf Iterations(numberOflterations);
filter->SetTimeStep(timeStep);
filter->SetConductanceParaneter(1.0);
filter->Update();

The filter output is now cast tansi gned char RGB components by using the VectorCastim-

ageFilter

typedef itk::RG@BPixel < unsigned char > WitePixel Type;
typedef itk::Image< WitePixel Type, 2 > WitelnageType;
typedef itk::VectorCastlmageFilter<

I nput I mageType, Witel mageType > Caster Type;
Caster Type: : Poi nter caster = CasterType:: New();

Finally, the writer type can be instantiated. One writerrsated and connected to the output of

the cast filter.

216 Chapter 6. Filtering

Figure 6.34:Effect of the VectorCurvatureAnisotropicDiffusionimageFilter on a RGB image from a cryo-
genic section of the Visible Woman data set.

typedef itk::ImageFileWiter< WitelmgeType > WiterType;
WiterType:: Pointer witer = WiterType:: New();
caster->Setlnput(filter->CGetQutput());

writer->Setlnput(caster->GetQutput());
writer->SetFileName(argv[2]);

writer->Update();

Figure6.34illustrates the effect of this filter on a RGB image from a ggoic section of the
Visible Woman data set. In this example the filter was run witime step of @25, and 20
iterations. The inputimage has 5¥®&70 pixels and the processing took 4 minutes on a Pentium
4 at 2Ghz.

Figure6.35compares the effect of the gradient and curvature anisietiffusion filters on a
small region of the same cryogenic slice used in FiguB2l. The region used in this figure is
only 127x 162 pixels and took 14 seconds to compute on the same platform

6.8 Distance Map

The source code for this section can be found in the file
Exanpl es/ Fi | teri ng/ Dani el ssonDi st anceMapl mageFi | t er. cxx.

This example illustrates the use of thek: : Dani el ssonDi st anceMapl nmageFi | t er . This fil-
ter generates a distance map from the input image usingdbethim developed by Danielsson

http://www.itk.org/Doxygen/html/classitk_1_1DanielssonDistanceMapImageFilter.html

6.8. Distance Map 217

Figure 6.35:Comparison between the gradient (center) and curvature (right) Anisotropic Diffusion filters.
Original image at left.

[18]. As secondary outputs, a Voronoi partition of the inputedats is produced, as well as a
vector image with the components of the distance vectordalbsest point. The input to the
map is assumed to be a set of points on the input image. Eactigigél is considered to be a
separate entity even if they share the same gray level value.

The first step required to use this filter is to include its fegdie.
#include "itkDaniel ssonDi stanceMapl nageFil ter.h"

Then we must decide what pixel types to use for the input ampgubimages. Since the output
will contain distances measured in pixels, the pixel typeusth be able to represent at least
the width of the image, or said iIN — D terms, the maximum extension along all the dimen-
sions. The input and output image types are now defined uleigrespective pixel type and
dimension.

typedef unsigned char |nputPixel Type;
typedef unsigned short CQutputPixel Type;
typedef itk::lmage< InputPixel Type, 2 > InputlmageType;
typedef itk::lmage< QutputPixel Type, 2 > QutputlnageType;

The filter type can be instantiated using the input and outpage types defined above. A filter
object is created with thilew() method.

typedef itk:: Daniel ssonDi stanceMapl mageFi | ter<
I nput I mageType, CQutputlmageType > FilterType;
FilterType::Pointer filter = FilterType:: New();

218 Chapter 6. Filtering

Figure 6.36:DanielssonDistanceMaplmageFilter output. Set of pixels, distance map and Voronoi parti-
tion.

The input to the filter is taken from a reader and its output i@ssed to a
itk::Rescal el ntensityl mageFilter and then to a writer.

filter->Setlnput(reader->GetCQutput());
scal er->Set I nput (filter->CGetQutput());
writer->Setlnput(scaler->GetQutput());

The type of input image has to be specified. In this case, aypimege is selected.
filter->InputlsBinaryOn();

Figure6.36illustrates the effect of this filter on a binary image withed sf points. The input
image is shown at left, the distance map at the center anddrenbi partition at right. This
filter computes distance maps in N-dimensions and is thexefapable of produciniy — D
Voronoi partitions.

The Voronoi map is obtained with ti@t Vor onoi Map() method. In the lines below we connect
this output to the intensity rescaler and save the resulfile.a

scal er->Set I nput (filter->GetVoronoi Map());
writer->SetFileName(voronoi MapFil eNane);
writer->Update();

The distance filter also produces an imageit¢k: : O f set pixels representing the vectorial
distance to the closest object in the scene. The type of thtjsub image is defined by the
VectorlmageType trait of the filter type.

typedef FilterType::VectorlmgeType O fsetlmgeType;

http://www.itk.org/Doxygen/html/classitk_1_1RescaleIntensityImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1Offset.html

6.8. Distance Map 219

We can use this type for instantiating amk: : | mageFi | eWiter type and creating an object
of this class in the following lines.

typedef itk::ImageFileWiter< OfsetlmageType > WiterOfset Type;
WiterOffsetType::Pointer offsetWiter = WiterOffset Type:: New();

The output of the distance filter can be connected as inpbetavtiter.
of fsetWiter->SetInput(filter->GetVectorDistanceMap());

Execution of the writer is triggered by the invocation of th@lat e() method. Since this
method can potentially throw exceptions it must be placeatiny/ cat ch block.

try
{
of fset Witer->Update();

}
catch(itk::ExceptionChject exp)

{

std::cerr << "Exception caught !" << std::endl;
std::cerr << exp << std::endl;

}

Note that only thei t k: : Met al magel O class supports reading and writing images of pixel type
itk::Offset.

The source code for this section can be found in the file
Exanpl es/ Fil teri ng/ Si gnedDani el ssonDi st anceMapl mageFi | ter. cxx.

This example illustrates the use of theék: ;: Si gnedDani el ssonDi st anceMapl mageFi | ter .
This filter generates a distance map by running Danielssstartie map twice, once on the
inputimage and once on the flipped image.

The first step required to use this filter is to include its fegdie.
#include "itkSi gnedDani el ssonDi st anceMapl mageFilter.h"

Then we must decide what pixel types to use for the input ampgubimages. Since the output
will contain distances measured in pixels, the pixel typeusth be able to represent at least
the width of the image, or said iIN — D terms, the maximum extension along all the dimen-
sions. The input and output image types are now defined ukeigrespective pixel type and
dimension.

typedef unsigned char I nputPixel Type;
typedef float QutputPixel Type;

http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
http://www.itk.org/Doxygen/html/classitk_1_1MetaImageIO.html
http://www.itk.org/Doxygen/html/classitk_1_1Offset.html
http://www.itk.org/Doxygen/html/classitk_1_1SignedDanielssonDistanceMapImageFilter.html

220 Chapter 6. Filtering

Figure 6.37:SignedDanielssonDistanceMaplmagefFilter applied on a binary circle image. The intensity
has been rescaled for purposes of display.
const unsigned int Dimension = 2;

typedef itk::Image< InputPixel Type, Dinension > |nputlnmgeType;
typedef itk::Image< QutputPixel Type, Dinmension > QutputlmageType;

The only change with respect to the previous example is téacepthe DanielssonDis-
tanceMaplmageFilter with the SignedDanielssonDistaraggiageFilter

typedef itk::SignedDani el ssonDi st anceMapl mageFi | ter<
| nput | mageType,
Qut put | mageType > FilterType;

FilterType::Pointer filter = FilterType:: New();

The inside is considered as having negative distances.ideutstreated as having positive
distances. To change the convention, use the InsidelsRgbibol) function.

Figure6.37illustrates the effect of this filter. The input image and disgance map are shown.

6.9 Geometric Transformations

6.9.1 Filters You Should be Afraid to Use

6.9.2 Change Information Image Filter

This one is the scariest and more dangerous filter in theeetatirlkit. You should not use this
filter unless you are entirely certain that you know what yoeidoing. In fact if you decide
to use this filter, you should write your code, then go for aglaralk, get more coffee and ask

6.9. Geometric Transformations 221

yourself if you really needed to use this filter. If the ansvggres, then you should discuss this
issue with someone you trust and get his/her opinion in mgitin general, if you need to use
this filter, it means that you have a poor image provider thatitting your career at risk along
with the life of any potential patient whose images you may ep processing.

6.9.3 Flip Image Filter
The source code for this section can be found in the file
Exanpl es/ Fil tering/ FliplmageFilter.cxx.

The itk::FliplmageFilter is used for flipping the image content in any of the coordinate
axis. This filter must be used WitEXTREME caution. You probably don’t want to appear
in the newspapers as the responsible of a surgery mistakhighwa doctor extirpates the left
kidney when it should have extracted the right®n# that prospect doesn’t scares you, maybe
it is time for you to reconsider your career in medical imagecpssing. Flipping effects that
may seem innocuous at first view may still have dangerousecpuences. For example flipping
the cranio-caudal axis of a CT scans forces an observer théileft-right axis in order to make
sense of the image.

The header file corresponding to this filter should be inalifitst.
#include "itkFliplmageFilter.h"

Then the pixel types for input and outputimage must be defameilwith them, the image types
can be instantiated.

typedef unsigned char Pixel Type;

typedef itk::Image< Pixel Type, 2 > [|nageType;
Using the image types it is now possible to instantiate therfipe and create the filter object.

typedef itk::FliplmageFilter< ImageType > FilterType;

FilterType::Pointer filter = FilterType:: New();

The axis to flip are specified in the form of an Array. In thiseage take them from the
command line arguments.

typedef FilterType::FlipAxesArrayType Fl i pAxesArrayType;

3Wrong sidesurgery accounts for 2% of the reported medical errors inlthited States. Trivial... but equally
dangerous.

http://www.itk.org/Doxygen/html/classitk_1_1FlipImageFilter.html

222 Chapter 6. Filtering

Figure 6.38 Effect of the FlipimageFilter on a slice from a MRI proton density brain image.

Fl i pAxesArrayType flipArray;

flipArray[0]
flipArray[1]

atoi (argv[3]);
atoi (argv[4]);

filter->SetFlipAxes(flipArray);
The input to the filter can be taken from any other filter, foamyple a reader. The output
can be passed down the pipeline to other filters, for exanaplbeiter. An update call on any
downstream filter will trigger the execution of the mean filte

filter->Set!|nput(reader->CetQutput());

writer->Setlnput(filter->GetQutput());

writer->Update();
Figure6.38illustrates the effect of this filter on a slice of MRI brainage using a flip array
[0, 1] which means that theé axis was flipped while thX axis was conserved.
6.9.4 Resample Image Filter

Introduction

The source code for this section can be found in the file
Exanpl es/ Fi | t eri ng/ Resanpl el mageFi | ter. cxx.

6.9. Geometric Transformations 223

Resampling an image is a very important task in image arglitds especially importantin the
frame of image registration. Thiet k: : Resanpl el mageFi | t er implements image resampling
through the use of tk: : Transf or ms. The inputs expected by this filter are an image, a trans-
form and an interpolator. The space coordinates of the irmegymapped through the transform
in order to generate a new image. The extent and spacing ofsliéting image are selected by
the user. Resampling is performed in space coordinateqixel{grid coordinates. It is quite
important to ensure that image spacing is properly set oimtages involved. The interpolator

is required since the mapping from one space to the otheoft@h require evaluation of the
intensity of the image at non-grid positions.

The header file corresponding to this filter should be inaifitst.
#include "itkResanpl el nageFilter.h"
The header files corresponding to the transform and intatpoinust also be included.

#include "itkAffineTransformh"
#include "itkNearest Nei ghbor I nterpol at el mageFuncti on. h"

The dimension and pixel types for input and output image rhasiefined and with them the
image types can be instantiated.

const unsigned int Dinension = 2;

typedef unsigned char [InputPixel Type;

typedef unsigned char QutputPixel Type;

typedef itk::Image< InputPixel Type, Dinension > |nputlnmgeType;
typedef itk::Image< QutputPixel Type, Dinmension > QutputlmageType;

Using the image and transform types it is now possible tamtgte the filter type and create
the filter object.

typedef itk::Resanpl el mageFilter<InputlnmageType, Qut put | mageType> FilterType;
FilterType::Pointer filter = FilterType:: New();

The transform type is typically defined using the image disi@mand the type used for repre-
senting space coordinates.

typedef itk::AffineTransforn< double, Dinension > Transfornilype;

An instance of the transform object is instantiated andgrhss the resample filter. By default,
the parameters of transform is set to represent the iderditygform.

TransfornType: : Poi nter transform = Transforniype:: New();
filter->SetTransform transform);

http://www.itk.org/Doxygen/html/classitk_1_1ResampleImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1Transform.html

224 Chapter 6. Filtering

The interpolator type is defined using the full image type #reltype used for representing
space coordinates.

typedef itk:: NearestNei ghborlnterpol at el mageFuncti on<
I nput | mageType, double > Interpol atorType;

An instance of the interpolator object is instantiated aasspd to the resample filter.

I nterpol ator Type: : Poi nter interpolator = InterpolatorType:: New();
filter->Setlnterpolator(interpolator);

Given that some pixels of the output image may end up beingpedputside the extent of the
input image it is necessary to decide what values to assigimetn. This is done by invoking
theSet Def aul t Pi xel Val ue() method.

filter->SetDefaul tPixelValue(0);

The sampling grid of the output space is specified with theisgaalong each dimension and
the origin.

doubl e spacing[Dimension |;
spacing[0] = 1.0; // pixel spacing in nillimeters along X
spacing[1] = 1.0; // pixel spacing in nillimeters along Y

filter->SetQutput Spacing(spacing);
doubl e origin[Dinension];

origin[0] 0.0; // X space coordinate of origin
origin[1] 0.0; // Y space coordinate of origin

filter->SetQutputOrigin(origin);

The extent of the sampling grid on the output image is defined $ zeType and is set using
theSet Si ze() method.

I nput | mageType: : Si zeType si ze;

si ze[0]
si ze[1]

300; // nunber of pixels along X
300; // nunber of pixels along Y

filter->SetSize(size);

The input to the filter can be taken from any other filter, foample a reader. The output
can be passed down the pipeline to other filters, for examplgtar. An update call on any
downstream filter will trigger the execution of the resamgffilter.

6.9. Geometric Transformations 225

Figure 6.39Effect of the resample filter.

filter->Setlnput(reader->GetCQutput());
witer->Setlnput(filter->CGetQutput());
writer->Update();

Figure 6.39illustrates the effect of this filter on a slice of MRI brainage using an affine
transform containing an identity transform. Note that anglgsis of the behavior of this filter
must be done on the space coordinate system in millimetetsyith respect to the sampling
grid in pixels. The figure shows the resulting image in thedoleft quarter of the extent. This
may seem odd if analyzed in terms of the image grid but is quéar when seen with respect
to space coordinates. FiguBe39is particularly misleading because the images are restaled
fit nicely on the text of this book. Figuré.40 clarifies the situation. It shows the two same
images placed on a equally scaled coordinate system. Intesalear here that an identity
transform is being used to map the image data, and that simpliave requested to resample
additional empty space around the image. The input imag8lisc217 pixels in size and we
have requested an output of 3800 pixels. In this case, the input and output images both
have spacing ofrhmx 1mmand origin of(0.0,0.0).

Let’s now set values on the transform. Note that the suppiaatsform represents the mapping
of points from the output space to the input space. The falgwode sets up a translation.

Transf or nType: : Qut put Vect or Type transl ation;
translation[0] =-30; // Xtranslationinmllineters
translation[1] =-50; // Y translation inmllineters
transform >Transl ate(translation);

226

Chapter 6. Filtering

300

250

181 x 217 pixels

200+

150 +

100+

50 1

Identity
Transform

300

250

200 +

150 +

100 +

50 +

300 x 300 pixels

0 50 100 150 200

Input Image

Figure 6.40:Analysis of the

100 150 200 250 300

Resampled Image

resample image done in a common coordinate system.

Figure 6.41ResamplelmageFilter with a translation by (—30, —50).

6.9. Geometric Transformations 227

300 x 300 pixels

300 300

250 T={-30,-50}

181 x 217 pixels

200+

Translation
Transform

(105,188)
150+

100

50

0 50 100 150 200 0 50 100 150 200 250 300
Input Image Resampled Image

Figure 6.42ResamplelmageFilter. Analysis of a translation by (—30, —50).

The output image resulting from the translation can be se&igure6.41 Again, it is better to
interpret the result in a common coordinate system astiditest in Figures.42

Probably the most important thing to keep in mind when redemmgpnages is that the transform
is used to map points from thmutput image space into thiaput image space. In this case,
Figure 6.42 shows that the translation is applied to every point of thipatuimage and the
resulting position is used to read the intensity from thaitripmage. In this way, the gray level
of the pointP in the output image is taken from the pontP) in the input image. Wher€ is

the transformation. In the specific case of the Figh#? the value of poin{105,188) in the
output image is taken from the poi(it5,138) of the input image because the transformation
applied was a translation ¢f30, —50).

It is sometimes useful to intentionally set the default atitpalue to a distinct gray value in
order to highlight the mapping of the image borders. For gdairthe following code sets the
default external value of 100. The result is shown in thetrgithe of Figures.43

filter->SetDefaul tPixel Val ue(100);

With this change we can better appreciate the effect of teeipus translation transform on the
image resampling. Figuré.43illustrates how the point30,50) of the output image gets its
gray value from the poinf0,0) of the input image.

228 Chapter 6. Filtering

300 x 300 pixels

300 300

250 T={-30,-50} 250
181 x 217 pixels

200+

Translation
Transform

150

100+

50 T

0 50 100 150 200 0 50 100 150 200 250 300
Input Image Resampled Image

Figure 6.43:ResamplelmageFilter highlighting image borders with SetDefaultPixelValue().

Importance of Spacing and Origin

The source code for this section can be found in the file
Exanpl es/ Fi | teri ng/ Resanpl el nageFi | t er 2. cxx.

During the computation of the resampled image all the piietbe output region are visited.
This visit is performed usingmagel t erat ors which walk in the integer grid-space of the
image. For each pixel, we need to convert grid position tasmaordinates using the image
spacing and origin.

For example, the pixel of indelx= (20,50) in an image of origirD = (19.0,29.0) and pixel
spacingS= (1.3,1.5) corresponds to the spatial position

P[i] = 1[i] x SJi] + O[i] (6.20)

which in this case leads ®= (20x 1.3+ 19.0,50x 1.5+ 29.0) and finallyP = (45.0,104.0)

The space coordinates oP are mapped using the transfor supplied to the
i tk::Resanpl el mageFilter in order to map the poinP to the input image space point

Q=T(P).
The whole process is illustrated in Figueet4 In order to correctly interpret the process of the

ResamplelmagekFilter you should be aware of the origin aadisg settings of both the input
and output images.

In order to facilitate the interpretation of the transform set the default pixel value to a distinct
from the image background.

http://www.itk.org/Doxygen/html/classitk_1_1ResampleImageFilter.html

6.9. Geometric Transformations 229

filter->SetDefaul tPixel Value(50);
Let’s set up a uniform spacing for the output image.

doubl e spacing[Dinension |;
spacing[0] = 1.0; // pixel spacing in nillimeters along X
spacing[1] = 1.0; // pixel spacing in nillimeters along Y

filter->SetQutputSpacing(spacing);

Additionally, we will specify a non-zero origin. Note thate values provided here will be those
of the space coordinates for the pixel of ind€x0).

doubl e origin[Dinension];

origin[0] = 30.0; // X space coordinate of origin
origin[1] = 40.0; // Y space coordinate of origin
filter->SetQutputOrigin(origin);

We set the transform to identity in order to better appredia¢ effect of the origin selection.

transform>Setldentity();
filter->SetTransform transform);

The output resulting from these filter settings is analyneligure6.44

In the figure, the output image point with index= (0,0) has space coordinat®s= (30,40).
The identity transform maps this point @= (30,40) in the input image space. Because the
input image in this case happens to have spa¢ln@ 1.0) and origin(0.0,0.0), the physical
pointQ = (30,40) maps to the pixel with indek= (30,40).

The code for a different selection of origin and image siz#lustrated below. The resulting
output is presented in Figufe45

size[0] = 150; // number of pixels along X
size[1] = 200; // number of pixels along Y
filter->SetSize(size);

origin[0] = 60.0; // X space coordinate of origin
origin[1] = 30.0; // Y space coordinate of origin
filter->SetQutputOrigin(origin);

The output image point with indek= (0,0) now has space coordinatBs= (60,30). The
identity transform maps this point @ = (60, 30) in the input image space. Because the input

230 Chapter 6. Filtering

Size=300x300 Spacing=(1.0,1.0)

300 300

250 1 250 T
Size=181x217 Spacing=(1.0,1.0)

200

150 +
Identity
Transform

100

50 e
Origin=(0,0) N Origin=(30,40)
o Index=(0,0) Index=(0,0)

0 50 100 150 200 100 150 200 250 300
Input Image Resampled Image

Figure 6.44.ResamplelmageFilter selecting the origin of the output image.

3001 300 T
Size=150x200 X
X . DefaultPixelValue
250+ Size=181x217 250+ Spacing=(1.0,1.0)
Spacing=(1.0,1.0)
200
150
Identity
100 Transform 100
50 T i 5 Origin=(60,30)
Origin=(0,0) B Index=(0,0)
Index=(0,0)
O] | | | | O T | | . | | | | |
T T T T T T T T T T T T
0 50 100 150 200 0 50 100 150 200 250 300
Input Image Resampled Image

Figure 6.45ResamplelmageFilter selecting the origin of the output image.

6.9. Geometric Transformations 231

Size=181x217
300+ Spacing=(1.0,1.0) 300+

Size=150x200
250 Spacing=(1.0,1.0)

r
200 !
ﬁ 1=(56,120)

DefaultPixelValue

250

200

Identity

Transform

150 150 ---—-"-- L. '

100 100

_ : i
50T | ‘\i_/ 50
I N Origin=(50,70)
I
! |
I

Index=000 |77

Origin=(60,30)
Index=(0,0)

0 50 100 150 200 0 50 100 150 200 250 300
Input Image Resampled Image

Figure 6.46Effect of selecting the origin of the input image with ResamplelmageFilter.

image in this case happens to have spa¢ing,1.0) and origin(0.0,0.0), the physical point
Q = (60,30) maps to the pixel with indek= (60, 30).

Let's now analyze the effect of a non-zero origin in the injpage. Keeping the output image
settings of the previous example, we modify only the origatues on the file header of the
inputimage. The new origin assigned to the inputimage is (50, 70). An identity transform
is still used as input for the ResamplelmageFilter. Theltediexecuting the filter with these
parameters is presented in Figérd6

The pixel with indeX = (56,120) on the outputimage has coordinakes: (116 150) in phys-
ical space. The identity transform mapso the pointQ = (116 150) on the input image space.
The coordinates df are associated with the pixel of index= (66,80) on the input image.

Now consider the effect of the output spacing on the processage resampling. In order to
simplify the analysis, let's put the origin back to zero irthbthe input and output images.

origin[0] 0.0; // X space coordinate of origin
origin[1] 0.0; // Y space coordinate of origin
filter->SetQutputOrigin(origin);

We then specify a non-unit spacing for the output image.

spacing[0] = 2.0; // pixel spacing in nillimeters along X
spacing[1] = 3.0; // pixel spacing in nillinmeters along Y
filter->SetQutputSpacing(spacing);

Additionally, we reduce the output image extent, since #w pixels are now covering a larger
area of 20mmx 3.0mm.

232 Chapter 6. Filtering

Figure 6.47:Resampling with different spacing seen by a naive viewer (center) and a correct viewer
(right), input image (left).

size[0] = 80; // nunber of pixels along X
size[1l] = 50; // nunber of pixels along Y
filter->SetSize(size);

With these new parameters the physical extent of the outpagé is 160 millimeters by 150
millimeters.

Before attempting to analyze the effect of the resamplinggenfilter it is important to make
sure that the image viewer used to display the input and ¢outpages take the spacing into
account and use it to appropriately scale the images on therscPlease note that images in
formats like PNG are not capable of representing origin gaatisig. The toolkit assume trivial
default values for them. Figu&47 (center) illustrates the effect of using a naive viewer that
does not take pixel spacing into account. A correct disgayésented at the right in the same
figure.

The filter output is analyzed in a common coordinate systeth thie input from Figures.48
In this figure, pixell = (33,27) of the output image is located at coordinafes: (66.0,81.0)
of the physical space. The identity transform maps thistoilQ = (66.0,81.0) in the input
image physical space. The poi@tis then associated to the pixel of index (66,81) on the
input image, because this image has zero origin and unitrgpac

The input image spacing is also an important factor in thegse of resampling an image.
The following example illustrates the effect of non-unitglispacing on the input image. An
input image similar to the those used in Figuée44to 6.48has been resampled to have pixel
spacing of 2mmx 3mm. The input image is presented in Figérd9as viewed with a naive
image viewer (left) and with a correct image viewer (right).

The following code is used to transform this non-unit spgé@put image into another non-unit

4A viewer is provided with ITK under the name of MetalmageVéwThis viewer takes into account pixel spacing.

6.9. Geometric Transformations 233

3007 Size=181x217 3007 Size=80x50
Spacing=(1.0,1.0) Spacing=(2.0,3.0)
250+ Physical extent=(181.0,217.0) 2501 Physical extent=(160.0,150.0)
200+ 200
Identity
150 Transform 150
1=(33,27)
P=(66.0,81.0)
100 100
50 1=(66,81) 504
Q=(66.0,81.0)
°Ty 1 1 1 1 oy 1 1 1 1 1 1
0 50 100 150 200 0 50 100 150 200 250 300
Input Image Resampled Image

Figure 6.48:Effect of selecting the spacing on the output image.

Figure 6.49:Input image with 2 x 3mm spacing as seen with a naive viewer (left) and a correct viewer
(right).

234 Chapter 6. Filtering

spacing image located at a non-zero origin. The comparistwden input and output in a
common reference system is presented in figubs@

Here we start by selecting the origin of the output image.
origin[0] 25.0; /I X space coordinate of origin

origin[1] 35.0; // Y space coordinate of origin
filter->SetQutputOrigin(origin);

We then select the number of pixels along each dimension.

size[0] = 40; // nunber of pixels along X
size[1] = 45; [/ nunber of pixels along Y
filter->SetSize(size);

Finally, we set the output pixel spacing.

spacing[0] = 4.0; // pixel spacing in nillimeters along X
spacing[1] = 4.5; // pixel spacing in nillimeters along Y
filter->SetQutput Spacing(spacing);

Figure6.50shows the analysis of the filter output under these conditifirst, notice that the
origin of the output image corresponds to the setti@gs (25.0,35.0) millimeters, spacing
(4.0,4.5) millimeters and sizé40,45) pixels. With these parameters the pixel of index
(10,10) in the output image is associated with the spatial point ofdmates® = (10x 4.0+
25.0,10x 4.5+ 35.0)) = (65.0,80.0). This point is mapped by the transform—identity in this
particular case—to the poil@ = (65.0,80.0) in the input image space. The poi@tis then
associated with the pixel of inddx= ((65.0—0.0)/2.0— (80.0— 0.0)/3.0) = (32.5,26.6).
Note that the index does not fall on grid position, for thiagen the value to be assigned to
the output pixel is computed by interpolating values on tipt image around the non-integer
index| = (325,26.6).

Note also that the discretization of the image is more \vésivl the output presented on the right
side of Figures.50due to the choice of a low resolution—just 2@45 pixels.

A Complete Example

The source code for this section can be found in the file
Exanpl es/ Fi | teri ng/ Resanpl el nageFi | t er 3. cxx.

Previous examples have described the basic principles ntehithe
i tk::Resanpl el mageFi |l ter. Now it's time to have some fun with it.

Figure6.52illustrates the general case of the resampling process.ofigim and spacing of
the output image has been selected to be different from thiodes input image. The circles

http://www.itk.org/Doxygen/html/classitk_1_1ResampleImageFilter.html

6.9. Geometric Transformations 235

300+ Size=90x72 300+ Size=40x45
Spacing=(2.0,3.0) Spacing=(4.0,4.5)
Physical extent=(180.0,216.0) Physical extent=(160.0,202.5)
250 250

200+ 200+

Identity

150+ Transform

150 +
1=(10,10)

100 ,\ P=(65.0,80.0)
1=(32.5,26.6) 504 x“
Q=(65.0,80.0) i

| | | | | | | |
0 50 100 150 200 0 50 100 150 200 250 300
Input Image Resampled Image

100

50—+ Origin=(25.0,35.0)

Figure 6.50:Effect of non-unit spacing on the input and output images.

represent theenterof pixels. They are inscribed in a rectangle representiegtiverageof
this pixel. The spacing specifies the distance between pergkrs along every dimension.

The transform applied is a rotation of 30 degrees. It is irtgrdrto note here that the transform
supplied to thei t k: : Resanpl el mageFi | t er is aclockwiserotation. This transform rotates
the coordinate systerof the output image 30 degrees clockwise. When the two images
relocated in a common coordinate system—as in Figus@—the result is that the frame of
the output image appears rotated 30 degaeskwise If the output image is seen with its
coordinate system vertically aligned—as in Fig6r8l—the image content appears rotated 30
degreesounter-clockwiseBefore continuing to read this section, you may want to tagelia

bit on this fact while enjoying a cup of (Columbian) coffee.

The following code implements the conditions illustrateéigure6.52with the only difference
of the output spacing being 40 times smaller and a numberx@l40 times larger in both
dimensions. Without these changes, few detail will be raczaple on the images. Note that
the spacing and origin of the input image should be preparaedvance by using other means
since this filter cannot alter in any way the actual conterthefinput image.

In order to facilitate the interpretation of the transforra get the default pixel value to value
distinct from the image background.

filter->SetDefaul tPixel Val ue(100);
The spacing is selected here to be 40 times smaller than thilwstrated in Figurd.52

doubl e spacing[Dimension |;

http://www.itk.org/Doxygen/html/classitk_1_1ResampleImageFilter.html

236 Chapter 6. Filtering

Figure 6.51 Effect of a rotation on the resampling filter. Input image at left, output image at right.

Size=7x6

Spacing=(20.0, 30.0)
300+) 300+
Physical extent=(140.0, 180.0)

Size=5x4
Spacing=(40.0, 30.0)
Physical extent=(200.0, 120.0)

2501 200_ 2501
ololololo|o|e $
1 30.0 |
200 olo|ololo|o|et-t 2%
T
O|o|O|=T[0|0 Rotation 30
150 Transform 1507
O|0|0|0|0|0|0 R
100+ O|0|0|0|0|0|0 100
- ‘@/o|o|ojo|olo
50+ 50|

i Origin=(60.0,70.0)
|

Origin=(50.0,130.0)

T T T T T
0 50 100 150 200

Input Image

)
I
I
I
I
I
I
I
I
I
I
I
I
I
} T T T T T
50 100 150 200 250 300
Resampled Image

Figure 6.52:nput and output image placed in a common reference system.

6.9. Geometric Transformations 237

spaci ng[0] 40.0 / 40.0; // pixel spacing in mllineters along X
spacing[1] = 30.0 / 40.0; // pixel spacing in mllineters along Y
filter->SetQutput Spacing(spacing);

Let us now set up the origin of the output image. Note that tlaes provided here will be
those of the space coordinates for the output image pixeldzx(0,0).

doubl e origin[Dinension |;

origin[0] = 50.0; // X space coordinate of origin
origin[1] = 130.0; // Y space coordinate of origin
filter->SetQutputOrigin(origin);

The output image size is defined to be 40 times the one illigstran the Figuré.52

I nput | mageType: : Si zeType size;

size[0] =5 * 40; // nunber of pixels along X
size[1] =4 * 40; [/ nunber of pixels along Y
filter->SetSize(size);

Rotations are performed around the origin of physical coatés—not the image origin nor the
image center. Hence, the process of positioning the outpagé frame as it is shown in Figure
6.52requires three steps. First, the image origin must be mav#uetorigin of the coordinate
system, this is done by applying a translation equal to tigaties values of the image origin.

Transf or nType: : Qut put Vect or Type transl ationl,;
translationl[0] = -origin[0];
translationl[1] = -origin[1];
transform>Transl ate(translationl);

In a second step, a rotation of 30 degrees is performed. Intthe: Af f i neTr ansf or m, angles
are specified imadians Also, a second boolean argument is used to specify if theotmod-
ification of the transform should be pre-composed or postfused with the current transform
content. In this case the argument is sdtdbse to indicate that the rotation should be applied
afterthe current transform content.

const doubl e degreesToRadi ans = atan(1.0) / 45.0;
transform >Rotate2D(-30.0 * degreesToRadi ans, false);

The third and final step implies translating the image orlgack to its previous location. This
is be done by applying a translation equal to the origin \&lue

Transf or nType: : Qut put Vect or Type transl ation2;
translation2[0] = origin[0Q];
translation2[1] = origin[1];
transform>Transl ate(translation2, false);
filter->SetTransform transform);

http://www.itk.org/Doxygen/html/classitk_1_1AffineTransform.html

238 Chapter 6. Filtering

Figure6.51presents the actual input and output images of this exansé@vn by a correct
viewer which takes spacing into account. Note dheckwiseversuscounter-clockwiseffect
discussed previously between the representation in Fgyé&and Figures.51

As a final exercise, let’s track the mapping of an individuakp Keep in mind that the trans-

formation is initiated by walking through the pixels of tbatputimage. This is the only way

to ensure that the image will be generated without holesdundant values. When you think
about transformation it is always useful to analyze thimgsnfthe output image towards the
inputimage.

Let's take the pixel with index = (1,2) from the output image. The physical coordinates of
this point in the output image reference systemRre (1 x 40.0450.0,2 x 30.0+ 1300) =
(90.0,190.0) millimeters.

This pointP is now mapped through thet k: : Af f i neTr ansf or minto the input image space.
The operation requires to subtract the origin, apply a 3@akegyotation and add the origin back.
Let’s follow those steps. Subtracting the origin fréhieads toP1 = (40.0,60.0), the rotation
mapsP1 to P2 = (40.0 x cog30.0) + 60.0 x sin(30.0),40.0 x sin(30.0) — 60.0 x cog30.0)) =
(64.64,31.96). Finally this point is translated back by the amount of thege origin. This
movesP2 toP3 = (114.64,16196).

The pointP3 is now in the coordinate system of the input image. The pké&he input image
associated with this physical position is computed usirggdhigin and spacing of the input
image.l = ((11464—60.0)/20.0,(161— 70.0)/30.0) which results in = (2.7,3.0). Note that
this is a non-grid position since the values are non-integéhis means that the gray value to
be assigned to the output image piket (1,2) must be computed by interpolation of the input
image values.

In this particular code the interpolator used is simply a
i tk:: Nearest Nei ghbor | nterpol at el mageFunction which will assign the value of
the closest pixel. This ends up being the pixel of intlex(3,3) and can be seen from Figure
6.52

Rotating an Image
The source code for this section can be found in the file
Exanpl es/ Fi | teri ng/ Resanpl el mageFi | t er 4. cxx.

The following example illustrates how to rotate an imageuarbits center. In this particular
case ani tk: : AffineTransfor mis used to map the input space into the output space.

The header of the affine transform is included below.
#incl ude "itkAffineTransformh"

The transform type is instantiated using the coordinateesgmtation type and the space di-
mension. Then a transform object is constructed with the (Nemethod and passed to a

http://www.itk.org/Doxygen/html/classitk_1_1AffineTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1NearestNeighborInterpolateImageFunction.html
http://www.itk.org/Doxygen/html/classitk_1_1AffineTransform.html

6.9. Geometric Transformations 239

Figure 6.53Effect of the resample filter rotating an image.

i tk:: Smart Pointer.

typedef itk::AffineTransfornk double, Dinmension > TransfornType;
TransfornType: : Poi nter transform = Transforniype:: New();

The parameters of the output image are taken from the inpagém

reader - >Updat e();
const | nput | mageType: : Spaci ngType&

spaci ng = reader->Cet Qut put () - >Cet Spaci ng() ;
const | nput| mageType: : Poi nt Type&

origin = reader->GetQutput()->GetOigin();
I nput | mageType: : Si zeType size =

reader - >Get Qut put () - >CGet Lar gest Possi bl eRegi on() . Get Si ze();

filter->SetQutputOrigin(origin);
filter->SetQutput Spacing(spacing);
filter->SetSize(size);

Rotations are performed around the origin of physical coatés—not the image origin nor the
image center. Hence, the process of positioning the outpagé frame as it is shown in Figure
6.53requires three steps. First, the image origin must be mav#tetorigin of the coordinate
system, this is done by applying a translation equal to tlyatiee values of the image origin.

Transf ornType: : Qut put Vect or Type transl ationl,;

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

240 Chapter 6. Filtering

const doubl e i mageCent er X
const doubl e imageCenterY

origin[0] + spacing[0] * size[O0
origin[1] + spacing[1l] * size[l

] 1 2.0
11 2.0;

transl ationl[0]
translationl[1]

-imageCenter X;
-imageCenterY;

transform>Transl ate(translationl);
In a second step, the rotation is specified using the meRbioat e2D() .

const doubl e degreesToRadi ans = atan(1.0) / 45.0;
const doubl e angl e = angl el nDegrees * degreesToRadi ans;
transform >Rotate2D(-angle, false);

The third and final step requires translating the image otgick to its previous location. This
is be done by applying a translation equal to the origin \&lue

Transf or nType: : Qut put Vect or Type transl ation2;
translation2[0] = inageCenterX;
translation2[1] = imageCenterY;
transform>Transl ate(translation2, false);
filter->SetTransform transform);

The output of the resampling filter is connected to a writat #ie execution of the pipeline is
triggered by a writer update.

try
{
writer->Update();

}
catch(itk::ExceptionChject & excep)

{

std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;

}

Rotating and Scaling an Image

The source code for this section can be found in the file
Exanpl es/ Fi | teri ng/ Resanpl el mageFi | t er5. cxx.

This example illustrates the use of thek: : Si i | arit y2DTr ansf or m. A similarity transform
involves rotation, translation and scaling. Since the petarization of rotations is difficult to
getin a generitND case, a particular implementation is available fbr 2

The header file of the transform is included below.

http://www.itk.org/Doxygen/html/classitk_1_1Similarity2DTransform.html

6.9. Geometric Transformations 241

#include "itkSinmlarity2DTransformh"

The transform type is instantiated using the coordinateegmntation type as the single template
parameter.

typedef itk::Sinmilarity2DTransform< double > TransfornType;

A transform object is constructed by callinjew() and passing the result to a
itk:: SmartPointer.

TransfornType: : Pointer transform = Transforniype:: New();

The parameters of the outputimage are taken from the inpagémn

The Similarity2DTransform allows the user to select theteeaf rotation. This center is used
for both rotation and scaling operations.

Transf ornType: : | nput Poi nt Type rotationCenter;
rotationCenter[0] = origin[0] + spacing[0] * size[0
rotationCenter[1] = origin[1] + spacing[1] * size[l
transform >Set Center(rotationCenter);

1 1 2.0;
11 2.0;

The rotation is specified with the meth8et Angl e() .

const doubl e degreesToRadi ans = atan(1.0) / 45.0;
const doubl e angl e = angl el nDegrees * degreesToRadi ans;
transform >Set Angle(angle);

The scale change is defined using the metsaicbcal e() .
transform >Set Scal e(scale);

A translation to be applied after the rotation and scaling ba specified with the method
Set Transl ation().

Transf or nType: : Qut put Vect or Type transl ation;

transl ation[0]
transl ation[1]

13.0;
17.0;

transform>Set Transl ation(translation);

filter->SetTransform transform);

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

242 Chapter 6. Filtering

Figure 6.54 Effect of the resample filter rotating and scaling an image.

Note that the order in which rotation, scaling and transtatire defined is irrelevant in this
transform. This is not the case in the Affine transform whgchdry generic and allow different
combinations for initialization. In the Similarity2DTraform class the rotation and scaling will
always be applied before the translation.

Figure6.54shows the effect of this rotation, translation and scalin@alice of a brain MRI.
The scale applied for producing this figure wa® &nd the rotation angle was10

Resampling using a deformation field

The source code for this section can be found in the file
Exanpl es/ Fi | tering/ War pl mageFi | ter 1. cxx.

This example illustrates how to use the WarplmageFilteraaddformation field for resampling
an image. This is typically done as the last step of a defolenagistration algorithm.

#include "itkWarplmgeFilter.h"
#include "itkLinearlnterpol atel mageFunction. h"

The deformation field is represented as an image of vect@l pipes. The dimension of the
vectors is the same as the dimension of the input image. Eeatonin the deformation field
represents the distance between a geometric point in the sgace and a point in the output
space such that:

Pin = Pout + distance (6.21)

6.9. Geometric Transformations 243

typedef float VectorConponent Type;
typedef itk::Vector< VectorConponent Type, Dinension > VectorPixel Type;
typedef itk::lnmage< VectorPixel Type, Dinmension > DeformationFiel dType;

typedef unsigned char Pixel Type;
typedef itk::lmge< Pixel Type, Dinmension > |mageType;

The field is read from a file, through a reader instantiated thesvector pixel types.

typedef itk::lmgeFileReader< DefornationFiel dType > Fiel dReader Type;

Fi el dReader Type: : Pointer fiel dReader = Fi el dReader Type:: New();
fiel dReader->Set Fil eName(argv[2]);
fi el dReader - >Updat e();

Def or mat i onFi el dType: : Const Poi nter deformationField = fiel dReader->Get Qut put ();

The itk:: Warpl mageFil ter is templated over the input image type, output image type and
the deformation field type.

typedef itk::\WarplmageFilter< |nageType,

| mgeType,

Def ormati onFi el dType > FilterType;
FilterType::Pointer filter = FilterType:: New();

Typically the mapped position does not correspond to argant@ixel position in the input
image. Interpolation via an image function is used to compatues at non-integer positions.
This is done via th&et | nt er pol at or () method.

typedef itk::Linearlnterpolatel mgeFunction<
| mgeType, double > InterpolatorType;

I nterpol at or Type: : Poi nter interpolator = InterpolatorType:: New();

filter->Setlnterpolator(interpolator);

The output image spacing and origin may be set via SetOypawtBg(), SetOutputOrigin().
This is taken from the deformation field.

filter->SetQutput Spacing(defornationFiel d->CGet Spacing());
filter->SetQutputOrigin(deformationField->GetOigin());

filter->SetDeformationField(deformationField);

http://www.itk.org/Doxygen/html/classitk_1_1WarpImageFilter.html

244 Chapter 6. Filtering

Subsampling and image in the same space

The source code for this section can be found in the file
Exanpl es/ Fi | t eri ng/ Subsanpl eVol une. cxx.

This example illustrates how to perform subsampling of air@ using ITK classes. In order
to avoid aliasing artifacts, the volume must be processeallbw-pass filter before resampling.
Here we use thet k: : Recur si veGaussi anl mageFi | t er as low-pass filter. The image is then
resampled by using three different factors, one per dinoersi the image.

The most important headers to include here are the onesspoimding to the resampling image
filter, the transform, the interpolator and the smoothintgifil

#include "itkResanpl el mageFilter.h"

#include "itkldentityTransformh"

#include "itkLinearlnterpol atel mgeFunction. h"
#include "itkRecursiveGaussianl mageFilter.h"

We explicitly instantiate the pixel type and dimension of thput image, and the images that
will be used internally for computing the resampling.

const unsi gned i nt Di nension = 3;
typedef unsigned char InputPixel Type;

typedef float I nt ernal Pi xel Type;
typedef unsigned char QutputPi xel Type;

typedef itk::Image< InputPixel Type, Di nension > | nputlmgeType;
typedef itk::Image< Internal Pixel Type, Dinension > Internal |l mageType;
typedef itk::Image< QutputPixel Type, Di nension > Qutputl nageType;

In this particular case we take the factors for resamplingatly from the command line argu-
ments.

const doubl e factorX
const double factorY
const double factorZ

atof (argv[3]);
atof (argv[4]);
atof (argv[5]);

A casting filter is instantiated in order to convert the pitygle of the input image into the pixel
type desired for computing the resampling.

typedef itk::CastlmageFilter< |nputlnmageType,
Internal | mageType > CastFilterType;

http://www.itk.org/Doxygen/html/classitk_1_1RecursiveGaussianImageFilter.html

6.9. Geometric Transformations 245

CastFilterType::Pointer caster = CastFilterType::New();

caster->Set I nput (inputlnmage);

The smoothing filter of choice is theecur si veGaussi anl nageFi | ter. We create three of
them in order to have the freedom of performing smoothingp @ifferent Sigma values along
each dimension.

typedef itk::RecursiveGussianl mageFilter<
I nternal | mageType,
I nternal | mgeType > Gaussi anFilter Type;

Gaussi anFi | ter Type: : Poi nter snoother X = Gaussi anFilterType:: New();
Gaussi anFi | ter Type: : Poi nter snootherY = GaussianFilterType:: New();
Gaussi anFi | ter Type: : Poi nter snootherZ = Gaussi anFilterType:: New();

The smoothing filters are connected in a cascade in the pgeli

snoot her X- >Set I nput (caster->GetQutput());
snoot her Y- >Set | nput (snoot her X->Get Qut put ());
snoot her Z- >Set | nput (snoot her Y->CGet Qut put ());
The Sigma values to use in the smoothing filters is computsedan the pixel spacings of the
inputimage and the factors provided as arguments.

const | nputl mageType: : Spaci ngType& i nput Spaci ng = i nput | mage- >Get Spaci ng() ;

const doubl e signmaX = inputSpacing[0] * factorX;
const doubl e sigmaY = inputSpacing[1l] * factor;
const doubl e sigmaZ = inputSpacing[2] * factorz

snoot her X- >Set Si gna(si gmaX);
snoot her Y- >Set Si gma(si gmayY);
snoot her Z- >Set Si gma(si gmaZ);

We instruct each one of the smoothing filters to act along &qodar direction of the image,
and set them to use normalization across scale space intorgeevent for the reduction of
intensity that accompanies the diffusion process assatiaith the Gaussian smoothing.

snmoot her X->Set Direction(0);
snoot herY->SetDirection(1);
snoot herZ->SetDirection(2);

snoot her X- >Set Nor nal i zeAcrossScal e(fal se);
snoot her Y- >Set Nor nal i zeAcrossScal e(fal se);
snoot her Z- >Set Nor nal i zeAcrossScal e(fal se);

246 Chapter 6. Filtering

The type of the resampling filter is instantiated using therimal image type and the output
image type.

typedef itk::Resanplel nageFilter<
I nternal | mageType, CQutputlmageType > Resanpl eFilterType;

Resanpl eFi | ter Type: : Poi nter resanpler = Resanpl eFilterType:: New();

Since the resampling is performed in the same physical eafe¢he input image, we select the
IdentityTransform as the one to be used by the resamplireg. filt

typedef itk::ldentityTransfornk double, Dinension > Transforniype;
TransfornType: : Poi nter transform = Transforniype:: New();

transform>Setldentity();
resanpl er->Set Transforn(transform);

The Linear interpolator is selected given that it providesgeod run-time perfor-
mance. For applications that require better precision yay mvant to replace this in-
terpolator with the itk::BSplinel nterpol atel mageFuncti on interpolator or with the
i tk::WndowedSi ncl nt er pol at el mageFunct i on interpolator.

typedef itk::Linearlnterpol atel mgeFunction<
I nternal | rageType, double > Interpol atorType;

I nterpol ator Type: : Poi nter interpolator = InterpolatorType:: New();

resanpl er->SetInterpolator(interpolator);

The spacing to be used in the grid of the resampled image ipetad using the input image
spacing and the factors provided in the command line argtsnen

Qut put | mageType: : Spaci ngType spaci ng;

spaci ng[0] = inputSpacing[0] * factorX;
spacing[1] = inputSpacing[1l] * factor;
spacing[2] = inputSpacing[2] * factorZ

resanpl er - >Set Qut put Spaci ng(spacing);
The origin of the input image is preserved and passed to ttribimage.

resanpl er->Set Qut put Ori gi n(i nput | mage->GetOrigin());

http://www.itk.org/Doxygen/html/classitk_1_1BSplineInterpolateImageFunction.html
http://www.itk.org/Doxygen/html/classitk_1_1WindowedSincInterpolateImageFunction.html

6.9. Geometric Transformations 247

The number of pixels to use along each direction on the grideofesampled image is computed
using the number of pixels in the inputimage and the samiéiotprs.

I nput | mageType: : Si zeType inputSize =
i nput | mage- >Get Lar gest Possi bl eRegi on() . Get Si ze();

typedef InputlmageType:: SizeType:: SizeVal ueType SizeVal ueType;

I nput | mageType: : Si zeType size;

size[0] = static_cast< SizeVal ueType >(inputSize[0] / factorX);
size[1] = static_cast< SizeValueType >(inputSize[l] / factorY);
size[2] = static_cast< SizeVal ueType >(inputSize[2] / factorZ);

resanpl er->Set Si ze(size);
Finally, the input to the resampler is taken from the outguhe smoothing filter.
resanpl er->Set | nput (snoot her Z- >Get Qut put ());

At this point we can trigger the execution of the resampligigcalling theUpdat e() method,
or we can chose to pass the output of the resampling filter athan section of pipeline, for
example, an image writer.

Resampling an Anisotropic image to make it Isotropic

The source code for this section can be found in the file
Exanpl es/ Fi | teri ng/ Resanpl eVol unesToBel sot ropi c. CXX.

It is unfortunate that it is still very common to find medicalage datasets that have been
acquired with large inter-sclice spacings that result irel® with anisotropic shapes. In many
cases these voxels have ratios[bf. 5] or even[l : 10 between the resolution in the plane
(x,y) and the resolution along theaxis. Such dataset are closeuselesdor the purpose of
computer assisted image analysis. The persistent tend@ragquiring dataset in such formats
just reveals how small is the understanding of the third disien that have been gained in the
clinical settings and in many radiology reading rooms. Bets that are acquired with such
large anisotropies bring with them the retrograde messagi: not think 3D is informative’
They repeat stubbornly thdtall that you need to know, can be known by looking at indiatu
slices, one by one”However, the fallacy of such statement is made evidentthiétsimple act
of looking at the slices when reconstructed in any of thegwtl planes. The ugliness of the
extreme rectangular pixel shapes becomes obvious, alahgtié clear technical realization
that no decent signal processing or algorithms can be peein such images.

Image analysts have a long educational battle to fight in #ldéological setting in order to
bring the message that 3D datasets acquired with anisesdaiger tharil : 2] are simply

248 Chapter 6. Filtering

dismissive of the most fundamental concept of digital signacessing: The Shannon Sampling
Theorem {5, 76.

Facing the inertia of many clinical imaging departments #iadr insistence that these images
should be good enough for image processing, some imagesémalyve stoically tried to deal
with these poor datasets. These image analysts usuallgguldo subsample the high in-plane
resolution and to super-sample the inter-slice resolutiitn the purpose of faking the type of
dataset that they should have received in the first placésadropic dataset. This example is
an illustration of how such operation can be performed ugiedfilter available in the Insight
Toolkit.

Note that this example is not presented heresa@ionto the problem of anisotropic datasets.
On the contrary, this is simply dangerous palliativehat will help to perpetuate the mistake
of the image acquisition departments. This code is just afgasic that will make you believe
that you don’t have pain, while a real and lethal diseasedwimg inside you. The real solution
to the problem of the atrophic anisotropic dataset is to atluadiologist on the fundamental
principles of image processing. If you really care abouttdwhnical decency of the medical
image processing field, and you really care about providg Yest effort to the patients who
will receive health care directly or indirectly affected ypgur processed images, then it is your
duty to reject anisotropic datasets and to patiently erpladiologist why a barbarity such as a
[1: 5] anisotropy ratio makes a data set to be just “a collectioficés’ instead of an authentic
3D datasets.

Please, before employing the techniques covered in thiosgclo kindly invite your fellow
radiologist to see the dataset in an orthogonal slice. Zoothat image in a viewer without
any linear interpolation until you see the daunting realityhe rectangular pixels. Let her/him
know how absurd is to process digital data that have beenledrapratios of1: 5 or [1: 10.
Then, let them know that the first thing that you are going tasdo throw away all that high
in-plane resolution and tmake updata in-between the slices in order to compensate for their
low resolution. Only then, you will have gained the right &euhis code.

Let's now move into the code.... and, yes, bring with you thaitt®, because the fact that you
are going to use the code below, is the evidence that we hateri@ more battle on the quest
for real 3D dataset processing.

This example performs subsampling on the in-plane reswiwind performs super-sampling
along the inter-slices resolution. The subsampling pooeguires that we preprocess the data
with a smoothing filter in order to avoid the occurrence oésilig effects due to overlap of
the spectrum in the frequency domaifb] 76]. The smoothing is performed here using the
Recur si veGaussi an filter, given that it provides a convenient run-time perfarme.

The first thing that you will need to do in order to resampla tingly anisotropic dataset is to
include the header files for thét k: : Resanpl el mageFi | t er, and the Gaussian smoothing
filter.

5A feeling of regret or remorse for having committed some ioper act; a recognition of one’s own responsibility
for doing something wrong.

http://www.itk.org/Doxygen/html/classitk_1_1ResampleImageFilter.html

6.9. Geometric Transformations 249

#include "itkResanpl el mageFilter.h"
#include "itkRecursiveGussianl mageFilter.h"

The resampling filter will need a Transform in order to mampaobordinates and will need an
interpolator in order to compute intensity values for thezmesampled image. In this particular
case we use thetk::IldentityTransformbecause the image is going to be resampled by
preserving the physical extent of the sampled region. Tmear interpolator is used as a
common trade-off, although arguably we should use one typeterpolator for the in-plane
subsampling process and another one for the inter-slicersampling, but again, one should
wonder why to enter into technical sophistication here,mWvbat we are doing is to cover-up
for an improper acquisition of medical data, and we are jystg to make it look as if it was
correctly acquired.

#include "itkldentityTransformh"
#include "itkLinearlnterpol atel mgeFunction. h"

Note that, as part of the preprocessing of the image, in thas@le we are also rescaling the
range of intensities. This operation has already been ibescas Intensity Windowing. In a
real clinical application, this step requires careful édesation of the range of intensities that
contain information about the anatomical structures thatd interest for the current clinical
application. It practice you may want to remove this steptgisity rescaling.

#include "itklntensityWndow ngl nageFilter.h"

We made explicit now our choices for the pixel type and dinmmsf the input image to be
processed, as well as the pixel type that we intend to usbéanternal computation during the
smoothing and resampling.

const unsi gned int Di nension = 3;

typedef unsigned short |nputPixel Type;
typedef float I nt ernal Pi xel Type;

typedef itk::Image< InputPixel Type, Di nension > | nputlmgeType;
typedef itk::Image< Internal Pixel Type, Dinension > Internal |l mageType;

We instantiate the smoothing filter that will be used on theppocessing for subsampling the
in-plane resolution of the dataset.

typedef itk::RecursiveGussianl mageFilter<
I nternal | mageType,
I nternal | mageType > Gaussi anFi | ter Type;

http://www.itk.org/Doxygen/html/classitk_1_1IdentityTransform.html

250 Chapter 6. Filtering

We create two instances of the smoothing filter, one will sth@ong theX direction while

the other will smooth along th¥ direction. They are connected in a cascade in the pipeline,
while taking their input from the intensity windowing filteklote that you may want to skip the
intensity windowing scale and simply take the input dingétbm the reader.

Gaussi anFi | ter Type: : Poi nter snoother X = Gaussi anFilterType:: New();
Gaussi anFi | ter Type: : Poi nter snootherY = Gaussi anFil ter Type:: New();

snoot her X- >Set | nput (i nt ensi t yW ndow ng- >Get Qut put ());
snoot her Y- >Set | nput (snoot her X->CGet Qut put ());

We must now provide the settings for the resampling itselis s done by searching for a value
of isotropic resolution that will provide a trade-off betsrethe evil of subsampling and the evil
of supersampling. We advance here the conjecture that thaejeical mean between the in-
plane and the inter-slice resolutions should be a conversetropic resolution to use. This
conjecture is supported on nothing else than intuition armon sense. You can rightfully
argue that this choice deserves a more technical consiieraut then, if you are so inclined
to the technical correctness of the image sampling progessshould not be using this code,
and should rather we talking about such technical corrsstteethe radiologist who acquired
this ugly anisotropic dataset.

We take the image from the input and then request its arraixef gpacing values.
I nput | mageType: : Const Poi nter inputlmge = reader->Get Qut put();

const | nputl mageType: : Spaci ngType& i nput Spaci ng = i nput | mage- >Get Spaci ng() ;

and apply our ad-hoc conjecture that the correct anisatmgsolution to use is the geometrical
mean of the in-plane and inter-slice resolutions. Thenhgstspacing as the Sigma value to be
used for the Gaussian smoothing at the preprocessing stage.

const doubl e isoSpacing = sqrt(inputSpacing[2] * inputSpacing[0]);

snoot her X- >Set Si gna(i soSpacing);
snoot her Y- >Set Si gma(i soSpacing);

We instruct the smoothing filters to act along teandY direction respectively. And define
the settings for avoiding the loss of intensity as a resuthefdiffusion process that is inherited
from the use of a Gaussian filter.

snoot her X->SetDirection(0);
smoot her Y->SetDirection(1);

snoot her X- >Set Nor nal i zeAcrossScal e(true);
snoot her Y- >Set Nor nal i zeAcrossScal e(true);

6.9. Geometric Transformations 251

Now that we have taken care of the smoothing in-plane, wegeto instantiate the resampling
filter that will reconstruct an isotropic image. We start lacthring the pixel type to be use at
the output of such filter, then instantiate the image typetaedype for the resampling filter.
Finally we construct an instantiation of such a filter.

typedef unsigned char QutputPi xel Type;
typedef itk::Image< QutputPixel Type, Di nension > Qutputl nageType;

typedef itk::Resanpl el mageFilter<
I nternal | mageType, CQutputlmageType > Resanpl eFilterType;

Resanpl eFi | ter Type: : Poi nter resanpl er = Resanpl eFilterType:: New();

The resampling filter requires that we provide a Transfotmat in this particular case can
simply be an identity transform.

typedef itk::ldentityTransfornk double, Dimension > Transforniype;

TransfornType: : Poi nter transform = Transforniype:: New();
transform>Setldentity();

resanpl er->Set Transforn{ transform);

The filter also requires an interpolator to be passed to ithisicase we chose to use a linear
interpolator.

typedef itk::Linearlnterpolatel mgeFunction<
I nternal | mageType, double > InterpolatorType;

I nterpol at or Type: : Poi nter interpolator = InterpolatorType:: New();

resanpl er->SetInterpolator(interpolator);

The pixel spacing of the resampled dataset is loadedSpaai ngType and passed to the re-
sampling filter.

Qut put | mageType: : Spaci ngType spaci ng;

spaci ng[0] = isoSpacing;
spaci ng[1] = isoSpacing;
spacing[2] = isoSpacing;

resanpl er - >Set Qut put Spaci ng(spacing);

252 Chapter 6. Filtering

The origin of the output image is maintained, since we detideresample the image in the
same physical extent of the input anisotropic image.

resanpl er->Set Qut put Ori gi n(i nput | mage->GetOrigin());

The number of pixels to use along each dimension in the gritefesampled image is com-
puted using the ratio between the pixel spacings of the inpage and those of the output
image. Note that the computation of the number of pixels@ltveZ direction is slightly dif-
ferent with the purpose of making sure that we don't attermgoimpute pixels that are outside
of the original anisotropic dataset.

I nput | mageType: : Si zeType inputSize =
i nput | mage- >Get Lar gest Possi bl eRegi on() . Get Si ze();

typedef InputlmageType:: SizeType:: SizeVal ueType SizeVal ueType;

const double dx = inputSize[0] * inputSpacing[0] / isoSpacing;
const double dy = inputSize[1] * inputSpacing[1l] / isoSpacing;

(inputSize[2] - 1) * inputSpacing[2] / isoSpacing;

const double dz

Finally the values are stored inShzeType and passed to the resampling filter. Note that this
process requires a casting since the computation are pertbindoubl e, while the elements
of theSi zeType are integers.

I nput | mageType: : Si zeType si ze;

size[0] = static_cast<SizeVal ueType>(dx);
size[1] = static_cast<SizeVal ueType>(dy);
size[2] = static_cast<SizeVal ueType>(dz);

resanpl er->Set Si ze(size);

Our last action is to take the input for the resampling imalger firom the output of the cascade
of smoothing filters, and then to trigger the execution ofglpeline by invoking théJpdat e()
method on the resampling filter.

resanpl er->Set | nput (snoot her Y->Get Qut put ());

resanpl er - >Updat e() ;

At this point we should take some minutes in silence to refbacthe circumstances that have
lead us to accept to cover-up for the improper acquisitiomedlical data.

6.10. Frequency Domain 253

6.10 Frequency Domain

6.10.1 Computing a Fast Fourier Transform (FFT)

The source code for this section can be found in the file
Exanpl es/ Fi | teri ng/ FFTI mageFi | t er. cxx.

In this section we assume that you are familiar with Spedrsllysis, in particular with the
concepts of the Fourier Transform and the numerical impieat®mn of the Fast Fourier trans-
form. If you are not familiar with these concepts you may wantonsult first any of the many
available introductory books to spectral analy4ig [L1].

This example illustrates how to use the Fast Fourier Transfiiter (FFT) for processing
an image in the spectral domain. Given that FFT computationtie CPU intensive, there
are multiple hardware specific implementations of FFT. ITcagvenient in many cases to
delegate the actual computation of the transform to locallabvle libraries. Particular ex-
amples of those libraries are fffwand the VXL implementation of FFT. For this reason
ITK provides a base abstract class that factorizes thefawerto multiple specific imple-
mentations of FFT. This base class is thek: : FFTReal ToConpl exConj ugat el mageFi | ter,
and two of its derived classes ar¢k: : Vnl FFTReal ToConpl exConj ugat el mageFi | t er and

i tk:: FFTWReal ToConpl exConj ugat el mageFi | ter.

A typical application that uses FFT will need to include tb#dwing header files.

#include "itklmge.h"

#include "itkVnl FFTReal ToConpl exConj ugat el mageFi | ter. h"
#include "itkConpl exToReal | mageFi |l ter.h"

#include "itkConpl exTol magi naryl nageFil ter. h"

The first decision to make is related to the pixel type and dsion of the images on which we
want to compute the Fourier transform.

typedef float Pixel Type;
const unsigned int Dimension = 2

typedef itk::Image< Pixel Type, Dinmension > |nageType;

We use the same image type in order to instantiate the FFT. filtkh this case the
i tk::Vnl FFTReal ToConpl exConj ugat el mageFi | ter . Note that contrary to most ITK fil-
ters, the FFT filter is instantiated using the Pixel type dr&ditnage dimension explicitly. Once
the filter type is instantiated, we can use it for creatingaject by invoking thé&ew() method
and assigning the result to a SmartPointer.

typedef itk::Vnl FFTReal ToConpl exConj ugat el mageFi | t er <

Bhttp://www.fftw.org

http://www.itk.org/Doxygen/html/classitk_1_1FFTRealToComplexConjugateImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1VnlFFTRealToComplexConjugateImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1FFTWRealToComplexConjugateImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1VnlFFTRealToComplexConjugateImageFilter.html

254 Chapter 6. Filtering

Pi xel Type, Dinmension > FFTFilter Type;

FFTFi | ter Type:: Pointer fftFilter = FFTFilterType:: New();
The input to this filter can be taken from a reader, for example

typedef itk::ImageFileReader< | nageType > Reader Type;
Reader Type: : Poi nter reader = Reader Type:: New();
reader->Set Fi | eNane(argv[1]);

fftFilter->SetInput(reader->GetQutput());

The execution of the filter can be triggered by invoking thpelat e() method. Since this
invocation can eventually throw and exception, the calltbesplaced inside a try/catch block.

try
{
fftFilter->Update();

}
catch(itk::ExceptionChject & excp)

{

std::cerr << "Error: " << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAI LURE;

}

In general the output of the FFT filter will be a complex imagé&Ve can proceed to
save this image in a file for further analysis. This can be dopsimply instantiating an
itk::1mageFil eWiter using the trait of the output image from the FFT filter. We dounst
one instance of the writer and pass the output of the FFT &kehe input of the writer.

typedef FFTFilterType:: Qut putl mageType Conpl exl mageType;
typedef itk::ImageFileWiter< Conpl exl nageType > Conpl exWiter Type;

Conpl exWiterType:: Pointer conplexWiter = ConplexWiterType:: New();
conpl exWiter->SetFi | eNane(" conpl exl mage. nhd") ;

conmpl exWiter->SetInput(fftFilter->GetCQutput());
Finally we invoke theJpdat e() method placing inside a try/catch block.

try
{
conpl exWiter->Update();

http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html

6.10. Frequency Domain 255

}
catch(itk::ExceptionChject & excp)
{
std::cerr << "Error: " << std::endl;

std::cerr << excp << std::endl;
return EXI T_FAI LURE;
}

In addition to saving the complex image into a file, we coubaxtract its real and imaginary
parts for further analysis. This can be done with ihek: : Conpl exToReal | mageFi | ter and
the i tk:: Conpl exTol magi naryl nageFi | ter.

We instantiate first the ImageFilter that will help us to extrthe real part from the complex
image. TheConpl exToReal | mageFi | ter takes as first template parameter the type of the
complex image and as second template parameter it takegpbet the output image pixel.
We create one instance of this filter and connect as its imgubtitput of the FFT filter.

typedef itk:: Conpl exToReal | mageFilter<
Conpl exl mageType, |mageType > Real FilterType;

Real Fi | ter Type:: Pointer real Filter = Real FilterType:: New();

real Filter->SetInput(fftFilter->GetQutput());

Since the range of intensities in the Fourier domain can hie goncentrated, it result con-
venient to rescale the image in order to visualize it. Fos fhurpose we instantiate here a
itk::Rescal el ntensityl mageFi|ter thatwill rescale the intensities of theal image into

a range suitable for writing in a file. We also set the minimumd amaximum values of the
output to the range of the pixel type used for writing.

typedef itk::RescalelntensitylmgeFilter<
| mageType,
Witel mageType > Rescal eFilterType;

Rescal eFi | ter Type:: Pointer intensityRescal er = Rescal eFilterType:: New();
intensityRescal er->SetInput(real Filter->GetQutput());

intensityRescal er->SetQutputMnimun(0);
i ntensityRescal er->Set Qut put Maxi nun{ 255);

We can now instantiate the ImageFilter that will help us ttraet the imaginary part from the
complex image. The filter that we use here is thek: : Conpl exTol nagi naryl mageFi | ter.

It takes as first template parameter the type of the complegéand as second template pa-
rameter it takes the type of the output image pixel. An instaof the filter is created, and its
input is connected to the output of the FFT filter.

http://www.itk.org/Doxygen/html/classitk_1_1ComplexToRealImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ComplexToImaginaryImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1RescaleIntensityImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ComplexToImaginaryImageFilter.html

256 Chapter 6. Filtering

typedef FFTFilterType:: Qut putl mageType Conpl exl mageType;

typedef itk:: Conpl exTol magi naryl nageFi | ter<
Conpl exl mageType, |mageType > | maginaryFilterType;

| magi naryFi |l ter Type:: Pointer imaginaryFilter = I maginaryFilterType:: New();

i magi naryFilter->Setlnput(fftFilter->GetQutput());

The Imaginary image can then be rescaled and saved into gufiteas we did with the Real
part.

For the sake of illustrating the use of i@ k: : | mageFi | eReader on Complex images, here

we instantiate a reader that will load the Complex imagewejust saved. Note that nothing

special is required in this case. The instantiation is dasethe same as for any other type of
image. Which once again illustrates the power of GenerigRmming.

typedef itk::ImageFil eReader< Conpl exl mageType > Conpl exReader Type;
Conpl exReader Type: : Poi nter conpl exReader = Conpl exReader Type: : New() ;

conpl exReader - >Set Fi | eNane(" conpl ex| mage. nhd") ;
conpl exReader - >Updat e() ;

6.10.2 Filtering on the Frequency Domain

The source code for this section can be found in the file
Exanpl es/ Fi | teri ng/ FFTI mageFi | t er Four i er Domai nFi | t eri ng. cxx.

One of the most common image processing operations perébimtae Fourier Domain is the
masking of the spectrum in order to eliminate a range of ap&tquencies from the input
image. This operation is typically performed by taking thput image, computing its Fourier
transform using a FFT filter, masking the resulting imagehim Fourier domain with a mask,
and finally taking the result of the masking and computingn¥erse Fourier transform.

This typical processing is what it is illustrated in the exdebelow.

We start by including the headers of the FFT filters and thekiitaage filter. Note that we use
two different types of FFT filters here. The first one expest®aut an image of real pixel type
(real in the sense of complex numbers) and produces as autmrmplex image. The second
FFT filter expects as in put a complex image and produces @amnegke as output.

#include "itkVnl FFTReal ToConpl exConj ugat el mageFi | ter. h"
#include "itkVnl FFTConpl exConj ugat eToReal | nageFi | ter. h"
#include "itkMaskl mageFilter.h"

http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html

6.10. Frequency Domain 257

The first decision to make is related to the pixel type and dsioen of the images on which we
want to compute the Fourier transform.

typedef float |nputPixel Type;
const unsigned int Dinmension = 2;

typedef itk::Image< InputPixel Type, Dinension > |nputlnageType;

Then we select the pixel type to use for the mask image andritigte the image type of the
mask.

typedef unsigned char MaskPi xel Type;

typedef itk::Image< MaskPixel Type, Di nension > Maskl mageType;

Both the input image and the mask image can be read from filesud be obtained as the
output of a preprocessing pipeline. We omit here the detdil®ading the image since the
process is quite standard.

Now thei tk: : Vnl FFTReal ToConpl exConj ugat el mageFi | t er can be instantiated. Note that
contrary to most ITK filters, the FFT filter is instantiatedngsthe Pixel type and the image
dimension explicitly. Using the type we construct one ins&of the filter.

typedef itk::Vnl FFTReal ToConpl exConj ugat el nageFi | t er <
I nput Pi xel Type, Dinension > FFTFilterType;

FFTFi | ter Type:: Pointer fftFilter = FFTFilterType:: New();

fftFilter->Setlnput(inputReader->CetCQutput());

Since our purpose is to perform filtering in the frequency donboy altering the weights of the
image spectrum, we need here a filter that will mask the Fotraaesform of the input image
with a binary image. Note that the type of the spectral imagaken here from the traits of the
FFT filter.

typedef FFTFilterType:: Qut put | mageType Spectral | mageType;
typedef itk::Mskl mageFilter< Spectral | mageType,
Maskl mageType,
Spectral | mageType > MaskFilterType;

MaskFi | ter Type: : Poi nter maskFilter = MaskFilterType:: New();

We connect the inputs to the mask filter by taking the outpatsfthe first FFT filter and from
the reader of the Mask image.

http://www.itk.org/Doxygen/html/classitk_1_1VnlFFTRealToComplexConjugateImageFilter.html

258 Chapter 6. Filtering

maskFilter->SetInputl(fftFilter->CetQutput());
maskFi | ter->Set | nput 2(maskReader->Get Qutput());

For the purpose of verifying the aspect of the spectrum &i¢éng filtered with the mask, we
can write out the output of the Mask filter to a file.

typedef itk::ImageFileWiter< Spectral | mageType > Spectral Witer Type;
Spectral WiterType::Pointer spectral Witer = Spectral WiterType:: New();
spectral Witer->SetFil eName("filteredSpectrum nhd");

spectral Witer->SetInput(maskFilter->CGetQutput());

spectral Witer->Update();

The output of the mask filter will contain tHdtered spectrum of the input image. We must
then apply an inverse Fourier transform on it in order to imbttae filtered version of the input
image. For that purpose we create another instance of thdiltérT

typedef itk::Vnl FFTConpl exConj ugat eToReal | nageFi | t er <
I nput Pi xel Type, Dinension > |FFTFilterType;

| FFTFi | ter Type: : Pointer fftlinverseFilter = | FFTFi |l ter Type:: New();

fftinverseFilter->Setlnput(maskFilter->GetQutput());

The execution of the pipeline can be triggered by invokingUpbdat e() method in this last
filter. Since this invocation can eventually throw and esximep the call must be placed inside a
try/catch block.

try
{
fftinverseFilter->Update();
}

catch(itk::ExceptionCbject & excp)
{
std::cerr << "Error: " << std::endl;
std::cerr << excp << std::endl;
return EXI T_FAI LURE;

}

The result of the filtering can now be saved into an image fitdgeopassed to a subsequent
processing pipeline. Here we simply write it out to an imagge fi

typedef itk::lmageFileWiter< InputlnageType > WiterType;
WiterType:: Pointer witer = WiterType:: New();
writer->SetFileName(argv[3]);

writer->Setlnput(fftlnverseFilter->GetQutput());

6.11. Extracting Surfaces 259

Note that this example is just a minimal illustration of thaltiple types of processing that are
possible in the Fourier domain.

6.11 Extracting Surfaces

6.11.1 Surface extraction

The source code for this section can be found in the file
Exanpl es/ Fi | tering/ SurfaceExtracti on. cxx.

Surface extraction has attracted continuous interesegime early days of image analysis, in
particular on the context of medical applications. Althbugis commonly associated with

image segmentation, surface extraction is not in itselfggn@mtation technique, instead it is a
transformation that changes the way a segmentation isgepted. In its most common form,
isosurface extraction is the equivalent of image threshgltbllowed by surface extraction.

Probably the most widely known method of surface extractsothe Marching Cubesalgo-
rithm [51]. Although it has been followed by a number of variarkg][Marching Cubes has
become anicon on medicalimage processing. The followiagwgte illustrates how to perform
surface extraction in ITK using an algorithm similar to Maireg Cubes'.

The representation of unstructured data in ITK is done vithitt k: : Mesh. This class allows
to represent N-Dimensional grids of varied topology. It &ural for the filter that extracts
surfaces from an Image to produce a Mesh as its output.

We initiate our example by including the header files of thdage extraction filter, the image
and the Mesh.

#include "itkBi naryMask3DveshSour ce. h"
#include "itklmge.h"
#include "itkMesh. h"

We define then the pixel type and dimension of the image frorniclmve are going to extract
the surface.

const unsigned int Dinmension = 3;
typedef unsigned char Pixel Type;

typedef itk::Image< Pixel Type, Dinension > |nmageType;

With the same image type we instantiate the type of an ImégfeEader and construct one with
the purpose of reading in the input image.

"Note that the Marching Cubes algorithm is covered by a paltettexpired on June 5th 2005.

http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html

260 Chapter 6. Filtering

typedef itk::ImageFil eReader< | nageType > Reader Type;
Reader Type: : Poi nter reader = Reader Type:: New();
reader->Set Fil eNane(argv[1]);

The type of thei t k: : Mesh is instantiated by specifying the type to be associated thitpixel
value of the Mesh nodes. This particular pixel type happefetirrelevant for the purpose of
extracting the surface.

typedef itk::Mesh<doubl e> MeshType;

Having declared the Image and Mesh types we can now instautiie surface extraction filter,
and construct one by invoking iew() method.

typedef itk::BinaryMask3DveshSour ce< | mageType, MeshType > MeshSour ceType;

MeshSour ceType: : Poi nter nmeshSource = MeshSour ceType:: New();

In this particular example, the pixel value to be associttdtie object to be extracted is read
from the command line arguments and it is passed to the fytesing theSet Obj ect Val ue()
method. Note that this is different from the traditionalvialue used in the Marching Cubes
algorithm. In the case of thBi nar yMask3DMeshSour ce filter, the object values defines the
membership of pixels to the object from which the surface el extracted. In other words,
the surface will be surrounding all pixels with value equethe ObjectValue parameter.

const Pixel Type objectVal ue = static_cast<Pixel Type>(atof(argv[2]));

meshSour ce- >Set Cbj ect Val ue(obj ect Val ue);
The input to the surface extraction filter is taken from thgatof the image reader.
meshSour ce- >Set | nput (reader->Get Qutput ());

Finally we trigger the execution of the pipeline by invokitig Updat e() method. Given that
the pipeline may throw an exception this call must be plas&mat ry/ cat ch block.

try
{
meshSour ce- >Updat e();
}
catch(itk::ExceptionChject & exp)
{
std::cerr << "Exception thrown during Update() " << std::endl;
std::cerr << exp << std::endl;
return EXI T_FAI LURE;
}

http://www.itk.org/Doxygen/html/classitk_1_1Mesh.html

6.11. Extracting Surfaces 261

As a way of taking a look at the output Mesh we print out heraitsiber of Nodes and Cells.

std::cout << "Nodes
std::cout << "Cells

" << meshSour ce- >Get Nunber Of Nodes() << std::endl;
" << meshSour ce- >Get Nunber Of Cel | s() << std::endl;

This resulting Mesh could be used as input for a deformabléahgegmentation algorithm, or
it could be converted to a format suitable for visualizafioan interactive application.

CHAPTER

SEVEN

Reading and Writing Images

This chapter describes the toolkit architecture suppgreading and writing of images to files.
ITK does not enforce any particular file format, instead,riiypdes a structure supporting a
variety of formats that can be easily extended by the useeadormats become available.

We begin the chapter with some simple examples of file 1/O.

7.1 Basic Example

The source code for this section can be found in the file
Exanpl es/ 1 O | mageReadW i t e. cxx.

The classes responsible for reading and writing imagesaeddd at the beginning and end of
the data processing pipeline. These classes are knownasalates (readers) and data sinks
(writers). Generally speaking they are referred to as $ijtalthough readers have no pipeline
input and writers have no pipeline output.

The reading of images is managed by the clask: : | mageFi | eReader while writing is per-
formed by the class tk: : I mageFi | eWiter. These two classes are independent of any par-
ticular file format. The actual low level task of reading andtiwg specific file formats is done
behind the scenes by a family of classes of typé: : | magel O.

The first step for performing reading and writing is to inautie following headers.

#include "itklmgeFi| eReader. h"
#include "itklmageFileWiter.h"

Then, as usual, a decision must be made about the type ofysrel to represent the image
processed by the pipeline. Note that when reading and grititages, the pixel type of the
imageis not necessarilythe same as the pixel type stored in the file. Your choice optkel
type (and hence template parameter) should be driven miayrthyo considerations:

http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageIO.html

264 Chapter 7. Reading and Writing Images

e It should be possible to cast the file pixel type in the file @ plixel type you select. This
casting will be performed using the standard C-languagesrgio you will have to make
sure that the conversion does not result in informationdpkaat.

e The pixel type in memory should be appropriate to the typero€gssing you intended
to apply on the images.

A typical selection for medical images is illustrated in thowing lines.

typedef unsigned short Pi xel Type;
const unsigned int Di nension = 2;
typedef itk::Image< Pixel Type, Dinmension > | mgeType;

Note that the dimension of the image in memory should matehotie of the image in file.
There are a couple of special cases in which this condition lmearelaxed, but in general it is
better to ensure that both dimensions match.

We can now instantiate the types of the reader and writers@ hgo classes are parameterized
over the image type.

typedef itk::ImageFil eReader< | mageType > Reader Type;
typedef itk::ImageFileWiter< InageType > WiterType;

Then, we create one object of each type using the New() methddissigning the result to a
itk:: Smart Pointer.

Reader Type: : Poi nter reader
WiterType:: Pointer witer

Reader Type: : New() ;
WiterType:: New();

The name of the file to be read or written is passed with theilgét&me() method.

reader->Set Fi | eNane(inputFilename);
writer->SetFileName(outputFilename);

We can now connect these readers and writers to filters tdeceegipeline. For example, we
can create a short pipeline by passing the output of the ref@etly to the input of the writer.

writer->Setlnput(reader->GetCQutput());

At first view, this may seem as a quite useless program, bsiaitiually implementing a pow-
erful file format conversion tool! The execution of the pipelis triggered by the invocation of
theUpdat e() methods in one of the final objects. In this case, the final pigtline object is
the writer. It is a wise practice of defensive programmingisert anyUpdat e() call inside a
try/ cat ch block in case exceptions are thrown during the executiohepipeline.

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

7.1. Basic Example 265

1 1
coom- = I ragel O <--------
I I
| mageFi | eReader 3 canReadFi | e() : bool 3 I mageFil eWiter
| CanW i teFile(): bool |
1 l l 'l
‘ PNG magel O ‘ ‘ Met al magel O ‘ ‘ Di conl nagel O ‘ ‘ Rawl magel O ‘
‘VTKIrrageIO‘ ‘ Gpllmagelo‘ ‘V(].Imagelo‘

Figure 7.1:Collaboration diagram of the ImagelO classes.

try
{
writer->Update();

}
catch(itk::ExceptionChject & err)

{

std::cerr << "ExceptionChject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAI LURE;

}

Note that exceptions should only be caught by pieces of doatekhow what to do with them.
In a typical application thisat ch block should probably reside on the GUI code. The action
on thecat ch block could inform the user about the failure of the 10 opierat

The 10 architecture of the toolkit makes it possible to awiglicit specification of the file for-
mat used to read or write imagéJhe object factory mechanism enables the ImageFileReader
and ImageFileWriter to determine (at run-time) with whidk format it is working with. Typ-
ically, file formats are chosen based on the filename extenbiat the architecture supports
arbitrarily complex processes to determine whether a firebsaread or written. Alternatively,

the user can specify the data file format by explicit insttitin and assignment the appropriate

i tk:: 1 magel Osubclass.

For historical reasons and as a convenience to the useirf the | mageFi | eWiter also has a
Write() method that is aliased to tlpdat e() method. You can in principle use either of them
butUpdat e() is recommended since Write() may be deprecated in the future

To better understand the 10 architecture, please refergor€s7.1, 7.2, and7.3.

The following section describes the internals of the 10 aedhture provided in the toolkit.

1In this example no file format is specified; this program camised as a general file conversion utility.

http://www.itk.org/Doxygen/html/classitk_1_1ImageIO.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html

266

Chapter 7. Reading and Writing Images

PNG nmagel OFact ory

Met al magel OFact ory

Pluggable Factories

o)
filename
CanRead ?)=—| .o
&
A

| magel OFact ory

Pluggable Factories

e
qe®®

CreatelmagelO
for Reading

CreatelmagelO

. fil
for Writing

%

Figure 7.2:Use cases of ImagelO factories.

| magel OFact ory

Createl magel Q(file:string)
Regi ster(factory: | nagel OFact ory)

T

‘ PNG magel OFact ory ‘

‘ Met al magel OFact ory ‘

‘ Di com magel OFact ory ‘

‘ GDCM magel OFact ory ‘

‘ VTKI nagel OFact ory ‘

‘ G pl I negel OFactory ‘

‘ VOLI nagel OFact ory ‘

‘ BMWPI nagel OFact ory ‘

‘ Sti nul at el magel OFact

ory ‘

‘ Met al magel OFactory ‘

‘ TI FFI magel OFact ory ‘

‘ Rawl magel OFact ory ‘

‘ Anal yzel magel OFact ory ‘

| mageFi | eReader

| mageFi leWiter

‘ Ge4x| magel OFact ory ‘

‘ JPEG nagel OFact ory ‘

‘ Nrrdl nagel OFact ory ‘

‘ Si enensVi si onl OFact ory ‘

Figure 7.3:Class diagram of the ImagelO factories.

7.2. Pluggable Factories 267

7.2 Pluggable Factories

The principle behind the input/output mechanism used in i§ khown aspluggable-factories
[28]. This concept is illustrated in the UML diagram in Figurel. From the user’s point

of view the objects responsible for reading and writing fdes thei tk: : | mageFi | eReader
anditk::lmgeFileWiter classes. These two classes, however, are not aware of Hiks det
involved in reading or writing particular file formats likeNis or DICOM. What they do is to
dispatch the user’s requests to a set of specific classearthatvare of the details of image file
formats. These classes are thiek: : | magel O classes. The ITK delegation mechanism enables
users to extend the number of supported file formats by judihgchew classes to the ImagelO
hierarchy.

Each instance of ImageFileReader and ImageFileWriter hasirgter to an ImagelO object.
If this pointer is empty, it will be impossible to read or veritn image and the image file
reader/writer must determine which ImagelO class to usestfopm 10 operations. This is
done basically by passing the filename to a centralized,dlass t k: : | magel OFact ory and
asking it to identify any subclass of ImagelO capable of iegdr writing the user-specified
file. This is illustrated by the use cases on the right sideigifife 7.2

Each class derived from ImagelO must provide an associattdriy class capable of producing
an instance of the ImagelO class. For example, for PNG fitesetis ai t k: : PNG nagel O
object that knows how to read this image files and thereiisla : PNG magel OFact ory class
capable of constructing a PNGImagelO object and returnipgiater to it. Each time a new
file format is added (i.e., a new ImagelO subclass is creaadfdytory must be implemented as
a derived class of the ImagelOFactory class as illustrai&dgure?7.3.

For example, in order to read PNG files, a PNGImagelOFactocyaated and registered with
the central ImagelOFactory singlefariass as illustrated in the left side of Figir@ When the
ImageFileReader asks the ImagelOFactory for an Imagel@ueapf reading the file identified
with filenamethe ImagelOFactory will iterate over the list of registefadtories and will ask
each one of them is they know how to read the file. The factayrésponds affirmatively will
be used to create the specific ImagelO instance that will tugrred to the ImageFileReader
and used to perform the read operations.

In most cases the mechanism is transparent to the user wiaretacts with the Image-
FileReader and ImageFileWriter. Itis possible, howeweexplicitly select the type of ImagelO
object to use. This is illustrated by the following example.

7.3 Using ImagelO Classes Explicitly

The source code for this section can be found in the file
Exanpl es/ |1 O | mageReadExport VTK. cxx.

2Singletonmeans that there is only one instance of this class in a pltiapplication

http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageIO.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageIOFactory.html
http://www.itk.org/Doxygen/html/classitk_1_1PNGImageIO.html
http://www.itk.org/Doxygen/html/classitk_1_1PNGImageIOFactory.html

268 Chapter 7. Reading and Writing Images

In cases where the user knows what file format to use and waimtslicate this explicitly, a
specifici tk: : I magel Oclass can be instantiated and assigned to the image filerreadeter.
This circumvents thei t k: : | magel OFact ory mechanism which tries to find the appropriate
ImagelO class for performing the 10 operations. Expliclesgon of the ImagelO also allows
the user to invoke specialized features of a particulaschdsch may not be available from the
general API provide by ImagelO.

The following example illustrates explicit instantiatiogan 10 class (in this case a VTK file
format), setting its parameters and then connecting iteai trk: : | mageFi | eWiter .

The example begins by including the appropriate headers.

#include "itklmageFi| eReader. h"
#include "itklmgeFileWiter.h"
#include "itkVTKI magel O h"

Then, as usual, we select the pixel types and the image dioreri®emember, if the file format
represents pixels with a particular type, C-style castiiigh& performed to convert the data.

typedef unsigned short Pi xel Type;
const unsi gned int Di nension = 2;
typedef itk::Image< Pixel Type, Dinmension > | mgeType;

We can now instantiate the reader and writer. These twoeadasse parameterized over the
image type. We instantiate the k: : VTKI magel O class as well. Note that the ImagelO objects
are not templated.

typedef itk::ImageFileReader< | nageType > Reader Type;
typedef itk::ImageFileWiter< InmageType > WiterType;
typedef itk::VTKI magel O | magel OType;

Then, we create one object of each type using the New() methddissigning the result to a
itk:: SmartPointer.

Reader Type: : Poi nter reader = Reader Type:: New();
WiterType:: Pointer witer = WiterType:: New();
| magel OType: : Pointer vtkl O = | magel OType:: New();

The name of the file to be read or written is passed with theigét&me() method.

reader->Set Fi | eNane(inputFilename);
writer->SetFileName(outputFilenanme);

We can now connect these readers and writers to filters ineipgp For example, we can
create a short pipeline by passing the output of the readectti to the input of the writer.

http://www.itk.org/Doxygen/html/classitk_1_1ImageIO.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageIOFactory.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
http://www.itk.org/Doxygen/html/classitk_1_1VTKImageIO.html
http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

7.4. Reading and Writing RGB Images 269

writer->Set!|nput(reader->CetQutput());

Explicitly declaring the specific VTKImagelO allow usersitwoke methods specific to a par-
ticular 10 class. For example, the following line specifieshie writer to use ASCII format
when writing the pixel data.

vt kl O >Set Fi | eTypeToASCl | ();

The VTKImagelO object is then connected to the ImageFiléd¥riThis will short-circuit the
action of the ImagelOFactory mechanism. The ImageFileMvritill not attempt to look for
other ImagelO objects capable of performing the writingsadt will simply invoke the one
provided by the user.

writer->Setlmagel O vtklO);

Finally we invoke Update() on the ImageFileWriter and pl#te call inside a try/catch block
in case any errors occur during the writing process.

try
{
writer->Update();

}
catch(itk::ExceptionCbject & err)

{

std::cerr << "ExceptionCbject caught !" << std::endl;
std::cerr << err << std::endl;

return EXI T_FAI LURE,

}

Although this example only illustrates how to use an expliciagelO class with the Image-
FileWriter, the same can be done with the ImageFileRead®e. typical case in which this is
done is when reading raw image files with theék: : Rawl magel O object. The drawback of
this approach is that the parameters of the image have topieidy written in the code. The
direct use of raw file istrongly discouragedin medical imaging. It is always better to create
a header for a raw file by using any of the file formats that coralki text header file and a raw
binary file, like i t k: : Met al magel O, i tk:: G pl I magel Oand itk: : VTKI magel O.

7.4 Reading and Writing RGB Images

The source code for this section can be found in the file
Exanpl es/ | O RGBI mageReadW i t e. cxx.

http://www.itk.org/Doxygen/html/classitk_1_1RawImageIO.html
http://www.itk.org/Doxygen/html/classitk_1_1MetaImageIO.html
http://www.itk.org/Doxygen/html/classitk_1_1GiplImageIO.html
http://www.itk.org/Doxygen/html/classitk_1_1VTKImageIO.html

270 Chapter 7. Reading and Writing Images

RGB images are commonly used for representing data acduimactryogenic sections, optical
microscopy and endoscopy. This example illustrates howad end write RGB color images
to and from a file. This requires the following headers as show

#include "itkRGBPi xel . h"
#include "itklmge.h"

#include "itklmageFi| eReader. h"
#include "itklmageFileWiter.h"

The itk:: RGBPi xel class is templated over the type used to represent each ahe ofd,
green and blue components. A typical instantiation of th&R@&age class might be as follows.

typedef itk::RGBPixel < unsigned char > Pixel Type;
typedef itk::lmge< Pixel Type, 2 > I mageType;

The image type is used as a template parameter to instatftéateader and writer.

typedef itk::ImageFileReader< | nageType > Reader Type;
typedef itk::ImageFileWiter< ImageType > WiterType;

Reader Type: : Poi nter reader
WiterType:: Pointer witer

Reader Type: : New() ;
WiterType:: New();

The filenames of the input and output files must be providdadogader and writer respectively.

reader->Set Fi | eNane(inputFilename);
writer->SetFileName(outputFilenanme);

Finally, execution of the pipeline can be triggered by inngikthe Update() method in the writer.
writer->Update();

You may have noticed that apart from the declaration ofRiesl Type there is nothing in
this code that is specific for RGB images. All the actions nexflito support color images are
implemented internally in theét k: : | magel O objects.

7.5 Reading, Casting and Writing Images

The source code for this section can be found in the file
Exanpl es/ 1 O | mageReadCast Wit e. cxx.

Given thatlTK is based on the Generic Programming paradigm, most of thes tgpe defined
at compilation time. Itis sometimes important to anticgpabnversion between different types

http://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageIO.html
http://www.itk.org

7.5. Reading, Casting and Writing Images 271

of images. The following example illustrates the commorea#seading an image of one pixel
type and writing it on a different pixel type. This procesg paly involves casting but also
rescaling the image intensity since the dynamic range ofrihiet and output pixel types can
be quite different. The tk: : Rescal el ntensi tyl mageFi | t er is used here to linearly rescale
the image values.

The first step in this example is to include the appropriatelies.

#include "itklmageFi| eReader. h"
#include "itklmageFileWiter.h"
#include "itkRescal el ntensitylmageFilter.h"

Then, as usual, a decision should be made about the pixettigbshould be used to represent
the images. Note that when reading an image, this pixel iypet necessarilythe pixel type

of the image stored in the file. Instead, it is the type thaltlvélused to store the image as soon
as itis read into memory.

typedef float I nput Pi xel Type;
typedef unsigned char Qut put Pi xel Type;
const unsigned int Di nension = 2;

typedef itk::Image< InputPixel Type, Dinension > I nput | mageType;
typedef itk::Image< QutputPixel Type, Dinension > Qut put | nageType;

Note that the dimension of the image in memory should matehotie of the image in file.
There are a couple of special cases in which this condition lmearelaxed, but in general it is
better to ensure that both dimensions match.

We can now instantiate the types of the reader and writers@ hgo classes are parameterized
over the image type.

typedef itk::ImageFileReader< InputlmgeType > ReaderType;
typedef itk::ImageFileWiter< QutputlnmageType > WiterType;

Below we instantiate the RescalelntensitylmageFiltes<idat will linearly scale the image
intensities.

typedef itk::RescalelntensitylmgeFilter<
I nput | mageType,
Qut put | nageType > FilterType;

A filter object is constructed and the minimum and maximunuealof the output are selected
using the SetOutputMinimum() and SetOutputMaximum() radth

http://www.itk.org/Doxygen/html/classitk_1_1RescaleIntensityImageFilter.html

272 Chapter 7. Reading and Writing Images

FilterType::Pointer filter = FilterType:: New();
filter->SetQutputMnimun{ 0);
filter->SetQutput Maxi mun{ 255);

Then, we create the reader and writer and connect the pielin

Reader Type: : New() ;
WiterType:: New();

Reader Type: : Poi nter reader
WiterType::Pointer witer

filter->Setlnput(reader->GetCQutput());
writer->Setlnput(filter->GetQutput());

The name of the files to be read and written are passed withettkél@Name() method.

reader->Set Fi | eNane(inputFilename);
writer->SetFileName(outputFilenanme);

Finally we trigger the execution of the pipeline with the @pe() method on the writer. The
output image will then be the scaled and cast version of thetiage.

try
{
writer->Update();

}
catch(itk::ExceptionChject & err)

{

std::cerr << "ExceptionChject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAI LURE;

}

7.6 Extracting Regions

The source code for this section can be found in the file
Exanpl es/ 1 O | mageReadRegi onOf I nt erest Wi te. cxx.

This example should arguably be placed in the previousifijgshapter. However its usefulness
for typical 10 operations makes it interesting to mentionehel he purpose of this example is
to read and image, extract a subregion and write this sutmeigia file. This is a common task
when we want to apply a computationally intensive methotiéaégion of interest of an image.

As usual with ITK IO, we begin by including the appropriateber files.

#include "itklmageFi| eReader. h"
#include "itklmageFileWiter.h"

7.6. Extracting Regions 273

The itk:: RegionOf I nterest|mageFilter is the filter used to extract a region from an im-
age. Its header is included below.

#include "itkRegionOf I nterestlmageFilter.h"

Image types are defined below.

typedef signed short I nput Pi xel Type;
typedef signed short Qut put Pi xel Type;
const unsi gned i nt Di nension = 2;

typedef itk::Image< InputPixel Type, Dinension > I nput | rageType;
typedef itk::Image< QutputPixel Type, Dimension > Qut put | mageType;

The types for thei tk: : | mageFi | eReader and itk:: I mageFil eWiter are instantiated us-
ing the image types.

typedef itk::ImageFileReader< InputlmgeType > ReaderType;
typedef itk::ImageFileWiter< QutputlnmageType > WiterType;

The RegionOfinterestimageFilter type is instantiatedgshe input and output image types. A
filter object is created with the New() method and assigneditok: : Smar t Poi nt er .

typedef itk::RegionCfInterestlmgeFilter< InputlnmgeType,
Qut put | mageType > FilterType;

FilterType::Pointer filter = FilterType:: New();

The RegionOfinterestimageFilter requires a region to Hineé by the user. The region is
specified by ani tk: : I ndex indicating the pixel where the region starts and iark: : Si ze
indicating how many pixels the region has along each dineendn this example, the specifi-
cation of the region is taken from the command line argumihis example assumes that a 2D
image is being processed).

Qut put | mageType: : | ndexType start;
start[0] = atoi(argv[3]);
start[1] = atoi(argv[4]);

Qut put | rageType: : Si zeType si ze;
size[0] = atoi(argv[5]);

size[1l] = atoi(argv[6]);

An itk:: 1 mgeRegi on object is created and initialized with start and size olgdifrom the
command line.

http://www.itk.org/Doxygen/html/classitk_1_1RegionOfInterestImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
http://www.itk.org/Doxygen/html/classitk_1_1Index.html
http://www.itk.org/Doxygen/html/classitk_1_1Size.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageRegion.html

274 Chapter 7. Reading and Writing Images

Qut put | mageType: : Regi onType desi redRegi on;
desi redRegi on. Set Si ze(size);
desi redRegi on. Set | ndex(start);

Then the region is passed to the filter using the SetRegioné#st() method.
filter->SetRegi onOf I nterest(desiredRegion);

Below, we create the reader and writer using the New() me#imetlassigning the result to a
SmartPointer.

Reader Type: : Poi nter reader
WiterType:: Pointer witer

Reader Type: : New() ;
WiterType:: New();

The name of the file to be read or written is passed with theilgét&me() method.

reader->Set Fi | eNanme(inputFilename);
writer->SetFileName(outputFilename);

Below we connect the reader, filter and writer to form the gateessing pipeline.

filter->Setlnput(reader->GetCQutput());
witer->Setlnput(filter->CGetQutput());

Finally we execute the pipeline by invoking Update() on théev. The call is placed in a
try/ cat ch block in case exceptions are thrown.

try
{
writer->Update();

}
catch(itk::ExceptionCbject & err)

{

std::cerr << "ExceptionChject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAI LURE;

}

7.7 Extracting Slices

The source code for this section can be found in the file
Exanpl es/ 1 O | mageReadExtract Wit e. cxx.

7.7. Extracting Slices 275

This example illustrates the common task of extracting a &2 $rom a 3D volume. This is
typically used for display purposes and for expediting dsedback in interactive programs.
Here we simply read a 3D volume, extract one of its slices and & as a 2D image. Note that
caution should be used when working with 2D slices from a 3fagk, since for most image
processing operations, the application of a filter on a etedhslice is not equivalent to first
applying the filter in the volume and then extracting theeslic

In this example we start by including the appropriate heéibes:.

#include "itklmgeFi| eReader. h"
#include "itklmageFileWiter.h"

The filter used to extract a region from an image isith&: : Extract | mageFi | t er . Its header
is included below. This filter is capable of extractifl§ — 1)-dimensional images fror-
dimensional ones.

#include "itkExtract|mageFilter.h"

Image types are defined below. Note that the input image t/fé and the output image type
is 2D.

typedef signed short I nput Pi xel Type;
typedef signed short Qut put Pi xel Type;

typedef itk::Image< InputPixel Type, 3 > I nput | mageType;
typedef itk::Image< QutputPixel Type, 2 > Qut put | mageType;

The types for thei tk: : | mageFi | eReader and itk:: I mageFil eWiter are instantiated us-
ing the image types.

typedef itk::ImageFileReader< InputlmgeType > ReaderType;
typedef itk::ImageFileWiter< QutputlnmageType > WiterType;

Below, we create the reader and writer using the New() me#imetlassigning the result to a
i tk::SmartPointer.

Reader Type: : Poi nter reader
WiterType::Pointer witer

Reader Type: : New() ;
WiterType:: New();

The name of the file to be read or written is passed with theilgét&me() method.

reader->Set Fi | eNanme(inputFilename);
writer->SetFileName(outputFilename);

http://www.itk.org/Doxygen/html/classitk_1_1ExtractImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

276 Chapter 7. Reading and Writing Images

The ExtractimageFilter type is instantiated using the irgmd output image types. A filter
object is created with the New() method and assigned to atBwiater.

typedef itk::ExtractlmageFilter< InputlmgeType, QutputlnmageType > FilterType;
FilterType::Pointer filter = FilterType:: New();

The ExtractimageFilter requires a region to be defined by#ez. The region is specified by
an i tk::1ndex indicating the pixel where the region starts andidrk: : Si ze indication how
many pixels the region has along each dimension. In ordextract a D image from a ®
data set, it is enough to set the size of the region to 0 in omewision. This will indicate to
ExtractimageFilter that a dimensional reduction has beeciied. Here we take the region
from the largest possible region of the input image. Not¢ thadate() is being called first on
the reader, since otherwise the output would have invalid.da

reader - >Updat e() ;
I nput | mageType: : Regi onType i nput Regi on =
reader - >Get Qut put () - >CGet Lar gest Possi bl eRegi on() ;

We take the size from the region and collapse the size iZ tmmponent by setting its value to
0. This will indicate to the ExtractimageFilter that the jpuitimage should have a dimension
less than the input image.

I nput | mageType: : Si zeType size = input Regi on. Get Si ze();
size[2] = 0;

Note that in this case we are extracting sslice, and for that reason, the dimension to be
collapsed in the one with index 2. You may keep in mind the @asion of index components
{X=0,Y =1,Z=2}. If we were interested in extracting a slice perpendicuahgeY axis we
would have sesi ze[1] =0; .

Then, we take the index from the region and seWitgalue to the slice number we want to
extract. In this example we obtain the slice number from tharmand line arguments.

I nput | mageType: : I ndexType start = inputRegi on. Get | ndex();
const unsigned int sliceNunber = atoi(argv[3]);
start[2] = sliceNunber;

Finally, an i tk: : | mrageRegi on object is created and initialized with the start and size weg? |
prepared using the slice information.

I nput | mageType: : Regi onType desi redRegi on;
desiredRegi on. Set Si ze(size);
desi redRegi on. Set | ndex(start);

http://www.itk.org/Doxygen/html/classitk_1_1Index.html
http://www.itk.org/Doxygen/html/classitk_1_1Size.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageRegion.html

7.8. Reading and Writing Vector Images 277

Then the region is passed to the filter using the SetExtraiegion() method.
filter->SetExtractionRegion(desiredRegion);
Below we connect the reader, filter and writer to form the gateessing pipeline.

filter->Set!|nput(reader->CetQutput());
writer->Setlnput(filter->CGetQutput());

Finally we execute the pipeline by invoking Update() on thdéter. The call is placed in a
try/ cat ch block in case exceptions are thrown.

try
{
writer->Update();

}
catch(itk::ExceptionChject & err)

{

std::cerr << "ExceptionChject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAI LURE;

}

7.8 Reading and Writing Vector Images

Images whose pixel type is a Vector, a CovariantVector, araydror a Complex are quite
common in image processing. It is convenient then to descabidly how those images can
be saved into files and how they can be read from those filasdate

7.8.1 The Minimal Example

The source code for this section can be found in the file

Exanpl es/ 1 O Vect or | mageReadW i t e. CxX.

This example illustrates how to read and write an image dalgippe i t k: : Vect or .

We should include the header files for the Image, the ImagRBE#hder and the ImageFileWriter.
#include "itklmge.h"

#include "itklmgeFi| eReader. h"
#include "itklmgeFileWiter.h"

Then we define the specific type of vector to be used as pixel typ

http://www.itk.org/Doxygen/html/classitk_1_1Vector.html

278 Chapter 7. Reading and Writing Images

const unsigned int VectorDinension = 3;

typedef itk::Vector< float, VectorD nension > Pi xel Type;

We define the image dimension, and along with the pixel typeaiseeit for fully instantiating
the image type.

const unsigned int |mgeDi nension = 2;

typedef itk::Image< Pixel Type, |mageDi nension > | mageType;

Having the image type at hand, we can instantiate the readiewater types, and use them for
creating one object of each type.

typedef itk::ImageFileReader< | nageType > Reader Type;
typedef itk::ImageFileWiter< InmageType > WiterType;

Reader Type: : Poi nter reader
WiterType:: Pointer witer

Reader Type: : New() ;
WiterType:: New();

Filename must be provided to both the reader and the writethis particular case we take
those filenames from the command line arguments.

reader->Set Fil eNanme(argv[1l]);
writer->SetFileName(argv[2]);

Being this a minimal example, we create a short pipeline @e/er simply connect the output
of the reader to the input of the writer.

writer->Setlnput(reader->GetCQutput());

The execution of this short pipeline is triggered by invakihe writer's Update() method. This
invocation must be placed inside a try/catch block sincextscution may result in exceptions
being thrown.

try
{
writer->Update();
}
catch(itk::ExceptionChject & err)
{
std::cerr << "ExceptionChject caught !" << std::endl;
std::cerr << err << std::endl;
return EXI T_FAI LURE;

}

7.8. Reading and Writing Vector Images 279

Of course, you could envision the addition of filters in betwéhe reader and the writer. Those
filters could perform operations on the vector image.

7.8.2 Producing and Writing Covariant Images

The source code for this section can be found in the file
Exanpl es/ 1 O Covari ant Vect or | nageWi te. cxx.

This example illustrates how to write an image whose pixgletys Covari ant Vect or.
For practical purposes all the content in this example idiegige to images of pixel type
itk::Vector, itk::Point anditk::FixedArray. These pixel types are similar in that they
are all arrays of fixed size in which the components have thesapresentational type.

In order to make this example a bit more interesting we setygipaline to read an im-
age, compute its gradient and write the gradient to a file. diéras are represented with

i tk:: Covariant Vect or s as opposed to Vectors. In this way, gradients are transficor-
rectly underi t k: : Af fi neTransf or ms or in general, any transform having anisotropic scaling.

Let’s start by including the relevant header files.

#include "itklmageFi| eReader. h"
#include "itklmgeFileWiter.h"

We use thei tk: : G adi ent Recur si veGaussi anl mageFi | t er in order to compute the image
gradient. The output of this filter is an image whose pixeés@ovariantVectors.

#include "itkG adi ent Recursi veGaussi anl nageFi | ter. h"

We select to read an image sifgned short pixels and compute the gradient to produce an
image of CovariantVector where each component is of fymat .

typedef signed short I nput Pi xel Type;
typedef float Conponent Type;
const unsigned int Di nension = 2;

typedef itk::CovariantVector< Conponent Type,
Di nension > Qut put Pi xel Type;

typedef itk::Image< InputPixel Type, Dimension > I nput | mageType;
typedef itk::Image< QutputPixel Type, Dinension > Qut put | nageType;

The itk:: I mageFil eReader and itk::lnmgeFi|leWiter are instantiated using the image
types.

typedef itk::ImageFileReader< InputlmgeType > ReaderType;
typedef itk::lmageFileWiter< QutputlmgeType > WiterType;

http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1Point.html
http://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html
http://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html
http://www.itk.org/Doxygen/html/classitk_1_1AffineTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1GradientRecursiveGaussianImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html

280 Chapter 7. Reading and Writing Images

The GradientRecursiveGaussianimageFilter class isritiastad using the input and out-
put image types. A filter object is created with the New() roettand assigned to a
i tk::SmartPointer.

typedef itk:: G adientRecursiveGaussi anl nageFil ter<
I nput I mageType,
Qut put | rageType > FilterType;

FilterType::Pointer filter = FilterType:: New();

We select a value for the parameter of the GradientRecursiveGaussianimageHiltge that
this g is specified in millimeters.

filter->SetSigm(1.5); [/ Sigmain mllimters

Below, we create the reader and writer using the New() metimablassigning the result to a
SmartPointer.

Reader Type: : Poi nter reader
WiterType:: Pointer witer

Reader Type: : New() ;
WiterType:: New();

The name of the file to be read or written is passed with theigét&me() method.

reader->Set Fi | eNanme(inputFilename);
writer->SetFileName(outputFilename);

Below we connect the reader, filter and writer to form the gateessing pipeline.

filter->Set!|nput(reader->CetQutput());
witer->Setlnput(filter->CGetQutput());

Finally we execute the pipeline by invoking Update() on thétev. The call is placed in a
try/ cat ch block in case exceptions are thrown.

try
{
writer->Update();
}
catch(itk::ExceptionChject & err)
{
std::cerr << "ExceptionChject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAI LURE;

}

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

7.8. Reading and Writing Vector Images 281

7.8.3 Reading Covariant Images

Let's now take the image that we just created and read it inédheer program.

The source code for this section can be found in the file
Exanpl es/ |1 O Covari ant Vect or | nageRead. cxx.

This example illustrates how to read an image whose pix@ ig@ovar i ant Vect or . For prac-
tical purposes this example is applicable to images of pgiyme i t k:: Vector, itk:: Point
anditk::FixedArray. These pixel types are similar in that they are all arraysxeffisize in
which the components have the same representation type.

In this example we are reading an gradient image from a fil@temrin the previous example)
and computing its magnitude using thek: : G adi ent ToMagni t udel mageFi | t er . Note that
this filter is different from thei t k: : G- adi ent Magni t udel nageFi | t er which actually takes
a scalar image as input and compute the magnitude of itsegradiThe GradientToMagni-
tudelmageFilter class takes an image of vector pixel typems and computes pixel-wise the
magnitude of each vector.

Let’s start by including the relevant header files.

#include "itklmageFi| eReader. h"

#include "itklmgeFileWiter.h"

#include "itkG adi ent ToMagni t udel mageFi | ter. h"
#include "itkRescal el ntensitylmageFilter.h"

We read an image of tk: : Covari ant Vect or pixels and compute pixel magnitude to pro-
duce an image where each pixel is of typsi gned short. The components of the Covari-
antVector are selected to Ihbeoat here. Notice that a renormalization is required in order to
map the dynamic range of the magnitude values into the rahfeemutput pixel type. The
itk::Rescal el ntensityl nageFilter is used to achieve this.

typedef float Conponent Type;
const unsigned int Di nension = 2;

typedef itk::CovariantVector< Conponent Type,

Di nension > | nput Pi xel Type;
typedef float Magni t udePi xel Type;
typedef unsigned short Qut put Pi xel Type;
typedef itk::lmage< |nputPixel Type, Di nension > I nput | mageType;
typedef itk::Image< MagnitudePi xel Type, Dinension > Magni t udel mageType;
typedef itk::Image< QutputPixel Type, Di nension > Qut put | nageType;

The itk:: I mageFil eReader and itk::lmgeFi|leWiter are instantiated using the image
types.

http://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.itk.org/Doxygen/html/classitk_1_1Point.html
http://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html
http://www.itk.org/Doxygen/html/classitk_1_1GradientToMagnitudeImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1GradientMagnitudeImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html
http://www.itk.org/Doxygen/html/classitk_1_1RescaleIntensityImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html

282 Chapter 7. Reading and Writing Images

typedef itk::ImageFileReader< InputlmgeType > ReaderType;
typedef itk::ImageFileWiter< QutputlnmageType > WiterType;

The GradientToMagnitudelmagerFilter is instantiated gisie input and output image types. A
filter object is created with the New() method and assigneditok: : Smar t Poi nt er .

typedef itk:: G adient ToMagnit udel mageFilter<
I nput | mageType,
Magni t udel mageType > FilterType;

FilterType::Pointer filter = FilterType:: New();
The RescalelntensitylmageFilter class is instantiatedl ne

typedef itk::RescalelntensitylmgeFilter<
Magni t udel mageType,
Qut put | nageType > Rescal eFi | t er Type;

Rescal eFi | ter Type:: Pointer rescaler = Rescal eFilterType:: New();

In the following the minimum and maximum values for the outipuage are specified. Note the
use ofthei t k: : Nunmeri cTrai t s class which allows to define a number of type-related cohstan
in a generic way. The use of traits is a fundamental charatiteof generic programmingp| 1].

rescal er->Set Qut put M ni mun{ i tk::NumericTraits< QutputPixel Type > :nmin());
rescal er->Set Qut put Maxi mun(i tk::NumericTraits< QutputPixel Type > :nmax());

Below, we create the reader and writer using the New() medindidassign the result to a Smart-
Pointer.

Reader Type: : Poi nter reader
WiterType:: Pointer witer

Reader Type: : New() ;
WiterType:: New();

The name of the file to be read or written is passed with theilgét&me() method.

reader->Set Fi | eNane(inputFilename);
writer->SetFileName(outputFilenanme);

Below we connect the reader, filter and writer to form the gateessing pipeline.

filter->Setlnput(reader->GetCQutput());
rescal er->SetInput(filter->GetQutput());
writer->Set!|nput(rescaler->GetCQutput());

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
http://www.itk.org/Doxygen/html/classitk_1_1NumericTraits.html

7.9. Reading and Writing Complex Images 283

Finally we execute the pipeline by invoking Update() on thdéter. The call is placed in a
try/ cat ch block in case exceptions are thrown.

try
{
writer->Update();

}
catch(itk::ExceptionCbject & err)

{

std::cerr << "ExceptionChject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAI LURE;

}

7.9 Reading and Writing Complex Images

The source code for this section can be found in the file
Exanpl es/ | O Conpl ex| mageReadW i t e. cxx.

This example illustrates how to read and write an image oélpiypest d: : conpl ex. The
complex type is defined as an integral part of the C++ languglge characteristics of the type
are specified in the C++ standard document in Chapter 26 "Mamkibrary”, page 565, in
particular in section 26.2].

We start by including the headers of the complex class, tlegénand the reader and writer
classes.

#incl ude <conpl ex>

#include "itklmge.h"

#include "itklmageFi| eReader. h"
#include "itklmgeFileWiter.h"

The image dimension and pixel type must be declared. In #se we use th&t d: : conpl ex<>
as the pixel type. Using the dimension and pixel type we prdde instantiate the image type.

const unsigned int Dimension = 2;

typedef std::conplex< float > Pi xel Type;
typedef itk::Image< Pixel Type, Dimension > |nageType;

The image file reader and writer types are instantiated ubimgnage type. We can then create
objects for both of them.

typedef itk::ImageFil eReader< | nmageType > Reader Type;

284 Chapter 7. Reading and Writing Images

typedef itk::ImageFileWiter< InmageType > WiterType;

Reader Type: : Poi nter reader = Reader Type:: New();
WiterType:: Pointer witer = WiterType:: New();

Filenames should be provided for both the reader and themwtit this particular example we
take those filenames from the command line arguments.

reader->Set Fil eNane(argv[1]);
writer->SetFileName(argv[2]);

Here we simply connect the output of the reader as input tavifiter. This simple program
could be used for converting complex images from one file&drim another.

writer->Set!|nput(reader->CetQutput());

The execution of this short pipeline is triggered by invakthe Update() method of the writer.
This invocation must be placed inside a try/catch blockesiteexecution may result in excep-
tions being thrown.

try
{
writer->Update();

}
catch(itk::ExceptionCbject & err)

{

std::cerr << "ExceptionCbject caught !" << std::endl;
std::cerr << err << std::endl;

return EXI T_FAI LURE,

}

For a more interesting use of this code, you may want to addka ifil between the reader and
the writer and perform any complex image to complex imageatjmn. A practical application
of this code is presented in secti6ériOin the context of Fourier analysis.

7.10 Extracting Components from Vector Images

The source code for this section can be found in the file
Exanpl es/ |1 O Covari ant Vect or | nageExt r act Conponent . cxx.

This example illustrates how to read an image whose pixa ty@ovari ant Vect or, extract
one of its components to form a scalar image and finally saserttage into a file.

7.10. Extracting Components from Vector Images 285

Theitk::VectorlndexSel ectionCast|mageFilter isused to extracta scalar from the vec-
tor image. It is also possible to cast the component type wiséry this filter. It is the user’s
responsibility to make sure that the cast will not resultrig anformation loss.

Let's start by including the relevant header files.

#include "itklmageFi| eReader. h"

#include "itklmageFileWiter.h"

#include "itkVectorlndexSel ectionCast|mageFilter.h"
#include "itkRescal el ntensitylmgeFilter.h"

We read an image ofi tk:: Covari ant Vect or pixels and extract on of its components to
generate a scalar image of a consistent pixel type. Thengseoale the intensities of this scalar
image and write it as a image ofisi gned short pixels.

typedef float Conponent Type;
const unsi gned int Di nension = 2;

typedef itk::CovariantVector< Conponent Type,

Di nension > | nput Pi xel Type;
typedef unsigned short Qut put Pi xel Type;
typedef itk::lmage< |nputPixel Type, Di nension > I nput | mageType;
typedef itk::Imge< Conponent Type, Di nension > Conponent | mageType;
typedef itk::lmage< QutputPixel Type, Di nension > Qut put | mageType;

The itk:: I mageFil eReader and itk::lmgeFi|leWiter are instantiated using the image
types.

typedef itk::ImageFileReader< InputlmgeType > ReaderType;
typedef itk::lmageFileWiter< QutputlmgeType > WiterType;

The VectorindexSelectionCastimageFilter is instandiaising the input and output image
types. Afilter object is created with the New() method andgaesd to ai t k; : Smart Poi nter .

typedef itk::VectorlndexSel ectionCast!|mageFilter<
I nput | mageType,
Conponent | mageType > FilterType;

Fi |l terType: : Pointer conponentExtractor = FilterType:: New();

The VectorindexSelectionCastimagekFilter class requrmspecify which of the vector com-
ponents is to be extracted from the vector image. This is datiethe Setindex() method. In
this example we obtain this value from the command line agums

http://www.itk.org/Doxygen/html/classitk_1_1VectorIndexSelectionCastImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

286 Chapter 7. Reading and Writing Images

conponent Extract or - >Set | ndex(i ndexCf Conponent ToExtract);
The i tk::Rescal el ntensityl nageFi | ter filter is instantiated here.
typedef itk::RescalelntensitylmgeFilter<
Corponent | mageType,
Qut put | rageType > Rescal eFi | t er Type;

Rescal eFi | ter Type:: Pointer rescaler = Rescal eFilterType:: New);

The minimum and maximum values for the outputimage are fipddn the following. Note the
use ofthei t k: : Nunmeri cTrai t s class which allows to define a number of type-related cohstan
in a generic way. The use of traits is a fundamental chariatiteof generic programmingj 1].

rescal er->Set Qut put M ni mun(itk::NunmericTraits< CQutputPixel Type > :min());
rescal er->Set Qut put Maxi mun(itk::NumericTraits< CQutputPixel Type >::max());

Below, we create the reader and writer using the New() medinoidassign the result to a Smart-
Pointer.

Reader Type: : Poi nter reader
WiterType::Pointer witer

Reader Type: : New() ;
WiterType:: New();

The name of the file to be read or written is passed with theilgét&me() method.

reader->Set Fi | eNane(inputFilename);
writer->SetFileName(outputFilename);

Below we connect the reader, filter and writer to form the gateessing pipeline.

conmponent Extract or->Set | nput (reader->Get Qutput ());
rescal er->Set I nput (conmponent Extractor->Get Qut put ());
writer->Set!|nput(rescaler->GetQutput());

Finally we execute the pipeline by invoking Update() on théev. The call is placed in a
try/ cat ch block in case exceptions are thrown.

try
{
writer->Update();
}
catch(itk::ExceptionChject & err)
{
std::cerr << "ExceptionChject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAI LURE;

}

http://www.itk.org/Doxygen/html/classitk_1_1RescaleIntensityImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1NumericTraits.html

7.11. Reading and Writing Image Series 287

7.11 Reading and Writing Image Series

It is still quite common to store 3D medical images in setsleéfeach one containing a single
slice of a volume dataset. Those 2D files can be read as indiv@D images, or can be
grouped together in order to reconstruct a 3D dataset. Thme gaactice can be extended
to higher dimensions, for example, for managing 4D datasgtssing sets of files each one
containing a 3D image. This practice is common in the domagaaiac imaging, perfusion,
functional MRI and PET. This section illustrates the fuantilities available in ITK for dealing
with reading and writing series of images.

7.11.1 Reading Image Series

The source code for this section can be found in the file
Exanpl es/ 1 O | nageSeri esReadW i t e. CxX.

This example illustrates how to read a series of 2D slicas frmlependent files in order to com-
pose avolume. The class k: : | nageSer i esReader is used for this purpose. This class works
in combination with a generator of filenames that will pravallist of files to be read. In this
particular example we use thiet k: : Nuneri cSeri esFi | eNames class as filename generator.
This generator usespi ntf style of string format with a%d” field that will be successively
replaced by a number specified by the user. Here we will usenaatdike “fi | e%93d. png”

for reading PNG files named file001.png, file002.png, filepAd... and so on.

This requires the following headers as shown.

#include "itklmge.h"

#include "itklmageSeriesReader. h"
#include "itklmageFileWiter.h"
#include "itkNunericSeriesFileNanes. h"
#include "itkPNG magel O h"

We start by defining th&i xel Type andl mageType.

typedef unsigned char Pi xel Type;
const unsigned int Dinmension = 3;

typedef itk::Image< Pixel Type, Dinmension > |nageType;
The image type is used as a template parameter to instatiéateader and writer.

typedef itk::ImageSeriesReader< |mageType > Reader Type;
typedef itk::lmageFileWiter< |mageType > WiterType;

Reader Type: : Poi nter reader = Reader Type:: New();
WiterType:: Pointer witer = WiterType:: New();

http://www.itk.org/Doxygen/html/classitk_1_1ImageSeriesReader.html
http://www.itk.org/Doxygen/html/classitk_1_1NumericSeriesFileNames.html

288 Chapter 7. Reading and Writing Images

Then, we declare the filenames generator type and creatastaace of it.

typedef itk::NunericSeriesFileNanes NaneGener at or Type;

NaneGener at or Type: : Poi nter nameGenerator = NameGener at or Type: : New() ;

The filenames generator requires us to provide a patterxofaethe filenames, and numbers
for the initial value, last value and increment to be usedygnerating the names of the files.

naneCener at or - >Set Seri esFor mat ("vwe%3d. png");

naneCenerat or->Set Start | ndex(first);
naneCener at or - >Set Endl ndex(last);
nameCener at or - >Set | ncrement I ndex(1);

The ImagelO object that actually performs the read proces®mw connected to the Image-
SeriesReader. This is the safest way of making sure that @endmagelO object that is
appropriate for the type of files that we want to read.

reader->Set | magel O itk::PNG magel O : New());

The filenames of the input files must be provided to the reAtllile the writer is instructed to
write the same volume dataset in a single file.

reader - >Set Fi | eNames(nameGener at or - >Get Fi | eNanmes());

writer->SetFileName(outputFilenanme);
We connect the output of the reader to the input of the writer.
writer->Setlnput(reader->GetCQutput());

Finally, execution of the pipeline can be triggered by inngithe Update() method in the writer.
This call must be placed in a try/catch block since excegtiom potentially be thrown in the
process of reading or writing the images.

try
{
writer->Update();
}
catch(itk::ExceptionChject & err)
{
std::cerr << "ExceptionChject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAI LURE;

}

7.11. Reading and Writing Image Series 289

7.11.2 Writing Image Series

The source code for this section can be found in the file
Exanpl es/ 1 O | mageReadl mageSeri esWite. cxx.

This example illustrates how to save an image using thé&: : | nageSeri esWiter. This
class enables the saving of a 3D volume as a set of files camgaine 2D slice per file.

The type of the input image is declared here and it is useddolading the type of the reader.
This will be a conventional 3D image reader.

typedef itk::Image< unsigned char, 3 > | mgeType;
typedef itk::lmageFil eReader< |nmageType > Reader Type;

The reader object is constructed using fie) operator and assigning the result to a
Smart Poi nter. The filename of the 3D volume to be read is taken from the comdntiae
arguments and passed to the reader usingahEi | eNane() method.

Reader Type: : Poi nter reader = Reader Type:: New();
reader->Set Fil eNane(argv[1]);

The type of the series writer must be instantiated taking atcount that the input file is a 3D
volume and the output files are 2D images. Additionally, thgat of the reader is connected
as input to the writer.

typedef itk::Image< unsigned char, 2 > | mge2DType;
typedef itk::ImageSeriesWiter< |nmageType, |mage2DType > WiterType;
WiterType:: Pointer witer = WiterType:: New();

writer->Setlnput(reader->GetQutput());

The writer requires a list of filenames to be generated. T$ti€an be produced with the help
of the i tk:: NumericSeri esFi | eNanes class.

typedef itk::NunmericSeriesFileNanes NaneGener at or Type;

NaneGener at or Type: : Poi nter nameGenerator = NameGener at or Type: : New() ;

The Nurreri cSeri esFi | eNanes class requires an input string in order to have a template for
generating the filenames of all the output slices. Here wepos® this string using a prefix
taken from the command line arguments and adding the extefmi PNG files.

http://www.itk.org/Doxygen/html/classitk_1_1ImageSeriesWriter.html
http://www.itk.org/Doxygen/html/classitk_1_1NumericSeriesFileNames.html

290 Chapter 7. Reading and Writing Images

std::string format = argv[2];
format += "%93d.";
format += argv[3]; // filename extension

naneCener at or - >Set Seri esFormat (format.c_str());

The input string is going to be used for generating filenamesditing the values of the first
and last slice. This can be done by collecting informatiamfrthe input image. Note that
before attempting to take any image information from thelegzts execution must be triggered
with the invocation of theéJpdat e() method, and since this invocation can potentially throw
exceptions, it must be putinside ay/ cat ch block.

try
{
reader - >Updat e() ;
}

catch(itk::ExceptionChject & excp)
{
std::cerr << "Exception thrown while reading the inmage" << std::endl;
std::cerr << excp << std::endl;

}

Now that the image has been read we can query its largesbpmssijion and recover informa-
tion about the number of pixels along every dimension.

| mgeType: : Const Poi nter inputlmage
| mgeType: : Regi onType region

| mgeType: : | ndexType start

| mgeType: : Si zeType si ze

reader - >Get Qut put () ;

i nput | mage- >CGet Lar gest Possi bl eRegi on() ;
region. CGet I ndex();

region. Get Si ze();

With this information we can find the number that will idegtihe first and last slices of the
3D data set. This numerical values are then passed to tharfies generator object that will
compose the names of the files where the slices are going tottegls

const unsigned int firstSlice
const unsigned int lastSlice

start[2];
start[2] + size[2] - 1;

nameCenerat or- >Set StartIndex(firstSlice);
naneCener at or - >Set Endl ndex(lastSlice);
nameCener at or - >Set | ncrement I ndex(1);

The list of filenames is taken from the names generator asg#ssed to the series writer.

writer->SetFil eNanes(nameGenerator->Cet Fi | eNanes());

7.11. Reading and Writing Image Series 291

Finally we trigger the execution of the pipeline with the dpel) method on the writer. At this
point the slices of the image will be saved in individual fimntaining a single slice per file.
The filenames used for these slices are those produced byethanfies generator.

try
{
writer->Update();

}
catch(itk::ExceptionCbject & excp)

{

std::cerr << "Exception thrown while reading the imge" << std::endl;
std::cerr << excp << std::endl;

}

Note that by saving data into isolated slices we are losifgrination that may be significant
for medical applications, such as the interslice spacingillimeters.

7.11.3 Reading and Writing Series of RGB Images

The source code for this section can be found in the file
Exanpl es/ | O RGBI mageSeri esReadW it e. cxx.

RGB images are commonly used for representing data acduimactryogenic sections, optical
microscopy and endoscopy. This example illustrates howad RGB color images from a set
of files containing individual 2D slices in order to composéacolor dataset. Then save it into
a single 3D file, and finally save it again as a set of 2D slicék ather names.

This requires the following headers as shown.

#include "itkRGBPi xel . h"

#include "itklmge.h"

#include "itklmageFileWiter.h"
#include "itklmageSeriesReader. h"
#include "itklmageSeri esWiter.h"
#include "itkNunericSeriesFileNanes. h"
#include "itkPNG magel O h"

The itk:: RGBPi xel class is templated over the type used to represent each dhe Red,
Green and Blue components. A typical instantiation of theBR@age class might be as fol-
lows.

typedef itk::RGBPi xel < unsigned char > Pi xel Type;
const unsigned int Dimension = 3;

typedef itk::Image< Pixel Type, Dinension > | mgeType;

http://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html

292 Chapter 7. Reading and Writing Images

The image type is used as a template parameter to instathtiederies reader and the volumetric
writer.

typedef itk::ImageSeriesReader< | nmageType > SeriesReader Type;
typedef itk::ImageFileWiter< |nmageType > WiterType;

Seri esReader Type: : Poi nter seri esReader
Wi terType:: Pointer writer

Seri esReader Type: : New() ;
WiterType:: New();

We use a NumericSeriesFileNames class in order to gendéefédednames of the slices to be
read. Later on in this example we will reuse this object ireottd generate the filenames of the
slices to be written.

typedef itk::NunericSeriesFileNanes NaneGener at or Type;
NaneGener at or Type: : Poi nter nameCGenerator = NameGener at or Type: : New() ;
naneCenerat or- >Set Start | ndex(first);

nameCener at or - >Set Endl ndex(last);

naneCener at or - >Set | ncrenment I ndex(1);

nameCener at or - >Set Seri esFor mat ("vwe%93d. png");

The ImagelO object that actually performs the read proces®w connected to the Image-
SeriesReader.

seri esReader - >Set | magel O itk::PNG nagel O : New());

The filenames of the input slices are taken from the namesg@nend passed to the series
reader.

seriesReader->Set Fi | eNanes(nameCenerator->Cet Fi | eNanes());

The name of the volumetric output image is passed to the imager, and we connect the
output of the series reader to the input of the volumetritesri

writer->SetFileName(outputFilenanme);

writer->Set!|nput(seriesReader->CetQutput());

Finally, execution of the pipeline can be triggered by inngkthe Update() method in the
volumetric writer. This, of course, is done from inside ddatch block.

7.11. Reading and Writing Image Series 293

try
{
writer->Update();

}
catch(itk::ExceptionChject & excp)

{
std::cerr << "Error reading the series " << std::endl;
std::cerr << excp << std::endl;

}

We now proceed to save the same volumetric dataset as a datest sThis is done only to
illustrate the process for saving a volume as a series of @dbidual datasets. The type of the
series writer must be instantiated taking into accounttth@input file is a 3D volume and the

output files are 2D images. Additionally, the output of theesereader is connected as input to
the series writer.

typedef itk::Image< Pixel Type, 2 > | mge2DType;
typedef itk::ImageSeriesWiter< |mageType, |nage2DType > SeriesWiterType;
SeriesWiterType::Pointer seriesWiter = SeriesWiterType:: New();

seriesWiter->Set|nput(seriesReader->CGetQutput());

We now reuse the filenames generator in order to producesheflfilenames for the output
series. In this case we just need to modify the format of teadimes generator. Then, we pass
the list of output filenames to the series writer.

nameCener at or - >Set Seri esFor mat ("out put 993d. png");

seriesWiter->Set Fi |l eNanes(nameCenerat or->Cet Fi | eNames());

Finally we trigger the execution of the series writer fromside a try/catch block.

try
{
seriesWiter->Update();

}
catch(itk::ExceptionChject & excp)

{
std::cerr << "Error reading the series " << std::endl;
std::cerr << excp << std::endl;

}

You may have noticed that apart from the declaration ofRiesl Type there is nothing in
this code that is specific for RGB images. All the actions nexflito support color images are
implemented internally in theét k: : | magel O objects.

http://www.itk.org/Doxygen/html/classitk_1_1ImageIO.html

294 Chapter 7. Reading and Writing Images

7.12 Reading and Writing DICOM Images

7.12.1 Foreword

With the introduction of computed tomography (CT) followgother digital diagnostic imag-
ing modalities such as MRI in the 1970’s, and the increassegaf computers in clinical appli-
cations, the American College of Radiology (ACR)Nd the National Electrical Manufacturers
Association (NEMAY recognized the need for a standard method for transfemiagés as
well as associated information between devices manufedtuom various vendors.

ACR and NEMA formed a joint committee to develop a standardigital Imaging and Com-
munications in Medicine (DICOM). This standard was develbjn liaison with other Stan-
dardization Organizations such as CEN TC251, JIRA inclgditEE, HL7 and ANSI USA as
reviewers.

DICOM is a comprehensive set of standards for handlingirgi@nd transmitting information
in medical imaging. The DICOM standard was developed basgt@previous NEMA spec-
ification. The standard specifies a file format definition a#i a&a network communication
protocol. DICOM was developed to enable integration of seas, servers, workstations and
network hardware from multiple vendors into an image arcighand communication system.

DICOM files consist of a header and a body of image data. Theldreaontains
standardized as well as free-form fields. The set of stamdeddfields is called the
public DICOM dictionary, an instance of this dictionary iwadable in ITK in the

file I nsight/Uilities/gdenf Di ct/di comV3. dic. The list of free-form fields is also called
theshadow dictionary

A single DICOM file can contain multiples frames, allowingstge of volumes or animations.
Image data can be compressed using a large variety of sttmdacluding JPEG (both lossy
and lossless), LZW (Lempel Ziv Welch), and RLE (Run-lengthading).

The DICOM Standard is an evolving standard and it is maietin accordance with the Pro-
cedures of the DICOM Standards Committee. Proposals foareséments are forthcoming
from the DICOM Committee member organizations based ontifipm users of the Standard.
These proposals are considered for inclusion in futuréceditof the Standard. A requirement
in updating the Standard is to maintain effective complitijbivith previous editions.

For a more detailed description of the DICOM standard 66 [

The following sections illustrate how to use the functiagties that ITK provides for reading and
writing DICOM files. This is extremely important in the domaif medical imaging since most
of the images that are acquired a clinical setting are stanebtransported using the DICOM
standard.

DICOM functionalities in ITK are provided by the GDCM librar This open source library

Shttp: // www. acr. or g
“http: // ww. nema. org

http://www.acr.org
http://www.nema.org

7.12. Reading and Writing DICOM Images 295

was developed by the CREATIS Teanat INSA-Lyon [26]. Although originally this library
was distributed under a LGPL Licerfsghe CREATIS Team was lucid enough to understand
the limitations of that license and agreed to adopt the mpem @SD-like Licenséthat is used

by ITK. This change in their licensing made possible to distie GDCM along with ITK.

GDCM is still being maintained and improved at the origin®EATIS site and the version
distributed with ITK gets updated with major releases of@&CM library.

7.12.2 Reading and Writing a 2D Image

The source code for this section can be found in the file
Exanpl es/ 1 O Di com mageReadW i t e. cxx.

This example illustrates how to read a single DICOM slicearite it back as another DICOM
slice. In the process an intensity rescaling is also applied

In order to read and write the slice we use here théd: : GDCM magel O class that encapsu-
lates a connection to the underlying GDCM library. In thisywee gain access from ITK to

the DICOM functionalities offered by GDCM. The GDCMImaget®ject is connected as the
ImagelO object to be used by the k: : | mageFi | eWiter.

We should first include the following header files.

#include "itklmageFi| eReader. h"

#include "itklmageFileWiter.h"

#include "itkRescal el ntensitylmgeFilter.h"
#include "itkGDCM magel O h"

Then we declare the pixel type and image dimension, and ese tbr instantiating the image
type to be read.

typedef signed short |nputPixel Type;
const unsigned int InputDinension = 2;

typedef itk::Image< InputPixel Type, |nputDinension > |nputlnageType;

With the image type we can instantiate the type of the readeate one, and set the filename
of the image to be read.

typedef itk::ImageFileReader< |nputlmgeType > Reader Type;

Reader Type: : Poi nter reader = Reader Type:: New();
reader->Set Fil eNane(argv[1]);

Shttp://ww. creatis.insa-lyon.fr
Shttp: // ww. gnu. or g/ copyl eft/ | esser. htm
“http: // waw. opensour ce. or g/ | i censes/ bsd- | i cense. php

http://www.itk.org/Doxygen/html/classitk_1_1GDCMImageIO.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
http://www.creatis.insa-lyon.fr
http://www.gnu.org/copyleft/lesser.html
http://www.opensource.org/licenses/bsd-license.php

296 Chapter 7. Reading and Writing Images

GDCMImagelO is an ImagelO class for reading and writing DM®3 and ACR/NEMA
images. The GDCMImagelO object is constructed here andextiad to the ImageFileReader.

typedef itk:: GDCM magel O | magel OType;
| magel OType: : Poi nter gdcnl magel O = | magel OType: : New() ;

reader - >Set | magel O(gdcnl magel O);

At this point we can trigger the reading process by invokimg typdate() method. Since this

reading process may eventually throw an exception, we glec@vocation inside a try/catch
block.

try
{
reader - >Updat e() ;
}
catch (itk::ExceptionChject & e)
{
std::cerr << "exception in file reader " << std::endl;
std::cerr << e << std::endl;
return EXIT_FAI LURE;
}

We have now the image in memory and can get access to it by ther@etOutput() method of
the reader. In the remaining of this current example, wegarushowing how we can save this
image again in DICOM format in a new file.

First, we must instantiate an ImageFileWriter type. Theacanstruct one, set the filename to
be used for writing and connect the input image to be writ®iven that in this example we
write the image in different ways, and in each case we useferdift writer, we enumerated
here the variable names of the writer objects as well as tyyads.

typedef itk::ImageFileWiter< InputlmgeType > WiterlType;
WiterlType::Pointer witerl = Witer1Type:: New();

writerl->SetFileNanme(argv[2]);
writerl->Setlnput(reader->GetQutput());

We need to explicitly set the proper image 10 (GDCMImagel®jhe writer filter since the

input DICOM dictionary is being passed along the writinggess. The dictionary contains all
necessary information that a valid DICOM file should contdike Patient Name, Patient ID,
Institution Name, etc.

writerl->Setlmgel O gdcm magel O);

7.12. Reading and Writing DICOM Images 297

The writing process is triggered by invoking the Update(Ximd. Since this execution may
result in exceptions being thrown we place the Update()iesitie a try/catch block.

try
{
writerl->Update();

}
catch (itk::ExceptionChject & e)
{
std::cerr << "exceptionin file witer " << std::endl;
std::cerr << e << std::endl;
return EXIT_FAI LURE;

}

We will now rescale the image into a rescaled image one ubimgeiscale intensity image filter.
For this purpose we use a better suited pixel typesi gned char instead ofsi gned short.
The minimum and maximum values of the output image are dfglitefined in the rescaling
filter.

typedef unsigned char WitePixel Type;
typedef itk::Image< WitePixel Type, 2 > Witel mageType;

typedef itk::RescalelntensitylmgeFilter<
I nput | mageType, Witel mageType > Rescal eFilterType;

Rescal eFi | ter Type:: Pointer rescaler = Rescal eFilterType:: New();

rescal er->SetQutputMnimun{ 0);
rescal er->Set Qut put Maxi mun{ 255);

We create a second writer object that will save the rescated)é into a file. This time not in
DICOM format. This is done only for the sake of verifying thedge against the one that will
be saved in DICOM format later on this example.

typedef itk::ImageFileWiter< WitelmgeType > Witer2Type;
Witer2Type::Pointer witer2 = Witer2Type:: New();
writer2->SetFileName(argv[3]);

rescal er->Set I nput (reader->GetQutput());
writer2->Setlnput(rescaler->GetQutput());

The writer can be executed by invoking the Update() methoahfinside a try/catch block.

298 Chapter 7. Reading and Writing Images

We proceed now to save the same rescaled image into a file i@MIformat. For this purpose
we just need to setup et k: : | mageFi | eWiter and pass to it the rescaled image as input.

typedef itk::ImageFileWiter< WitelmgeType > Witer3Type;
Witer3Type::Pointer witer3 = Witer3Type:: New();

writer3->SetFileNane(argv[4]);
writer3->SetInput(rescaler->GetQutput());

We now need to explicitly set the proper image 10 (GDCMIm&yelbut also we must tell
the ImageFileWriter to not use the MetaDataDictionary fiti@input but from the GDCMIm-
agelO since this is the one that contains the DICOM specifarimation

The GDCMImagelO object will automatically detect the pixgbe, in this caseinsi gned
char and it will update the DICOM header information accordingly

writer3->Usel nput Met aDat abi ctionaryOff ();
writer3->Setlmgel O gdcm magel O);

Finally we trigger the execution of the DICOM writer by inviak the Update() method from
inside a try/catch block.

try
{
writer3->Update();
1
catch (itk::ExceptionChject & e)
{
std::cerr << "Exception in file witer " << std::endl;
std::cerr << e << std::endl;
return EXIT_FAI LURE;
1

7.12.3 Reading a 2D DICOM Series and Writing a Volume

The source code for this section can be found in the file
Exanpl es/ 1 O Di conBer i esReadl nageWite2. cxx.

Probably the most common representation of datasets iica&liapplications is the one that
uses sets of DICOM slices in order to compose tridimensionabes. This is the case for
CT, MRI and PET scanners. It is very common therefore for ienaigalysts to have to process
volumetric images that are stored in the form of a set of DICfl#&4 belonging to a common
DICOM series.

http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html

7.12. Reading and Writing DICOM Images 299

The following example illustrates how to use ITK functioitiak in order to read a DICOM
series into a volume and then save this volume in anothedfifadt.

The example begins by including the appropriate headerspatticular we will need the
i tk:: GDCM magel O object in order to have access to the capabilities of the GOibkry
for reading DICOM files, and thét k: : GDCVBer i esFi | eNanes object for generating the lists
of filenames identifying the slices of a common volumetritadat.

#include "itkGDCM magel O h"
#include "itkGDCVBeri esFil eNanes. h"
#include "itklmageSeri esReader. h"
#include "itklmageFileWiter.h"

We define the pixel type and dimension of the image to be readhi$ particular case, the
dimensionality of the image is 3, and we assunségned short pixel type that is commonly
used for X-Rays CT scanners.

typedef signed short Pi xel Type;
const unsigned int Di nension = 3;

typedef itk::Image< Pixel Type, Dinension > | mageType;

We use the image type for instantiating the type of the segader and for constructing one
object of its type.

typedef itk::ImageSeriesReader< |nageType > Reader Type;
Reader Type: : Poi nter reader = Reader Type:: New();

A GDCMImagelO object is created and connected to the reddwes. object is the one that is
aware of the internal intricacies of the DICOM format.

typedef itk::GDCM nmagel O | magel OType;
I magel OType: : Poi nter dicom O = I magel OType: : New();

reader - >Set | magel O dicom O);

Now we face one of the main challenges of the process of rgaDICOM series. That is, to
identify from a given directory the set of filenames that ngltogether to the same volumetric
image. Fortunately for us, GDCM offers functionalities &miving this problem and we just
need to invoke those functionalities through an ITK clagg #nmcapsulates a communication
with GDCM classes. This ITK object is the GDCMSeriesFileNsmConveniently for us, we
only need to pass to this class the name of the directory vithei@lCOM slices are stored. This
is done with theSet Di r ect or y() method. The GDCMSeriesFileNames object will explore the
directory and will generate a sequence of filenames for DICID#4 for one study/series. In

http://www.itk.org/Doxygen/html/classitk_1_1GDCMImageIO.html
http://www.itk.org/Doxygen/html/classitk_1_1GDCMSeriesFileNames.html

300 Chapter 7. Reading and Writing Images

this example, we also call thget UseSeri esDet ai | s(true) function that tells the GDCM-
SereiesFileNames object to use additional DICOM infororato distinguish unique volumes
within the directory. This is useful, for example, if a DICQdMvice assigns the same SeriesID
to a scout scan and its 3D volume; by using additional DICOfdrimation the scout scan will
not be included as part of the 3D volume. Note tBeitUseSeri esDetai | s(true) must be
called prior to callingSet Di rect ory() .

typedef itk::GDCMBeriesFil eNames NanmesGener at or Type;
NanesCener at or Type: : Poi nter nanmeGenerator = NanesCenerat or Type: : New() ;

nameCener at or - >Set UseSeri esDetai | s(true);

nameCenerator->SetDirectory(argv[1]);

The GDCMSeriesFileNames object first identifies the list ®EOM series that are present in

the given directory. We receive that list in a reference twatainer of strings and then we

can do things like printing out all the series identifierst e generator had found. Since the
process of finding the series identifiers can potentiallpwhexceptions, it is wise to put this

code inside a try/catch block.

typedef std::vector< std::string > Seri esl dCont ai ner;;
const SeriesldContainer & seriesU D = nameGenerat or->Get SeriesU Ds();

SeriesldContainer::const_iterator seriesltr = seriesU D. begin();
SeriesldContainer::const_iterator seriesEnd = seriesUD. end();
while(seriesltr != serieskEnd)

{
std::cout << seriesltr->c_str() << std::endl;
seriesltr++;

}

Given that it is common to find multiple DICOM series in the sadirectory, we must tell the
GDCM classes what specific series do we want to read. In thisiple we do this by checking
first if the user has provided a series identifier in the conurlare arguments. If no series
identifier has been passed, then we simply use the first detiesl during the exploration of
the directory.

std::string seriesldentifier;

if(argc >3) // If no optional series identifier

{

seriesldentifier = argv[3];

}

el se

7.12. Reading and Writing DICOM Images 301

{

seriesldentifier = seriesU D begin()->c_str();

}

We pass the series identifier to the name generator and asl foe filenames associated to
that series. This list is returned in a container of stringghie Get Fi | eNanes() method.

typedef std::vector< std::string > FileNamesContai ner;
Fi | eNanesCont ai ner fil eNanes;

fileNanes = naneGenerator->Cet Fi |l eNanes(seriesldentifier);

The list of filenames can now be passed to thek::|mageSeri esReader using the
Set Fi | eNanes() method.

reader - >Set Fi | eNanmes(fileNanmes);

Finally we can trigger the reading process by invokingipeat e() method in the reader. This
call as usual is placed insidd ay/ cat ch block.

try
{
reader - >Updat e() ;

catch (itk::ExceptionCbject &ex)
{

std::cout << ex << std::endl;
return EXI T_FAI LURE;

}

At this point, we have a volumetric image in memory that we eaness by invoking the
Cet Qut put () method of the reader.

We proceed now to save the volumetric image in another filespasified by the user in the
command line arguments of this program. Thanks to the In@fgdtory mechanism, only the
filename extension is needed to identify the file format is tase.

typedef itk::ImageFileWiter< InageType > WiterType;
WiterType:: Pointer witer = WiterType:: New);

writer->SetFileName(argv[2]);

writer->Setlnput(reader->GetQutput());

The process of writing the image is initiated by invoking tpdat e() method of the writer.

http://www.itk.org/Doxygen/html/classitk_1_1ImageSeriesReader.html

302 Chapter 7. Reading and Writing Images

writer->Update();

Note that in addition to writing the volumetric image to a file could have used it as the input
for any 3D processing pipeline. Keep in mind that DICOM isgiyra file format and a network
protocol. Once the image data has been loaded into membehéves as any other volumetric
dataset that you could have loaded from any other file format.

7.12.4 Reading a 2D DICOM Series and Writing a 2D DICOM Series

The source code for this section can be found in the file
Exanpl es/ 1 O Di conBer i esReadSeri esWite. cxx.

This example illustrates how to read a DICOM series into anva and then save this volume
into another DICOM series using the exact same header irftiom It makes use of the GDCM
library.

The main purpose of this example is to show how to properlpagate the DICOM specific
information along the pipeline to be able to correctly whitek the image using the information
from the input DICOM files.

Please note that writing DICOM files is quite a delicate openasince we are dealing with a
significant amount of patient specific data. It is your resiloility to verify that the DICOM
headers generated from this code are not introducing riskke diagnosis or treatment of
patients. Itis as well your responsibility to make sure thatprivacy of the patient is respected
when you process data sets that contain personal informafidvacy issues are regulated in
the United States by the HIPAA norfhsYou would probably find similar legislation in every
country.

When saving datasets in DICOM format it must be made cleattven¢his datasets have been
processed in any way, and if so, you should inform the rentgief the data about the purpose
and potential consequences of the processing. This is fedal if the datasets are intended
to be used for diagnosis, treatment or follow-up of patieRts example, the simple reduction
of a dataset form a 16-bits/pixel to a 8-bits/pixel repréaton may make impossible to detect
certain pathologies and as a result will expose the patiethig risk or remaining untreated for
a long period of time while her/his pathology progresses.

You are strongly encouraged to get familiar with the repontr@dical errors “To Erris Human”,
produced by the U.S. Institute of Medicinéq. Raising awareness about the high frequency
of medical errors is a first step in reducing their occurrence

After all these warnings, let us now go back to the code anéageitiar with the use of ITK and
GDCM for writing DICOM Series. The first step that we must tékeo include the header files
of the relevant classes. We include the GDCM image 10 classGGDCM filenames generator,
the series reader and writer.

8The Health Insurance Portability and Accountability Acti®®6.ht t p: / / wwv. cns. hhs. gov/ hi paa/

http://www.cms.hhs.gov/hipaa/

7.12. Reading and Writing DICOM Images 303

#include "itkGDCM magel O h"
#include "itkGCVBeri esFil eNanes. h"
#include "itklmageSeriesReader. h"
#include "itklmageSeri esWiter.h"

As a second step, we define the image type to be used in thigpdxahtis is done by explicitly
selecting a pixel type and a dimension. Using the image tygpeam define the type of the series
reader.

typedef signed short Pi xel Type;
const unsi gned int Di nension = 3;

typedef itk::Image< Pixel Type, Dinension > | mgeType;
typedef itk::ImageSeriesReader< |nageType > Reader Type;

We also declare types for thiet k: ; GOCM magel O object that will actually read and write the
DICOM images, and the t k: : GDCMVBer i esFi | eNames object that will generate and order all
the filenames for the slices composing the volume datasete @e have the types, we proceed
to create instances of both objects.

typedef itk:: GDCM magel O | magel OType;
typedef itk::GDCVBeriesFil eNanes NanesCener at or Type;

| magel OType: : Poi nter gdem O = | nmagel OType: : New() ;
NanesCener at or Type: : Poi nter nanmesGenerator = NanmesGenerat or Type: : New() ;

Just as the previous example, we get the DICOM filenames fnenditectory. Note however,
that in this case we use tiget | nput Di rect ory() method instead of th8et Di rect ory().
This is done because in the present case we will use the filemamnerator for produc-
ing both the filenames for reading and the filenames for vgitinThen, we invoke the
Cet I nput Fi | eNames() method in order to get the list of filenames to read.

namesCGener at or->Set I nput Di rectory(argv[1]);

const Reader Type:: Fi | eNanmesContai ner & filenanes =
nanesCener at or - >Get | nput Fi | eNames() ;

We construct one instance of the series reader object. SBI®OM image 10 object to be use
with it, and set the list of filenames to read.

Reader Type: : Poi nter reader = Reader Type:: New();

reader - >Set | magel O(gdcm O);
reader - >Set Fi | eNanes(filenanmes);

http://www.itk.org/Doxygen/html/classitk_1_1GDCMImageIO.html
http://www.itk.org/Doxygen/html/classitk_1_1GDCMSeriesFileNames.html

304 Chapter 7. Reading and Writing Images

We can trigger the reading process by calling thdat e() method on the series reader. It is
wise to put this invocation insideta y/ cat ch block since the process may eventually throw
exceptions.

reader - >Updat e();

At this point we would have the volumetric data loaded in mgnand we can get access to it
by invoking theGet Qut put () method in the reader.

Now we can prepare the process for writing the dataset., Fstake the name of the output
directory from the command line arguments.

const char * outputDirectory = argv[2];

Second, we make sure the output directory exist, using thmsscmplatform tools:
itksys::SystemTools. In this case we select to create teetdiry if it does not exist yet.

i tksys:: Systeniool s:: MakeDirectory(outputDirectory);

We instantiate explicitly the image type to be used for wgtiand use the image type for
instantiating the type of the series writer.

typedef signed short Qut put Pi xel Type;
const unsigned int Qut put Di mension = 2;

typedef itk::Image< QutputPixel Type, CQutputDi mension > | mage2DType;

typedef itk::ImageSeriesWiter<
| mgeType, |mage2DType > SeriesWiterType;

We construct a series writer and connect to its input thewddtpm the reader. Then we pass
the GDCM image 10 object in order to be able to write the imagd3lCOM format.

SeriesWiterType::Pointer seriesWiter = SeriesWiterType:: New();

seriesWiter->Set|nput(reader->GetQutput());
seriesWiter->Setlmgel O gdecm O);

It is time now to setup the GDCMSeriesFileNames to generete filenames using another
output directory. Then simply pass those newly generatesl fiil the series writer.

nanmesGener at or->Set Qut put Directory(outputDirectory);

seriesWiter->Set Fil eNanmes(namesGenerat or - >Get Qut put Fi | eNanes());

7.12. Reading and Writing DICOM Images 305

The following line of code is extremely important for thisogess to work correctly. The line
is taking the MetaDataDictionary from the input reader aaglging it to the output writer. The
reason why this step is so important is that the MetaData&iiaty contains all the entries of
the input DICOM header.

seriesWiter->Set Met aDat aDi cti onar yArray(
reader - >Get Met aDat aDi ctionaryArray());

Finally we trigger the writing process by invoking thiedat e() method in the series writer.
We place this call inside a try/catch block, in case any etiopps thrown during the writing
process.

try
{
seriesWiter->Update();

}
catch(itk::ExceptionChject & excp)

{

std::cerr << "Exception thrown while witing the series " << std::endl;
std::cerr << excp << std::endl;
return EXI T_FAI LURE,

}

Please keep in mind that you should avoid to generate DICQG fiiat have the appearance
of being produced by a scanner. It should be clear from theettiry or filenames that this data
was the result of the execution of some sort of algorithmsTill help to prevent your dataset
from being used as scanner data by accident.

7.12.5 Printing DICOM Tags From One Slice

The source code for this section can be found in the file
Exanpl es/ 1 O Di com nageReadPr i nt Tags. cxx.

It is often valuable to be able to query the entries from thedee of a DICOM file. This can
be used for checking for consistency, or simply for verifythat we have the correct dataset in
our hands. This example illustrates how to read a DICOM filé @uen print out most of the
DICOM header information. The binary fields of the DICOM herdre skipped.

The headers of the main classes involved in this examplep@afied below. They include the
image file reader, the GDCM image IO object, the Meta dataatiatry and its entry element
the Meta data object.

#include "itklmageFi| eReader. h"
#include "itkGDCM nmagel O h"
#include "itkMetaDataDictionary.h"
#include "itkMetaDatalbj ect. h"

306 Chapter 7. Reading and Writing Images

We instantiate the type to be used for storing the image dnsegad into memory.

typedef signed short Pi xel Type;
const unsigned int Di nension = 2;
typedef itk::Image< Pixel Type, Dinmension > | mgeType;

Using the image type as template parameter we instantiatiyple of the image file reader and
construct one instance of it.

typedef itk::ImageFil eReader< | nageType > Reader Type;

Reader Type: : Poi nter reader = Reader Type:: New();
The GDCM image 10 type is declared and used for constructirggimage 10 object.

typedef itk::GDCM nagel O | magel OType;
I magel OType: : Poi nter dicom O = | magel OType: : New() ;

We pass to the reader the filename of the image to be read andadhe ImagelO object to it
too.

reader->Set Fil eNane(argv[1]);
reader - >Set | magel O dicom O);

The reading process is triggered with a call tolthéat e() method. This call should be placed
inside at ry/ cat ch block because its execution may result in exceptions béirayn.

reader - >Updat e() ;

Now that the image has been read, we obtain the Meta datarteti from the ImagelO object
using theGet Met aDat aDi cti onary() method.

typedef itk::MetaDataDictionary DictionaryType;

const DictionaryType & dictionary = di conl O >Get Met aDat aDi ctionary();

Since we are interested only in the DICOM tags that can beessgd in strings, we declare a
MetaDataObject suitable for managing strings.

typedef itk::MtaDatahject< std::string > MetaDataStringType;

7.12. Reading and Writing DICOM Images 307

We instantiate the iterators that will make possible to whhough all the entries of the Meta-
DataDictionary.

Di ctionaryType:: Constlterator itr
Di ctionaryType:: Constlterator end

dictionary.Begin();
dictionary. End();

For each one of the entries in the dictionary, we check firigs €lement can be converted to a
string, adynani c_cast is used for this purpose.

while(itr !'=end)

{
i tk::MetaDataChj ect Base:: Pointer entry = itr->second;

Met aDat aSt ri ngType: : Pointer entryval ue =
dynani c_cast <Met aDat aStri ngType *>(entry. GetPointer()) ;

For those entries that can be converted, we take their DIC@Y and pass it to the
Cet Label Fronifag() method of the GDCMImagelO class. This method checks the DACO
dictionary and returns the string label associated to th¢hat we are providing in theagkey
variable. If the label is found, it is returnedliabel | d variable. The method itself return false
if the tagkey is not found in the dictionary. For example "08620010” int agkey becomes
"Patient’s Name” inl abel | d.

if(entryvalue)

{

std::string tagkey = itr->first;

std::string |abelld,

bool found = itk::GDCM magel O : Get Label FronfTag(tagkey, labelld);

The actual value of the dictionary entry is obtained as angtriwith the
Cet Met aDat athj ect Val ue() method.

std::string tagval ue = entryval ue->Get Met aDat albj ect Val ue() ;

At this point we can print out an entry by concatenating th€eOM Name or label, the numeric
tag and its actual value.

if(found)
{
std::cout << "(" << tagkey << ") " << |abelld,;
std::cout << " =" << tagvalue.c_str() << std::endl;
}

Finally we just close the loop that will walk through all thécBonary entries.

308 Chapter 7. Reading and Writing Images

+Htr;

}

It is also possible to read a specific tag. In that case thegsof the entry can be used for
querying the MetaDataDictionary.

std::string entryld = "0010] 0010";
Di ctionaryType:: Constlterator tagltr = dictionary.Find(entryld);

If the entry is actually found in the Dictionary, then we caempt to convert it to a string entry
by using adynani c_cast .

if(tagltr !'=-end)

{
Met aDat aStri ngType: : Const Poi nter entryval ue =

dynani c_cast <const Met aDat aStringType *>(
tagltr->second. Get Pointer());

If the dynamic cast succeed, then we can print out the valigbedabel, the tag and the actual
value.

if(entryvalue)

{
std::string tagval ue = entryval ue->Get Met aDat albj ect Val ue();

std::cout << "Patient’s Name (" << entryld << ") "
std::cout << " is: " << tagvalue << std::endl;

}
For a full description of the DICOM dictionary please lookla file.
Insight/Utilities/gdent Dicts/diconV3.dic

7.12.6 Printing DICOM Tags From a Series

The source code for this section can be found in the file
Exanpl es/ |1 O Di conBer i esReadPri nt Tags. cxx.

This example illustrates how to read a DICOM series into ava and then print most of the
DICOM header information. The binary fields are skipped.

The header files for the series reader and the GDCM classesdge |O and name generation
should be included first.

#include "itklmageSeriesReader. h"
#include "itkGDCM magel O h"
#include "itkGDCVBeri esFil eNanes. h"

7.12. Reading and Writing DICOM Images 309

We instantiate then the type to be used for storing the image @ is read into memory.

typedef signed short Pi xel Type;
const unsigned int Di nension = 3;
typedef itk::Image< Pixel Type, Dinension > | mgeType;

We use the image type for instantiating the series readeraypd then we construct one object
of this class.

typedef itk::ImageSeriesReader< |nmageType > Reader Type;

Reader Type: : Poi nter reader = Reader Type:: New();
A GDCMImagelO object is created and assigned to the reader.

typedef itk:: GDCM magel O | magel OType;
I magel OType: : Poi nter dicom O = I magel OType: : New();

reader - >Set | magel O dicom O);

A GDCMSeriesFileNames is declared in order to generate #émees of DICOM slices. We
specify the directory with th&et | nput Di rect ory() method and, in this case, take the direc-
tory name from the command line arguments. You could havaiodd the directory name from
a file dialog in a GUIL.

typedef itk::GDCVBeriesFil eNanes NanesCener at or Type;
NanesCener at or Type: : Poi nter naneGenerator = NanesCenerat or Type: : New() ;

nameCener at or- >Set | nput Di rectory(argv[1]);

The list of files to read is obtained from the name generator itwoking the
Cet I nput Fi | eNames() method and receiving the results in a container of stringke Iist
of filenames is passed to the reader usingS#id-i | eNanes() method.

typedef std::vector<std::string> Fi | eNamesCont ai ner;
Fi | eNanesCont ai ner fileNanes = naneGenerat or->Cet | nput Fi | eNanes();

reader->Set Fi | eNanmes(fileNanmes);

We trigger the reader by invoking thdpdat e() method. This invocation should normally be
done inside ary/ cat ch block given that it may eventually throw exceptions.

310 Chapter 7. Reading and Writing Images

reader - >Updat e() ;

ITK internally queries GDCM and obtain all the DICOM tagsrrdhe file headers. The tag
values are stored in theétk: : Met aDat aDi cti onary that is a general purpose container for
{key,valug pairs. The Meta data dictionary can be recovered from anyéit@ class by
invoking theGet Met aDat aDi cti onary() method.

typedef itk::MetaDataDictionary DictionaryType;

const DictionaryType & dictionary = di conl O >Get Met aDat aDi ctionary();
In this example, we are only interested in the DICOM tagsdhatbe represented as strings. We
declare therefore atk; : Met aDat aChj ect of string type in order to receive those particular
values.

typedef itk::MtaDatahject< std::string > MetaDataStringType;

The Meta data dictionary is organized as a container witbhdtsesponding iterators. We can
therefore visit all its entries by first getting access td#gi n() andEnd() methods.

Di ctionaryType:: Constlterator itr
Di ctionaryType:: Constlterator end

dictionary.Begin();
di ctionary. End();

We are now ready for walking through the list of DICOM tags.r Bas purpose we use the
iterators that we just declared. At every entry we attemptdovert it in to a string entry
by using thedynani c_cast based on RTTI informatich The dictionary is organized like a
st d: : map structure, we should use therefore thest andsecond members of every entry in
order to get access to tH&ey,valug pairs.

while(itr !'=end)
{
i tk::MetaDataChj ect Base:: Pointer entry = itr->second;

Met aDat aSt ri ngType: : Pointer entryval ue =
dynani c_cast <Met aDat aStri ngType *>(entry. GetPointer()) ;

if(entryvalue)

{
std::string tagkey = itr->first;
std::string tagval ue = entryval ue->Get Met aDat albj ect Val ue();
std::cout << tagkey << " =" << tagvalue << std::endl;
}
+Htr;

}

9Run Time Type Information

http://www.itk.org/Doxygen/html/classitk_1_1MetaDataDictionary.html
http://www.itk.org/Doxygen/html/classitk_1_1MetaDataObject.html

7.12. Reading and Writing DICOM Images 311

It is also possible to query for specific entries instead atlieg all of them as we did above.
In this case, the user must provide the tag identifier usiegstandard DICOM encoding. The
identifier is stored in a string and used as key on the dictiona

std::string entryld = "0010] 0010";
Di ctionaryType:: Constlterator tagltr = dictionary.Find(entryld);

if(tagltr == end)
{
std::cerr << "Tag " << entryld;
std::cerr << " not found in the DI COM header" << std::endl;

}

Since the entry may or may not be of string type we must agaradgnani c_cast in order
to attempt to convert it to a string dictionary entry. If trengersion is successful, then we can
print out its content.

Met aDat aSt ri ngType: : Const Poi nter entryval ue =
dynani c_cast <const MetaDataStringType *>(tagltr->second. GetPointer());

if(entryvalue)
{
std::string tagval ue = entryval ue->Get Met aDat albj ect Val ue();
std::cout << "Patient’s Name (" << entryld << ") "
std::cout << " is: " << tagvalue << std::endl;

}

This type of functionality will probably be more useful whprovided through a graphical user
interface. For a full description of the DICOM dictionaryepke look at the file

Insight/Utilities/gdem Dicts/diconV3.dic

7.12.7 Changing a DICOM Header

The source code for this section can be found in the file
Exanpl es/ 1 O Di com nageReadChangeHeader Wi t e. cxx.

This example illustrates how to read a single DICOM slicearite it back with some changed
header information as another DICOM slice. Header Key/®alairs can be specified on the
command line. The keys are defined in the file

Insight/Utilities/gdem Dicts/diconV3.dic

Please note that modifying the content of a DICOM header igrg visky operation. The
Header contains fundamental information about the pa#indttherefore its consistency must

312 Chapter 7. Reading and Writing Images

be protected from any data corruption. Before attemptinmaoalify the DICOM headers of
your files, you must make sure that you have a very good reasotoing so, and that you
can ensure that this information change will not result iovadr quality of health care to be
delivered to the patient.

We must start by including the relevant header files. Herenskide the image reader, image
writer, the image, the Meta data dictionary and its entifiesMeta data objects and the GD-
CMImagelO. The Meta data dictionary is the data containat $kores all the entries from the
DICOM header once the DICOM image file is read into an ITK image

#include "itklmageFi| eReader. h"
#include "itklmgeFileWiter.h"
#include "itklmge.h"

#include "itkMetaDataDictionary.h"
#include "itkMetaDatalhj ect. h"
#include "itkGDCM magel O h"

We declare the image type by selecting a particular pixed gpd image dimension.

typedef signed short InputPixel Type;
const unsigned int D nension = 2;
typedef itk::Image< InputPixel Type, Dinension > |nputlnageType;

We instantiate the reader type by using the image type aslagenparameter. An instance of
the reader is created and the file name to be read is taken fi@oommand line arguments.

typedef itk::|mageFileReader< I|nputlnmageType > Reader Type;
Reader Type: : Poi nter reader = Reader Type:: New();
reader->Set Fil eNane(argv[1]);

The GDCMImagelO object is created in order to provide theises for reading and writing
DICOM files. The newly created image 10 class is connecteleae¢ader.

typedef itk:: GDCM nmagel O | magel OType;
| magel OType: : Poi nter gdcnl magel O = | magel OType: : New() ;
reader - >Set | magel O(gdcnl magel O);

The reading of the image is triggered by invokiggglat e() in the reader.
reader - >Updat e() ;

We take the Meta data dictionary from the image that the mdaald loaded in memory.

7.12. Reading and Writing DICOM Images 313

I nput | mageType: : Poi nter inputlmage = reader->GCetQutput();
typedef itk::MetaDataDictionary DictionaryType;
Di ctionaryType & dictionary = inputlmage->Get MetaDataDictionary();

Now we access the entries in the Meta data dictionary, angddicular key values we assign
a new content to the entry. This is done here by taKikey,valug pairs from the command
line arguments. The relevant method is the Encapsulatdddgdathat takes the dictionary and
for a given key provided bgnt ryl d, replaces the current value with the content ofithieue
variable. This is repeated for every potential pair presetite command line arguments.

for (int i =3; i <argc; i+=2)
{
std::string entryld(argv[i]);
std::string value(argv[i+1]);
i tk::Encapsul at eMet aDat a<std::string>(dictionary, entryld, value);

}

Now that the Dictionary has been updated, we proceed to bavieriage. This output image
will have the modified data associated to its DICOM header.

Using the image type, we instantiate a writer type and cansa writer. A short pipeline be-
tween the reader and the writer is connected. The filenameite i taken from the command
line arguments. The image IO object is connected to the frite

typedef itk::ImageFileWiter< InputlmgeType > WiterlType;
WiterlType::Pointer witerl = Witer1T