next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

                     2              2     2    2 2    2    2 2    2 2     2 
o2 = ideal (g*v*x - j , j*t*u - k, k r - j u, i x  - c o, b k  - j t , a*e g
     ------------------------------------------------------------------------
        2   2   2 2
     - c , l o*s t  - 1)

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             3 3 3 4    3 2 3     2   2 3 4 2 3    3 2   4 4   3 2 3 3 4  
o3 = ideal (c k l v  - e f g m*r*u , c l r s u  - b d f*p v , b j n v w  -
     ------------------------------------------------------------------------
      3 3 3 2    3 4     2 2       4 3
     a e k r s, b f g*h*s u v*w - i n )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.