This function currently just finds the elements whose boundary give the product of every pair of cycles that are chosen as generators. Eventually, all higher Massey operations will also be computed. The maximum degree of a generating cycle is specified in the option GenDegreeLimit, if needed.
This is an example of a Golod ring. It is Golod since it is the Stanley-Reisner ideal of a flag complex whose 1-skeleton is chordal [Jollenbeck-Berglund].
i1 : Q = ZZ/101[x_1..x_6]
o1 = Q
o1 : PolynomialRing
|
i2 : I = ideal (x_3*x_5,x_4*x_5,x_1*x_6,x_3*x_6,x_4*x_6)
o2 = ideal (x x , x x , x x , x x , x x )
3 5 4 5 1 6 3 6 4 6
o2 : Ideal of Q
|
i3 : R = Q/I
o3 = R
o3 : QuotientRing
|
i4 : A = koszulComplexDGA(R)
o4 = {Ring => R }
Underlying algebra => R[T , T , T , T , T , T ]
1 2 3 4 5 6
Differential => {x , x , x , x , x , x }
1 2 3 4 5 6
isHomogeneous => true
o4 : DGAlgebra
|
i5 : isHomologyAlgebraTrivial(A,GenDegreeLimit=>3)
Computing generators in degree 1 : -- used 0.0403012 seconds
Computing generators in degree 2 : -- used 0.0318357 seconds
Computing generators in degree 3 : -- used 0.0320875 seconds
o5 = true
|
i6 : cycleList = getGenerators(A)
Computing generators in degree 1 : -- used 0.00229894 seconds
Computing generators in degree 2 : -- used 0.0201934 seconds
Computing generators in degree 3 : -- used 0.020074 seconds
Computing generators in degree 4 : -- used 0.0100547 seconds
Computing generators in degree 5 : -- used 0.00860552 seconds
Computing generators in degree 6 : -- used 0.00766544 seconds
o6 = {x T , x T , x T , x T , x T , -x T T , -x T T , -x T T , -x T T , -
5 4 5 3 6 4 6 3 6 1 6 1 3 5 3 4 6 3 4 6 1 4
------------------------------------------------------------------------
x T T + x T T , - x T T + x T T , x T T T , x T T T - x T T T }
6 4 5 5 4 6 6 3 5 5 3 6 6 1 3 4 6 3 4 5 5 3 4 6
o6 : List
|
i7 : tmo = findTrivialMasseyOperation(A)
Computing generators in degree 1 : -- used 0.00210543 seconds
Computing generators in degree 2 : -- used 0.0186562 seconds
Computing generators in degree 3 : -- used 0.0243206 seconds
Computing generators in degree 4 : -- used 0.00309834 seconds
Computing generators in degree 5 : -- used 0.00280264 seconds
Computing generators in degree 6 : -- used 0.00279417 seconds
o7 = {{3} | 0 0 0 0 0 0 0 0 0 0 |, {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 -x_6 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 -x_6 | {4} | x_6 0 0 0 0
{3} | 0 0 0 0 0 0 -x_6 0 0 0 | {4} | 0 0 x_6 0 0
{3} | 0 0 0 0 0 0 0 0 -x_6 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 |
{3} | -x_5 0 x_6 -x_6 0 0 0 0 0 0 |
{3} | 0 0 0 0 0 -x_6 0 0 0 0 |
{3} | 0 0 0 0 0 0 0 0 0 0 |
{3} | 0 0 0 0 0 0 0 0 0 0 |
------------------------------------------------------------------------
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 x_6 0 0 0 0 0 0 -x_6 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 x_6 0 0 0 -x_6 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x_6 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x_5 0 x_6 0 -x_5 0 -x_6 0
------------------------------------------------------------------------
0 |, {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |,
0 | {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
0 | {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
0 | {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
0 | {5} | 0 0 0 0 0 0 x_6 0 0 0 0 0 0 -x_6 0 0 0 0 0 0 0 0 0 0 x_6 |
0 | {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
0 |
0 |
x_6 |
0 |
0 |
0 |
0 |
0 |
0 |
------------------------------------------------------------------------
0, 0}
o7 : List
|
i8 : assert(tmo =!= null)
|
Below is an example of a Teter ring (Artinian Gorenstein ring modulo its socle), and the computation in Avramov and Levin’s paper shows that H(A) does not have trivial multiplication, hence no trivial Massey operation can exist.
i9 : Q = ZZ/101[x,y,z]
o9 = Q
o9 : PolynomialRing
|
i10 : I = ideal (x^3,y^3,z^3,x^2*y^2*z^2)
3 3 3 2 2 2
o10 = ideal (x , y , z , x y z )
o10 : Ideal of Q
|
i11 : R = Q/I
o11 = R
o11 : QuotientRing
|
i12 : A = koszulComplexDGA(R)
o12 = {Ring => R }
Underlying algebra => R[T , T , T ]
1 2 3
Differential => {x, y, z}
isHomogeneous => true
o12 : DGAlgebra
|
i13 : isHomologyAlgebraTrivial(A)
Computing generators in degree 1 : -- used 0.0155933 seconds
Computing generators in degree 2 : -- used 0.0321177 seconds
Computing generators in degree 3 : -- used 0.0209244 seconds
o13 = false
|
i14 : cycleList = getGenerators(A)
Computing generators in degree 1 : -- used 0.0023846 seconds
Computing generators in degree 2 : -- used 0.0240283 seconds
Computing generators in degree 3 : -- used 0.0237087 seconds
2 2 2 2 2 2 2 2 2 2 2
o14 = {x T , y T , z T , x*y z T , x*y z T T , x y*z T T , x*y z T T ,
1 2 3 1 1 2 1 2 1 3
-----------------------------------------------------------------------
2 2 2 2 2 2
x*y z T T T , x y*z T T T , x y z*T T T }
1 2 3 1 2 3 1 2 3
o14 : List
|
i15 : assert(findTrivialMasseyOperation(A) === null)
Computing generators in degree 1 : -- used 0.00315372 seconds
Computing generators in degree 2 : -- used 0.0230333 seconds
Computing generators in degree 3 : -- used 0.0224955 seconds
|