Free Pascal :
User’s Guide

User’s Guide for Free Pascal, Version 2.6.2
Document version 2.6
August 2014

Michaél Van Canneyt
Florian Klampfl

Contents

1 Introduction

2

1.1 Aboutthisdocument
1.2 Aboutthe compiler
1.3 Getting more information. L e

Installing the compiler

2.1

2.2

23
24
2.5

Before Installation : Requirements
2.1.1 Hardware requirements v v it e e e
2.1.2 Software requirements
Under DOS o
Under UNIX
Under Windows e
Under OS/2 o o e
UnderMac OS X o
Installing the compiler.
2.2.1 Installing under Windows
2.2.2 Installingunder DOSorOS/2
Mandatory installation steps.
Optional Installation: The coprocessor emulation
2.2.3 Installingunder Linux
Mandatory installation steps.o
Optional configuration steps
Before compiling L
Testing the compiler e

Compiler usage

3.1

File searching e
3.1.1 Commandlinefiles
3.1.2 Unitfiles e
3.1.3 Includefiles
3.1.4 Objectfiles e

10
10
10
10
10
10
11
11
11
11
11
11
11
13
13
13
14
15
15

CONTENTS

3.1.5 Configurationfile 20
3.1.6 Aboutlongfilenames 20
3.2 Compiling a program e 20
33 Compilingaunit 21
3.4 Units, libraries and smartlinking 0oL, 21
3.5 Reducing the size of your programo 21
Compiling problems 23
4.1 Generalproblems e e e e 23
4.2 Problems you may encounter under DOS 23
Compiler configuration 24
5.1 Using the command lineoptions 24
5.1.1 General optionso oL e e 24
5.1.2 Options for getting feedback 25
5.1.3 Options concerning files and directories 26
5.1.4 Options controlling the kind of output. 27
5.1.5 Options concerning the sources (language options) 31
5.2 Using the configurationfile o 33
52.1 #IFDEF 34
522 #IFENDEF 34
523 #ELSE 34
524 #ENDIF 35
525 #DEFINE o 35
526 #UNDEF 35
527 #WRITE 35
528 #INCLUDE 36
529 H#SECTION 36
5.3 Variable substitutioninpaths o Lo 36
The IDE 38
6.1 Firststepswiththe IDE L 38
6.1.1 Startingthe IDE 38
6.1.2 IDEcommandlineoptions 38
6.1.3 ThelIDEscreen e 39
6.2 Navigatinginthe IDE L 40
6.2.1 Usingthekeyboard 40
6.2.2 Usingthemouse i 40
6.2.3 Navigatingindialogs e 41
6.3 WIndows 41
6.3.1 Window basics 41

CONTENTS

6.3.2 Sizing and moving windows Lo 42
6.3.3 Working with multiple windows 43
6.3.4 Dialogwindows 43
6.4 TheMenu e e 43
6.4.1 Accessingthemenu 43
6.4.2 TheFilemenu 44
643 TheEditmenu 45
6.44 TheSearchmenu 46
645 TheRunmenu 46
6.4.6 TheCompilemenu 47
6477 TheDebugmenu 47
6.4.8 TheToolsmenu. 48
6.49 The Options MENU v v vttt et e e e e e 48
6.4.10 The Windowmenu 49
6.4.11 TheHelpmenu 50
6.5 Editingtext 50
6.5.1 Insertmodes 50
6.5.2 Blocks 50
6.5.3 Setting bookmarks oo 51
6.54 Jumpingtoasourceline L. 51
6.5.5 Syntax highlighting o L. 52
6.5.6 Code Completion e 52
6.577 CodeTemplates 53
6.6 Searchingandreplacing 54
6.7 Thesymbol browser. e e e 56
6.8 Running programs e e e e 57
6.9 Debugging programs e e 58
6.9.1 Usingbreakpoints L 58
6.9.2 Usingwatches 60
6.9.3 Thecallstack L 61
6.94 TheGDBwindow 61
6.10 Using Tools e 62
6.10.1 The messageswindow 62
6.10.2 Grep. o i e e 63
6.10.3 The ASCIItable 63
6.10.4 Thecalculator. e 64
6.10.5 Addingnewtools Lo 66
6.10.6 Metaparameters i u e e e e e e e e e e e 66
6.10.7 Building a command line dialogbox 68
6.11 Project management and compileroptions, 70

CONTENTS

6.11.1 Theprimaryfile. 70
6.11.2 The directory dialog 71
6.11.3 The target operating Systemo 71
6.11.4 Compileroptions 72
6.11.5 Linkeroptions e 78
6.11.6 Memory SiZes v v v v e e e e e e e e 79
6.11.7 Debugoptions 79
6.11.8 The switchesmode, 80
6.12 Customizingthe IDE 81
6.12.1 Preferences 81
6.12.2 Thedesktop 82
6.12.3 The Editor 83
6.124 Keyboard & Mouse 85
6.13 Thehelpsystem e e e e e 86
6.13.1 Navigatinginthe helpsystem 86
6.13.2 Working with helpfiles 86
6.13.3 The aboutdialog 88
6.14 Keyboard shortcuts e e 88
Porting and portable code 92
7.1 Free Pascal compilermodes 92
7.2 TurboPascal L 93
7.2.1 Thingsthatwillnotwork 93
7.2.2 Things whichareextra 94
7.2.3 Turbo Pascal compatibilitymode 96
7.24 Anote on long file namesunder DOS 98
7.3 Porting Delphicode 98
7.3.1 Missing language constructso 98
7.3.2 Missing calls / APT incompatibilities 99
7.3.3 Delphi compatibilitymodeo 100
7.3.4 Bestpracticesforporting 100
7.4 Writing portablecode oL 100
Utilities that come with Free Pascal 102
8.1 Demo programs and examples L Lo 102
82 fpcmake 102
8.3 fpdoc - Pascal Unitdocumenter 102
8.4 h2pas - C header to Pascal Unit converter 103
84.1 Options e 103
842 Constructs e 103
8.5 h2paspp - preprocessor forh2pas Lo 105

CONTENTS

10

85.1 Usage o e e 105

8.5.2 Options e e e e e 105
8.6 ppudump programo e e e e 105
8.7 PPUMOVE PrOZIraM v v v v v v v e e e e e e e e e e e e e e 106
8.8 ptop - Pascal source beautifier L oo 107

8.8.1 ptopprogram e e e e e 107

8.8.2 The ptop configurationfile 108

8.83 ptopuunit 110
8.9 IStCONV PrOgram o vt e e e e e e e e e 111
8.10 unitdiff program L L. e e 111

8.10.1 Synopsis 111

8.10.2 Descriptionandusage 111

8.10.3 Options e e 111
Units that come with Free Pascal 113
9.1 Standardunits L e 113
9.2 Under DOS 114
9.3 Under Windows e 115
9.4 Under Linux and BSD-like platforms 115
9.5 UnderOS/2 116
9.6 Unitavailability 116
Debugging your programs 117
10.1 Compiling your program with debugger support 117
10.2 Using gdb to debug your program 118
10.3 Caveats when debugging withgdb 119
10.4 Support for gprof,the GNUprofiler 120
10.5 Detecting heap memory leaks 120
10.6 Line numbers in run-time error backtraces, 121
10.7 Combining heaptrc and lineinfo, 121
Alphabetical listing of command line options 123
Alphabetical list of reserved words 128
Compiler messages 129
C.1 General compiler messages v v v it e e e e e e 129
C.2 SCanner MeSSAZES. . « « « v v bt e e e e e e e e e e e e e 130
C.3 Parser messages v v vt it e e e e e e e e e e e e e 135
C.4 Typechecking errors o v i i e e 154
C.5 Symbolhandling e 161
C.6 Code generator MeSSAZES . « « « . v v v o v v v et e e e e e 165

CONTENTS

C.7 Errors of assembling/linking stage oo 168
C.8 Executable information messages.o i e e 169
C.9 Linker messages v v v v vt e e e e e e e e 170
C.10 Unit loading messages. o v vt it e e e e 170
C.11 Command line handling errors 173
C.12 Whole program optimization messages« c v ovbu e e 176
C.13 Assembler reader eIrors.o e e e 177

C.13.1 General assembler €rrorsl 177

C.13.2 1386 specific €1rors oL e 180

C.13.3 m68k specific €1rors. e e 182
Run-time errors 183
A sample gdb.ini file 187
Options and settings 188
Getting the latest sources or installers 190
G.1 Download via Subversion 190
G.2 Downloading asource zipo e 191
G.3 Downloading asnapshot L 191

Chapter 1

Introduction

1.1 About this document

This is the user’s guide for Free Pascal. It describes the installation and use of the Free Pascal
compiler on the different supported platforms. It does not attempt to give an exhaustive list of all
supported commands, nor a definition of the Pascal language. Look at the Reference Guide for
these things. For a description of the possibilities and the inner workings of the compiler, see the
Programmer’s Guide. In the appendices of this document you will find lists of reserved words and
compiler error messages (with descriptions).

This document describes the compiler as it is/functions at the time of writing. First consult the
README and FAQ files, distributed with the compiler. The README and FAQ files are, in case
of conflict with this manual, authoritative.

1.2 About the compiler

Free Pascal is a 32- and 64-bit Pascal compiler. The current version (2.6) can compile code for the
following processors:

e Intel 1386 and higher (1486, Pentium family and higher)
e AMD64/x86_64

e PowerPC

e PowerPC64

e SPARC

e ARM

e The m68K processor is supported by an older version.
The compiler and Run-Time Library are available for the following operating systems:

e DOS
e LINUX

e AMIGA (version 0.99.5 only)

../ref/ref.html
../prog/prog.html

CHAPTER 1. INTRODUCTION

e WINDOWS
e Mac OS X
e 0S/2 (optionally using the EMX package, so it also works on DOS/Windows)
e FREEBSD
e BEOS

e SOLARIS
e NETBSD
e NETWARE
e OPENBSD
e MorphOS
e Symbian

The complete list is at all times available on the Free Pascal website.

Free Pascal is designed to be, as much as possible, source compatible with Turbo Pascal 7.0 and
Delphi 7 (although this goal is not yet attained), but it also enhances these languages with elements
like operator overloading. And, unlike these ancestors, it supports multiple platforms.

It also differs from them in the sense that you cannot use compiled units from one system for the
other, i.e. you cannot use TP compiled units.

Also, there is a text version of an Integrated Development Environment (IDE) available for Free
Pascal. Users that prefer a graphical IDE can have a look at the Lazarus or MSIDE projects.

Free Pascal consists of several parts :
1. The compiler program itself.
2. The Run-Time Library (RTL).

3. The packages. This is a collection of many utility units, ranging from the whole Windows 32
API, through native ZIP/BZIP file handling to the whole GTK-2 interface.

4. The Free Component Library. This is a set of class-based utility units which give a database
framework, image support, web support, XML support and many many more.

5. Utility programs and units.
Of these you only need the first two, in order to be able to use the compiler. In this document, we

describe the use of the compiler and utilities. The Pascal Language is described in the Reference
Guide, and the available routines (units) are described in the RTL and FCL Unit reference guides.

1.3 Getting more information.

If the documentation doesn’t give an answer to your questions, you can obtain more information on
the Internet, at the following addresses:

e http://www.freepascal.org/ is the main site. It contains also useful mail addresses and links to
other places. It also contains the instructions for subscribing to the mailinglist.

../ref/ref.html
../ref/ref.html
http://www.freepascal.org

CHAPTER 1. INTRODUCTION

e http://community.freepascal.org: 10000/ is a forum site where questions can be posted.

Other than that, some mirrors exist.

Finally, if you think something should be added to this manual (entirely possible), please do not
hesitate and contact me at michael @freepascal.org. .

Let’s get on with something useful.

http://community.freepascal.org:10000/
mailto:michael@freepascal.org

Chapter 2

Installing the compiler

2.1

2.1.1

Before Installation : Requirements

Hardware requirements

The compiler needs at least one of the following processors:

1.

4
5.
6

An Intel 80386 or higher processor. A coprocessor is not required, although it will slow down
your program’s performance if you do floating point calculations without a coprocessor, since
emulation will be used.

An AMD64 or EMT64 processor.

A PowerPC processor.

. A SPARC processor

An ARM processor.

. Older FPC versions exist for the motorola 68000 processor, but these are no longer maintained.

Memory and disk requirements:

1.

2.

3.

8 Megabytes of free memory. This is sufficient to allow compilation of small programs.

Large programs (such as the compiler itself) will require at least 64 MB. of memory, but
128MB is recommended. (Note that the compiled programs themselves do not need so much
memory.)

At least 80 MB free disk space. When the sources are installed, another 270 MB are needed.

2.1.2 Software requirements
Under DOS

The DOS distribution contains all the files you need to run the compiler and compile Pascal programs.

Under UNIX

Under UNIX systems (such as LINUX) you need to have the following programs installed :

10

CHAPTER 2. INSTALLING THE COMPILER

1. GNU as, the GNU assembler.
2. GNU ld, the GNU linker.

3. Optionally (but highly recommended) : GNU make. For easy recompiling of the compiler and
Run-Time Library, this is needed.

Under Windows

The WINDOWS distributions (both 32 and 64 bit) contain all the files you need to run the compiler
and compile Pascal programs. However, it may be a good idea to install the mingw32 tools or the
cygwin development tools. Links to both of these tools can be foundon http://www. freePascal.org

Under OS/2

While the Free Pascal distribution comes with all necessary tools, it is a good idea to install the EMX
extender in order to compile and run programs with the Free Pascal compiler. The EMX extender
can be found on:

ftp://hobbes.nmsu.edu/pub/os2/dev/emx/v0.9d

Under Mac OS X

Mac OS X 10.1 or higher is required, and the developer tools or XCode should be installed.

2.2 Installing the compiler.

The installation of Free Pascal is easy, but is platform-dependent. We discuss the process for each
platform separately.

2.2.1 Installing under Windows

For WINDOWS, there is a WINDOWS installer, setup.exe. This is a normal installation program,
which offers the usual options of selecting a directory, and which parts of the distribution you want
to install. It will, optionally, associate the .pp or . pas extensions with the text mode IDE.

It is not recommended to install the compiler in a directory which has spaces in it’s path name.
Some of the external tools do not support filenames with spaces in them, and you will have problems
creating programs.

2.2.2 Installing under DOS or 0OS/2

Mandatory installation steps.

First, you must get the latest distribution files of Free Pascal. They come as zip files, which you
must unzip first, or you can download the compiler as a series of separate files. This is especially
useful if you have a slow connection, but it is also nice if you want to install only some parts of
the compiler distribution. The distribution zip files for DOS or OS/2 contain an installation program
INSTALL.EXE. You must run this program to install the compiler.

The screen of the DOS or OS/2 installation program looks like figure 2.1.

The program allows you to select:

11

CHAPTER 2. INSTALLING THE COMPILER

Figure 2.1: The DOS install program screen

[:]

General W

Continue

e What components you wish to install. e.g do you want the sources or not, do you want docs or
not. Items that you didn’t download when downloading as separate files, will not be enabled,
i.e. you can’t select them.

e Where you want to install (the default location is C: \PP).
In order to run Free Pascal from any directory on your system, you must extend your path variable to
contain the C: \PP\BIN directory. Usually this is done in the AUTOEXEC.BAT file. It should look
something like this :

SET PATH=%PATHS;C:\PP\2.6\BIN\1386-DOS
for DOS or

SET PATH=%PATHS%;C:\PP\2.6\BIN\1386-0S2

for 0S/2. (Again, assuming that you installed in the default location).

On 0S/2, Free Pascal installs some libraries from the EMX package if they were not yet installed.
(The installer will notify you if they should be installed). They are located in the

C:\PP\DLL

directory. The name of this directory should be added to the LIBPATH directive in the config.sys
file:

LIBPATH=XXX;C:\PP\DLL

Obviously, any existing directories in the LIBPATH directive (indicated by XXX in the above exam-
ple) should be preserved.

12

CHAPTER 2. INSTALLING THE COMPILER

Figure 2.2:

Win32 C
[¥] BaSiE system for Win32 (required) {7345 KB)

Continue

Optional Installation: The coprocessor emulation

For people who have an older CPU type, without math coprocessor (i387) it is necessary to install a
coprocessor emulation, since Free Pascal uses the coprocessor to do all floating point operations.

The installation of the coprocessor emulation is handled by the installation program (INSTALL.EXE)
under DOS and WINDOWS.

2.2.3 Installing under Linux
Mandatory installation steps.

The LINUX distribution of Free Pascal comes in three forms:

e atar.gz version, also available as separate files.
e a.rpm (Red Hat Package Manager) version, and

e a.deb (Debian) version.
If you use the .rpm format, installation is limited to
rpm -1 fpc-X.Y.Z-N.ARCH.rpm

Where X . Y. Z is the version number of the .rpm file, and ARCH is one of the supported architectures
(1386, x86_64 etc.).

If you use Debian, installation is limited to
dpkg -1 fpc-XXX.deb

Here again, XXX is the version number of the .deb file.

13

CHAPTER 2. INSTALLING THE COMPILER

You need root access to install these packages. The .tar file allows you to do an installation below
your home directory if you don’t have root permissions.

When downloading the . tar file, or the separate files, installation is more interactive.

In case you downloaded the .tar file, you should first untar the file, in some directory where you have
write permission, using the following command:

tar —-xvi fpc.tar

We supposed here that you downloaded the file fpc.tar somewhere from the Internet. (The real
filename will have some version number in it, which we omit here for clarity.)

When the file is untarred, you will be left with more archive files, and an install program: an instal-
lation shell script.

If you downloaded the files as separate files, you should at least download the install.sh script, and
the libraries (in libs.tar.gz).

To install Free Pascal, all that you need to do now is give the following command:
./install.sh

And then you must answer some questions. They’re very simple, they’re mainly concerned with 2
things :

1. Places where you can install different things.

2. Deciding if you want to install certain components (such as sources and demo programs).

The script will automatically detect which components are present and can be installed. It will only
offer to install what has been found. Because of this feature, you must keep the original names when
downloading, since the script expects this.

If you run the installation script as the root user, you can just accept all installation defaults. If you
don’t run as root, you must take care to supply the installation program with directory names where
you have write permission, as it will attempt to create the directories you specify. In principle, you
can install it wherever you want, though.

At the end of installation, the installation program will generate a configuration file (fpc.cfg) for the
Free Pascal compiler which reflects the settings that you chose. It will install this file in the /etc
directory or in your home directory (with name .fpc.cfg) if you do not have write permission in the
/etc directory. It will make a copy in the directory where you installed the libraries.

The compiler will first look for a file .fpc.cfg in your home directory before looking in the /etc
directory.

2.3 Optional configuration steps

On any platform, after installing the compiler you may wish to set some environment variables. The
Free Pascal compiler recognizes the following variables :

e PPC_EXEC_PATH contains the directory where support files for the compiler can be found.
e PPC_CONFIG_PATH specifies an alternate path to find the fpc.cfg.
e PPC_ERROR_FILE specifies the path and name of the error-definition file.

e FPCDIR specifies the root directory of the Free Pascal installation. (e.g : C: \PP\BIN)

14

CHAPTER 2. INSTALLING THE COMPILER

These locations are, however, set in the sample configuration file which is built at the end of the
installation process, except for the PPC_CONFIG_PATH variable, which you must set if you didn’t
install things in the default places.

2.4 Before compiling

Also distributed in Free Pascal is a README file. It contains the latest instructions for installing
Free Pascal, and should always be read first.

Furthermore, platform-specific information and common questions are addressed in the FAQ. It
should be read before reporting any bug.

2.5 Testing the compiler

After the installation is completed and the optional environment variables are set as described above,
your first program can be compiled.

Included in the Free Pascal distribution are some demonstration programs, showing what the com-
piler can do. You can test if the compiler functions correctly by trying to compile these programs.

The compiler is called
e fpc.exe under WINDOWS, 0S/2 and DOS.
e fpc under most other operating systems.

To compile a program (e.g demo\text\hello.pp), copy the program to your current working
directory, and simply type :

fpc hello

at the command prompt. If you don’t have a configuration file, then you may need to tell the compiler
where it can find the units, for instance as follows:

fpc —Fuc:\pp\NNN\units\i386-go32v2\rtl hello
under DOS, and under LINUX you could type
fpc -Fu/usr/lib/fpc/NNN/units/i386-1inux/rtl hello

(replace NNN with the version number of Free Pascal that you are using). This is, of course, assuming
that you installed under C: \PP or /usr/lib/fpc/NNN, respectively.

If you got no error messages, the compiler has generated an executable called hello.exe under DOS,
08/2 or WINDOWS, or hello (no extension) under UNIX and most other operating systems.

To execute the program, simply type :
hello

or
./hello

on Unices (where the current directory usually is not in the PATH).

If all went well, you should see the following friendly greeting:

Hello world

15

Remark:

Chapter 3

Compiler usage

Here we describe the essentials to compile a program and a unit. For more advanced uses of the
compiler, see the section on configuring the compiler, and the Programmer’s Guide.

The examples in this section suppose that you have an fpc.cfg which is set up correctly, and which
contains at least the path setting for the RTL units. In principle this file is generated by the installation
program. You may have to check that it is in the correct place. (see section 5.2 for more information
on this.)

3.1 File searching

Before you start compiling a program or a series of units, it is important to know where the compiler
looks for its source files and other files. In this section we discuss this, and we indicate how to
influence this.

The use of slashes (/) and backslashes (\) as directory separators is irrelevant, the compiler will
convert to whatever character is used on the current operating system. Examples will be given using
slashes, since this avoids problems on UNIX systems (such as LINUX).

3.1.1 Command line files

The file that you specify on the command line, such as in
fpc foo.pp

will be looked for ONLY in the current directory. If you specify a directory in the filename, then the
compiler will look in that directory:

fpc subdir/foo.pp

will look for foo.pp in the subdirectory subdir of the current directory.

Under case sensitive file systems (such as LINUX and UNIX), the name of this file is case sensitive;
under other operating systems (such as DOS, WINDOWS NT, 0S/2) this is not the case.

3.1.2 Unit files

When you compile a unit or program that needs other units, the compiler will look for compiled
versions of these units in the following way:

16

../prog/prog.html

CHAPTER 3. COMPILER USAGE

1. It will look in the current directory.
2. It will look in the directory where the source file resides.
3. It will look in the directory where the compiler binary is.
4. Tt will look in all the directories specified in the unit search path.
You can add a directory to the unit search path with the (-Fu (see page 26)) option. Every occurrence

of one of these options will insert a directory to the unit search path. i.e. the last path on the command
line will be searched first.

The compiler adds several paths to the unit search path:

1. The contents of the environment variable XXUNITS, where XX must be replaced with one of
the supported targets: GO32V2, LINUX,WIN32, 052, BEOS, FREEBSD, SUNOS, DARWIN
(the actual list depends on the available targets).

2. The standard unit directory. This directory is determined from the FPCDIR environment vari-
able. If this variable is not set, then it is defaulted to the following:

e On LINUX:

/usr/local/lib/fpc/FPCVERSION
or
/usr/1lib/fpc/FPCVERSION

whichever is found first.

e On other OSes: the compiler binary directory, with ’../” appended to it, if it exists. For
instance, on Windows, this would mean

C:\FPC\2.6\units\1386-win32
This is assuming the compiler was installed in the directory

C:\FPC\2.6
After this directory is determined , the following paths are added to the search path:

(a) FPCDIR/units/FPCTARGET
(b) FPCDIR/units/FPCTARGET/rtl

Here target must be replaced by the name of the target you are compiling for: this is a combi-
nation of CPU and OS, so for instance

/usr/local/lib/fpc/2.6/units/i386-1inux/
or, when cross-compiling
/usr/local/lib/fpc/2.6/units/i386-win32/

The —Fu option accepts a single = wildcard, which will be replaced by all directories found on that
location, but not the location itself. For example, given the directories

rtl/units/i386-1inux
fcl/units/1i386-1linux
packages/base

packages/extra

the command

17

CHAPTER 3. COMPILER USAGE

fpc -Fu"*/units/i386-1inux"
will have the same effect as
fpc —-Furtl/units/i386-1linux -Fufcl/units/i386-1inux

since both the rtl and fcl directories contain further units/i886-linux subdirectories. The packages
directory will not be added, since it doesn’t contain a units/i386-linux subdirectory.

The following command
fpc —-Fu"units/i386-linux/*"

will match any directory below the units/i386-linux directory, but will not match the units/i386-
linux directory itself, so you should add it manually if you want the compiler to look for files in this
directory as well:

fpc —-Fu"units/i1386-1inux" —-Fu"units/i1386-linux/*"

Note that (for optimization) the compiler will drop any non-existing paths from the search path, i.e.
the existence of the path (after wildcard and environment variable expansion) will be tested.

You can see what paths the compiler will search by giving the compiler the —vu option.

On systems where filenames are case sensitive (such as UNIX and LINUX), the compiler will :
1. Search for the original file name, i.e. preserves case.
2. Search for the filename all lowercased.

3. Search for the filename all uppercased.

This is necessary, since Pascal is case-independent, and the statements Uses Unitl; or uses
unitl; should have the same effect.

It will do this first with the extension .ppu (the compiled unit), .pp and then with the extension .pas.
For instance, suppose that the file foo.pp needs the unit bar. Then the command

fpc -Fu.. -Fuunits foo.pp
will tell the compiler to look for the unit bar in the following places:

1. In the current directory.

2. In the directory where the compiler binary is (not under LINUX).
3. In the parent directory of the current directory.

4. In the subdirectory units of the current directory

5. In the standard unit directory.

Also, unit names that are longer than 8 characters will first be looked for with their full length. If the
unit is not found with this name, the name will be truncated to 8 characters, and the compiler will
look again in the same directories, but with the truncated name.

If the compiler finds the unit it needs, it will look for the source file of this unit in the same directory
where it found the unit. If it finds the source of the unit, then it will compare the file times. If the

18

CHAPTER 3. COMPILER USAGE

source file was modified more recent than the unit file, the compiler will attempt to recompile the
unit with this source file.

If the compiler doesn’t find a compiled version of the unit, or when the —B option is specified, then
the compiler will look in the same manner for the unit source file, and attempt to recompile it.

It is recommended to set the unit search path in the configuration file fpc.cfg. If you do this, you
don’t need to specify the unit search path on the command line every time you want to compile
something.

3.1.3 Include files

If you include a file in your source with the {$I filename} directive, the compiler will look for
it in the following places:

1. It will look in the path specified in the include file name.
2. It will look in the directory where the current source file is.

3. it will look in all directories specified in the include file search path.

You can add files to the include file search path with the —T (see page 26) or -Fi (see page 26)
options.

As an example, consider the following include statement in a file units/foo.pp:

{$i ../bar.inc}

Then the following command :
fpc —-Iincfiles units/foo.pp
will cause the compiler to look in the following directories for bar.inc:

1. The parent directory of the current directory.
2. The units subdirectory of the current directory.

3. The incfiles subdirectory of the current directory.

3.1.4 Object files

When you link to object files (using the { $SL. file.o} directive, the compiler will look for this file
in the same way as it looks for include files:

1. It will look in the path specified in the object file name.
2. It will look in the directory where the current source file is.

3. It will look in all directories specified in the object file search path.

You can add files to the object file search path with the ~Fo (see page 26) option.

19

Remark:

CHAPTER 3. COMPILER USAGE

3.1.5 Configuration file

Not all options must be given on the compiler command line. The compiler can use a configuration
file which can contain the same options as on the command line. There can be only one command-
line option on each line in the configuration file.

Unless you specify the —n (see page 24) option, the compiler will look for a configuration file fpc.cfg
in the following places:

e Under UNIX (such as LINUX)

1. The current directory.
2. Your home directory, it looks for .fpc.cfg.

3. The directory specified in the environment variable PPC_CONFIG_PATH, and if it is
not set, it will look in the etc directory above the compiler directory. (For instance, if the
compiler is in /ust/local/bin, it will look in /usr/local/etc)

4. The directory /etc.
e Under all other OSes:

1. The current directory.
2. Ifitis set, the directory specified in the environment variable PPC_CONFIG_PATH.

3. The directory where the compiler is.

Versions prior to version 1.0.6 of the compiler used a configuration file ppc386.cfg. This file is still
searched, but its usage is considered deprecated. For compatibility, fpc.cfg will be searched first,
and if not found, the file ppc386.cfg will be searched and used.

The searching for ppc386.cfg will be removed from the compiler in version 2.4.0. To indicate this,
the compiler gives a warning as of version 2.3.1 if it uses a ppc386.cfg configuration file.

3.1.6 About long filenames

Free Pascal can handle long filenames on all platforms, except DOS. On Windows, it will use support
for long filenames if it is available (which is not always the case on older versions of Windows).

If no support for long filenames is present, it will truncate unit names to 8 characters.

It is not recommended to put units in directories that contain spaces in their names, since the external
GNU linker doesn’t understand such filenames.
3.2 Compiling a program

Compiling a program is very simple. Assuming that you have a program source in the file prog.pp,
you can compile this with the following command:

fpc [options] prog.pp

The square brackets [] indicate that what is between them is optional.

If your program file has the .pp or .pas extension, you can omit this on the command line, e.g. in
the previous example you could have typed:

fpc [options] prog

20

CHAPTER 3. COMPILER USAGE

If all went well, the compiler will produce an executable file. You can execute it straight away; you
don’t need to do anything else.

You will notice that there is also another file in your directory, with extension .0. This contains the
object file for your program. If you compiled a program, you can delete the object file (.0), but don’t
delete it if you compiled a unit. This is because the unit object file contains the code of the unit, and
will be linked in any program that uses it.

3.3 Compiling a unit

Compiling a unit is not essentially different from compiling a program. The difference is mainly that
the linker isn’t called in this case.

To compile a unit in the file foo.pp, just type :
fpc foo

Recall the remark about file extensions in the previous section.

When all went well, you will be left with 2 (two) unit files:

1. foo.ppu - this is the file describing the unit you just compiled.

2. f00.0 - this file contains the actual code of the unit. This file will eventually end up in the
executables.

Both files are needed if you plan to use the unit for some programs. So don’t delete them. If you
want to distribute the unit, you must provide both the .ppu and .0 file. One is useless without the
other.

3.4 Units, libraries and smartlinking

The Free Pascal compiler supports smartlinking and the creation of libraries. However, the default
behaviour is to compile each unit into one big object file, which will be linked as a whole into your
program. Shared libraries can be created on most platforms, although current level of FPC support
may vary (they are e.g. not supported for GO32v2 and OS2 targets).

It is also possible to take existing units and put them together in 1 static or shared library (using the
ppumove tool, section 8.7, page 106).

3.5 Reducing the size of your program

When you created your program, it is possible to reduce the size of the resulting executable. This is
possible, because the compiler leaves a lot of information in the program which, strictly speaking,
isn’t required for the execution of the program.

The surplus of information can be removed with a small program called strip.The usage is simple.
Just type

strip prog

On the command line, and the strip program will remove all unnecessary information from your
program. This can lead to size reductions of up to 30 %.

21

CHAPTER 3. COMPILER USAGE

You can use the —Xs switch to let the compiler do this stripping automatically at program compile
time. (The switch has no effect when compiling units.)

Another technique to reduce the size of a program is to use smartlinking. Normally, units (including
the system unit) are linked in as a whole. It is however possible to compile units such that they can
be smartlinked. This means that only the functions and procedures that are actually used are linked
in your program, leaving out any unnecessary code. The compiler will turn on smartlinking with the
—XX (see page 31) switch. This technique is described in full in the programmers guide.

22

Chapter 4

Compiling problems

4.1

General problems

e IO-error -2 at ... : Under LINUX you can get this message at compiler startup. It means

4.2

typically that the compiler doesn’t find the error definitions file. You can correct this mistake
with the —Fr (see page 26) option under LINUX.

Error : File not found : xxx or Error: couldn’t compile unit xxx: This typically happens
when your unit path isn’t set correctly. Remember that the compiler looks for units only in
the current directory, and in the directory where the compiler itself is. If you want it to look
somewhere else too, you must explicitly tell it to do so using the —Fu (see page 26) option. Or
you must set up a configuration file.

Problems you may encounter under DOS

No space in environment.
An error message like this can occur if you call SET_PP .BAT in AUTOEXEC.BAT.
To solve this problem, you must extend your environment memory. To do this, search a line in

CONFIG.SYS like

SHELL=C: \DOS\COMMAND . COM

and change it to the following:
SHELL=C:\DOS\COMMAND.COM /E:1024

You may just need to specify a higher value, if this parameter is already set.

Coprocessor missing
If the compiler writes a message that there is no coprocessor, install the coprocessor emulation.

Not enough DPMI memory
If you want to use the compiler with DPMI you must have at least 7-8 MB free DPMI memory,
but 16 Mb is a more realistic amount.

23

Chapter 5

Compiler configuration

The output of the compiler can be controlled in many ways. This can be done essentially in two
distinct ways:

e Using command line options.

e Using the configuration file: fpc.cfg.

The compiler first reads the configuration file. Only then are the command line options checked. This
creates the possibility to set some basic options in the configuration file, and at the same time you
can still set some specific options when compiling some unit or program. First we list the command
line options, and then we explain how to specify the command line options in the configuration file.
When reading this, keep in mind that the options are case sensitive.

5.1 Using the command line options

The available options for the current version of the compiler are listed by category. Also, see chapter
A, page 123 for a listing as generated by the current compiler.

5.1.1 General options
-h Print a list of all options and exit.
-? Same as —h, waiting after each screenfull for the enter key.

-i Print copyright and other information. You can supply a qualifier, as —ixxx where xxx can be
one of the following:
D : Returns the compiler date.
V : Returns the short compiler version.
W : Return full compiler version.
SO : Returns the compiler OS.
SP : Returns the compiler processor.
TO : Returns the target OS.
TP : Returns the target processor.

-1 Print the Free Pascal logo and version number.

-n Ignore the default configuration file. You can still pass a configuration file with the @ option.

24

CHAPTER 5. COMPILER CONFIGURATION

5.1.2 Options for getting feedback

-vxxx Be verbose. xxx is a combination of the following :

e e : Show errors. This option is on by default.
e i : Display some general information.
e w : Issue warnings.

: Issue notes.

°
o B

: Issue hints.

: Issue informational messages.

°
b

: Report number of lines processed (every 100 lines).

: Show information on units being loaded.

: Show names of files being opened.

: Show names of procedures and functions being processed.

: Show message numbers.

°
Q Q T o <

: Notify on each conditional being processed.

e mxxX: xxX is a comma-separated list of messages numbers which should not be shown.
This option can be specified multiple times.

e d: Show additional debugging information.

e 0: No messages. This is useful for overriding the default setting in the configuration file.
e b : Show all procedure declarations if an overloaded function error occurs.

e x : Show information about the executable (Win32 platform only).

: Format errors in RHIDE/GCC compatibility mode.

[]
[a]

: Show all possible information. (this is the same as specifying all options)

: Tells the compiler to write filenames using the full path.

°
< O 0w

: Write copious debugging information to file. fpcdebug.txt..

e s : Write timestamps. Mainly for the compiler developers.

The difference between an error/fatal error/hint/warning/note is the severity:

Fatal The compiler encountered an error, and can no longer continue compiling. It will stop at once.

Error The compiler encountered an error, but can continue to compile (at most till the end of the
current unit).

Warning if there is a warning, it means there is probably an error, i.e. something may be wrong in
your code.

Hint Is issued if the compiler thinks the code could be better, but there is no suspicion of error.

Note Is some noteworthy information, but again there is no error.

The difference between hints and notes is not really very clear. Both can be ignored without too
much risk, but warnings should always be checked.

25

CHAPTER 5. COMPILER CONFIGURATION

5.1.3 Options concerning files and directories

-exxx Specify XXX as the directory containing the executables for the programs as (the assembler)
and 1d (the linker).

-FaXYZ load units XYZ after the system unit, but before any other unit is loaded. XYZ is a comma-
separated list of unit names. This can only be used for programs, and has the same effect as if
XYZ were inserted as the first item in the program’s uses clause.

-FeXXX' Set the input codepage to XXX. Experimental.
-FCxxx Set the RC compiler (resource compiler) binary name to XXX.

-Fd Disable the compiler’s internal directory cache. By default, the compiler caches the names of
all files in a directory as soon as it looks for a single file in said directory. This ensures that the
correct case of all file names is used in the debug information. It also allows to create compiled
files with the correct casing when compiling on a case-preserving file systems under an OS that
also support case-sensitive file systems. Lastly, it can also increase performance. This feature
can however cause severe slowdowns on networked file systems, especially when compiling
trivial programs in directories containing many files, and such slowdowns can be addressed by
disabling the cache using this switch.

-FD Same as —e.
-Fexxx Write errors, etc. to the file named XxX.

-FExxx Write the executable and units to directory xxX instead of the current directory. If this option
contains a path component and is followed by an option —o (see page 29)), then the —o path
will override the —FE path setting.

-Ffxxx Add xxx to the framework path (only for Darwin).
-Fixxx Add xxx to the include file search path.
-Flxxx Add xxX to the library search path. (This is also passed to the linker.)

-FLxxx (LINUX only) Use xxx as the dynamic linker. The default is /lib/ld-linux.s0.2, or /lib/Id-
linux.s0.1, depending on which one is found first.

-Fmxxx Load the unicode conversion table from file X.txt in the directory where the compiler is
located. Only used when —Fc is also in effect.

-Foxxx Add xxx to the object file search path. This path is used when looking for files that need to
be linked in.

-Frxxx Specify xxx as the file which contain the compiler messages. This will override the com-
piler’s built-in default messages, which are in english.

-FRxxx set the resource (.res) linker to XXX.

-Fuxxx Add xxx to the unit search path. Units are first searched in the current directory. If they
are not found there then the compiler searches them in the unit path. You must always supply
the path to the system unit. The xXX path can contain a single wildcard (*) which will be
expanded to all possible directory names found at that location. Note that the location itself is
not included in the list. See section 3.1.2, page 16 for more information about this option.

-FUxxx Write units to directory xxx instead of the current directory. It overrides the —FE option.
-Ixxx Add xxX to the include file search path. This option has the same effect as -Fi.
-FWxxx store generated Whole Program Optimization information in file XXX.

-Fwxxx Read Whole Program Optimization information from file Xxx.

26

CHAPTER 5. COMPILER CONFIGURATION

5.1.4 Options controlling the kind of output.
For more information on these options, see Programmer’s Guide.

-a Do not delete the assembler files (not applicable when using the internal assembler). This also
applies to the (possibly) generated batch script.

-al Include the source code lines in the assembler file as comments.

-an Write node information in the assember file (nodes are the way the compiler represents state-
ments or parts thereof internally). This is primarily intended for debugging the code generated
by the compiler.

-ap Use pipes instead of creating temporary assembler files. This may speed up the compiler on
0S/2 and LINUX. Only with assemblers (such as GNU if the internal assembler is used.

-ar List register allocation and release info in the assembler file. This is primarily intended for
debugging the code generated by the compiler.

-at List information about temporary allocations and deallocations in the assembler file.
-Axxx specify what kind of assembler should be generated. Here xxx is one of the following :

default Use the built-in default.

as Assemble using GNU as.

nasmcoff Coff (Go32v2) file using Nasm.

nasmelf EIf32 (LINUX) file using Nasm.

nasmwin32 WINDOWS 32-bit file using Nasm.

nasmwdosx WINDOWS 32-bit/DOSX file using Nasm.

nasmobj Object file using Nasm.

masm Object file using Masm (Microsoft).

tasm Object file using Tasm (Borland).

elf EIf32 (LINUX) using internal writer.

coff Coff object file (Go32v2) using the internal binary object writer.
pecoff PECoff object file (Win32) using the internal binary object writer.

-B Re-compile all used units, even if the unit sources didn’t change since the last compilation.

-b Generate browser info. This information can be used by an Integrated Development Environment
(IDE) to provide information on classes, objects, procedures, types and variables in a unit.

-bl The same as —b but also generates information about local variables, types and procedures.

-Caxxx Set the ABI (Application Binary Interface) to xxX. The —1 option gives the possible values
for Xxx.

-Cb Generate big-endian code.
-Cc Set the default calling convention used by the compiler.

-CD Create a dynamic library. This is used to transform units into dynamically linkable libraries on
LINUX.

-Ce Emulate floating point operations.

-Cfxxx Set the used floating point processor to XXX.

27

../prog/prog.html

CHAPTER 5. COMPILER CONFIGURATION

-CFNN Set the minimal floating point precision to NN. Possible values are 32 and 64.

-Cg Enable generation of PIC code. This should only be necessary when generating libraries on
LINUX or other Unices.

-Chxxx Reserves xxx bytes heap. xxx should be between 1024 and 67107840.

-Ci Generate Input/Output checking code. In case some input/output code of your program returns
an error status, the program will exit with a run-time error. Which error is generated depends
on the I/O error.

-Cn Omit the linking stage.

-Co Generate Integer overflow checking code. In case of integer errors, a run-time error will be
generated by your program.

-CO Check for possible overflow of integer operations.
-CpXXX Set the processor type to XXX.

-CPX=N Set the packing for X to N. X can be PACKSET, PACKENUM or PACKRECORD, and N can
be a value of 1,2,4,8 or one of the keywords DEFAULT or NORMAL.

-Cr Generate Range checking code. If your program accesses an array element with an invalid index,
or if it increases an enumerated type beyond its scope, a run-time error will be generated.

-CR Generate checks when calling methods to verify if the virtual method table for that object is
valid.

-Csxxx Set stack size to xxx.

-Ct Generate stack checking code. If your program performs a faulty stack operation, a run-rime
error will be generated.

-CX Create a smartlinked unit when writing a unit. Smartlinking will only link in the code parts that
are actually needed by the program. All unused code is left out. This can lead to substantially
smaller binaries.

-dxxx Define the symbol name xxx. This can be used to conditionally compile parts of your code.
-D Generate a DEF file (for OS/2).

-Dd Set the description of the executable/library (WINDOWS).

-Dv Set the version of the executable/library (WINDOWS).

-E Same as -Cn.

-g Generate debugging information for debugging with gdb.

-gc Generate checks for pointers. This must be used with the —gh command line option. When this
options is enabled, it will verify that all pointer accesses are within the heap.

-gg Same as —g.

-gh Use the heaptrc unit (see Unit Reference). (Produces a report about heap usage after the program
exits)

-gl Use the lineinfo unit (see Unit Reference). (Produces file name/line number information if the
program exits due to an error.)

28

../rtl/index.html
../rtl/index.html

CHAPTER 5. COMPILER CONFIGURATION

-goXXX set debug information options. One of the options is dwarfsets: It enables dwarf set
debug information (this does not work with gdb versions prior to 6.5.

-gp Preserve case in stabs symbol names. Default is to uppercase all names.
-gs Write stabs debug information.

-gt Trash local variables. This writes a random value to local variables at procedure start. This can
be used to detect uninitialized variables.

-gv Emit info for valgrind.

-gw Emit dwarf debugging info (version 2).

-gw2 Emit dwarf debugging info (version 2).

-gw3 Emit dwarf debugging info (version 3).

-kxxx Pass xxx to the linker.

-Oxxx Optimize the compiler’s output; xxx can have one of the following values :

aPARAM=VALUE Specify alignment of structures and code. PARAM determines what should
be aligned; VALUE specifies the alignment boundary. See the Programmer’s Guide for a
description of the possible values.

g Optimize for size, try to generate smaller code.

G Optimize for time, try to generate faster code (default).

1 Level 1 optimizations (quick optimizations).

2 Level 2 optimizations (—O1 plus some slower optimizations).
3 Level 3 optimizations (-02 plus —Ou).

oNNN Specify specific optimizations: NNN can be one of

REGVAR Use register variables

STACKFRAME Skip stack frames

LOOPUNROLL unroll (small) loops

TAILREC change tail recursion to non-recursive loop.
UNCERTAIN Uncertain optimizations (use with care).

pxxx select processor xxx to optimize for. fpc -1 lists all available processor instruction
sets.

Wxxx Generate Whole-Program-Optimization information for feature xxx. fpc -i will
generate a list of possible values.

wxxx Perform Whole-Program-Optimization information for feature xxx. fpc —1i will gen-
erate a list of possible values.

s Optimize for size rather than speed.
The exact effect of some of these optimizations can be found in the Programmer’s Guide.

-oxxx Use xxx as the name of the output file (executable). For use only with programs. The output
filename can contain a path, and if it does, it will override any previous —FE setting. If the
output filename does not contain a path, the —FE setting is observed.

-pg Generate profiler code for gprof. This will define the symbol FPC_PROFILE, which can be
used in conditional defines.

29

../prog/prog.html

CHAPTER 5. COMPILER CONFIGURATION

-s Do not call the assembler and linker. Instead, the compiler writes a script, PPAS.BAT under DOS,
or ppas.sh under LINUX, which can then be executed to produce an executable. This can be
used to speed up the compiling process or to debug the compiler’s output. This option can take
an extra parameter, mainly used for cross-compilation. It can have one of the following values:

h Generate script to link on host. The generated script can be run on the compilation platform
(host platform).

t Generate script to link on target platform. The generated script can be run on the target
platform. (where the binary is intended to be run)

r Skip register allocation phase (optimizations will be disabled).
-Txxx Specify the target operating system. xxx can be one of the following:

e emx : OS/2 via EMX (and DOS via EMX extender).
e freebsd : FreeBSD.

e g032v2 : DOS and version 2 of the DJ DELORIE extender.
e linux : LINUX.

e netbsd : NetBSD.

e netware : Novell Netware Module (clib).

e netwlibe : Novell Netware Module (libc).

e openbsd : OpenBSD.

e 0s2: OS/2 (2.x) using the EMX extender.

e sunos : SunOS/Solaris.

e watcom : Watcom compatible DOS extender

e wdosx : WDOSX extender.

e win32 : WINDOWS 32 bit.

e wince : WINDOWS for handhelds (ARM processor).

The available list of targets depends on the actual compiler binary. Use fpc -1 to get a list
of targets supported by the compiler binary.

-uxxx Undefine the symbol xxx. This is the opposite of the —d option.

-Ur Generate release unit files. These files will not be recompiled, even when the sources are avail-
able. This is useful when making release distributions. This also overrides the —B option for
release mode units.

-W Set some WINDOWS or 0S/2 attributes of the generated binary. It can be one or more of the
following
Bhhh Set preferred base address to hhh (a hexadecimal address)
C Generate a console application (+) or a gui application (-).
D Force use of Def file for exports.
F Generate a FS application (+) or a console application (-).
G Generate a GUI application (+) or a console application (-).
N Do not generate a relocation section.
R Generate a relocation section.

T Generate a TOOL application (+) or a console application (-).

30

CHAPTER 5. COMPILER CONFIGURATION

-Xx Specify executable options. This tells the compiler what kind of executable should be generated.
The parameter x can be one of the following:

e c: (LINUX only) Link with the C library. You should only use this when you start to port
Free Pascal to another operating system.

e d Do not use the standard library path. This is needed for cross-compilation, to avoid
linking with the host platform’s libraries.

e D : Link with dynamic libraries (defines the FPC_LINK_DYNAMIC symbol)

e e use external (GNU) linker.

e g Create debug information in a separate file and add a debuglink section to executable.
e i use internal linker.

e MXXX : Set the name of the program entry routine. The default is *main’.

e m : Generate linker map file.

e PXXX : Prepend binutils names with XXX for cross-compiling.

e rXXX : Set library path to XXX.

e Rxxx Prepend xxx to all linker search paths. (used for cross compiling).

s : Strip the symbols from the executable.
S : Link with static units (defines the FPC_LINK_STATIC symbol).

t : Link static (passes the —static option to the linker).
X : Link with smartlinked units (defines the FPC_LINK_SMART symbol).

5.1.5 Options concerning the sources (language options)

For more information on these options, see Programmer’s Guide

-Mmode Set language mode to mode, which can be one of the following:
delphi Try to be Delphi compatible. This is more strict than the ob jfpc mode, since some
Free Pascal extensions are switched off.
fpc Free Pascal dialect (default).
macpas Try to be compatible with Macintosh Pascal dialects.

objfpc Switch on some Delphi extensions. This is different from Delphi mode, because some
Free Pascal constructs are still available.

tp Try to be TP/BP 7.0 compatible. This means no function overloading etc.

-Mfeature Select language feature feature. As of FPC version 2.3.1, the —-M command line
switch can be used to select individual language features. In that case, feature is one of the
following keywords:

CLASS Use object pascal classes.

OBJPAS Automatically include the ObjPas unit.

RESULT Enable the Result identifier for function results.

PCHARTOSTRING Allow automatic conversion of null-terminated strings to strings,
CVAR Allow the use of the CVAR keyword.

NESTEDCOMMENTS Allow use of nested comments.

CLASSICPROCVARS Use classical procedural variables.

MACPROCVARS Use mac-style procedural variables.

31

../prog/prog.html

CHAPTER 5. COMPILER CONFIGURATION

REPEATFORWARD Implementation and Forward declaration must match completely.
POINTERTOPROCVAR Allow silent conversion of pointers to procedural variables.
AUTODEREF Automatic (silent) dereferencing of typed pointers.

INITFINAL Allow use of Initializationand Finalization
ANSISTRINGS Allow use of ansistrings.

OUT Allow use of the out parameter type.

DEFAULTPARAMETERS Allow use of default parameter values.
HINTDIRECTIVE Support the hint directives (deprecated, platformetc.)
DUPLICATELOCALS ?

PROPERTIES Allow use of global properties.

ALLOWINLINE Allow inline procedures.

EXCEPTIONS Allow the use of exceptions.

The keyword can be followed by a plus or minus sign to enable or disable the feature.

-Rxxx Specify what kind of assembler you use in your asm assembler code blocks. Here xxx is
one of the following:

att asm blocks contain AT&T-style assembler. This is the default style.
intel asm blocks contain Intel-style assembler.
default Use the default assembler for the specified target.

direct asm blocks should be copied as is in the assembler, only replacing certain variables.
-S2 Switch on Delphi 2 extensions (ob jfpc mode). Deprecated, use —Mob jfpc instead.

-Sa Include assert statements in compiled code. Omitting this option will cause assert statements to
be ignored.

-Sc Support C-style operators, i.e. =, +=, /= and -=.
-Sd Try to be Delphi compatible. Deprecated, use ~Mde1phi instead.

-SeN The compiler stops after the N-th error. Normally, the compiler tries to continue compiling
after an error, until 50 errors are reached, or a fatal error is reached, and then it stops. With this
switch, the compiler will stop after the N-th error (if N is omitted, a default of 1 is assumed).
Instead of a number, one of n, h or w can also be specified. In that case the compiler will
consider notes, hints or warnings as errors and stop when one is encountered.

-Sg Support the 1abel and goto commands. By default these are not supported. You must also
specify this option if you use labels in assembler statements. (if you use the AT&T style
assember)

-Sh Use ansistrings by default for strings. If this option is specified, the compiler will interpret the
string keyword as an ansistring. Otherwise it is supposed to be a shortstring (TP style).

-Si Support C++ style INLINE.

-SIXXX' Set interfaces style to XXX.

-Sk Load the Kylix compatibility unit (focylix).
-Sm Support C-style macros.

-So Try to be Borland TP 7.0 compatible. Deprecated, use ~Mt p instead.

32

CHAPTER 5. COMPILER CONFIGURATION

-Ss The name of constructors must be init, and the name of destructors should be done.
-St Allow the static keyword in objects.

-Sx Enable exception keywords (default in Delphi/Objfpc mode). This will mark all exception re-
lated keywords as keywords, also in Turbo Pascal or FPC mode. This can be used to check for
code which should be mode-neutral as much as possible.

-Un Do not check the unit name. Normally, the unit name is the same as the filename. This option
allows them to be different.

-Us Compile a system unit. This option causes the compiler to define only some very basic types.

5.2 Using the configuration file

Using the configuration file fpc.cfg is an alternative to command line options. When a configuration
file is found, it is read, and the lines in it are treated as if you had typed them as options on the
command line: Specify one option on each line of the configuration file. They are treated before the
options that you type on the command line.

You can specify comments in the configuration file with the # sign. Everything from the # on will
be ignored.

The algorithm to determine which file is used as a configuration file is decribed in 3.1.5 on page 20.

When the compiler has finished reading the configuration file, it continues to treat the command line
options.

One of the command line options allows you to specify a second configuration file: Specifying @foo
on the command line will open file foo, and read further options from there. When the compiler has
finished reading this file, it continues to process the command line.

The configuration file allows a type of preprocessing. It understands the following directives, which
you should place starting on the first column of a line:

#IFDEF
#IFNDEF
#ELSE
#ENDIF
#DEFINE
#UNDEF
#WRITE
#INCLUDE
#SECTION

They work the same way as their {$...} counterparts in Pascal source code. All the default defines
used to compile source code are also defined while processing the configuration file. For example,
if the target compiler is an intel 80x86 compatible linux platform, both cpu86 and 1inux will be
defined while interpreting the configuration file. For the possible default defines when compiling,
consult Appendix G of the Programmer’s Guide.

What follows is a description of the different directives.

33

../prog/prog.html

CHAPTER 5. COMPILER CONFIGURATION

5.2.1 #IFDEF

Syntax:
#IFDEF name

Lines following # IFDEF are read only if the keyword name following it is defined.

They are read until the keywords #ELSE or #ENDIF are encountered, after which normal processing
is resumed.

Example :
#IFDEF VER2_6_0

-Fu/usr/lib/fpc/2.6.0/1linuxunits
#ENDIF

In the above example, /ust/lib/fpc/2.6.0/linuxunits will be added to the path if you’re compiling
with version 2.6.0 of the compiler.

5.2.2 #IFNDEF

Syntax:
#IFNDEF name

Lines following # IFNDEF are read only if the keyword name following it is not defined.

They are read until the keywords #ELSE or #ENDIF are encountered, after which normal processing
is resumed.

Example :

#IFNDEF VER2_6_0
-Fu/usr/lib/fpc/2.6.0/1linuxunits
#ENDIF

In the above example, /usr/lib/fpc/2.6.0/linuxunits will be added to the path if you’re NOT compil-
ing with version 2.6.0 of the compiler.

5.2.3 #ELSE

Syntax:
#ELSE

#ELSE can be specified after a # IFDEF or # IFNDEF directive as an alternative. Lines following
#ELSE are read only if the preceding # IFDEF or # IFNDEF was not accepted.

They are skipped until the keyword #ENDIF is encountered, after which normal pr