RadicalCodim1 chooses an alternate, often much faster, sometimes much slower, algorithm for computing the radical of ideals. This will often produce a different presentation for the integral closure.
R = QQ[x,y,z]/ideal(x^8-z^6-y^2*z^4-z^3); |
time R' = integralClosure(R, Strategy=>{RadicalCodim1}) |
R = QQ[x,y,z]/ideal(x^8-z^6-y^2*z^4-z^3); |
time R' = integralClosure(R) |
R = QQ[x,y,z]/ideal(x^8-z^6-y^2*z^4-z^3); |
time R' = integralClosure(R, Strategy=>{AllCodimensions}) |
R = QQ[x,y,z]/ideal(x^8-z^6-y^2*z^4-z^3); |
time R' = integralClosure(R, Strategy=>{RadicalCodim1, AllCodimensions}) |