This method is the primary function called upon by
<< to format for printing.
In this package,
i-th torus-invariant prime Weil divisors are displayed as D
i. Hence, an arbitrary torus-invariant Weil divisor is displayed as an integral linear combination of these expressions.
i1 : PP2 = projectiveSpace 2;
|
i2 : toricDivisor({2,-7,3},PP2)
o2 = 2*D - 7*D + 3*D
0 1 2
o2 : ToricDivisor on PP2
|
i3 : 2*PP2_0+4*PP2_2
o3 = 2*D + 4*D
0 2
o3 : ToricDivisor on PP2
|
i4 : toricDivisor PP2
o4 = - D - D - D
0 1 2
o4 : ToricDivisor on PP2
|