i1 : R = QQ[x,y,z]/ideal(x^8-z^6-y^2*z^4-z^3); |
i2 : time R' = integralClosure(R, Verbosity => 2) [jacobian time .00161238 sec #minors 3] integral closure nvars 3 numgens 1 is S2 codim 1 codimJ 2 [step 0: radical (use decompose) .0135419 seconds idlizer1: .0253889 seconds idlizer2: .0518902 seconds minpres: .0363025 seconds time .176052 sec #fractions 4] [step 1: radical (use decompose) .0144481 seconds idlizer1: .0300407 seconds idlizer2: .0977127 seconds minpres: .0586158 seconds time .25822 sec #fractions 4] [step 2: radical (use decompose) .0145754 seconds idlizer1: .0423341 seconds idlizer2: .111974 seconds minpres: .0471703 seconds time .274729 sec #fractions 5] [step 3: radical (use decompose) .0154055 seconds idlizer1: .0359423 seconds idlizer2: .172602 seconds minpres: .305541 seconds time .618848 sec #fractions 5] [step 4: radical (use decompose) .0145606 seconds idlizer1: .0663948 seconds idlizer2: .340625 seconds minpres: .0573001 seconds time .563888 sec #fractions 5] [step 5: radical (use decompose) .0147751 seconds idlizer1: .0420951 seconds time .0829006 sec #fractions 5] -- used 1.98772 seconds o2 = R' o2 : QuotientRing |
i3 : trim ideal R' 3 2 2 2 4 4 o3 = ideal (w z - x , w x - w , w x - y z - z - z, w x - w z, 4,0 4,0 1,1 1,1 4,0 1,1 ------------------------------------------------------------------------ 2 2 2 3 2 3 2 3 2 4 2 2 4 2 w w - x y z - x z - x , w + w x y - x*y z - x*y z - 2x*y z 4,0 1,1 4,0 4,0 ------------------------------------------------------------------------ 3 3 2 6 2 6 2 - x*z - x, w x - w + x y + x z ) 4,0 1,1 o3 : Ideal of QQ[w , w , x, y, z] 4,0 1,1 |
i4 : icFractions R 3 2 2 4 x y z + z + z o4 = {--, -------------, x, y, z} z x o4 : List |