next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Macaulay2Doc :: factor(Module)

factor(Module) -- factor a ZZ-module

Synopsis

Description

The ring of M must be ZZ.

In the following example we construct a module with a known (but disguised) factorization.

i1 : f = random(ZZ^6, ZZ^4)

o1 = | 4 5 7 5 |
     | 2 1 4 0 |
     | 9 4 8 8 |
     | 1 3 7 1 |
     | 5 5 8 2 |
     | 4 7 1 0 |

              6        4
o1 : Matrix ZZ  <--- ZZ
i2 : M = subquotient ( f * diagonalMatrix{2,3,8,21}, f * diagonalMatrix{2*11,3*5*13,0,21*5} )

o2 = subquotient (| 8  15 56 105 |, | 88  975  0 525 |)
                  | 4  3  32 0   |  | 44  195  0 0   |
                  | 18 12 64 168 |  | 198 780  0 840 |
                  | 2  9  56 21  |  | 22  585  0 105 |
                  | 10 15 64 42  |  | 110 975  0 210 |
                  | 8  21 8  0   |  | 88  1365 0 0   |

                                 6
o2 : ZZ-module, subquotient of ZZ
i3 : factor M

          ZZ   ZZ    ZZ
o3 = ZZ + -- + -- + ----
           5   11   5*13

o3 : Expression of class Sum