BIBTOOL

e A Tool to Manipulate BIBTEX Files m— —

Version 2.55

BibTool Manual

Gerd Neugebauer

Abstract

BIBTEX provides an easy to use means to integrate citations and bibliographies
into I¥TEX documents. But the user is left alone with the management of the
BIBTEX files. The program BIBTOOL is intended to fill this gap. BiBTooL
allows the manipulation of BIBTEX files which goes beyond the possibilities—
and intentions—of BIBTEX. The possibilities of BIBToOL include sorting and
merging of BIBTEX data bases, generation of uniform reference keys, and
selecting of references used in a publication.

This file is part of BIBTOOL Version 2.55
Copyright (©) 2012 Gerd Neugebauer

BisTooL is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either
version 1, or (at your option) any later version.

Bi1BTooL is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.

You should have received a copy of the GNU General Public License along with this
documentation; see the file COPYING. If not, write to the Free Software Foundation, 675
Mass Ave, Cambridge, MA 02139, USA.

Gerd Neugebauer
Im Lerchelsbohl 5
64521 Grof-Gerau (Germany)

Net: http://www.gerd-neugebauer.de/
E-Mail: gene@gerd-neugebauer.de

http://www.gerd-neugebauer.de/
mailto:gene@gerd-neugebauer.de

Contents

1.

Introduction
1.1. Related Programs

1.2. Using BiBTooL—Some Instructive Examples
1.2.1. Sorting and Merging Lo oo
1.2.2. Key Generation
1.2.3. Normalization Lo
1.2.4. Extracting Entries for a Document
1.2.5. Extracting Entries Matching a Regular Expression
1.2.6. Translating ISO 8859-1 Characters
1.2.7. Correctly Sorting Cross-referenced Entries

1.3. Interfacing BisTooL

with Other Programming Languages

1.4. Getting BiBTooL, Hot News, and Bug Reports
1.5. Contributing to BiIBTooL, oL

Reference Manual

A.1. Beware of the Command Line
A.2. Command Line Usage and Resource Files

A.3. Input File Specificat

ion and Search Path

A.4. Output File Specification and Status Reporting
A.5. Parsing and Pretty Printing L.

A.6. Sorting

A.7. Regular Expression Matching

A.8. Selecting Ttems . .

A8.1. Extracting by aux Files L.

A.8.2. Extracting w
A.8.3. Extracting w

ith Sub-string Matching
ith Regular Expressions

A.8.4. Extracting and Cross-references

A.9. Key Generation . .

A.9.1. Aliases for Renamed Entries
A.10.Format Specification L
A.10.1.Constant Parts
A.10.2. Formatting Fields,
A.10.3.Pseudo Fields

A.10.4. Conjunctions
A.10.5.If-Then-Else
A.10.6. Alternatives

17
17
17
21
23
24
28
30
32
32
33
34
35
36
40
41
41
42
50
51
o1
o1

CONTENTS

AT10.7.Grouping 52
A.10.8. Ignored Words Lo 52
A.10.9. Expanding TEX/ITEX Macroso oo vv v 53
A.10.10Name Formatting oL 54
A0 11Example 56
A.11.Field Manipulation 58
A.11.1. Adding or Deleting Fields 58
A.11.2.Field Rewriting 59
A.11.3.Field Ordering 61
A.12.Semantic Checks 62
A.12.1.Finding Double Entries 62
A.12.2. Regular Expression Checks 63
A.13.Strings — also called Macros 64
A T4.Statistics e 66
AT5.BIBTEXL.0 Support o e 66
A.15.1.Including Bibliographies 67
AT5.2.AlIases . . . o o 67
A.15.3.Modifications 67

. Limitations 69
B.1. Limits of BIBTOOL 69
B.2. Bugs and Problems o 69
. Sample Resource Files 71
C.1. The Default Settings L 71
C.2. Useful Translations 72

C.3. Other Resource Files e 73

1. Introduction

The user’s manual is divided into two parts. In this first part the big picture on BiBTooL
is shown. The next chapter after this one is then devoted to the nitty gritty details.

1.1. Related Programs

BIBTEX [Lam94, Pat88a, Pat88b] is a system for integrating bibliographic information
into WTEX [Lam94] documents. BIBTEX is designed to serve exactly this purpose. It
has shown that various tasks in relation with managing bibliographic databases are not
covered by BIBTEX. Usual activities on bibliographic databases include

e inserting new entries

o editing

e using citations in documents

e sorting and merging of bibliographic data bases
e extraction of bibliographic data bases

Since only the integration in documents is covered by BIBTEX several utilities emerged
to fill the gaps. We will sketch some of them shortly.

BIBTEX is a program by Oren Patashnik to select publications used in a A TEX document
and format them for inclusion into this document. This program should be part
of each TEX installation.

bibclean is a program by Nelson H.F. Beebe to pretty-print BIBTEX files. It also can
act as syntax checker. The C sources can be compiled on several systems.

bibindex/biblook is a pair of programs by Nelson H.F. Beebe to generate an index for a
BIBTEX file and use it to perform a fast look-up of certain entries. The programs
so far run only under UNIX.

bibsort is a UNIX shell script by Nelson H.F. Beebe to sort a BIBTEX file.

bibextract is a UNIX shell script by Nelson H.F. Beebe to extract entries from a BIBTEX
file which are used in a IXTEX document.

lookbibtex/bibdestringify are Perl scripts by John Heidemann to extract entries from
a BIBTEX file which are used in a XTEX document and to remove strings from a

BIBTEX file.

http://www.ctan.org/tex-archive/biblio/bibtex/distribs/
http://www.ctan.org/tex-archive/biblio/bibtex/utils/bibclean/
http://www.ctan.org/tex-archive/biblio/bibtex/utils/biblook/
http://www.ctan.org/tex-archive/biblio/bibtex/utils/bibsort/
http://www.ctan.org/tex-archive/biblio/bibtex/utils/bibextract/
http://www.ctan.org/tex-archive/biblio/bibtex/utils/lookbibtex/

6 1. INTRODUCTION

bibtools is a collection of UNIX shell scripts by David Kotz to add and extract entries
to bibliographic databases. Several small programs are provided to perform special
tasks.

bibview is a Perl script by Dana Jacobsen to extract entries from a BIBTEX file which
are used in a ITEX document.

BibCard is a program by William C. Ogden running under X11/xview which provides
a means to edit bibliographic databases.

hyperbibtex Something similar for Macintosh computers.

xbibtex/bibprocess/bibsearch are programs by Nicholas J. Kelly and Christian H. Bischof
running under X11 which provides a means to edit bibliographic databases, add
fields to a BIBTEX file and extract certain entries from a BIBTEX file.

bibview is an X11 program by Holger Martin, Peter Urban, and Armin Liebl to search
in and manipulate BIBTEX files. It is similar to BibCard and hyperbibtex.

tkbibtex is a BIBTEX file browser with support for editing, searching sorting and merg-
ing. Written by Peter Corke in Tcl/Tk it runs under Unix and Windows.

bibdb Editor for BIBTEX files that runs under Dos and Windows.

gbibman is a graphical user interface by Ralf Gortz utilizing BiBTooL as underlying
library. It is written in C++ and uses Qt.

Barracuda an X11 Editor for BIBTEX files, written in C+4 and Qt.

BIBTEX-Mode is an extension of the editor GNU-Emacs to provide means to edit BIBTEX
files. Several useful operations are provided. There is also a BIBTEX-Mode for the
Emacs-like JED-Editor.

btOOL is a Perl library to access BIBTEX files. It is implemented in Perl and C and has
been written by Greg Ward.

This is a selection of some programs I have heard of. I have tested some of them and
I have skipped through the documentation of others. Thus the description may be too
short or incomplete. Some additional information can be found in [GMS94, Chapter 13].

Most of those utilities are tailored towards a particular operating system and thus they
are not available on other platforms. Most of these program are made to perform a
single task. Often they can not be configured to suit a personal taste of a user.

Still there are some points not covered by the utilities mentioned above. BIBTOOL tries
to provide the missing features and integrate others into a single tool.

1.2. Using BibTool—Some Instructive Examples

B1BTooOL has been developed on UN*X and UN*X-like machines. This has influenced
many of the design decisions. Version 1 was controlled using numerous command line
options. This way of controlling has been supplemented in version 2 by the concept of a

http://www.ctan.org/tex-archive/biblio/bibtex/utils/bibtools/
http://www.ctan.org/tex-archive/biblio/bibtex/utils/bibview/
http://www.ctan.org/tex-archive/biblio/bibtex/utils/bibcard/
http://www.ctan.org/tex-archive/biblio/bibtex/utils/hyperbibtex/
http://www.ctan.org/tex-archive/biblio/bibtex/utils/xbibtex/
http://www.ctan.org/tex-archive/biblio/bibtex/utils/bibview/
http://www.ctan.org/tex-archive/biblio/bibtex/utils/tkbibtex/
http://www.ctan.org/tex-archive/support/bibdb/
http://www.ctan.org/tex-archive/biblio/bibtex/utils/qbibman/
http://barracuda.linuxbox.com/
http://www.ctan.org/tex-archive/biblio/bibtex/utils/btOOL/

1.2. UsING BIBTOOL—SOME INSTRUCTIVE EXAMPLES 7

resource file. This resource file allows the modification of the various internal parameters
determining the behavior of BIBTOOL.

When BIBTooOL has been compiled correctly there should be an executable file named
bibtool!. We will assume that you are running BIBTOOL from a command line inter-
preter. There you can simply issue the command

| bibtool

Now BiBTooL will start reading from the standard input lines obeying the rules of a
BIBTEX file.? The entries read are pretty-printed on the standard output. It is obvious
that this behavior is not very useful in itself. The origin of this kind of interface lies in
the concepts of UN*X where many commands can act as filters.

Usually we do not intend to use BIBTOOL in this way. Thus we need a way to specify an
input file. This is simply done by adding the file name as argument after the command
name like in

bibtool file.bib

The result of this command can at once be seen on the screen. The contents of the file
file.bib is pretty printed.

Now that we have seen the simplest case of the application of BIBTOOL we will see the
case of a useful application of BIBTooL. This application is the sorting and merging of
BIBTEX databases.

1.2.1. Sorting and Merging

BIBTEX files can be sorted by specifying the command line option -s. The given files are
sorted according to the reference key. Several files can be given at once in which case
BiTooL will sort and merge those files.

- bibtool -s filel.bib file2.bib |

With the command line option the files are sorted in reverse ASCII order.

. bibtool -S filel.bib file2.bib |

If you want to sort the BIBTEX files according to the authors then the following invocation
should do the trick:

bibtool -- sort.format="%N(author)” filel.bib file2.bib

!Maybe with an additional extension.
2We assume that no resource file can be found. Resource files will be described later.

8 1. INTRODUCTION

This means that the sorting order is determined by the (normalized) author field. Note
that single quotes encapsulating the sort.format are necessary to prevent the command
line interpreter to gobble the special characters.

1.2.2. Key Generation

Once you have a reference and you insert it into a BIBTEX file you have to assign a
reference key to it. The problem is to find a key which is unique and meaningful, i.e.
easy to remember. The easiest way to remember a key is to use an algorithm to create
it and remember the algorithm—which is the same for all keys.

One algorithm which comes to mind is to use the author and (an initial part) of the title.
Alternatively we can use the author and the year. But the problem is with industrious
authors writing more than one publication per year. The necessary disambiguation of
such references is not very intuitive. However, BIBTOOL has the capability to describe
desired keys. Thus, the alternatives described above can be realized.

For this section we want to use the following BIBTEX entry as our example:® Suppose it
is contained in a file named sample.bib.

@ARTICLE{article-full,
author = {L[eslie] A. Aamport},

title = {The Gnats and Gnus Document Preparation System},
journal = {\mbox{G-Animal’s} Journall,

year = 1986,

volume = 41,

number = 7,

pages = "73+",

month = jul,

note = "This is a full ARTICLE entry",

First, we want to see how we can make keys consisting of author and title. This is one
of my favorite algorithms thus it is rather easy to use it. You simply have to run the
following command:

bibtool -k sample.bidb -o samplel.b<bd

After the command has colpleted it’s work the following entry can be found in the output
file samplel.bib:

QArticleq aamport:gnats,
author = {L[eslie] A. Aamport},
title = {The Gnats and Gnus Document Preparation System},
journal = {\mbox{G-Animal’s} Jourmnall,
year = 1986,
volume = 41,
number =7,

3Shamelessly stolen from the BIBTEX xamples.bib file.

1.2. UsING BIBTOOL—SOME INSTRUCTIVE EXAMPLES 9

pages = "73+",
month = jul,
note = "This is a full ARTICLE entry"

You see that the reference key has been changed. It now consists of the last name and
the first relevant word of the title, separated by a colon. Sometimes it might be desirable
to incorporate the initial names as well. This can be achieved by the command

bibtool -K sample.bib -o samplel.bib

The resulting reference key is aamport.la:gnats. The initials are appended after the
first name. Thus the usual lexicographic order on the keys will (hopefully) bring together
the publications of the same first author.

Another alternative is to use the author and the year. This can be achieved with the
following command:*

bibtool -f /n(author):/2d(year) sample.bib -o samplel.bibd

The resulting key is Aamport:86. Note that the last example works as desired for our
sample file. But for a real application of this technique a deep understanding of the key
generation mechanism as described in section A.9 is necessary.

1.2.3. Normalization

BIBTOOL can be used to normalize the appearance of BIBTEX databases. As an example
we can consider the different forms of delimiters for fields. BIBTEX allows the use of of
braces or double quotes. Now it can be desirable to use one style only. For this purpose
the rewriting facility of BIBTOOL can be applied.

| bibtool -- ‘rewrite.rule={""\"\([“#]*\)\"$" "{\1}"}’ -0 out.bib |

Since this seems to be rather cryptic we will have a closer look at this example. First
we have to mention that the outer quotes are there because the UN*X shell (csh, sh,
bash,...) treats some characters special and we want to avoid this to happen to the
rewrite rule given. A similar quoting mechanism might be required for all command line
interpreters.

The rewrite rule is applied to any field. The first string—called pattern—which is en-
closed in double quotes is matched against the contents of the field. If a match is found
then the matching sub-string is replaced by the replacement text in the second string.

The pattern is a regular expression like the ones used in Emacs. The first character is
the hat (7). This character anchors the match at the beginning of the line. The last

4Note that some command line interpreters (like the UN*X shells) require the format string to be
quoted (enclosed in single quotes).

10 1. INTRODUCTION

character is the dollar sign which anchors the end at the end of the field value. Thus
only complete matches are considered.

Since we want to find those fields whose values are enclosed in double quotes they are
given after the hat and before the dollar. To avoid a misinterpretation as the end of the
pattern they have to be quoted with the backslash (\).

Next we have the parentheses \ (...\). They are instructions to memorize the matching
sub-string in a register. Since it is the first instruction of this kind the register number 1
is used.

Now we come to the point where we have to specify the contents of the string. For this
purpose we use a character class—written as [...]. Since the first character in this class
specification is a hat this class consists of all characters but those given after the hat.
Thus all characters but the hash sign (#) are allowed.

The star (*) after the character class indicates that an arbitrary number of characters
of this class are allowed.

We have used the complicated construction with a character class to avoid wrong results
which would have resulted when this rewrite rule is applied to a concatenated field value
like the following one:

author = "A. U. Thor" # " and " # "S. 0. Meone"

Such fields are left unchanged by the rewrite rule given above. We could have used the
point (.) instead of the character class since the point matches any character. But this
would have let to the syntactic wrong result:

author = {A. U. Thor" # " and " # "S. 0. Meone}

But we have to complete the explanation of the rewrite rule. The remaining part is the
replacement text. Here we just have to note that the sub-string \1 is not copied verbose
but replaced with the contents of the first register. This register contains the contents
of the field without the delimiting double quotes.

Thus we have a solution to our initial problem which is conservative in the sense that it
sometimes fails but never produces a wrong result.

1.2.4. Extracting Entries for a Document

BIBTOOL can be used to extract the references used in a document. For this purpose
Bi1BToOL analyzes the .aux file and takes the information given there. This includes the
names of the BIBTEX files. Thus no BIBTEX files have to be given in the command line.
Instead the .aux file has to specified—preceded by the option -x.

bibtool -x document.auzr —o document.bib

1.2. USING BIBTOOL—SOME INSTRUCTIVE EXAMPLES 11

The second option -o followed by a file name specifies the destination of the output.
This means, instead of writing the result to the standard output stream the result is
written into this file.

1.2.5. Extracting Entries Matching a Regular Expression

BI1BToOOL can be used to extract the references which fulfill certain criteria. Those criteria
can be specified utilizing regular expressions.” As a special case we can extract all entries
containing a certain sub-string of the key:

bibtool -X tex all.bib —o some.bib

This instruction selects all entries containing the sub-string tex in the key. The second
option -o followed by a file name specifies the destination of the output. Thus instead
of writing the result to the standard output stream the result is written into this file.

Next we want to look up all entries containing a sub-string in some of its fields. For this
purpose we search for the string in all fields first:%

‘ bibtool -- select{ "tex”} all.bib -0 some.bib ‘

Note that the comparison is not done case sensitive; however this can be customized (see
page 34).

Finally we want to select only those entries containing the sub-string in anyone of cer-
tain fields. For this purpose we simply specify the names of those fields in the select
instruction:

bibtool -- select{title booktitle $key "tex”} all.bib —o some.bib

This example extracts all entries containing the sub-string tex in the title field, the
booktitle field, or the reference key.

After we have come so far we can say that the first example in this section is in fact a
short version of the following command:

‘ bibtool -- select{$key "tex”} all.bib —o some.bib ‘

As a simple case of extraction we might want to extract all books from a bibliography.
This can be done with the following command:

‘ bibtool -- select{ @book} all.bib -0 some.bib ‘

A similar method can also be applied for other entry types.

5Those features are only usable if the regular expression library has been enabled during the configu-
ration of BIBTOOL—which is the default.

5Note that some command line interpreters (e.g the UN*X shells) might need additional quoting of the
select instruction since it contains special characters.

12 1. INTRODUCTION

Note Usually cross-referenced entries are not selected automatically. This can result
in incomplete—and thus incorrect—BIBTEX files. To avoid this behavior use the
following command:

bibtool -- select{book} -c all.bib -0 some.bib

1.2.6. Translating ISO 8859-1 Characters

Sometimes you need to translate some special characters into BIBTEX sequences. Sup-
pose you have edited a BIBTEX file and by mistake used those nice characters that are
incompatible with standard Ascit as used in BIBTEX. You can use BIBTOOL to do the
trick:

| bibtool -r iso2tex -3 iso.bib o ascii.bib |

1.2.7. Correctly Sorting Cross-referenced Entries

BIBTEX has a restriction that a cross-referenced entry has to come after the referencing
entry. This can be achieved by putting all entries containing a field “crossref” before
those containing none. As second sorting criterion we want to use the reference key.

This can be achieved with a resource file containing the following instructions

sort.format = {{%1.#s(crossref)a#z}$key}
sort.reverse = off
sort = on

The magic is contained in the first instruction. Thus we will examine it in detail:

%1.#s(crossref)
This formatting instruction does not produce any output but simply acts as con-
dition to determine whether or not to include the following string. The condition
counts the allowed characters (#s) of the field crossref and compares this number
with the given interval [1,00] (1.).

Thus it detects those entries containing a non empty crossref field.

%1.#s(crossref)a
If the condition holds then the string a is used as part of the sort key.

{%1.#s(crossref)a#z}
If the first condition fails then the next alternative after the hash mark (#) is
considered. This is the string z which will always succeed and thus be included
into the sort key.

Thus this construction will produce a if a crossref field is present and not empty
or z otherwise.

1.3. INTERFACING BIBTOOL WITH OTHER PROGRAMMING LANGUAGES 13

{%1.#s(crossref)a#z}$key
Finally the reference key ($key) is appended to the characterizing initial letter.

The sorting according to ascending ASCII order will bring all the entries with crossref
fields to the beginning.

1.3. Interfacing BibTool with Other Programming Languages

BiBTooL can be used as a means for other programming languages to access BIBTEX
data bases. In this course BIBTOOL reads the BIBTEX file and prints it in a normalized
form which makes it easy for the host programming language to parse it and get the
information about the entries and fields.

In addition BIBTOOL can already preselect several entries or do other useful transfor-
mations before the host programming language even sees the contents. Thus it is fairly
easy to write a CGI script (e.g. in Perl) which utilizes BIBTOOL to extract certain entries
from a BIBTEX data base and presents the result on a HTML page.

Currently the distribution of BIBTOOL contains frames of programs in Perl and Tcl which
can be used as a basis for further developments.

I am working towards making BIBTooOL a linkable library of C code. As one step into
this direction the exported functions and header information has been documented. This
documentation is contained in the distribution.

A tight integration of BibTool into another programming language is possible. As an
experiment into this direction I have chosen Tcl as the target language. The result is
BibTcl which is contained in the distribution of BIBTOOL.

1.4. Getting BibTool, Hot News, and Bug Reports

Usually BI1BTOOL can be found on the CTAN or one of its mirrors. Thus you can get
BiBToOL via ftp or extract it from a CDROM containing a dump of the CTAN. The
CTAN (Comprehensive TEX Archive Network) consists of the following major sites (and
many mirrors):

www.dante.de
www.tex.ac.uk

BIBToOL can be found in the following directory:
tex-archive/biblio/bibtex/utils/bibtool

BiBTooL is hosted in a public repository at Sarovar. The repository contains the released
sources as well as the development versions. The repository can be found at

http://sarovar.org/projects/bibtool/

http://www.dante.de
http://www.tex.ac.uk
http://www.ctan.org:/tex-archive/biblio/bibtex/utils/bibtool
http://sarovar.org/projects/bibtool/

14 1. INTRODUCTION

I have set up a WWW page for BIBTOOL. It contains a short description of the features
and links to the documentation and the current downloadable version in source form.
The URL is:

http://www.gerd-neugebauer.de/software/TeX/BibTool/

In addition, this page contains a description of the current version of BIBTOOL and a list
of changes in the last few releases.

If you encounter problems installing or using BIBTOOL you can send me a bug report to
my email address gene@gerd-neugebauer.de. Please include the following information
into a bug report:

e The version of BIBTOOL you are using.
e Your hardware specification and operating system version.

e The C compiler you are using and its version. (Only for compilation and installa-
tion problems)

e The resource file you are using. Try to reduce it to the absolute minimum necessary
for demonstrating the problem.

e A small BIBTEX file showing the problem.

e The command line options of an invocation of BIBTOOL making the problem ap-
pear.

e A short justification why you think that the behavior is an error.

I have had the experience that compiling this information has helped me find my own
problems in using software. Thus I could fix several problems before sending a bug
report.

On the other side I have unfortunately also had the experience that I have got complains
about problems in my software. After several questions it turned out that the program
had not been used properly.

Oh, sure. There have been bugs and I suppose there are still some bugs in BIBTOOL. 1
am grateful for each hint which helps me eliminating these bugs.

1.5. Contributing to BibTool

As you might have read BIBTOOL is free software in the sense of the Free Software
Foundation. This means that you can use it as a whole or parts of it as long as you do
not deny anyone to have the sources and use it freely. See the file COPYING for details.

If you feel morally obliged to provide compensation for the use of this program I have
the following suggestions.

e Proofread this documentation and report any errors you find as well as additional
material to put in.

http://www.gerd-neugebauer.de/software/TeX/BibTool/

1.5. CONTRIBUTING TO BIBTOOL 15

e Provide additional contributed pieces to BIBToOL. For instance useful resource
files which could be included into the library.

e Write a useful program and release it to the public without making profit, prefer-
ably under an Open Source license like the GNU General Public License or the
GNU artistic license.

A. Reference Manual

This part of the documentation tries to describe all commands and options. Since the
behavior of BIBTOOL can be adjusted at compile time not all features may be present in
your executable. Thus watch out and complain to the installer if something is missing.

A.1. Beware of the Command Line

Be aware that command line interpreters have different ideas about what to do with a
command line before passing the arguments to a program. Thus it might be necessary
to carefully quote the arguments. Especially if the command contains spaces it is very
likely that quoting is needed.

For instance in UN*X shells it is in general a good strategy to enclose command line
arguments in single quotes (?) if they contain white-space or special characters like \,
$,& !, or #

Instead of excessively using command line arguments it is preferable and less error-prome
to put the major configuration into a resource file and just include this resource file on
the command line. Details on this are described in the next section.

A.2. Command Line Usage and Resource Files

Bi1BTOOL can be controlled either by arguments given in the command line or by com-
mands given in a file (or both). Those command files are called resource files. If BIB
TooL is installed correctly you should have the executable command bibtool (maybe
with an additional extension). Depending on your computer and operating system you
can start BIBTOOL in different ways. This can be done either by issuing a command in
a command line interpreter (shell), by clicking an icon, or by selecting a menu item. In
the following description we will concentrate on the use in a UN*X like shell. There you
can type simply

. bibtool

Now BIBTOOL is waiting for your input. As you type BIBTOOL reads what you type.
This input is interpreted as data conforming BIBTEX file rules. The result is printed
when BIBTOOL is finished. You can terminate the reading phase with your End-Of-File
character (e.g. Control-D on UN*X, or Control-Z on MS-D*S)

17

18 A. REFERENCE MANUAL

This application in itself is rather uninteresting. Thus we come to the possibility to give
arguments to BIBToOOL. The simplest argument is -h as in

. bibtool -h

This command should print the version number and a short description of the command
line arguments to the screen.

The next application is the specification of resources. Resource files can be given in the
command line after the flag -r.

bibtool -r resource_file

In this way an arbitrary number of resource files can be given. Those resource files are
read in turn and the commands contained are evaluated. If no resource file is given in the
command line BIBTOOL tries to find one in standard places. First of all the environment
variable BIBTOOLRSC is searched. If it is defined then the value is taken as a list of
resource file names separated by colon (UNIX), semicolon (DOS), or comma (Amiga).
All of them are tried in turn and loaded if they exist. If the environment variable is not
set or no file could be loaded successfully then the default resource file (usually the file
.bibtoolrsc) is tried to be read in the home directory (determined by the environment
variable HOME) or the current directory.

The resource files are searched similar to the searching mechanism for BIBTEX files (see
section A.3). The extension .rsc is tried and a search path can be used. This search path
is initialized from the environment variable BIBTOOL. Initially only the current directory
is on the search path. The search path can also be set in a resource file (for following
resource file reading). This can be achieved by setting the resource resource.search.path.

resource.search.path = path ‘

When an explicit resource file is given in the command line the defaults are not used.
To incorporate the default resource searching mechanism the command line option -R
can be used:

. bibtool -R

Now let us consider some examples. Suppose that the current directory contains a default
resource file (named .bibtoolrsc) and an additional resource file my_rsc.

The following invocation of BIBTOOL uses only the resource file my_rsc:

‘ bibtool -r my_rsc —i sample

If you want to initialize the resources from the default resource file before you can use
the -R before the inclusion of the resource file:

‘ bibtool -R -r my._rsc —-% sample

A.2. COMMAND LINE USAGE AND RESOURCE FILES 19

If you add the -R argument after the resource specification then the default resource is
evaluated after your resource file. Thus settings are potentially overwritten:

bibtool -7 my_rsc -R -7 sample

Additionally note that resource files are evaluated at once whereas input files are read
in one chunk at the end. Thus you can not specify one set of parameters to be used for
one file and another set of parameters for the next file. This is impossible within one
invocation of BIBTOOL!.

As a consequence of this behavior the last example is equivalent to the following invo-
cations:

‘ bibtool -7 my_rsc —%i sample -R ‘

‘ bibtool -% sample —r my_rsc -R ‘

Now we have to describe the commands allowed in a resource file. The general form of
a resource command is of the form

name = {value}

name is the resource name which conforms the rules of BIBTEX reference keys. Thus
name can be composed of all characters but white-space characters and

w2 C) o, o= {1}

Resource names are currently composed of letters and the period. The next component
is an optional equality sign (=). The equality sign is recommended as it helps detecting
syntax problems. White-space characters surrounding the equality sign or separating
resource name and resource value are ignored. The resource value can be of the following
kind:

e A number composed of digits only.

A string conforming the rules of resource names, i.e. made up of all but the for-
bidden characters described above.

A string containing arbitrary characters delimited by double quotes (”) not con-
taining double quotes. Parentheses and curly brackets have to come in matching
pairs.

A string containing arbitrary characters delimited by curly brackets ({}). Paren-
theses and curly brackets have to come in matching pairs.

'This might be changed in the next major revision (3.0).

20 A. REFERENCE MANUAL

You can think of resource names as variables or functions in a programming language.
Resource commands simply set the variables to the given value, add the value to the old
value, or initiate a action. There are different types of resources

e Boolean resources can take only the values on and off. The values on, t, true, 1,
and yes are interpreted as the same. For those values the case of the letters is
ignored. Thus true and TrUe are the same. Every other value else is interpreted
as off.

e Numeric resources can take numeric values only.
e String resources can take arbitrary strings.

Usually white-space characters are ignored. There is one exception. The characters % and
act as comment start characters if given between resource commands. All characters
to the end of the line are ignored afterwards.

Now we come the description of the first resource available. To read in additional resource
files the resource file may contain the resource

resource {additional/resource/file}

Thus the resource given above has the same functionality as the command line option
-r described above. Path names should be specified in the normal manner for your
operating system.

One resource command useful for debugging is the print resource. The resource value
is immediately written to the error stream. The output is terminated by a newline
character. Certain translations are performed during the reading of a resource which
can be observed when printing. Each sequence of white-space characters is translated
into a single space.

To end this subsection we give an example of the print resource. In this sample we also
see the possibility to omit the equality sign and use quotes as delimiters.

print " This is a stupid message.”

Finally we can note that the commands given in a resource file can also be specified on
the command line. This can be achieved with the command line option -- The next
command line argument is taken as a resource command.

‘ bibtool -- resource_command ‘

This can be used to issue resource commands which do not have a command line coun-
terpart. One example we have already seen. The print instruction can be used from the
command line with the following

bibtool -- print{hello_world}

A.3. INPUT FILE SPECIFICATION AND SEARCH PATH 21

Summary
Option Resource command Description
-h Show a list of command line options.
-R Immediately evaluate the instructions from the
default file.
print {message} Write out the text message.
-r file resource = file Immediately evaluate the instructions from the
resource file file.
resource.search.path List of directories to search for resource files.
-=rsc rsc Evaluate the resource instruction rsc.

A.3. Input File Specification and Search Path

An arbitrary number of input files can be specified. Input files can be specified in two
ways. The command line option -i is immediately followed by a file name. Since no
restriction on the file name is applied this can also be used to specify files starting with
a dash.

‘ bibtool -i input_file ‘

The resource name input can be used to specify additional input files.

‘ input {input_file} ‘

Input files are processed in the order they are given. If no input file is specified the
standard input is used to read from.

Depending on the special configuration of BIBTOOL there are two ways of searching
for BIBTEX files. The native mode of BIBTOOL uses a list of directories and a list of
extensions to find a file. Alternatively the kpathsea library can be used which provides
additional features like the recursive searching in sub-directories. First we look at the
native BIBTOOL searching mechanism.

The files are searched in the following way. If the file is can’t be opened as given the
extension .bib is appended and another read is tried. In addition directories can be
given which are searched for input files. The search path can be given in two different
ways. First, the resource name bibtex.search.path can be set to contain a search path
specification.

bibtex.search.path = {directoryl:directory2:directory3}

The elements of the search path are separated by colons. Thus colons are not allowed
as parts of directories. Another source of the search path is the environment variable
BIBINPUTS. This environment variable is usually used by BIBTEX to specify the search

22 A. REFERENCE MANUAL

path. The syntax of the specification is the same as for the resource bibtex.search.path. To
check the appropriate way to set your environment variable consult the documentation
of your shell, since this is highly dependent on it.

To allow adaption to operating systems other than UN*X the following resources can
be used. The name of the environment bibtex.env.name overwrites the name of the
environment variable which defaults to BIBINPUTS.

bibtex.env.name = {ENVIRONMENT _VARIABLE}

The first character of the resource env.separator is used as separator of directories in the
resource bibtex.search.path and the environment variable given as bibtex.env.name.

env.separator = {:} ‘

The default character separating directories in a file name is the slash (/). The first
character of the resource dir.file.separator can be used to change this value.

dirfile.separator = {\} ‘

Note that the defaults for env.separator and dir.file.separator are set at compile time
to a value suitable for the operating system. Usually you don’t have to change them
at all. For instance for MSD*S machines the env.separator is usually set to ; and the
dir.file.separator is usually set to \.

If the kpathsea library is used for searching BIBTEX files then some of the resources
described above have no effect. They are replaced by their kpathsea counterparts. Most
probably you are using the kpathsea library already in other TEX related programs. Thus
I just have to direct you to the documentation distributed with the kpathsea library for
details.

Summary
Option Resource command Description
bibtex.env.name={var} Use the environment variable env to add more
directories to the search path for BIBTEX (in-
put) files.
bibtex.search.path={path} Use the list of directories path to find BIBTEX
(input) files.
dir.file.separator={c} Use the character ¢ to separate the directory
from the file.
env.separator={c} Use the character ¢ to separate directories in
a path.
-1 file input{file} Add the BIBTEX file file to the list of input

files.

A.4. OuTpPUT FILE SPECIFICATION AND STATUS REPORTING 23

A.4. Output File Specification and Status Reporting

By default, the processed BIBTEX entries are written to the standard output. This
output can be redirected to a file using the command line option -o as in

bibtool -o output_file

The resource name output.file can also be used for this purpose.

‘ output.file = {output_file} ‘

No provisions are made to check if the output file is the same as a input file.

A second output stream is used to display error messages and status reports. The
standard error stream is used for this purpose.

The messages can roughly be divided in three categories: error messages, warnings, and
status reports. Error messages indicate severe problems. They can not be suppressed.
Warnings indicate possible problems which could (possibly) have been corrected. They
are displayed by default but can be suppressed. Status reports are messages during the
processing which indicate actions currently performed. They are suppressed by default
but can be enabled.

Warning messages can be suppressed using the command line option -q. This option
toggles the Boolean quiet value.

bibtool -q

The same effect can be obtained by assigning the value on or off to the resource quiet:

quiet = on

Status reports are useful to see the operations performed. They can be enabled using
the command line option -v. This option toggles the Boolean verbose value.

| bibtool -v |

The same can also be achieved with the Boolean resource verbose:

| verbose = on |

Another output stream can be used to select the string definitions. This is described in
section A.13 on macros.

24 A. REFERENCE MANUAL

Summary
Option Resource command Description
-o file output.file {file} Direct output to the file file.
-q quiet=on Suppress warnings. Errors can not be sup-
pressed.
-V verbose=on Enable informative messages on the activities
of BIBTOOL.

A.5. Parsing and Pretty Printing

The first and simplest task we have to provide on BIBTEX files is the parsing and pretty
printing. This is not superfluous since BIBTEX is rather pedantic about the accepted
syntax. Thus I decided to try to be generous and correct as many errors as I can.

Each input file is parsed and stored in an internal representation. BIBTEX simply ignores
any characters between entries. BIBTOOL stores the comments and attaches them to
the entry immediately following them. Normally anything between entries is simply
discarded and a warning printed. The Boolean resource pass.comments can be used to
change this behavior.

pass.comments = on

If this resource is on then the characters between entries are directly passed to the output
file. This transfer starts with the first non-space character after the end of an entry.

The standard BIBTEX styles support a limited number of entry types. Those are prede-
fined in BiBToOL. Additional entry types can be defined using the resource new.entry.type
as in

new.entry.type {Anthology}

This option can also be used to redefine the appearance of entry types which are already
defined. Suppose we have defined Anthology as above. Afterwards we can redefine this
entry type to be printed in upper case with the following option:

new.entry.type {ANTHOLOGY}

Each undefined entry type leads to an error message.

When a database is printed the different kinds of entries are printed together. For in-
stance all normal entries are printed en block. The order of the entry types is determined
by the resource print.entry.types. The value of this resource is a string where each char-
acter represents an entry type to be printed. If a letter is missing then this part of the
database is omitted. The following letters are recognized—uppercase letters are folded
to their lowercase counterparts if they are not mentioned explicitly:

A.5. PARSING AND PRETTY PRINTING 25

a The aliases of the database.

¢ The comments of the database which are not attached to an entry.

i The includes of the database.

m The modifies of the database.

n The normal entries of the database.

p The preambles of the database.

$ The strings (macros) of the database.

S The strings (macros) of the database which are used in the other entries.

s The strings (macros) of the database where the resource print.all.strings determines
whether all strings are printed or the used ones only.

The following invocation prints the preambles and the normal entries only. This can be
desirable if the macros are printed into a separate file.

print.entry.types {pn}

The internal representation is printed in a format which can be adjusted by certain
options. Those options are available through resource files or by specifying resources on
the command line.

print.line.length This numeric resource specifies the desired width of the lines. lines
which turn out to be longer are tried to split at spaces and continued in the next
line. The value defaults to 77.

print.indent This numeric resource specifies indentation of normal items, i.e. items in
entries which are not strings or comments. The value defaults to 2.

print.align This numeric resource specifies the column at which the =" in non-comment
and non-string entries are aligned. This value defaults to 18.

print.align.key This numeric resource specifies the column at which the =’ in non-

comment and non-string entries are aligned. This value defaults to 18.

print.align.string This numeric resource specifies the column at which the =’ in string
entries are aligned. This value defaults to 18.

print.align.preamble This numeric resource specifies the column at which preamble en-
tries are aligned. This value defaults to 11.

print.align.comment This numeric resource specifies the column at which comment en-
tries are aligned.? This value defaults to 10.

2This is mainly obsolete now since comments do not have to follow any syntactic restriction.

26 A. REFERENCE MANUAL

print.comma.at.end This Boolean resource determines whether the comma between
fields should be printed at the end of the line. If it is off then the comma is
printed just before the field name. In this case the alignment given by print.align
determines the column of the comma.

print.equal.right This Boolean resource specifies whether the = sign in normal entries
is aligned right. If turned off then the = sign is flushed left to the field name. This
value defaults to on.

print.newline This numeric resource specifies the number of newlines between entries.
This value defaults to 1.

print.terminal.comma This Boolean resource specifies whether a comma should be printed
after the last record of a normal entry. This contradicts the rules of BIBTEX but
might be useful for other programs. This value defaults to off.

print.use.tab This Boolean resource specifies if the TAB character should be used for
indenting. This use is said to cause portability problems. Thus it can be disabled.
If disabled then the appropriate number of spaces are inserted instead. This value
defaults to on.

print.wide.equal This Boolean resource determines whether the equality sign should be
forced to be surrounded by spaces. Usually this resource is off which means that
no spaces are required around the equality sign and they can be omitted if the
alignment forces it.

suppress.initial.newline This Boolean resource suppresses the initial newline before nor-
mal records since this might be distracting under certain circumstances.

The resource values described above are illustrated by the following examples. First we
look at a string entyy.

print.align.string print.line.length

Next we look at an unpublished entry. It has a rather long list of authors and a long
title. It shows how the lines are broken.

print.align.key

Q@Unpublishedq{ unpublished-key,
author = ["First A. U. Thor and Seco N. D. Author and Third A. Uthor
and others",
title = |"This is a rather long title of an unpublished entry which
exceeds one line",
mote = |"Some useless comment"
}
print.indent print.align print.line.length

The field names of an entry are usually printed in lower case. This can be changed with
the resource new.field.type. The argument of this resource is an equation where left of

A.5. PARSING AND PRETTY PRINTING 27

the '=’ sign is the name of a field and on the right side is it’s print name. They should
only contain allowed characters.

new.field.type { author = AUTHOR }

This feature can be used to rewrite the field types. Thus it is completely legal to have
a different replacement text than the original field:

new.field.type { OPTauthor = Author }

String names are used case insensitive by BIBTEX. BIBTOOL normalizes string names
before printing. By default string names are translated to lower case. Currently two
other types are supported: translation to upper case and translation to capitalized case,
i.e. the first letter upper case and the others in lower case.

The translation is controlled by the resource symbol.type. The value is one of the strings
lower, upper, and cased. The resource can be set as in

symbol.type = upper

The macro names are passed through the same normalization apparatus as field types.
Thus you can force a rewriting of macro names with the same method as described
above. You should be careful when choosing macro names which are also used as field

types.

The reference key is usually translated to lower case letters unless a new key is generated
(see section A.9). In this case the chosen format determines the case of the key. Some-
times it can be desirable to preserve the case of the key as given (even so BIBTEX does
not mind). This can be achieved with the Boolean resource preserve.key.case. Usually it
is turned off (because of backward compatibility and the memory used for this feature).
You can turn it on as in

preserve.key.case = on ‘

If it is turned on then the keys as they are read are recorded and used when printing
the entries. The internal comparisons are performed case insensitive. This is not influ-
enced by the resource preserve.key.case. Especially this holds for sorting which does not
recognize differences in case.

28

A. REFERENCE MANUAL

Summary
Option Resource command Description
new.entry.type{ type} Define a new entry type type.
new.field.type{ type} Define a new field type type.

pass.comments=on

Do not discard comments but attach them to
the entry following them.

preserve.key.case=on

Do not translate keys to lower case when read-
ing.

print.align.comment=n

Align comment entries at column n.

print.align.key=n

Align the key of normal entries at column n.

print.align.string=n

Align the = of string entries at column n.

print.align=n

Align the = of normal entries at column n.

print.comma.at.end=on

Put the separating comma at then end of the
line instead of the beginning.

print.indent=n

Indent normal entries to column n.

print.line.length=n

Break lines at column n.

print.print.newline=n,

Number of empty lines between entries.

print.use.tab=on

Use the TAB character to compress multiple
spaces.

print.wide.equal=off

Force spaces around the equal sign.

suppress.initial.newline=on

Suppress the initial newline before normal
records.

symbol.type=type

Translate symbols according to type: upper,
lower, or cased.

A.6. Sorting

The entries can be sorted according to a certain sort key. The sort key is by default the
reference key. Sorting can enabled with the command line switches -s and -8 as in

bibtool -s

bibtool -S

The first variant sorts in ascending AScCII order (including differentiation of upper and
lower case). The second form sorts in descending AScCII order. The same effect can be
achieved with the Boolean resource values sort and sort.reverse respectively.

sort = {on}
sort.reverse = {on}

The resource sort determines whether or not the entries should be sorted. The resource
sort.reverse determines whether the order is ascending (off) or descending (on) AscI

A.6. SORTING 29

order of the sort key. The sort key is initialized from the reference key if not given
otherwise.

Alternatively the sort key can be constructed according to a specification. This spec-
ification can be given in the same way as a specification for key generation. This is
described in section A.9 in detail.

The associated resource name is sort.format. Several formats are combined as alterna-
tives.

sort.format = {%N(author)}
sort.format = {%N(editor)}

Those two lines are equivalent with the single resource

‘ sort.format = { %N(author) # %N(editor)}

This means that the sort key is set to the (normalized) author names if an author is
given. Otherwise it tries to use the normalized editor name. If everything fails the sort
key is empty.

Let us reconsider the unprocessed example on page 8. Without any sort.format instruc-
tions this entry would sorted in under “article-full”. With the sort.format given above it
would be sorted in under “Aamport.LA”.

Note that in ASCII order the case is important. The uppercase letters all come before
the lowercase letters.

Usually the keys are folded to lower case during the normalization. Thus the lower case
variants are also used for comparison. The resource preserve.key.case can be used to print
cased keys as they are encountered in the input file. This feature can be combined with
the Boolean resource sort.cased to achieve sorting according to the unfolded reference
key:

preserve.key.case = {on}
sort.cased = {on}

Beside the normal entries the macros (string entries) are sorted. This happens in per
default. The resource sort.macros can be used to turn off this feature as in

sort.macros = {off}

An example of sorting can be seen in section 1.2.1 on page 7.

30 A. REFERENCE MANUAL

Summary
Option Resource command Description
-S Enable sorting of entries in reverse sorting or-
der.
-s sort Enable sorting of entries.
sort.cased=on Use the cased form of the reference key for
sorting.
sort.format{ spec} Add disjunctive branch spec to the sort key
specifier.
sort.macros=off Turn off the sorting of string entries.
sort.reverse=omn Reverse the sorting order.

A.7. Regular Expression Matching

BiBTooL makes use of the GNU regular expression library. Thus a short excursion into
regular expressions is contained in this manual. Several examples of the application of
regular expressions can be found also in other sections of this manual.

A concise description of regular expressions is contained in the document regex-0.12/regex.texi
contained in the BIBTooL distribution. In any cases of doubt this documentation is
preferable. The remainder of this section contains a short description of regular expres-
sions.

Note that the default regular expressions of the Emacs style are used.

Ordinary characters match only to themselves or their upper or lower case counterpart.
Any character not mentioned as special is an ordinary character. Among others
letters and digits are ordinary characters.

For instance the regular expression abc matches the string abc.
The period (.) matches any single character.

For instance the regular expression a.c matches the string abc but it does not
match the string abbe.

The star () is used to denote any number of repetitions of the preceding regular ex-
pression. If no regular expression precedes the star then it is an ordinary character.

For instance the regular expression ab*c matches any string which starts with a
followed by an arbitrary number of b and ended by a c. Thus it matches ac and
abbbc. But it does not match the string abcc.

The plus (+) is used to denote any number of repetitions of the preceding regular ex-
pression, but at least one. Thus it is the same as the star operator except that the
empty string does not match. If no regular expression precedes the plus then it is
an ordinary character.

A.7. REGULAR EXPRESSION MATCHING 31

For instance the regular expression ab+c matches any string which starts with a
followed by one or more b and ended by a c. Thus it matches abbbc. But it does
not match the string ac.

The question mark (?) is used to denote an optional regular expression. The preceding
regular expression matches zero or one times. If no regular expression precedes the
question mark then it is