i1 : R = ZZ/101[a,b,c]/ideal{a^3,b^3,c^3,a^2*b^2*c^2} o1 = R o1 : QuotientRing |
i2 : A = koszulComplexDGA(R) o2 = {Ring => R } Underlying algebra => R[T , T , T ] 1 2 3 Differential => {a, b, c} isHomogeneous => true o2 : DGAlgebra |
i3 : netList getGenerators(A) Computing generators in degree 1 : -- used 0.00910199 seconds Computing generators in degree 2 : -- used 0.0195021 seconds Computing generators in degree 3 : -- used 0.0187207 seconds +------------+ | 2 | o3 = |a T | | 1 | +------------+ | 2 | |b T | | 2 | +------------+ | 2 | |c T | | 3 | +------------+ | 2 2 | |a*b c T | | 1 | +------------+ | 2 2 | |a*b c T T | | 1 2 | +------------+ | 2 2 | |a b*c T T | | 1 2 | +------------+ | 2 2 | |a*b c T T | | 1 3 | +------------+ | 2 2 | |a*b c T T T | | 1 2 3| +------------+ | 2 2 | |a b*c T T T | | 1 2 3| +------------+ | 2 2 | |a b c*T T T | | 1 2 3| +------------+ |