next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

                          2         2 2         2 2    2 2     2     2   2 2
o2 = ideal (p*u - g*v, b*q  - e*v, o r  - e*l, m o  - g w , f*k m - b , e l 
     ------------------------------------------------------------------------
        2 2   2
     - b s , d e*k - l)

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             3 4 3 4 3    2 2 4   3   4 2 2 3 3 4        4    4 4 4 2 3 3  
o3 = ideal (b e f g k  - i j m r*v , b d f i p t  - c*h*j r, d e l r u x  -
     ------------------------------------------------------------------------
      4 3 4 3   4 2 2 4 4 3 2     2 2
     b j v w , a b d e h k u v - i t )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.