This function currently just finds the elements whose boundary give the product of every pair of cycles that are chosen as generators. Eventually, all higher Massey operations will also be computed. The maximum degree of a generating cycle is specified in the option GenDegreeLimit, if needed.
This is an example of a Golod ring. It is Golod since it is the Stanley-Reisner ideal of a flag complex whose 1-skeleton is chordal [Jollenbeck-Berglund].
i1 : Q = ZZ/101[x_1..x_6]
o1 = Q
o1 : PolynomialRing
|
i2 : I = ideal (x_3*x_5,x_4*x_5,x_1*x_6,x_3*x_6,x_4*x_6)
o2 = ideal (x x , x x , x x , x x , x x )
3 5 4 5 1 6 3 6 4 6
o2 : Ideal of Q
|
i3 : R = Q/I
o3 = R
o3 : QuotientRing
|
i4 : A = koszulComplexDGA(R)
o4 = {Ring => R }
Underlying algebra => R[T , T , T , T , T , T ]
1 2 3 4 5 6
Differential => {x , x , x , x , x , x }
1 2 3 4 5 6
isHomogeneous => true
o4 : DGAlgebra
|
i5 : isHomologyAlgebraTrivial(A,GenDegreeLimit=>3)
Computing generators in degree 1 : -- used 0.0120298 seconds
Computing generators in degree 2 : -- used 0.0299257 seconds
Computing generators in degree 3 : -- used 0.0640602 seconds
o5 = true
|
i6 : cycleList = getGenerators(A)
Computing generators in degree 1 : -- used 0.00202701 seconds
Computing generators in degree 2 : -- used 0.0177041 seconds
Computing generators in degree 3 : -- used 0.0182768 seconds
Computing generators in degree 4 : -- used 0.00899943 seconds
Computing generators in degree 5 : -- used 0.0080706 seconds
Computing generators in degree 6 : -- used 0.0074895 seconds
o6 = {x T , x T , x T , x T , x T , -x T T , -x T T , -x T T , -x T T , -
5 4 5 3 6 4 6 3 6 1 6 1 3 5 3 4 6 3 4 6 1 4
------------------------------------------------------------------------
x T T + x T T , - x T T + x T T , x T T T , x T T T - x T T T }
6 4 5 5 4 6 6 3 5 5 3 6 6 1 3 4 6 3 4 5 5 3 4 6
o6 : List
|
i7 : tmo = findTrivialMasseyOperation(A)
Computing generators in degree 1 : -- used 0.00208507 seconds
Computing generators in degree 2 : -- used 0.018065 seconds
Computing generators in degree 3 : -- used 0.0188449 seconds
Computing generators in degree 4 : -- used 0.00180851 seconds
Computing generators in degree 5 : -- used 0.00173194 seconds
Computing generators in degree 6 : -- used 0.00173673 seconds
o7 = {{3} | 0 0 0 0 0 0 0 0 0 0 |, {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 -x_6 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 -x_6 | {4} | x_6 0 0 0 0
{3} | 0 0 0 0 0 0 -x_6 0 0 0 | {4} | 0 0 x_6 0 0
{3} | 0 0 0 0 0 0 0 0 -x_6 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 |
{3} | -x_5 0 x_6 -x_6 0 0 0 0 0 0 |
{3} | 0 0 0 0 0 -x_6 0 0 0 0 |
{3} | 0 0 0 0 0 0 0 0 0 0 |
{3} | 0 0 0 0 0 0 0 0 0 0 |
------------------------------------------------------------------------
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 x_6 0 0 0 0 0 0 -x_6 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 x_6 0 0 0 -x_6 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x_6 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x_5 0 x_6 0 -x_5 0 -x_6 0
------------------------------------------------------------------------
0 |, {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |,
0 | {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
0 | {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
0 | {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
0 | {5} | 0 0 0 0 0 0 x_6 0 0 0 0 0 0 -x_6 0 0 0 0 0 0 0 0 0 0 x_6 |
0 | {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
0 |
0 |
x_6 |
0 |
0 |
0 |
0 |
0 |
0 |
------------------------------------------------------------------------
0, 0}
o7 : List
|
i8 : assert(tmo =!= null)
|
Below is an example of a Teter ring (Artinian Gorenstein ring modulo its socle), and the computation in Avramov and Levin’s paper shows that H(A) does not have trivial multiplication, hence no trivial Massey operation can exist.
i9 : Q = ZZ/101[x,y,z]
o9 = Q
o9 : PolynomialRing
|
i10 : I = ideal (x^3,y^3,z^3,x^2*y^2*z^2)
3 3 3 2 2 2
o10 = ideal (x , y , z , x y z )
o10 : Ideal of Q
|
i11 : R = Q/I
o11 = R
o11 : QuotientRing
|
i12 : A = koszulComplexDGA(R)
o12 = {Ring => R }
Underlying algebra => R[T , T , T ]
1 2 3
Differential => {x, y, z}
isHomogeneous => true
o12 : DGAlgebra
|
i13 : isHomologyAlgebraTrivial(A)
Computing generators in degree 1 : -- used 0.00835395 seconds
Computing generators in degree 2 : -- used 0.0180599 seconds
Computing generators in degree 3 : -- used 0.0169533 seconds
o13 = false
|
i14 : cycleList = getGenerators(A)
Computing generators in degree 1 : -- used 0.00153959 seconds
Computing generators in degree 2 : -- used 0.0114981 seconds
Computing generators in degree 3 : -- used 0.0115545 seconds
2 2 2 2 2 2 2 2 2 2 2
o14 = {x T , y T , z T , x*y z T , x*y z T T , x y*z T T , x*y z T T ,
1 2 3 1 1 2 1 2 1 3
-----------------------------------------------------------------------
2 2 2 2 2 2
x*y z T T T , x y*z T T T , x y z*T T T }
1 2 3 1 2 3 1 2 3
o14 : List
|
i15 : assert(findTrivialMasseyOperation(A) === null)
Computing generators in degree 1 : -- used 0.00155258 seconds
Computing generators in degree 2 : -- used 0.0115092 seconds
Computing generators in degree 3 : -- used 0.0115267 seconds
|