i1 : R=ZZ/37[x_1..x_7]; |
i2 : I=ideal(x_1..x_6, x_1*x_2*x_3*x_7, x_1*x_2*x_4*x_7, x_1*x_3*x_5*x_7, x_1*x_4*x_6*x_7, x_1*x_5*x_6*x_7, x_2*x_3*x_6*x_7, x_2*x_4*x_5*x_7, x_2*x_5*x_6*x_7,x_3*x_4*x_5*x_7,x_3*x_4*x_6*x_7); o2 : Ideal of R |
i3 : (intcl,rees)=intclMonIdeal I; |
i4 : intcl o4 = ideal (x , x , x , x , x , x ) 1 2 3 4 5 6 ZZ o4 : Ideal of --[x , x , x , x , x , x , x , a] 37 1 2 3 4 5 6 7 |
i5 : rees ZZ o5 = --[x , x , x , x , x , x , x , x a, x a, x a, x a, x a, x a] 37 1 2 3 4 5 6 7 1 2 3 4 5 6 ZZ o5 : monomial subalgebra of --[x , x , x , x , x , x , x , a] 37 1 2 3 4 5 6 7 |
i6 : R=ZZ/37[x_1..x_8]; |
i7 : I=ideal(x_1..x_6, x_1*x_2*x_3*x_7, x_1*x_2*x_4*x_7, x_1*x_3*x_5*x_7, x_1*x_4*x_6*x_7, x_1*x_5*x_6*x_7, x_2*x_3*x_6*x_7, x_2*x_4*x_5*x_7, x_2*x_5*x_6*x_7,x_3*x_4*x_5*x_7,x_3*x_4*x_6*x_7); o7 : Ideal of R |
i8 : (intcl,rees)=intclMonIdeal(I,x_8); |
i9 : intcl o9 = ideal (x , x , x , x , x , x ) 1 2 3 4 5 6 o9 : Ideal of R |
i10 : rees ZZ o10 = --[x , x , x , x , x , x , x , x x , x x , x x , x x , x x , x x ] 37 1 2 3 4 5 6 7 1 8 2 8 3 8 4 8 5 8 6 8 o10 : monomial subalgebra of R |