
Shadow Mapping in Ogre

Hamilton Chong

Aug 2006

1

Abstract

A discussion of shadow mapping: the algorithm, variants, theory and analysis,

and implementation.

1 Introduction to the Shadow Mapping Algorithm

Shadow mapping, an algorithm introduced by Lance Williams [9] and now prevalent

in real-time and off-line rendering, is based on a simple idea: First, a snapshot of the

scene is taken from the viewpoint of the light. Then, when creating an image from the

perspective of the camera, the light’s snapshot is used to determine visibility. Parts of

the scene seen by both the light and the camera must be lit (by the light in question).

Parts of the scene visible only to the camera must be shadowed. We do not care about

parts of the scene seen only by the light.

In practice, the snapshot from the viewpoint of the light is stored as a floating point

depth buffer. It is important to use a format that supports enough precision to avoid

shadow acne (z-fighting) on lit surfaces. In Ogre, we can specify the depth format to

use; in the example code, we will choose the 32-bit format.

Once shadow determination has occurred (whether a fragment is in shadow or not),

Ogre provides two different ways to render the shadows into the final image. The

modulative technique will uniformly darken regions of the image determined to be in

shadow. This is a cheaper and less accurate lighting model. For instance, specular

highlights in shadow will appear as darkened specular highlights. The other technique

is additive light masking. This technique builds up contributions from each light in non-

shadowed areas and adds them together to create the final image. The code in section

4 will use additive light masking, but could just as easily be adapted for modulative

shadows.

1.1 Formalism

Mathematically, the process can be represented as follows: Let Pl and Pc be the projec-

tion matrices for the light and camera respectively. Let Ml and Mc be the modelview

matrices for the light and camera coordinate systems. Let~x = [x1,x2,x3,1]t be a point

in object space, ~y = [y1,y2,y3,1]t the screen space coordinates, and ~u = [u1,u2,u3,1]t

the shadow map coordinates.









u1wl

u2wl

u3wl

wl









= PlMl









x1

x2

x3

1









(1)









y1wc

y2wc

y3wc

wc









= PcMc









x1

x2

x3

1









(2)

2

Figure 1: Shadow map sample must use one float to represent a range of possible depth values.

A depth sample is chosen in the middle. Any camera image point in between the two camera rays

will see the geometry, and depending on distance from light will report differently on shadowed

versus lit. However, every such point should be lit.

These equations can be written more concisely as: ~uwl = PlMl~x and~ywc = PcMc~x.

Division of~uwl and~ywc by their respective homogeneous coordinates yields the Euclid-

ean representations ~u and~y.

Note that while Pc and Mc are completely determined by the camera image we want

to produce, we have some ambiguity in the Pl and Ml chosen for shadow mapping. The

degrees of freedom here are later exploited to combat the aliasing issue.

1.2 Depth Biasing

Due to the finite precision of floating point representations and inherent inability of one

number to represent a range of values, it is often necessary to add a little bias to the

depth values stored in a shadow map. One does not simply store the u3 value. Figure 1

illustrates the issue. Here we have used blue dots on the light’s image plane to represent

boundaries between shadow “texels.” The interval in between the dots then represents

a shadow map sample for which a single depth value (float) is stored. For the sample

whose boundary rays are shown, the red dot’s depth is saved. However, note that from

the camera’s perspective, any (camera) image point in between the two drawn camera

rays will hit the scene geometry within the shadow map sample’s interval. Hence, the

same shadow map sample depth will be used to determine visibility for all such camera

pixels. Camera pixels whose rays fall to the right of the red dot will be marked as

shadowed, while pixels whose rays fall to the left of the red dot will be marked as lit.

This is not the right behavior because clearly all the pixels should be marked as lit. As

we can see, a depth bias is needed. By pushing the shadow map sample’s depth farther

(to the 2nd red dot), we can achieve correct shadow determination.

One could approach the depth bias issue in a completely ad hoc manner, but it is

possible to do better. One would ideally compute a bias that depends on how depth (u3)

3

changes between shadow map samples. The change in depth as one moves a unit step

(to the next shadow map sample) represents the ambiguity of the depth value. Such a

value may seem intractable to compute, but calculus and linear algebra save the day.

From calculus, we learn that the derivative provides the best linear approximation to

any function (u3 = u3(u1,u2) in particular). In multiple dimensions, this role is played

by the Jacobian (matrix of partial derivatives). In other words, we want to compute
du3
du1

and
du3
du2

, where we have treated u3 as a function of u1 and u2. Once these values

are computed, it makes sense to then add some weighted combination of these to the

stored depth value (e.g., some scale of the Jacobian’s Frobenius norm).

But even if the light is staring at a plane straight on (view direciton lines up with

plane’s normal), making
du3
du1

and
du3
du2

both zero, we would still need a slight offset

because rounding due to the float’s finite representation may still cause shadow acne.

In this case, we’d like to offset the depth by a small value that pushes it beyond rounding

ambiguity. While one could use an arbitrary constant offset, this is unsatisfactory since

the constant in light image space corresponds to varying amounts of offset in light

space (pre-projection Euclidean space with light’s position at origin). Let us instead

choose a constant offset in the z direction of light space and compute what the offset

for a particular sample should be in light image space. In Ogre’s example code, the

small constant offset in light space is chosen to be 1 unit. If 1 is not a small amount in

your engine’s chosen scale, you can easily change this choice. At any rate, the relevant

quantity is
∂u3
∂X3

where ~X = Ml~x.

The choices here closely mirror what OpenGL implements through glPolygonOff-

set. The second adjustment is slightly different since OpenGL chooses a vendor spe-

cific fudge factor.

Equations for computing the stated quantities are provided below. One need not

wade through these to use the depth biasing code. Understanding what the relevant

parameters explained above are (in case adjustment is needed) is sufficient.

∂ (~xql)

∂ui

= i-th column of M−1
l P−1

l V−1
l (3)

where Vl is the viewport matrix for the light and i = 1,2,3. ql turns out to be 1/wl .

∂~x

∂ui

=
1

ql

(

∂ (~xql)

∂ui

−~x
∂ql

∂ui

)

(4)

du3

du j

=

(

~n ·
∂~x

∂u3

)

−1 (

~n ·
∂~x

∂u j

)

(5)

where~n is the normal at point~x and j = 1,2. Note that (5) is exactly the set of values

needed for the first part.

∂ (~uwl)

∂X3
= 3rd column of Pl (6)

∂~u

∂X3
=

1

wl

(

∂ (~uwl)

∂X3
−~u

∂wl

∂X3

)

(7)

4

Note that (7) is the quantity needed for the second bias term. This is also the term

to scale for different choices of small offset in light space. If 0.01 units is the small

offset, scale this value by 0.01.

1.3 Percentage Closest Filtering

As widely known, shadow mapping can exhibit significant aliasing. When this hap-

pens during texture mapping we apply filtering. We’d like to apply a similar principle

with shadow maps, but filtering depth values is categorically the wrong thing to do. As

described in [7], one should instead filter depth test results. This is termed percent-

age closest filtering. Ideally this would be a filtering technique much like anisotropic

texture filtering, but for simplicity and efficiency, Ogre’s example code implements the

bilinear analogue.

2 Variants

There are many shadow mapping variants. Enumerating (much less describing) all

of them would take us too far afield in this article. We instead defer to the provided

references and google for such coverage. The many variants can, however, be broken

up into three broad categories: (1) Those that store additional information beyond a

single float, (2) those that divide up shadow frusta into multiple frusta to be handled

separately, and (3) those that propose less naive Pl and Ml to use and thereby affect the

sampling distribution. Algorithms in each category usually work quite independently

and so many hybrid approaches are easily conceivable.

2.1 Storing Additional Info

One example of this is Deep Shadow Maps [5]. In this work, instead of storing a single

depth value and treating visibility as a binary value, a transfer function is stored and

visibility is continuous. This algorithm is important in offline movie rendering, but also

relevant to the Variance Shadow Mapping algorithm elucidated by the game developer

community [3].

While variance shadow maps are motivated by statistical considerations, it is per-

haps more properly understood in the Deep Shadow Maps framework. Analyzing it in

terms of distributions is flawed for two reasons: (1) the inequality considered is valid

only for unimodal distributions whereas depth values are often discontinuous in regions

that matter; (2) the inequality is treated as equality. The equations are justified with a

very specific example in which two planes are viewed straight on. In practice there

are very noticeable halo effects around objects, which makes more heuristic tweaks

necessary.

Recasting this into the framework of deep shadow maps, we see that the proposed

equality is simply a particular functional approximation to the transfer function. Vari-

ance shadow maps proposes a two-parameter family of approximation functions whose

parameters are linearly interpolated in the usual way. This viewpoint allows for analy-

5

Figure 2: Region I is defined as the set of all points along rays between the light and a point on

the plane of interest in the camera’s view. Everything in region I is shadowed and self-shadowed

properly. Objects in region II are not self-shadowed properly.

sis and also suggests the possibility of getting improvements via other approximating

functional forms.

2.2 Breaking up Shadow Frusta

Adaptive Shadow Maps [4] are an example of this. It is still largely considered too

expensive for real-time rendering, but continued research and growing GPU power may

make some variant worthwhile.

2.3 Playing with Projection Matrices

There are various heuristic approaches for choosing Pl and Ml , but here we will focus

on one method, the Plane Optimal algorithm [1], that provides a particular guarantee.

For this algorithm, we specify a plane of interest (e.g., ground plane, wall, table top)

for which we want perfect shadowing no matter the configuration of light and camera

in the scene (even dueling frusta). The algorithm will then compute Pl and Ml so that

the mapping between camera image and light image is the identity when restricted to

the plane. If the shadow map matches the resolution of the screen, then each pixel

gets exactly one shadow sample. Shadows off the plane of interest have no guarantees.

One limitation of the method is shown in Figure 2. Only region I will be shadowed and

self-shadowed properly, with points on the plane being shadowed perfectly (alias-free).

This makes the method perhaps most useful for games where the view is top-down or

isometric (like RTS games). It is also useful for cases like dueling frusta (where just

about all other methods fail).

6

3 Theory and Analysis

A full discussion of shadow map analysis is beyond the scope of this article. For those

interested, the references [2] and [1] are good (in my extremely biased opinion). Note

that as research papers, they are quite concise. Unfortunately there don’t seem to more

step-by-step expositions available at this moment.

There has been a lot of academic and industry research on improving shadow maps.

However, analyses presented on shadow maps often do not say what people claim they

say. These faulty conclusions usually come from considering very special cases and

assuming the general case is very similar. For clarification, we explore some of these

misconceptions here.

3.1 (Non)Optimality of Logarithmic Shadow Maps

We start with one heuristic that has gained quite a bit of traction: the idea of using some

logarithmic mapping between light space and light image space instead of a projective

transform. A number of algorithms based on this idea have been proposed, and even

some hardware changes. Much of this work seems to be motivated by the incorrect

assumption that logarithmic mappings are optimal.

The very special motivating case is this: The camera looks down the z axis. Di-

rectional light illuminates the scene perpendicular to the z axis. An angled piece of a

plane is viewed by the camera. As the angled piece of plane is pulled along the camera

ray direction, using a logarithmic shadow map gives us constant shadow quality on this

geometric piece. But unless we’re rendering translucent dust particles along a camera

ray, this analysis is irrelevant. If the dust particles are not translucent, we only care

about shadow determination on the first one, not a whole line of them. If we are ren-

dering continuous surfaces (resp. curves), we care about the quality as one moves in

the tangent plane (resp. tangent) direction because this is the best linear approximation

to the surface (resp. curve), not the camera ray direction.

In fact, in the case of a chosen plane of interest for example, we know we can

get completely alias free shadow mapping using a projective transform (section 2.3).

Logarithmic shadow maps may be an interesting heuristic to try out, but certainly not

worth changing hardware over in my opinion. If you’re going to change hardware,

might as well aim for true optimality.

3.2 Sampling Aliasing versus Depth Precision Aliasing

Sometimes people tend to conflate these two sources of aliasing. They note that af-

ter applying some sort of custom projective transform, the depth values are warped as

well. This problem can be completely overcome via the depth replacement method

prescribed in Trapezoidal Shadow Maps [6]. So this is a completely orthogonal is-

sue. Depth precision can be just as good as “normal” shadow maps, no matter the

perspective warp used to affect sampling.

7

3.3 Projective versus Perspective Aliasing

The terms perspective and projective aliasing appeared in the Perspective Shadow Maps

[8] paper and has since been used extensively by those who work on improving shadow

heuristics. Often it is claimed that methods ameliorate perspective aliasing while pro-

jective aliasing is either unavoidable or must be addressed via completely separate

means. However, the distinction between the two is somewhat artificial. Both result

from not allocating enough shadow map samples to regions that matter to the viewer.

As the Plane Optimal algorithm demonstrates, it is possible to completely remove pro-

jective aliasing (as well as perspective aliasing) in certain scenes. In general, there

should be one combined measure of aliasing and algorithms must minimize this quan-

tity. See [2] for a unified notion of aliasing.

4 Implementation

Ogre provides a powerful framework that allows us to do a lot of shadow map cus-

tomization. In Ogre, we turn on custom shadow mapping through the scene manager

(here, sceneMgr). It is recommended that this happen early as it may affect how certain

resources are loaded.

// Use Ogre’s custom shadow mapping ability

sceneMgr->setShadowTexturePixelFormat(PF_FLOAT32_R);

sceneMgr->setShadowTechnique(SHADOWTYPE_TEXTURE_ADDITIVE);

sceneMgr->setShadowTextureCasterMaterial("CustomShadows/ShadowCaster");

sceneMgr->setShadowTextureReceiverMaterial("CustomShadows/ShadowReceiver");

sceneMgr->setShadowTextureSelfShadow(true);

sceneMgr->setShadowTextureSize(512);

The setShadowTechnique call is all that is required for Ogre’s default shadow map-

ping. In the code above, we have told Ogre to use the R channel of a floating point

texture to store depth values. This tends to be a very portable method (over graphics

cards and APIs). The sample sticks to using Ogre’s default of 512x512 shadow maps.

Self-shadowing is turned on, but be warned that this will only work properly if appro-

priate depth biasing is also used. The example code will manually account for depth

biasing via the method described above in section 1.2. The shadow caster and shadow

receiver materials are defined in a materials script. They tell Ogre which shaders to use

when rendering shadow casters into the shadow map and rendering shadow receivers

during shadow determination.

The CustomShadows.material material script is given below:

// Shadow Caster __

vertex_program CustomShadows/ShadowCasterVP/Cg cg

{

source customshadowcastervp.cg

8

entry_point main

profiles arbvp1 vs_2_0

default_params

{

param_named_auto uModelViewProjection worldviewproj_matrix

}

}

fragment_program CustomShadows/ShadowCasterFP/Cg cg

{

source customshadowcasterfp.cg

entry_point main

profiles arbfp1 ps_2_0

default_params

{

param_named uDepthOffset float 1.0

param_named uSTexWidth float 512.0

param_named uSTexHeight float 512.0

param_named_auto uInvModelViewProjection inverse_worldviewproj_matrix

param_named_auto uProjection projection_matrix

}

}

vertex_program CustomShadows/ShadowCasterVP/GLSL glsl

{

source customshadowcastervp.vert

default_params

{

param_named_auto uModelViewProjection worldviewproj_matrix

}

}

fragment_program CustomShadows/ShadowCasterFP/GLSL glsl

{

source customshadowcasterfp.frag

default_params

{

param_named uDepthOffset float 1.0

param_named uSTexWidth float 512.0

param_named uSTexHeight float 512.0

param_named_auto uInvModelViewProjection inverse_worldviewproj_matrix

param_named_auto uProjection projection_matrix

9

}

}

vertex_program CustomShadows/ShadowCasterVP/HLSL hlsl

{

source customshadowcastervp.hlsl

entry_point main

target vs_2_0

default_params

{

param_named_auto uModelViewProjection worldviewproj_matrix

}

}

fragment_program CustomShadows/ShadowCasterFP/HLSL hlsl

{

source customshadowcasterfp.hlsl

entry_point main

target ps_2_0

default_params

{

param_named uDepthOffset float 1.0

param_named uSTexWidth float 512.0

param_named uSTexHeight float 512.0

param_named_auto uInvModelViewProjection inverse_worldviewproj_matrix

param_named_auto uProjection projection_matrix

}

}

material CustomShadows/ShadowCaster

{

technique glsl

{

// Z-write only pass

pass Z-write

{

vertex_program_ref CustomShadows/ShadowCasterVP/GLSL

{

}

fragment_program_ref CustomShadows/ShadowCasterFP/GLSL

{

}

}

}

10

technique hlsl

{

// Z-write only pass

pass Z-write

{

//Instead of using depth_bias, we’ll be implementing it manually

vertex_program_ref CustomShadows/ShadowCasterVP/HLSL

{

}

fragment_program_ref CustomShadows/ShadowCasterFP/HLSL

{

}

}

}

technique cg

{

// Z-write only pass

pass Z-write

{

//Instead of using depth_bias, we’ll be implementing it manually

vertex_program_ref CustomShadows/ShadowCasterVP/Cg

{

}

fragment_program_ref CustomShadows/ShadowCasterFP/Cg

{

}

}

}

}

// Shadow Receiver __

vertex_program CustomShadows/ShadowReceiverVP/Cg cg

{

source customshadowreceivervp.cg

entry_point main

profiles arbvp1 vs_2_0

default_params

{

11

param_named_auto uModelViewProjection worldviewproj_matrix

param_named_auto uLightPosition light_position_object_space 0

param_named_auto uModel world_matrix

param_named_auto uTextureViewProjection texture_viewproj_matrix

}

}

fragment_program CustomShadows/ShadowReceiverFP/Cg cg

{

source customshadowreceiverfp.cg

entry_point main

profiles arbfp1 ps_2_x

default_params

{

param_named uSTexWidth float 512.0

param_named uSTexHeight float 512.0

}

}

vertex_program CustomShadows/ShadowReceiverVP/GLSL glsl

{

source customshadowreceiver.vert

default_params

{

param_named_auto uModelViewProjection worldviewproj_matrix

param_named_auto uLightPosition light_position_object_space 0

param_named_auto uModel world_matrix

param_named_auto uTextureViewProjection texture_viewproj_matrix

}

}

fragment_program CustomShadows/ShadowReceiverFP/GLSL glsl

{

source customshadowreceiver.frag

default_params

{

param_named uSTexWidth float 512.0

param_named uSTexHeight float 512.0

}

}

vertex_program CustomShadows/ShadowReceiverVP/HLSL hlsl

{

12

source customshadowreceivervp.hlsl

entry_point main

target vs_2_0

default_params

{

param_named_auto uModelViewProjection worldviewproj_matrix

param_named_auto uLightPosition light_position_object_space 0

param_named_auto uModel world_matrix

param_named_auto uTextureViewProjection texture_viewproj_matrix

}

}

fragment_program CustomShadows/ShadowReceiverFP/HLSL hlsl

{

source customshadowreceiverfp.hlsl

entry_point main

target ps_3_0

default_params

{

param_named uSTexWidth float 512.0

param_named uSTexHeight float 512.0

}

}

material CustomShadows/ShadowReceiver

{

technique glsl

{

pass lighting

{

vertex_program_ref CustomShadows/ShadowReceiverVP/GLSL

{

}

fragment_program_ref CustomShadows/ShadowReceiverFP/GLSL

{

param_named uShadowMap int 0

}

texture_unit ShadowMap

{

tex_address_mode clamp

filtering none

}

13

}

}

technique hlsl

{

pass lighting

{

vertex_program_ref CustomShadows/ShadowReceiverVP/HLSL

{

}

fragment_program_ref CustomShadows/ShadowReceiverFP/HLSL

{

}

// we won’t rely on hardware specific filtering of z-tests

texture_unit ShadowMap

{

tex_address_mode clamp

filtering none

}

}

}

technique cg

{

pass lighting

{

vertex_program_ref CustomShadows/ShadowReceiverVP/Cg

{

}

fragment_program_ref CustomShadows/ShadowReceiverFP/Cg

{

}

// we won’t rely on hardware specific filtering of z-tests

texture_unit ShadowMap

{

tex_address_mode clamp

filtering none

}

}

}

}

14

Three techniques are presented, one for GLSL, one for HLSL, and one for Cg.

We’ll present the GLSL code below. Note that while most of the shader files are di-

rect translations of each other, DirectX HLSL shaders must handle percentage closest

filtering slightly differently from OpenGL. OpenGL chooses the convention of having

integers index sample centers whereas DirectX chooses integers to index sample cor-

ners. Also note the variable names in the shaders presented below are slightly different

from those presented earlier in this document. This is due in part to the awkwardness

of expressing subscripts in variable names and also in part because u3 is less evoca-

tive of depth than z, etc. With minimal effort one can match the shader equations with

those presented earlier. The code is presented here mostly to demonstrate how things

fit together.

//

//

// shadowcastervp.vert

//

// This is an example vertex shader for shadow caster objects.

//

//

// I N P U T V A R I A B L E S /////////////////////////////////

uniform mat4 uModelViewProjection; // modelview projection matrix

// O U T P U T V A R I A B L E S ///////////////////////////////

varying vec4 pPosition; // post projection position coordinates

varying vec4 pNormal; // normal in object space (to be interpolated)

varying vec4 pModelPos; // position in object space (to be interpolated)

// M A I N ///

void main()

{

// Transform vertex position into post projective (homogenous screen) space.

gl_Position = uModelViewProjection * gl_Vertex;

pPosition = uModelViewProjection * gl_Vertex;

// copy over data to interpolate using perspective correct interpolation

pNormal = vec4(gl_Normal.x, gl_Normal.y, gl_Normal.z, 0.0);

pModelPos = gl_Vertex;

}

This is a pretty standard vertex shader.

///

15

//

// shadowcasterfp.frag

//

// This is an example fragment shader for shadow caster objects.

//

///

// I N P U T V A R I A B L E S //

// uniform constants

uniform float uDepthOffset; // offset amount (constant in eye space)

uniform float uSTexWidth; // shadow map texture width

uniform float uSTexHeight; // shadow map texture height

uniform mat4 uInvModelViewProjection;// inverse model-view-projection matrix

uniform mat4 uProjection; // projection matrix

// per fragment inputs

varying vec4 pPosition; // position of fragment (in homogeneous coordinates)

varying vec4 pNormal; // un-normalized normal in object space

varying vec4 pModelPos; // coordinates of model in object space at this point

// M A I N //

void main(void)

{

// compute the "normalized device coordinates" (no viewport applied yet)

vec4 postProj = pPosition / pPosition.w;

// get the normalized normal of the geometry seen at this point

vec4 normal = normalize(pNormal);

// -- Computing Depth Bias Quantities -----------------------------

// We want to compute the "depth slope" of the polygon.

// This is the change in z value that accompanies a change in x or y on screen

// such that the coordinates stay on the triangle.

// The depth slope, dzlen below, is a measure of the uncertainty in our z value

// Roughly, these equations come from re-arrangement of the product rule:

// d(uq) = d(u)q + u d(q) --> d(u) = 1/q * (d(uq) - u d(q))

vec4 duqdx = uInvModelViewProjection * vec4(1.0/uSTexWidth,0.0,0.0,0.0);

vec4 dudx = pPosition.w * (duqdx - (pModelPos * duqdx.w));

vec4 duqdy = uInvModelViewProjection * vec4(0.0,1.0/uSTexHeight,0.0,0.0);

vec4 dudy = pPosition.w * (duqdy - (pModelPos * duqdy.w));

vec4 duqdz = uInvModelViewProjection * vec4(0.0,0.0,1.0,0.0);

16

vec4 dudz = pPosition.w * (duqdz - (pModelPos * duqdz.w));

// The next relations come from the requirement dot(normal, displacement) = 0

float denom = 1.0 / dot(normal.xyz, dudz.xyz);

vec2 dz = - vec2(dot(normal.xyz, dudx.xyz) * denom ,

dot(normal.xyz, dudy.xyz) * denom);

float dzlen = max(abs(dz.x), abs(dz.y));

// We now compute the change in z that would signify a push in the z direction

// by 1 unit in eye space. Note that eye space z is related in a nonlinear way to

// screen space z, so this is not just a constant.

// ddepth below is how much screen space z at this point would change for that push.

// NOTE: computation of ddepth likely differs from OpenGL’s glPolygonOffset "unit"

// computation, which is allowed to be vendor specific.

vec4 dpwdz = uProjection * vec4(0.0, 0.0, 1.0, 0.0);

vec4 dpdz = (dpwdz - (postProj * dpwdz.w)) / pPosition.w;

float ddepth = abs(dpdz.z);

// -- End depth bias helper section --------------------------------

// We now compute the depth of the fragment. This is the actual depth value plus

// our depth bias. The depth bias depends on how uncertain we are about the z value

// plus some constant push in the z direction. The exact coefficients to use are

// up to you, but at least it should be somewhat intuitive now what the tradeoffs are.

float depthval = postProj.z + (0.5 * dzlen)+ (uDepthOffset * ddepth);

depthval = (0.5 * depthval) + 0.5; // put into [0,1] range instead of [-1,1]

gl_FragColor = vec4(depthval, depthval, depthval, 0.0);

}

This shader computes the two depth bias pieces described in section 1.2. These are

used to offset the stored depth value. This is where the notation differs from above, but

the translation is quite straightforward.

//

//

// shadowreceiver.vert

//

//

// I N P U T V A R I A B L E S /////////////////////////////////

uniform mat4 uModelViewProjection; // modelview projection matrix

uniform mat4 uModel; // model matrix

uniform mat4 uTextureViewProjection; // shadow map’s view projection matrix

17

uniform vec4 uLightPosition; // light position in object space

// O U T P U T V A R I A B L E S ///////////////////////////////

varying vec4 pShadowCoord; // vertex position in shadow map coordinates

varying float pDiffuse; // diffuse shading value

// M A I N ///

void main()

{

// compute diffuse shading

vec3 lightDirection = normalize(uLightPosition.xyz - gl_Vertex.xyz);

pDiffuse = dot(gl_Normal.xyz, lightDirection);

// compute shadow map lookup coordinates

pShadowCoord = uTextureViewProjection * (uModel * gl_Vertex);

// compute vertex’s homogenous screen-space coordinates

// Use following line if other passes use shaders

//gl_Position = uModelViewProjection * gl_Vertex;

gl_Position = ftransform(); // uncomment if other passes use fixed function pipeline

}

This is a pretty standard vertex shader as well. The ftransform() function guarantees

the output matches the fixed function pipeline. If the objects you render use shaders

instead of fixed function, then you should do so here as well.

///

//

// shadowreceiver.frag

//

///

// I N P U T V A R I A B L E S //

// uniform constants

uniform sampler2D uShadowMap;

uniform float uSTexWidth;

uniform float uSTexHeight;

// per fragment inputs

varying vec4 pShadowCoord; // vertex position in shadow map coordinates

varying float pDiffuse; // diffuse shading value

18

// M A I N //

void main(void)

{

// compute the shadow coordinates for texture lookup

// NOTE: texture_viewproj_matrix maps z into [0,1] range, not [-1,1], so

// have to make sure shadow caster stores depth values with same convention.

vec4 scoord = pShadowCoord / pShadowCoord.w;

// -- "Percentage Closest Filtering" ---

// One could use scoord.xy to look up the shadow map for depth testing, but

// we’ll be implementing a simple "percentage closest filtering" algorithm instead.

// This mimics the behavior of turning on bilinear filtering on NVIDIA hardware

// when also performing shadow comparisons. This causes bilinear filtering of

// depth tests. Note that this is NOT the same as bilinear filtering the depth

// values and then doing the depth comparison. The two operations are not

// commutative. PCF is explicitly about filtering the test values since

// testing filtered z values is often meaningless.

// Real percentage closest filtering should sample from the entire footprint

// on the shadow map, not just seek the closest four sample points. Such

// an improvement is for future work.

// NOTE: Assuming OpenGL convention for texture lookups with integers in centers.

// DX convention is to have integers mark sample corners

vec2 tcoord;

tcoord.x = (scoord.x * uSTexWidth) - 0.5;

tcoord.y = (scoord.y * uSTexHeight) - 0.5;

float x0 = floor(tcoord.x);

float x1 = ceil(tcoord.x);

float fracx = fract(tcoord.x);

float y0 = floor(tcoord.y);

float y1 = ceil(tcoord.y);

float fracy = fract(tcoord.y);

// sample coordinates in [0,1]^2 domain

vec2 t00, t01, t10, t11;

float invWidth = 1.0 / uSTexWidth;

float invHeight = 1.0 / uSTexHeight;

t00 = float2((x0+0.5) * invWidth, (y0+0.5) * invHeight);

t10 = float2((x1+0.5) * invWidth, (y0+0.5) * invHeight);

t01 = float2((x0+0.5) * invWidth, (y1+0.5) * invHeight);

t11 = float2((x1+0.5) * invWidth, (y1+0.5) * invHeight);

19

// grab the samples

float z00 = texture2D(uShadowMap, t00).x;

float viz00 = (z00 <= scoord.z) ? 0.0 : 1.0;

float z01 = texture2D(uShadowMap, t01).x;

float viz01 = (z01 <= scoord.z) ? 0.0 : 1.0;

float z10 = texture2D(uShadowMap, t10).x;

float viz10 = (z10 <= scoord.z) ? 0.0 : 1.0;

float z11 = texture2D(uShadowMap, t11).x;

float viz11 = (z11 <= scoord.z) ? 0.0 : 1.0;

// determine that all geometry outside the shadow test frustum is lit

viz00 = ((abs(t00.x - 0.5) <= 0.5) && (abs(t00.y - 0.5) <= 0.5)) ? viz00 : 1.0;

viz01 = ((abs(t01.x - 0.5) <= 0.5) && (abs(t01.y - 0.5) <= 0.5)) ? viz01 : 1.0;

viz10 = ((abs(t10.x - 0.5) <= 0.5) && (abs(t10.y - 0.5) <= 0.5)) ? viz10 : 1.0;

viz11 = ((abs(t11.x - 0.5) <= 0.5) && (abs(t11.y - 0.5) <= 0.5)) ? viz11 : 1.0;

// bilinear filter test results

float v0 = (1.0 - fracx) * viz00 + fracx * viz10;

float v1 = (1.0 - fracx) * viz01 + fracx * viz11;

float visibility = (1.0 - fracy) * v0 + fracy * v1;

// --

// Non-PCF code (comment out above section and uncomment the following three lines)

//float zvalue = texture2D(uShadowMap, scoord.xy).x;

//float visibility = (zvalue <= scoord.z) ? 0.0 : 1.0;

//visibility = ((abs(scoord.x - 0.5) <= 0.5) && (abs(scoord.y - 0.5) <= 0.5))

// ? visibility : 1.0;

// --

visibility *= pDiffuse;

gl_FragColor = vec4(visibility, visibility, visibility, 0.0);

}

This file implements percentage closest filtering. To use unfiltered shadow mapping,

comment out the PCF block as noted and uncomment the Non-PCF block. Note that

after doing this, the uSTexWidth and uSTexHeight variables are likely to be optimized

away and so you should uncomment these variables in the materials script as well.

The following shows how to activate plane optimal shadow mapping given some

pointer to a MovablePlane and a pointer to a light.

PlaneOptimalShadowCameraSetup *planeOptShadowCamera =

new PlaneOptimalShadowCameraSetup(movablePlane);

20

Entity *movablePlaneEntity = sceneMgr->createEntity("movablePlane", "plane.mesh");

SceneNode *movablePlaneNode =

sceneMgr->getRootSceneNode()->createChildSceneNode("MovablePlaneNode");

movablePlaneNode->attachObject(movablePlaneEntity);

SharedPtr<ShadowCameraSetup> planeOptPtr(planeOptShadowCamera);

light->setCustomShadowCameraSetup(planeOptPtr);

References

[1] Hamilton Y. Chong and Steven J. Gortler. A lixel for every pixel. In Proceedings

of the Eurographics Symposium on Rendering. Eurographics Association, 2004.

[2] Hamilton Y. Chong and Steven J. Gortler. Scene optimized shadow maps. In

Harvard Technical Report TR-11-06, 2006.

[3] William Donnelly and Andrew Lauritzen. Variance shadow maps. In SI3D ’06:

Proceedings of the 2006 symposium on Interactive 3D graphics and games, pages

161–165, New York, NY, USA, 2006. ACM Press.

[4] Randima Fernando, Sebastian Fernandez, Kavita Bala, and Donald P. Greenberg.

Adaptive shadow maps. In SIGGRAPH ’01: Proceedings of the 28th annual con-

ference on Computer graphics and interactive techniques, pages 387–390, New

York, NY, USA, 2001. ACM Press.

[5] Tom Lokovic and Eric Veach. Deep shadow maps. In SIGGRAPH ’00: Proceed-

ings of the 27th annual conference on Computer graphics and interactive tech-

niques, New York, NY, USA, 2000. ACM Press.

[6] Tobias Martin and Tiow-Seng Tan. Anti-aliasing and continuity with trapezoidal

shadow maps. In Proceedings of the Eurographics Symposium on Rendering, pages

153–160. Eurographics Association, 2004.

[7] William T. Reeves, David H. Salesin, and Robert L. Cook. Rendering antialiased

shadows with depth maps. In SIGGRAPH ’87: Proceedings of the 14th annual

conference on Computer graphics and interactive techniques, pages 283–291, New

York, NY, USA, 1987. ACM Press.

[8] Marc Stamminger and George Drettakis. Perspective shadow maps. In SIGGRAPH

’02: Proceedings of the 29th annual conference on Computer graphics and inter-

active techniques, pages 557–562, New York, NY, USA, 2002. ACM Press.

[9] Lance Williams. Casting curved shadows on curved surfaces. In SIGGRAPH ’78:

Proceedings of the 5th annual conference on Computer graphics and interactive

techniques, pages 270–274, New York, NY, USA, 1978. ACM Press.

21

