libexplain

Reference Manual

Peter Miller
pmiller@opensource.grau

This document describes libexplain version 1.4
and was prepared 25 July 2015.

This document describing the libexplain libreayd the libexplain library itself, are
Copyright © 2008, 2009, 2010, 2011, 2012, 2013, 2014 Peter Miller

This program is free softave; you can redistribute it and/or modify it under the terms of the
GNU Lesser General Public License as published by the Freed®®ffundation; eitherev-
sion 3 of the License, or (at your optionydater version.

This program is distrilted in the hope that it will be useful, but WITHOUT ANYAWRANTY,
without even the implied warranty of MERCHANABILITY or FITNESS FOR A RRTICU-
LAR PURPOSE. See the GNU General Public License for more details.

You should hae receved a mpy of the GNU Lesser General Public License along with this pro-
gram. If not, see <http://www.gnu.org/licenses/>.

Read Me(lib&plain) ReadVie(libexplain)

NAME
libexplain — Explain errno values returned by libc functions

DESCRIPTION
Thelibexplainpackage provides a library which may be used to explain Unix and Linux system call errors.
This will make your applicatiors eror messages much more informatio your users.

The library is not quite a drop-in replacementdwerror(3), but it comes close. Each system call has a
dedicated libexplain function, for example
fd = open(path, flags, mode);
if (fd < 0)
{
fprintf(stderr, "%s\n", explain_open(path, flags, mode));
exit(EXIT_FAILURE);

If, for example, you were to try to open-such-dir/some-file , you would see a message like
open(pathname = "no-such-dir/some-file", flags = O_RDONLY) failed,
No such file or directory (2, ENOENT) because there is no "no-
such-dir" directory in the current directory

The good ne is that for each of these functions there is a wrapper function, in this case
explain_open_or_dig), that includes the abe cde fragment. Adding good error reporting is as simple

as using a different, but similarly named, function. The library also provides thread safe variants of each
explanation function.

Coverage includes 221 system calls and 547 ioctl requests.

Tutorial Documentation
There is a papewailable in PDF format (http:/libexplain.sourceforge.net/lca2010/Ica2010.pdf) that
describes the library andWwdo use LibExplain. The paper can also be accessesptan_lca201@1),
which also appears in the reference manual (see below).

HOME PAGE
The latest version dibexplainis available on the Web from:

URL: http://libexplain.sourceforge.net/

File: index.html #the libexplain page

File: libexplain.1.4.README #Description, from the tar file
File: libexplain.1.4.lsm #Description, LSM format
File: libexplain.1.4.taigz #the complete source

File: libexplain.1.4.pdf #Reference Manual

BUILDING LIBEXPLAIN
Full instructions for buildindibexplainmay be found in thBUILDING file included in this distribution.
COPYRIGHT

libexplainversion 1.4
Copyright © 2008, 2009, 2010, 2011, 2012, 2013, 2014 Peter Miller

Library License
The shared libraryand its include files, @& GNU LGPL licensed.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 3 of the License, or
(at your option) aylater version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRAN#ithout
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU Lesser General Public License for more details.

You should hae recevved a mpy of the GNU Lesser General Public License along with this program. If
not, see <http://www.gnu.org/licenses/>.

Reference Manual libgolain 1

Read Me(lib&plain) ReadVie(libexplain)

Non-Library License
Everything else (all source files that do not constitute the shared library and its include &l&ErGPL

licensed.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 3 of the License, or (at your
option) ary later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRAN#ithout

even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should hae recevved a mpy of the GNU General Public License along with this program. If not, see
<http://www.gnu.org/licenses/>.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual libgolain 2

Read Me(lib&plain) ReadVie(libexplain)

RELEASE NOTES
This section details the various features and bug fixes of the various releasesruciating and
complete detail, and also credits for those of you wive lganerously sent me suggestions and bug reports,
see theetc/CHANGES .files.

Coverage includes 221 system calls and 547 ioctl requests.

Version 1.4 (2014-Mar-03)
* Numerous false mgtive test results, hae been fixed on FreeBSD.

* When building on FreeBSD some interesting flags need to be specified
CC=gvc46 \ CPPFLAGS=-Il/usr/local/include \ LDFLAGS=-L/usr/local/lib \

Also care must be taken if an earlier version of libexplain is installed, and can be found on
$LD_LIBRARY_PATH, this may cause false getives.

» This change set adds mor efixes for FreeBSD compilation.
» Some problems diswered using the clang compilerveteen fixed. Thisis a work in progress.
» My thanks to Vinxe <vinxxe@gmail.com> for reporting a problem compiling from source.

» Explanations are moavailable for errors reported by thehownag2), linkat(2), moun{2), nanoslee(8),
settimeofdafp), sleef§3), unamg?2), usleefd3), system calls.

» Added a work-around for gethostnameDarwin/OSX.
» This change set borrows some of the glib nanosleep fixes.

Version 1.3 (2013-Nov-19)

» Explanations are moavailable or errors reported by tlael_from_texi3), acl_get_f¢3), acl_get_filg3),
acl_set_f@3), acl_set_fil€3), acl_to_tex{3), asprint{3), avasprint{3), endgren{3), fchowna(2),
fseek3d), fstata(2), ftello(3), futimensaf2), futimeng3), getgrent3), getgrouplis{3), gethostid3),
getprioriy(2), iconv_closé3), icon3), iconv_ope(B), lutimeg2), openaf2), pipeq2), setgren3),
setpriority(2) andstrcoll(3) system calls.

» Themalloq3), et a diagnostics are mo more avare ofgetrlimi(2) andgerusage(2), in order to gie
more informatve messages.

* YunQiang Su <wzssyga@gmail.com> build problem where a symbol is #defineds laonpty,
throwing a warning about uninitialized members.
Debian: Closes: #723409

» Chris Leick <c.leick@vollbio.de> contributed a German message translation.

» Eric Smith <brouhaha@fedoraproject.org> diszed that test 555 couldwg a Blse ngative if process
666 exists when the test is run.

Version 1.2 (2013-Mar-14)

Reference Manual libgolain 3

Read Me(lib&plain) ReadVie(libexplain)

» Explanations are moavailable for errors reported by the gethostbyname and getrusage system calls.

» Emanuel Haupt <ehaupt@FreeBSD.org> disoed that libexplain coped poorly with different versions
of bison emitting code chunks in different orders. =======

» getrusage system call. Explanations an& aeilable for errors reported by tlgethostbynar(B)
andgerusage(2) system calls.

» Emanuel Haupt <ehaupt@FreeBSD.org> disged that libexplain coped poorly with different versions
of bison emitting code chunks in different orders.

» This change set copes with the absence of a v4l2_buffer mentiden recently happened in Ubuntu
Raring. My thanks to the LaunchPadfR#uild farm for finding this problem.

Version 1.1 (2012-Nov-20)
» Explanations are moavailable for errors reported by tlesec\3), geresgid2), getresuid2), Ichmod?2),
setgid?2) setiegd(2), setresgi@?), setresui@?), setreuid?), setuiq2) andutimeng2) system calls.

» Emanuel Haupt <ehaupt@critical.ch> digered that the error handling fehma¢2) on BSD needed
more portability work.

» There are newxplain_filename_from_stream andexplain_filename_from_fildes
functions to the public API. This\gs library clients access to libexplasridea of the filename.

* Michael Cree <mcree@orcon.net.nz> diszed that there was a problem building libexplain on alpha
architecture.
Debian: Closes: #661440

Version 1.0 (2012-May-19)
* Sevaal testing false rggtive has been fix, concerning EACCES whewauted by root.

Version 0.52 (2012-Mar-04)
* A false ngative in test 76, where Linux security modules changa¢hamég2) semantics.

* A problem on sparc64 has beerefix Libeplain can na cope with a missing O_LARGEFILE
declaration, and yet file flags returned by the kerne¢tfze flag set.

* A build problem on Debian alpha has been fixed, the name of an include file was incorrect.

Version 0.51 (2012-Jan-26)
» Theptracdq?2) support has been imwenl with more conditionals determined by the ./configure script
when building.
Debian: Closes: #645745

Version 0.50 (2012-Jan-16)

Reference Manual libglain 4

Read Me(lib&plain) ReadVie(libexplain)

* SpepS <spepsforge@users.sf.net> and Eric Smith <eric@brouhaha.converdigtbat
_PC_MIN_HOLE_SIZE isrt’supported for all Linux. Some more #ifdef was added.

* Seveaal false ngatives from tests hee keen fixed.
Debian: Closes: 654199

* The tarball na includes a libexplain.spec file for building an RPM package ugimipuild(1).

* This change set makes thes@eadlink) string search less particulso that it works in more cases. In
this instance, on Fedora 14.

* Explanations are nowevalable for errors reported by thmealpath(3) system call.
Version 0.49 (2011-Nov-10)

Explanations are mpavailable for errors reported by tlslmct{2) system call.

Some build problems (diseered by the LaunchPad RBuid farm) hae been fixed.

Version 0.48 (2011-Nov-08)

Explanations are moavailable for errors reported by tlelmaf2) system call.
Several build problems on Solaris V& keen fixed.

Dagobert Michelsen <dam@opencsw.org> found the test 625 was throwing a faseerie his test
environment. It can we cope with stdin being closed.

Dagobert Michelsen <dam@opencsw.org> disged that, on Solaris, test falsegagves were caused
by the need for a space before the width ifna “w 800 ” command.

Eric Smith <eric@brouhaha.com> disemed thatsof(1) could report errors agecutable names, when
it couldnt read the symlink. These non-results are fitiered out.

Eric Smith <eric@brouhaha.com> disered three false myetives from tests of th&ill (2) system call.

Better explanations are wavailable when a user attempts teeeute a directory.

Version 0.47 (2011-Sep-27)

Explanations are moavailable for errors reported by tleetsid2) system call.
The Ubuntu PR build farm found seeral Hardy build problems. Theseusaleen fixed.

Code has been added to detect those cases where a file descriptor may be open for reading and writing,
but the 1/0 stream it is accessed by is only open for one of them.

Code has been added to cope with falggthees whenlsof(1) is not as helpful as could be desired.

Michael Bienia <geser@ubuntu.com> digered a build problem with the SIOCSHWTSTAMP ioctl
request, and sent a patch.

Version 0.46 (2011-Aug-24)

Reference Manual libgolain 5

Read Me(lib&plain) ReadVie(libexplain)

* LibExplain has been ported to Solaris 8, 9 and 10. My thanks to Dagobert Michelsen and
http://opencsw.org/ for assistance with this port.

» Sevaal more Linuxioctl(2) requests are supported.
* A sedfault has been fixed in the output tee filter when handling exit.

Version 0.45 (2011-Jul-17)
» Dagobert Michelsen <dam@opencsw.org> discsed seeral build problems on OpenSolaris; these
have leen fixed.

» Explanations are moavailable for errors reported by the Linipctl(2) V4L1 system calls.

Version 0.44 (2011-Jul-03)
» Several build problem to do with older Linux kernelsvedeen fixed.

Version 0.42 (2011-Jul-02)
» Explanations are moavailable for errors reported by the V4L2 ioctl requests.

» The Debian package no longer installs the libtool *.1a file.
Debian: Closes: 621621

» The call arguments printed for ioctl(2)wmanclude the type of the third argument.
» The error messageswanclude more information about block and character special devices, when
printing file types.

Version 0.42 (2011-May-26)
» This change set adds an “ldconfig” hint to the BUILDING instructions. My thanks teBlaBride
<blake@arahant.com> for this suggestion.

» Emanuel Haupt <ehaupt@critical.ch> reportedes# problems building libexplain on FreeBSD. These
have leen fixed.

Version 0.41 (2011-Mar-15)
* There were some C+4elwords in the unclude files, which caused problems for C++ users. They
have keen replaced.

* Explanations are moavailaible for errors reported by thgetpgid(2), getpgrp(2), ptracq2), setgpid2)
andsetpgri2) system calls.

Version 0.40 (2010-Oct-05)
» The code ne builds and tests successfully on FreeBSD.

» Explanations are moavailable for errors reported by tloallog(3) andpoll(2) system calls.
Version 0.39 (2010-Sep-12)

Reference Manual libgolain 6

Read Me(lib&plain) ReadVie(libexplain)

» A build problem has been fixed on Ubuntu Harayumber of symbols are absent from older versions of
<linux/cdrom.h>, conditional code has been added for them.

» Abug has been fixed in one of the documentation files, it was missing the conditional aroxX the
macro, causingomlint(1) andlintian(1) to complain.

Version 0.38 (2010-Sep-08)
» Some build problems on Fedora 1¥é&é&een fixed.

Version 0.37 (2010-Aug-27)
» The library source files are supposed to be LGPL, kiema/er 1000 of them were GPL (about 20%).
This has been fixed.

» A couple of problems building on Fedora 1¥&#&een fixed.

Version 0.36 (2010-Aug-25)
» Several false ngdive reported by tests on the Linux “alpha” and “ia64” architecturgs baen fixed.

Version 0.35 (2010-Aug-15)
* A number of fale regdives from tests hae been fixed, primarily due to random differences between
Linux architectures.

» The BUILDING document goes into more detail about things that can cause fadeasavhen testing.

* The man pages e been fixed so that tlyeno longer contain unescaped hyphen characters, as warned
about by thdintian(1) program.

Version 0.34 (2010-Aug-07)
» Another test 33 false geive has been fixed.

» There is a n® “hanging-indent” option, that can be set fromEXPLAIN_OPTIONenvironment
variable. Itdefaults to zero for backwards compatibiliypplications may set it using the
explain_option_hanging_indent_g8} function.

Version 0.33 (2010-Jul-04)
* A number of testing false getives (found by the Debian build farm) ¥ been fixed.

» There are newxplain_output_erro¢3) andexplain_output_error_and_d{8) functions for printing
formatted error messages.

* Some systems kammayg2) report(void*)(-1) instead of NULL for errors. This is now
understood.

Version 0.32 (2010-Jun-22)
» Explanations are moavailable for errors reported by tlemag2), munmay2) andutimeg?2) system
calls.

* A number of false ngetives for tests on some less common architectures been fixed.

» Some build problems relating ictl(2) support hee keen fixed.

» A bug has been fixed in tHibexplain/output.h file, it was missing the C++ insulation.
Version 0.31 (2010-May-01)

Reference Manual libgolain 7

Read Me(lib&plain) ReadVie(libexplain)

* A number of build problems ke teen fixed.

Version 0.30 (2010-Apr-28)
» Several test false rggtives havebeen fixed, on various Debian architectures.

Version 0.29 (2010-Apr-25)
* A number of build problems, diseered by the Debian build farm, Ve been fixed. Whowould of
thought that there could be some much inconsigtbatween Linux architectures?

Version 0.28 (2010-Apr-19)
» Several architecture-specific build problems, found by the Debian build farve, lieeen fixed.

Version 0.27 (2010-Apr-17)
» Several architecture-specific build problems, found by the Debian build farve, lieeen fixed.

Version 0.26 (2010-Apr-06)
* A build problem has been fixed on systems wherdist is not compatible witltonst void *

» This change set remes the unused-result warning foremplain_Iseek_or_dig), because it is very
common to ignore the result.

» Explanations are moavailable for errors reported by tlsdkepair(2) system call.

Version 0.25 (2010-Mar-22)
 Portability of the code has been imped.

» Theexlain(3) man page e mentions AC_SYS_LARGEFILE in the building requirements.
» Coverage nwv includes thdprintf(3), printf(3), snprint{(3), sprintf(3), vfprintf(3), vprintf(3), vsnprint{3)
andvsprint{3) system calls.

Version 0.24 (2010-Mar-03)
« Itis now possible to redirected libexplain outplor example, it is nav possible to redirect all output to
syslog3).

» Coverage nwv includes thdstatvf§2) andstatvf¢2) system call.
* A number of problems found while building and testing on Solafis baen fixed.

Version 0.23 (2010-Feb-21)
* It turns out that on alpha architecture, you tdisambiguate the FIBMAP vs BMP_IOCTL case in the
pre-processorThe code ne uses a disambiguate function. This problem was g&ed by the Debian
build farm.

Version 0.22 (2010-Feb-12)
» This change set fixes a falsegave found by the Debian automated build system.

Version 0.21 (2010-Feb-09)

Reference Manual libglain 8

Read Me(lib&plain) ReadVie(libexplain)

Explanations are moavailable for errors reported by thipurge(3), getw(3) andputw(3) system calls.
Some build problems ke keen fixed.

Version 0.20 (2010-Jan-20)

Several lintian warnings relating to the man pagegehleeen fixed.

The LIBEXPLAIN_OPTIONS environment variablewanderstands a mesymbolic-mode-bits=true
option. Itdefaults to false, for shorter error explanations.

There is a nevexplain_lca201@1) man page. This is a gentle introduction to libexplain, and the paper
accompanying my LCA 2010 talk.

When process ID (pid) values are printedyta® nav accompanied by the name of the process
executable, whenailable.

Numerous build bugs and niggles/edeen fixed.

Explanations are moavailable for errors reported by tleeeclp(3), fdopendi(3), feoi(3), fgetpog3),
fputq3), fseekl), fsetpogl3), fsynd?2), ftell(3), mkdtemg3), mknod2), mkostem(8B), mkstem(s),
mktemgi3), puteny3), putq3), raise(3), setbuf3), setbuffe(3), seten(3), setlinebuf3), setvbuf3),
stimg?2), tempnan(3), tmpfile(3), tmpnang3), unget¢3), unseten(B) andvfork(2) system calls.

The ioctl requests from linux/sockios.h, linux/ext2_fs.h, linux/if_eql.h, R#X/lp.h, and linux/vt.h are
now understood. Seeral of the ioctl explanations i@ keen improed.

Version 0.19 (2009-Sep-07)

The ioctl requests from linux/hdreg.h arevnanderstood.

Some build problems on Debian Lgrimavebeen fixed.

Version 0.18 (2009-Sep-05)

More ioctl requests are understood.

Explanations are noavailable for errors reported by thesendbreafB), tcsetatt3), tcgetatty3),
tcflusi(3), tedrain(3), system calls.

Version 0.17 (2009-Sep-03)

Explanations are noavailable for errors reported by thelldir(3) system call.
A number of Linux build problems kia been fixed.

Explanations for a number of corner-cases obiher(2) system call hae been impreed, where flags
values interact with file types and mount options.

A number of BSD build problems ta been fixed.
Moreioctl(2) commands are understood.

A bug has been fixed in the way absolute symbolic links are processed by the path_resolution code.

Version 0.16 (2009-Aug-03)

Reference Manual libglain 9

Read Me(lib&plain) ReadVie(libexplain)

» The EROFS and ENOMEDIUM explanationsamngreatly improed.
* A number of build problems and falsegaives havebeen fixed on x86_64 architecture.
* The Linux floppy disk and CD-ROM ioctl requests aremeupported.

» Explanations are moavailable for the errors reported by tgeidomainname?), read\v2),
setdomainnan(@), usta(2) andwrite(2) system calls.

Version 0.15 (2009-Jul-26)
* A number of build errors and warnings on amd6dehiaeen fixed. Theproblems were only detectable
on 64-bit systems.

Version 0.14 (2009-Jul-19)
» Coverage nwv includes another 29 system cadlscept42), acci(2), adjtimg3), adjtimex2), chroot(2),
dirfd(3), eventfd2), fflush(3), filena(3), flock(2), fstatfg2), ftime(3), getgroupg2), gethostnamé?),
kill (2), nice(2), pread2), pwrite(2), sethostnam@), signalfd2), strdug(3), strtod(3), strtof(3), strtol(3),
strtold(3), strtoll(3), strtoul(3), strtoull(3), andtimerfd_creat€?). Atotal of 110 system calls are now
supported

» The ./configure script no longer dematsisf{1). TheLinux libexplain code doeshheedIsof(1). On
systems not supported B0of(1), the error messages attegpiite as useful, but libexplain still works.

» There is nw an explain_*_on_error function for each system call, each reports errors but still
returns the original return value to the caller.

Version 0.13 (2009-May-17)
» The web site nw links to a number of services provided by SourceForge.

» Several problems hee keen fixed with compiling libexplain on 64-bit systems.

Version 0.12 (2009-May-04)
» A build problem has been fixed on hosts that didaed to do anything special for large file support.

Version 0.11 (2009-Mar-29)
» The current directory is replaced in messages with an absolute path in cases wherestdeaiséthe
current directory may differ from that of the current process.

Version 0.10 (2009-Mar-24)
» The name prefix on all of the library functions has been changed from “libexplain_" to just “explain_".
This wasthe most requested chang¥ou will need to change your code and recompile. Apologies for
the incowenience.

Version 0.9 (2009-Feb-27)

Reference Manual libgolain 10

Read Me(lib&plain) ReadVie(libexplain)

» Two false ngatives in the tests hae keen fixed.
» The ./configure script mo explicitly looks for bison(1), and complains if it cannot be found.
» Thesodket(7) address family is nodecoded.

Version 0.8 (2009-Feb-14)
» A problem with the Debian packaging has been fixed.

» The decoding of IPv4 sockaddr structs has been wegro

Version 0.7 (2009-Feb-10)
» Coverage has been extended to inclgdsodkopt(2), getpeernamg?), getsocknamg?) and
setsokopt(2).
* Build problems on Debian Sid & been fixed.
» More magnetic tape ioctl controls, from operating systems other than Liruextden added.

Version 0.6 (2009-Jan-16)
» Coverage has been extended to inclesecvi(3), ioctl(2), malloq3), pclos€3), pipg(2), poper3) and
realloc(3) system calls.

» The cwerage forioctl(2) includes linux console controls, magnetic tape controls, socket controls, and
terminal controls.

» Afalse ngdive from test 31 has been fixed.

Version 0.5 (2009-Jan-03)
» A build problem on Debian sid has been fixed.

» There is a newxplain_system_succd83 function, that performs all that
explain_system_success_or_(@eperforms, except that it does not &adt(2).

» There is more i18n support.
» A bug with thepkg-config1) support has been fixed.

Version 0.4 (2008-Dec-24)
» Coverage nwv includesaccep(2), bind(2), connecf?), dupZ2), fchowr(2), fdoper{3), fpathcong2),
fput(2), futimeg2), getaddrinfo(2), getcwd(2), getrlimit (2), listen(2), pathconf2), putq2), putchax(2),
selec?).

* Internationalization has been imped.
» The thread safety of the code has been irrgato

» The code is nw able to be compiled on OpenBSD. The test suite stibgyimary false ngdives, due to
differences irstrerror(3) results.

Version 0.3 (2008-Nov-23)

Reference Manual libglain 11

Read Me(lib&plain) ReadVie(libexplain)

» Cover has been extended to includesedi(3), execve?), ferror(3), fgetq3), fgetg3), fork(2), fread3),
getc(3), getimeofday?), Ichown(2), soke(2), systen3), utimg2), wait3(2), wait4(2), wait(2),
waitpid(2),

» More internationalization support has been added.

» Abug has been fixed in the C++ insulation.

Version 0.2 (2008-Nov-11)
» Coverage nwv includeschmod2), chown(2), dup(2), fchdir(2), fchmod?2), fsta2), ftruncatg?2),
fwrite(3), mkdir(2), readdir(3), readlink(2), remové3), rmdir(2) andtruncate?).

» Thelsof(1) command is used to obtain supplementary file information on those systems with limited
/proc implementations.

» The explanations mounderstand Linux capabilities.

Version 0.1 (2008-Oct-26)
First public release.

Reference Manual libglain 12

Build(libexplain) Build(libexplain)

NAME
How to build libexplain

SPACE REQUIREMENTS
You will need about 6MB to unpack and build titeexplainpackage. ®ur milage may vary.

BEFORE YOU START

There are a fg pieces of software you may want to fetch and install before you proceed with your
installation of libexplain

libcap Linux needs libcap, for access to capabilities.
ftp://ftp.kernel.org/publ/linux/libs/security/linux—privs/kernel-2.2/

Isof
For systems with inadequate or non-existent /proc facilities, and that includes *BSD and MacOS
X, thelsof(1) program is needed to obtain supplementary information about open file descriptors.
However, if Isof(1) is not supported on your operating system, libexplain will still work, but some
useful information (such as translating file descriptors into the name of the open file) will be
absent from error explanations.

ftp://Isof.itap.purdue.edu/pub/tools/unix/Isof/
http://people.freebsd.org/"abe/

You must havelsof(1) installed on *BSD and Solaris, otherwise the test suite will generate
staggering numbers of falsegatives. Itwill produce less informate eror messages, too.

Supported systems include: Free BSD, HP/UX, Linux, Mac OS X, NetBSD, Open BSD, Solaris,
and seeral others.

GNU libtool
The libtool program is used to build shared libraries. It understands the necaesarand
wonderful compiler and linker tricks on maweird and wonderful systems.
http://www.gnu.org/software/libtool/

bison The bison program is a general-purpose parser generator treatscargrammar description for
an LALR(1) context-free grammar into a C program to parse that grammar.
http://www.gnu.org/software/bison/

GNU Groff
The documentation for tHiexplainpackage was prepared using the GNU vatkage
(version 1.14 or later). This distribution includes full documentation, which may be processed
into PostScript or DVI files at install time — if GNU Gfdfas been installed.

GCC You may also want to consider fetching and installing the GNU C Compiler if yeeiod done
so already This is not essential. libexplain wasvd®ped using the GNU C compileand the
GNU C libraries.

The GNU FTP arclies may be found aftp.gnu.org , and are mirrored around the world.

SITE CONFIGURATION
Thelibexplain package is configured using tbenfigureprogram included in this distribution.

The configureshell script attempts to guess correct values for various system-dependent variables used
during compilation, and creates thakefileandlibexplain/config.Hiles. Italso creates a shell script
config.statughat you can run in the future to recreate the current configuration.

Normally, you justcdto the directory containinlijpexplains source code and then type
$./configure ——prefix=/usr
...lots of output...
$
If you're usingcshon an old version of System ybu might need to type
% sh configure ——prefix=/usr
...lots of output...

Reference Manual libglain 13

Build(libexplain) Build(libexplain)

%
instead, to preent cshfrom trying to executeconfigureitself.

Runningconfiguretakes a minute or tww Whileit is running, it prints some messages that tell what it is
doing. Ifyou dont want to see the messages, configureusing the quiet option; for example,
$./configure ——prefix=/usr ——quiet

$

To compile thelibexplain package in a different directory from the one containing the source code, you
must use a version afiakethat supports the \ATH variable,such a&NU makecdto the directory where
you want the object files anateeutables to go and run tleenfigurescript. Theconfigurescript

automatically checks for the source code in the directoryctivdigureis in and in .IR .. (the parent
directory). Iffor some reasooonfigureis not in the source code directory that you are configuring, then it
will report that it cart find the source code. In that case, configurewith the option——srcdir= DIR,
whereDIR is the directory that contains the source code.

By default,configurewill arrange for themale installcommand to install thibexplain packages files in
/usr/local/bin /usr/local/lib, /usr/local/include and /usr/local/man There are options which alloyou to
control the placement of these files.

——prefix= PATH
This specifies the path prefix to be used in the installation. Defaulisritocalunless otherwise
specified.

——exec—prefix= PATH
You can specify separate installation prefixes for architecture-specificifdes Defults to
${prefix} unless otherwise specified.

——bindir=" PATH
This directory containsxecutable programs. On a network, this directory may be shared
between machines with identical hardware and operating systems; it may be mounted read-only.
Defaults to${exec_prefix}/birunless otherwise specified.

——mandir= PATH
This directory contains the on-line manual entries. On a network, this directory may be shared
between all machines; it may be mounted read-dbifaults to${prefix}/manunless otherwise
specified.

configureignores most other arguments that yotedt; use the-—help option for a complete list.

On systems that require unusual options for compilation or linking thb#xplainpackage’'sonfigure
script does not ki about, you can gie configureinitial values for variables by setting them in the
ervironment. InBourne-compatible shells, you can do that on the command lm#ik

$ CC='gcc —ansi’ LIBS=-Iposix ./configure

...lots of output...

$
Here are thenakevariables that you might want toverride with environment variables when running
configure

Variable: CC
C compiler program. The default gee

Variable: CPPFLAGS
Preprocessor flags, commonly defines and include search paths. Defaults tolémapymmon
to useCPPFLAGS=-I/usr/local/include to access other installed packages.

Variable: INSTALL
Program to use to installds. Thedefault isinstall(1) if you have it, cp(1) otherwise.

Variable: LIBS
Libraries to link with, in the form-| foo—I bar. Theconfigurescript will append to this, rather
than replace it. It is common to usBBS=-L/usr/local/lib to access other installed

Reference Manual libgolain 14

Build(libexplain) Build(libexplain)

packages.

If you need to do unusual things to compile the package, the author encourages you to figure out how
configurecould check whether to do them, and mail diffs or instructions to the author so yhesriHze
included in the next release.

BUILDING LIBEXPLAIN
All you should need to do is use the
$ make
...lots of output...
$

command and ait. Thiscan tale a bng time, as there are af¢housand files to be compiled.

You can remee the program binaries and object files from the source directory by using the
$ make clean
...lots of output...

$

command. @ remove dl of the abwe files, and also renve the Makefileandlibexplain/config.hand
config.statudiles, use the

$ make distclean

...lots of output...

$

command.

The file etc/configueacis used to createonfigureby a GNU program calledutoconf You only need to
know this if you want to regenerat®nfigureusing a newer version aitoconf

TESTING LIBEXPLAIN
Thelibexplainpackage comes with a test suifie@ run this test suite, use the command
$ make sure
...lots of output...
Passed All Tests
$

The tests tad&a faction of a second each, with most very fast, and a couple verybalat varies greatly
depending on your CPU.

If all went well, the message
Passed All Tests
should appear at the end of the make.

Sources of False Negates
There are a number of factors that can cause tests to fail unnecessarily.

Root You will get false ngaives if you run the tests as root.

Architecture
Some errors mee aound depending on architecture (spas&86 vss390,etd. Someeven
maove aound due to different memory layout for 32t64-bit, for the same processor family.
For example, when testing BJLT explanations.

strerror Different systems ba dfferent strerror(3) implementations (the numbers vahe texts varythe
existence variesgtg. Thiscan &en be hcompatible across Linux architectures when ABI
compatibility was the goag.g.sparcvsi386.

ioctl There are (at least) three inconsistent implementations of ioctl request macros, all incompatible,
depending on Unix vendoiThey also vary on Linux, depending on architecture, for ABI
compatibility reasons.

Environment
Some tests are di€ult because the build-and-test environment can vary widelmnetimes it a
chroot, sometimes #’a W, sometimes i fakeroot, sometimes it really is running as root. All

Reference Manual libgolain 15

Build(libexplain) Build(libexplain)

these affect the ability of the library to probe the system looking for the proximal cause of the
error,e.g.ENOSPC or ERFS. Thisoften results in 2 or 4 or 8 explanations of an error,
depending on what the library findsg.existence of useful information in the mount table, or
not.

Mount Table
If you run the tests in a chroot jail build environment, maybe with bind mounts for the file
systems, it is necessary to realdre/etc/mtab(or equvalent) has sensable contents, otherwise
some of the path resolution tests will return falsgetiees.

/proc If your system has a completely inadeqiatec implementation (including, but not limited to:
*BSD, Mac OS X, and Solaris) or dproc at all,and you hase rot installed thdsof(1) tool,
then large numbers of tests will return falsgaiges.

As these problem ke accured, may of the tests ha been enhanced to cope, but not all falsgetiee
situations hee yet been disogered.

INSTALLING LIBEXPLAIN
As explained in th&€ITE CONFIGURATIONection, abee, thelibexplainpackage is installed under the
/usr/localtree by dedult. Usethe——prefix=" PATH option toconfigureif you want some other path.
More specific installation locations are assignable, use-thelp option toconfigurefor details.

All that is required to install thiexplainpackage is to use the

make install

...lots of output...

#
command. Contrabf the directories used may be found in the firgt fimes of theMakefilefile and the
other files written by theonfigurescript; it is best to reconfigure using tb@nfigurescript, rather than
attempting to do this by hand.

Note: if you are doing a manual install (as opposed to a package build) you will also need to run the
#ldconfig
#
command. Thisipdates where the system thinks all the shared libraries are. And since we just installed
one, this is a good idea.

GETTING HELP
If you need assistance with thigexplainpackage, please do not hesitate to contact the author at
Peter Miller <pmiller@opensource.org.au>
Any and all feedback is welcome.

When reporting problems, please include the version numbar lgy the
$ explain —version
explain version 1.4.D001
...warranty disclaimer...
$

command. Pleas#o not send this example; run the program for the exact version number.

Reference Manual libgolain 16

Build(libexplain) Build(libexplain)

COPYRIGHT
libexplainversion 1.4
Copyright © 2008, 2009, 2010, 2011, 2012, 2013, 2014 Peter Miller

Thelibexplainpackage is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY,;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. Sethe GNU Lesser General Public License for more details.

It should be in th&ICENSEfile included with this distribution.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual libglain 17

New-System-Call(libeplain) Nev-System-Call(libexplain)

NAME
new system call — Hav to add a nev system call to libexplain

DESCRIPTION
Adding a n& system call to libexplain is both simple and tedious.

In this example, the system call is caleedmple and takes tw arguments pathnamendflags
example(const char *pathname, int flags);

The libexplain library presents a C interface to the,@ser explains the C system calls. It tries void

dynamic memoryand has seeral helper functions and structures to md#kis simpler.

Naming Corventions
In general, one function péle. Thisgives the static linker more opportunity to leatings out, thus
producing smallerxecutables. Exceptiort® male use ofstatic common functions are acceptable. No
savings for shared libraries, of course.

Functions that write their output inteegplain_string_buffer_tia theexplain_string_buffer_*
functions, all hee a flename oflibexplain/buffer/ something

Functions that write their output tav@essge, messge_sizepair have amessage path component in their
file name.

Functions that accept @mrnovalue as an argumentVean errno path component in their file name,
callederrnum . If a function has both a buffer and an errno, the buffer comes first, both in the argument
list, and the files rame. Ifa function has both a message+size and an errno, the message comes first, both
in the argument list, and the figetame.

MODIFIED FILES
Note that theeodegen command does most of the work for ydeess it the function prototype (in single
guotes) and it will do most of the work.

$ bin/codegen’ exanpl e(const char *pathname, int flags);’
creating catalogue/ exanpl e
$

then you mast edit theatalogue/ exanpl e file to male any adjustment necessaryrhis file is then
used to do the boring stuff:
$ bin/codegen exanpl e

creating explain/syscall/ exanpl e.c

creating explain/syscall/ exanpl e.h

creating libexplain/buffer/errno/ exanpl e.c
creating libexplain/buffer/errno/ exanpl e.h
creating libexplain/ exanpl e.c

creating libexplain/ exanpl e.h

creating libexplain/ exanpl e_or_die.c

creating man/man3/explain_ exanpl e.3

creating man/man3/explain_ exanpl e_or_die.3
creating test exanpl e/main.c

modify explain/syscall.c
modify libexplain/libexplain.h
modify man/manl/explain.1
modify man/man3/explain.3

$

All of these files hae been added to the Aegis change set. Edit the last 4 to place the appended line in their
correct positions within the files, respecting the symbol sort ordering of each file.

libexplain/libexplain.h
Thelibexplain/libexplain.h include file defines the user API. It, andydiles it includes, are
installed into$(prefix)/include by male install.

This file needs another include line. This means that the entire ARdilizlde to the user as a single

18

New-System-Call(libeplain) Nev-System-Call(libexplain)

include directve.
#include <libexplain/ exampleh>
This file is also used to decide which files are installed byrtale installcommand.

Take are that none of those files, directly or indirectind up includingibexplain/config.h
which is generated by tlownfigurescript, and haso namespace protection.

This means you car#tinclude <stddef.h> , or use awy of the types it defines, because on older
systemsconfigureworks quite hard to cope with its absence. Dittmistd.h> and<sys/types.h>

explain/main.c
Include the include file for the mefunction, and add the function to the table.

man/manl/explain.1
Add a description of the mesystem call.

man/man3/libexplain.3
Add your nev man pages, man/man3/explagxample3 and man/man3/explaiexample or_die.3, to the
list. Keep the list sorted.

NEW FILES
Note that theeodegen command does most of the work for ydeess it the function prototype (in single
guotes) and it will do most of the work.

libexplain/buffer/errno/ examplec

The central file for adding a weexample islibexplain/buffer/errno/ examplec Which defines
a function

void explain_buffer_errno_ exampldexplain_string_buffer_t *buffer,

int errnum, const char *pathnament flags;

Theerrnum argument holds therrnovalue. Notethat callingerrno usually has problems because many
systems hee errno as a macro, which makes the compiler barf, and because there are times you want
access to the globafrno, and having it shadowed by the argument is a nuisance.

This function writes its output into the buffer via #eplain_string_buffer_printf , etc
functions. Firsthe argument list is reprinted.

Theexplain_string_buffer_puts_quoted function should be used to print pathnames, because

it uses full C quoting and escape sequences.

If an argument is a file descriptdtrshould be calledildes short for “file descriptor”. On systems capable
of it, the file descriptor can be mapped to a pathname using the

explain_buffer_fildes_to_pathname function. Thismakes explanations for system calls like
read andwrite much more informatie.

Next comes a switch on the errnum value, and additional explanatimenda@i each errno value

documented (or sometimes undocumented) for that system call. Copy-and-paste of the man page is often

useful as a basis for the text of the explanation, but be sure it is open source documentation, and not
Copyright proprietary text.

Don't forget to check the existirifpexplain/buffer/e*.h files for pre-canned explanations for
common errors. Some pre-canned explanations include

EACCES aplain_buffer_eacces

EADDRINUSE eplain_buffer_eaddrinuse

EAFNOSUPPOR explain_buffer_eafnosupport

EBADF explain_buffer_ebadf

EFAULT explain_buffer_efault

EFBIG eplain_buffer_efbig

EINTR explain_buffer_eintr

EINVAL explain_buffer_eimal_vague etc

19

New-System-Call(libeplain) Nev-System-Call(libexplain)

EIO explain_buffer_eio
ELOOP eplain_buffer_eloop
EMFILE explain_buffer_emfile
EMLINK explain_buffer_emlink
ENAMETOOLONG e&plain_buffer_enametoolong
ENFILE explain_buffer_enfile
ENOBUFS eplain_buffer_enobufs
ENOENT eplain_buffer_enoent
ENOMEM explain_buffer_enomem
ENOTCONN eplain_buffer_enotconn
ENOTDIR explain_buffer_enotdir
ENOTSOCK eplain_buffer_enotsock
EROFS explain_buffer_erofs
ETXTBSY explain_buffer_etxtbsy
EXDEV explain_buffer_exdev

libexplain/buffer/errno/example.h
This file holds the function prototype for the &bdunction definition.

libexplain/example.h

The file contains the user visible API for tb@mplesystem call. There aré/& function prototypes

declared in this file:
void explain_ example or_die(const char *pathnament flags;
void explain_ exampld const char *pathnament flags;
void explain_errno_ exampldint errnum, const char *pathnament flags;
void explain_message__ exampldconst char *message, int message_size,
const char *pathnament flags;
void explain_message_errno_ exampldconst char *message, int
message_size, int errnum, const char *pathnament flags;

The function prototypes for these appear inlithexplain/ exampleh include file.

Each function prototype shall be accompanied by thorough Doxygen style comments. These are extracted
and placed on the web site.

The buffer functions areever part of the user visible API.

libexplain/example or_die.c
One function per fileexplain_ example or_die in this case. It simply callexampleand then, if fails,
explain_ exampleto print wty, and then exit(EXIT_FAILURE).

libexplain/example.c
One function per fileexplain_ examplein this case. It simply callsxplain_errno_ exampleto pass
in the globakrrnovalue.

libexplain/errno/example.c
One function per filegxplain_errno_ examplein this case. It calls
explain_message_errno_ example using the<libexplain/global_message_buffer.h>
to hold the string.

libexplain/message/example.c
One function per filegxplain_message_ examplein this case. It simply calls
explain_message_errno_ exampleto pass in the globa&rrno value.

libexplain/message/errno/example.c
One function per filegxplain_message_errno_ examplein this case. It declares and initializes a
explain_string_buffer_t instance, which ensures that the message buffer will not be exceeded,
and passes that buffer to tveplain_buffer_errno_ examplefunction.

20

New-System-Call(libeplain) Nev-System-Call(libexplain)

man/man3/explain_example.3
This file also documents the error explanations functions, ergpfdin_ example or_dir . Use the
same text as you did libexplain/ exampleh

man/man3/explain_example_or_die.3
This file also documents the helper function. Use the same text as yodidekpiain/ exampleh

explain/example.c
Glue to turn the command line into arguments to a cakpdain_ example

explain/example.h
Function prototype for the abe

test_example/main.c
This program should cadixplain_ explain_or_die

NEW IOCTL REQUESTS
Each differentoctl(2) request is, in effect, yet another system call. Except thasliieave gpallingly
bad type safetyl have ®en fugly C++ classes with lesgedoading tharioctl(2).

libexplain/iocontrol/request_by number.c
This file has one include line for eaidttl(2) request. There istable array that contains a
pointer to the explain_iocontrol_t variable declared in the include file (s h@ep both sets of
lines sorted alphabeticallif makes it easier to detect duplicates.

libexplain/iocontrolhameh
Wherenameis the name of thioctl(2) request in lower case. This declares an global const
variable describing he to handle it.

libexplain/iocontrolhamec
This defines the alve dobal variable, and defines yasgtatic glue functions necessary to print a
representation of itYou will probably hare © read the kernel source to diseothe errors the
ioctl can return, and what causes them, in order to write the explanation functjoaretiaémost
never described in the man pages.

TESTS
Write at least one separate test for each case in the errnum switch.

Debian Notes

You can check that the Debian dtbfiilds by using
apt-get install pbuilder
pbuiler create
pbuilder login

now copy the files fromweb-site/debiarnihto the chroot
cd libexplain—*
dpkg-checkbuilddeps
apt-get installvhat dpkg-checkbuilddeps said
apt—get install devscripts
debuild

This should report success.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

21

explain(1) GeneraCommands Manual explain(1)

NAME
explain — explain system call error messages

SYNOPSIS
explain [option...]function] argument..]

explain ——version

DESCRIPTION
The explain command is used to decode an error return read fretmaedail) listing, or silimar Because
this is being deciphered in a different process than the orginal, the results will be less accurate than if the
program itself were to uddexplain(3).

Functions
The functions understood include:

accepfiildes addr addrlen
Theaccep(2) system call.

accept4ildes|[[sock_addr sock_addr_si¥dlags]
Theaccept42) system call.

accespathname
Theaccesg?) system call.

acctpathname
Theacct(2) system call.

acl_from_textext
Theacl_from_tex{3) system call.

acl_get_fdfildes
Theacl_get_fd3) system call.

acl_get_filepathname type
Theacl_get_fil€3) system call.

acl_set_fdildes acl
Theacl_set_f@3) system call.

acl_set_filepathname type acl
Theacl_set_fil€3) system call.

acl_to_textacl len_p
Theacl_to_tex{3) system call.

adjtimedelta olddelta
Theadijtimg2) system call.

adjtimexdata
Theadjtimex2) system call.

asprintf Theasprint{3) system call.

bind fildes addr sockaddr_size
Thebind(2) system call.

callocnmemb size
Thecallo(3) system call.

chdir pathname
Thechdir(2) system call.

22

explain(1) GeneraCommands Manual explain(1)

chmodpathname permission-mode
Thechmod?2) system call.

chownpathname owner group
The chown(2) system call.

chrootpathname
Thechroot(2) system call.

closefildes
Theclos€?2) system call.

closedirdir
Theclosedi(3) system call.

connecfildes serv_addr serv_addr_size
Theconnecf2) system call.

creatpathnamd permission-mode
Thecreaf(2) system call.

dirfd dir Thedirfd(3) system call.

dupfildes
Thedup(2) system call.

dup2oldfd newfd
ThedupZ?2) system call.

endgrent Thendgren{3) system call.

evantfd initval flags
Theewentfd2) system call.

execlp pathname arg.
Theexeclp(3) system call.

execv pathname argv
Theexecy(3) system call.

execve pathname arg.
Theexecvg?) system call.

execvp pathname arg.
Theexecv(3) system call.

fchdir pathname
Thefchdir(2) system call.

fchmodfildes mode
Thefchmod?2) system call.

fchownfildes owner group
Thefchowr(2) system call.

fchownatdirfd pathname owner group flags
Thefchownaf2) system call.

fclosefp Thefclosd3) system call.

fentl fildes comman@arg |
Thefcntl(2) system call.

fdopenfd mode
Thefdoper{3) system call.

23

explain(1) GeneraCommands Manual explain(1)

fdopendirfildes
Thefdopendi(3) system call.

feoffp Thefeof3) system call.
ferrorfp Theferror(3) system call.
fflushfp Thefflush(3) system call.
fgetcfp Thefgetd3) system call.

fgetposfp pos
Thefgetpog3) system call.

fgetsdata data_size fp
Thefgetg3) system call.

filenofp Thefilend3) system call.

flock fildes command
Theflock(2) system call.

fork Thefork(2) system call.

fpathconffildes name
Thefpathcon(3) system call.

fpurgefp
Thefpurgg(3) system call.

freadptr size nmemb fp
Thefread3) system call.

fopenpathname mode
Thefoper(2) system call. Thpathnameargument may need to be quoted to insulate white space
and punctuation from the shell. Theodeargument (a textual equaent of theopensystem
call's flagsagument). Seéoper(3) for more information.

fputcc[fp]
Thefput(3) system call.

fputss fp
Thefputq3) system call.

freopenpathname flags fp
Thefreoper{3) system call.

fseekfp offset whence
Thefseek3) system call.

fseekofp offset whence
Thefseek@3) system call.

fsetposp pos
Thefsetpo§3) system call.

fstatpathname
Thefstai(2) system call.

fstatatfildes pathname data flags
Thefstata(2) system call.

fstatfsfildes data
Thefstatf2) system call.

fstatvfsfildes data
Thefstatvf¢2) system call.

24

explain(1) GeneraCommands Manual explain(1)

fsyncfildes
Thefsyng2) system call.

ftell fp Theftell(3) system call.
ftello fp Theftello(3) system call.
ftimetp Theftimg3) system call.

ftruncatefildes length
Theftruncatg?) system call.

futimensfildes data
Thefutimeng3) system call.

futimesfildes tv[0] data[1]
Thefutimeg3) system call.

futimesatffildes pathname data
Thefutimesaf?) system call.

getcfp Thegec(3) system call.
getchar Theechar(3) system call.

getcwdbuf size
Thegetcwd2) system call.

getdomainnamdata data_size
Thegetdomainnamg?) system call.

getgrent Theegreni(3) system call.

getgrouplistuser group groups ngroups
The getgrouplisi(3) system call.

getgroupgiata_size data
Thegetgroupg?2) system call.

gethostbynamaame
The gethostbynam@) system call.

gethostid
The gethostid3) system call.

gethostname dlata data_sizé
Thegethostnamg?) system call.

getpeernaméldes sock_addr sock_addr_size
Thegetpeernamg?) system call.

getpgidpid
Thegetpgid(2) system call.

getpgrppid
Thegetpgrp(2) system call.

getprioritywhich who
The getpriority(2) system call.

getresgidgid egid sgid
Thegeresgid?2) system call.

getresuiduid euid suid
Thegeresuid2) system call.

getrlimit resource rlim
Thegetrlimit (2) system call.

25

explain(1) GeneraCommands Manual explain(1)

getrusagevho usge
Thegetrusage(2) system call.

getsocknaméldes[sock_addf sock_addr_siz§
The getsocknamg) system call.

getsockopfildes level name data data_size
The getsodkopt(2) system call.

gettimeofday fv|[tz]]
The gettimeofday?) system call.

getwfp Thegew(3) system call.

iconv cd inbuf inbytesleft outbuf outbytesleft
Theicony3) system call.

iconv_closecd
Theiconv_closé3) system call.

iconv_opertocode fromcode
Theiconv_ope(B) system call.

ioctl fildes request data
Theioctl(2) system call.

kill pid sig
Thekill (2) system call.

Ichmodpathname mode
Thelchmod?2) system call.

Ichownpathname owner group
Thelchown(2) system call.

Ichownatfildes pathname uid gid
Thelchownaf2) system call.

link oldpath newpath
Thelink(2) system call.

linkat old_fildes old_path new_fildes new_path flags
Thelinkat(2) system call.

listenfildes backlog
Thelisten(2) system call.

Iseekfildes offset whence
ThelseeK?2) system call.

Istatpathname
Thelstat(2) system call.

lutimespathname data
Thelutimeg3) system call.

mallocsize
Themalloq3) system call.

mkdir pathnamd mode]
Themkdin(2) system call.

mkdtemppathname
Themkdtemf3) system call.

mknodpathname mode dev
Themknod?2) system call.

26

explain(1) GeneraCommands Manual explain(1)

mkostempemplat flags
Themkostem(8) system call.

mkstemptemplat
ThemkstemfB) system call.

mktemppathname
Themktemg3) system call.

mmapdata data_size prot flags fildes offset
Themmayg2) system call.

mountsource taget file_systems_type fig data
Themount2) system call.

munmapdata data_size
Themunmag2) system call.

nanosleepeq rem
Thenanosleef?) system call.

niceinc Thenicg2) system call.

openpathname flagf mode]
Theoper(2) system call. Thpathnameargument may need to be quoted to insulate white space
and punctuation from the shell. Tflagsargument may be numeric or symbolic. Thede
argument may be numeric or symbolic.

openaffildes pathname flags mode
Theopenaf2) system call. Th#agsargument may be numeric or symbolic. Thede
argument may be numeric or symbolic.

opendirpathname
Theopendi(3) system call.

pathconfpathname name
Thepathcon(3) system call.

pclosefp
Thepclos€3) system call.

pipepipefd
Thepipg(2) system call.

pipe2fildes flags
Thepipeq2) system call.

poll fds nfds timeout
Thepoll(2) system call.

popencommand flags
Thepoper{3) system call.

preadfildes data data_size offset
Thepread?2) system call.

ptracerequest pid addr data
Theptracg2) system call.

putcc fp Theputd3) system call.

putcharc
Theputchal3) system call.

putenvstring
The puteny3) system call.

27

explain(1) GeneraCommands Manual explain(1)

putss Theputg3) system call.

putw value fp
The putw(3) system call.

pwrite fildes data data_size offset
The pwrite(2) system call.

raisesig Theraisg3) system call.

readfildes data data-size
Theread(2) system call.

reallocptr size
Therealloc(3) system call.

realpathpathname resolved_pathname
Therealpath(3) system call.

renameoldpath newpath
Therenamé?2) system call.

readvfildes iov...
Theready2) system call.

selecinfds readfds writefds exceptfds timeout
Theselec(2) system call.

setbuffp data
Thesetbu(3) system call.

setbufferfp data size
The setbuffe(3) system call.

setdomainnamdata data_size
The setdomainnan(@) system call.

setenwname value overwrite
Theseteny3) system call.

setgidgid
Thesetgid2) system call.

setgrent Theetgren3) system call.

setgroupslata_size data
Thesetgroup§?) system call.

sethosthamaame] name_siz¢
Thesethostnam@) system call.

setlinebuffp
Thesetlinebuf3) system call.

setpgid [pid [pgid]]
Thesetpgid2) system call.

setpgrppid pgid
Thesetpgrig2) system call.

setprioritywhich who prio
Thesetpriority(2) system call.

setregidrgid egid
Thesetegd(2) system call.

28

explain(1) GeneraCommands Manual explain(1)

setreuidruid euid
Thesetreuid?2) system call.

setresgidgid egid sgid
Thesetresgid?) system call.

setresuiduid euid suid
Thesetresuid?) system call.

setreuidruid euid
Thesetreuid?2) system call.

setsid Thesetsid2) system call.

setsockopfildes level name data data_size
The setsokopt(2) system call.

settimeofdayv tz
The settimeofdafp) system call.

setuiduid
Thesetuid?2) system call.

setvbuffp data mode size
Thesetvbuf3) system call.

shmatshmid shmaddr shmflg
Theshmag2) system call.

shmctlshmid command data
Theshmct(2) system call.

signalfdfildes mask flags
Thesignalfd2) system call.

sleepseconds
Theslee§3) system call.

socketdomain type protocol
Thesoke(2) system call.

socketpaidomain type protocol sv
The sokepair(2) system call.

statpathname
Thestaf(2) system call.

statfspathname data
The statfg2) system call.

statvfspathname data
The statvf$2) system call.

stimet Thestimg?2) system call.

strcolls1 s2
Thestrcoll(3) system call.

strdupdata
Thestrdup(3) system call.

strerror The error gen will be printed out with all known detail.

strndupdata data_size
Thestrndug3) system call.

29

explain(1) GeneraCommands Manual explain(1)

strtodnptr endptr
Thestrtod3) system call.

strtof nptr endptr
Thestrtof(3) system call.

strtol nptr endptr base
Thestrtol(3) system call.

strtold nptr endptr
Thestrtold(3) system call.

strtoll nptr endptr base
Thestrtoll(3) system call.

strtoulnptr endptr base
Thestrtoul(3) system call.

strtoull nptr endptr base
Thestrtoull(3) system call.

symlink oldpath newpath
Thesymlink2) system call.

systemcommand
Thesysten) system call.

tcdrainfildes
Thetcdrain(3) system call.

tcflow fildes action
Thetcflom(3) system call.

tcflushfildes selector
Thetcflush(3) system call.

tcgetattrfildes data
Thetcgetatt(3) system call.

tcsendbreakildes duration
ThetcsendbreaB) system call.

tcsetattrfildes options data
Thetcsetatt(3) system call.

telldir dir
Thetelldir(3) system call.

tempnandir prefix
Thetempnan(3) system call.

timet Thetimg2) system call.

timerfd_createclockid flags
Thetimerfd_creat€?) system call.

tmpfile Thetmpfilg(3) system call.

tmpnampathname
Thetmpnan{3) system call.

truncatepathname size
Thetruncatg?) system call.

usleepusec
Theusleef3) system call.

30

explain(1) GeneraCommands Manual explain(1)

unamedata
Theunamg2) system call.

ungetcc fp
Theunget¢3) system call.

unlink pathname
Theunlink(2) system call.

unsetemname
Theunseten{8) system call.

ustatdev ubuf
Theusta(2) system call.

utime pathnamdg times]
Theutimg?2) system call.

utimenspathnamd data]
Theutimeng2) system call.

utimensat fiildes] pathnamd data] flags]]
Theutimensaf2) system call.

utimespathname data
Theutimeg2) system call.

vasprintfdata format ap
Thevasprint{3) system call.

vfork Thevfork(2) system call.

wait status
Thewait(2) system call.

wait3 status options rugge
Thewait3(2) system call.

wait4 pid status options rusg
Thewait4(2) system call.

waitpid pid status options
Thewaitpid(2) system call.

write fildes data data-size
Thewrite(2) system call.

writev fildes data data-size
Thewritev(2) system call.

Do not include the perentheses used toariad call.

OPTIONS
The explain command understands the following options:

-E The exit staus, success or fail, will be printed immediately beforectesssommand
terminates.
—enumber

The value okrrnoas a numbere(g.2), or as a symbok(g.ENOENT), or as the text of its
meaning €.g.No such file or directofy You will need quotes to insulate spaces and punctuation
from the shell.

-V Print the version of thexplain executing.

EXIT STATUS
The explain command exits with status 1 oy @mor. The explain command only exits with status O if
there are no errors.

31

explain(1) GeneraCommands Manual explain(1)

COPYRIGHT
explain version 1.4
Copyright © 2008, 2009, 2010, 2011, 2012, 2013, 2014 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

32

explain_lca2010(1) Gener@lommands Manual explain_lca2010(1)

NAME
explain_Ilca2010 — No medium found: whersiiime to stop trying to reastrerror(3)’s mind.

MOTIV ATION
The idea for libexplain occurred to me back in the early 1980s. Waeagystem call returns an error,
the kernel knows exactly what went wrong... and compresses this into less that &#oite.ofJser space
has access to the same data as the kernel, it should be possible for user space to figure out exactly what
happened to proke the error return, and use this to write good error messages.

Could it be that simple?

Error messages as finesse
Good error messages are often those “one percent” tasks that get dropped when schedule pressure squeezes
your project. Howeer, a good error message can meak tuge, disproportionate imprement to the user
experience, when the user wanders into scan&nown territory not usually encountered. This is no easy
task.

As a larval programmethe author didr’see the problem with (completely accurate) error messages like
this one:

floating exception (core dumped)

until the alternatie ron-programmer interpretation was pointed out. But that ika’only thing wrong
with Unix error messages. Mooften do you see error messages like:

$ /stupid
can’t open file

$

There are tw options for a deeloper at this point:
1. you can run a debuggseuch asgdi(1), or
2. you can usstracgl) ortrusg1) to look inside.

* Remember that your users may nagrehaveaccess to these tools, let alone the ability to use them.
(It's a\ery long time sinc&nix beginnemeant “has only writtennedevice drver”.)
In this example, hower, usingstracegl) reveals

$ strace —e trace=open ./stupid
open("some/file", O_RDONLY) = -1 ENOENT (No such file or directory)
can’t open file

$
This is considerably more information than the error message&lpso pically, the stupid source code
looks like this
int fd = open(" some/thing, O_RDONLY);
if (fd < 0)
{
fprintf(stderr, "can’t open file\n");
exit(1);
}

The user isrt’'told whichfile, and also fails to tell the usehicherror Was the file gen there? Vds there
a permissions problem? It does tell you it was trying to open a file, but that was probably by accident.

Grab your clue stick and go beat the larval programmer wiffeit.him aboutperror(3). Thenext time
you use the program you see a different error message:

$ /stupid
open: No such file or directory

$

Progress, but not what wepected. Hav can the user fix the problem if the error message dbedhhim

33

explain_lca2010(1) Gener@lommands Manual explain_lca2010(1)

what the problem as? Lookingat the source, we see

int fd = open(" some/thing, O_RDONLY);
if (fd < 0)
{
perror(“open");
exit(1);
}
Time for another run with the clue stick. This time, the error message takes one step forward and one step
back:

$ /stupid
some/thing No s uch file or directory

$

Now we know the file it was trying to open, but are no longer informed that itopas(2) that filed. In
this case it is probably not significant, but it can be significant for other system calls. It ceailsbba
creal(2) instead, an operation implying that different permissions are necessary.

const char *filename =" some/thing;
int fd = open(filename, O_RDONLY);

if (fd < 0)

{

perror(filename);
exit(1);
}
The abeoe example code is unfortunately typical of non-larval programmers as Wetle to tell our
padavan learner about thstrerror(3) system call.

$ /stupid
open some/thing No s uch file or directory
$
This maximizes the information that can be presented to the Tisercode looks li& this:
const char *filename =" some/thing;
int fd = open(filename, O_RDONLY);
if (fd < 0)
{

fprintf(stderr, "open %s: %s\n", filename, strerror(errno));
exit(1);
}

Now we havethe system call, the flename, and the error string. This contains all the information that
stracg1) printed. Thas as @od as it gets.

Orisit?
Limitations of perror and strerror

The problem the authorwaback in the 1980s, was that the error message is incomplete. Does “no such
file or directory” refer to thesomé directory, or to the ‘thing’ file in the “"somé& directory?

A quick look at the man page fetrerror(3) is telling:
strerror — return string describing error number
Note well: it is describing the erroumber not the error.

On the other hand, the kerrde@lowswhat the error &ws. Theravas a pecific point in the kernel code,
caused by a specific condition, where the kernel code branched and said “no”. Could a user-space program
figure out the specific condition and write a better error message?

However, the problem goes deepaivhat if the problem occurs during thead(2) system call, rather than
theoper(2) call? It is simple for the error message associatedopi#i(2) to include the file name, it's

34

explain_lca2010(1) Gener@lommands Manual explain_lca2010(1)

right there. But to be able to include a file name in the error associated widad® system call, you
have o pass the file name all the way down the call stack, as well as the file descriptor.

And here is the bit that grates: the kernel already knows what file name the file descriptor is associated
with. Why should a programmer ke o pass redundant data all the way down the call stack just to
improve an error message that maywvee be issued? Imeality, many programmers donbother and the
resulting error messages are the worse for it.

But that was the 1980s, on a PDP11, with limited resources and no shared libraries. Back theor,afo fla
Unix included/proc even in rudimentary form, and thsof(1) program waswer a decade way. So the
idea was shelved as impractical.

Level I nfinity Support
Imagine that you areel infinity support. Your job description says that youveeeer have talk to
users. Wi, then, is there still a constant stream of people wanting you, the local Unix guru, to decipher yet
another error message?

Strangely 25 years laterdespite a simple permissions system, implemented with complete congistenc
most Unix users still hee ro idea hav to decode “No such file or directory”, or yaof the other cryptic
error messages theee &ery day Or, a least, cryptic to them.

Wouldn't it be rice if first level tech support didh’need error messages decipher&tiBuldn’t it be nice to
have aror messages that users could understand without calling tech support?

These dayfproc on Linux is more than able to provide the information necessary to decode the vast
majority of error messages, and point the user to the proximate cause of their problem. On systems with a
limited /proc implementation, thésof(1) command can fill in manof the gaps.

In 2008, the stream of translation requests happened to the author way too often. It was time to re-examine
that 25 year old idea, and libexplain is the result.

USING THE LIBRARY
The interface to the library tries to be consistent, where possibles gagt'with an example using
strerror(3):

if (rename(old_path, new_path) < 0)

fprintf(stderr, "rename %s %s: %s\n", old_path, new_path,
strerror(errno));
exit(1);
}

The idea behind libexplain is to provideteerror(3) equialent foreachsystem call, tailored specifically
to that system call, so that it can provide a more detailed error message, containing much of the information
you see under the “ERRORS” heading of section 2 andrgpages, supplemented with information about
actual conditions, actual argument values, and system limits.

The Simple Case
Thestrerror(3) replacement:

if (rename(old_path, new_path) < 0)

{

fprintf(stderr, "%s\n", explain_rename(old_path, new_path));
exit(1);
}

The Errno Case
It is also possible to pass an explaitno(3) value, if you must first do some processing that would disturb
errno, such as error rec@ry:

if (rename(old_path, new_path < 0))

{

int old_errno = errno;

35

explain_lca2010(1) Gener@lommands Manual explain_lca2010(1)

code that disturbs errno
fprintf(stderr, "%s\n", explain_errno_rename(old_errno,
old_path, new_path));
exit(1);
}
The Multi-thread Cases

Some applications are multi-threaded, and thus are unable to share libexpiainal buffer You can
supply your own buffer using

if (unlink(pathname))

{
char message[3000];
explain_message_unlink(message, sizeof(message), pathname);
error_dialog(message);
return -1,
}

And for completeness, bo#irno(3) and thread-safe:

ssize_t nbytes = read(fd, data, sizeof(data));
if (nbytes < 0)

{
char message[3000];

int old_errno = errno;
error recovery..
explain_message_errno_read(message, sizeof(message),
old_errno, fd, data, sizeof(data));
error_dialog(message);
return -1,

}
These are replacements &rerror_r(3), on systems that e it.

Interface Sugar
A set of functions added as aemience functions, to woo programmers to use the libexplain lidrary
out to be the autha’nost commonly used libexplain functions in command line programs:

int fd = explain_creat_or_die(filename, 0666);

This function attempts to create awi@e. If it can't, it prints an error message and exits with
EXIT_FAILURE. If there is no errgiit returns the n& file descriptor.

A related function:
int fd = explain_creat_on_error(filename, 0666);

will print the error message on failure, but also returns the original error resudtiran(B) is unmolested,
as well.

All the other system calls
In general, eery system call has its own include file

#include <libexplain/ nameh>
that defines function prototypes for six functions:
* explain_ name
» explain_errno_ name
* explain_message name

* explain_message_errno_ name

36

explain_lca2010(1) Gener@lommands Manual explain_lca2010(1)

 explain_ nameor_die and
* explain_ nameon_error

Every function prototype has Doxygen documentation, and this documerngatiotstripped when the
include files are installed.

Thewait(2) system call (and friends) V&me extra variants that also interpret failure to be an exit status
that isnt EXIT_SUCCESS. Thispplies tosysten3) andpclosg3) as well.

Coverage includes 221 system calls and 547 ioctl requests. There arenm@nsystem calls yet to
implement. Systernalls that neer return, such asext(2), are not present in the libraend will never be.
Theexecfamily of system callsare supported, because theeturn when there is an error.

Cat
This is what a hypothetical “cat” program could look like, with full error reporting, using libexplain.

#include <libexplain/libexplain.h>
#include <stdlib.h>
#include <unistd.h>

There is one include for libexplain, plus the usual suspects. (If you wish to reduce the preprocessor load,
you can use the specifdibexplain/ nameh> includes.)

static void
process(FILE *fp)
{
for (;;)
{
char buffer[4096];
size_t n = explain_fread_or_die(buffer, 1, sizeof(buffer), fp);
if (In)
break;
explain_fwrite_or_die(buffer, 1, n, stdout);

}

The procesdunction copies a file stream to the standard output. Should an error occur for either reading or
writing, it is reported (and the pathname will be included in the error) and the command exits with
EXIT_FAILURE. We don’t even worry about tracking the pathnames, or passing them down the call stack.
int
main(int argc, char **argv)

for (;;)
{
int ¢ = getopt(argc, argv, "o:");
if (c == EOF)
break;
switch (c)
{
case '0":
explain_freopen_or_die(optarg, "w", stdout);
break;

The fun part of this code is that libexplain can report eirmisding the pathnameven if youdon't
explicitly re-open stdout as is done hek&fe con't even worry about tracking the file name.

default:
fprintf(stderr, "Usage: %ss [—o0 <filename>] <filename>...\n",
argv[0]);
return EXIT_FAILURE;

37

explain_lca2010(1) Gener@lommands Manual explain_lca2010(1)

}
}
if (optind == argc)
process(stdin);
else

while (optind < argc)

{
FILE *fp = explain_fopen_or_die(argv[optind]++, "r");
process(fp);
explain_fclose_or_die(fp);

}

}

The standard output will be closed implicjthyt too late for an error report to be issued, so we do that
here, just in case the buffered I/O haswitten anything yet, and there is an ENOSPC error or something.
explain_fflush_or_die(stdout);
return EXIT_SUCCESS;
}

That's dl. Full error reporting, clear code.

Rusty’s Sale of Interface Goodness
For those of you not familiar with it, Rusty RusseiHow Do | Make This Hard to Misuse?” page is a
must-read for API designers.
http://ozlabs.org/"rusty/index.cgi/tech/2008-03-30.htm|

10. It's impossible to get wrong.

Goals need to be set high, ambitiously high, lest you accomplish them and think you are finished when you
are not.

The libexplain library detects bogus pointers andyratiner bogus system call parameters, and generally
tries to &oid segfaults ineen the most trying circumstances.

The libexplain library is designed to be thread safe. More real-world use will likedgl ©@aces this can
be improed.

The biggest problem is with the actual function names thesseBecaus€ does not hge rame-spaces,
the libexplain library aliays uses aexplain_ name prak. Thisis the traditional way of creating a
pseudo-name-space in order woid symbol conflicts. Howeser, it results in some unnatural-sounding
names.

9. The compiler or linker wotlet you get it wrong.

A common mistak is to tseexplain_open whereexplain_open_or_die was intended.
Fortunately the compiler will often issue a type error at this pogng(cant assignconst char *
rvalue to anint Ivalue).

8. The compiler will warn if you get it wrong.

If explain_rename is used wherexplain_rename_or_die was intended, this can cause other
problems. GCQas a usefulvarn_unused_result function attribute, and the libexplain library
attaches it to all thexplain_ namefunction calls to produce a warning when you méis mistake.
Combine this witlgcc —Werrorto promote this to keel 9 goodness.

7. The obvious use is (probably) the correct one.

The function names ke keen chosen to cuay teir meaning, but this is notvedys successful. While
explain_ nameor_die andexplain_ nameon_error are fairly descriptie, the less-used thread
safe variants are harder to decode. The function prototypes help the comaidstonderstanding, and
the Doxygen comments in the header files help the uarde understanding.

38

explain_lca2010(1) Gener@lommands Manual explain_lca2010(1)

6. The name tells you how to use it.

It is particularly important to reagkplain_ name or_die as “explain fameor die)”. Using a
consistenexplain_ name-space prefix has some unfortunate side-effects in the obviousness department,
as well.

The order of words in the names also indicate the order ofgbenants. Thargument lists alays end
with the same arguments as passed to the systeraltaflthem If _errno_ appears in the name, its
argument abays precedes the system cathaments. If message appears in the name, its two
arguments alays come first.

5. Do it right or it will break at runtime.

The libexplain library detects bogus pointers andyratiner bogus system call parameters, and generally
tries to @oid segfaults ineen the most trying circumstances. It shoulderdreak at runtime, but more
real-world use will no doubt impve tis.

Some error messages are aimed agldpers and maintainers rather than end users, as this can assist with
bug resolution. Noso much “break at runtime” as “be infornvatia runtime” (after the system call barfs).

4. Follow common convention and you'll get it right.

Because C does notyearame-spaces, the libexplain libraryvals uses aexplain_ name prak. This
is the traditional way of creating a pseudo-name-space in ordesitbsymbol conflicts.

The trailing arguments of all the libexplain call are identical to the system calrthdescribing. This is
intended to provide a consistent gemtion in common with the system calls themselves.

3. Read the documentation and you'll get it right.

The libexplain library aims to lva complete Doxygen documentation for each avelyepublic API call
(and internally as well).

MESSAGE CONTENT
Working on libexplain is a bit li& looking at the underside of your car when it is up on the hoist at the
mechanics. Theres ome ugly stufunder there, plus mud and crud, and users rarely s@egibod error
message needs to be infornaatieven for a user who has been fortunate enough notvwe tbdook at the
under-side very often, and also informatior the mechanic listening to the usagscription er the
phone. Thiss no easy task.

Revisiting our first example, the code wouldklikis if it uses libexplain:
int fd = explain_open_or_die("some/thing", O_RDONLY, 0);
will fail with an error message kkthis

open(pathname = "somef/file", flags = O_RDONLY) failed, No such
file or directory (2, ENOENT) because there is no "some" directory
in the current directory

This breaks down into three pieces

system-callfailed, system-errorbecause
explanation

Before Because
It is possible to see the part of the message before “becausestiggechnical to non-technical users,
mostly as a result of accurately printing the system call itself at the beginning of the error message. And it
looks likestracg1) output, for bonus geek points.

open(pathname = "somef/file", flags = O_RDONLY) failed, No such
file or directory (2, ENOENT)

This part of the error message is essential to theajeer when he is writing the code, and equally
important to the maintainer who has to read bug reports and fix bugs in the code. It says exactly what
failed.

39

explain_lca2010(1) Gener@lommands Manual explain_lca2010(1)

If this text is not presented to the user then the user cannot copy-and-paste it into a bug report, and if it isn’t
in the bug report the maintainer celknow what actually went wrong.

Frequently tech sthfvill use stracg1) ortrusg1) to get this exact information, but thigeaue is not open
when reading bug reports. The bug repostgrstem is far farwaay, and, by nav, in a far different state.
Thus, this information needs to be in the bug report, which means it must be in the error message.

The system call representation alseegicontext to the rest of the message. If need arises, the offending
system call argument may be referred to by name in the explanation after “because”. In addition, all strings
are fully quoted and escaped C strings, so embedded newlines and non-printing characters will not cause
the usess terminal to go haywire.

The system-errois what comes out atrerror(2), plus the error symbol. Impatient and expert sysadmins
could stop reading at this point, but the authexperience to date is that reading further igargling. (If

it isn’t rewading, it's probably an area of libexplain that can be invetb Codecontributions are

welcome, of course.)

After Because
This is the portion of the error message aimed at non-technical users. It looks beyond the simple system
call arguments, and looks for something more specific.

there is no "some" directory in the current directory

This portion attempts to explain the proximal cause of the error in plain language, and it is here that
internationalization is essential.

In general, the policis to include as much information as possible, so that the user tioesd’to go
looking for it (and doeshleave it out of the bug report).

Internationalization
Most of the error messages in the libexplain libraryehaen internationalized. There are no localizations
as yet, so if you want the explanations in yourveatinguage, please contribute.

The “most of” qualifier above, relates to the fact that the proof-of-concept implementation did not include
internationalization support. The code base is being revised praghgasually as a result of refactoring
messages so that each error message string appears in the code exactly once.

Provision has been made for languages that need to assemble the portions of
system-callfailed, system-errorbecause explanation
in different orders for correct grammar in localized error messages.

Postmortem
There are times when a program has yet to use libexplain, and yousesiracg1) either There is an
explain(1) command included with libexplain that can be used to decipher error messages, if the state of the
underlying system hagrchanged too much.

$ explain rename foo /tmp/bar/baz —e ENOENT

rename(oldpath = "foo", newpath = "/tmp/bar/baz") failed, No such
file or directory (2, ENOENT) because there is no "bar" directory
in the newpath "/tmp" directory

$

Note hav the path ambiguity is resolved by using the system call argument name. Of course/eybu ha
know the error and the system call faplain(1) to be useful. As an aside, this is one of the ways used by
the libexplain automatic test suite to verify that libexplain is working.

Philosophy
“Tell me everything, including stufl didn’t know to look for”

The library is implemented in such a way that when statically linked, only the code you actually use will be
linked. Thisis achieed by having one function per source file, wheeefeasible.

When it is possible to supply more information, libexplain will do so. The less the user has to track down
for themselves, the bettefhis means that UIDs are accompanied by the user name, GIDs are

40

explain_lca2010(1) Gener@lommands Manual explain_lca2010(1)

accompanied by the group name, PIDs are accompanied by the process hame, file descriptors and streams
are accompanied by the pathnasete,

When resolving paths, if a path component does not exist, libexplain will look for similar names, in order to
suggest alternates for typographical errors.

The libexplain library tries to use as little heap as possible, and usually none. Thigoid foeaturbing
the process state, as far as possible, although sometimes io&labée.

The libexplain library attempts to be thread safe,umyding global variables, keeping state on the stack as
much as possible. There is a single common message, lbatfehe functions that use it are documented
as not being thread safe.

The libexplain library does not disturb a procesgjnal handlers. This makes determining whether a
pointer would segfault a challenge, but not impossible.

When information is\&ilable via a system call as well as#able through dproc entry, the system call
is preferred. This is tovaid disturbing the processdate. Therare also times when no file descriptors
are ailable.

The libexplain library is compiled with large file support. There is no large/small schizophrenia. Where
this affects the argument types in the API, and error will be issued if the necessary large file defines are
absent.

FIXME: Work is needed to makaure that file system quotas are handled in the code. This applies to some
getrlimit(2) boundaries, as well.

There are cases when relati paths are uninformaté. For example: system daemons, servers and
background processes. In these cases, absolute paths are used in the error explanations.

PATH RESOLUTION
Short version: sepath_resolutiofi7).

Long version: Most users i reve heard ofpath_resolutiofi7), and may advanced users ka reve read
it. Hereis an annotated version:

Step 1: Start of the resolution process
If the pathname starts with the slash (/") charadber starting lookup directory is the root directory of the
calling process.

If the pathname does not start with the slash(“/”) charatieistarting lookup directory of the resolution
process is the current working directory of the process.

Step 2: Walk along the path
Set the current lookup directory to the starting lookup directdow, for each non-final component of the
pathname, where a component is a substring delimited by slash (/") characters, this component is looked
up in the current lookup directory.

If the process does notveasarch permission on the current lookup directaryEACCES error is
returned ("Permission denied").

open(pathname = "/home/archives/.ssh/private_key", flags =
O_RDONLY) failed, Permission denied (13, EACCES) because the
process does not have search permission to the pathname
"lhome/archives/.ssh" directory, the process effective GID 1000
"pmiller" does not match the directory owner 1001 "archives" so
the owner permission mode "rwx" is ignored, the others permission
mode is "-—-", and the process is not privileged (does not have
the DAC_READ_SEARCH capability)

If the component is not found, an ENOENT error is returned ("No such file or directory").

unlink(pathname = "/home/microsoft/rubbish") failed, No such file
or directory (2, ENOENT) because there is no "microsoft" directory
in the pathname "/home" directory

41

explain_lca2010(1) Gener@lommands Manual explain_lca2010(1)

There is also some support for users whew this-type pathnames, making suggestions when ENOENT is
returned:

open(pathname = "/user/include/fcntl.h", flags = O_RDONLY) failed,
No such file or directory (2, ENOENT) because there is no "user"
directory in the pathname "/* directory, did you mean the "usr"
directory instead?

If the component ifound, but is neither a directory nor a symbolic link, an ENOTDIR error is returned
("Not a directory").

open(pathname = "/home/pmiller/.netrc/Ica”, flags = O_RDONLY)
failed, Not a directory (20, ENOTDIR) because the ".netrc" regular
file in the pathname "/home/pmiller" directory is being used as a
directory when it is not

If the component is found and is a directarg st the current lookup directory to that direct@yd go to
the next component.

If the component is found and is a symbolic link (symlink), we first resbig symbolic link (with the
current lookup directory as starting lookup directory). Upon gtiat error is returned. If the result is not
a drectory, an ENOTDIR error is returned.

unlink(pathname = "/tmp/dangling/rubbish") failed, No such file or
directory (2, ENOENT) because the "dangling" symbolic link in the
pathname "/tmp" directory refers to "nowhere" that does not exist

If the resolution of the symlink is successful and returns a direeterget the current lookup directory to
that directoryand go to the next component. Note that the resolution process akesrecursion. In
order to protect the kernel against stae&fbow, and also to protect against denial of service, there are
limits on the maximum recursion depth, and on the maximum number of symbolic linkgeftblI&n
ELOORP error is returned when the maximum is exceeded ("Toy leags of symbolic links").

open(pathname = "/tmp/dangling”, flags = O_RDONLY) failed, Too
many levels of symbolic links (40, ELOOP) because a symbolic link
loop was encountered in pathname, starting at "/tmp/dangling”

It is also possible to get an ELOOP or EMLINK error if there are tog/reanlinks, but no loop was
detected.

open(pathname = "/tmp/rabbit-hole”, flags = O_RDONLY) failed, Too
many levels of symbolic links (40, ELOOP) because too many
symbolic links were encountered in pathname (8)

Notice hav the actual limit is also printed.

Step 3: Find the final entry
The lookup of the final component of the pathname goes jeshiiit of all other components, as described
in the previous step, with wdifferences:

(i) The final component need not be a directory (at least as far as the path resolution process is concerned.
It may hae © be a drectory, or a ron-directory because of the requirements of the specific system
call).

(ii) Itis not necessarily an error if the final component is not found; maybe we are just creating it. The
details on the treatment of the final entry are described in the manual pages of the specific system
calls.

(iii) Itis also possible to hae a poblem with the last component if it is a symbolic link and it should not
be folloved. For example, using theper(2) O_NOFOLLQN flag:

open(pathname = "a-symlink”, flags = O_RDONLY | O_NOFOLLOW) failed,
Too many levels of symbolic links (ELOOP) because O_NOFOLLOW was
specified but pathname refers to a symbolic link

42

explain_lca2010(1) Gener@lommands Manual explain_lca2010(1)

(iv) Itis common for users to makmistakes when typing pathnames. The libexplain library attempts to
make suggestions when ENOENT is returned, for example:

open(pathname = "/usr/include/filecontrl.h", flags = O_RDONLY)
failed, No such file or directory (2, ENOENT) because there is no
"filecontrl.h" regular file in the pathname "/usr/include"

directory, did you mean the "fcntl.h" regular file instead?

(v) Itis also possible that the final component is required to be something other than a regular file:

readlink(pathname = "just-a-file", data = Ox7F930A50, data_size =
4097) failed, Invalid argument (22, EINVAL) because pathname is a
regular file, not a symbolic link

(vi) FIXME: handling of the "t" bit.
Limits
There are a number of limits withga&ds to pathnames and filenames.
Pahname length limit
There is a maximum length for pathnames. If the pathname (or some intermediate pathname

obtained while resolving symbolic links) is too long, an ENAMETOOLONG error is returned
("File name too long"). Notice lothe system limit is included in the error message.

open(pathname =" very...lond, flags = O_RDONLY) failed, File name
too long (36, ENAMETOOLONG) because pathname exceeds the system
maximum path length (4096)

Filename length limit
Some Unix variants v a Imit on the number of bytes in each path component. Some of them
deal with this silentlyand some gie ENAMETOOLONG,; the libexplain library usgmmathcon(3)
_PC_NO_TRUNC to tell which. If this error happens, the libexplain library will state the limit in
the error message, the limit is obtained frpathcon{3) _PC_MME_MAX. Notice how the
system limit is included in the error message.

open(pathname =" system7/only—had-14-charactetsdlags = O_RDONLY)
failed, File name too long (36, ENAMETOOLONG) because
"only—had-14-characters" component is longer than the system

limit (14)

Empty pathname
In the original Unix, the empty pathname referred to the current diredtlanyadays POSIX
decrees that an empty pathname must not be resolved successfully.

open(pathname =", flags = O_RDONLY) failed, No such file or
directory (2, ENOENT) because POSIX decrees that an empty
pathname must not be resolved successfully

Permissions
The permission bits of a file consist of three groups of three bits. The first group of three is used when the
effective wser ID of the calling process equals the owner ID ofitbe Thesecond group of three is used
when the group ID of the file either equals the efiectroup ID of the calling process, or is one of the
supplementary group IDs of the calling process. When neither holds, the third group is used.

open(pathname = "/etc/passwd”, flags = O_WRONLY) failed,
Permission denied (13, EACCES) because the process does not have
write permission to the "passwd" regular file in the pathname

"letc" directory, the process effective UID 1000 "pmiller" does

not match the regular file owner 0 "root" so the owner permission
mode "rw-" is ignored, the others permission mode is "r—-", and

the process is not privileged (does not have the DAC_OVERRIDE

43

explain_lca2010(1) Gener@lommands Manual explain_lca2010(1)

capability)

Some considerable space igapi to this explanation, as most users do notkiteat this is ha the
permissions systemasks. Inparticular: the ownegroup and other permissions are exalgsihey are not
“OR"ed together.

STRANGE AND INTERESTING SYSTEM CALLS
The process of writing a specific error handler for each system call oftatsrenteresting quirks and
boundary conditions, or obscueerno(3) values.

ENOMEDIUM, No medium found
The act of copying a CD was the source of the title for this paper.

$ dd if=/dev/cdrom of=fubar.iso
dd: opening “/dev/cdrom”: No medium found

$

The author wondered whhis computer was telling him there is no such thing as a psychic medium. Quite
apart from the fact that huge numbers ofuwealinglish speakers are notem avare that “media” is a

plural, let alone that “medium” is its singuléne string returned bstrerror(3) for ENOMEDIUM is so

terse as to be almost completely free of content.

Whenoper(2) returns ENOMEDIUM it would be nice if the libexplain library could expand a little on this,
based on the type of dé it is. For example:

... because there is no disk in the flpgpive

... because there is no disc in the CD-ROMari

... because there is no tape in the tapesdri

... because there is no memory stick in the card reader

And so it came to pass...

open(pathname = "/dev/cdrom”, flags = O_RDONLY) failed, No medium
found (123, ENOMEDIUM) because there does not appear to be a disc
in the CD-ROM drive

The trick, that the author was previously waee of, was to open the device using the O_NONBLOCK

flag, which will allov you to open a dve with no medium in it.You then issue device specifiactl(2)

requests until you figure out what the heck it is. (Not sure if this is POSIX, but it also seems to work that
way in BSD and Solaris, according to thvedim(1) sources.)

Note also the differing uses of “disk” and “disc” in cotiteTheCD standard originated in France, but
evaything else has a “k”.

EFAULT, Bad address
Any system call that takes a pointer argument can retuAUEF. The libexplain library can figure out
which argument is at fault, and it does it without disturbing the process (or thread) signal handling.

When aailable, themincorg?2) system call is used, to ask if the memory regiomlislv It can return three
results: mapped but not in physical memangpped and in physical memoend not mapped. When
testing the validity of a pointethe first two are “yes” and the last one is “no”.

Checking C strings are more filifult, because instead of a pointer and a size, we omya@inter To
determine the size we wouldvsab find the NUL, and that could segfault, catch-22.

To work around this, the libexplain library uses tsat(2) sysem call (with a known good second
argument) to test C strings for validiti failure return && errno == ERULT is a ‘no”, and anythng else
is a “yes”. This, of course limits strings t&TFH_MAX characters, but that usually i@ problem for the
libexplain library because that is almostaadys the longest strings it cares about.

EMFILE, Too many open files
This error occurs when a process already has the maximum number of file descriptors open. If the actual
limit is to be printed, and the libexplain library tries to, you tapén a file in/fproc to read what it is.

open_max = sysconf(_SC_OPEN_MAX);

44

explain_lca2010(1) Gener@lommands Manual explain_lca2010(1)

This one wart’so dfficult, there is @aysconf3) way of obtaining the limit.

ENFILE, Too many open files in system
This error occurs when the system limit on the total number of open files has been reached. In this case
there is no handgyscon3) way of obtain the limit.

Digging deeperone may disceer that on Linux there is oroc entry we could read to obtain this value.
Catch-22: we are out of file descriptors, so we tapen a file to read the limit.

On Linux there is a system call to obtain it, but it has no [e]glibc wrapper function, sowi Bhit
very carefully:

long
explain_maxfile(void)
{

#ifdef __linux__

struct __sysctl_args args;

int32_t maxfile;

size_t maxfile_size = sizeof(maxfile);

int name[] = { CTL_FS, FS_MAXFILE };

memset(&args, 0, sizeof(struct __sysctl_args));

args.name = name;

args.nlen = 2;

args.oldval = &maxfile;

args.oldlenp = &maxfile_size;

if (syscall(SYS__ sysctl, &args) >= 0)
return maxfile;

#endif
return -1,

}

This permits the limit to be included in the error message, wratalzle.

EINVAL “In valid argument” vsENOSY'S “Function not implemented”
Unsupported actions (such@anlink2) on a AT file system) are not reported consistently from one
system call to the mé It is possible to hae @ther EINVAL or ENOSYS returned.

As a result, attention must be paid to these error cases to get them right, particularly as the EINVAL could
also be referring to problems with one or more system call arguments.

Note that errno(3) is not always set
There are times when it is necessary to read the [e]glibc sources to detenmamsl vehen errors are
returned for some system calls.

feof(3), filena(3)
It is often assumed that these functions cannot return an &hisris only true if thestreamargument
is valid, howeer they are capable of detecting arvatid pointer.

fpathcon(3), pathcon(3)
The return value dpathcon§2) andpathcon{2) could legitimately be -1, so it is necessary to see if
errno(3) has been explicitly set.

ioctl(2)
The return value abctl(2) could legitimately be -1, so it is necessary to segiiio(3) has been
explicitly set.

readdir(3)
The return value akaddir(3) is NULL for both errors and end-afd. It is necessary to see if
errno(3) has been explicitly set.

45

explain_lca2010(1) Gener@lommands Manual explain_lca2010(1)

setbuf3), setbuffe(3d), setlinebuf3), setvbu3)
All but the last of these functions returoid. Andsetvbuf3) is only documented as returning “non-
zero” on errar It is necessary to seeefrno(3) has been explicitly set.

strtod(3), strtol(3), strtold(3), strtoll(3), strtoul(3), strtoull(3)
These functions return O on errbut that is also a legitimate returalue. Itis necessary to see if
errno(3) has been explicitly set.

unget¢3)
While only a single character of backup is mandated by the ANSI C standard, it turns out that [e]glibc
permits more.. but that means it can fail with ENOMEM. It can also fail with EBADFpifis bogus.
Most diffi cult of all, if you pass EOF an error return occurs, but errno is not set.

The libexplain library detects all of these errors correetign in cases where the error values are poorly
documented, if at all.

ENOSPC, No space left on device
When this error refers to a file on a file system, the libexplain library prints the mount point of the file
system with the problem. This can neake source of the error much clearer.

write(fildes = 1 "example”, data = Oxbfff2340, data_size = 5)
failed, No space left on device (28, ENOSPC) because the file
system containing fildes (*/home") has no more space for data

As more special device support is added, error messages are expected to include the device name and actual
size of the device.

EROFS, Read-only file system
When this error refers to a file on a file system, the libexplain library prints the mount point of the file
system with the problem. This can neake source of the error much clearer.

As more special device support is added, error messages are expected to include the device name and type.

open(pathname = "/dev/fd0", O_RDWR, 0666) failed, Read-only file
system (30, EROFS) because the floppy disk has the write protect
tab set

...because a CD-ROM is not writable
...because the memory card has the write protect tab set
...because the % inch magnetic tape does net darite ring

rename
Therenamég?2) system call is used to change the location or name of a file, moving it between directories if
required. Ifthe destination pathname already exists it will be atomically replaced, so that there is no point
at which another process attempting to access it will find it missing.

There are limitations, hower: you can only rename a directory on top of another directory if the
destination directory is not empty.

rename(oldpath = "foo", newpath = "bar") failed, Directory not
empty (39, ENOTEMPTY) because newpath is not an empty directory;

that is, it contains entries other than "." and "..
You can'’t rename a directory on top of a non-direct@ither.

rename(oldpath = "foo", newpath = "bar") failed, Not a directory
(20, ENOTDIR) because oldpath is a directory, but newpath is a
regular file, not a directory

Nor is the reerse allowed

rename(oldpath = "foo", newpath = "bar") failed, Is a directory
(21, EISDIR) because newpath is a directory, but oldpath is a
regular file, not a directory

46

explain_lca2010(1) Gener@lommands Manual explain_lca2010(1)

This, of course, makes the libexplain librarggb more complicated, because tmink(2) orrmdir(2)
system call is called implicitly bsenamé?2), and so all of thanlink(2) orrmdir(2) errors must be detected
and handled, as well.

dup2
ThedupZ?2) system call is used to create a second file descriptor that references the same object as the first
file descriptar Typically this is used to implement shell input and output redirection.

The fun thing is that, just asnamé&2) can atomically rename a file on top of an existing file and vemo
the old file,dupZ2) can do this onto an already-open file descriptor.

Once again, this makes the libexplain librafgb more complicated, because thes€2) system call is
called implicitly bydup2?2), and so all otlos€2)’'s arors must be detected and handled, as well.

ADVENTURES IN IOCTL SUPPORT
Theioctl(2) system call provides device i authors with a way to communicate with user-space that
doesnt fit within the existing kernel API. Seectl_list(2).

Decoding Request Numbers
From a cursory look at thiectl(2) interface, there would appear to be a large but finite number of possible
ioctl(2) requests. Each differeuictl(2) request is effeately another system call, but withoutyatype-
safety at all — the compiler cartielp a programmer get these right. This was probably thevatioti
behindtcflush(3) and friends.

The initial impression is that you could decadetl(2) requests using a huge switch statement. This turns
out to be infeasible because one very rapidly disathat it is impossible to include all of the necessary
system headers defining the varioostl(2) requests, because yH®vea hard time playing nicely with

each other.

A deeper look reeals that there is a range of ‘yaie” request numbers, and devicevdriauthors are
encouraged to use them. This means that there is a far larger possible set of requests, with ambiguous
request numbers, than are immediately apparent. Also, there are some historical ambiguities as well.

We dready knev that the switch was impractical, butmave know that to select the appropriate request
name and explanation we must consider not only the request number but also the file descriptor.

The implementation dbctl(2) support within the libexplain library is toVea able of pointers toctl(2)
request descriptors. Each of these descriptors includes an optional pointer to a disambiguation function.

Each request is actually implemented in a separate source file, so that the necessary include files are
relieved of the obligation to play nicely with others.

Representation
The philosopit behind the libexplain library is to provide as much information as possible, including an
accurate representation of the system call. In the casett§®) this means printing the correct request
number (by name) and also a correct (or at least useful) representation of the third argument.

Theioctl(2) prototype looks lik this:
int ioctl(int fildes, int request, ...);

which should hee your type-safety alarms goingfofinternalto [e]glibc, this is turned into a variety of
forms:

int __ioctl(int fildes, int request, long arg);
int __ioctl(int fildes, int request, void *arg);

and the Linux kernel syscall interface expects

asmlinkage long sys_ioctl(unsigned int fildes, unsigned int
request, unsigned long arg);

The extreme variability of the third argument is a challenge, when the libexplain library tries to print a
representation of that thirdgament. Havever, once the request number has been disambiguated, each
entry in the the libexplain librarg’ioctl table has a custoprint_data function (OO done manually).

47

explain_lca2010(1) Gener@lommands Manual explain_lca2010(1)

Explanations

There are fewer problems determining the explanation to be used. Once the request number has been
disambiguated, each entry in the libexplain libraugttl table has a custoprint_explanation
function (again, OO done manually).

Unlike sction 2 and section 3 system calls, mosti(2) requests hee ro erors documented. This means,
to give good error descriptions, it is necessary to read kernel sources teedisco

» whaterrno(3) values may be returned, and
* the cause of each error.

Because of the OO nature of function call dispatching withing the kernel, you need atl seanices
implementing thaioctl(2) request, not just the generic implementation. It is to be expected that different
kernels will have dfferent error numbers and subtly different error causes.

EINVAL vsENOTTY

The situation isen worse forioctl(2) requests than for system calls, with EINVAL and ENOTTY both

being used to indicate that mctl(2) request is inappropriate in that context, and occasionally ENOSYS,
ENOTSUP and EOPNOTSUPP (meant to be used for sockets) as well. There are comments in the Linux
kernel sources that seem to indicate a progresieanup is in progress=or extra chaos, BSD adds
ENOIOCTL to the confusion.

As a result, attention must be paid to these error cases to get them right, particularly as the EINVAL could
also be referring to problems with one or more system call arguments.

intptr_t

The C99 standard defines an integer type that is guaranteed to be able ty Ipoidten without
representation loss.

The abee function syscall prototype would be better written
long sys_ioctl(unsigned int fildes, unsigned int request, intptr_t
arg);

The problem is the cognit dssonance induced by device-specific or file-system-spegiit(2)
implementations, such as:

long vfs_ioctl(struct file *filp, unsigned int cmd, unsigned long

arg);
The majority ofioctl(2) requests actually t1@ an int *arg third agument. Butaving it declaredbng
leads to code treating thislasig *arg . This is harmless on 32-bitsizeof(long) ==
sizeof(int)) but nasty on 64-bitss{zeof(long) != sizeof(int)). Dependingn the
endian-ness, you do or doget the value you expect, but yalwaysget a memory scribble or stack
scribble as well.

Writing all of these as

int ioctl(int fildes, int request, ...);

int __ioctl(int fildes, int request, intptr_t arg);

long sys_ioctl(unsigned int fildes, unsigned int request, intptr_t

arg);

long vfs_ioctl(struct file *filp, unsigned int cmd, intptr_t arg);
emphasizes that the integer is only an integer to represent a quantity that is alayssaalunrelated
pointer type.

CONCLUSION

Use libexplain, your users will likit.

COPYRIGHT

libexplain version 1.4
Copyright © 2008, 2009, 2010, 2011, 2012, 2013, 2014 Peter Miller

48

explain_lca2010(1) Gener@lommands Manual explain_lca2010(1)

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

49

GPL(1) FreeSoftware Bundation GPL(1)

NAME
GPL - GNU General Public License

DESCRIPTION

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitted tandop
distribute verbatim copies of this license document, but changing it is not allowed.

Preamble
The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed svagk/our freedom to share

and change theavks. Bycontrast, the GNU General Public License is intended to guarantee your freedom
to share and change all versions of a program -- te ek it remains free software for all its use¥se,

the Free Software Foundation, use the GNU General Public License for most of our software; it applies also
to ary other work released this way by its autho¥eu can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to makaure that you hae the freedom to distribute copies of free software (and charge for them

if you wish), that you recee ource code or can get it if you want it, that you can change the software or
use pieces of it in mefree programs, and that you kmgou can do these things.

To protect your rights, we need to peat others from denying you these rights or asking you to surrender
the rights. Therefore, you @ eertain responsibilities if you distribute copies of the software, or if you
modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the
recipients the same freedoms that you kextei You must mak aure that thg, too, recere a can get the
source code. And you must sihithem these terms so thknow their rights.

Developers that use the GNU GPL protect your rights with #gps: (1) assert copyright on the software,
and (2) offer you this License giving yowgiepermission to cop distribute and/or modify it.

For the deelopers’ and authors’ protection, the GPL clearly explains that there is no warranty for this free
software. For both users’ and authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed toydasers access to install or run modified versions of the software inside

them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting
users’ freedom to change the saite. Thesystematic pattern of such abuse occurs in the area of products

for individuals to use, which is precisely where it is most unacceptable. Thereforeyerge$igned this

version of the GPL to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed
to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States shouldwqiasdiots to

restrict deelopment and use of software on general-purpose computers, but in those that do, we wish to
avad the special danger that patents applied to a free program coutdtrafi&ctively proprietary To

prevent this, the GPL assures that patents cannot be used to render the program non-free.

GPL 50

GPL(1)

GNU

FreeSoftware Bundation GPL(1)

The precise terms and conditions for copying, distribution and modificatiomfollo
TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-kklaws that apply to other kinds of works, such as semiconductor
masks.

“The Program” refers to grcopyrightable work licensed under this License. Each licensee is addressed as
“you”. “Licensees”and “recipients” may be individuals organizations.

To “modify” a work means to cgpfrom or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exacycde resulting work is called a “modified version” of
the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, woulklyoaldirectly or
secondarily liable for infringement under applicable copyright &écept executing it on a computer or
modifying a prvate cofy. Propagation includes copying, distribution (with or without modification),

making &ailable to the public, and in some countries other activities as well.

To “corvey’ a work means ankind of propagation that enables other parties toenoakeceve wmpies.
Mere interaction with a user through a computer network, with no transfer ofasom corveying.

An interactive wser interface displays “Appropriate g2 Notices” to the extent that it includes a cement

and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that
there is no warranty for the work (except to the extent that warranties are provided), that licensees may
corvey the work under this License, andvhto view a py of this License. If the interface presents a list

of user commands or options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it. “Object
code” means gnnon-source form of a work.

A “ Standard Interface” means an interface that either isfianiabtandard defined by a recognized
standards bodwr, in the case of interfaces specified for a particular programming language, one that is
widely used among delopers working in that language.

The “System Libraries” of anxecutable work include anything, other than the work as a whole, that (a) is
included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement a
Standard Interface for which an implementationvislable to the public in source code forA.“ Major
Component”, in this context, means a major essential component (kernelwsyslem, and so on) of the
specific operating system (if any) on which tixecaitable work runs, or a compiler used to produce the
work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to generate,
install, and (for anxecutable work) run the object code and to modify the work, including scripts to

control those actities. Hawvever, it does not include the work'System Libraries, or general-purpose tools

or generally aailable free programs which are used unmodified in performing those activities but which are
not part of the wrk. For example, Corresponding Source includes interface definition files associated with
source files for the work, and the source code for shared libraries and dynamically linked subprograms that
the work is specifically designed to require, such as by intimate data communication or control flow
between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other
parts of the Corresponding Source.

GPL 51

GPL(1) FreeSoftware Bundation GPL(1)

The Corresponding Source for a work in source code form is that same work.
2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License expliditimafyour unlimited
permission to run the unmodified Program. The output from runningesszbwork is ceered by this
License only if the output, gén its content, constitutes avawed work. ThisLicense acknowledges your
rights of fair use or other eaqualent, as provided by copyrightia

You may make, run and propagatevee@d works that you do not cegy, without conditions so long as

your license otherwise remains in forcéou may corvey @vered works to others for the sole purpose of
having them ma& modifications exclusiely for you, or provide you with facilities for running those works,
provided that you comply with the terms of this License irvegng all material for which you do not
control copyright. Thosehus making or running the wered works for you must do so excldy on your
behalf, under your direction and control, on terms that prohibit them from makjrapies of your
copyrighted material outside their relationship with you.

Corveying under ap other circumstances is permitted solely under the conditions stated belo
Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Igd Rights From Anti-Circumvention ha

No covered work shall be deemed part of an effectechnological measure underyaapplicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.

When you cowvey a overed work, you waie any egd power to forbid circumvention of technological
measures to the extent such circumvention is effecteddogiging rights under this License with respect to
the cavered work, and you disclaim gintention to limit operation or modification of the work as a means
of enforcing, against the workisers, your or third parties’del rights to forbid circumvention of
technological measures.

4. Corveying Verbatim Copies.

You may corvey vabatim copies of the Progras®urce code as you reeeiit, in ary medium, provided
that you conspicuously and appropriately publish on eachawgppropriate copyright notice; keep intact
all notices stating that this License ang aon-permissie terms added in accord with section 7 apply to
the code; keep intact all notices of the absenceyofvarnranty; and gie dl recipients a coyp of this

License along with the Program.

You may charge anprice or no price for each cgphat you comey, and you may offer support or warranty
protection for a fee.

5. Corveying Modified Source Versions.

You may corvey a wrk based on the Program, or the modifications to produce it from the Program, in the
form of source code under the terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified it, and givinyantedate.

b) The work must carry prominent notices stating that it is released under this Licensg eonti@ions
added under section 7. This requirement modifies the requirement in section 4 to “keep intact all
notices”.

c) You must license the entire work, as a whole, under this License to anyone who comes into possession
of a copy. This License will therefore applglong with ary applicable section 7 additional terms, to
the whole of the work, and all its partsgaalless of hw they are packaged. This Licensevgs no
permission to license the work inyaother way but it does not imalidate such permission if you &
separately receed it.

d) If the work has interacte wser interfaces, each must display Appropriatga R otices; howeer, if
the Program has interaai interfaces that do not display AppropriatgdeNotices, your work need
not male them do so.

GNU GPL 52

GPL(1)

GNU

FreeSoftware Bundation GPL(1)

A compilation of a ceered work with other separate and independent works, which are not by their nature
extensions of the a@red work, and which are not combined with it such as to form a larger program, in or
on a volume of a storage or distribution medium, is called an “gdgi'df the compilation and its

resulting copyright are not used to limit the accessga teghts of the compilatios’ users beyond what

the individual works permit. Inclusion of aveed work in an agggete does not cause this License to

apply to the other parts of the agggke.

6. Corveying Non-Source Forms.

You may corvey a overed work in object code form under the terms of sections 4 and 5, provided that you
also comey the machine-readable Corresponding Source under the terms of this License, in one of these

ways:

a)

b)

d)

e)

Corvey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily
used for software interchange.

Corvey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offealid for at least three years and valid for as long as you

offer spare parts or customer support for that product modelg@gione who possesses the object
code either (1) a cgpof the Corresponding Source for all the software in the product thatesedo

by this License, on a durable physical medium customarily used for software interchange, for a price
no more than your reasonable cost of physically performing thigog of source, or (2) access to

copy the Corresponding Source from a network server at no charge.

Corvey individual copies of the object code with a ga the written offer to provide the
Corresponding Source. This alternatis dlowed only occasionally and noncommercigdgd only
if you receved the object code with such an offer accord with subsection 6b.

Corvey the object code by offering access from a designated place (gratis or for a charge), and offer
equialent access to the Corresponding Source in the same way through the same place at no further
chage. You need not require recipients to gape Corresponding Source along with the object code.

If the place to copthe object code is a network sentbe Corresponding Source may be on a

different server (operated by you or a third party) that supportsasnti copying facilities, provided

you maintain clear directions next to the object code saying where to find the Corresponding Source.
Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is
awailable for as long as needed to satisfy these requirements.

Corvey the object code using peer-to-peer transmission, provided you inform other peers where the
object code and Corresponding Source of the work are being offered to the general public at no charge
under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a
System Libraryneed not be included in cesying the object code work.

A “User Product” is either (1) a “consumer product”, which meansaagible personal property which is
normally used for personal, familyr household purposes, or (2) anything designed or sold for

incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases
shall be resolved iraf/ar of coverage. fer a particular product reced by a marticular user‘normally

used” refers to a typical or common use of that class of prodgetdiess of the status of the particular

user or of the way in which the particular user actually uses, or expects or is expected to use, the product.
A product is a consumer producgeedless of whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product meany amethods, procedures, authorizatiay or other
information required to install anckecute modified versions of a wered work in that User Product from a
modified version of its Corresponding Source. The information mutsud ensure that the continued
functioning of the modified object code is in no case@ried or interfered with solely because
modification has been made.

If you corvey an object code work under this section in, or with, or specifically for use in, a User Product,

GPL 53

GPL(1)

GNU

FreeSoftware Bundation GPL(1)

and the coweying occurs as part of a transaction in which the right of possession and use of the User
Product is transferred to the recipient in perpetuity or for a fixed tegardtess of hav the transaction is
characterized), the Corresponding Sourceveged under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you dhad party retains the
ability to install modified object code on the User Product (for example, the work has been installed in
ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide
support service, warrantgr updates for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a network may be denied when the
modification itself materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source omeyed, and Installation Information provided, in accord with this section must be
in a format that is publicly documented (and with an implementatiaifable to the public in source code
form), and must require no special passwordeyrfar unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though thevere included in this License, to the extent thay e valid under applicableva

If additional permissions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remainsged by this License withoutgerd to the additional
permissions.

When you cowvey a opy of a mvered work, you may at your option remeany aditional permissions

from that cop, or from ary part of it. (Additional permissions may be written to require their own vamo
in certain cases when you modify thenk) You may place additional permissions on material, added by
you to a cegered work, for which you hae a can gve gpropriate copyright permission.

Notwithstanding ay other provision of this License, for material you add to\ae work, you may (if
authorized by the copyright holders of that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

b) Requiring preservation of specified reasonalgd leotices or author attributions in that material or in
the Appropriate Lgd Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such
material be marked in reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

e) Declining to grant rights under trademank far use of some trade names, trademarks, or service
marks; or

f) Requiring indemnification of licensors and authors of that material by anyone wieysdre
material (or modified versions of it) with contractual assumptions of liability to the recipient, for any
liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissie alditional terms are considered “further restrictions” within the meaning of
section 10. If the Program as you rerediit, or ary part of it, contains a notice stating that it izgmed

by this License along with a term that is a further restriction, you mayeetmat term. If a license
document contains a further restriction but permits relicensing eeyag under this License, you may
add to a ceered work material geerned by the terms of that license document, provided that the further
restriction does not sume such relicensing or caeying.

If you add terms to a wered work in accord with this section, you must place, in theamieource files,
a datement of the additional terms that apply to those files, or a notice indicating where to find the
applicable terms.

GPL 54

GPL(1) FreeSoftware Bundation GPL(1)

Additional terms, permisge a non-permissie, may be stated in the form of a separately written license,
or stated as exceptions; the edeequirements apply either way.

8. Termination.

You may not propagate or modify avaed work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this
License (including anpatent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is
reinstated (a) provisionallynless and until the copyright holder explicitly and finally terminates your
license, and (b) permanentif/the copyright holder fails to notify you of the violation by some reasonable
means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder
notifies you of the violation by some reasonable means, this is the first timewsorbeied notice of

violation of this License (for grwork) from that copyright holdeand you cure the violation prior to 30

days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties/ereréized
copies or rights from you under this License. If your righteeH®en terminated and not permanently
reinstated, you do not qualify to reeeirew licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to vecgirun a cop of the Program. Ancillary
propagation of a a@red work occurring solely as a consequence of using peer-to-peer transmission to
receve a opy likewise does not require acceptance. Hamenothing other than this License grants you
permission to propagate or modifyyacovered work. Theseactions infringe copyright if you do not accept
this License. Therefore, by modifying or propagating e work, you indicate your acceptance of this
License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you corey a overed work, the recipient automatically recss a icense from the original
licensors, to run, modify and propagate that work, subject to this Lic&oseare not responsible for
enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of gagzation, or substantially all assets of
one, or subdividing an ganization, or merging genizations. Ifpropagation of a a@red work results

from an entity transaction, each party to that transaction who/es@opy of the work also recees

whatever licenses to the work the padyredecessor in interest had or couldeginder the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose gnfurther restrictions on theercise of the rights granted offismed under this

License. IBr example, you may not impose a license fee, rqyaltgther charge forxercise of rights

granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a
lawsuit) alleging that anpatent claim is infringed by making, using, selling, offering for sale, or importing

GNU GPL 55

GPL(1) FreeSoftware Bundation GPL(1)

the Program or gnportion of it.
11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contaljatmtributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some, pemmiged by this
License, of making, using, or selling its contributor version, but do not include claims that would be
infringed only as a consequence of further modification of the contribetsion. Br purposes of this
definition, “control” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exchasivorldwide, royalty-free patent license under the contributor’s
essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate
the contents of its contributor version.

In the following three paragraphs, a “patent license” yseapress agreement or commitment, hegre
denominated, not to enforce a patent (such as an express permission to practice a pataandmncd to
sue for patent infringement)lo “grant” such a patent license to a party means teraath an agreement
or commitment not to enforce a patent against the party.

If you cornvey a overed work, knowingly relying on a patent license, and the Corresponding Source of the
work is not aailable for anyone to cop free of charge and under the terms of this License, through a

publicly available network server or other readily accessible means, then you must either (1) cause the
Corresponding Source to be s@itable, or (2) arrange to depé yourself of the benefit of the patent

license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License,
to extend the patent license to downstream recipients. “Knowingly relying” meanswoehal

knowledge that, but for the patent license, youveging the coered work in a countryor your recipient’s

use of the ceered work in a countrywould infringe one or more identifiable patents in that country that

you hae reason to beliee ae valid.

If, pursuant to or in connection with a single transaction or arrangement, yay,corpropagate by
procuring comeyance of, a ceered work, and grant a patent license to some of the parties receiving the
covered work authorizing them to use, propagate, modify oveya gecific copy of the caovered work,

then the patent license you grant is automatically extended to all recipients ofeitesl aeork and works
based on it.

A patent license is “discriminatory” if it does not include within the scope of itrage, prohibits the
execise of, or is conditioned on the noxercise of one or more of the rights that are specifically granted
under this LicenseYou may not corey a overed work if you are a party to an arrangement with a third
party that is in the business of distributing software, under which yoa pagtknent to the third party

based on the extent of your activity of eeying the work, and under which the third party grants, yocin
the parties who would rees the cavered work from you, a discriminatory patent license (a) in connection
with copies of the ogered work comeyed by you (or copies made from those copies), or (b) primarily for
and in connection with specific products or compilations that contain t#lesedowork, unless you entered
into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limitiggraplied license or other defenses to

GNU GPL 56

GPL(1) FreeSoftware Bundation GPL(1)

infringement that may otherwise beagable to you under applicable patentla
12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court grageement or otherwise) that contradict the
conditions of this License, thi@lo not excuse you from the conditions of this License. If you cannot

convey a overed work so as to satisfy simultaneously your obligations under this Licenseyanttiem

pertinent obligations, then as a consequence you may nagyciat dl. For example, if you agree to

terms that obligate you to collect a royalty for furthervaymg from those to whom you ceey the

Program, the only way you could satisfy both those terms and this License would be to refrain entirely from
conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding ay other provision of this License, youvepermission to link or combine grcovered
work with a work licensed under version 3 of the GNU Affero General Public License into a single
combined work, and to cuay the resulting wrk. Theterms of this License will continue to apply to the
part which is the ogered work, but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised andvorasions of the GNU General Public
License from time to time. Suchweversions will be similar in spirit to the present version, but may differ
in detail to address meproblems or concerns.

Each version is gén a dstinguishing version numbetf the Program specifies that a certain numbered
version of the GNU General Public License “oyaater version” applies to it, you &ate option of
following the terms and conditions either of that numbered version oy d&tan version published by the
Free Software dundation. Ifthe Program does not specify a version number of the GNU General Public
License, you may chooseyaversion &er published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License
can be used, that prosypublic statement of acceptance of a version permanently authorizes you to choose
that version for the Program.

Later license versions mayvgiyou additional or different permissions. Howee no additional obligations
are imposed on greuthor or copyright holder as a result of your choosing tovioHidater version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM,a THE EXTENT PERMITTED BY

APPLICABLE LAW. EXCEPT WHEN OTHERWISE SATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES RBVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NDLIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS O THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULDTHE PROGRAM PRVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSAR SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LW OR AGREED 1O IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE D YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NO LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED IMCCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM O OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF

GNU GPL 57

GPL(1) FreeSoftware Bundation GPL(1)

SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided ab@annot be gien local legd effect
according to their terms, reviewing courts shall apply localthteat most closely approximates an absolute
waiver of al civil liability in connection with the Program, unless a warranty or assumption of liability
accompanies a cgmf the Program in return for a fee.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your MePrograms

If you develop a nev program, and you want it to be of the greatest possible use to the public, the best way
to achiee tis is to mak it free software whichveryone can redistribute and change under these terms.

To do 9, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectiely state the exclusion of warranty; and each file showe ladeast the “copyright”
line and a pointer to where the full notice is found.

one line to give the pgram’s name and a brief idea of what it does.
Copyright (C)year name of author

This program is free software: you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of the License,
or (at your option) anlater version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. Sethe GNU General Public License for more details.

You should hae receved a mpy of the GNU General Public License along with this program. If not,
see <http://www.gnu.org/licenses/>.

Also add information on e to contact you by electronic and paper mail.

If the program does terminal interaction, radkoutput a short notice likthis when it starts in an
interactve node:

<program> Copright (C) <year> <name of author>
This program comes with ABSOLUTEINO WARRANTY; for details type “sh@ w”. Thisis free
software, and you are welcome to redistribute it under certain conditions; typec’shar details.

The hypothetical commands “skiav” and “shav ¢” should shav the appropriate parts of the General
Public License. Of course, your programdmmands might be different; for a GUI interface, you would
use an “about box”.

You should also get your employer (if you work as a programmer) or school;, ifoesign a “copyright
disclaimer” for the program, if necessaior more information on this, andvwdo gpply and follav the
GNU GPL, see <http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program into proprietary programs.
If your program is a subroutine libraggou may consider it more useful to permit linking proprietary
applications with the librarylf this is what you want to do, use the GNU Lesser General Public License
instead of this License. But first, please read <http://www.gnu.org/philosophy/why-not-Igpl.htmlI>.

GNU GPL 58

libexplain(3) LibraryFunctions Manual libexplain(3)

NAME
libexplain — Explain errno values returned by libc functions

SYNOPSIS
cc ... —lexplain;

#include <libexplain/libexplain.h>

DESCRIPTION
The libexplain library exists to gt eplanations of error reported by system calls. The error message
returned bystrerror(3) tend to be quite cryptic. By providing a specific error report for each system call, a
more detailed error message is possible, usually identifying and describing the specific cause from amongst
the numerous meanings eaahno value maps to.

Race Condition
The explanation of the cause of an error is dependent on the environment of the error to remain unchanged,
so that when libexplain gets around to looking for the cause, the cause is still there. On a running system,
and particularly a multi-user system, this is notagk possible.

If an incorrect explanation is provided, it is possible that the cause is no longer present.

Compiling
Assuming the library header files has been installed/usiginclude , and the library files hee been
installed into/usr/lib , compiling against libexplain requires no speeibloptions.

When linking your pograms, addexplain to the list of libraries at the end of your link line.
cc ... —lexplain

When you configure your package with GNU Autoconf, you need the large file support macro
AC_SYS_LARGEFILE

If you arent using GNU Autoconf, you will h&e to work out the needed large file support requirements
yourdelf.

There is gkg-configl) package for you to use, too:
CFLAGS="$CFLAGS ‘pkg—config libexplain ——cflags" LIBS="$LIBS ‘pkg—config libexplain
—-libs"

This can mak figuring out the command line requirements much easier.

Environment Variable
The EXPLAIN_OPTIONSenvironment variable may be used to control some of the content in the
messages. Optio@se separated by comma (*,”) characters.

There are three ways to set an option:

1. The form ‘hame=valu€’ may be used explicitlyThe values “true” and “false” are used for boolean
options.

2. An option name alone is interpreted to meaarie-true”.

3. The form “nonamé is interpreted to meamame-false”.

The following options arevailable:

debug Additional debugging messages for libexplaireldpers. Notgenerally useful to clients of the
library.
Default: false.

extra-device-info
Additional information for block and character special devices is printed when naming a file and
its type.
Default: true

59

libexplain(3) LibraryFunctions Manual libexplain(3)

numeric-errno
This option includes the numemgerno value in the message,g.“(2, ENOENT)” rather than
“(ENOENT)”. Disablingthis option is generally of use in automated testing, teeptdJNIX
dialect differences from producing falsegagives.
Default: true

dialect-specific
This controls the presence of explanatory text specific to a particular UNIX dialect. It also
suppresses printing system specific maximums. Disabling this option is generally of use in
automated testing, to prent UNIX dialect differences from producing falsegagives.
Default: true.

hanging-indent
This controls the hanging indent depth used for error message wrapping. By default no hanging
indent is used, but this can sometimes obfuscate the end of one error message and the beginning
of another A hanging indent results in continuation lines starting with white spoace, similar to
RFC822 headersA value of 0 means no hanging indent (all lines flush with lefgmar A
common value to use is 4: it doestonsume to much of each line, and it is a clear indent. The
program may choose tow@ride the environment variable using the
explain_option_hanging_indent_g8) function. The hanging indent is limited to 10% of the
terminal width.
Default: 0

internal-strerror
This option controls the source of system eror messatge téfalse, it usestrerorP(3) for the
text. Iftrue, it uses internal string for thexé Thisis mostly of use for automated testitgy
avoid false negatives induced by inconsistencies across Unix implementations.
Default: false.

program-name
This option controls the inclusion of the program name at the start of error messages, by the
explain_*_or_die and explain_*_on_error functions. This helps users understand which
command is throwing the erroDisabling this option may be of some interest to script writers.
Program deelopers can use theplain_program_name_sé3) function to set the name of the
command, if thg wish to werride the name that libexplain would otherwise obtain from the
operating system. Programweiopers can use theplain_program_name_assemi§f) function
to trump this option.
Default: true.

symbolic-mode-bits
This option controls he permission mode bits are represented in error messages. Setting this
option to true will cause symbolic names to be pringeed.§ IRUSR | S_ IWUSR | S_IRGRP |
S_IROTH). Settingthis option to false will cause octal values to be pringeg.0644).
Default: false.

Supported System Calls
Each supported system call has its enampage.

explain_accep{3)
Explainaccep(2) errors

explain_accept_or_dig)
accept a connection on a socket and report errors

explain_accept43)
Explainaccept42) errors

explain_accept4_or_di@)
accept a connection on a socket and report errors

60

libexplain(3) LibraryFunctions Manual libexplain(3)

explain_accesi)
Explainacces§?) errors

explain_access_or_d(8)
check permissions for a file and report errors

explain_acct3)
Explainacc{2) errors

explain_acct_or_di€3)
process accounting control and report errors

explain_acl_from_texB)
Explainacl_from_tex{3) errors

explain_acl_from_text_or_d{8)
create an ACL from text and report errors

explain_acl_get_f@3)
Explainacl_get_fd3) errors

explain_acl_get fd_or_di@)
Executeacl_get_fd3) and report errors

explain_acl_get_fil¢3)
Explainacl_get_fil¢3) errors

explain_acl_get_file_or_di@)
Executeacl_get_fil¢3) and report errors

explain_acl_set_f(B)
Explainacl_set_fd3) errors

explain_acl_set_fd_or_d{®)
set an ACL by file descriptor and report errors

explain_acl_set_fil€3)
Explainacl_set_fil€3) errors

explain_acl_set file_or_di@)
set an ACL by filename and report errors

explain_acl_to_texB)
Explainacl_to_tex{3) errors

explain_acl_to_text _or_di@)
cornvert an ACL to text and report errors

explain_adjtimg3)
Explainadijtimg2) errors

explain_adjtime_or_di€3)
smoothly tune kernel clock and report errors

explain_adijtimex3)
Explainadijtimex?2) errors

explain_adjtimex_or_di€3)
tune kernel clock and report errors

explain_asprint{3)
Explainasprint{3) errors

explain_asprintf_or_di€3)
print to allocated string and report errors

61

libexplain(3) LibraryFunctions Manual

explain_bind3)
Explainbind(2) errors

explain_bind_or_di€3)

bind a name to a socket and report errors
explain_calloq3)

Explaincalloo(3) errors
explain_calloc_or_di€3)

Allocate and clear memory and report errors
explain_chdir(3)

Explainchdir(2) errors
explain_chdir_or_di€3)

change working directory and report errors
explain_chmod3)

Explainchmod?2) errors
explain_chmod_or_di@)

change permissions of a file and report errors
explain_chowif3)

Explainchownerrors
explain_chown_or_di€3)

change ownership of a file and report errors
explain_chroot(3)

Explainchroot(2) errors
explain_chroot_or_di€3)

change root directory and report errors
explain_closé3)

Explainclos€?2) errors
explain_close_or_dig3)

close a file descriptor and report errors
explain_closedi(3)

Explainclosedi(3) errors
explain_closedir_or_di€3)

close a directory and report errors
explain_connedf)

Explainconnecf?) errors
explain_connect_or_di@)

initiate a connection on a socket and report errors
explain_creat3)

Explaincreaf(2) errors
explain_creat_or_di€3)

create and open a file and report errors
explain_dirfd(3)

Explaindirfd(3) errors
explain_dirfd_or_di€3)

get directory stream file descriptor and report errors

libexplain(3)

62

libexplain(3) LibraryFunctions Manual

explain_dug(3)
Explaindup(2) errors

explain_dup_or_di€3)
duplicate a file descriptor and report errors

explain_dupZ3)
Explaindup??2) errors

explain_dup2_or_di€3)
duplicate a file descriptor and report errors

explain_endgren3)
Explainendgrent3) errors

explain_endgrent_or_di@)
finish group file accesses and report errors

explain_eventf¢)
Explaineventfd2) errors

explain_eventfd_or_di@)

create a file descriptor fowent notification and report errors

explain_execl3)

Explainexeclp(3) errors
explain_execlp_or_di@)

execute a file and report errors
explain_exec(3)

Explainexec\(3) errors
explain_execv_or_di@)

execute a file and report errors
explain_execvgs)

Explainexecvg?) errors
explain_execve_or_d(8)

execute program and report errors
explain_execv(B)

Explainexecv3) errors
explain_execvp_or_d(8)

execute program and report errors
explain_exi(3)

print an explanation of exit status before exiting
explain_fchdir(3)

Explainfchdir(2) errors
explain_fchmog3)

Explainfchmod?2) errors
explain_fchmod_or_di@)

change permissions of an open file and report errors
explain_fchowi{3)

Explainfchowr(2) errors
explain_fchown_or_di€)

change ownership of a file and report errors

libexplain(3)

63

libexplain(3) LibraryFunctions Manual libexplain(3)

explain_fchowna3)
Explainfchownaf2) errors

explain_fchownat_or_dig)
change ownership of a file relai o a drectory and report errors

explain_fclosé3)
Explainfclos€?2) errors

explain_fclose_or_dig3)
close a stream and report errors

explain_fcnt(3)
Explainfcntl(2) errors
explain_fentl_or_dig€3)
Manipulate a file descriptor and report errors

explain_fdopeii3)
Explainfdoper{3) errors

explain_fdopen_or_dig)
stream open function and report errors

explain_fdopendi¢3)
Explainfdopendi(3) errors

explain_fdopendir_or_di€3)
open a directory and report errors

explain_feof3)
Explainfeo{3) errors

explain_feof _or_di€3)
check and reset stream status and report errors

explain_ferron(3)
Explainferror(3) errors

explain_ferror_or_dig3)
check stream status and report errors

explain_fflusi(3)
Explainfflush(3) errors

explain_fflush_or_dié3)
flush a stream and report errors

explain_fget¢3)

Explainfgetdq3) errors
explain_fgetc_or_di€3)

input of characters and report errors

explain_fgetpo&3)
Explainfgetpo$3) errors

explain_fgetpos_or_di@)
reposition a stream and report errors

explain_fget$3)
Explainfgetg3) errors

explain_fgets_or_dig3)
input of strings and report errors

64

libexplain(3) LibraryFunctions Manual libexplain(3)

explain_filenq3)
Explainfilena(3) errors

explain_fileno_or_di€3)
check and reset stream status and report errors

explain_flock3)
Explainflock(2) errors

explain_flock_or_di€3)
apply or remwoe an advisory lock on an open file and report errors

explain_fopelt3)
Explainfoper(3) errors

explain_fopen_or_dig2)
open files and report errors

explain_fork(3)

Explainfork(2) errors
explain_fork_or_di€3)

create a child process and report errors

explain_fpathconf3)
Explainfpathcon3) errors

explain_fpathconf_or_dig)
get configuration values for files and report errors

explain_fprintf(3)

Explainfprintf(3) errors
explain_fprintf_or_di€3)

formatted output carersion and report errors

explain_fpuige(3)
Explainfpurgeg(3) errors

explain_fpuige _or_dig3)
purge a stream and report errors

explain_fputg3)
Explainfputq3) errors

explain_fputc_or_di€3)
output of characters and report errors

explain_fputg3)
Explainfputq3) errors

explain_fputs_or_di€3)
write a string to a stream and report errors

explain_fread3)

Explainfread3) errors
explain_fread_or_di€3)

binary stream input and report errors

explain_freopei(3)
Explainfreoper{3) errors

explain_freopen_or_di@)
open files and report errors

65

libexplain(3) LibraryFunctions Manual libexplain(3)

explain_fseel3)
Explainfseek3) errors

explain_fseek _or_di@)
reposition a stream and report errors

explain_fseek(B)
Explainfseek@3) errors

explain_fseeko_or_d{8)
seek to or report file position and report errors

explain_fsetpo3)
Explainfsetpo§3) errors

explain_fsetpos_or_d{8)
reposition a stream and report errors

explain_fstat3)
Explainfsta{3) errors

explain_fstat_or_di€3)
get file status and report errors

explain_fstata(3)
Explainfstata(2) errors

explain_fstatat_or_di€3)
get file status relate a drectory file descriptor and report errors

explain_fstatf¢3)
Explainfstatf2) errors

explain_fstatfs_or_di€3)
get file system statistics and report errors

explain_fstatvf§3)
Explainfstatvf¢2) errors

explain_fstatvfs_or_digd)
get file system statistics and report errors

explain_fsyng3)
Explainfsyn¢2) errors

explain_fsync_or_dig)
synchronize a files in-core state with storage device and report errors

explain_ftell(3)
Explainftell(3) errors

explain_ftell_or_dig3)
get stream position and report errors

explain_ftello(3)
Explainftello(3) errors

explain_ftello_or_dig€3)
get stream position and report errors

explain_ftimg3)
Explainftime(3) errors

explain_ftime_or_di€3)
return date and time and report errors

66

libexplain(3) LibraryFunctions Manual libexplain(3)

explain_ftruncat€3)
Explainftruncatg?) errors

explain_ftruncate_or_di€3)
truncate a file to a specified length and report errors

explain_futimeng3)
Explainfutimeng3) errors

explain_futimens_or_di@)
change file timestamps with nanosecond precision and report errors

explain_futime$3)
Explainfutimeg3) errors

explain_futimes_or_dig)
Executefutimeg3) and report errors

explain_futimesai3)
Explainfutimesaf?) errors

explain_futimesat_or_di@)
change timestamps of a file relatio a drectory andeport errors

explain_fwrite(3)
Explainfwrite(3) errors

explain_fwrite_or_dig€3)
binary stream output and report errors

explain_futimesai3)
Explainfutimesaf?) errors

explain_futimesat_or_di@)
change timestamps of a file relatio a drectory andeport errors

explain_getaddrinf¢3)
Explaingetaddrinfa(3) errors

explain_getaddrinfo_or_dig)
network address and and report errors

explain_get¢3)
Explaingetc(3) errors

explain_getc_or_di€3)
input of characters and report errors

explain_getcha(3)
Explaingetchar(3) errors

explain_getchar_or_di€3)
input of characters and report errors

explain_getcwd3)
Explaingetcwd2) errors

explain_getdomainnang8)
Explaingetddomainnamg) errors

explain_getdomainname_or_d&)
get domain name and report errors

explain_getgrent3)
Explaingetgreni(3) errors

67

libexplain(3) LibraryFunctions Manual

explain_getgrent_or_dig)
get group file entry and report errors

explain_getgrouplist3)
Explaingetgrouplisi(3) errors

explain_getgrouplist_or_dig)

get list of groups to which a user belongs and report errors

explain_getgroupé3)
Explaingetgroupg?2) errors

explain_getgroups_or_d(8)
get list of supplementary group IDs and report errors

explain_getcwd_or_di@)
Get current working directory and report errors

explain_gethostbynan(a)
Explaingethostbynam@) errors

explain_gethostbyname_or_d8)
get host addresswgin host name and report errors

explain_gethosti¢B)
Explaingethostid3) errors

explain_gethostid_or_di@)

get the unique identifier of the current host and report errors

explain_gethostnan(8)
Explaingethostnam@) errors

explain_gethostname_or_di#&)

get hostname and report errors
explain_getpeernan(8)

Explaingetpeernamg?) errors
explain_getpeername_or_di#&)

Executgepeernamg) and report errors

explain_getpgid3)
Explaingetpgid(2) errors

explain_getpgid_or_di€3)
get process group and report errors

explain_getpgri3)
Explaingetpgrp(2) errors

explain_getpgrp_or_di€3)

get process group and report errors
explain_getpriority(3)

Explaingepriority(2) errors
explain_getpriority_or_di€3)

get program scheduling priority and report errors
explain_getresgi¢3)

Explaingeresgid2) errors
explain_getresgid_or_di@)

get real, effectie and saed group IDs and report errors

libexplain(3)

68

libexplain(3) LibraryFunctions Manual libexplain(3)

explain_getresui@3)
Explaingetresuid2) errors

explain_getresuid_or_di@)
get real, effectie and saed user IDs and report errors

explain_getrlimi(3)

Explaingetrlimit (2) errors
explain_getrlimit_or_di€3)

get resource limits and report errors

explain_getrusge(3)
Explaingetrusage(2) errors

explain_getrusge or_dig3)
get resource usage and report errors

explain_getsocknant8d)
Explaingetsocknamg) errors

explain_getsockname_or_d®)
Executegetsocknamg) and report errors

explain_getsokopt(3)
Explaingetsodkopt(2) errors

explain_getsokopt_or_dig3)
Executegetsokopt(2) and report errors

explain_gettimeofdaiB)
Explaingettimeofday?) errors

explain_gettimeofday_or_d{8)
get time and report errors

explain_getw3)
Explaingetw(3) errors

explain_getw_or_di€3)
input a word (int) and report errors

explain_icony3)
Explainicony3) errors

explain_iconv_or_di€3)
perform character set cosrsion and report errors

explain_iconv_closgs)
Explainiconv_closé3) errors

explain_iconv_close_or_d(8)
deallocate descriptor for character setveosion and report errors

explain_iconv_ope(8)
Explainiconv_ope(B) errors

explain_iconv_open_or_d(8)
allocate descriptor for character setywnsion and report errors

explain_ioctl(3)
Explainioctl(2) errors

explain_ioctl_or_di€3)
Executeoctl(2) and report errors

69

libexplain(3)

LibraryFunctions Manual

explain_kill(3)

Explainkill (2) errors

explain_kill_or_dig3)

send signal to a process and report errors

explain_lchmod3)

Explainlchmod?2) errors

explain_Ilchmod_or_di€3)

change permissions of a file and report errors

explain_Ichowr{3)

Explainlchown(2) errors

explain_Ilchown_or_di€3)

change ownership of a file and report errors

explain_lchownaf3)

Explainlchownaf?2) errors

explain_Ichownat_or_di€3)

Executdchownaf2) and report errors

explain_link(3)

Explainlink(2) errors

explain_link_or_di€3)

make a rew rame for a file and report errors

explain_linka{(3)

Explainlinkat(2) errors

explain_linkat_or_di€3)

create a file link reladie directory file descriptors and report errors

explain_lister(3)

Explainlisten(2) errors

explain_listen_or_di€3)

listen for connections on a socket and report errors

explain_lseek3)

Explainlseek?) errors

explain_lseek_or_di@)

reposition file offset and report errors

explain_Ista(3)

Explainlstat(2) errors

explain_|stat_or_di¢3)

get file status and report errors

explain_lutime¢3)

Explainlutimeg3) errors

explain_lutimes_or_di3)

modify file timestamps and report errors

explain_mallog3)

Explainmalloq(3) errors

explain_malloc_or_di€3)

Executemalloq3) and report errors

libexplain(3)

70

libexplain(3) LibraryFunctions Manual libexplain(3)

explain_mkdif3)
Explainmkdin(2) errors

explain_mkdir_or_di€3)
create directory and report errors

explain_mkdtem(8)
Explainmkdtemf3) errors

explain_mkdtemp_or_d(8)
create a unique temporary directory and report errors

explain_mknod3)
Explainmknod?2) errors

explain_mknod_or_di)
create a special or ordinary file and report errors

explain_mkostem(3)
Explainmkostem(8) errors

explain_mkostemp_or_d{8)
create a unique temporary file and report errors

explain_mkstem(3)
Explainmkstemf8) errors

explain_mkstemp_or_d{8)
create a unique temporary file and report errors

explain_mktem(s)
Explainmktem$3) errors

explain_mktemp_or_d{8)
make a wique temporary filename and report errors

explain_mmay3)
Explainmmayg?2) errors

explain_mmap_or_di@)
map file or device into memory and report errors

explain_moung3)
Explainmount?) errors

explain_mount_or_di€3)
mount file system and report errors

explain_munma(s)
Explainmunma?) errors

explain_munmap_or_d{8)
unmap a file or device from memory and report errors

explain_nanosleef)
Explainnanosleef?) errors

explain_nanosleep_or_d{8)
high-resolution sleep and report errors

explain_nicg3)
Explainnicg(2) errors

explain_nice_or_di€3)
change process priority and report errors

71

libexplain(3) LibraryFunctions Manual libexplain(3)

explain_opelf3)

Explainoper(2) errors
explain_open_or_di€3)

open files and report errors

explain_openat3)
Explainopenaf?) errors

explain_openat_or_dig)
open a file relatie © a drectory file descriptor and report errors

explain_opendi(3)

Explainopendi(3) errors
explain_opendir_or_di€3)

open a directory and report errors

explain_pathconf3)
Explainpathcon¢3) errors

explain_pathconf_or_dig)
get configuration values for files and report errors

explain_pclosé€3)
Explainpclos€3) errors

explain_pclose_or_di@)
Executepclos€3) and report errors

explain_pipd3)
Explainpipg(2) errors

explain_pipe_or_di€3)
Executepipg(2) and report errors

explain_pipeZ3)
Explainpipeq2) errors

explain_pipe2_or_di€3)
create pipe and report errors

explain_poll(3)
Explainpoll(2) errors
explain_poll_or_dig3)
wait for some gent on a file descriptor and report errors

explain_popeit3)
Explainpoper{3) errors

explain_popen_or_di@)
Executepoperf3) and report errors

explain_pread3)
Explainpread?) errors

explain_pread_or_di€3)
read from a file descriptor at avgn off set and report errors

explain_printf(3)
Explainprintf(3) errors

explain_printf_or_dig3)
formatted output carersion and report errors

72

libexplain(3) LibraryFunctions Manual libexplain(3)

explain_ptracg3)
Explainptracg2) errors

explain_ptrace_or_di€3)
process trace and report errors

explain_putg3)
Explainputq3) errors

explain_putc_or_di€3)
output of characters and report errors

explain_putcha(3)

Explainputchal3) errors
explain_putchar_or_di€3)

output of characters and report errors

explain_puteny{3)
Explainputeny3) errors

explain_putenv_or_dig)
change or add an environment variable and report errors

explain_putg3)
Explainputq3) errors

explain_puts_or_di€3)
write a string and a trailing newline to stdout and report errors

explain_putw(3)
Explainputw(3) errors

explain_putw_or_di€3)
output a word (int) and report errors

explain_pwritg3)
Explainpwrite(2) errors

explain_pwrite_or_di€3)
write to a file descriptor at a\gn off set and report errors

explain_raisg3)
Explainraisg(3) errors

explain_raise_or_di€3)
send a signal to the caller and report errors

explain_read3)
Explainread(2) errors

explain_read_or_di€3)
read from a file descriptor and report errors

explain_readdi(3)
Explainreaddir(3) errors

explain_readdir_or_di€3)
read a directory and report errors

explain_readlink3)
Explainreadlink(2) errors

explain_readlink_or_di€3)
read value of a symbolic link and report errors

73

libexplain(3)

LibraryFunctions Manual

explain_ready3)

ExplainreadJ2) errors

explain_readv_or_di€3)

read data into multiple buffers and report errors

explain_realloq3)

Explainrealloc(3) errors

explain_realloc_or_di€3)

Executerealloc(3) and report errors

explain_realpatt{3)

Explainrealpath(3) errors

explain_realpath_or_di€3)

return the canonicalized absolute pathname and report errors

explain_renamé3)

Explainrenamé?2) errors

explain_rename_or_di@)

change the name or location of a file and report errors

explain_rmdir(3)

Explainrmdir(2) errors

explain_rmdir_or_dig3)

delete a directory and report errors

explain_seledf3)

Explainselec(?) errors

explain_select_or_dig)

executeselec(2) and report errors

explain_setbuf3)

Explainsetbug3) errors

explain_setbuffef3)

Explainsetbuffe(3) errors

explain_setbuffer_or_di@)

stream buffering operations and report errors

explain_setbuf_or_dig)

set stream buffer and report errors

explain_setdomainnan(@)

Explainsetdomainnan{g) errors

explain_setdomainname_or_d8)

set domain name and report errors

explain_seten(B)

Explainseteny3) errors

explain_setenv_or_d(8)

change or add an environment variable and report errors

explain_setgiq3)

Explainsetgid?2) errors

explain_setgid_or_di€3)

set group identity and report errors

libexplain(3)

74

libexplain(3) LibraryFunctions Manual libexplain(3)

explain_setgren(3)
Explainsetgren3) errors
explain_setgrent_or_di@)
rewind to the start of the group database and report errors

explain_setgroup&3)
Explainsetgroup§?) errors

explain_setgroups_or_d{8)
get list of supplementary group IDs and report errors

explain_sethostnantd)
Explainsethostnam@) errors

explain_sethostname_or_d®)
set hostname and report errors

explain_setlinebu3)
Explainsetlinebuf3) errors

explain_setlinebuf_or_di@)
stream buffering operations and report errors

explain_setpgid3)
Explainsetpgid?) errors

explain_setpgid_or_dig)
set process group and report errors

explain_setpgri3)
Explainsetpgrig2) errors

explain_setpgrp_or_dig)
set process group and report errors

explain_setpriority3)
Explainsetpriority(2) errors

explain_setpriority _or_di€3)
set program scheduling priority and report errors

explain_setegd(3)
Explainsetegd(2) errors

explain_setegd_or_dig3)
set real and/or effeott goup ID and report errors

explain_setreuid3)
Explainsetreuid?2) errors

explain_setreuid_or_dig)
set the real and effeed user ID and report errors

explain_setresgi(B)
Explainsetresgi@?) errors

explain_setresgid_or_d{8)
set real, effectie and saed group ID and report errors

explain_setresui(B)
Explainsetresui@?) errors

explain_setresuid_or_d{8)
set real, effectie and saed user ID and report errors

75

libexplain(3) LibraryFunctions Manual libexplain(3)

explain_setreuid3)
Explainsetreuid?2) errors

explain_setreuid_or_di)
set real and/or effeot wser ID and report errors

explain_setsig3)
Explainsetsiq?2) errors

explain_setsid_or_di)
creates a session and sets the process group ID and report errors

explain_setsokopt(3)
Explainsetsokopt(2) errors

explain_setsokopt_or_dig3)
executesetsokopt(2) and report errors

explain_settimeofda\g)
Explainsettimeofdafp) errors

explain_settimeofday_or_d(8)
sets system time and report errors

explain_setui@3)
Explainsetuid?) errors

explain_setuid_or_di€3)
set user identity and report errors

explain_setvbuf3)
Explainsetvbuf3) errors

explain_setvbuf_or_di@)
stream buffering operations and report errors

explain_shmaf3)
Explainshmag?) errors

explain_shmat_or_dig)
shared memor