Free Component Library (FCL):
Reference guide.

Reference guide for FCL units.
Document version 2.1
September 2006

Michaél Van Canneyt

Contents

0.1 OVerviewo e e e 12
1 Reference for unit "base64’ 13
1.1 Usedunits oo oo e e e e e e 13
L2 Overview e e 13
1.3 TBase64DecodingStream L. 13
131 Description oo it e e 13

1.3.2 Method overview 13

1.3.3 Property OVerview e e e e 14

1.3.4 TBase64DecodingStream.Create 14

1.3.5 TBase64DecodingStream.Reset 14

1.3.6 TBase64DecodingStream.Read 14

1.3.7 TBase64DecodingStream.Write 14

1.3.8 TBase64DecodingStream.Seek 15

1.3.9 TBase64DecodingStream.EOF 15

1.4 TBase64EncodingStream L 15
141 Description i e e e 15

1.42 Methodoverview o 15

1.4.3 TBase64EncodingStream.Create 16

1.44 TBase64EncodingStream.Destroy 16

1.4.5 TBase64EncodingStream.Read 16

1.4.6 TBase64EncodingStream.Write 16

1.4.7 TBase64EncodingStream.Seek L. 17

2 Reference for unit ’bufstream’ 18
2.1 Usedunitso L e 18
2.2 OVEIVIEW . . v v it e e e e e e 18
2.3 Constants, types and variables L o 18
2.3.1 Constantso e e 18

24 TBufStream 18
241 Description 18

242 Methodoverview e 19

CONTENTS

243 Property OVEIrVIEW it e e e e e e 19

244 TBufStream.Create e 19

2.4.5 TBufStream.Destroy 19

24.6 TBufStream.Buffer 19

2477 TBufStream.Capacity e 20

24.8 TBufStream.BufferPos o oL 20

2.4.9 TBufStream.BufferSize 20

2.5 TReadBufStream 21
2.5.1 Description e e e e 21

2.5.2 Methodoverview oL 21

2.5.3 TReadBufStream.Seek 21

2.54 TReadBufStream.Read 21

2.5.5 TReadBufStream.Write, 21

2.6 TWriteBufStream 22
2.6.1 Description e 22

2.6.2 Methodoverview 22

2.6.3 TWriteBufStream.Destroy 22

2.6.4 TWriteBufStream.Seek oo oo 22

2.6.5 TWriteBufStream.Read, 23

2.6.6 TWriteBufStream.Write 23

3 Reference for unit ’contnrs’ 24
3.1 Usedunitso 24
32 OVerviewo e 24
3.3 Constants, types and variables L L e 24
330 TYPES . o o e 24

3.4 Procedures and functions 25
341 RSHash o 25

3.5 EDuplicate e e e e e 25
35.1 Descriptiono e e 25

3.6 EKeyNotFound e 25
3.6.1 Description e e e e 25

377 TClassList o L e 25
37.1 Descriptiono e e 25

372 Methodoverview 26

3.77.3 Property overview e 26

374 TClassListAdd e 26

3.7.5 TClassList.Extract 26

3.7.6 TClassListRemove 27

3777 TClassListIndexOf 27

CONTENTS

37.8 TClassList.First 27
3779 TClassList.Last e 27
3.7.10 TClassList.Insert 28
3.7.11 TClassList.Items 28
3.8 TComponentList e e e 28
3.8.1 Description e e e e e 28
3.82 Methodoverview 28
3.8.3 Property overview 28
3.8.4 TComponentList.Destroy 29
3.8.5 TComponentList Add, 29
3.8.6 TComponentList.Extract, 29
3.8.7 TComponentListRemove 29
3.8.8 TComponentListIndexOf 30
3.8.9 TComponentList.First 30
3.8.10 TComponentList.Last 30
3.8.11 TComponentList.Insert 31
3.8.12 TComponentListItems 31
39 TFPHashTable e 31
39.1 Description 31
392 Methodoverview 31
3.9.3 Property OVEIVIiewo e e e e e 32
394 TFPHashTable.Create 32
3.9.5 TFPHashTable.CreateWith 32
39.6 TFPHashTable.Destroy 32
3.9.7 TFPHashTable.ChangeTableSize 33
39.8 TFPHashTable.Clear 33
39.9 TFPHashTable Add. 33
3.9.10 TFPHashTable.Delete 33
3.9.11 TFPHashTable.Find 34
3.9.12 TFPHashTable.IsEmpty 34
3.9.13 TFPHashTable.HashFunction 34
3.9.14 TFPHashTable.Count 35
3.9.15 TFPHashTable.HashTableSize 35
3.9.16 TFPHashTabledtems 35
3.9.17 TFPHashTable.HashTable 35
3.9.18 TFPHashTable.VoidSlots 36
3.9.19 TFPHashTable.LoadFactor 36
3.9.20 TFPHashTable. AVGChainLen 36
3.9.21 TFPHashTable MaxChainLength 36
3.9.22 TFPHashTable. NumberOfCollisions 37

CONTENTS

3.9.23 TFPHashTable.Density 37
3.10 TFPObjectList o oo o e e e e e e 37
3.10.1 Description 37
3.10.2 Method overviewo e e 38
3.10.3 Property OVEIViewo e e e e 38
3.10.4 TFPObjectList.Create o v v v it e it e e e e 38
3.10.5 TFPObjectList.Destroy i 38
3.10.6 TFPObjectList.Clear 39
3.10.7 TFPObjectList. Add 39
3.10.8 TFPObjectList.Delete 39
3.10.9 TFPObjectList.Exchange 40
3.10.10 TFPObjectList.Expand 40
3.10.11 TFPObjectList.Extract vt 40
3.10.12 TFPObjectListRemove v i 40
3.10.13 TFPObjectListIndexOf, 41
3.10.14 TFPObjectList.FindInstanceOf 41
3.10.15 TFPObjectListInserto it 41
3.10.16 TFPObjectList.First e 42
3.10.17 TFPObjectList.Last 42
3.10.18 TFPObjectListMove it 42
3.10.19 TFPObjectList. ASSign v v v et s e e 42
3.10.20 TFPObjectList.Pack 43
3.10.21 TFPObjectList.Sort e 43
3.10.22 TFPObjectList.ForEachCall 43
3.10.23 TFPObjectList.Capacity e 44
3.10.24 TFPObjectList.Count o v v vt e i et 44
3.10.25 TFPObjectList.OwnsObjects oo 44
3.10.26 TFPObjectList.Items 44
3.10.27 TFPObjectList.List 45
3.11 THTNode e e e 45
3.11.1 Description oL e 45
3.11.2 Methodoverview 45
3.11.3 Property overview e 45
3.11.4 THTNode.CreateWith 45
3.11.5 THTNode.HasKey 45
3.11.6 THTNode.Key it 46
3.11.7 THTNode.Data e 46
3.12 TObjectList o o o o e e 46
3.12.1 Descriptiono e 46
3.12.2 Methodoverview 47

CONTENTS

3.12.3 Property OVEIVIEW Lo e e e e e e e e e 47
3.12.4 TObjectList.create o i e e e e e e e 47
3.12.5 TObjectList.Add 47
3.12.6 TObjectList.Extract 48
3.12.7 TObjectList.Remove 48
3.12.8 TObjectList.IndexOf 48
3.12.9 TObjectList.FindInstanceOf 48
3.12.10 TObjectList.Insert 49
3.12.11 TObjectList.First o 49
3.12.12 TObjectList.Last e 49
3.12.13 TObjectList.OwnsObjects oot 50
3.12.14 TObjectList.Items 50

3.13 TObjectQueue o vt e e e e e 50
3.13.1 Methodoverview e 50
3.13.2 TObjectQueue.Push 50
3.13.3 TObjectQueue.Pop 51
3.13.4 TObjectQueue.Peek 51
3.14 TObjectStack e 51
3.14.1 Description e 51
3.142 Methodoverview 51
3.14.3 TObjectStack.Push 51
3.14.4 TObjectStack.Pop e 52
3.14.5 TObjectStack.Peek 52
3.15 TOrderedList o . . e e e 52
3.05.1 Descriptiono L e e e e e 52
3.15.2 Methodoverview e 52
3.15.3 TOrderedList.Create oo v v it 52
3.15.4 TOrderedList.Destroy 53
3.15.5 TOrderedList.Count 53
3.15.6 TOrderedList.AtLeast 53
3.15.7 TOrderedList.Push, 54
3.15.8 TOrderedList.Pop. 54
3.15.9 TOrderedList.Peek 54
3.16 TQueueo 54
3.16.1 Description e 54
307 TStacko 55
3.17.1 Description e e 55

4 Reference for unit ’dbugintf’ 56
4.1 Writingadebugserver 56

CONTENTS

42 OVeIVIBW ot e e 56
4.3 Constants, types and variables L L 56
4.3.1 Resource Strings e 56
432 Constants e e e e e e e e e 57

433 TYPES . o o e e e e e e 57

4.4 Procedures and functions 57
44.1 InitDebugClient. e 57

442 SendBoolean 58

443 SendDateTime 58
444 SendDebug e 58

445 SendDebugEx 58
446 SendDebugFmt 59
447 SendDebugFmtEx 59

4.4.8 SendInteger e e e 59
449 SendMethodEnter 60
4.4.10 SendMethodExit 60
4.4.11 SendPointer 60
4.4.12 SendSeparator e e e e e 61
4.4.13 StartDebugServer 61

5 Reference for unit *gettext’ 62
5.0 Usedunits oo o e e 62
52 OVEIVIEW o vt i e e e e 62
5.3 Constants, types and variables Lo 62
5.3.1 Constantso e e e 62

532 TYPES « o v o 62

5.4 Procedures and functions 63
5.4.1 GetLanguageIDs 63

5.4.2 TranslateResourceStrings 64

5.5 EMOFileError. e 64
5.5.1 Description e 64

56 TMOFile 64
5.6.1 Description e e e e e 64

5.6.2 Methodoverview L 64

5.6.3 TMOFile.Create 64

5.64 TMOFile.Destroy 65

5.6.5 TMOFile.Translate 65

6 Reference for unit ’idea’ 66
6.1 Usedunits e e 66
6.2 OVEIVIEW o oot e 66

CONTENTS

6.3 Constants, types and variables L L o 66
6.3.1 Constants e e 66

6.3.2 TYPES . . o o 67

6.4 Procedures and functions 67
6.4.1 Cipherldea 67

6.42 DeKeyldea e 67

643 EnKeyldea 68

6.5 EIDEAError e 68
6.5.1 Description L e e 68

6.6 TIDEADeCryptStream o v v i it et e e e e e 68
6.6.1 Description e 68

6.6.2 Methodoverview 68

6.6.3 TIDEADeCryptStream.Read 68

6.6.4 TIDEADeCryptStream.Write 69

6.6.5 TIDEADeCryptStream.Seek, 69

6.7 TIDEAEncryptStream 69
6.7.1 Description e e e e e 69

6.7.2 Methodoverview L 70

6.7.3 TIDEAEncryptStream.Destroy 70

6.74 TIDEAEncryptStream.Read 70

6.7.5 TIDEAEncryptStream.Write, 70

6.7.6 TIDEAEncryptStream.Seek, 71

6.7.7 TIDEAEncryptStream.Flush 71

6.8 TIDEAStream e e e 71
6.8.1 Description e e 71

6.8.2 Methodoverview L 71

6.8.3 Property OVerviewo e 71

6.8.4 TIDEAStream.Createot i it 72

6.8.5 TIDEAStream.Key 72

7 Reference for unit ’iostream’ 73
7.1 Usedunits o e 73
T2 OVeIVIEW . . . o vt s it e e e e e 73
7.3 Constants, types and variables oL oo 73
731 Types . . o o o e e 73

74 EIOStreamError 74
741 Descriptiont e e e e e e e e e 74

7.5 TIOStream oo e e 74
7.5.1 Description e 74

7.52 Methodoverviewo 74

CONTENTS

7.5.3 TIOStream.Create vttt 74
7.54 TIOStream.Read 74
7.5.5 TIOStream.Write L 75
7.5.6 TIOStream.SetSize 75
7.5.7 TIOStream.Seek 75

8 Reference for unit "Pipes’ 76
8.1 Usedunits L o e e 76
82 OVEIVIEW o i e 76
8.3 Constants, types and variables Lo oL 76
8.3.1 Constants e e e 76

8.4 Procedures and functions L. oL 77
8.4.1 CreatePipeHandles 77
8.4.2 CreatePipeStreams 77

85 ENoReadPipe e 77
8.5.1 Description e e e 77

8.6 ENoWritePipe e 77
8.6.1 Description 77

8.7 EPipeCreation 77
8. 7.1 Description e e e 77

8.8 EPipeError 78
8.8.1 Description 78

89 EPipeSeek 78
8.9.1 Description e e 78
8.10 TInputPipeStream e e 78
8.10.1 Description 78
8.10.2 Methodoverview 78
8.10.3 TInputPipeStream.Write 78
8.10.4 TInputPipeStream.Seek 78
8.10.5 TInputPipeStream.Read 79
8.11 TOutputPipeStream L 79
8.11.1 Description i e e e e e 79
8.11.2 Method overview e 79
8.11.3 TOutputPipeStream.Seek, 79
8.11.4 TOutputPipeStream.Read 80

9 Reference for unit ’process’ 81
9.1 Usedunits e e 81
0.2 OVerview e e 81
9.3 Constants, types and variables L L e 81
93,1 TYPES « v v o 81

CONTENTS

9.4 EProcess v v v v i it e e e 83
9.4.1 Description i e e e e e e e 83
0.5 TProCess . . . o v v v v i e e 83
9.5.1 Description e 83
9.52 Methodoverview L 84
9.5.3 Property OVErview it e e e e e e e e e e 84
9.54 TProcess.Create it i i e 85
9.5.5 TProcess.Destroy e 85
9.5.6 TProcess.Execute 85
9.5.7 TProcess.Closelnput i 86
9.5.8 TProcess.CloseOutput 86
9.5.9 TProcess.CloseStderr 86
9.5.10 TProcess.Resume Lo 86
9.5.11 TProcess.Suspend i e 87
9.5.12 TProcess.Terminate 87
9.5.13 TProcess.WaitOnExit 87
9.5.14 TProcess.WindowRect 87
9.5.15 TProcess.Handle 88
9.5.16 TProcess.ProcessHandle 88
9.5.17 TProcess.ThreadHandle 88
9.5.18 TProcess.ProcessID 88
9.5.19 TProcess.ThreadID 89
9.5.20 TProcess.Input 89
9.5.21 TProcess.Output 89
9.5.22 TProcess.Stderr e 90
9.5.23 TProcess.ExitStatus 90
9.5.24 TProcess.InheritHandles, 90
9.5.25 TProcess.ACtive i 91
9.5.26 TProcess.ApplicationName, 91
9.5.27 TProcess.CommandLine, 91
9.5.28 TProcess.ConsoleTitle 92
9.5.29 TProcess.CurrentDirectory 92
9.5.30 TProcess.Desktop. 92
9.5.31 TProcess.Environment 92
9.5.32 TProcess.Options v v i it e 93
9.5.33 TProcess.Priority 93
9.5.34 TProcess.StartupOptions o 94
9.5.35 TProcess.Running 94
9.5.36 TProcess.ShowWindow, 95
9.5.37 TProcess.WindowColumns 95

CONTENTS

9.5.38 TProcess.WindowHeight 95
9.5.39 TProcess.WindowLeft 96
9.540 TProcess.WindowRows 96
9.541 TProcess.WindowTop 96
9.5.42 TProcess.WindowWidth, 97
9.5.43 TProcess.FillAttribute 97

10 Reference for unit ’StreamlIO’ 98
10.1 Usedunits o oo o e e e 98
10.2 OVeIVIEW . . . o o ot s e e e e 98
10.3 Procedures and functions 98
10.3.1 AssignStreamo e e e 98
1032 GetStream e e e 99

11 Reference for unit *zstream’ 100
11.1 Usedunits oo oo e e e 100
11.2 OVerview oo e e e e 100
11.3 Constants, types and variables L L. 100
T1.3.1 Types . . . o v o e 100
11.4 ECompressionError e e 101
11.4.1 Description o v v vt e e e 101
11.5 EDecompressionError. 101
11.5.1 Description o it i e e 101
11.6 EZIbError e 101
11.6.1 Description v v vt e e e 101
11.7 TCompressionStream v vt i it e e 101
11.7.1 Description 0 ot e e 101
11.72 Methodoverview 101
11.7.3 Property OVerview ittt e e e 102
11.7.4 TCompressionStream.Create 102
11.7.5 TCompressionStream.Destroy 102
11.7.6 TCompressionStream.Read 102
11.7.7 TCompressionStream.Write 103
11.7.8 TCompressionStream.Seek 103
11.7.9 TCompressionStream.CompressionRate 103
11.7.10 TCompressionStream.OnProgress 103

11.8 TCustomZlibStream e 104
11.8.1 Description oo vt e 104
11.82 Methodoverview e 104
11.8.3 TCustomZlibStream.Create 104
11.9 TDecompressionStream v v vt it e e e 104

CONTENTS

11.9.1 Description 00 v it e e 104
11.92 Methodoverview 104
11.9.3 Property OVerview i it e e e 104
11.9.4 TDecompressionStream.Create 105
11.9.5 TDecompressionStream.Destroy 105
11.9.6 TDecompressionStream.Read 105
11.9.7 TDecompressionStream.Write 105
11.9.8 TDecompressionStream.Seek 106
11.9.9 TDecompressionStream.OnProgress 106
I1.10TGZFileStreamo ittt e e 106
11.10.1 Description v v v ot e e e 106
11.10.2Method overview 106
11.10.3 TGZFileStream.Create v v i i 107
11.10.4 TGZFileStream.Destroy v v v ittt 107
11.10.5 TGZFileStream.Read 107
11.10.6 TGZFileStream.Write 108
11.10.7 TGZFileStream.Seek 108

11

CONTENTS

About this guide

This document describes all constants, types, variables, functions and procedures as they are declared
in the units that come standard with the FCL (Free Component Library).

Throughout this document, we will refer to functions, types and variables with typewriter font.
Functions and procedures gave their own subsections, and for each function or procedure we have
the following topics:

Declaration The exact declaration of the function.
Description What does the procedure exactly do ?
Errors What errors can occur.

See Also Cross references to other related functions/commands.

0.1 Overview

The Free Component Library is a series of units that implemenent various classes and non-visual
components for use with Free Pascal. They are building blocks for non-visual and visual programs,
such as designed in Lazarus.

The TDatasetdescendents have been implemented in a way that makes them compatible to the
Delphi implementation of these units. There are other units that have counterparts in Delphi, but
most of them are unique to Free Pascal.

12

Chapter 1

Reference for unit ’base64’

1.1 Used units

Table 1.1: Used units by unit base64’

Name Page
Classes 2?

1.2 Overview

baseb64implements base64 encoding (as used for instance in MIME encoding) based on streams. it
implements 2 streams which encode or decode anything written or read from it. The source or the des-
tination of the encoded data is another stream. 2 classes are implemented for this: TBase64EncodingStream
(15)for encoding, and TBase64DecodingStream (13)for decoding.

The streams are designed as plug-in streams, which can be placed between other streams, to provide
base64 encoding and decoding on-the-fly...

1.3 TBase64DecodingStream

1.3.1 Description

TBase64DecodingStreamcan be used to read data from a stream (the source stream) that con-
tains Base64 encoded data. The data is read and decoded on-the-fly.

The decoding stream is read-only, and provides a limited forward-seek capability.

1.3.2 Method overview
Page Property Description

14 Create Create a new instance of the TBase64DecodingStreamclass
14 Read Read and decrypt data from the source stream

14 Reset Reset the stream

15 Seek Set stream position.

14 Write Write data to the stream

13

CHAPTER 1. REFERENCE FOR UNIT 'BASE64’

1.3.3 Property overview

Page Property Access Description
15 EOF r

1.3.4 TBase64DecodingStream.Create

Synopsis: Create a new instance of the TBase64DecodingStreamclass
Declaration: constructor Create (AInputStream: TStream)
Visibility: public

Description: Createcreates a new instance of the TBase64DecodingStreamclass. It stores the source
stream AInput St reamfor reading the data from.

See also: TBase64EncodingStream.Create (16)

1.3.5 TBase64DecodingStream.Reset
Synopsis: Reset the stream
Declaration: procedure Reset
Visibility: public
Description: Resetresets the data as if it was again on the start of the decoding stream.
Errors: None.

See also: TBase64DecodingStream.EOF (15), TBase64DecodingStream.Read (14)

1.3.6 TBase64DecodingStream.Read
Synopsis: Read and decrypt data from the source stream
Declaration: function Read(var Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Readreads encrypted data from the source stream and stores this data in Buf fer. At most Countbytes
will be stored in the buffer, but more bytes will be read from the source stream: the encoding algo-

rithm multiplies the number of bytes.

The function returns the number of bytes stored in the buffer.
Errors: If an error occurs during the read from the source stream, an exception may occur.

See also: TBase64DecodingStream. Write (14), TBase64DecodingStream.Seek (15), #rtl.classes. TStream.Read
??)

1.3.7 TBase64DecodingStream.Write
Synopsis: Write data to the stream

Declaration: function Write (const Buffer;Count: LongInt) : LongInt; Override

Visibility: public

14

CHAPTER 1. REFERENCE FOR UNIT 'BASE64’

Description: Writealways raises an ESt reamErrorexception, because the decoding stream is read-only. To
write to an encrypted stream, use a TBase64EncodingStream (15)instance.

Errors:

See also: TBase64DecodingStream.Read (14), TBase64DecodingStream.Seek (15), TBase64EncodingStream. Write
(16), #rtl.classes. TStream.Write (??)

1.3.8 TBase64DecodingStream.Seek
Synopsis: Set stream position.
Declaration: function Seek (Offset: LongInt;Origin: Word) : LongInt; Override
Visibility: public

Description: Seeksets the position of the stream. In the TBase 64DecodingStreamclass, the seekoperation
is forward only, it does not support backward seeks. The forward seek is emulated by reading and
discarding data till the desired position is reached.

For an explanation of the parameters, see TStream.Seek (??)
Errors: In case of an unsupported operation, an ESt reamErrorexception is raised.

See also: TBase64DecodingStream.Read (14), TBase64DecodingStream.Write (14), TBase64EncodingStream.Seek
(17), #rtl.classes. TStream.Seek (??)

1.3.9 TBase64DecodingStream.EOF
Synopsis:
Declaration: Property EOF : Boolean
Visibility: public
Access: Read

Description:

1.4 TBase64EncodingStream

1.4.1 Description

TBase64EncodingStreamcan be used to encode data using the base64 algorithm. At creation
time, a destination stream is specified. Any data written to the TBase64EncodingSt reaminstance
will be base64 encoded, and subsequently written to the destination stream.

The TBase64EncodingStreamstream is a write-only stream. Obviously it is also not seekable.
It is meant to be included in a chain of streams.

1.4.2 Method overview
Page Property Description

16 Create Create a new instance of the TBase64EncodingStreamclass.
16 Destroy Remove a TBase64EncodingSt reaminstannce from memory
16 Read Read data from the stream

17 Seek Position the stream

16 Write Write data to the stream.

15

CHAPTER 1. REFERENCE FOR UNIT 'BASE64’

1.4.3 TBase64EncodingStream.Create

Synopsis: Create a new instance of the TBase64EncodingStreamclass.
Declaration: constructor Create (AOutputStream: TStream)
Visibility: public

Description: Createinstantiates a new TBase64EncodingStreamclass. The AOutput St reamstream is
stored and used to write the encoded data to.

See also: TBase64EncodingStream.Destroy (16), TBase64DecodingStream.Create (14)

1.4.4 TBase64EncodingStream.Destroy

Synopsis: Remove a TBase64EncodingSt reaminstannce from memory
Declaration: destructor Destroy; Override
Visibility: public

Description: De st royflushes any remaining output and then removes the TBase 64EncodingSt reaminstance
from memory by calling the inherited destructor.

Errors: An exception may be raised if the destination stream no longer exists or is closed.

See also: TBase64EncodingStream.Create (16)

1.4.5 TBase64EncodingStream.Read
Synopsis: Read data from the stream

Declaration: function Read(var Buffer;Count: LongInt) : LongInt; Override
Visibility: public
Description: Readalways raises an exception, because the encoding stream is write-only.

See also: TBase64EncodingStream.Write (16), TBase64EncodingStream.Seek (17), TBase64DecodingStream.Read
(14), #rtl.classes.TStream.Read (??)

1.4.6 TBase64EncodingStream.Write
Synopsis: Write data to the stream.

Declaration: function Write (const Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Writeencodes Countbytes from Buf ferusing the Base64 mechanism, and then writes the en-
coded data to the destination stream. It returns the number of bytes from Buf ferthat were actually
written. Note that this is not the number of bytes written to the destination stream: the base64
mechanism writes more bytes to the destination stream.

Errors: If there is an error writing to the destination stream, an error may occur.

See also: TBase64EncodingStream.Seek (17), TBase64EncodingStream.Read (16), TBase64DecodingStream. Write
(14), #rtl.classes. TStream.Write (??)

16

CHAPTER 1. REFERENCE FOR UNIT 'BASE64’

1.4.7 TBase64EncodingStream.Seek

Synopsis: Position the stream
Declaration: function Seek (Offset: LongInt;Origin: Word) : LonglInt; Override
Visibility: public

Description: seekalways raises an ESt reamErrorexception unless the arguments it received it don’t change
the current file pointer position. The encryption stream is not seekable.

Errors: An ESt reamErrorerror is raised.

See also: TBase64EncodingStream.Read (16), TBase64EncodingStream.Write (16), #rtl.classes. TStream.Seek
??)

17

Chapter 2

Reference for unit ’bufstream’

2.1 Used units

Table 2.1: Used units by unit "bufstream’

Name Page
Classes ??
sysutils ??

2.2 Overview

BufStreamimplements two one-way buffered streams: the streams store all data from (or for) the
source stream in a memory buffer, and only flush the buffer when it’s full (or refill it when it’s empty).
The buffer size can be specified at creation time. 2 streams are implemented: TReadBufStream
(21)which is for reading only, and TWriteBufStream (22)which is for writing only.

Buffered streams can help in speeding up read or write operations, especially when a lot of small
read/write operations are done: it avoids doing a lot of operating system calls.

2.3 Constants, types and variables

2.3.1 Constants
DefaultBufferCapacity : Integer = 16

If no buffer size is specified when the stream is created, then this size is used.

2.4 TBufStream
2.4.1 Description

TBuf St reamis the common ancestor for the TReadBufStream (21)and TWriteBufStream (22)streams.
It completely handles the buffer memory management and position management. An instance of

18

CHAPTER 2. REFERENCE FOR UNIT 'BUFSTREAM’

TBufStreamshould never be created directly. It also keeps the instance of the source stream.

2.4.2 Method overview

Page Property Description
19 Create Create a new TBuf St reaminstance.
19 Destroy Destroys the TBuf St reaminstance

2.4.3 Property overview
Page Property Access Description

19 Buffer r The current buffer

20 BufferPos r Current buffer position.

20 BufferSize r Amount of data in the buffer
20 Capacity ™w Current buffer capacity

2.4.4 TBufStream.Create

Synopsis: Create a new TBuf St reaminstance.

Declaration: constructor Create (ASource: TStream;ACapacity: Integer)
constructor Create (ASource: TStream)

Visibility: public
Description: Createcreates a new TBuf St reaminstance. A buffer of size ACapacityis allocated, and the
ASourcesource (or destination) stream is stored. If no capacity is specified, then DefaultBufferCa-
pacity (18)is used as the capacity.
An instance of TRufStreamshould never be instantiated directly. Instead, an instance of TRead-
BufStream (21)or TWriteBufStream (22)should be created.

Errors: If not enough memory is available for the buffer, then an exception may be raised.

See also: TBufStream.Destroy (19), TReadBufStream (21), TWriteBufStream (22)

2.4.5 TBufStream.Destroy

Synopsis: Destroys the TBuf St reaminstance
Declaration: destructor Destroy; Override
Visibility: public

Description: Destroydestroys the instance of TBufStream. It flushes the buffer, deallocates it, and then
destroys the TBuf St reaminstance.

See also: TBufStream.Create (19), TReadBufStream (21), TWriteBufStream (22)

2.4.6 TBufStream.Buffer
Synopsis: The current buffer

Declaration: Property Buffer : Pointer

Visibility: public

19

CHAPTER 2. REFERENCE FOR UNIT 'BUFSTREAM’

Access: Read
Description: Buf feris a pointer to the actual buffer in use.

See also: TBufStream.Create (19), TBufStream.Capacity (20), TBufStream.BufferSize (20)

2.4.7 TBufStream.Capacity
Synopsis: Current buffer capacity

Declaration: Property Capacity : Integer
Visibility: public
Access: Read,Write

Description: Capacityis the amount of memory the buffer occupies. To change the buffer size, the capacity
can be set. Note that the capacity cannot be set to a value that is less than the current buffer size, i.e.
the current amount of data in the buffer.

See also: TBufStream.Create (19), TBufStream.Buffer (19), TBufStream.BufferSize (20), TBufStream.BufferPos
(20)

2.4.8 TBufStream.BufferPos
Synopsis: Current buffer position.

Declaration: Property BufferPos : Integer
Visibility: public
Access: Read

Description: BufPosis the current stream position in the buffer. Depending on whether the stream is used for
reading or writing, data will be read from this position, or will be written at this position in the buffer.

See also: TBufStream.Create (19), TBufStream.Buffer (19), TBufStream.BufferSize (20), TBufStream.Capacity
(20)

2.4.9 TBufStream.BufferSize
Synopsis: Amount of data in the buffer

Declaration: Property BufferSize : Integer
Visibility: public
Access: Read

Description: Buf ferSizeis the actual amount of data in the buffer. This is always less than or equal to the
Capacity (20).

See also: TBufStream.Create (19), TBufStream.Buffer (19), TBufStream.BufferPos (20), TBufStream.Capacity
(20)

20

CHAPTER 2. REFERENCE FOR UNIT 'BUFSTREAM’

2.5 TReadBufStream

2.5.1 Description

TReadBufStreamis a read-only buffered stream. It implements the needed methods to read data
from the buffer and fill the buffer with additional data when needed.

The stream provides limited forward-seek possibilities.

2.5.2 Method overview
Page Property Description

21 Read Reads data from the stream
21 Seek Set location in the buffer
21 Write Writes data to the stream

2.5.3 TReadBufStream.Seek
Synopsis: Set location in the buffer
Declaration: function Seek (Offset: LongInt;Origin: Word) : LonglInt; Override
Visibility: public

Description: seeksets the location in the buffer. Currently, only a forward seek is allowed. It is emulated by
reading and discarding data. For an explanation of the parameters, see TStream.Seek" (??)

The seek method needs enhancement to enable it to do a full-featured seek. This may be implemented
in a future release of Free Pascal.

Errors: In case an illegal seek operation is attempted, an exception is raised.

See also: TWriteBufStream.Seek (22), TReadBufStream.Read (21), TReadBufStream.Write (21)

2.5.4 TReadBufStream.Read
Synopsis: Reads data from the stream
Declaration: function Read(var ABuffer;ACount: LongInt) : Integer; Override
Visibility: public
Description: Readreads at most ACountbytes from the stream and places them in Buffer. The number of

actually read bytes is returned.

TReadBufStreamfirst reads whatever data is still available in the buffer, and then refills the buffer,
after which it continues to read data from the buffer. This is repeated untill ACountbytes are read,
or no more data is available.

See also: TReadBufStream.Seek (21), TReadBufStream.Read (21)

2.5.5 TReadBufStream.Write
Synopsis: Writes data to the stream

Declaration: function Write (const ABuffer;ACount: LongInt) : Integer; Override
Visibility: public

21

CHAPTER 2. REFERENCE FOR UNIT 'BUFSTREAM’

Description: Writealways raises an ESt reamErrorexception, because the stream is read-only. A TWriteBuf-
Stream (22)write stream must be used to write data in a buffered way.

See also: TReadBufStream.Seek (21), TReadBufStream.Read (21)

2.6 TWriteBufStream

2.6.1 Description

TWriteBufStreamis a write-only buffered stream. It implements the needed methods to write
data to the buffer and flush the buffer (i.e., write its contents to the source stream) when needed.

2.6.2 Method overview
Page Property Description

22 Destroy Remove the TWriteBufStreaminstance from memory
23 Read Read data from the stream

22 Seek Set stream position.

23 Write Write data to the stream

2.6.3 TWriteBufStream.Destroy

Synopsis: Remove the TWriteBufStreaminstance from memory
Declaration: destructor Destroy; Override
Visibility: public
Description: Dest royflushes the buffer and then calls the inherited Destroy (19).
Errors: If an error occurs during flushing of the buffer, an exception may be raised.

See also: TBufStream.Create (19), TBufStream.Destroy (19)

2.6.4 TWriteBufStream.Seek

Synopsis: Set stream position.
Declaration: function Seek (Offset: LongInt;Origin: Word) : LongInt; Override
Visibility: public

Description: Seekalways raises an ESt reamErrorexception, except when the seek operation would not alter
the current position.

A later implementation may perform a proper seek operation by flushing the buffer and doing a seek
on the source stream.

Errors:

See also: TWriteBufStream. Write (23), TWriteBufStream.Read (23), TReadBufStream.Seek (21)

22

CHAPTER 2. REFERENCE FOR UNIT 'BUFSTREAM’

2.6.5 TWriteBufStream.Read

Synopsis: Read data from the stream
Declaration: function Read(var ABuffer;ACount: LongInt) : Integer; Override
Visibility: public

Description: Readalways raises an EStreamErrorexception since TWriteBufStreamis write-only. To
read data in a buffered way, TReadBufStream (21)should be used.

See also: TWriteBufStream.Seek (22), TWriteBufStream.Write (23), TReadBufStream.Read (21)

2.6.6 TWriteBufStream.Write

Synopsis: Write data to the stream
Declaration: function Write (const ABuffer;ACount: LongInt) : Integer; Override
Visibility: public

Description: Writewrites at most ACountbytes from ABuf ferto the stream. The data is written to the internal
buffer first. As soon as the internal buffer is full, it is flushed to the destination stream, and the internal
buffer is filled again. This process continues till all data is written (or an error occurs).

Errors: An exception may occur if the destination stream has problems writing.

See also: TWriteBufStream.Seek (22), TWriteBufStream.Read (23), TReadBufStream. Write (21)

23

Chapter 3

Reference for unit ’contnrs’

3.1 Used units

Table 3.1: Used units by unit ’contnrs’

Name Page
Classes 2?
sysutils 7

3.2 Overview

The contnrsimplements various general-purpose classes:

Stacks Stack classes to push/pop pointers or objects

Object lists lists that manage objects instead of pointers, and which automatically dispose of the
objects.

Component lists lists that manage components instead of pointers, and which automatically dispose
the components.

Class lists lists that manage class pointers instead of pointers.
Stacks Stack classes to push/pop pointers or objects

Queues Classes to manage a FIFO list of pointers or objects

3.3 Constants, types and variables

3.3.1 Types

THashFunction = function(const S: String;const TableSize: LongWord)
LongWord

THashFunctionis the prototype for a hash calculation function. It should calculate a hash of
string S, where the hash table size is TableSize. The return value should be the hash value.

24

CHAPTER 3. REFERENCE FOR UNIT "CONTNRS’

TIteratorMethod = procedure (Item: Pointer;const Key: String;
var Continue: Boolean) of object

TIteratorMethodis used in an internal TFPHashTable (31)method.
TObjectListCallback = procedure(data: TObject;arg: pointer) of object

TObjectListCallbackis used as the prototype for the TFPObjectList.ForEachCall (43)link call
when a method should be called. The Dataargument will contain each of the objects in the list in
turn, and the Dat aargument will contain the data passed to the ForEachCallcall.

TObjectListStaticCallback = procedure (data: TObject;arg: pointer)

TObjectListCallbackis used as the prototype for the TFPObjectList.ForEachCall (43)link call
when a plain procedure should be called. The Dat aargument will contain each of the objects in the
list in turn, and the Dat aargument will contain the data passed to the ForEachCallcall.

3.4 Procedures and functions

3.4.1 RSHash

Synopsis: Standard hash value calculating function.
Declaration: function RSHash (const S: String;const TableSize: LongWord) : LongWord
Visibility: default

Description: RSHashis the standard hash calculating function used in the TFPHashTable (31)hash class. It’s
Robert Sedgwick’s "Algorithms in C" hash function.

Errors: None.

See also: TFPHashTable (31)

3.5 EDuplicate

3.5.1 Description

Exception raised when a key is stored twice in a hash table.

3.6 EKeyNotFound

3.6.1 Description

Exception raised when a key is not found.

3.7 TClassList
3.7.1 Description

TClassListis a Tlist (??)descendent which stores class references instead of pointers. It intro-
duces no new behaviour other than ensuring all stored pointers are class pointers.

25

CHAPTER 3. REFERENCE FOR UNIT "CONTNRS’

The OwnsOb ject sproperty as found in TComponentListand TObjectListis notimplemented
as there are no actual instances.

3.7.2 Method overview
Page Property Description

26 Add Add a new class pointer to the list.
26 Extract Extract a class pointer from the list.
27 First Return first non-nil class pointer

27 IndexOf Search for a class pointer in the list.
28 Insert Insert a new class pointer in the list.
27 Last Return last non-N1i1class pointer

27 Remove Remove a class pointer from the list.

3.7.3 Property overview

Page Property Access Description
28 Items ™w Index based access to class pointers.

3.7.4 TClassList.Add

Synopsis: Add a new class pointer to the list.
Declaration: function Add(AClass: TClass) : Integer
Visibility: public

Description: Addadds AC1assto the list, and returns the position at which it was added. It simply overrides the
TList (??)bevahiour, and introduces no new functionality.

Errors: If not enough memory is available to expand the list, an exception may be raised.

See also: TClassList.Extract (26), #rtl.classes.tlist.add (??)

3.7.5 TClassList.Extract

Synopsis: Extract a class pointer from the list.
Declaration: function Extract (Item: TClass) : TClass
Visibility: public

Description: Ext ractextracts a class pointer Ttemfrom the list, if it is present in the list. It returns the ex-
tracted class pointer, or N1 1if the class pointer was not present in the list. It simply overrides the
implementation in TL1istso it accepts a class pointer instead of a simple pointer. No new behaviour
is introduced.

Errors: None.

See also: TClassList.Remove (27), #rtl.classes. Tlist. Extract (2?)

26

CHAPTER 3. REFERENCE FOR UNIT "CONTNRS’

3.7.6 TClassList.Remove

Synopsis: Remove a class pointer from the list.
Declaration: function Remove (AClass: TClass) : Integer
Visibility: public

Description: Removeremoves a class pointer Itemfrom the list, if it is present in the list. It returns the index of
the removed class pointer, or —1if the class pointer was not present in the list. It simply overrides the
implementation in TListso it accepts a class pointer instead of a simple pointer. No new behaviour
is introduced.

Errors: None.

See also: TClassList.Extract (26), #rtl.classes.Tlist. Remove (2?)

3.7.7 TClassList.IndexOf

Synopsis: Search for a class pointer in the list.
Declaration: function IndexOf (AClass: TClass) : Integer
Visibility: public

Description: IndexOfsearches for AClassin the list, and returns it’s position if it was found, or -1 if it was not
found in the list.

Errors: None.

See also: #rtl.classes.tlist.indexof (2?)

3.7.8 TClassList.First

Synopsis: Return first non-nil class pointer
Declaration: function First : TClass
Visibility: public

Description: Firstreturns a reference to the first non-Nilclass pointer in the list. If no non-Nilelement is
found, N1 lis returned.

Errors: None.

See also: TClassList.Last (27), TClassList.Pack (25)

3.7.9 TClasslList.Last

Synopsis: Return last non-N1 1class pointer
Declaration: function Last : TClass
Visibility: public

Description: Lastreturns a reference to the last non-N1i Lclass pointer in the list. If no non-Ni lelement is found,
N1i lis returned.

Errors: None.

See also: TClassList.First (27), TClassList.Pack (25)

27

CHAPTER 3. REFERENCE FOR UNIT "CONTNRS’

3.7.10 TClassList.Insert

Synopsis: Insert a new class pointer in the list.
Declaration: procedure Insert (Index: Integer;AClass: TClass)
Visibility: public

Description: Insertinserts a class pointer in the list at position Index. It simply overrides the parent imple-
mentation so it only accepts class pointers. It introduces no new behaviour.

Errors: None.

See also: #rtl.classes. TList.Insert (??), TClassList.Add (26), TClassList.Remove (27)

3.7.11 TClassList.ltems

Synopsis: Index based access to class pointers.
Declaration: Property Items[Index: Integer]: TClass; default
Visibility: public
Access: Read,Write

Description: Itemsprovides index-based access to the class pointers in the list. TClassListoverrides the
default Tt emsimplementation of TL1istso it returns class pointers instead of pointers.

See also: #rtl.classes. TList.Items (??), #rtl.classes. TList.Count (??)

3.8 TComponentList

3.8.1 Description

TComponentListis a TObjectList (46)descendent which has as the default array property TCom-
ponents (??)instead of objects. It overrides some methods so only components can be added.

In difference with TObjectList (46), TComponentListremoves any TComponentfrom the list if
the TComponentinstance was freed externally. It uses the FreeNotificationmechanism for
this.

3.8.2 Method overview
Page Property Description

29 Add Add a component to the list.

29 Destroy Destroys the instance

29 Extract ~ Remove a component from the list without destroying it.
30 First First non-nil instance in the list.

30 IndexOf Search for an instance in the list

31 Insert Insert a new component in the list

30 Last Last non-nil instance in the list.

29 Remove Remove a component from the list, possibly destroying it.

3.8.3 Property overview

Page Property Access Description
31 Items ™w Index-based access to the elements in the list.

28

CHAPTER 3. REFERENCE FOR UNIT "CONTNRS’

3.8.4 TComponentList.Destroy

Synopsis: Destroys the instance
Declaration: destructor Destroy; Override
Visibility: public

Description: Dest royunhooks the free notification handler and then calls the inherited destroy to clean up the
TComponentLi stinstance.

Errors: None.

See also: TObjectList (46), #rtl.classes. TComponent (??)

3.8.5 TComponentList.Add
Synopsis: Add a component to the list.

Declaration: function Add(AComponent: TComponent) : Integer
Visibility: public

Description: Addoverrides the Addoperation of it’s ancestors, so it only accepts TComponentinstances. It
introduces no new behaviour.

The function returns the index at which the component was added.
Errors: If not enough memory is available to expand the list, an exception may be raised.

See also: TObectList.Add (24)

3.8.6 TComponentList.Extract

Synopsis: Remove a component from the list without destroying it.
Declaration: function Extract (Item: TComponent) : TComponent
Visibility: public

Description: Ext ractremoves a component (Item) from the list, without destroying it. It overrides the imple-
mentation of TObjectList (46)so only TComponentdescendents can be extracted. It introduces no
new behaviour.

Ext ractreturns the instance that was extracted, or Ni 1if no instance was found.

See also: TComponentList.Remove (29), TObjectList.Extract (48)

3.8.7 TComponentList.Remove

Synopsis: Remove a component from the list, possibly destroying it.
Declaration: function Remove (AComponent: TComponent) : Integer
Visibility: public

Description: Removeremoves itemfrom the list, and if the list owns it’s items, it also destroys it. It returns the
index of the item that was removed, or -1 if no item was removed.

Removesimply overrides the implementation in TObjectList (46)so it only accepts TComponentdescendents.
It introduces no new behaviour.

29

CHAPTER 3. REFERENCE FOR UNIT "CONTNRS’

Errors: None.

See also: TComponentList.Extract (29), TObjectList.Remove (48)

3.8.8 TComponentList.IndexOf

Synopsis: Search for an instance in the list
Declaration: function IndexOf (AComponent: TComponent) : Integer
Visibility: public

Description: IndexOfsearches for an instance in the list and returns it’s position in the list. The position is
zero-based. If no instance is found, -1 is returned.

IndexOfjust overrides the implementation of the parent class so it accepts only TComponentinstances.
It introduces no new behaviour.

Errors: None.

See also: TObjectList.IndexOf (48)

3.8.9 TComponentList.First

Synopsis: First non-nil instance in the list.
Declaration: function First : TComponent
Visibility: public

Description: F i rstoverrides the implementation of it’s ancestors to return the first non-nil instance of TComponentin
the list. If no non-nil instance is found, N1i 1is returned.

Errors: None.

See also: TComponentList.Last (30), TObjectList.First (49)

3.8.10 TComponentList.Last

Synopsis: Last non-nil instance in the list.
Declaration: function Last : TComponent
Visibility: public

Description: Lastoverrides the implementation of it’s ancestors to return the last non-nil instance of TComponentin
the list. If no non-nil instance is found, N1 1is returned.

Errors: None.

See also: TComponentList.First (30), TObjectList.Last (49)

30

CHAPTER 3. REFERENCE FOR UNIT "CONTNRS’

3.8.11 TComponentList.Insert
Synopsis: Insert a new component in the list
Declaration: procedure Insert (Index: Integer;AComponent: TComponent)
Visibility: public

Description: Insertinserts a TComponentinstance (AComponent) in the list at position Index. It simply
overrides the parent implementation so it only accepts TComponentinstances. It introduces no new
behaviour.

Errors: None.

See also: TObjectList.Insert (49), TComponentList.Add (29), TComponentList.Remove (29)

3.8.12 TComponentList.ltems
Synopsis: Index-based access to the elements in the list.
Declaration: Property Items[Index: Integer]: TComponent; default
Visibility: public
Access: Read,Write

Description: Itemsprovides access to the components in the list using an index. It simply overrides the default
property of the parent classes so it returns/accepts TComponentinstances only. Note that the index
is zero based.

See also: TObjectList.Items (50)

3.9 TFPHashTable

3.9.1 Description

TFPHashTableis a general-purpose hashing class. It can store string keys and pointers associated
with these strings. The hash mechanism is configurable and can be optionally be specified when a
new instance of the class is created; A default hash mechanism is implemented in RSHash (25).

A TFPHasListshould be used when fast lookup of data based on some key is required. The other
container objects only offer linear search methods, while the hash list offers faster search mecha-
nisms.

3.9.2 Method overview

Page Property Description

33 Add Add a new key and its associated data to the hash.

33 ChangeTableSize Change the table size of the hash table.

33 Clear Clear the hash table.

32 Create Instantiate a new TFPHashTableinstance using the default hash
mechanism

32 CreateWith Instantiate a new TFPHashTableinstance with given algorithm and
size

33 Delete Delete a key from the hash list.

32 Destroy Free the hash table.

34 Find Search for an item with a certain key value.

34 IsEmpty Check if the hash table is empty.

31

CHAPTER 3. REFERENCE FOR UNIT "CONTNRS’

3.9.3 Property overview

Page Property Access Description

36 AVGChainLen r Average chain length

35 Count r Number of items in the hash table.
37 Density r Number of filled slots

34 HashFunction ™ Hash function currently in use

35 HashTable r Hash table instance

35 HashTableSize w Size of the hash table

35 Items ™wW Indexed access to the data pointer.
36 LoadFactor r Fraction of count versus size

36 MaxChainLength r Maximum chain length

37 NumberOfCollisions r Number of extra items

36 VoidSlots r Number of empty slots in the hash table.

3.9.4 TFPHashTable.Create

Synopsis: Instantiate a new TFPHashTableinstance using the default hash mechanism

Declaration: constructor Create

Visibility: public

Description: Createcreates a new instance of TFPHashTablewith hash size 196613 and hash algorithm

RSHash (25)

Errors: If no memory is available, an exception may be raised.

See also: TFPHashTable.CreateWith (32)

3.9.5 TFPHashTable.CreateWith

Synopsis: Instantiate a new TFPHashTableinstance with given algorithm and size

Declaration: constructor CreateWith (AHashTableSize: LongWord;

Visibility: public

aHashFunc: THashFunction)

Description: CreateWithcreates a new instance of TFPHashTablewith hash size AHashTableSizeand

hash calculating algorithm aHashFunc.

Errors: If no memory is available, an exception may be raised.

See also: TFPHashTable.Create (32)

3.9.6 TFPHashTable.Destroy

Synopsis: Free the hash table.

Declaration: destructor Destroy; Override

Visibility: public

Description: Dest royremoves the hash table from memory. If any data was associated with the keys in the hash
table, then this data is not freed. This must be done by the programmer.

Errors: None.

32

CHAPTER 3. REFERENCE FOR UNIT "CONTNRS’

See also: TFPHashTable.Destroy (32), TFPHashTable.Create (32), TFPHashTable.CreateWith (32), THTN-
ode.Data (46)

3.9.7 TFPHashTable.ChangeTableSize
Synopsis: Change the table size of the hash table.

Declaration: procedure ChangeTableSize (const ANewSize: LongWord); Virtual
Visibility: public

Description: ChangeTableSizechanges the size of the hash table: it recomputes the hash value for all of the
keys in the table, so this is an expensive operation.

Errors: If no memory is available, an exception may be raised.

See also: TFPHashTable.HashTableSize (35)

3.9.8 TFPHashTable.Clear
Synopsis: Clear the hash table.

Declaration: procedure Clear; Virtual
Visibility: public

Description: Clearremoves all keys and their associated data from the hash table. The data itself is not freed
from memory, this should be done by the programmer.

Errors: None.

See also: TFPHashTable.Destroy (32)

3.9.9 TFPHashTable.Add
Synopsis: Add a new key and its associated data to the hash.

Declaration: procedure Add(const aKey: String;AItem: pointer); Virtual
Visibility: public

Description: Addcalculates the hash value of aKeyand adds key and it’s associated data to the corresponding
hash chain.

A given key can only be added once. It is an error to attempt to add the same key value twice.
Errors: If the key is already in the list, adding it a second time will raise an EDuplicate (25).

See also: TFPHashTable.Find (34), TFPHashTable.Delete (33)

3.9.10 TFPHashTable.Delete
Synopsis: Delete a key from the hash list.

Declaration: procedure Delete (const aKey: String); Virtual

Visibility: public

33

CHAPTER 3. REFERENCE FOR UNIT "CONTNRS’

Description: Deletedeletes all keys with value AKeyfrom the hash table. It does not free the data associated
with key. If AKeyis not in the list, nothing is removed.

Errors: None.

See also: TFPHashTable.Find (34), TFPHashTable.Add (33)

3.9.11 TFPHashTable.Find

Synopsis: Search for an item with a certain key value.
Declaration: function Find(const aKey: String) : THTINode
Visibility: public

Description: Findsearches for the THTNode (45)instance with key value equal to Akeyand if it finds it, it returns
the instance. If no matching value is found, N1 1is returned.

Note that the instance returned by this function cannot be freed; If it should be removed from the
hash table, the Delete (33)method should be used instead.

Errors: None.

See also: TFPHashTable.Add (33), TFPHashTable.Delete (33)

3.9.12 TFPHashTable.IsEmpty
Synopsis: Check if the hash table is empty.

Declaration: function IsEmpty : Boolean
Visibility: public

Description: T sEmptyreturns Trueif the hash table contains no elements, or Falseif there are still elements
in the hash table.

Errors:

See also: TFPHashTable.Count (35), TFPHashTable.HashTableSize (35), TFPHashTable. AVGChainLen (36),
TFPHashTable.MaxChainLength (36)

3.9.13 TFPHashTable.HashFunction

Synopsis: Hash function currently in use
Declaration: Property HashFunction : THashFunction
Visibility: public
Access: Read,Write

Description: HashFunctionis the hash function currently in use to calculate hash values from keys. The
property can be set, this simply calls SetHashFunction (31). Note that setting the hash function does
NOT the hash value of all keys to be recomputed, so changing the value while there are still keys in
the table is not a good idea.

See also: TFPHashTable.SetHashFunction (31), TFPHashTable.HashTableSize (35)

34

CHAPTER 3. REFERENCE FOR UNIT "CONTNRS’

3.9.14 TFPHashTable.Count
Synopsis: Number of items in the hash table.

Declaration: Property Count : Inté64
Visibility: public
Access: Read

Description: Countis the number of items in the hash table.

See also: TFPHashTable.IsEmpty (34), TFPHashTable.HashTableSize (35), TFPHashTable. AVGChainLen (36),
TFPHashTable.MaxChainLength (36)

3.9.15 TFPHashTable.HashTableSize
Synopsis: Size of the hash table

Declaration: Property HashTableSize : LongWord
Visibility: public
Access: Read,Write

Description: HashTableSi zeis the size of the hash table. It can be set, in which case it will be rounded to the
nearest prime number suitable for RSHash.

See also: TFPHashTable.IsEmpty (34), TFPHashTable.Count (35), TFPHashTable. AVGChainLen (36), TF-
PHashTable.MaxChainLength (36), TFPHashTable.VoidSlots (36), TFPHashTable.Density (37)

3.9.16 TFPHashTable.ltems
Synopsis: Indexed access to the data pointer.

Declaration: Property Items[index: String]: Pointer; default
Visibility: public
Access: Read,Write

Description: Itemallows indexed access to the data pointers. When reading the property, if Indexexists, then
the associated data pointer is returned. If it does not exist, N1i 1is returned. When writing the property,

if Indexdoes not exist, a new item is added with the associated data pointer. If it existed, then the
associated data pointer is overwritten with the new value.

See also: TFPHashTable.Find (34), TFPHashTable.Add (33)

3.9.17 TFPHashTable.HashTable

Synopsis: Hash table instance
Declaration: Property HashTable : TFPObjectList
Visibility: public
Access: Read

Description: TFPHashTableis the internal list object (TFPObjectList (37)used for the hash table. Each element
in this table is again a TFPObjectList (37)instance or N1i 1.

35

CHAPTER 3. REFERENCE FOR UNIT "CONTNRS’

3.9.18 TFPHashTable.VoidSlots
Synopsis: Number of empty slots in the hash table.

Declaration: Property VoidSlots : LongWord
Visibility: public
Access: Read

Description: VoidS1lotsis the number of empty slots in the hash table. Calculating this is an expensive opera-
tion.

See also: TFPHashTable.IsEmpty (34), TFPHashTable.Count (35), TFPHashTable. AVGChainLen (36), TF-

PHashTable.MaxChainLength (36), TFPHashTable.LoadFactor (36), TFPHashTable.Density (37),
TFPHashTable.NumberOfCollisions (37)

3.9.19 TFPHashTable.LoadFactor

Synopsis: Fraction of count versus size
Declaration: Property LoadFactor : double
Visibility: public
Access: Read

Description: LoadFactoris the ratio of elements in the table versus table size. Ideally, this should be as small
as possible.

See also: TFPHashTable.IsEmpty (34), TFPHashTable.Count (35), TFPHashTable. AVGChainLen (36), TF-

PHashTable.MaxChainLength (36), TFPHashTable.VoidSlots (36), TFPHashTable.Density (37), TF-
PHashTable.NumberOfCollisions (37)

3.9.20 TFPHashTable.AVGChainLen
Synopsis: Average chain length

Declaration: Property AVGChainLen : double
Visibility: public
Access: Read

Description: AVGChainLenis the average chain length, i.e. the ratio of elements in the table versus the number
of filled slots. Calculating this is an expensive operation.

See also: TFPHashTable.IsEmpty (34), TFPHashTable.Count (35), TFPHashTable.LoadFactor (36), TFPHashTable.MaxChainLength

(36), TFPHashTable. VoidSlots (36), TFPHashTable.Density (37), TFPHashTable.NumberOfCollisions
(37)

3.9.21 TFPHashTable.MaxChainLength

Synopsis: Maximum chain length

Declaration: Property MaxChainLength : Int64

Visibility: public

36

CHAPTER 3. REFERENCE FOR UNIT "CONTNRS’

Access: Read

Description: MaxChainLengthis the length of the longest chain in the hash table. Calculating this is an expen-
sive operation.

See also: TFPHashTable.IsEmpty (34), TFPHashTable.Count (35), TFPHashTable.LoadFactor (36), TFPHashTable. AvgChainLength

(31), TFPHashTable. VoidSlots (36), TFPHashTable.Density (37), TFPHashTable.NumberOfCollisions
(37)

3.9.22 TFPHashTable.NumberOfCollisions

Synopsis: Number of extra items
Declaration: Property NumberOfCollisions : Inté64
Visibility: public
Access: Read

Description: NumberOfCollisionsis the number of items which are not the first item in a chain. If this
number is too big, the hash size may be too small.

See also: TFPHashTable.IsEmpty (34), TFPHashTable.Count (35), TFPHashTable.LoadFactor (36), TFPHashTable. AvgChainLength
(31), TFPHashTable.VoidSlots (36), TFPHashTable.Density (37)

3.9.23 TFPHashTable.Density
Synopsis: Number of filled slots

Declaration: Property Density : LongWord
Visibility: public
Access: Read
Description: Densityis the number of filled slots in the hash table.

See also: TFPHashTable.IsEmpty (34), TFPHashTable.Count (35), TFPHashTable.LoadFactor (36), TFPHashTable. AvgChainLength
(31), TFPHashTable.VoidSlots (36), TFPHashTable.Density (37)

3.10 TFPODbjectList

3.10.1 Description

TFPObjectListis a TFPList (??)based list which has as the default array property TObjects
(??)instead of pointers. By default it also manages the objects: when an object is deleted or removed
from the list, it is automatically freed. This behaviour can be disabled when the list is created.

In difference with TObjectList (46), TEFPOb ject Listoffers no notification mechanism of list oper-
ations, allowing it to be faster than TObjectList. For the same reason, it is also not a descendent
of TFPList(although it uses one internally).

37

CHAPTER 3. REFERENCE FOR UNIT "CONTNRS’

3.10.2 Method overview

Page Property Description

39 Add Add an object to the list.

42 Assign Copy the contents of a list.

39 Clear Clear all elements in the list.

38 Create Create a new object list

39 Delete Delete an element from the list.

38 Destroy Clears the list and destroys the list instance

40 Exchange Exchange the location of two objects

40 Expand Expand the capacity of the list.

40 Extract Extract an object from the list

41 FindInstanceOf Search for an instance of a certain class

42 First Return the first non-nil object in the list

43 ForEachCall For each object in the list, call a method or procedure, passing it the
object.

41 IndexOf Search for an object in the list

41 Insert Insert a new object in the list

42 Last Return the last non-nil object in the list.

42 Move Move an object to another location in the list.

43 Pack Remove all N1 1references from the list

40 Remove Remove an item from the list.

43 Sort Sort the list of objects

3.10.3 Property overview

Page Property Access Description

44 Capacity ™w Capacity of the list

44 Count ™w Number of elements in the list.

44 Items w Indexed access to the elements of the list.

45 List r Internal list used to keep the objects.

44 OwnsObjects 1w Should the list free elements when they are removed.

3.10.4 TFPObijectList.Create

Synopsis: Create a new object list

Declaration: constructor Create

constructor Create (FreeObjects:

Visibility: public

Boolean)

Description: Createinstantiates a new object list. The FreeOb ject sparameter determines whether objects
that are removed from the list should also be freed from memory. By default this is True. This
behaviour can be changed after the list was instantiated.

Errors: None.

See also: TFPObjectList.Destroy (38), TFPObjectList.OwnsObjects (44), TObjectList (46)

3.10.5 TFPODbijectList.Destroy

Synopsis: Clears the list and destroys the list instance

Declaration: destructor Destroy;

Override

38

CHAPTER 3. REFERENCE FOR UNIT "CONTNRS’

Visibility: public
Description: Dest royclears the list, freeing all objects in the list if OwnsObjects (44)is True.

See also: TFPObjectList.OwnsObjects (44), TObjectList.Create (47)

3.10.6 TFPObijectList.Clear

Synopsis: Clear all elements in the list.
Declaration: procedure Clear
Visibility: public
Description: Removes all objects from the list, freeing all objects in the list if OwnsObjects (44)is True.

See also: TObjectList.Destroy (46)

3.10.7 TFPObjectList.Add

Synopsis: Add an object to the list.
Declaration: function Add(AObject: TObject) : Integer
Visibility: public
Description: Addadds AOb jectto the list and returns the index of the object in the list.

Note that when OwnsObjects (44)is True, an object should not be added twice to the list: this will
result in memory corruption when the object is freed (as it will be freed twice). The Addmethod does
not check this, however.

Errors: None.

See also: TFPObjectList.OwnsObjects (44), TFPObjectList.Delete (39)

3.10.8 TFPObjectList.Delete

Synopsis: Delete an element from the list.
Declaration: procedure Delete (Index: Integer)
Visibility: public

Description: Deleteremoves the object at index Indexfrom the list. When OwnsObjects (44)is True, the
object is also freed.

Errors: An access violation may occur when OwnsObjects (44)is Trueand either the object was freed ex-
ternally, or when the same object is in the same list twice.

See also: TTFPObjectList.Remove (24), TFPObjectList.Extract (40), TFPObjectList.OwnsObjects (44), TTF-
PObjectList.Add (24), TTFPObjectList.Clear (24)

39

CHAPTER 3. REFERENCE FOR UNIT "CONTNRS’

3.10.9 TFPObjectList.Exchange

Synopsis: Exchange the location of two objects
Declaration: procedure Exchange (Indexl: Integer;Index2: Integer)
Visibility: public

Description: Exchangeexchanges the objects at indexes Indexland Index2in a direct operation (i.e. no
delete/add is performed).

Errors: If either Index1or Index2is invalid, an exception will be raised.

See also: TTFPObjectList.Add (24), TTFPObjectList.Delete (24)

3.10.10 TFPObjectList.Expand
Synopsis: Expand the capacity of the list.

Declaration: function Expand : TFPObjectList
Visibility: public

Description: Expandincreases the capacity of the list. It calls #rtl.classes.tfplist.expand (??)and then returns a
reference to itself.

Errors: If there is not enough memory to expand the list, an exception will be raised.

See also: TFPObjectList.Pack (43), TFPObjectList.Clear (39), #rtl.classes.tfplist.expand (??)

3.10.11 TFPObijectList.Extract

Synopsis: Extract an object from the list
Declaration: function Extract (Item: TObject) : TObject
Visibility: public

Description: Ext ractremoves Itemfrom the list, if it is present in the list. It returns Itemif it was found,
N1ilif item was not present in the list.

Note that the object is not freed, and that only the first found object is removed from the list.
Errors: None.

See also: TFPObjectList.Pack (43), TFPObjectList.Clear (39), TFPObjectList.Remove (40), TFPObjectList.Delete
(39)

3.10.12 TFPObijectList.Remove

Synopsis: Remove an item from the list.
Declaration: function Remove (AObject: TObject) : Integer
Visibility: public

Description: Removeremoves Itemfrom the list, if it is present in the list. It frees Itemif OwnsObjects (44)is
True, and returns the index of the object that was found in the list, or -1 if the object was not found.

Note that only the first found object is removed from the list.

40

CHAPTER 3. REFERENCE FOR UNIT "CONTNRS’

Errors: None.

See also: TFPObjectList.Pack (43), TFPObjectList.Clear (39), TFPObjectList.Delete (39), TFPObjectList.Extract
(40)

3.10.13 TFPObjectList.IndexOf

Synopsis: Search for an object in the list
Declaration: function IndexOf (AObject: TObject) : Integer
Visibility: public

Description: ITndexOfsearches for the presence of AObjectin the list, and returns the location (index) in the
list. The index is O-based, and -1 is returned if AOb jectwas not found in the list.

Errors: None.

See also: TFPObjectList.Items (44), TFPObjectList.Remove (40), TFPObjectList.Extract (40)

3.10.14 TFPObjectList.FindInstanceOf

Synopsis: Search for an instance of a certain class

Declaration: function FindInstanceOf (AClass: TClass;AExact: Boolean;
AStartAt: Integer) : Integer

Visibility: public

Description: FindInstanceOfwill look through the instances in the list and will return the first instance which
is a descendent of class AClassif AExactis False. If AExactis true, then the instance should
be of class AClass.

If no instance of the requested class is found, Ni lis returned.
Errors: None.

See also: TFPObjectList.IndexOf (41)

3.10.15 TFPObijectList.Insert

Synopsis: Insert a new object in the list
Declaration: procedure Insert (Index: Integer;AObject: TObject)
Visibility: public

Description: Insertinserts AObjectat position Indexin the list. All elements in the list after this position are
shifted. The index is zero based, i.e. an insert at position 0 will insert an object at the first position
of the list.

Errors: None.

See also: TFPObjectList.Add (39), TFPObjectList.Delete (39)

41

CHAPTER 3. REFERENCE FOR UNIT "CONTNRS’

3.10.16 TFPObjectList.First

Synopsis: Return the first non-nil object in the list
Declaration: function First : TObject
Visibility: public

Description: Firstreturns a reference to the first non-Nilelement in the list. If no non-Nilelement is found,
Nilis returned.

Errors: None.

See also: TFPObjectList.Last (42), TFPObjectList.Pack (43)

3.10.17 TFPObjectList.Last
Synopsis: Return the last non-nil object in the list.

Declaration: function Last : TObject
Visibility: public

Description: Lastreturns a reference to the last non-Nilelement in the list. If no non-Nilelement is found,
N1 lis returned.

Errors: None.

See also: TFPObjectList.First (42), TFPObjectList.Pack (43)

3.10.18 TFPObijectList.Move

Synopsis: Move an object to another location in the list.
Declaration: procedure Move (CurIndex: Integer;NewIndex: Integer)
Visibility: public

Description: Movemoves the object at current location Cur Indexto location NewIndex. Note that the NewIndexis
determined afterthe object was removed from location CurIndex, and can hence be shifted with 1
position if Cur Indexis less than NewIndex.

Contrary to exchange (40), the move operation is done by extracting the object from it’s current
location and inserting it at the new location.

Errors: If either Cur Indexor NewIndexis out of range, an exception may occur.

See also: TFPObjectList.Exchange (40), TFPObjectList.Delete (39), TFPObjectList.Insert (41)

3.10.19 TFPObjectList.Assign

Synopsis: Copy the contents of a list.
Declaration: procedure Assign (Obj: TFPObjectList)
Visibility: public
Description: Assigncopies the contents of Ob jif Ob Jjis of type TFPObjectList

Errors: None.

42

CHAPTER 3. REFERENCE FOR UNIT "CONTNRS’

3.10.20 TFPODbijectList.Pack

Synopsis: Remove all Ni 1references from the list
Declaration: procedure Pack
Visibility: public
Description: Packremoves all Nilelements from the list.
Errors: None.

See also: TFPObjectList.First (42), TFPObjectList.Last (42)

3.10.21 TFPObjectList.Sort

Synopsis: Sort the list of objects
Declaration: procedure Sort (Compare: TListSortCompare)
Visibility: public

Description: Sortwill perform a quick-sort on the list, using Compareas the compare algorithm. This function
should accept 2 pointers and should return the following result:

less than 0If the first pointer comes before the second.
equal to 0If the pointers have the same value.

larger than OIf the first pointer comes after the second.

The function should be able to deal with N1i1values.
Errors: None.

See also: #rtl.classes. TList.Sort (2?)

3.10.22 TFPObjectList.ForEachCall

Synopsis: For each object in the list, call a method or procedure, passing it the object.

Declaration: procedure ForEachCall (proc2call: TObjectListCallback;arg: pointer)
procedure ForEachCall (proc2call: TObjectListStaticCallback;arg: pointer)

Visibility: public

Description: ForEachCallloops through all objects in the list, and calls proc2call, passing it the object in
the list. Additionally, argis also passed to the procedure. Proc2callcan be a plain procedure or
can be a method of a class.

Errors: None.

See also: TObjectListStaticCallback (25), TObjectListCallback (25)

43

CHAPTER 3. REFERENCE FOR UNIT "CONTNRS’

3.10.23 TFPObijectList.Capacity
Synopsis: Capacity of the list
Declaration: Property Capacity : Integer
Visibility: public
Access: Read,Write

Description: Capacityis the number of elements that the list can contain before it needs to expand itself, i.e.,
reserve more memory for pointers. It is always equal or larger than Count (44).

See also: TFPObjectList.Count (44)

3.10.24 TFPObjectList.Count
Synopsis: Number of elements in the list.

Declaration: Property Count : Integer
Visibility: public
Access: Read,Write
Description: Countis the number of elements in the list. Note that this includes Ni lelements.

See also: TFPObjectList.Capacity (44)

3.10.25 TFPObjectList.OwnsObjects
Synopsis: Should the list free elements when they are removed.
Declaration: Property OwnsObjects : Boolean
Visibility: public
Access: Read,Write

Description: OwnsObject sdetermines whether the objects in the list should be freed when they are removed
(not extracted) from the list, or when the list is cleared. If the property is Truethen they are freed.
If the property is Falsethe elements are not freed.

The value is usually set in the constructor, and is seldom changed during the lifetime of the list. It
defaults to True.

See also: TFPObjectList.Create (38), TFPObjectList.Delete (39), TFPObjectList.Remove (40), TFPObjectList.Clear
(39

3.10.26 TFPObjectList.ltems
Synopsis: Indexed access to the elements of the list.
Declaration: Property Items[Index: Integer]: TObject; default
Visibility: public
Access: Read,Write

Description: Itemsis the default property of the list. It provides indexed access to the elements in the list. The
index Indexis zero based, i.e., runs from O (zero) to Count—1.

See also: TFPObjectList.Count (44)

44

CHAPTER 3. REFERENCE FOR UNIT "CONTNRS’

3.10.27 TFPObjectList.List

Synopsis: Internal list used to keep the objects.
Declaration: Property List : TFPList
Visibility: public
Access: Read
Description: Listis a reference to the TFPList (??)instance used to manage the elements in the list.

See also: #rtl.classes.tfplist (??)

3.11 THTNode

3.11.1 Description

THTNodeis used by the TFPHashTable (31)class to store the keys and associated values.

3.11.2 Method overview

Page Property Description
45 CreateWith Create a new instance of THTNode
45 HasKey Check whether this node matches the given key.

3.11.3 Property overview

Page Property Access Description
46 Data ™w Data associated with this hash value.
46 Key r Key value associated with this hash item.

3.11.4 THTNode.CreateWith

Synopsis: Create a new instance of THTNode
Declaration: constructor CreateWith (const AString: String)
Visibility: public

Description: CreateWithcreates a new instance of THTNodeand stores the string AStringin it. It should
never be necessary to call this method directly, it will be called by the TFPHashTable (31)class when
needed.

Errors: If no more memory is available, an exception may be raised.

See also: TFPHashTable (31)

3.11.5 THTNode.HasKey

Synopsis: Check whether this node matches the given key.
Declaration: function HasKey (const AKey: String) : Boolean

Visibility: public

45

CHAPTER 3. REFERENCE FOR UNIT "CONTNRS’

Description: Ha sKeychecks whether this node matches the given key AKey, by comparing it with the stored key.
It returns Trueif it does, Falseif not.

Errors: None.

See also: THTNode.Key (46)

3.11.6 THTNode.Key

Synopsis: Key value associated with this hash item.
Declaration: Property Key : String
Visibility: public
Access: Read

Description: Keyis the key value associated with this hash item. It is stored when the item is created, and is
read-only.

See also: THTNode.CreateWith (45)

3.11.7 THTNode.Data

Synopsis: Data associated with this hash value.
Declaration: Property Data : pointer
Visibility: public
Access: Read,Write

Description: Dat ais the (optional) data associated with this hash value. It will be set by the TFPHashTable.Add
(33)method.

See also: TFPHashTable.Add (33)

3.12 TObjectList

3.12.1 Description

TObjectListisa TList (??)descendent which has as the default array property TObjects (??)instead
of pointers. By default it also manages the objects: when an object is deleted or removed from the
list, it is automatically freed. This behaviour can be disabled when the list is created.

In difference with TFPObjectList (37), TOb jectListoffers a notification mechanism of list change
operations: insert, delete. This slows down bulk operations, so if the notifications are not needed,
TObjectListmay be more appropriate.

46

CHAPTER 3. REFERENCE FOR UNIT "CONTNRS’

3.12.2 Method overview

Page Property Description

47 Add Add an object to the list.

47 create Create a new object list.

48 Extract Extract an object from the list.

48 FindInstanceOf Search for an instance of a certain class

49 First Return the first non-nil object in the list

48 IndexOf Search for an object in the list

49 Insert Insert an object in the list.

49 Last Return the last non-nil object in the list.

48 Remove Remove (and possibly free) an element from the list.

3.12.3 Property overview

Page Property Access Description
50 Items ™w Indexed access to the elements of the list.
50 OwnsObjects 1w Should the list free elements when they are removed.

3.12.4 TObjectList.create
Synopsis: Create a new object list.

Declaration: constructor create
constructor create(freeobjects: Boolean)

Visibility: public

Description: Createinstantiates a new object list. The FreeOb ject sparameter determines whether objects
that are removed from the list should also be freed from memory. By default this is True. This
behaviour can be changed after the list was instantiated.

Errors: None.

See also: TObjectList.Destroy (46), TObjectList. OwnsObjects (50), TFPObjectList (37)

3.12.5 TObjectList.Add
Synopsis: Add an object to the list.

Declaration: function Add(AObject: TObject) : Integer
Visibility: public
Description: Addoverrides the TList (??)implementation to accept objects (AOb ject) instead of pointers.
The function returns the index of the position where the object was added.
Errors: If the list must be expanded, and not enough memory is available, an exception may be raised.

See also: TObjectList.Insert (49), #rtl.classes. TList.Delete (??), TObjectList.Extract (48), TObjectList.Remove
(43)

47

CHAPTER 3. REFERENCE FOR UNIT "CONTNRS’

3.12.6 TObijectList.Extract

Synopsis: Extract an object from the list.
Declaration: function Extract (Item: TObject) : TObject
Visibility: public

Description: Ext ractremoves the object Itemfrom the list if it is present in the list. Contrary to Remove (48),
Extractdoes not free the extracted element if OwnsObjects (50)is True

The function returns a reference to the item which was removed from the list, or Ni1if no element
was removed.

Errors: None.

See also: TObjectList.Remove (48)

3.12.7 TObijectList.Remove

Synopsis: Remove (and possibly free) an element from the list.
Declaration: function Remove (AObject: TObject) : Integer
Visibility: public

Description: Removeremoves Itemfrom the list, if it is present in the list. It frees Ttemif OwnsObjects (50)is
True, and returns the index of the object that was found in the list, or -1 if the object was not found.

Note that only the first found object is removed from the list.
Errors: None.

See also: TObjectList.Extract (48)

3.12.8 TObijectList.IndexOf

Synopsis: Search for an object in the list
Declaration: function IndexOf (AObject: TObject) : Integer
Visibility: public
Description: IndexOfoverrides the TList (??)implementation to accept an object instance instead of a pointer.
The function returns the index of the first match for AOb jectin the list, or -1 if no match was found.
Errors: None.

See also: TObjectList.FindInstanceOf (48)

3.12.9 TObijectList.FindinstanceOf

Synopsis: Search for an instance of a certain class

Declaration: function FindInstanceOf (AClass: TClass;AExact: Boolean;
AStartAt: Integer) : Integer

Visibility: public

48

CHAPTER 3. REFERENCE FOR UNIT "CONTNRS’

Description: FindInstanceOfwill look through the instances in the list and will return the first instance which
is a descendent of class AClassif AExactis False. If AExactis true, then the instance should
be of class AClass.

If no instance of the requested class is found, Ni 1is returned.
Errors: None.

See also: TObjectList.IndexOf (48)

3.12.10 TObjectList.Insert

Synopsis: Insert an object in the list.
Declaration: procedure Insert (Index: Integer;AObject: TObject)
Visibility: public

Description: Insertinserts AObjectin the list at position Index. The index is zero-based. This method
overrides the implementation in TList (??)to accept objects instead of pointers.

Errors: If an invalid Indexis specified, an exception is raised.

See also: TObjectList.Add (47), TObjectList.Remove (48)

3.12.11 TObjectList.First
Synopsis: Return the first non-nil object in the list

Declaration: function First : TObject
Visibility: public

Description: Firstreturns a reference to the first non-N1i lelement in the list. If no non-N1 lelement is found,
Nilis returned.

Errors: None.

See also: TObjectList.Last (49), TObjectList.Pack (46)

3.12.12 TObijectList.Last

Synopsis: Return the last non-nil object in the list.
Declaration: function Last : TObject
Visibility: public

Description: Lastreturns a reference to the last non-Nilelement in the list. If no non-Nilelement is found,
Ni 1is returned.

Errors: None.

See also: TObjectList.First (49), TObjectList.Pack (46)

49

CHAPTER 3. REFERENCE FOR UNIT "CONTNRS’

3.12.13 TObjectList.OwnsObjects

Synopsis: Should the list free elements when they are removed.
Declaration: Property OwnsObjects : Boolean
Visibility: public
Access: Read,Write

Description: OwnsOb ject sdetermines whether the objects in the list should be freed when they are removed
(not extracted) from the list, or when the list is cleared. If the property is Truethen they are freed.
If the property is Falsethe elements are not freed.

The value is usually set in the constructor, and is seldom changed during the lifetime of the list. It
defaults to True.

See also: TObjectList.Create (47), TObjectList.Delete (46), TObjectList.Remove (48), TObjectList.Clear (46)

3.12.14 TObjectList.ltems
Synopsis: Indexed access to the elements of the list.

Declaration: Property Items[Index: Integer]: TObject; default
Visibility: public
Access: Read,Write

Description: Itemsis the default property of the list. It provides indexed access to the elements in the list. The
index Indexis zero based, i.e., runs from O (zero) to Count—1.

See also: #rtl.classes. TList.Count (??)

3.13 TObjectQueue

3.13.1 Method overview
Page Property Description

51 Peek Look at the first object in the queue.
51 Pop Pop the first element off the queue
50 Push Push an object on the queue

3.13.2 TObjectQueue.Push
Synopsis: Push an object on the queue

Declaration: function Push (AObject: TObject) : TObject
Visibility: public

Description: Pushpushes another object on the queue. It overrides the Pushmethod as implemented in TQueueso
it accepts only objects as arguments.

Errors: If not enough memory is available to expand the queue, an exception may be raised.

See also: TObjectQueue.Pop (51), TObjectQueue.Peek (51)

50

CHAPTER 3. REFERENCE FOR UNIT "CONTNRS’

3.13.3 TObjectQueue.Pop
Synopsis: Pop the first element off the queue
Declaration: function Pop : TObject
Visibility: public
Description: Popremoves the first element in the queue, and returns a reference to the instance. If the queue is
empty, Nilis returned.

Errors: None.

See also: TObjectQueue.Push (50), TObjectQueue.Peek (51)

3.13.4 TObjectQueue.Peek
Synopsis: Look at the first object in the queue.
Declaration: function Peek : TObject
Visibility: public

Description: Peekreturns the first object in the queue, without removing it from the queue. If there are no more
objects in the queue, N1 1is returned.

Errors: None

See also: TObjectQueue.Push (50), TObjectQueue.Pop (51)

3.14 TObjectStack

3.14.1 Description
TObjectStackis a stack implementation which manages pointers only.

TObjectStackintroduces no new behaviour, it simply overrides some methods to accept and/or
return TOb jectinstances instead of pointers.

3.14.2 Method overview
Page Property Description

52 Peek Look at the top object in the stack.
52 Pop Pop the top object of the stack.
51 Push Push an object on the stack.

3.14.3 TObjectStack.Push
Synopsis: Push an object on the stack.
Declaration: function Push (AObject: TObject) : TObject
Visibility: public

Description: Pushpushes another object on the stack. It overrides the Pushmethod as implemented in TSt ackso
it accepts only objects as arguments.

Errors: If not enough memory is available to expand the stack, an exception may be raised.

See also: TObjectStack.Pop (52), TObjectStack.Peek (52)

51

CHAPTER 3. REFERENCE FOR UNIT "CONTNRS’

3.14.4 TObjectStack.Pop
Synopsis: Pop the top object of the stack.

Declaration: function Pop : TObject
Visibility: public

Description: Poppops the top object of the stack, and returns the object instance. If there are no more objects on
the stack, Nilis returned.

Errors: None

See also: TObjectStack.Push (51), TObjectStack.Peek (52)

3.14.5 TObjectStack.Peek
Synopsis: Look at the top object in the stack.

Declaration: function Peek : TObject
Visibility: public

Description: Peekreturns the top object of the stack, without removing it from the stack. If there are no more
objects on the stack, Nilis returned.

Errors: None

See also: TObjectStack.Push (51), TObjectStack.Pop (52)

3.15 TOrderedList

3.15.1 Description

TOrderedListprovides the base class for TQueue (54)and TStack (55). It provides an interface
for pushing and popping elements on or off the list, and manages the internal list of pointers.

Note that TOrderedLi stdoes not manage objects on the stack, i.e. objects are not freed when the
ordered list is destroyed.

3.15.2 Method overview
Page Property Description

53 AtLeast Check whether the list contains a certain number of elements.
53 Count Number of elements on the list.

52 Create Create a new ordered list

53 Destroy Free an ordered list

54 Peek Return the next element to be popped from the list.

54 Pop Remove an element from the list.

54 Push Push another element on the list.

3.15.3 TOrderedList.Create

Synopsis: Create a new ordered list

Declaration: constructor Create

52

CHAPTER 3. REFERENCE FOR UNIT "CONTNRS’

Visibility: public
Description: Createinstantiates a new ordered list. It initializes the internal pointer list.
Errors: None.

See also: TOrderedList.Destroy (53)

3.15.4 TOrderedList.Destroy
Synopsis: Free an ordered list

Declaration: destructor Destroy; Override
Visibility: public

Description: Dest roycleans up the internal pointer list, and removes the TOrderedLi stinstance from mem-
ory.

Errors: None.

See also: TOrderedList.Create (52)

3.15.5 TOrderedList.Count

Synopsis: Number of elements on the list.
Declaration: function Count : Integer
Visibility: public
Description: Countis the number of pointers in the list.
Errors: None.

See also: TOrderedList. AtLeast (53)

3.15.6 TOrderedList.AtLeast

Synopsis: Check whether the list contains a certain number of elements.
Declaration: function AtLeast (ACount: Integer) : Boolean
Visibility: public

Description: At Leastreturns Trueif the number of elements in the list is equal to or bigger than ACount. It
returns Falseotherwise.

Errors: None.

See also: TOrderedList.Count (53)

53

CHAPTER 3. REFERENCE FOR UNIT "CONTNRS’

3.15.7 TOrderedList.Push

Synopsis: Push another element on the list.
Declaration: function Push (AItem: Pointer) : Pointer
Visibility: public
Description: Pushadds ATtemto the list, and returns ATtem.
Errors: If not enough memory is available to expand the list, an exception may be raised.

See also: TOrderedList.Pop (54), TOrderedList.Peek (54)

3.15.8 TOrderedList.Pop

Synopsis: Remove an element from the list.
Declaration: function Pop : Pointer
Visibility: public

Description: Popremoves an element from the list, and returns the element that was removed from the list. If no
element is on the list, Ni1is returned.

Errors: None.

See also: TOrderedList.Peek (54), TOrderedList.Push (54)

3.15.9 TOrderedList.Peek

Synopsis: Return the next element to be popped from the list.
Declaration: function Peek : Pointer
Visibility: public

Description: Peekreturns the element that will be popped from the list at the next call to Pop (54), without
actually popping it from the list.

Errors: None.

See also: TOrderedList.Pop (54), TOrderedList.Push (54)

3.16 TQueue

3.16.1 Description

TQueueis a descendent of TOrderedList (52)which implements Push (54)and Pop (54)behaviour as
a queue: what is first pushed on the queue, is popped of first (FIFO: First in, first out).

TQueueoffers no new methods, it merely implements some abstract methods introduced by TOrderedList
(52)

54

CHAPTER 3. REFERENCE FOR UNIT "CONTNRS’

3.17 TStack

3.17.1 Description

TStackis a descendent of TOrderedList (52)which implements Push (54)and Pop (54)behaviour as
a stack: what is last pushed on the stack, is popped of first (LIFO: Last in, first out).

TStackoffers no new methods, it merely implements some abstract methods introduced by TOrderedList
(52)

55

Chapter 4

Reference for unit ’dbugintf’

4.1 Writing a debug server

Writing a debug server is relatively easy. It should instantiate a TSimpleIPCServerclass from
the SimpleIPC (56)unit, and use the DebugServerIDas ServerIDidentification. This constant,
as well as the record containing the message which is sent between client and server is defined in the
msgintfunit.

The dbugintfunit relies on the SimpleIPC (56)mechanism to communicate with the debug server,
hence it works on all platforms that have a functional version of that unit. It also uses TProcessto
start the debug server if needed, so the process (56)unit should also be functional.

4.2 Overview

Use dbugintfto add debug messages to your application. The messages are not sent to standard
output, but are sent to a debug server process which collects messages from various clients and
displays them somehow on screen.

The unit is transparant in its use: it does not need initialization, it will start the debug server by itself
if it can find it: the program should be called debugserverand should be in the PATH. When the first
debug message is sent, the unit will initialize itself.

The FCL contains a sample debug server (dbugsvr) which can be started in advance, and which
writes debug message to the console (both on Windows and Linux). The Lazarus project contains a
visual application which displays the messages in a GUIL

The dbugintfunit relies on the SimpleIPC (56)mechanism to communicate with the debug server,
hence it works on all platforms that have a functional version of that unit. It also uses TProcessto
start the debug server if needed, so the process (56)unit should also be functional.

4.3 Constants, types and variables

4.3.1 Resource strings

SEntering = ’'> Entering '
String used when sending method enter message.

SExiting = < Exiting '

56

CHAPTER 4. REFERENCE FOR UNIT 'DBUGINTF’

String used when sending method exit message.

SProcessID = 'Process %s’

String used when sending identification message to the server.
SSeparator = '>-=-=-=-=-=-=-=-=-=-=-=-=-=—=-<'

String used when sending a separator line.

4.3.2 Constants

SendError : String = '’

Whenever a call encounteres an exception, the exception message is stored in this variable.

4.3.3 Types

TDebugLevel = (dlInformation,dlWarning,dlError)

Table 4.1: Enumeration values for type TDebugLevel

Value Explanation

dlError Error message
dlInformation Informational message
dlWarning Warning message

TDebugLevelindicates the severity level of the debug message to be sent. By default, an informa-
tional message is sent.

4.4 Procedures and functions

4.4.1 InitDebugClient
Synopsis: Initialize the debug client.

Declaration: procedure InitDebugClient
Visibility: default

Description: InitDebugClientstarts the debug server and then performs all necessary initialization of the
debug IPC communication channel.

Normally this function should not be called. The SendDebug (58)call will initialize the debug client
when it is first called.

Errors: None.

See also: SendDebug (58), StartDebugServer (61)

57

CHAPTER 4. REFERENCE FOR UNIT 'DBUGINTF’

4.4.2 SendBoolean
Synopsis: Send the value of a boolean variable
Declaration: procedure SendBoolean (const Identifier: String;const Value: Boolean)
Visibility: default

Description: SsendBooleanis a simple wrapper around SendDebug (58)which sends the name and value of a
boolean value as an informational message.

Errors: None.
See also: SendDebug (58), SendDateTime (58), SendInteger (59), SendPointer (60)

4.4.3 SendDateTime
Synopsis: Send the value of a TDateTimevariable.

Declaration:procedure SendDateTime (const Identifier: String;const Value: TDateTime)

Visibility: default

Description: SendDateTimeis a simple wrapper around SendDebug (58)which sends the name and value of an
integer value as an informational message. The value is converted to a string using the DateTimeToStr

(??)call.
Errors: None.
See also: SendDebug (58), SendBoolean (58), SendInteger (59), SendPointer (60)

4.4.4 SendDebug

Synopsis: Send a message to the debug server.
Declaration: procedure SendDebug (const Msg: String)

Visibility: default

Description: SendDebugsends the message Msgto the debug server as an informational message (debug level
dlInformation). If no debug server is running, then an attempt will be made to start the server

first.

The binary that is started is called debugserverand should be somewhere on the PATH. A sample
binary which writes received messages to standard output is included in the FCL, it is called dbugsrv.
This binary can be renamed to debugserveror can be started before the program is started.

Errors: Errors are silently ignored, any exception messages are stored in SendError (57).

See also: SendDebugEx (58), SendDebugFmt (59), SendDebugFmtEx (59)

4.4.5 SendDebugEx

Synopsis: Send debug message other than informational messages

Declaration: procedure SendDebugEx (const Msg: String;MType: TDebugLevel)

Visibility: default

58

CHAPTER 4. REFERENCE FOR UNIT 'DBUGINTF’

Description: sendDebugExallows to specify the debug level of the message to be sent in MType. By default,
SendDebug (58)uses informational messages.

Other than that the function of SendDebugExis equal to that of SendDebug
Errors: None.

See also: SendDebug (58), SendDebugFmt (59), SendDebugFmtEx (59)

4.4.6 SendDebugFmt

Synopsis: Format and send a debug message
Declaration: procedure SendDebugFmt (const Msg: String;const Args: Array[] of const)
Visibility: default

Description: sendDebugFmtis a utility routine which formats a message by passing Msgand Argsto Format
(??)and sends the result to the debug server using SendDebug (58). It exists mainly to avoid the
Formatcall in calling code.

Errors: None.

See also: SendDebug (58), SendDebugEx (58), SendDebugFmtEx (59), #rtl.sysutils.format (??)

4.4.7 SendDebugFmtEx

Synopsis: Format and send message with alternate type

Declaration: procedure SendDebugFmtEx (const Msg: String;const Args: Array[] of const;
MType: TDebugLevel)

Visibility: default

Description: sendDebugFmtExis a utility routine which formats a message by passing Msgand Argsto Format
(??)and sends the result to the debug server using SendDebugEx (58)with Debug level MType. It
exists mainly to avoid the Formatecall in calling code.

Errors: None.

See also: SendDebug (58), SendDebugEx (58), SendDebugFmt (59), #rtl.sysutils.format (??)

4.4.8 Sendinteger

Synopsis: Send the value of an integer variable.

Declaration: procedure SendInteger (const Identifier: String;const Value: Integer;
HexNotation: Boolean)

Visibility: default

Description: sendIntegeris a simple wrapper around SendDebug (58)which sends the name and value of
an integer value as an informational message. If HexNotationis True, then the value will be
displayed using hexadecimal notation.

Errors: None.

See also: SendDebug (58), SendBoolean (58), SendDateTime (58), SendPointer (60)

59

CHAPTER 4. REFERENCE FOR UNIT 'DBUGINTF’

4.4.9 SendMethodEnter

Synopsis: Send method enter message
Declaration: procedure SendMethodEnter (const MethodName: String)
Visibility: default

Description: SsendMethodEntersends a "Entering MethodName" message to the debug server. After that it
increases the message indentation (currently 2 characters). By sending a corresponding SendMeth-
odExit (60), the indentation of messages can be decreased again.

By using the SendMethodEnterand SendMethodExitmethods at the beginning and end of a
procedure/method, it is possible to visually trace program execution.

Errors: None.

See also: SendDebug (58), SendMethodExit (60), SendSeparator (61)

4.4.10 SendMethodExit
Synopsis: Send method exit message

Declaration: procedure SendMethodExit (const MethodName: String)
Visibility: default

Description: SendMethodExitsends a "Exiting MethodName" message to the debug server. After that it
decreases the message indentation (currently 2 characters). By sending a corresponding SendMeth-
odEnter (60), the indentation of messages can be increased again.

By using the SendMethodEnterand SendMethodExitmethods at the beginning and end of a
procedure/method, it is possible to visually trace program execution.

Note that the indentation level will not be made negative.
Errors: None.

See also: SendDebug (58), SendMethodEnter (60), SendSeparator (61)

4.4.11 SendPointer

Synopsis: Send the value of a pointer variable.
Declaration: procedure SendPointer (const Identifier: String;const Value: Pointer)
Visibility: default

Description: sendIntegeris a simple wrapper around SendDebug (58)which sends the name and value of
a pointer value as an informational message. The pointer value is displayed using hexadecimal
notation.

Errors: None.

See also: SendDebug (58), SendBoolean (58), SendDateTime (58), SendInteger (59)

60

CHAPTER 4. REFERENCE FOR UNIT 'DBUGINTF’

4412 SendSeparator

Synopsis: Send a separator message
Declaration: procedure SendSeparator
Visibility: default

Description: sendSeparatoris a simple wrapper around SendDebug (58)which sends a short horizontal line
to the debug server. It can be used to visually separate execution of blocks of code or blocks of
values.

Errors: None.

See also: SendDebug (58), SendMethodEnter (60), SendMethodExit (60)

4413 StartDebugServer
Synopsis: Start the debug server

Declaration: function StartDebugServer : Integer
Visibility: default

Description: startDebugServerattempts to start the debug server. The process started is called debugserverand
should be located in the PATH.

Normally this function should not be called. The SendDebug (58)call will attempt to start the server
by itself if it is not yet running.

Errors: On error, Falseis returned.

See also: SendDebug (58), InitDebugClient (57)

61

Chapter 5

Reference for unit ’gettext’

5.1 Used units

Table 5.1: Used units by unit ’gettext’

Name Page
Classes 2?
sysutils ?2?

5.2 Overview

The gettextunit can be used to hook into the resource string mechanism of Free Pascal to provide
translations of the resource strings, based on the GNU gettext mechanism. The unit provides a class
(TMOFile (64)) to read the .mofiles with localizations for various languages. It also provides a
couple of calls to translate all resource strings in an application based on the translations in a .mofile.

5.3 Constants, types and variables

5.3.1 Constants
MOFileHeaderMagic = $950412de

This constant is found as the first integer in a .mo

5.3.2 Types

PLongWordArray = “TLongWordArray
Pointer to a TLongWordArray (63)array.
PMOStringTable = ~TMOStringTable

Pointer to a TMOStringTable (63)array.

62

CHAPTER 5. REFERENCE FOR UNIT "GETTEXT’

PPCharArray = "TPCharArray
Pointer to a TPCharArray (63)array.
TLongWordArray = Array[0..(1lshl30)divSizeOf (LongWord)] of LongWord

TLongWordArrayis an array used to define the PLongWordArray (62)pointer. A variable of type
TLongWordArrayshould never be directly declared, as it would occupy too much memory. The
PLongWordArraytype can be used to allocate a dynamic number of elements.

TMOFileHeader = packed record

magic : LongWord;
revision : LongWord;
nstrings : LongWord;

OrigTabOffset : LongWord;

TransTabOffset : LongWord;

HashTabSize : LongWord;

HashTabOffset : LongWord;
end

This structure describes the structure of a .mofile with string localizations.

TMOStringInfo = packed record
length : LongWord;
offset : LongWord;

end

This record is one element in the string tables describing the original and translated strings. It de-
scribes the position and length of the string. The location of these tables is stored in the TMOFile-
Header (63)record at the start of the file.

TMOStringTable = Array[0..(1shl30)divSizeOf (TMOStringInfo)] of TMOStringInfo

TMOStringTableis an array type containing TMOStringInfo (63)records. It should never be used
directly, as it would occupy too much memory.

TPCharArray = Array[0..(1shl30)divSizeOf (PChar)] of PChar

TLongWordArrayis an array used to define the PPCharArray (63)pointer. A variable of type
TPCharArrayshould never be directly declared, as it would occupy too much memory. The
PPCharArraytype can be used to allocate a dynamic number of elements.

5.4 Procedures and functions

5.4.1 GetLanguagelDs

Synopsis: Return the current language IDs

Declaration: procedure GetLanguagelIDs (var Lang: String;var FallbackLang: String)

63

CHAPTER 5. REFERENCE FOR UNIT "GETTEXT’

Visibility: default

Description: Get Language IDsreturns the current language IDs (an ISO string) as returned by the operating
system. On windows, the GetUserDefaultLCIDand GetLocaleInfocalls are used. On other
operating systems, the LC_ALL, LC_MESSAGESor LANGenvironment variables are examined.

5.4.2 TranslateResourceStrings

Synopsis: Translate the resource strings of the application.

Declaration: procedure TranslateResourceStrings (AFile: TMOFile)
procedure TranslateResourceStrings (const AFilename: String)

Visibility: default

Description: TranslateResourceStringstranslates all the resource strings in the application based on the
values in the .mofile AFileNameor AFile. The procedure creates an TMOFile (64)instance to

read the .mofile if a filename is given.
Errors: If the file does not exist or is an invalid .mofile.

See also: TranslateUnitResourceStrings (62), TMOFile (64)

5.5 EMOF¥FileError

5.5.1 Description

EMOFileErroris raised in case an TMOFile (64)instance is created with an invalid .mo.

5.6 TMOFile

5.6.1 Description

TMOF1ileis a class providing easy access to a .mofile. It can be used to translate any of the strings
that reside in the .mofile. The internal structure of the .mois completely hidden.

5.6.2 Method overview
Page Property Description

64 Create Create a new instance of the TMOF i 1eclass.
65 Destroy ~ Removes the TMOF i 1 einstance from memory
65 Translate Translate a string

5.6.3 TMOFile.Create

Synopsis: Create a new instance of the TMOF i 1 eclass.

Declaration: constructor Create (const AFilename: String)
constructor Create (AStream: TStream)

Visibility: public

64

CHAPTER 5. REFERENCE FOR UNIT "GETTEXT’

Description: Createcreates a new instance of the MOFileclass. It opens the file AFileNameor the stream
AStream. If a stream is provided, it should be seekable.

The whole contents of the file is read into memory during the Createcall. This means that the
stream is no longer needed after the Createcall.

Errors: If the named file does not exist, then an exception may be raised. If the file does not contain a valid
TMOFileHeader (63)structure, then an EMOFileError (64)exception is raised.

See also: TMOFile.Destroy (65)

5.6.4 TMOFile.Destroy
Synopsis: Removes the TMOF i 1 einstance from memory
Declaration: destructor Destroy; Override
Visibility: public
Description: De st roycleans the internal structures with the contents of the .mo. After this the TMOF i 1 einstance

is removed from memory.

See also: TMOFile.Create (64)

5.6.5 TMOFile.Translate
Synopsis: Translate a string

Declaration: function Translate (AOrig: PChar;ALen: Integer;AHash: LongWord) : String
function Translate (AOrig: String;AHash: LongWord) : String
function Translate (AOrig: String) : String

Visibility: public

Description: Trans1atetranslates the string AOrig. The string should be in the .mo file as-is. The string can

be given as a plain string, as a PChar(with length ALen). If the hash value (AHash) of the string is
not given, it is calculated.

If the string is in the . mofile, the translated string is returned. If the string is not in the file, an empty
string is returned.

Errors: None.

65

Chapter 6

Reference for unit ’idea’

6.1 Used units

Table 6.1: Used units by unit ’idea’

Name Page
Classes 2?
sysutils 7

6.2 Overview

Besides some low level IDEA encryption routines, the IDEA unit also offers 2 streams which offer
on-the-fly encryption or decryption: there are 2 stream objects: A write-only encryption stream
which encrypts anything that is written to it, and a decription stream which decrypts anything that is
read from it.

6.3 Constants, types and variables
6.3.1 Constants

IDEABLOCKSIZE = 8

IDEA block size

IDEAKEYSIZE = 16

IDEA Key size constant.

KEYLEN = (6 = ROUNDS + 4)

Key length

ROUNDS = 8

Number of rounds to encrypt

66

CHAPTER 6. REFERENCE FOR UNIT "IDEA’

6.3.2 Types

IdeaCryptData = TIdeaCryptData

Provided for backward functionality.

IdeaCryptKey = TIdeaCryptKey

Provided for backward functionality.

IDEAkey = TIDEAKey

Provided for backward functionality.

TIdeaCryptData = Array[0..3] of Word

TIdeaCryptDatais an internal type, defined to hold data for encryption/decryption.
TIdeaCryptKey = Array[0..7] of Word

The actual encryption or decryption key for IDEA is 64-bit long. This type is used to hold such a key.
It can be generated with the EnKeyIDEA (68)or DeKeyIDEA (67)algorithms depending on whether
an encryption or decryption key is needed.

TIDEAKey = Array[0..keylen-1] of Word

The IDEA key should be filled by the user with some random data (say, a passphrase). This key is

used to generate the actual encryption/decryption keys.

6.4 Procedures and functions

6.4.1 Cipherldea
Synopsis: Encrypt or decrypt a buffer.

Declaration: procedure CipherIdea (Input: TIdeaCryptData;var outdata: TIdeaCryptData;
z: TIDEAKey)

Visibility: default

Description: CipherIdeaencrypts or decrypts a buffer with data (Input) using key z. The resulting encrypted
or decrypted data is returned in Output.

Errors: None.

See also: EnKeyldea (68), DeKeyldea (67), TIDEAEncryptStream (69), TIDEADecryptStream (68)

6.4.2 DeKeyldea

Synopsis: Create a decryption key from an encryption key.
Declaration: procedure DeKeyIdea(z: TIDEAKey;var dk: TIDEAKey)

Visibility: default

67

CHAPTER 6. REFERENCE FOR UNIT "IDEA’

Description: DeKeyIdeacreates a decryption key based on the encryption key z. The decryption key is returned
in dk. Note that only a decryption key generated from the encryption key that was used to encrypt
the data can be used to decrypt the data.

Errors: None.

See also: EnKeyldea (68), Cipherldea (67)

6.4.3 EnKeyldea
Synopsis: Create an IDEA encryption key from a user key.

Declaration: procedure EnKeyIdea (UserKey: TIdeaCryptKey;var z: TIDEAKey)
Visibility: default
Description: EnKeyIdeacreates an IDEA encryption key from user-supplied data in UserKey. The Encryption
key is stored in z.

Errors: None.

See also: DeKeyldea (67), Cipherldea (67)

6.5 EIDEAError

6.5.1 Description

EIDEAErroris used to signal errors in the IDEA encryption decryption streams.

6.6 TIDEADeCryptStream

6.6.1 Description

TIDEADecryptStreamis a stream which decrypts anything that is read from it using the IDEA
mechanism. It reads the encrypted data from a source stream and decrypts it using the CipherIDEA
(67)algorithm. It is a read-only stream: it is not possible to write data to this stream.

When creating a TIDEADecrypt St reaminstance, an IDEA decryption key should be passed to
the constructor, as well as the stream from which encrypted data should be read written.

The encrypted data can be created with a TIDEAEncryptStream (69)encryption stream.

6.6.2 Method overview

Page Property Description

68 Read Reads data from the stream, decrypting it as needed
69 Seek Set position on the stream

69 Write Write data to the stream

6.6.3 TIDEADeCryptStream.Read

Synopsis: Reads data from the stream, decrypting it as needed

Declaration: function Read(var Buffer;Count: LongInt) : LongInt; Override

68

CHAPTER 6. REFERENCE FOR UNIT "IDEA’

Visibility: public
Description: Readattempts to read Countbytes from the stream, placing them in Buf ferthe bytes are read

from the source stream and decrypted as they are read. (bytes are read from the source stream in
blocks of 8 bytes. The function returns the number of bytes actually read.

Errors: If an error occurs when reading data from the source stream, an exception may be raised.

See also: TIDEADecryptStream. Write (69), TIDEADecryptStream.Seek (69), TIDEAEncryptStream (69)

6.6.4 TIDEADeCryptStream.Write
Synopsis: Write data to the stream
Declaration: function Write (const Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Writealways raises an EIDEAError (68)exception, because the decryption stream is read-only. To
write to an encryption stream, use the Write (70)method of the TIDEAEncryptStream (69)decryption

stream.
Errors: An EIDEAError (68)exception is raised when calling this method.

See also: TIDEADecryptStream.Read (68), TIDEAEncryptStream (69), TIDEAEncryptStream.Write (70)

6.6.5 TIDEADeCryptStream.Seek
Synopsis: Set position on the stream
Declaration: function Seek (Offset: LongInt;Origin: Word) : LongInt; Override
Visibility: public
Description: Sseekwill only work on a forward seek. It emulates a forward seek by reading and discarding bytes

from the input stream. The TIDEADecryptStreamstream tries to provide seek capabilities for
the following limited number of cases:

Origin=soFromBeginninglf Of fsetis larger than the current position, then the remaining bytes
are skipped by reading them from the stream and discarding them.

Origin=soFromCurrentIf Of fsetis zero, the current position is returned. If it is positive, then
Of fsetbytes are skipped by reading them from the stream and discarding them.

Errors: An EIDEAError (68)exception is raised if the stream does not allow the requested seek operation.

See also: TIDEADeCryptStream.Read (68)

6.7 TIDEAEncryptStream

6.7.1 Description

TIDEAEncryptStreamis a stream which encrypts anything that is written to it using the IDEA
mechanism, and then writes the encrypted data to the destination stream using the CipherIDEA
(67)algorithm. It is a write-only stream: it is not possible to read data from this stream.

When creating a TIDEAEncrypt St reaminstance, an IDEA encryption key should be passed to
the constructor, as well as the stream to which encrypted data should be written.

The resulting encrypted data can be read again with a TIDEADecryptStream (68)decryption stream.

69

CHAPTER 6. REFERENCE FOR UNIT "IDEA’

6.7.2 Method overview
Page Property Description

70 Destroy Flush data buffers and free the stream instance.
71 Flush Write remaining bytes from the stream

70 Read Read data from the stream

71 Seek Set stream position

70 Write Write bytes to the stream to be encrypted

6.7.3 TIDEAEncryptStream.Destroy

Synopsis: Flush data buffers and free the stream instance.
Declaration: destructor Destroy; Override
Visibility: public

Description: Destroyflushes any data still remaining in the internal encryption buffer, and then calls the inher-
ited Destroy

By default, the destination stream is not freed when the encryption stream is freed.
Errors: None.

See also: TIDEAStream.Create (72)

6.7.4 TIDEAEncryptStream.Read

Synopsis: Read data from the stream
Declaration: function Read(var Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Readalways raises an EIDEAError (68)exception, because the encryption stream is write-only. To
read from an encrypted stream, use the Read (68)method of the TIDEADecryptStream (68)decryp-
tion stream.

Errors: An EIDEAError (68)exception is raised when calling this method.

See also: TIDEAEncryptStream.Write (70), TIDEADecryptStream (68), TIDEADecryptStream.Read (68)

6.7.5 TIDEAEncryptStream.Write
Synopsis: Write bytes to the stream to be encrypted

Declaration: function Write (const Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Writewrites Countbytes from Bufferto the stream, encrypting the bytes as they are written
(encryption in blocks of 8 bytes).

Errors: If an error occurs writing to the destination stream, an error may occur.

See also: TIDEADecryptStream.Read (68)

70

CHAPTER 6. REFERENCE FOR UNIT "IDEA’

6.7.6 TIDEAEncryptStream.Seek

Synopsis: Set stream position
Declaration: function Seek (Offset: LongInt;Origin: Word) : LonglInt; Override
Visibility: public

Description: Seekreturn the current position if called with 0and soF romCurrentas arguments. With all other
values, it will always raise an exception, since it is impossible to set the position on an encryption
stream.

Errors: An EIDEAError (68)will be raised unless called with 0and soFromCurrentas arguments.

See also: TIDEAEncryptStream.Write (70), EIDEAError (68)

6.7.7 TIDEAEncryptStream.Flush

Synopsis: Write remaining bytes from the stream
Declaration: procedure Flush
Visibility: public

Description: F1ushwrites the current encryption buffer to the stream. Encryption always happens in blocks of 8
bytes, so if the buffer is not completely filled at the end of the writing operations, it must be flushed.
It should never be called directly, unless at the end of all writing operations. It is called automatically
when the stream is destroyed.

Errors: None.

See also: TIDEAEncryptStream.Write (70)

6.8 TIDEAStream

6.8.1 Description

Do not create instances of TIDEASt reamdirectly. It implements no useful functionality: it serves as
a common ancestor of the TIDEAEncryptStream (69)and TIDEADeCryptStream (68), and simply
provides some fields that these descendent classes use when encrypting/decrypting. One of these
classes should be created, depending on whether one wishes to encrypt or to decrypt.

6.8.2 Method overview

Page Property Description
72 Create Creates a new instance of the TIDEASt reamclass

6.8.3 Property overview

Page Property Access Description
72 Key r Key used when encrypting/decrypting

71

CHAPTER 6. REFERENCE FOR UNIT "IDEA’

6.8.4 TIDEAStream.Create

Synopsis: Creates a new instance of the TIDEASt reamclass
Declaration: constructor Create (AKey: TIDEAKey;Dest: TStream)
Visibility: public
Description: Createstores the encryption/decryption key and then calls the inherited Creat eto store the De ststream.
Errors: None.

See also: TIDEAEncryptStream (69), TIDEADeCryptStream (68)

6.8.5 TIDEAStream.Key
Synopsis: Key used when encrypting/decrypting

Declaration: Property Key : TIDEAKey
Visibility: public
Access: Read

Description: Keyis the key as it was passed to the constructor of the stream. It cannot be changed while data is
read or written. It is the key as it is used when encrypting/decrypting.

See also: Cipherldea (67)

72

Chapter 7

Reference for unit ’iostream’

7.1 Used units

Table 7.1: Used units by unit ’iostream’

Name Page
Classes 2?

7.2 Overview

The iostreamimplements a descendent of THandleStream (??)streams that can be used to read from
standard input and write to standard output and standard diagnostic output (stderr).

7.3 Constants, types and variables

7.3.1 Types
TIOSType = (iosInput,iosOutPut, iosError)
Table 7.2: Enumeration values for type TIOSType
Value Explanation

iosError The stream can be used to write to standard diagnostic output
iosInput The stream can be used to read from standard input
iosOutPut The stream can be used to write to standard output

TIOSTypeis passed to the Create (74)constructor of TIOStream (74), it determines what kind of
stream is created.

73

CHAPTER 7. REFERENCE FOR UNIT "'IOSTREAM’

7.4 EIOStreamError

7.4.1 Description

Error thrown in case of an invalid operation on a TIOStream (74).

7.5 TIOStream

7.5.1 Description

TIOStreamcan be used to create a stream which reads from or writes to the standard input, output
or stderr file descriptors. It is a descendent of THandleStream. The type of stream that is created
is determined by the TIOSType (73)argument to the constructor. The handle of the standard input,
output or stderr file descriptors is determined automatically.

The TIOSt reamkeeps an internal Posit ion, and attempts to provide minimal Seek (75)behaviour
based on this position.

7.5.2 Method overview
Page Property Description

74 Create Construct a new instance of TIOStream (74)
74 Read Read data from the stream.

75 Seek Set the stream position

75 SetSize Set the size of the stream

75 Write Write data to the stream

7.5.3 TIOStream.Create
Synopsis: Construct a new instance of TIOStream (74)
Declaration: constructor Create (aIOSType: TIOSType)
Visibility: public
Description: Createcreates a new instance of TIOStream (74), which can subsequently be used

Errors: No checking is performed to see whether the requested file descriptor is actually open for read-
ing/writing. In that case, subsequent calls to Reador Writeor seekwill fail.

See also: TIOStream.Read (74), TIOStream. Write (75)

7.5.4 TIOStream.Read
Synopsis: Read data from the stream.
Declaration: function Read(var Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Readchecks first whether the type of the stream allows reading (type is 10sInput). If not, it raises
a EIOStreamError (74)exception. If the stream can be read, it calls the inherited Readto actually read
the data.

Errors: An EIOStreamErrorexception is raised if the stream does not allow reading.

See also: TIOSType (73), TIOStream. Write (75)

74

CHAPTER 7. REFERENCE FOR UNIT "'IOSTREAM’

7.5.5 TIOStream.Write
Synopsis: Write data to the stream

Declaration: function Write (const Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Writechecks first whether the type of the stream allows writing (type is iosOutputor iosError).
If not, it raises a EIOStreamError (74)exception. If the stream can be written to, it calls the inherited
Writeto actually read the data.

Errors: An EIOStreamErrorexception is raised if the stream does not allow writing.

See also: TIOSType (73), TIOStream.Read (74)

7.5.6 TIOStream.SetSize
Synopsis: Set the size of the stream

Declaration: procedure SetSize (NewSize: LongInt); Override
Visibility: public

Description: set Sizeoverrides the standard Set Sizeimplementation. It always raises an exception, because
the standard input, output and stderr files have no size.

Errors: An EIOStreamErrorexception is raised when this method is called.

See also: EIOStreamError (74)

7.5.7 TIOStream.Seek

Synopsis: Set the stream position
Declaration: function Seek (Offset: LongInt;Origin: Word) : LongInt; Override
Visibility: public

Description: Seekoverrides the standard Seekimplementation. Normally, standard input, output and stderr are
not seekable. The TIOStreamstream tries to provide seek capabilities for the following limited
number of cases:

Origin=soFromBeginninglf Of fsetis larger than the current position, then the remaining bytes
are skipped by reading them from the stream and discarding them, if the stream is of type
iosInput.

Origin=soFromCurrentIf Of fsetis zero, the current position is returned. If it is positive, then
Of fsetbytes are skipped by reading them from the stream and discarding them, if the stream
is of type iosInput.

All other cases will result in a EIOSt reamErrorexception.
Errors: An EIOStreamError (74)exception is raised if the stream does not allow the requested seek operation.

See also: EIOStreamError (74)

75

Chapter 8

Reference for unit ’Pipes’

8.1 Used units

Table 8.1: Used units by unit "Pipes’

Name Page
Classes 2?
sysutils ?2?

8.2 Overview

The Pipesunit implements streams that are wrappers around the OS’s pipe functionality. It creates a
pair of streams, and what is written to one stream can be read from another.

8.3 Constants, types and variables

8.3.1 Constants

ENoReadMSg = ’'Cannot read from OuputPipeStream.’
Constant used in ENoReadPipe (77)exception.

ENoSeekMsg = ’Cannot seek on pipes’

Constant used in EPipeSeek (78)exception.

ENoWriteMsg = ’'Cannot write to InputPipeStream.’
Constant used in ENoWTritePipe (77)exception.

EPipeMsg = ’'Failed to create pipe.’

Constant used in EPipeCreation (77)exception.

76

CHAPTER 8. REFERENCE FOR UNIT "PIPES’

8.4 Procedures and functions

8.4.1 CreatePipeHandles

Synopsis: Function to create a set of pipe handles

Declaration: function CreatePipeHandles (var Inhandle: LongInt;var OutHandle: LonglInt)
Boolean

Visibility: default

Description: CreatePipeHandlesprovides an OS-independent way to create a set of pipe filehandles. These
handles are inheritable to child processes. The reading end of the pipe is returned in InHandle, the
writing end in OutHandle.

Errors: On error, Falseis returned.

See also: CreatePipeStreams (77)

8.4.2 CreatePipeStreams

Synopsis: Create a pair of pipe stream.

Declaration: procedure CreatePipeStreams (var InPipe: TInputPipeStream;
var OutPipe: TOutputPipeStream)

Visibility: default

Description: CreatePipeStreamscreates a set of pipe file descriptors with CreatePipeHandles (77), and if
that call is succesfull, a pair of streams is created: InPipeand OutPipe.

Errors: If no pipe handles could be created, an EPipeCreation (77)exception is raised.

See also: CreatePipeHandles (77), TInputPipeStream (78), TOutputPipeStream (79)

8.5 ENoReadPipe

8.5.1 Description

Exception raised when a write operation is attempted on a write-only pipe.

8.6 ENoWritePipe

8.6.1 Description

Exception raised when a read operation is attempted on a read-only pipe.

8.7 EPipeCreation

8.7.1 Description

Exception raised when an error occurred during the creation of a pipe pair.

77

CHAPTER 8. REFERENCE FOR UNIT "PIPES’

8.8 EPipeError

8.8.1 Description

Exception raised when an invalid operation is performed on a pipe stream.

8.9 [EPipeSeek

8.9.1 Description

Exception raised when an invalid seek operation is attempted on a pipe.

8.10 TInputPipeStream

8.10.1 Description

TInputPipeStreamis created by the CreatePipeStreams (77)call to represent the reading end of
a pipe. It is a TStream (??)descendent which does not allow writing, and which mimics the seek
operation.

8.10.2 Method overview
Page Property Description

79 Read Read data from the stream to a buffer.
78 Seek Set the current position of the stream
78 Write Write data to the stream.

8.10.3 TInputPipeStream.Write

Synopsis: Write data to the stream.
Declaration: function Write (const Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Writeoverrides the parent implementation of Write. On a TInputPipeStreamwill always
raise an exception, as the pipe is read-only.

Errors: An ENoWritePipe (77)exception is raised when this function is called.

See also: TInputPipeStream.Read (79), TInputPipeStream.Seek (78)

8.10.4 TinputPipeStream.Seek

Synopsis: Set the current position of the stream
Declaration: function Seek (Offset: LongInt;Origin: Word) : LongInt; Override
Visibility: public

Description: seekoverrides the standard Seekimplementation. Normally, pipe streams stderr are not seekable.
The TInputPipeStreamstream tries to provide seek capabilities for the following limited number
of cases:

78

CHAPTER 8. REFERENCE FOR UNIT "PIPES’

Origin=soFromBeginninglf Of fsetis larger than the current position, then the remaining bytes
are skipped by reading them from the stream and discarding them.

Origin=soFromCurrentIf Of fsetis zero, the current position is returned. If it is positive, then
Of fsetbytes are skipped by reading them from the stream and discarding them, if the stream
is of type iosInput.

All other cases will result in a EP i pe Seekexception.
Errors: An EPipeSeek (78)exception is raised if the stream does not allow the requested seek operation.

See also: EPipeSeek (78), #rtl.classes.tstream.seek (??)

8.10.5 TInputPipeStream.Read

Synopsis: Read data from the stream to a buffer.
Declaration: function Read(var Buffer;Count: LongInt) : LongInt; Override
Visibility: public
Description: Readcalls the inherited read and adjusts the internal position pointer of the stream.
Errors: None.

See also: TInputPipeStream.Write (78), TInputPipeStream.Seek (78)

8.11 TOutputPipeStream

8.11.1 Description

TOutputPipeStreamnis created by the CreatePipeStreams (77)call to represent the writing end of
a pipe. It is a TStream (??)descendent which does not allow reading.

8.11.2 Method overview

Page Property Description
80 Read Read data from the stream.
79 Seek Sets the position in the stream

8.11.3 TOutputPipeStream.Seek

Synopsis: Sets the position in the stream
Declaration: function Seek (Offset: LongInt;Origin: Word) : LonglInt; Override
Visibility: public

Description: Seekis overridden in TOutputPipeStream. Calling this method will always raise an exception:
an output pipe is not seekable.

Errors: An EPipeSeek (78)exception is raised if this method is called.

79

CHAPTER 8. REFERENCE FOR UNIT "PIPES’

8.11.4 TOutputPipeStream.Read

Synopsis: Read data from the stream.
Declaration: function Read(var Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Readoverrides the parent Readimplementation. It always raises an exception, because a output
pipe is write-only.

Errors: An ENoReadPipe (77)exception is raised when this function is called.

See also: TOutputPipeStream.Seek (79)

80

Chapter 9

Reference for unit ’process’

9.1 Used units

Table 9.1: Used units by unit ’process’

Name Page
Classes 7
Pipes 76
sysutils 7

9.2 Overview

The Processunit contains the code for the TProcess (83)component, a cross-platform component to
start and control other programs, offering also access to standard input and output for these programs.

TProcessdoes not handle wildcard expansion, does not support complex pipelines as in Unix.
If this behaviour is desired, the shell can be executed with the pipeline as the command it should
execute.

9.3 Constants, types and variables

9.3.1 Types

TProcessOption = (poRunSuspended, poWaitOnExit,poUsePipes,
poStderrToOutPut, poNoConsole, poNewConsole,
poDefaultErrorMode, poNewProcessGroup, poDebugProcess,
poDebugOnlyThisProcess)

When a new process is started using TProcess.Execute (85), these options control the way the process
is started. Note that not all options are supported on all platforms.

TProcessOptions= Set of (poDebugOnlyThisProcess,poDebugProcess,
poDefaultErrorMode, poNewConsole,
poNewProcessGroup, poNoConsole, poRunSuspended,

81

CHAPTER 9. REFERENCE FOR UNIT 'PROCESS’

Table 9.2: Enumeration values for type TProcessOption

Value Explanation

poDebugOnlyThisProcess Do not follow processes started by this process (Win32 only)
poDebugProcess Allow debugging of the process (Win32 only)
poDefaultErrorMode Use default error handling.

poNewConsole Start a new console window for the process (Win32 only)
poNewProcessGroup Start the process in a new process group (Win32 only)
poNoConsole Do not allow access to the console window for the process (Win32 only)
poRunSuspended Start the process in suspended state.

poStderrToOutPut Redirect standard error to the standard output stream.
poUsePipes Use pipes to redirect standard input and output.
poWaitOnExit Wait for the process to terminate before returning.

Set of TProcessOption (81).

TProcessPriority =

poStderrToOutPut, poUsePipes, poWaitOnExit)

(ppHigh, ppIdle, ppNormal, ppRealTime)

Table 9.3: Enumeration values for type TProcessPriority

Value Explanation

ppHigh The process runs at higher than normal priority.

ppldle The process only runs when the system is idle (i.e. has nothing else to do)
ppNormal The process runs at normal priority.

ppRealTime The process runs at real-time priority.

This enumerated type determines the priority of the newly started process. It translates to default
platform specific constants. If finer control is needed, then platform-dependent mechanism need to

be used to set the priority.

TShowWindowOptions

= (swoNone, swoHIDE, swoMaximize, swoMinimize,

swoRestore, swoShow, swoShowDefault,
swoShowMaximized, swoShowMinimized,
swoshowMinNOActive, swoShowNA, swoShowNoActivate,
swoShowNormal)

This type describes what the new process’ main window should look like. Most of these have only
effect on Windows. They are ignored on other systems.

TStartupOption =

(suoUseShowWindow, suoUseSize, suoUsePosition,

suoUseCountChars, suoUseFillAttribute)

These options are mainly for Win32, and determine what should be done with the application once

it’s started.

TStartupOptions= Set of

Set of TStartUpOption (82).

(suoUseCountChars, suoUseFillAttribute,
suoUsePosition, suoUseShowWindow, suoUseSize)

82

CHAPTER 9. REFERENCE FOR UNIT 'PROCESS’

Table 9.4: Enumeration values for type TShowWindowOptions

Value Explanation

swoHIDE The main window is hidden.

swoMaximize The main window is maximized.
swoMinimize The main window is minimized.

swoNone Allow system to position the window.
swoRestore Restore the previous position.

swoShow Show the main window.

swoShowDefault When showing Show the main window on
swoShowMaximized The main window is shown maximized
swoShowMinimized The main window is shown minimized
swoshowMinNOActive The main window is shown minimized but not activated
swoShowNA The main window is shown but not activated
swoShowNoActivate The main window is shown but not activated
swoShowNormal The main window is shown normally

Table 9.5: Enumeration values for type TStartupOption

Value Explanation

suoUseCountChars Use the console character width as specified in TProcess (83).
suoUseFillAttribute Use the console fill attribute as specified in TProcess (83).
suoUsePosition Use the window sizes as specified in TProcess (83).
suoUseShowWindow Use the Show Window options specified in TShowWindowOption (82)
suoUseSize Use the window sizes as specified in TProcess (83)

9.4 EProcess

9.4.1 Description

Exception raised when an error occurs in a TProcess routine.

9.5 TProcess

9.5.1 Description

TProcessis a component that can be used to start and control other processes (programs/binaries).
It contains a lot of options that control how the process is started. Many of these are Win32 specific,
and have no effect on other platforms, so they should be used with care.

The simplest way to use this component is to create an instance, set the CommandLine (91)property
to the full pathname of the program that should be executed, and call Execute (85). To determine
whether the process is still running (i.e. has not stopped executing), the Running (94)property can be
checked.

More advanced techniques can be used with the Options (93)settings.

83

CHAPTER 9. REFERENCE FOR UNIT 'PROCESS’

9.5.2 Method overview

Page Property Description

86 Closelnput Close the input stream of the process

86 CloseOutput Close the output stream of the process

86 CloseStderr Close the error stream of the process

85 Create Create a new instance of the TProcessclass.

85 Destroy Destroy this instance of TProcess

85 Execute Execute the program with the given options

86 Resume Resume execution of a suspended process

87 Suspend Suspend a running process

87 Terminate Terminate a running process

87 WaitOnExit ~ Wait for the program to stop executing.

9.5.3 Property overview

Page Property Access Description

91 Active w Start or stop the process.

91 ApplicationName 1w Name of the application to start

91 CommandLine w Command-line to execute

92 ConsoleTitle ™w Title of the console window

92 CurrentDirectory rw Working directory of the process.

92 Desktop w Desktop on which to start the process.

92 Environment ™w Environment variables for the new process

90 ExitStatus r Exit status of the process.

97 FillAttribute ™w Color attributes of the characters in the console window
(Windows only)

88 Handle r Handle of the process

90 InheritHandles ™w Should the created process inherit the open handles of the
current process.

89 Input r Stream connected to standard input of the process.

93 Options w Options to be used when starting the process.

89 Output r Stream connected to standard output of the process.

93 Priority w Priority at which the process is running.

88 ProcessHandle Alias for Handle (88)

88 ProcessID ID of the process.

94 Running Determines wheter the process is still running.

95 ShowWindow w Determines how the process main window is shown (Win-
dows only)

94 StartupOptions W Additional (Windows) startup options

90 Stderr r Stream connected to standard diagnostic output of the pro-
cess.

88 ThreadHandle r Main process thread handle

89 ThreadID r ID of the main process thread

95 WindowColumns rw Number of columns in console window (windows only)

95 WindowHeight ™ Height of the process main window

96 WindowLeft ™ X-coordinate of the initial window (Windows only)

87 WindowRect w Positions for the main program window.

96 WindowRows ™w Number of rows in console window (Windows only)

96 WindowTop w Y-coordinate of the initial window (Windows only)

97 WindowWidth ™™ Height of the process main window (Windows only)

84

CHAPTER 9. REFERENCE FOR UNIT 'PROCESS’

9.5.4 TProcess.Create

Synopsis: Create a new instance of the TProcessclass.
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Createcreates a new instance of the TProcessclass. After calling the inherited constructor, it
simply sets some default values.

9.5.5 TProcess.Destroy
Synopsis: Destroy this instance of TProcess

Declaration: destructor Destroy; Override
Visibility: public

Description: Destroycleans up this instance of TProcess. Prior to calling the inherited destructor, it cleans
up any streams that may have been created. If a process was started and is still executed, it is
notstopped, but the standard input/output/stderr streams are no longer available, because they have
been destroyed.

Errors: None.

See also: TProcess.Create (85)

9.5.6 TProcess.Execute
Synopsis: Execute the program with the given options
Declaration: procedure Execute; Virtual
Visibility: public
Description: Executeactually executes the program as specified in CommandLine (91), applying as much as of

the specified options as supported on the current platform.

If the poWaitOnExitoption is specified in Options (93), then the call will only return when the
program has finished executing (or if an error occured). If this option is not given, the call returns
immediatly, but the WaitOnEXxit (87)call can be used to wait for it to close, or the Running (94)call
can be used to check whether it is still running.

The TProcess.Terminate (87)call can be used to terminate the program if it is still running, or the
Suspend (87)call can be used to temporarily stop the program’s execution.

The ExitStatus (90)function can be used to check the program’s exit status, after it has stopped
executing.

Errors: On error a EProcess (83)exception is raised.

See also: TProcess.Running (94), TProcess.WaitOnExit (87), TProcess.Terminate (87), TProcess.Suspend
(87), TProcess.Resume (86), TProcess.ExitStatus (90)

85

CHAPTER 9. REFERENCE FOR UNIT 'PROCESS’

9.5.7 TProcess.Closelnput

Synopsis: Close the input stream of the process
Declaration: procedure CloseInput; Virtual
Visibility: public

Description: CloseInputcloses the input file descriptor of the process, that is, it closes the handle of the pipe
to standard input of the process.

See also: TProcess.Input (89), TProcess.StdErr (90), TProcess.Output (89), TProcess.CloseOutput (86), TPro-
cess.CloseStdErr (86)

9.5.8 TProcess.CloseOutput

Synopsis: Close the output stream of the process
Declaration: procedure CloseOutput; Virtual
Visibility: public

Description: CloseOutputcloses the output file descriptor of the process, that is, it closes the handle of the
pipe to standard output of the process.

See also: TProcess.Output (89), TProcess.Input (89), TProcess.StdErr (90), TProcess.Closelnput (86), TPro-
cess.CloseStdErr (86)

9.5.9 TProcess.CloseStderr

Synopsis: Close the error stream of the process
Declaration: procedure CloseStderr; Virtual
Visibility: public

Description: CloseStdErrcloses the standard error file descriptor of the process, that is, it closes the handle of
the pipe to standard error output of the process.

See also: TProcess.Output (89), TProcess.Input (89), TProcess.StdErr (90), TProcess.Closelnput (86), TPro-
cess.CloseStdErr (86)

9.5.10 TProcess.Resume

Synopsis: Resume execution of a suspended process
Declaration: function Resume : Integer; Virtual
Visibility: public

Description: Re sumeshould be used to let a suspended process resume it’s execution. It should be called in
particular when the poRunSuspendedflag is set in Options (93).

Errors: None.

See also: TProcess.Suspend (87), TProcess.Options (93), TProcess.Execute (85), TProcess.Terminate (87)

86

CHAPTER 9. REFERENCE FOR UNIT 'PROCESS’

9.5.11 TProcess.Suspend

Synopsis: Suspend a running process
Declaration: function Suspend : Integer; Virtual
Visibility: public

Description: Suspendsuspends a running process. If the call is successful, the process is suspended: it stops
running, but can be made to execute again using the Resume (86)call.

Suspendis fundamentally different from TProcess.Terminate (87)which actually stops the process.
Errors: On error, a nonzero result is returned.

See also: TProcess.Options (93), TProcess.Resume (86), TProcess.Terminate (87), TProcess.Execute (85)

9.5.12 TProcess.Terminate

Synopsis: Terminate a running process
Declaration: function Terminate (AExitCode: Integer) : Boolean; Virtual
Visibility: public
Description: Terminatestops the execution of the running program. It effectively stops the program.

On Windows, the program will report an exit code of AExitCode, on other systems, this value is
ignored.

Errors: On error, a nonzero value is returned.

See also: TProcess.ExitStatus (90), TProcess.Suspend (87), TProcess.Execute (85), TProcess. WaitOnExit (87)

9.5.13 TProcess.WaitOnExit

Synopsis: Wait for the program to stop executing.
Declaration: function WaitOnExit : DWord
Visibility: public
Description: WaitOnExitwaits for the running program to exit and then returns the exit status of the program.
Errors: On error, -1 is returned. Other values are system dependent.

See also: TProcess.ExitStatus (90), TProcess.Terminate (87), TProcess.Running (94)

9.5.14 TProcess.WindowRect

Synopsis: Positions for the main program window.
Declaration: Property WindowRect : Trect
Visibility: public
Access: Read,Write

Description: WindowRectcan be used to specify the position of

87

CHAPTER 9. REFERENCE FOR UNIT 'PROCESS’

9.5.15 TProcess.Handle

Synopsis: Handle of the process
Declaration: Property Handle : THandle
Visibility: public
Access: Read

Description: Handleidentifies the process. In Unix systems, this is the process ID. On windows, this is the
process handle. It can be used to signal the process.

The handle is only valid after TProcess.Execute (85)has been called. It is not reset after the process
stopped.

See also: TProcess.ThreadHandle (88), TProcess.ProcessID (88), TProcess.ThreadID (89)

9.5.16 TProcess.ProcessHandle
Synopsis: Alias for Handle (88)

Declaration: Property ProcessHandle : THandle
Visibility: public
Access: Read
Description: ProcessHandleequals Handle (88)and is provided for completeness only.

See also: TProcess.Handle (88), TProcess. ThreadHandle (88), TProcess.ProcessID (88), TProcess.ThreadID
(39)

9.5.17 TProcess.ThreadHandle

Synopsis: Main process thread handle
Declaration: Property ThreadHandle : THandle
Visibility: public
Access: Read

Description: ThreadHand1eis the main process thread handle. On Unix, this is the same as the process ID, on
Windows, this may be a different handle than the process handle.

The handle is only valid after TProcess.Execute (85)has been called. It is not reset after the process
stopped.

See also: TProcess.Handle (88), TProcess.ProcessID (88), TProcess.ThreadID (89)

9.5.18 TProcess.ProcessID
Synopsis: ID of the process.

Declaration: Property ProcessID : Integer
Visibility: public

Access: Read

88

CHAPTER 9. REFERENCE FOR UNIT 'PROCESS’

Description: ProcessIDis the ID of the process. It is the same as the handle of the process on Unix systems,
but on Windows it is different from the process Handle.

The ID is only valid after TProcess.Execute (85)has been called. It is not reset after the process
stopped.

See also: TProcess.Handle (88), TProcess. ThreadHandle (88), TProcess. ThreadID (89)

9.5.19 TProcess.ThreadlD

Synopsis: ID of the main process thread
Declaration: Property ThreadID : Integer
Visibility: public
Access: Read

Description: ProcessIDis the ID of the main process thread. It is the same as the handle of the main proces
thread (or the process itself) on Unix systems, but on Windows it is different from the thread Handle.

The ID is only valid after TProcess.Execute (85)has been called. It is not reset after the process
stopped.

See also: TProcess.ProcessID (88), TProcess.Handle (88), TProcess.ThreadHandle (88)

9.5.20 TProcess.Input

Synopsis: Stream connected to standard input of the process.
Declaration: Property Input : TOutputPipeStream
Visibility: public
Access: Read

Description: Inputis a stream which is connected to the process’ standard input file handle. Anything written
to this stream can be read by the process.

The Inputstream is only instantiated when the poUsePipesflag is used in Options (93).

Note that writing to the stream may cause the calling process to be suspended when the created
process is not reading from it’s input, or to cause errors when the process has terminated.

See also: TProcess.OutPut (89), TProcess.StdErr (90), TProcess.Options (93), TProcessOption (81)

9.5.21 TProcess.Output

Synopsis: Stream connected to standard output of the process.
Declaration: Property Output : TInputPipeStream
Visibility: public

Access: Read

&9

CHAPTER 9. REFERENCE FOR UNIT 'PROCESS’

Description: Outputis a stream which is connected to the process’ standard output file handle. Anything written
to standard output by the created process can be read from this stream.

The Outputstream is only instantiated when the poUseP ipesflag is used in Options (93).

The Outputstream also contains any data written to standard diagnostic output (st derr) when the
poStdErrToOutPutflag is used in Options (93).

Note that reading from the stream may cause the calling process to be suspended when the created
process is not writing anything to standard output, or to cause errors when the process has terminated.

See also: TProcess.InPut (89), TProcess.StdErr (90), TProcess.Options (93), TProcessOption (81)

9.5.22 TProcess.Stderr

Synopsis: Stream connected to standard diagnostic output of the process.
Declaration: Property Stderr : TInputPipeStream
Visibility: public
Access: Read

Description: St dErris a stream which is connected to the process’ standard diagnostic output file handle (St dErr).
Anything written to standard diagnostic output by the created process can be read from this stream.

The StdErrstream is only instantiated when the poUseP ipesflag is used in Options (93).

The Outputstream equals the Output (89)when the poSt dErrToOutPutflag is used in Options
(93).

Note that reading from the stream may cause the calling process to be suspended when the created
process is not writing anything to standard output, or to cause errors when the process has terminated.

See also: TProcess.InPut (89), TProcess.Output (89), TProcess.Options (93), TProcessOption (81)

9.5.23 TProcess.ExitStatus

Synopsis: Exit status of the process.
Declaration: Property ExitStatus : Integer
Visibility: public
Access: Read

Description: ExitStatuscontains the exit status as reported by the process when it stopped executing. The
value of this property is only meaningful when the process is no longer running. If it is not running
then the value is zero.

See also: TProcess.Running (94), TProcess.Terminate (87)

9.5.24 TProcess.InheritHandles

Synopsis: Should the created process inherit the open handles of the current process.
Declaration: Property InheritHandles : Boolean
Visibility: public

Access: Read,Write

90

CHAPTER 9. REFERENCE FOR UNIT 'PROCESS’

Description: InheritHandlesdetermines whether the created process inherits the open handles of the current
process (value True) or not (False).

On Unix, setting this variable has no effect.

See also: TProcess.InPut (89), TProcess.Output (89), TProcess.StdErr (90)

9.5.25 TProcess.Active
Synopsis: Start or stop the process.
Declaration: Property Active : Boolean
Visibility: published
Access: Read,Write

Description: Act ivestarts the process if it is set to True, or terminates the process if set to False. It’s mostly
intended for use in an IDE.

See also: TProcess.Execute (85), TProcess. Terminate (87)

9.5.26 TProcess.ApplicationName
Synopsis: Name of the application to start
Declaration: Property ApplicationName : String
Visibility: published
Access: Read,Write

Description: ApplicationNameis an alias for TProcess.CommandLine (91). It’s mostly foruse in the Win-
dows CreateProcesscall. If CommandLineis not set, then ApplicationNamewill be used
instead.

Note that either CommandLineor ApplicationNamemust be set prior to calling Execute.

See also: TProcess.CommandLine (91)

9.5.27 TProcess.CommandLine
Synopsis: Command-line to execute
Declaration: Property CommandLine : String
Visibility: published
Access: Read,Write

Description: CommandLineis the command-line to be executed: this is the name of the program to be executed,
followed by any options it should be passed.

If the command to be executed or any of the arguments contains whitespace (space, tab character,
linefeed character) it should be enclosed in single or double quotes.

If no absolute pathname is given for the command to be executed, it is searched for in the PATHenvironment
variable. On Windows, the current directory always will be searched first. On other platforms, this is
not so.

Note that either CommandLineor ApplicationNamemust be set prior to calling Execute.

See also: TProcess.ApplicationName (91)

91

CHAPTER 9. REFERENCE FOR UNIT 'PROCESS’

9.5.28 TProcess.ConsoleTitle

Synopsis: Title of the console window
Declaration: Property ConsoleTitle : String
Visibility: published
Access: Read,Write

Description: ConsoleTitleis used on Windows when executing a console application: it specifies the title
caption of the console window. On other platforms, this property is currently ignored.

Changing this property after the process was started has no effect.

See also: TProcess. WindowColumns (95), TProcess. WindowRows (96)

9.5.29 TProcess.CurrentDirectory
Synopsis: Working directory of the process.

Declaration: Property CurrentDirectory : String
Visibility: published
Access: Read,Write

Description: CurrentDirectoryspecifies the working directory of the newly started process.

Changing this property after the process was started has no effect.

See also: TProcess.Environment (92)

9.5.30 TProcess.Desktop

Synopsis: Desktop on which to start the process.

Declaration: Property Desktop : String
Visibility: published
Access: Read,Write

Description: Desk Topis used on Windows to determine on which desktop the process’ main window should be
shown. Leaving this empty means the process is started on the same desktop as the currently running
process.

Changing this property after the process was started has no effect.

On unix, this parameter is ignored.

See also: TProcess.Input (89), TProcess.Output (89), TProcess.StdErr (90)

9.5.31 TProcess.Environment

Synopsis: Environment variables for the new process
Declaration: Property Environment : TStrings
Visibility: published

Access: Read,Write

92

CHAPTER 9. REFERENCE FOR UNIT 'PROCESS’

Description: Environmentcontains the environment for the new process; it’s a list of Name=Valuepairs, one
per line.

If it is empty, the environment of the current process is passed on to the new process.

See also: TProcess.Options (93)

9.5.32 TProcess.Options

Synopsis: Options to be used when starting the process.
Declaration: Property Options : TProcessOptions
Visibility: published
Access: Read,Write

Description: Opt i onsdetermine how the process is started. They should be set before the Execute (85)call is

made.
Table 9.6:

option Meaning
poRunSuspended Start the process in suspended state.
poWaitOnExit Wait for the process to terminate before returning.
poUsePipes Use pipes to redirect standard input and output.
poStderrToOutPut Redirect standard error to the standard output stream.
poNoConsole Do not allow access to the console window for the process (Win32 only)
poNewConsole Start a new console window for the process (Win32 only)
poDefaultErrorMode Use default error handling.
poNewProcessGroup Start the process in a new process group (Win32 only)
poDebugProcess Allow debugging of the process (Win32 only)

poDebugOnlyThisProcess Do not follow processes started by this process (Win32 only)

See also: TProcessOption (81), TProcessOptions (82), TProcess.Priority (93), TProcess.StartUpOptions (94)

9.5.33 TProcess.Priority

Synopsis: Priority at which the process is running.
Declaration: Property Priority : TProcessPriority
Visibility: published
Access: Read,Write

Description: Prioritydetermines the priority at which the process is running.

Note that not all priorities can be set by any user. Usually, only users witha dministrative rights (the
root user on Unix) can set a higher process priority.

On unix, the process priority is mapped on Nicevalues as follows:

See also: TProcessPriority (82)

93

CHAPTER 9. REFERENCE FOR UNIT 'PROCESS’

Table 9.7:
Priority Meaning
ppHigh The process runs at higher than normal priority.
ppldle The process only runs when the system is idle (i.e. has nothing else to do)
ppNormal The process runs at normal priority.

ppRealTime The process runs at real-time priority.

Table 9.8:
Priority Nice value
ppHigh 20
ppldle 20
ppNormal 0

ppRealTime -20

9.5.34 TProcess.StartupOptions
Synopsis: Additional (Windows) startup options

Declaration: Property StartupOptions : TStartupOptions
Visibility: published
Access: Read,Write

Description: StartUpOpt ionscontains additional startup options, used mostly on Windows system. They de-
termine which other window layout properties are taken into account when starting the new process.

Table 9.9:
Priority Meaning
suoUseShowWindow Use the Show Window options specified in ShowWindow (95)
suoUseSize Use the specified window sizes
suoUsePosition Use the specified window sizes.
suoUseCountChars Use the specified console character width.

suoUseFillAttribute Use the console fill attribute specified in FillAttribute (97).

See also: TProcess.ShowWindow (95), TProcess.WindowHeight (95), TProcess.WindowWidth (97), TPro-
cess.WindowLeft (96), TProcess.WindowTop (96), TProcess. WindowColumns (95), TProcess. WindowRows
(96), TProcess.FillAttribute (97)

9.5.35 TProcess.Running

Synopsis: Determines wheter the process is still running.
Declaration: Property Running : Boolean
Visibility: published

Access: Read

94

CHAPTER 9. REFERENCE FOR UNIT 'PROCESS’

Description: Runningcan be read to determine whether the process is still running.

See also: TProcess.Terminate (87), TProcess.Active (91), TProcess.ExitStatus (90)

9.5.36 TProcess.ShowWindow

Synopsis: Determines how the process main window is shown (Windows only)
Declaration: Property ShowWindow : TShowWindowOptions
Visibility: published
Access: Read,Write

Description: showWindowdetermines how the process’ main window is shown. It is useful only on Windows.

Table 9.10:
Option Meaning
swoNone Allow system to position the window.
SswoHIDE The main window is hidden.
swoMaximize The main window is maximized.
swoMinimize The main window is minimized.
swoRestore Restore the previous position.
swoShow Show the main window.
swoShowDefault When showing Show the main window on a default position
swoShowMaximized The main window is shown maximized
swoShowMinimized The main window is shown minimized
swoshowMinNOActive The main window is shown minimized but not activated
SWOShowNA The main window is shown but not activated
swoShowNoActivate The main window is shown but not activated
swoShowNormal The main window is shown normally

9.5.37 TProcess.WindowColumns

Synopsis: Number of columns in console window (windows only)
Declaration: Property WindowColumns : Cardinal
Visibility: published
Access: Read,Write

Description: WindowColumnsis the number of columns in the console window, used to run the command in.
This property is only effective if suoUseCountCharsis specified in StartupOptions (94)

See also: TProcess.WindowHeight (95), TProcess. WindowWidth (97), TProcess.WindowLeft (96), TProcess. WindowTop
(96), TProcess.WindowRows (96), TProcess.FillAttribute (97), TProcess.StartupOptions (94)

9.5.38 TProcess.WindowHeight
Synopsis: Height of the process main window

Declaration: Property WindowHeight : Cardinal

95

CHAPTER 9. REFERENCE FOR UNIT 'PROCESS’

Visibility: published
Access: Read,Write

Description: WindowHeightis the initial height (in pixels) of the process’ main window. This property is only
effective if suoUseS1izeis specified in StartupOptions (94)

See also: TProcess.WindowWidth (97), TProcess.WindowLeft (96), TProcess.WindowTop (96), TProcess. WindowColumns
(95), TProcess.WindowRows (96), TProcess.FillAttribute (97), TProcess.StartupOptions (94)

9.5.39 TProcess.WindowLeft

Synopsis: X-coordinate of the initial window (Windows only)
Declaration: Property WindowLeft : Cardinal
Visibility: published
Access: Read,Write

Description: WindowLeftis the initial X coordinate (in pixels) of the process’ main window, relative to the
left border of the desktop. This property is only effective if suoUsePositionis specified in Star-
tupOptions (94)

See also: TProcess.WindowHeight (95), TProcess. WindowWidth (97), TProcess.WindowTop (96), TProcess. WindowColumns
(95), TProcess.WindowRows (96), TProcess.Fill Attribute (97), TProcess.StartupOptions (94)

9.5.40 TProcess.WindowRows

Synopsis: Number of rows in console window (Windows only)
Declaration: Property WindowRows : Cardinal
Visibility: published
Access: Read,Write

Description: WindowRowsis the number of rows in the console window, used to run the command in. This
property is only effective if suoUseCountCharsis specified in StartupOptions (94)

See also: TProcess.WindowHeight (95), TProcess. WindowWidth (97), TProcess. WindowLeft (96), TProcess. WindowTop
(96), TProcess.WindowColumns (95), TProcess.FillAttribute (97), TProcess.StartupOptions (94)

9.5.41 TProcess.WindowTop

Synopsis: Y-coordinate of the initial window (Windows only)
Declaration: Property WindowTop : Cardinal
Visibility: published
Access: Read,Write

Description: WindowTopis the initial Y coordinate (in pixels) of the process’ main window, relative to the top
border of the desktop. This property is only effective if suoUsePositionis specified in Star-
tupOptions (94)

See also: TProcess.WindowHeight (95), TProcess. WindowWidth (97), TProcess. WindowLeft (96), TProcess. WindowColumns
(95), TProcess.WindowRows (96), TProcess.Fill Attribute (97), TProcess.StartupOptions (94)

96

CHAPTER 9. REFERENCE FOR UNIT 'PROCESS’

9.5.42 TProcess.WindowWidth

Synopsis: Height of the process main window (Windows only)
Declaration: Property WindowWidth : Cardinal
Visibility: published
Access: Read,Write

Description: WindowWidthis the initial width (in pixels) of the process’ main window. This property is only
effective if suoUseSizeis specified in StartupOptions (94)

See also: TProcess.WindowHeight (95), TProcess. WindowLeft (96), TProcess. WindowTop (96), TProcess. WindowColumns
(95), TProcess.WindowRows (96), TProcess.Fill Attribute (97), TProcess.StartupOptions (94)

9.5.43 TProcess.FillAttribute

Synopsis: Color attributes of the characters in the console window (Windows only)
Declaration: Property FillAttribute : Cardinal
Visibility: published
Access: Read,Write

Description: Fil1Attributeis a WORD value which specifies the background and foreground colors of the
console window.

See also: TProcess.WindowHeight (95), TProcess. WindowWidth (97), TProcess. WindowLeft (96), TProcess. WindowTop
(96), TProcess.WindowColumns (95), TProcess.WindowRows (96), TProcess.StartupOptions (94)

97

Chapter 10

Reference for unit ’StreamlQO’

10.1 Used units

Table 10.1: Used units by unit ’StreamIO’

Name Page
Classes 2?
sysutils 7?

10.2 Overview

The Stream|Ounit implements a call to reroute the input or output of a text file to a descendents of
TStream (??).

This allows to use the standard pascal Read (??)and Write (??)functions (with all their possibilities),
on streams.

10.3 Procedures and functions

10.3.1 AssignStream

Synopsis: Assign a text file to a stream.
Declaration: procedure AssignStream(var F: Textfile;Stream: TStream)
Visibility: default

Description: AssignStreamassigns the stream St reamnto file F. The file can subsequently be used to write to
the stream, using the standard Write (??)calls.

Before writing, call Rewrite (??)on the stream. Before reading, call Reset (2?).
Errors: if St reamis Ni 1, an exception will be raised.

See also: #rtl.classes. TStream (??), GetStream (99)

98

CHAPTER 10. REFERENCE FOR UNIT 'STREAMIO’

10.3.2 GetStream

Synopsis: Return the stream, associated with a file.
Declaration: function GetStream(var F: TTextRec) : TStream
Visibility: default

Description: Get St reamreturns the instance of the stream that was associated with the file Fusing AssignStream
(98).

Errors: An invalid class reference will be returned if the file was not associated with a stream.

See also: AssignStream (98), #rtl.classes. TStream (2?)

99

Chapter 11

Reference for unit ’zstream’

11.1 Used units

Table 11.1: Used units by unit ’zstream’

Name Page
Classes 2?
paszlib 100
sysutils ??
zbase 100

11.2 Overview

The ZStreamunit implements a TStream (??)descendent (TCompressionStream (101)) which uses
the deflate algorithm to compress everything that is written to it. The compressed data is written to
the output stream, which is specified when the compressor class is created.

Likewise, a TSt reamdescendent is implemented which reads data from an input stream (TDecom-
pressionStream (104)) and decompresses it with the inflate algorithm.

11.3 Constants, types and variables

11.3.1 Types

TCompressionLevel = (clNone,clFastest,clDefault, clMax)
Compression level for the deflate algorithm
TGZOpenMode = (gzOpenRead, gzOpenWrite)

Open mode for gzip file.

100

CHAPTER 11. REFERENCE FOR UNIT "ZSTREAM’

Table 11.2: Enumeration values for type TCompressionLevel

Value Explanation

clDefault Use default compression

clFastest Use fast (but less) compression.

clMax Use maximum compression

cINone Do not use compression, just copy data.

Table 11.3: Enumeration values for type TGZOpenMode

Value Explanation
gzOpenRead Open file for reading
gzOpenWrite Open file for writing

11.4 ECompressionError

11.4.1 Description

ECompressionErroris the exception class used by the TCompressionStream (101)class.

11.5 EDecompressionError

11.5.1 Description

EDecompressionErroris the exception class used by the TDeCompressionStream (104)class.

11.6 EZlibError
11.6.1 Description

Errors which occur in the zstreamunit are signaled by raising an EZLibErrorexception descen-
dent.

11.7 TCompressionStream

11.7.1 Description

TCompressionStream

11.7.2 Method overview
Page Property Description

102 Create Create a new instance of the compression stream.

102 Destroy Flushe data to the output stream and destroys the compression stream.
102 Read Overridden to raise an exception.

103 Seek Overrides seek to raise an exception.

103 Write Write data to the stream

101

CHAPTER 11. REFERENCE FOR UNIT "ZSTREAM’

11.7.3 Property overview

Page Property Access Description
103 CompressionRate r Running compression rate of compression stream
103 OnProgress Progress handler

11.7.4 TCompressionStream.Create

Synopsis: Create a new instance of the compression stream.

Declaration: constructor Create (CompressionLevel: TCompressionLevel;Dest: TStream;
ASkipHeader: Boolean)

Visibility: public

Description: Createcreates a new instance of the compression stream. It merely calls the inherited constructor
with the destination stream Destand stores the compression level.

If ASkipHeaderis set to True, the method will not write the block header to the stream. This is
required for deflated data in a zip file.

Note that the compressed data is only completely written after the compression stream is destroyed.

See also: TCompressionStream.Destroy (102)

11.7.5 TCompressionStream.Destroy

Synopsis: Flushe data to the output stream and destroys the compression stream.
Declaration: destructor Destroy; Override
Visibility: public

Description: Destroyflushes the output stream: any compressed data not yet written to the output stream are
written, and the deflate structures are cleaned up.

Errors: None.

See also: TCompressionStream.Create (102)

11.7.6 TCompressionStream.Read

Synopsis: Overridden to raise an exception.
Declaration: function Read(var Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: The Readmethod of TSt reamis overridden, and always raises an exception, because TCompressionStreamis
write-only.

Errors: An ECompressionError (101)exception is raised.

See also: ECompressionError (101), TCompressionStream. Write (103)

102

CHAPTER 11. REFERENCE FOR UNIT "ZSTREAM’

11.7.7 TCompressionStream.Write

Synopsis: Write data to the stream
Declaration: function Write (const Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Writetakes Countbytes from Buf ferand comresseses (deflates) them. The compressed result is
written to the output stream.

Errors: If an error occurs, an ECompressionError (101)exception is raised.

See also: TCompressionStream.Read (102), TCompressionStream.Seek (103)

11.7.8 TCompressionStream.Seek

Synopsis: Overrides seek to raise an exception.
Declaration: function Seek (Offset: LongInt;Origin: Word) : LongInt; Override
Visibility: public

Description: The Seekmethod of TSt reamis overridden, and always raises an exception, because TCompressionStreamis
write-only, and cannot seek.

Errors: An ECompressionError (101)exception is raised.

See also: ECompressionError (101), TCompressionStream.Read (102), TCompressionStream.Write (103)

11.7.9 TCompressionStream.CompressionRate

Synopsis: Running compression rate of compression stream
Declaration: Property CompressionRate : extended
Visibility: public
Access: Read

Description: The Compressionrateis updated as more data is written to the stream and represents the ratio
of outputted data versus written data.

See also: TCompressionStream. Write (103)

11.7.10 TCompressionStream.OnProgress
Synopsis: Progress handler

Declaration: Property OnProgress
Visibility: public
Access:

Description: OnProgressis called whenever output data is written to the output stream. It can be used to
update a progress bar or so. The Sende rargument to the progress handler is the compression stream
instance.

103

CHAPTER 11. REFERENCE FOR UNIT "ZSTREAM’

11.8 TCustomZlibStream

11.8.1 Description

TCustomZlibStreamserves as the ancestor class for the TCompressionStream (101)and TDe-
CompressionStream (104)classes.

It introduces support for a progess handler, and stores the input or output stream.

11.8.2 Method overview

Page Property Description
104 Create Create a new instance of TCustomZlibStream

11.8.3 TCustomZlibStream.Create

Synopsis: Create a new instance of TCustomZlibStream
Declaration: constructor Create (Strm: TStream)
Visibility: public

Description: Createcreates a new instance of TCustomz1libStream. It stores a reference to the input/output
stream, and initializes the deflate compression mechanism so they can be used by the descendents.

See also: TCompressionStream (101), TDecompressionStream (104)

11.9 TDecompressionStream

11.9.1 Description

TDecompressionStreamperforms the inverse operation of TCompressionStream (101). A read
operation reads data from an input stream and decompresses (inflates) the data it as it goes along.

The decompression stream reads it’s compressed data from a stream with deflated data. This data
can be created e.g. with a TCompressionStream (101)compression stream.

11.9.2 Method overview
Page Property Description

105 Create Creates a new instance of the TDecompressionStreamstream
105 Destroy Destroys the TDecompressionStreaminstance

105 Read Read data from the compressed stream

106 Seek Move stream position to a certain location in the stream.

105 Write Write data to the stream

11.9.3 Property overview

Page Property Access Description
106 OnProgress Progress handler

104

CHAPTER 11. REFERENCE FOR UNIT "ZSTREAM’

11.9.4 TDecompressionStream.Create

Synopsis: Creates a new instance of the TDecompressionStreamstream
Declaration: constructor Create (ASource: TStream)
Visibility: public

Description: Createcreates and initializes a new instance of the TDecompressionStreamclass. It calls the
inherited Createand passes it the Sourcestream. The source stream is the stream from which the
compressed (deflated) data is read.

Note that the source stream is by default not owned by the decompression stream, and is not freed
when the decompression stream is destroyed.

See also: TDecompressionStream.Destroy (105)

11.9.5 TDecompressionStream.Destroy
Synopsis: Destroys the TDecompressionStreaminstance
Declaration: destructor Destroy; Override
Visibility: public
Description: Dest roycleans up the inflate structure, and then simply calls the inherited destroy.
By default the source stream is not freed when calling Destroy.

See also: TDecompressionStream.Create (105)

11.9.6 TDecompressionStream.Read

Synopsis: Read data from the compressed stream
Declaration: function Read(var Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Readwill read data from the compressed stream until the decompressed data size is Countor there
is no more compressed data available. The decompressed data is written in Buf fer. The function
returns the number of bytes written in the buffer.

Errors: If an error occurs, an EDeCompressionError (101)exception is raised.

See also: TCompressionStream. Write (103)

11.9.7 TDecompressionStream.Write

Synopsis: Write data to the stream
Declaration: function Write (const Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Writewill raise a EDeCompressionError (101)exception, because the TDecompressionStreamclass
is read-only.

Errors: An EDeCompressionError (101)exception is always raised.

See also: TDeCompressionStream.Read (105), EDeCompressionError (101)

105

CHAPTER 11. REFERENCE FOR UNIT "ZSTREAM’

11.9.8 TDecompressionStream.Seek
Synopsis: Move stream position to a certain location in the stream.
Declaration: function Seek (Offset: LongInt;Origin: Word) : LonglInt; Override
Visibility: public
Description: seekoverrides the standard Seekimplementation. Normally, pipe streams stderr are not seekable.

The TDecompressionStreamnstream tries to provide seek capabilities for the following limited
number of cases:

Origin=soFromBeginninglf Of fsetis larger than the current position, then the remaining bytes
are skipped by reading them from the stream and discarding them.

Origin=soFromCurrentIf Of fsetis zero, the current position is returned. If it is positive, then
Of fsetbytes are skipped by reading them from the stream and discarding them, if the stream
is of type iosInput.

All other cases will result in a EP i pe Seekexception.

Errors: An EDecompressionError (101)exception is raised if the stream does not allow the requested seek
operation.

See also: TDecompressionStream.Read (105)

11.9.9 TDecompressionStream.OnProgress
Synopsis: Progress handler

Declaration: Property OnProgress
Visibility: public
Access:

Description: OnProgressis called whenever input data is read from the source stream. It can be used to update
a progress bar or so. The Senderargument to the progress handler is the decompression stream
instance.

11.10 TGZFileStream

11.10.1 Description

TGZFileStreamcan be used to read data from a gzip file, or to write data to a gzip file.

11.10.2 Method overview

Page Property Description

107 Create Create a new instance of TGZFileStream
107 Destroy Removes TGZFileStreaminstance

107 Read Read data from the compressed file

108 Seek Set the position in the compressed stream.
108 Write Write data to be compressed

106

CHAPTER 11. REFERENCE FOR UNIT "ZSTREAM’

11.10.3 TGZFileStream.Create

Synopsis: Create a new instance of TGZFileStream
Declaration: constructor Create (FileName: String;FileMode: TGZOpenMode)
Visibility: public

Description: Createcreates a new instance of the TGZFileStreamclass. It opens FileNamefor reading or
writing, depending on the FileModeparameter. It is not possible to open the file read-write. If the
file is opened for reading, it must exist.

If the file is opened for reading, the TGZFileStream.Read (107)method can be used for reading the
data in uncompressed form.

If the file is opened for writing, any data written using the TGZFileStream.Write (108)method will
be stored in the file in compressed (deflated) form.

Errors: If the file is not found, an EZlibError (101)exception is raised.

See also: TGZFileStream.Destroy (107), TGZOpenMode (100)

11.10.4 TGZFileStream.Destroy

Synopsis: Removes TGZF i leSt reaminstance
Declaration: destructor Destroy; Override
Visibility: public
Description: Dest roycloses the file and releases the TGZF i 1eSt reaminstance from memory.

See also: TGZFileStream.Create (107)

11.10.5 TGZFileStream.Read

Synopsis: Read data from the compressed file
Declaration: function Read(var Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Readoverrides the Readmethod of TStreamto read the data from the compressed file. The
Buf ferparameter indicates where the read data should be stored. The Countparameter speci-
fies the number of bytes (uncompressed) that should be read from the compressed file. Note that it is
not possible to read from the stream if it was opened in write mode.

The function returns the number of uncompressed bytes actually read.

Errors: If Buf ferpoints to an invalid location, or does not have enough room for Countbytes, an exception
will be raised.

See also: TGZFileStream.Create (107), TGZFileStream.Write (108), TGZFileStream.Seek (108)

107

CHAPTER 11. REFERENCE FOR UNIT "ZSTREAM’

11.10.6 TGZFileStream.Write
Synopsis: Write data to be compressed

Declaration: function Write (const Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Writewrites Countbytes from Bufferto the compressed file. The data is compressed as it is
written, so ideally, less than Countbytes end up in the compressed file. Note that it is not possible
to write to the stream if it was opened in read mode.

The function returns the number of (uncompressed) bytes that were actually written.
Errors: In case of an error, an EZIlibError (101)exception is raised.

See also: TGZFileStream.Create (107), TGZFileStream.Read (107), TGZFileStream.Seek (108)

11.10.7 TGZFileStream.Seek

Synopsis: Set the position in the compressed stream.
Declaration: function Seek (Offset: LongInt;Origin: Word) : LongInt; Override
Visibility: public

Description: Seeksets the position to Of £ setbytes, starting from Origin. Not all combinations are possible,
see TDecompressionStream.Seek (106)for a list of possibilities.

Errors: In case an impossible combination is asked, an EZlibError (101)exception is raised.

See also: TDecompressionStream.Seek (106)

108

	Overview
	Reference for unit 'base64'
	Used units
	Overview
	TBase64DecodingStream
	Description
	Method overview
	Property overview
	TBase64DecodingStream.Create
	TBase64DecodingStream.Reset
	TBase64DecodingStream.Read
	TBase64DecodingStream.Write
	TBase64DecodingStream.Seek
	TBase64DecodingStream.EOF

	TBase64EncodingStream
	Description
	Method overview
	TBase64EncodingStream.Create
	TBase64EncodingStream.Destroy
	TBase64EncodingStream.Read
	TBase64EncodingStream.Write
	TBase64EncodingStream.Seek

	Reference for unit 'bufstream'
	Used units
	Overview
	Constants, types and variables
	Constants

	TBufStream
	Description
	Method overview
	Property overview
	TBufStream.Create
	TBufStream.Destroy
	TBufStream.Buffer
	TBufStream.Capacity
	TBufStream.BufferPos
	TBufStream.BufferSize

	TReadBufStream
	Description
	Method overview
	TReadBufStream.Seek
	TReadBufStream.Read
	TReadBufStream.Write

	TWriteBufStream
	Description
	Method overview
	TWriteBufStream.Destroy
	TWriteBufStream.Seek
	TWriteBufStream.Read
	TWriteBufStream.Write

	Reference for unit 'contnrs'
	Used units
	Overview
	Constants, types and variables
	Types

	Procedures and functions
	RSHash

	EDuplicate
	Description

	EKeyNotFound
	Description

	TClassList
	Description
	Method overview
	Property overview
	TClassList.Add
	TClassList.Extract
	TClassList.Remove
	TClassList.IndexOf
	TClassList.First
	TClassList.Last
	TClassList.Insert
	TClassList.Items

	TComponentList
	Description
	Method overview
	Property overview
	TComponentList.Destroy
	TComponentList.Add
	TComponentList.Extract
	TComponentList.Remove
	TComponentList.IndexOf
	TComponentList.First
	TComponentList.Last
	TComponentList.Insert
	TComponentList.Items

	TFPHashTable
	Description
	Method overview
	Property overview
	TFPHashTable.Create
	TFPHashTable.CreateWith
	TFPHashTable.Destroy
	TFPHashTable.ChangeTableSize
	TFPHashTable.Clear
	TFPHashTable.Add
	TFPHashTable.Delete
	TFPHashTable.Find
	TFPHashTable.IsEmpty
	TFPHashTable.HashFunction
	TFPHashTable.Count
	TFPHashTable.HashTableSize
	TFPHashTable.Items
	TFPHashTable.HashTable
	TFPHashTable.VoidSlots
	TFPHashTable.LoadFactor
	TFPHashTable.AVGChainLen
	TFPHashTable.MaxChainLength
	TFPHashTable.NumberOfCollisions
	TFPHashTable.Density

	TFPObjectList
	Description
	Method overview
	Property overview
	TFPObjectList.Create
	TFPObjectList.Destroy
	TFPObjectList.Clear
	TFPObjectList.Add
	TFPObjectList.Delete
	TFPObjectList.Exchange
	TFPObjectList.Expand
	TFPObjectList.Extract
	TFPObjectList.Remove
	TFPObjectList.IndexOf
	TFPObjectList.FindInstanceOf
	TFPObjectList.Insert
	TFPObjectList.First
	TFPObjectList.Last
	TFPObjectList.Move
	TFPObjectList.Assign
	TFPObjectList.Pack
	TFPObjectList.Sort
	TFPObjectList.ForEachCall
	TFPObjectList.Capacity
	TFPObjectList.Count
	TFPObjectList.OwnsObjects
	TFPObjectList.Items
	TFPObjectList.List

	THTNode
	Description
	Method overview
	Property overview
	THTNode.CreateWith
	THTNode.HasKey
	THTNode.Key
	THTNode.Data

	TObjectList
	Description
	Method overview
	Property overview
	TObjectList.create
	TObjectList.Add
	TObjectList.Extract
	TObjectList.Remove
	TObjectList.IndexOf
	TObjectList.FindInstanceOf
	TObjectList.Insert
	TObjectList.First
	TObjectList.Last
	TObjectList.OwnsObjects
	TObjectList.Items

	TObjectQueue
	Method overview
	TObjectQueue.Push
	TObjectQueue.Pop
	TObjectQueue.Peek

	TObjectStack
	Description
	Method overview
	TObjectStack.Push
	TObjectStack.Pop
	TObjectStack.Peek

	TOrderedList
	Description
	Method overview
	TOrderedList.Create
	TOrderedList.Destroy
	TOrderedList.Count
	TOrderedList.AtLeast
	TOrderedList.Push
	TOrderedList.Pop
	TOrderedList.Peek

	TQueue
	Description

	TStack
	Description

	Reference for unit 'dbugintf'
	Writing a debug server
	Overview
	Constants, types and variables
	Resource strings
	Constants
	Types

	Procedures and functions
	InitDebugClient
	SendBoolean
	SendDateTime
	SendDebug
	SendDebugEx
	SendDebugFmt
	SendDebugFmtEx
	SendInteger
	SendMethodEnter
	SendMethodExit
	SendPointer
	SendSeparator
	StartDebugServer

	Reference for unit 'gettext'
	Used units
	Overview
	Constants, types and variables
	Constants
	Types

	Procedures and functions
	GetLanguageIDs
	TranslateResourceStrings

	EMOFileError
	Description

	TMOFile
	Description
	Method overview
	TMOFile.Create
	TMOFile.Destroy
	TMOFile.Translate

	Reference for unit 'idea'
	Used units
	Overview
	Constants, types and variables
	Constants
	Types

	Procedures and functions
	CipherIdea
	DeKeyIdea
	EnKeyIdea

	EIDEAError
	Description

	TIDEADeCryptStream
	Description
	Method overview
	TIDEADeCryptStream.Read
	TIDEADeCryptStream.Write
	TIDEADeCryptStream.Seek

	TIDEAEncryptStream
	Description
	Method overview
	TIDEAEncryptStream.Destroy
	TIDEAEncryptStream.Read
	TIDEAEncryptStream.Write
	TIDEAEncryptStream.Seek
	TIDEAEncryptStream.Flush

	TIDEAStream
	Description
	Method overview
	Property overview
	TIDEAStream.Create
	TIDEAStream.Key

	Reference for unit 'iostream'
	Used units
	Overview
	Constants, types and variables
	Types

	EIOStreamError
	Description

	TIOStream
	Description
	Method overview
	TIOStream.Create
	TIOStream.Read
	TIOStream.Write
	TIOStream.SetSize
	TIOStream.Seek

	Reference for unit 'Pipes'
	Used units
	Overview
	Constants, types and variables
	Constants

	Procedures and functions
	CreatePipeHandles
	CreatePipeStreams

	ENoReadPipe
	Description

	ENoWritePipe
	Description

	EPipeCreation
	Description

	EPipeError
	Description

	EPipeSeek
	Description

	TInputPipeStream
	Description
	Method overview
	TInputPipeStream.Write
	TInputPipeStream.Seek
	TInputPipeStream.Read

	TOutputPipeStream
	Description
	Method overview
	TOutputPipeStream.Seek
	TOutputPipeStream.Read

	Reference for unit 'process'
	Used units
	Overview
	Constants, types and variables
	Types

	EProcess
	Description

	TProcess
	Description
	Method overview
	Property overview
	TProcess.Create
	TProcess.Destroy
	TProcess.Execute
	TProcess.CloseInput
	TProcess.CloseOutput
	TProcess.CloseStderr
	TProcess.Resume
	TProcess.Suspend
	TProcess.Terminate
	TProcess.WaitOnExit
	TProcess.WindowRect
	TProcess.Handle
	TProcess.ProcessHandle
	TProcess.ThreadHandle
	TProcess.ProcessID
	TProcess.ThreadID
	TProcess.Input
	TProcess.Output
	TProcess.Stderr
	TProcess.ExitStatus
	TProcess.InheritHandles
	TProcess.Active
	TProcess.ApplicationName
	TProcess.CommandLine
	TProcess.ConsoleTitle
	TProcess.CurrentDirectory
	TProcess.Desktop
	TProcess.Environment
	TProcess.Options
	TProcess.Priority
	TProcess.StartupOptions
	TProcess.Running
	TProcess.ShowWindow
	TProcess.WindowColumns
	TProcess.WindowHeight
	TProcess.WindowLeft
	TProcess.WindowRows
	TProcess.WindowTop
	TProcess.WindowWidth
	TProcess.FillAttribute

	Reference for unit 'StreamIO'
	Used units
	Overview
	Procedures and functions
	AssignStream
	GetStream

	Reference for unit 'zstream'
	Used units
	Overview
	Constants, types and variables
	Types

	ECompressionError
	Description

	EDecompressionError
	Description

	EZlibError
	Description

	TCompressionStream
	Description
	Method overview
	Property overview
	TCompressionStream.Create
	TCompressionStream.Destroy
	TCompressionStream.Read
	TCompressionStream.Write
	TCompressionStream.Seek
	TCompressionStream.CompressionRate
	TCompressionStream.OnProgress

	TCustomZlibStream
	Description
	Method overview
	TCustomZlibStream.Create

	TDecompressionStream
	Description
	Method overview
	Property overview
	TDecompressionStream.Create
	TDecompressionStream.Destroy
	TDecompressionStream.Read
	TDecompressionStream.Write
	TDecompressionStream.Seek
	TDecompressionStream.OnProgress

	TGZFileStream
	Description
	Method overview
	TGZFileStream.Create
	TGZFileStream.Destroy
	TGZFileStream.Read
	TGZFileStream.Write
	TGZFileStream.Seek

