
The Parma Polyhedra Library
User’s Manual∗

(version 0.9)

Roberto Bagnara†

Patricia M. Hill‡

Enea Zaffanella§

based on previous work also by

Elisa Ricci

and

Sara Bonini
Andrea Pescetti
Angela Stazzone

Tatiana Zolo

March 12, 2006

∗This work has been partly supported by: University of Parma’s FIL scientific research project (ex 60%) “Pure and Applied Math-
ematics”; MURST project “Automatic Program Certification by Abstract Interpretation”; MURST project “Abstract Interpretation,
Type Systems and Control-Flow Analysis”; MURST project “Automatic Aggregate- and Number-Reasoning for Computing: from
Decision Algorithms to Constraint Programming with Multisets, Sets, and Maps”; MURST project “Constraint Based Verification of
Reactive Systems”; MURST project “Abstract Interpretation: Design and Applications”.

†bagnara@cs.unipr.it, Department of Mathematics, University of Parma, Italy.
‡hill@comp.leeds.ac.uk, School of Computing, University of Leeds, U.K.
§zaffanella@cs.unipr.it, Department of Mathematics, University of Parma, Italy.

CONTENTS 1

Copyright c© 2001–2006 Roberto Bagnara (bagnara@cs.unipr.it).

This document describes the Parma Polyhedra Library (PPL).

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

The PPL is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version. A copy of the license is included in the section entitled “GNU GENERAL
PUBLIC LICENSE”.

The PPL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

For the most up-to-date information see the Parma Polyhedra Library site:

http://www.cs.unipr.it/ppl/

Contents

1 General Information on the PPL 1

2 PPL Module Index 28

3 PPL Namespace Index 28

4 PPL Hierarchical Index 28

5 PPL Class Index 30

6 PPL Page Index 32

7 PPL Module Documentation 32

8 PPL Namespace Documentation 95

9 PPL Class Documentation 101

10 PPL Page Documentation 281

1 General Information on the PPL

1.1 The Main Features

The Parma Polyhedra Library (PPL) is a modern C++ library for the manipulation of numerical information
that can be represented by points in some n-dimensional vector space. For instance, one of the key domains

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.fsf.org
http://www.fsf.org
http://www.cs.unipr.it/ppl/
http://www.cs.unipr.it/ppl/

1.2 Convex Polyhedra 2

the PPL supports is that of rational convex polyhedra (Section Convex Polyhedra). Such domains are
employed in several systems for the analysis and verification of hardware and software components, with
applications spanning imperative, functional and logic programming languages, synchronous languages
and synchronization protocols, real-time and hybrid systems. Even though the PPL library is not meant
to target a particular problem, the design of its interface has been largely influenced by the needs of the
above class of applications. That is the reason why the library implements a few operators that are more or
less specific to static analysis applications, while lacking some other operators that might be useful when
working, e.g., in the field of computational geometry.

The main features of the library are the following:

• it is user friendly: you write x + 2∗y + 5∗z <= 7 when you mean it;

• it is fully dynamic: available virtual memory is the only limitation to the dimension of anything;

• it provides full support for the manipulation of convex polyhedra that are not topologically closed;

• it is written in standard C++: meant to be portable;

• it is exception-safe: never leaks resources or leaves invalid object fragments around;

• it is rather efficient: and we hope to make it even more so;

• it is thoroughly documented: perhaps not literate programming but close enough;

• it has interfaces to other programming languages: including C and a number of Prolog systems;

• it is free software: distributed under the terms of the GNU General Public License.

In addition to the basic domains, we also provide generic support for constructing new domains from
pre-existing domains. The following domains and domain constructors are provided by the PPL:

• the domain of topologically closed, rational convex polyhedra;

• the domain of rational convex polyhedra that are not necessarily closed;

• the domain of topologically closed, rational bounded difference shapes;

• the powerset construction;

• the powerset construction, instantiated for convex polyhedra.

In the following sections we describe these domains and domain constructors together with their represen-
tations and operations that are available to the PPL user.

In the final section of this chapter (Section Using the Library), we provide some additional advice on the
use of the library.

1.2 Convex Polyhedra

In this section we introduce convex polyhedra, as considered by the library, in more detail. For more
information about the definitions and results stated here see [BRZH02b], [Fuk98], [NW88], and [Wil93].

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.2 Convex Polyhedra 3

1.2.1 Vectors, Matrices and Scalar Products

We denote by Rn the n-dimensional vector space on the field of real numbers R, endowed with the standard
topology. The set of all non-negative reals is denoted by R+. For each i ∈ {0, . . . , n − 1}, vi denotes the
i-th component of the (column) vector v = (v0, . . . , vn−1)T ∈ Rn. We denote by 0 the vector of Rn,
called the origin, having all components equal to zero. A vector v ∈ Rn can be also interpreted as a matrix
in Rn×1 and manipulated accordingly using the usual definitions for addition, multiplication (both by a
scalar and by another matrix), and transposition, denoted by vT.

The scalar product of v,w ∈ Rn, denoted 〈v,w〉, is the real number

vTw =
n−1∑
i=0

viwi.

For any S1, S2 ⊆ Rn, the Minkowski’s sum of S1 and S2 is: S1 + S2 = {v1 + v2 | v1 ∈ S1,v2 ∈ S2 }.

1.2.2 Affine Hyperplanes and Half-spaces

For each vector a ∈ Rn and scalar b ∈ R, where a 6= 0, and for each relation symbol ./ ∈ {=,≥, >}, the
linear constraint 〈a,x〉 ./ b defines:

• an affine hyperplane if it is an equality constraint, i.e., if ./ ∈ {=};

• a topologically closed affine half-space if it is a non-strict inequality constraint, i.e., if ./ ∈ {≥};

• a topologically open affine half-space if it is a strict inequality constraint, i.e., if ./ ∈ {>}.

Note that each hyperplane 〈a,x〉 = b can be defined as the intersection of the two closed affine half-spaces
〈a,x〉 ≥ b and 〈−a,x〉 ≥ −b. Also note that, when a = 0, the constraint 〈0,x〉 ./ b is either a tautology
(i.e., always true) or inconsistent (i.e., always false), so that it defines either the whole vector space Rn or
the empty set ∅.

1.2.3 Convex Polyhedra

The set P ⊆ Rn is a not necessarily closed convex polyhedron (NNC polyhedron, for short) if and only if
either P can be expressed as the intersection of a finite number of (open or closed) affine half-spaces of Rn

or n = 0 and P = ∅. The set of all NNC polyhedra on the vector space Rn is denoted Pn.

The set P ∈ Pn is a closed convex polyhedron (closed polyhedron, for short) if and only if either P can be
expressed as the intersection of a finite number of closed affine half-spaces of Rn or n = 0 and P = ∅.
The set of all closed polyhedra on the vector space Rn is denoted CPn.

When ordering NNC polyhedra by the set inclusion relation, the empty set ∅ and the vector space Rn are,
respectively, the smallest and the biggest elements of both Pn and CPn. The vector space Rn is also called
the universe polyhedron.

In theoretical terms, Pn is a lattice under set inclusion and CPn is a sub-lattice of Pn.

Note:

In the following, we will usually specify operators on the domain Pn of NNC polyhedra. Unless an
explicit distinction is made, these operators are provided with the same specification when applied to
the domain CPn of topologically closed polyhedra. The implementation maintains a clearer separation
between the two domains of polyhedra (see Topologies and Topological-compatibility): while com-
puting polyhedra in Pn may provide more precise results, polyhedra in CPn can be represented and

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.3 Representations of Convex Polyhedra 4

manipulated more efficiently. As a rule of thumb, if your application will only manipulate polyhedra
that are topologically closed, then it should use the simpler domain CPn. Using NNC polyhedra is
only recommended if you are going to actually benefit from the increased accuracy.

1.2.4 Bounded Polyhedra

An NNC polyhedron P ∈ Pn is bounded if there exists a λ ∈ R+ such that

P ⊆
{

x ∈ Rn
∣∣ −λ ≤ xj ≤ λ for j = 0, . . . , n− 1

}
.

A bounded polyhedron is also called a polytope.

1.3 Representations of Convex Polyhedra

NNC polyhedra can be specified by using two possible representations, the constraints (or implicit) repre-
sentation and the generators (or parametric) representation.

1.3.1 Constraints Representation

In the sequel, we will simply write “equality” and “inequality” to mean “linear equality” and “linear in-
equality”, respectively; also, we will refer to either an equality or an inequality as a constraint.

By definition, each polyhedron P ∈ Pn is the set of solutions to a constraint system, i.e., a finite number
of constraints. By using matrix notation, we have

P def= {x ∈ Rn | A1x = b1, A2x ≥ b2, A3x > b3 },

where, for all i ∈ {1, 2, 3}, Ai ∈ Rmi × Rn and bi ∈ Rmi , and m1,m2,m3 ∈ N are the number of
equalities, the number of non-strict inequalities, and the number of strict inequalities, respectively.

1.3.2 Combinations and Hulls

Let S = {x1, . . . ,xk} ⊆ Rn be a finite set of vectors. For all scalars λ1, . . . , λk ∈ R, the vector
v =

∑k
j=1 λjxj is said to be a linear combination of the vectors in S. Such a combination is said to be

• a positive (or conic) combination, if ∀j ∈ {1, . . . , k} : λj ∈ R+;

• an affine combination, if
∑k

j=1 λj = 1;

• a convex combination, if it is both positive and affine.

We denote by linear.hull(S) (resp., conic.hull(S), affine.hull(S), convex.hull(S)) the set of all the linear
(resp., positive, affine, convex) combinations of the vectors in S.

Let P,C ⊆ Rn, where P ∪ C = S. We denote by nnc.hull(P,C) the set of all convex combinations of
the vectors in S such that λj > 0 for some xj ∈ P (informally, we say that there exists a vector of P that
plays an active role in the convex combination). Note that nnc.hull(P,C) = nnc.hull(P, P ∪ C) so that,
if C ⊆ P ,

convex.hull(P) = nnc.hull(P, ∅) = nnc.hull(P, P) = nnc.hull(P,C).

It can be observed that linear.hull(S) is an affine space, conic.hull(S) is a topologically closed convex
cone, convex.hull(S) is a topologically closed polytope, and nnc.hull(P,C) is an NNC polytope.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.3 Representations of Convex Polyhedra 5

1.3.3 Points, Closure Points, Rays and Lines

Let P ∈ Pn be an NNC polyhedron. Then

• a vector p ∈ P is called a point of P;

• a vector c ∈ Rn is called a closure point of P if it is a point of the topological closure of P;

• a vector r ∈ Rn, where r 6= 0, is called a ray (or direction of infinity) ofP ifP 6= ∅ and p+λr ∈ P ,
for all points p ∈ P and all λ ∈ R+;

• a vector l ∈ Rn is called a line of P if both l and −l are rays of P .

A point of an NNC polyhedron P ∈ Pn is a vertex if and only if it cannot be expressed as a convex
combination of any other pair of distinct points in P . A ray r of a polyhedron P is an extreme ray if and
only if it cannot be expressed as a positive combination of any other pair r1 and r2 of rays of P , where
r 6= λr1, r 6= λr2 and r1 6= λr2 for all λ ∈ R+ (i.e., rays differing by a positive scalar factor are
considered to be the same ray).

1.3.4 Generators Representation

Each NNC polyhedron P ∈ Pn can be represented by finite sets of lines L, rays R, points P and closure
points C of P . The 4-tuple G = (L,R, P, C) is said to be a generator system for P , in the sense that

P = linear.hull(L) + conic.hull(R) + nnc.hull(P,C),

where the symbol ’+’ denotes the Minkowski’s sum.

When P ∈ CPn is a closed polyhedron, then it can be represented by finite sets of lines L, rays R and
points P of P . In this case, the 3-tuple G = (L,R, P) is said to be a generator system for P since we have

P = linear.hull(L) + conic.hull(R) + convex.hull(P).

Thus, in this case, every closure point of P is a point of P .

For any P ∈ Pn and generator system G = (L,R, P, C) for P , we have P = ∅ if and only if P = ∅. Also
P must contain all the vertices of P although P can be non-empty and have no vertices. In this case, as P is
necessarily non-empty, it must contain points of P that are not vertices. For instance, the half-space of R2

corresponding to the single constraint y ≥ 0 can be represented by the generator system G = (L,R, P, C)
such that L =

{
(1, 0)T

}
, R =

{
(0, 1)T

}
, P =

{
(0, 0)T

}
, and C = ∅. It is also worth noting that the

only ray in R is not an extreme ray of P .

1.3.5 Minimized Representations

A constraints system C for an NNC polyhedron P ∈ Pn is said to be minimized if no proper subset of C is
a constraint system for P .

Similarly, a generator system G = (L,R, P, C) for an NNC polyhedron P ∈ Pn is said to be minimized
if there does not exist a generator system G′ = (L′, R′, P ′, C ′) 6= G for P such that L′ ⊆ L, R′ ⊆ R,
P ′ ⊆ P and C ′ ⊆ C.

1.3.6 Double Description

Any NNC polyhedron P can be described by using a constraint system C, a generator system G, or both
by means of the double description pair (DD pair) (C,G). The double description method is a collection

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.3 Representations of Convex Polyhedra 6

of well-known as well as novel theoretical results showing that, given one kind of representation, there are
algorithms for computing a representation of the other kind and for minimizing both representations by
removing redundant constraints/generators.

Such changes of representation form a key step in the implementation of many operators on NNC polyhe-
dra: this is because some operators, such as intersections and poly-hulls, are provided with a natural and
efficient implementation when using one of the representations in a DD pair, while being rather cumber-
some when using the other.

1.3.7 Topologies and Topological-compatibility

As indicated above, when an NNC polyhedron P is necessarily closed, we can ignore the closure points
contained in its generator system G = (L,R, P, C) (as every closure point is also a point) and represent P
by the triple (L,R, P). Similarly, P can be represented by a constraint system that has no strict inequali-
ties. Thus a necessarily closed polyhedron can have a smaller representation than one that is not necessarily
closed. Moreover, operators restricted to work on closed polyhedra only can be implemented more effi-
ciently. For this reason the library provides two alternative “topological kinds” for a polyhedron, NNC and
C. We shall abuse terminology by referring to the topological kind of a polyhedron as its topology.

In the library, the topology of each polyhedron object is fixed once for all at the time of its creation and
must be respected when performing operations on the polyhedron.

Unless it is otherwise stated, all the polyhedra, constraints and/or generators in any library operation must
obey the following topological-compatibility rules:

• polyhedra are topologically-compatible if and only if they have the same topology;

• all constraints except for strict inequality constraints and all generators except for closure points are
topologically-compatible with both C and NNC polyhedra;

• strict inequality constraints and closure points are topologically-compatible with a polyhedron if and
only if it is NNC.

Wherever possible, the library provides methods that, starting from a polyhedron of a given topology, build
the corresponding polyhedron having the other topology.

1.3.8 Space Dimensions and Dimension Compatibility

The space dimension of an NNC polyhedron P ∈ Pn (resp., a C polyhedron P ∈ CPn) is the dimension
n ∈ N of the corresponding vector space Rn. The space dimension of constraints, generators and other
objects of the library is defined similarly.

Unless it is otherwise stated, all the polyhedra, constraints and/or generators in any library operation must
obey the following (space) dimension-compatibility rules:

• polyhedra are dimension-compatible if and only if they have the same space dimension;

• the constraint 〈a,x〉 ./ b where ./ ∈ {=,≥, >} and a,x ∈ Rm, is dimension-compatible with a
polyhedron having space dimension n if and only if m ≤ n;

• the generator x ∈ Rm is dimension-compatible with a polyhedron having space dimension n if and
only if m ≤ n;

• a system of constraints (resp., generators) is dimension-compatible with a polyhedron if and only if
all the constraints (resp., generators) in the system are dimension-compatible with the polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 7

While the space dimension of a constraint, a generator or a system thereof is automatically adjusted when
needed, the space dimension of a polyhedron can only be changed by explicit calls to operators provided
for that purpose.

1.3.9 Affine Independence and Affine Dimension

A finite set of points {x1, . . . ,xk} ⊆ Rn is affinely independent if, for all λ1, . . . , λk ∈ R, the system of
equations

k∑
i=1

λixi = 0,

k∑
i=1

λi = 0

implies that, for each i = 1, . . . , k, λi = 0.

The maximum number of affinely independent points in Rn is n + 1.

A non-empty NNC polyhedron P ∈ Pn has affine dimension k ∈ N, denoted by dim(P) = k, if the
maximum number of affinely independent points in P is k + 1.

We remark that the above definition only applies to polyhedra that are not empty, so that 0 ≤ dim(P) ≤ n.
By convention, the affine dimension of an empty polyhedron is 0 (even though the “natural” generalization
of the definition above would imply that the affine dimension of an empty polyhedron is −1).

Note:

The affine dimension k ≤ n of an NNC polyhedron P ∈ Pn must not be confused with the space
dimension n of P , which is the dimension of the enclosing vector space Rn. In particular, we can have
dim(P) 6= dim(Q) even though P and Q are dimension-compatible; and vice versa, P and Q may be
dimension-incompatible polyhedra even though dim(P) = dim(Q).

1.3.10 Rational Polyhedra

An NNC polyhedron is called rational if it can be represented by a constraint system where all the con-
straints have rational coefficients. It has been shown that an NNC polyhedron is rational if and only if it
can be represented by a generator system where all the generators have rational coefficients.

The library only supports rational polyhedra. The restriction to rational numbers applies not only to poly-
hedra, but also to the other numeric arguments that may be required by the operators considered, such as
the coefficients defining (rational) affine transformations and (rational) bounding boxes.

1.4 Operations on Convex Polyhedra

In this section we briefly describe operations on NNC polyhedra that are provided by the library.

1.4.1 Intersection and Convex Polyhedral Hull

For any pair of NNC polyhedra P1,P2 ∈ Pn, the intersection of P1 and P2, defined as the set intersection
P1 ∩P2, is the biggest NNC polyhedron included in both P1 and P2; similarly, the convex polyhedral hull
(or poly-hull) of P1 and P2, denoted by P1] P2, is the smallest NNC polyhedron that includes both P1

and P2. The intersection and poly-hull of any pair of closed polyhedra in CPn is also closed.

In theoretical terms, the intersection and poly-hull operators defined above are the binary meet and the
binary join operators on the lattices Pn and CPn.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 8

1.4.2 Convex Polyhedral Difference

For any pair of NNC polyhedra P1,P2 ∈ Pn, the convex polyhedral difference (or poly-difference) of P1

and P2 is defined as the smallest convex polyhedron containing the set-theoretic difference of P1 and P2.

In general, even though P1,P2 ∈ CPn are topologically closed polyhedra, their poly-difference may be a
convex polyhedron that is not topologically closed. For this reason, when computing the poly-difference
of two C polyhedra, the library will enforce the topological closure of the result.

1.4.3 Concatenating Polyhedra

Viewing a polyhedron as a set of tuples (its points), it is sometimes useful to consider the set of tuples
obtained by concatenating an ordered pair of polyhedra. Formally, the concatenation of the polyhedra
P ∈ Pn and Q ∈ Pm (taken in this order) is the polyhedron R ∈ Pn+m such that

R def=
{

(x0, . . . , xn−1, y0, . . . , ym−1)T ∈ Rn+m
∣∣∣ (x0, . . . , xn−1)T ∈ P, (y0, . . . , ym−1)T ∈ Q

}
.

Another way of seeing it is as follows: first embed polyhedron P into a vector space of dimension n + m
and then add a suitably renamed-apart version of the constraints defining Q.

1.4.4 Adding New Dimensions to the Vector Space

The library provides two operators for adding a number i of space dimensions to an NNC polyhedron
P ∈ Pn, therefore transforming it into a new NNC polyhedron Q ∈ Pn+i. In both cases, the added
dimensions of the vector space are those having the highest indices.

The operator add_space_dimensions_and_embed embeds the polyhedron P into the new vector
space of dimension i + n and returns the polyhedron Q defined by all and only the constraints defining P
(the variables corresponding to the added dimensions are unconstrained). For instance, when starting from
a polyhedron P ⊆ R2 and adding a third space dimension, the result will be the polyhedron

Q =
{

(x0, x1, x2)T ∈ R3
∣∣ (x0, x1)T ∈ P

}
.

In contrast, the operator add_space_dimensions_and_project projects the polyhedron P into
the new vector space of dimension i + n and returns the polyhedron Q whose constraint system, besides
the constraints defining P , will include additional constraints on the added dimensions. Namely, the cor-
responding variables are all constrained to be equal to 0. For instance, when starting from a polyhedron
P ⊆ R2 and adding a third space dimension, the result will be the polyhedron

Q =
{

(x0, x1, 0)T ∈ R3
∣∣ (x0, x1)T ∈ P

}
.

1.4.5 Removing Dimensions from the Vector Space

The library provides two operators for removing space dimensions from an NNC polyhedron P ∈ Pn,
therefore transforming it into a new NNC polyhedron Q ∈ Pm where m ≤ n.

Given a set of variables, the operator remove_space_dimensions removes all the space dimensions
specified by the variables in the set. For instance, letting P ∈ P4 be the singleton set

{
(3, 1, 0, 2)T

}
⊆ R4,

then after invoking this operator with the set of variables {x1, x2} the resulting polyhedron is

Q =
{
(3, 2)T

}
⊆ R2.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 9

Given a space dimension m less than or equal to that of the polyhedron, the operator remove_higher_-
space_dimensions removes the space dimensions having indices greater than or equal to m. For
instance, letting P ∈ P4 defined as before, by invoking this operator with m = 2 the resulting polyhedron
will be

Q =
{
(3, 1)T

}
⊆ R2.

1.4.6 Mapping the Dimensions of the Vector Space

The operator map_space_dimensions provided by the library maps the dimensions of the vector
space Rn according to a partial injective function ρ : {0, . . . , n− 1} � N such that ρ

(
{0, . . . , n− 1}

)
=

{0, . . . ,m− 1} with m ≤ n. Dimensions corresponding to indices that are not mapped by ρ are removed.

If m = 0, i.e., if the function ρ is undefined everywhere, then the operator projects the argument polyhedron
P ∈ Pn onto the zero-dimension space R0; otherwise the result is Q ∈ Pm given by

Q def=
{(

vρ−1(0), . . . , vρ−1(m−1)

)T
∣∣∣ (v0, . . . , vn−1)T ∈ P

}
.

1.4.7 Expanding One Dimension of the Vector Space to Multiple Dimensions

The operator expand_space_dimension provided by the library adds m new space dimensions to a
polyhedron P ∈ Pn, with n > 0, so that dimensions n, n + 1, . . ., n + m − 1 of the result Q are exact
copies of the i-th space dimension of P . More formally,

Q def=

 u ∈ Rn+m

∣∣∣∣∣∣∣
∃v,w ∈ P . ui = vi

∧ ∀j = n, n + 1, . . . , n + m− 1 : uj = wi

∧ ∀k = 0, . . . , n− 1 : k 6= i =⇒ uk = vk = wk

.

This operation has been proposed in [GDMDRS04].

1.4.8 Folding Multiple Dimensions of the Vector Space into One Dimension

The operator fold_space_dimensions provided by the library, given a polyhedron P ∈ Pn, with
n > 0, folds a set of space dimensions J = {j0, . . . , jm−1}, with m < n and j < n for each j ∈ J , into
space dimension i < n, where i /∈ J . The result is given by

Q def=
m⊎

d=0

Qd

where

Qm
def=

{
u ∈ Rn−m

∣∣∣∣∣ ∃v ∈ P . ui′ = vi

∧ ∀k = 0, . . . , n− 1 : k 6= i =⇒ uk′ = vk

}
and, for d = 0, . . ., m− 1,

Qd
def=

{
u ∈ Rn−m

∣∣∣∣∣ ∃v ∈ P . ui′ = vjd

∧ ∀k = 0, . . . , n− 1 : k 6= i =⇒ uk′ = vk

}
,

and, finally, for k = 0, . . ., n− 1,

k′
def= k −#{ j ∈ J | k > j },

(# S denotes the cardinality of the finite set S).

This operation has been proposed in [GDMDRS04].

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 10

1.4.9 Images and Preimages of Affine Transfer Relations

For each relation φ ⊆ Rn×Rm, we denote by φ(S) ⊆ Rm the image under φ of the set S ⊆ Rn; formally,

φ(S) def=
{

w ∈ Rm
∣∣ ∃v ∈ S . (v,w) ∈ φ

}
.

Similarly, we denote by φ−1(S′) ⊆ Rn the preimage under φ of S′ ⊆ Rm, that is

φ−1(S′) def=
{

v ∈ Rn
∣∣ ∃w ∈ S′ . (v,w) ∈ φ

}
.

If n = m, then the relation φ is said to be space dimension preserving.

The relation φ ⊆ Rn × Rm is said to be an affine relation if there exists ` ∈ N such that

∀v ∈ Rn,w ∈ Rm : (v,w) ∈ φ ⇐⇒
∧̀
i=1

(
〈ci,w〉 ./i 〈ai,v〉+ bi

)
,

where ai ∈ Rn, ci ∈ Rm, bi ∈ R and ./i ∈ {<,≤,=,≥, >}, for each i = 1, . . . , `.

As a special case, the relation φ ⊆ Rn × Rm is an affine function if and only if there exist a matrix
A ∈ Rm × Rn and a vector b ∈ Rm such that,

∀v ∈ Rn,w ∈ Rm : (v,w) ∈ φ ⇐⇒ w = Av + b.

The set Pn of NNC polyhedra is closed under the application of images and preimages of any space di-
mension preserving affine relation. The same property holds for the set CPn of closed polyhedra, provided
the affine relation makes no use of the strict relation symbols < and >. Images and preimages of affine
relations can be used to model several kinds of transition relations, including deterministic assignments of
affine expressions, (affinely constrained) nondeterministic assignments and affine conditional guards.

A space dimension preserving relation φ ⊆ Rn × Rn can be specified by means of a shorthand notation:

• the vector x = (x0, . . . , xn−1)T of unprimed variables is used to represent the space dimensions of
the domain of φ;

• the vector x′ = (x′0, . . . , x
′
n−1)

T of primed variables is used to represent the space dimensions of
the range of φ;

• any primed variable that “does not occur” in the shorthand specification is meant to be unaffected
by the relation; namely, for each index i ∈ {0, . . . , n − 1}, if in the syntactic specification of the
relation the primed variable x′i only occurs (if ever) with coefficient 0, then it is assumed that the
specification also contains the constraint x′i = xi.

As an example, assuming φ ⊆ R3 × R3, the notation x′0 − x′2 ≥ 2x0 − x1, where the primed variable x′1
does not occur, is meant to specify the affine relation defined by

∀v ∈ R3,w ∈ R3 : (v,w) ∈ φ ⇐⇒ (w0 + w2 ≥ 2v0 − v1) ∧ (w1 = v1).

The same relation is specified by x′0 + 0 · x′1 − x′2 ≥ 2x0 − x1, since x′1 occurs with coefficient 0.

The library allows for the computation of images and preimages of polyhedra under restricted subclasses
of space dimension preserving affine relations, as described in the following.

1.4.10 Single-Update Affine Functions.

Given a primed variable x′k and an unprimed affine expression 〈a,x〉 + b, the affine function
φ =

(
x′k = 〈a,x〉+ b

)
: Rn → Rn is defined by

∀v ∈ Rn : φ(v) = Av + b,

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 11

where

A =



1 0 0 · · · · · · 0
. . .

...
...

0 1 0 · · · · · · 0
a0 · · · ak−1 ak ak+1 · · · an−1

0 · · · · · · 0 1 0
...

...
. . .

0 · · · · · · 0 0 1


, b =



0
...
0
b
0
...
0


and the ai (resp., b) occur in the (k + 1)st row in A (resp., position in b). Thus function φ maps any vector
(v0, . . . , vn−1)T to (

v0, . . . ,
(∑n−1

i=0 aivi + b
)
, . . . , vn−1

)T

.

The affine image operator computes the affine image of a polyhedron P under x′k = 〈a,x〉 + b. For
instance, suppose the polyhedron P to be transformed is the square in R2 generated by the set of points{
(0, 0)T, (0, 3)T, (3, 0)T, (3, 3)T

}
. Then, if the primed variable is x0 and the affine expression is x0 +

2x1 + 4 (so that k = 0, a0 = 1, a1 = 2, b = 4), the affine image operator will translate P to the
parallelogram P1 generated by the set of points

{
(4, 0)T, (10, 3)T, (7, 0)T, (13, 3)T

}
with height equal to

the side of the square and oblique sides parallel to the line x0 − 2x1. If the primed variable is as before
(i.e., k = 0) but the affine expression is x1 (so that a0 = 0, a1 = 1, b = 0), then the resulting polyhedron
P2 is the positive diagonal of the square.

The affine preimage operator computes the affine preimage of a polyhedron P under x′k = 〈a,x〉+ b. For
instance, suppose now that we apply the affine preimage operator as given in the first example using primed
variable x0 and affine expression x0 + 2x1 + 4 to the parallelogram P1; then we get the original square P
back. If, on the other hand, we apply the affine preimage operator as given in the second example using
primed variable x0 and affine expression x1 to P2, then the resulting polyhedron is the stripe obtained by
adding the line (1, 0)T to polyhedron P2.

Observe that provided the coefficient ak of the considered variable in the affine expression is non-zero, the
affine function is invertible.

1.4.11 Single-Update Bounded Affine Relations.

Given a primed variable x′k and two unprimed affine expressions lb = 〈a,x〉+ b and ub = 〈c,x〉+ d, the
bounded affine relation φ = (lb ≤ x′k ≤ ub) is defined as

∀v ∈ Rn,w ∈ Rn : (v,w) ∈ φ ⇐⇒
(
〈a,v〉+ b ≤ wk ≤ 〈c,v〉+ d

)
∧

(∧
0≤i<n,i6=k

wi = vi

)
.

1.4.12 Generalized Affine Relations.

Similarly, the generalized affine relation φ = (lhs′ ./ rhs), where lhs = 〈c,x〉 + d and rhs = 〈a,x〉 + b
are affine expressions and ./ ∈ {<,≤,=,≥, >} is a relation symbol, is defined as

∀v ∈ Rn,w ∈ Rn : (v,w) ∈ φ ⇐⇒
(
〈c,w〉+ d ./ 〈a,v〉+ b

)
∧

(∧
0≤i<n,ci=0

wi = vi

)
.

When lhs = xk and ./ ∈ {=}, then the above affine relation becomes equivalent to the single-update affine
function x′k = rhs (hence the name given to this operator). It is worth stressing that the notation is not
symmetric, because the variables occurring in expression lhs are interpreted as primed variables, whereas
those occurring in rhs are unprimed; for instance, the transfer relations lhs′ ≤ rhs and rhs′ ≥ lhs are not
equivalent in general.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 12

1.4.13 Time-Elapse Operator

The time-elapse operator has been defined in [HPR97]. Actually, the time-elapse operator provided by
the library is a slight generalization of that one, since it also works on NNC polyhedra. For any two NNC
polyhedraP,Q ∈ Pn, the time-elapse betweenP andQ, denotedP ↗ Q, is the smallest NNC polyhedron
containing the set {

p + λq ∈ Rn
∣∣ p ∈ P, q ∈ Q, λ ∈ R+

}
.

Note that, if P,Q ∈ CPn are closed polyhedra, the above set is also a closed polyhedron. In contrast, when
Q is not topologically closed, the above set might not be an NNC polyhedron.

1.4.14 Relation-With Operators

The library provides operators for checking the relation holding between an NNC polyhedron and either a
constraint or a generator.

Suppose P is an NNC polyhedron and C an arbitrary constraint system representing P . Suppose also that
c =

(
〈a,x〉 ./ b

)
is a constraint with ./ ∈ {=,≥, >} and Q the set of points that satisfy c. The possible

relations between P and c are as follows.

• P is disjoint from c if P ∩Q = ∅; that is, adding c to C gives us the empty polyhedron.

• P strictly intersects c if P ∩ Q 6= ∅ and P ∩ Q ⊂ P; that is, adding c to C gives us a non-empty
polyhedron strictly smaller than P .

• P is included in c if P ⊆ Q; that is, adding c to C leaves P unchanged.

• P saturates c if P ⊆ H, where H is the hyperplane induced by constraint c, i.e., the set of points
satisfying the equality constraint 〈a,x〉 = b; that is, adding the constraint 〈a,x〉 = b to C leaves P
unchanged.

The polyhedron P subsumes the generator g if adding g to any generator system representing P does not
change P .

1.4.15 Intervals, Boxes and Bounding Boxes

An interval in R is a pair of bounds, called lower and upper. Each bound can be either (1) closed and
bounded, (2) open and bounded, or (3) open and unbounded. If the bound is bounded, then it has a value
in R. An n-dimensional box B in Rn is a sequence of n intervals in R.

The polyhedron P represents a box B in Rn if P is described by a constraint system in Rn that con-
sists of one constraint for each bounded bound (lower and upper) in an interval in B: Letting ei =
(0, . . . , 1, . . . , 0)T be the vector in Rn with 1 in the i’th position and zeroes in every other position; if
the lower bound of the i’th interval in B is bounded, the corresponding constraint is defined as 〈ei,x〉 ./ b,
where b is the value of the bound and ./ is≥ if it is a closed bound and > if it is an open bound. Similarly, if
the upper bound of the i’th interval in B is bounded, the corresponding constraint is defined as 〈ei,x〉 ./ b,
where b is the value of the bound and ./ is ≤ if it is a closed bound and < if it is an open bound.

If every bound in the intervals defining a box B is either closed and bounded or open and unbounded, then
B represents a closed polyhedron.

The bounding box of an NNC polyhedron P is the smallest n-dimensional box containing P .

The library provides operations for computing the bounding box of an NNC polyhedron and conversely,
for obtaining the NNC polyhedron representing a given bounding box.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 13

1.4.16 Widening Operators

The library provides two widening operators for the domain of polyhedra. The first one, that we call
H79-widening, mainly follows the specification provided in the PhD thesis of N. Halbwachs [Hal79], also
described in [HPR97]. Note that in the computation of the H79-widening P ∇ Q of two polyhedra
P,Q ∈ CPn it is required as a precondition that P ⊆ Q (the same assumption was implicitly present in
the cited papers).

The second widening operator, that we call BHRZ03-widening, is an instance of the specification provided
in [BHRZ03a]. This operator also requires as a precondition that P ⊆ Q and it is guaranteed to provide a
result which is at least as precise as the H79-widening.

Both widening operators can be applied to NNC polyhedra. The user is warned that, in such a case, the
results may not closely match the geometric intuition which is at the base of the specification of the two
widenings. The reason is that, in the current implementation, the widenings are not directly applied to the
NNC polyhedra, but rather to their internal representations. Implementation work is in progress and future
versions of the library may provide an even better integration of the two widenings with the domain of
NNC polyhedra.

Note:

As is the case for the other operators on polyhedra, the implementation overwrites one of the two
polyhedra arguments with the result of the widening application. To avoid trivial misunderstandings, it
is worth stressing that if polyhedra P andQ (where P ⊆ Q) are identified by program variables p and
q, respectively, then the call q.H79_widening_assign(p) will assign the polyhedron P ∇ Q to
variable q. Namely, it is the bigger polyhedron Q which is overwritten by the result of the widening.
The smaller polyhedron is not modified, so as to lead to an easier coding of the usual convergence
test (P ⊇ P ∇ Q can be coded as p.contains(q)). Note that, in the above context, a call such
as p.H79_widening_assign(q) is likely to result in undefined behavior, since the precondition
Q ⊆ P will be missed (unless it happens that P = Q). The same observation holds for all flavors
of widenings and extrapolation operators that are implemented in the library and for all the foreign
language interfaces.

1.4.17 Widening with Tokens

When approximating a fixpoint computation using widening operators, a common tactic to improve the
precision of the final result is to delay the application of widening operators. The usual approach is to fix a
parameter k and only apply widenings starting from the k-th iteration.

The library also supports an improved widening delay strategy, that we call widening with tokens
[BHRZ03a]. A token is a sort of wildcard allowing for the replacement of the widening application by
the exact upper bound computation: the token is used (and thus consumed) only when the widening would
have resulted in an actual precision loss (as opposed to the potential precision loss of the classical delay
strategy). Thus, all widening operators can be supplied with an optional argument, recording the number of
available tokens, which is decremented when tokens are used. The approximated fixpoint computation will
start with a fixed number k of tokens, which will be used if and when needed. When there are no tokens
left, the widening is always applied.

1.4.18 Extrapolation Operators

Besides the two widening operators, the library also implements several extrapolation operators, which
differ from widenings in that their use along an upper iteration sequence does not ensure convergence in a
finite number of steps.

In particular, for each of the two widenings there is a corresponding limited extrapolation operator, which

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.5 Bounded Difference Shapes 14

can be used to implement the widening “up to” technique as described in [HPR97]. Each limited extrapola-
tion operator takes a constraint system as an additional parameter and uses it to improve the approximation
yielded by the corresponding widening operator. Note that a convergence guarantee can only be obtained
by suitably restricting the set of constraints that can occur in this additional parameter. For instance, in
[HPR97] this set is fixed once and for all before starting the computation of the upward iteration sequence.

The bounded extrapolation operators further enhance each one of the limited extrapolation operators de-
scribed above, by ensuring that their results cannot be worse than the smallest bounding box enclosing the
two argument polyhedra.

1.5 Bounded Difference Shapes

For each vector a ∈ Rn and scalar b ∈ R, and for each relation symbol ./ ∈ {=,≥}, the linear constraint
〈a,x〉 ./ b is said to be a bounded difference if there exist two indices i, j ∈ {0, . . . , n− 1} such that:

• ai, aj ∈ {−1, 0, 1} and ai 6= aj ;

• ak = 0, for all k /∈ {i, j}.

A convex polyhedron P ∈ CPn is said to be a bounded difference shape (BDS, for short) if and only if
either P can be expressed as the intersection of a finite number of bounded difference constraints or n = 0
and P = ∅.

By construction, a BDS is always topologically closed. Under the usual set inclusion ordering, the set of
all BDSs on the vector space Rn is a lattice having the empty set ∅ and the universe Rn as the smallest and
the biggest elements, respectively. In theoretical terms, it is a meet sub-lattice of CPn, meaning that the
intersection of a finite set of BDSs is still a BDS; on the other hand, in general the poly-hull of two BDSs
is not a BDS. The smallest BDS containing a finite set of BDSs is said to be their bds-hull.

The PPL provides support for computations on the domain of rational bounded difference shapes that, in
selected contexts, can achieve a better precision/efficiency ratio with respect to the corresponding compu-
tations on a domain of convex polyhedra. As far as the representation of the rational inhomogeneous term
of each bounded difference is concerned, several rounding-aware implementation choices are available,
including:

• bounded precision integer types;

• bounded precision floating point types;

• unbounded precision integer and rational types, as provided by GMP.

The user interface for BDSs is meant to be as similar as possible to the one developed for the domain of
closed polyhedra: in particular, all operators on polyhedra are also available for the domain of BDSs, even
though they are typically characterized by a lower degree of precision.

1.5.1 Widening and Extrapolation Operators on BD Shapes

For the domain of BDSs, the library provides a variant of the widening operator for convex polyhedra
defined in [CH78]. The implementation follows the specification in [BHMZ05], resulting in an operator
which is well-defined on the domain of BDSs (i.e., it does not depend on the internal representation of
BDSs), while still ensuring convergence in a finite number of steps.

The library also implements an extension of the widening operator for intervals as defined in [CC76]. The
reader is warned that such an extension, even though being well-defined on the domain of BDSs, is not
provided with a convergence guarantee and is therefore an extrapolation operator.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.6 The Powerset Construction 15

1.6 The Powerset Construction

The PPL provides the finite powerset construction; this takes a pre-existing domain and upgrades it to one
that can represent disjunctive information (by using a finite number of disjuncts). The construction follows
the approach described in [Bag98], also summarized in [BHZ04] where there is an account of generic
widenings for the powerset domain (some of which are supported in the instantiation of this construction
by the domain of convex polyhedra and described in Section The Polyhedra Powerset Domain).

1.6.1 The Powerset Domain

The domain is built from a pre-existing base-level domain D which must include an entailment relation
‘`’, meet operation ‘⊗’, a top element ‘1’ and bottom element ‘0’.

A set S ∈ ℘(D) is called non-redundant with respect to ‘`’ if and only if 0 /∈ S and ∀d1, d2 ∈ S : d1 `
d2 =⇒ d1 = d2. The set of finite non-redundant subsets of D (with respect to ‘`’) is denoted by ℘`

fn(D).
The function Ω`

D : ℘f(D) → ℘`
fn(D), called Omega-reduction, maps a finite set into its non-redundant

counterpart; it is defined, for each S ∈ ℘f(D), by

Ω`
D(S) def= S \ { d ∈ S | d = 0 or ∃d′ ∈ S . d
 d′ }.

where d
 d′ denotes d ` d′ ∧ d 6= d′.

As the intended semantics of a powerset domain element S ∈ ℘f(D) is that of disjunction of the semantics
of D, the finite set S is semantically equivalent to the non-redundant set Ω`

D(S); and elements of S will be
called disjuncts. The restriction to the finite subsets reflects the fact that here disjunctions are implemented
by explicit collections of disjuncts. As a consequence of this restriction, for any S ∈ ℘f(D) such that
S 6= {0}, Ω`

D(S) is the (finite) set of the maximal elements of S.

The finite powerset domain over a domain D is the set of all finite non-redundant sets of D and denoted
by DP. The domain includes an approximation ordering ‘`P’ defined so that, for any S1 and S2 ∈ DP,
S1 `P S2 if and only if

∀d1 ∈ S1 : ∃d2 ∈ S2 . d1 ` d2.

Therefore the top element is {1} and the bottom element is the emptyset.

Note:

As far as Omega-reduction is concerned, the library adopts a lazy approach: an element of the powerset
domain is represented by a potentially redundant sequence of disjuncts. Redundancies can be elimi-
nated by explicitly invoking the operator omega_reduce(), e.g., before performing the output of
a powerset element. Note that all the documented operators automatically perform Omega-reductions
on their arguments, when needed or appropriate.

1.7 Operations on the Powerset Construction

In this section we briefly describe the generic operations on Powerset Domains that are provided by the
library for any given base-level domain D.

1.7.1 Meet and Upper Bound

Given the sets S1 and S2 ∈ DP, the meet and upper bound operators provided by the library returns the set
Ω`

D

(
{ d1 ⊗ d2 | d1 ∈ S1, d2 ∈ S2 }

)
and Omega-reduced set union Ω`

D(S1 ∪ S2) respectively.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.8 The Polyhedra Powerset Domain 16

1.7.2 Adding a Disjunct

Given the powerset element S ∈ DP and the base-level element d ∈ D, the add disjunct operator provided
by the library returns the powerset element Ω`

D

(
S ∪ {d}

)
.

1.7.3 Collapsing a Powerset Element

If the given powerset element is not empty, then the collapse operator returns the singleton powerset con-
sisting of an upper-bound of all the disjuncts.

1.8 The Polyhedra Powerset Domain

The Polyhedra powerset domain (Pn)P provided by the PPL is the finite powerset domain (defined in
Section The Powerset Construction) over the domain of NNC polyhedra Pn.

In addition to the operations described for the generic powerset domain in Section Operations on the Pow-
erset Construction, we provide some operations that are specific to this instantiation. Of these, most corre-
spond to the application of the equivalent operation on each of the NNC polyhedra that are in the given set.
Here we just describe those operations that are particular to the polyhedra powerset domain.

1.8.1 Geometric Comparisons

Given the sets S1,S2 ∈ (Pn)P, then we say that S1 geometrically covers S2 if every point (in some
element) in a polyhedron in S2 is also a point in a polyhedron in S1. If S1 geometrically covers S2 and S2

geometrically covers S1, then we say that they are geometrically equal.

1.8.2 Pairwise Merge

Given the powerset S ∈ (Pn)P, then the pairwise merge operator takes pairs of distinct elements in S whose
poly-hull is the same as their set-theoretical union and replaces them by their union. This replacement is
done recursively so that, for each pair P,Q of distinct polyhedra in the result set, we have P]Q 6= P ∪Q.

1.8.3 Extrapolation Operators

The library implements a generalization of the extrapolation operator for powerset domains proposed in
[BGP99]. The operator BGP99_extrapolation_assign is made parametric by allowing for the
specification of a base-level extrapolation operator different from the H79 widening (e.g., the BHRZ03
widening can be used). Note that, in the general case, this operator cannot guarantee the convergence of
the iteration sequence in a finite number of steps (for a counter-example, see [BHZ04]).

1.8.4 Certificate-Based Widenings

The PPL library provides support for the specification of proper widening operators on the powerset domain
of convex polyhedra. In particular, this version of the library implements an instance of the certificate-based
widening framework proposed in [BHZ03b].

A finite convergence certificate for an extrapolation operator is a formal way of ensuring that such an
operator is indeed a widening on the considered domain. Given a widening operator on the base-level
domain, together with the corresponding convergence certificate, the BHZ03 framework shows how it is

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.9 Rational Grids 17

possible to lift this widening so as to work on the finite powerset domain, while still ensuring convergence
in a finite number of iterations.

Being highly parametric, the BHZ03 widening framework can be instantiated in many ways. The cur-
rent implementation provides the templatic operator BHZ03_widening_assign<Certificate,
Widening> which only exploits a fraction of this generality, by allowing the user to specify the base-
level widening function and the corresponding certificate. The widening strategy is fixed and uses two
extrapolation heuristics: first, the least upper bound is tried; second, the BGP99 extrapolation operator is
tried, possibly applying pairwise merging. If both heuristics fail to converge according to the convergence
certificate, then an attempt is made to apply the base-level widening to the poly-hulls of the two arguments,
possibly improving the result obtained by means of the poly-difference operator. For more details and a
justification of the overall approach, see [BHZ03b] and [BHZ04].

The library provides two convergence certificates: while BHRZ03_Certificate is compatible with both the
BHRZ03 and the H79 widenings, H79_Certificate is only compatible with the latter. Note that using dif-
ferent certificates will change the results obtained, even when using the same base-level widening operator.
It is also worth stressing that it is up to the user to see that the widening operator is actually compatible
with a given convergence certificate. If such a requirement is not met, then an extrapolation operator will
be obtained.

1.9 Rational Grids

In this section we introduce rational grids as provided by the library. See also [BDHMZ05] for a detailed
description of this domain.

The libary supports two representations for the grids domain; congruence systems and grid generator
systems. We first describe linear congruence relations which form the elements of a congruence system.

1.9.1 Congruences and Congruence Relations

For any a, b, f ∈ R, a ≡f b denotes the congruence ∃µ ∈ Z . a− b = µf .

Let S ∈ {Q, R}. For each vector a ∈ Sn \ {0} and scalars b, f ∈ S, the notation 〈a,x〉 ≡f b stands for
the linear congruence relation in Sn defined by the set of vectors{

v ∈ Rn
∣∣ ∃µ ∈ Z . 〈a,v〉 = b + µf

}
;

when f 6= 0, the relation is said to be proper; 〈a,x〉 ≡0 b (i.e., when f = 0) denotes the equality
〈a,x〉 = b. f is called the frequency or modulus and b the base value of the relation. Thus, provided
a 6= 0, the relation 〈a,x〉 ≡f b defines the set of affine hyperplanes{ (

〈a,x〉 = b + µf
) ∣∣ µ ∈ Z

}
;

if b ≡f 0, 〈0,x〉 ≡f b defines the universe Rn and the empty set, otherwise.

1.9.2 Rational Grids

The set L ⊆ Rn is a rational grid if and only if either L is the set of vectors in Rn that satisfy a finite
system C of congruence relations in Qn or n = 0 and L = ∅.

We also say that L is described by C and that C is a congruence system for L.

The grid domain Gn is the set of all rational grids described by finite sets of congruence relations in Qn.

If the congruence system C describes the ∅, the empty grid, then we say that C is inconsistent. For example,
the congruence systems

{
〈0,x〉 ≡0 1

}
meaning that 0 = 1 and

{
〈a,x〉 ≡2 0, 〈a,x〉 ≡2 1

}
, for any

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.9 Rational Grids 18

a ∈ Rn, meaning that the value of an expression must be both even and odd are both inconsistent since
both describe the empty grid.

When ordering grids by the set inclusion relation, the empty set ∅ and the vector space Rn (which is
described by the empty set of congruence relations) are, respectively, the smallest and the biggest elements
of Gn. The vector space Rn is also called the universe grid.

In set theoretical terms, Gn is a lattice under set inclusion.

1.9.3 Integer Combinations

Let S = {x1, . . . ,xk} ⊆ Rn be a finite set of vectors. For all scalars µ1, . . . , µk ∈ Z, the vector
v =

∑k
j=1 µjxj is said to be a integer combination of the vectors in S.

We denote by int.hull(S) (resp., int.affine.hull(S)) the set of all the integer (resp., integer and affine)
combinations of the vectors in S.

1.9.4 Points, Parameters and Lines

Let L be a grid. Then

• a vector p ∈ L is called a point of L;

• a vector q ∈ Rn, where q 6= 0, is called a parameter of L if L 6= ∅ and p + µq ∈ L, for all points
p ∈ L and all µ ∈ Z;

• a vector l ∈ Rn is called a line of L if L 6= ∅ and p + λl ∈ L, for all points p ∈ L and all λ ∈ R.

1.9.5 The Grid Generator Representation

We can generate any rational grid in Gn from a finite subset of its points, parameters and lines; each point
in a grid is obtained by adding a linear combination of its generating lines to an integral combination of its
parameters and an integral affine combination of its generating points.

If L,Q, P are each finite subsets of Qn and

L = linear.hull(L) + int.hull(Q) + int.affine.hull(P)

where the symbol ’+’ denotes the Minkowski’s sum, then L ∈ Gn is a rational grid (see Section 4.4 in
[Sch99] and also Proposition 8 in [BDHMZ05]). The 3-tuple (L,Q, P) is said to be a generator system for
L and we write L = ggen(L,Q, P).

Note that the grid L = ggen(L,Q, P) = ∅ if and only if the set of points P = ∅. If P 6= ∅, then
L = ggen(L, ∅, Qp ∪ P) where, for some p ∈ P , Qp = {p + q | q ∈ Q }.

1.9.6 Minimized Grid Representations

A minimized congruence system C for L is such that, if C′ is another congruence system for L, then
C ≤ # C′. Note that a minimized congruence system for a non-empty grid has at most n congruence
relations.

Similarly, a minimized generator system G = (L,Q, P) for L is such that, if G′ = (L′, Q′, P ′) is another
generator system for L, then # L ≤ # L′ and # Q+# P ≤ # Q′+# P ′. Note that a minimized generator
system for a grid has no more than a total of n + 1 lines, parameters and points.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.10 Operations on Rational Grids 19

1.9.7 Double Description for Grids

As for convex polyhedra, any grid L can be described by using a congruence system C for L, a generator
system G for L, or both by means of the double description pair (DD pair) (C,G). The double description
method for grids is a collection of theoretical results very similar to those for convex polyhedra showing
that, given one kind of representation, there are algorithms for computing a representation of the other kind
and for minimizing both representations.

As for convex polyhedra, such changes of representation form a key step in the implementation of many
operators on grids such as, for example, intersection and grid join.

1.9.8 Space Dimensions and Dimension-compatibility for Grids

The space dimension of a grid L ∈ Gn is the dimension n ∈ N of the corresponding vector space Rn. The
space dimension of congruence relations, generators and other objects of the library is defined similarly.

1.9.9 Affine Independence and Affine Dimension for Grids

A non-empty grid L ∈ Gn has affine dimension k ∈ N, denoted by dim(G) = k, if the maximum number
of affinely independent points in G is k +1. The affine dimension of an empty grid is defined to be 0. Thus
we have 0 ≤ dim(G) ≤ n.

1.10 Operations on Rational Grids

In this section we briefly describe operations on rational grids that are provided by the library. These are
similar to those described in Section Operations on Convex Polyhedra.

1.10.1 Grid Intersection and Grid Join

For any pair of grids L1,L2 ∈ Gn, the intersection of L1 and L2, defined as the set intersection L1 ∩ L2,
is the largest grid included in both L1 and L2; similarly, the grid join of L1 and L2, denoted by L1] L2,
is the smallest grid that includes both L1 and L2.

In theoretical terms, the intersection and grid join operators defined above are the binary meet and the
binary join operators on the lattice Gn.

1.10.2 Grid Difference

For any pair of grids L1,L2 ∈ Gn, the grid difference of L1 and L2 is defined as the smallest grid contain-
ing the set-theoretic difference of L1 and L2.

1.10.3 Concatenating Grids

Viewing a grid as a set of tuples (its points), it is sometimes useful to consider the set of tuples obtained by
concatenating an ordered pair of grids. Formally, the concatenation of the grids L1 ∈ Gn and L2 ∈ Gm

(taken in this order) is the grid in Gn+m defined as{
(x0, . . . , xn−1, y0, . . . , ym−1)T ∈ Rn+m

∣∣∣ (x0, . . . , xn−1)T ∈ L1, (y0, . . . , ym−1)T ∈ L2

}
.

Another way of seeing it is as follows: first embed grid L1 into a vector space of dimension n + m and
then add a suitably renamed-apart version of the congruence relations defining L2.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.10 Operations on Rational Grids 20

1.10.4 Adding New Dimensions to the Vector Space

The library provides two operators for adding a number i of space dimensions to a grid L ∈ Gn, therefore
transforming it into a new grid in Gn+i. In both cases, the added dimensions of the vector space are those
having the highest indices.

The operator add_space_dimensions_and_embed embeds the grid L into the new vector space
of dimension i + n and returns the grid defined by all and only the congruences defining L (the variables
corresponding to the added dimensions are unconstrained). For instance, when starting from a grid L ⊆ R2

and adding a third space dimension, the result will be the grid{
(x0, x1, x2)T ∈ R3

∣∣ (x0, x1)T ∈ L
}
.

In contrast, the operator add_space_dimensions_and_project projects the grid L into the new
vector space of dimension i + n and returns the grid whose congruence system, besides the congruence
relations definingL, will include additional equalities on the added dimensions. Namely, the corresponding
variables are all constrained to be equal to 0. For instance, when starting from a grid L ⊆ R2 and adding a
third space dimension, the result will be the grid{

(x0, x1, 0)T ∈ R3
∣∣ (x0, x1)T ∈ L

}
.

1.10.5 Removing Dimensions from the Vector Space

The library provides two operators for removing space dimensions from a grid L ∈ Gn, therefore trans-
forming it into a new grid in Gm where m ≤ n.

Given a set of variables, the operator remove_space_dimensions removes all the space dimensions
specified by the variables in the set.

Given a space dimension m less than or equal to that of the grid, the operator remove_higher_-
space_dimensions removes the space dimensions having indices greater than or equal to m.

1.10.6 Mapping the Dimensions of the Vector Space

The operator map_space_dimensions provided by the library maps the dimensions of the vector
space Rn according to a partial injective function ρ : {0, . . . , n− 1} � N such that

ρ
(
{0, . . . , n− 1}

)
= {0, . . . ,m− 1}

with m ≤ n. Dimensions corresponding to indices that are not mapped by ρ are removed.

If m = 0, i.e., if the function ρ is undefined everywhere, then the operator projects the argument grid
L ∈ Gn onto the zero-dimension space R0; otherwise the result is a grid in Gm given by{(

vρ−1(0), . . . , vρ−1(m−1)

)T
∣∣∣ (v0, . . . , vn−1)T ∈ L

}
.

1.10.7 Expanding One Dimension of the Vector Space to Multiple Dimensions

The operator expand_space_dimension provided by the library adds m new space dimensions to a
grid L ∈ Gn, with n > 0, so that dimensions n, n+1, . . ., n+m− 1 of the resulting grid are exact copies

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.10 Operations on Rational Grids 21

of the i-th space dimension of L. More formally, the result is a grid in Gm given by u ∈ Rn+m

∣∣∣∣∣∣∣
∃v,w ∈ L . ui = vi

∧ ∀j = n, n + 1, . . . , n + m− 1 : uj = wi

∧ ∀k = 0, . . . , n− 1 : k 6= i =⇒ uk = vk = wk

.

1.10.8 Folding Multiple Dimensions of the Vector Space into One Dimension

The operator fold_space_dimensions provided by the library, given a grid L ∈ Gn, with n > 0,
folds a subset J of the set of space dimensions {0, . . . , n− 1} into a space dimension i < n, where i /∈ J .
Letting m = # J , the result is given by the grid join

L0] · · ·] Lm

where

Lm
def=

{
u ∈ Rn−m

∣∣∣∣∣ ∃v ∈ L . ui′ = vi

∧ ∀k = 0, . . . , n− 1 : k 6= i =⇒ uk′ = vk

}
,

for d = 0, . . ., m− 1,

Ld
def=

{
u ∈ Rn−m

∣∣∣∣∣ ∃v ∈ L . ui′ = vjd

∧ ∀k = 0, . . . , n− 1 : k 6= i =⇒ uk′ = vk

}
and, for k = 0, . . ., n− 1,

k′
def= k −#{ j ∈ J | k > j }.

1.10.9 Affine Images and Preimages

As for convex polyhedra (see Single-Update Affine Functions), the library provides affine image and preim-
age operators for grids: given a variable xk and linear expression expr = 〈a,x〉 + b, these determine the
affine transformation φ =

(
x′k = 〈a,x〉+ b

)
: Rn → Rn that transforms any point (v0, . . . , vn−1)T in a

grid L to (
v0, . . . ,

(∑n−1
i=0 aivi + b

)
, . . . , vn−1

)T

.

The affine image operator computes the affine image of a grid L under x′k = 〈a,x〉 + b. For instance,
suppose the grid L to be transformed is the non-relational grid in R2 generated by the set of points{
(0, 0)T, (0, 3)T, (3, 0)T

}
. Then, if the considered variable is x0 and the linear expression is 3x0+2x1+1

(so that k = 0, a0 = 3, a1 = 2, b = 1), the affine image operator will translate L to the grid L1 gener-
ated by the set of points

{
(1, 0)T, (7, 3)T, (10, 0)T

}
which is the grid generated by the point (1, 0) and

parameters (3,−3), (0, 9); or, alternatively defined by the congruence system {x ≡3 1, x+ y ≡9 1}. If the
considered variable is as before (i.e., k = 0) but the linear expression is x1 (so that a0 = 0, a1 = 1, b = 0),
then the resulting grid L2 is the grid containing all the points whose coordinates are integral multiples of 3
and lie on line x = y.

The affine preimage operator computes the affine preimage of a grid L under φ. For instance, suppose
now that we apply the affine preimage operator as given in the first example using variable x0 and linear
expression 3x0 + 2x1 + 1 to the grid L1; then we get the original grid L back. If, on the other hand, we
apply the affine preimage operator as given in the second example using variable x0 and linear expression
x1 to L2, then the resulting grid will consist of all the points in R2 where the y coordinate is an integral
multiple of 3.

Observe that provided the coefficient ak of the considered variable in the linear expression is non-zero, the
affine transformation is invertible.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.10 Operations on Rational Grids 22

1.10.10 Generalized Affine Images

Similarly to convex polyhedra (see Generalized Affine Relations), the library provides two other grid oper-
ators that are generalizations of the single update affine image and preimage operators for grids. The gen-
eralized affine image operator φ = (lhs′, rhs, f) : Rn → Rn, where lhs = 〈c,x〉+ d and rhs = 〈a,x〉+ b
are affine expressions and f ∈ Q, is defined as

∀v ∈ Rn,w ∈ Rn : (v,w) ∈ φ ⇐⇒
(
〈c,w〉+ d ≡f 〈a,v〉+ b

)
∧

(∧
0≤i<n,ci=0

wi = vi

)
.

Note that, when lhs = xk and f = 0, so that the transfer function is an equality, then the above operator is
equivalent to the application of the standard affine image of L with respect to the variable xk and the affine
expression rhs.

1.10.11 Time-Elapse Operator

For any two grids L1,L2 ∈ Gn, the time-elapse between L1 and L2, denoted L1 ↗ L2, is the grid{
p + µq ∈ Rn

∣∣ p ∈ L1, q ∈ L2, µ ∈ Z
}
.

1.10.12 Relation-with Operators

The library provides operators for checking the relation holding between a grid and either a congruence or
a generator.

Suppose L is a grid and C an arbitrary congruence system representing L. Suppose also that cg =(
〈a,x〉 ≡f b

)
is a congruence relation with Lcg = gcon

(
{cg}

)
. The possible relations between L and cg

are as follows.

• L is disjoint from cg if L ∩ Lcg = ∅; that is, adding cg to C gives us the empty grid.

• L strictly intersects cg if L∩Lcg 6= ∅ and L∩Lcg ⊂ L; that is, adding cg to C gives us a non-empty
grid strictly smaller than L.

• L is included in cg if L ⊆ Lcg; that is, adding cg to C leaves L unchanged.

A grid L subsumes a generator g if adding g to any generator system representing L does not change L.

1.10.13 Rectilinear Grids and Covering Boxes

Consider again the boxes used for convex polyhedra. An n-dimensional rational box is a box B in Qn; that
is, where the bounded bounds in the intervals are each in Q. We will say that an interval is bounded if both
its bounds are bounded.

Each bounded interval in B determines a congruence cg in Qn. Letting ei = (0, . . . , 1, . . . , 0)T be the
vector in Rn with 1 in the i’th position and zeroes in every other position; if both the bounds of the interval
are closed, then the congruence cg is defined as

(
〈ei,x〉 ≡f b

)
, where b is the value of the lower bound

and f is the (non-negative) difference between the lower and upper bounds. If one of the bounds is open,
then cg is the congruence

(
〈0,x〉 ≡0 1

)
representing the inconsistent equality (0 = 1).

Let C be the set of congruences defined by the bounded intervals in a rational box B; then we say that B
represents the rational grid L = gcon(C). Any grid L ∈ Gn that can be represented by a box is said to be
rectilinear.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.11 Using the Library 23

A covering box of a grid L is a rational box representing the smallest rectilinear grid that contains L.

As for convex polyhedra, the library will provide operations for computing the rectilinear grid correspond-
ing to a given box and, also, a covering box for any given grid.

1.10.14 Widening Operators

The library provides a grid widening operator for the domain of grids. This follows the specification
provided in [BDHMZ05]. Note that, as for the widenings provided for convex polyhedra, the widening
L1 ∇ L2 of two grids L1,L2 ∈ Gn requires as a precondition that L1 ⊆ L2.

Note:

As is the case for the other operators on grids, the implementation overwrites one of the two grid argu-
ments with the result of the widening application. It is worth stressing that, if grid L1 and L2 (where
L1 ⊆ L2) are identified by program variables l_1 and l_2, respectively, then the call l_2.grid_-
widening_assign(l_1) will assign the grid L1 ∇ L2 to variable l_2. Namely, it is the bigger
gridL2 which is overwritten by the result of the widening. The smaller grid is not modified. The same
observation holds for all flavors of widenings and extrapolation operators that are implemented in the
library and for all the foreign language interfaces.

1.10.15 Widening with Tokens

This will be as for widening with tokens for convex polyhedra.

1.10.16 Extrapolation Operators

Besides the two widening operators, the library also implements several extrapolation operators, which
differ from widenings in that their use along an upper iteration sequence does not ensure convergence in a
finite number of steps.

In particular, for each grid widening that is provided, there is a corresponding limited extrapolation op-
erator, which can be used to implement the widening “up to” technique as described in [HPR97]. Each
limited extrapolation operator takes a congruence system as an additional parameter and uses it to improve
the approximation yielded by the corresponding widening operator. Note that, as in the case for convex
polyhedra, a convergence guarantee can only be obtained by suitably restricting the set of congruence
relations that can occur in this additional parameter.

The bounded extrapolation operators further enhance each one of the limited extrapolation operators de-
scribed above, by ensuring that their results cannot be worse than the smallest rectilinear grid that contains
the two argument grids.

1.11 Using the Library

1.11.1 A Note on the Implementation of the Operators

When adopting the double description method for the representation of convex polyhedra, the implemen-
tation of most of the operators may require an explicit conversion from one of the two representations into
the other one, leading to algorithms having a worst-case exponential complexity. However, thanks to the
adoption of lazy and incremental computation techniques, the library turns out to be rather efficient in many
practical cases.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.11 Using the Library 24

In earlier versions of the library, a number of operators were introduced in two flavors: a lazy version and
an eager version, the latter having the operator name ending with _and_minimize. In principle, only
the lazy versions should be used. The eager versions were added to help a knowledgeable user obtain
better performance in particular cases. Basically, by invoking the eager version of an operator, the user is
trading laziness to better exploit the incrementality of the inner library computations. Starting from version
0.5, the lazy and incremental computation techniques have been refined to achieve a better integration:
as a consequence, the lazy versions of the operators are now almost always more efficient than the eager
versions.

One of the cases when an eager computation still makes sense is when the well-known fail-first principle
comes into play. For instance, if you have to compute the intersection of several polyhedra and you strongly
suspect that the result will become empty after a few of these intersections, then you may obtain a better
performance by calling the eager version of the intersection operator, since the minimization process also
enforces an emptiness check. Note anyway that the same effect can be obtained by interleaving the calls of
the lazy operator with explicit emptiness checks.

1.11.2 On Object-Orientation and Polymorphism: A Disclaimer

The PPL library is mainly a collection of so-called “concrete data types”: while providing the user with a
clean and friendly interface, these types are not meant to — i.e., they should not — be used polymorphically
(since, e.g., most of the destructors are not declared virtual). In practice, this restriction means that the
library types should not be used as public base classes to be derived from. A user willing to extend the
library types, adding new functionalities, often can do so by using containment instead of inheritance; even
when there is the need to override a protected method, non-public inheritance should suffice.

1.11.3 On Const-Correctness: A Warning about the Use of References and Iterators

Most operators of the library depend on one or more parameters that are declared “const”, meaning that
they will not be changed by the application of the considered operator. Due to the adoption of lazy com-
putation techniques, in many cases such a const-correctness guarantee only holds at the semantic level,
whereas it does not necessarily hold at the implementation level. For a typical example, consider the ex-
traction from a polyhedron of its constraint system representation. While this operation is not going to
change the polyhedron, it might actually invoke the internal conversion algorithm and modify the genera-
tors representation of the polyhedron object, e.g., by reordering the generators and removing those that are
detected as redundant. Thus, any previously computed reference to the generators of the polyhedron (be
it a direct reference object or an indirect one, such as an iterator) will no longer be valid. For this reason,
code fragments such as the following should be avoided, as they may result in undefined behavior:

// Find a reference to the first point of the non-empty polyhedron ‘ph’.
const Generator_System& gs = ph.generators();
Generator_System::const_iterator i = gs.begin();
for (Generator_System::const_iterator gs_end = gs.end(); i != gs_end; ++i)

if (i->is_point())
break;

const Generator& p = *i;
// Get the constraints of ‘ph’.
const Constraint_System& cs = ph.constraints();
// Both the const iterator ‘i’ and the reference ‘p’
// are no longer valid at this point.
cout << p.divisor() << endl; // Undefined behavior!
++i; // Undefined behavior!

As a rule of thumb, if a polyhedron plays any role in a computation (even as a const parameter), then
any previously computed reference to parts of the polyhedron may have been invalidated. Note that, in
the example above, the computation of the constraint system could have been placed after the uses of the

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.12 Bibliography 25

iterator i and the reference p. Anyway, if really needed, it is always possible to take a copy of, instead of
a reference to, the parts of interest of the polyhedron; in the case above, one may have taken a copy of the
generator system by replacing the second line of code with the following:

Generator_System gs = ph.generators();

The same observations, modulo syntactic sugar, apply to the operators defined in the C interface of the
library.

1.12 Bibliography

[Bag98] R. Bagnara. A hierarchy of constraint systems for data-flow analysis of constraint logic-based
languages. Science of Computer Programming, 30(1-2):119-155, 1998.

[BGP99] T. Bultan, R. Gerber, and W. Pugh. Model-checking concurrent systems with unbounded integer
variables: Symbolic representations, approximations, and experimental results. ACM Transactions
on Programming Languages and Systems, 21(4):747-789, 1999.

[BDHMZ05] R. Bagnara, K. Dobson, P. M. Hill, M. Mundell, and E. Zaffanella. A
Linear Domain for Analyzing the Distribution of Numerical Values. Technical re-
port 2005.06, School of Computing, University of Leeds, UK, 2005. Available at
http://www.comp.leeds.ac.uk/research/pubs/reports.shtml.

[BHMZ05] R. Bagnara, P. M. Hill, E. Mazzi, and E. Zaffanella. Widening Operators for Weakly-
Relational Numeric Abstractions. In C. Hankin and I. Silveroni, editors, Static Analysis: Proceed-
ings of the 12th International Symposium, volume 3672 of Lecture Notes in Computer Science, pages
3-18, London, UK, 2005. Springer-Verlag, Berlin.

[BHRZ03a] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for convex
polyhedra. In R. Cousot, editor, Static Analysis: Proceedings of the 10th International Symposium,
volume 2694 of Lecture Notes in Computer Science, pages 337-354, San Diego, California, USA,
2003. Springer-Verlag, Berlin.

[BHRZ03b] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for convex
polyhedra. Quaderno 312, Dipartimento di Matematica, Università di Parma, Italy, 2003. Available
at http://www.cs.unipr.it/Publications/.

[BHZ02a] R. Bagnara, P. M. Hill, and E. Zaffanella. A new encoding and implementation of not neces-
sarily closed convex polyhedra. Quaderno 305, Dipartimento di Matematica, Università di Parma,
Italy, 2002. Available at http://www.cs.unipr.it/Publications/.

[BHZ02b] R. Bagnara, P. M. Hill, and E. Zaffanella. A new encoding of not necessarily closed con-
vex polyhedra. In M. Carro, C. Vacheret, and K.-K. Lau, editors, Proceedings of the 1st CoLogNet
Workshop on Component-based Software Development and Implementation Technology for Compu-
tational Logic Systems, pages 147-153, Madrid, Spain, 2002. Published as TR Number CLIP4/02.0,
Universidad Politécnica de Madrid, Facultad de Informática.

[BHZ03a] R. Bagnara, P. M. Hill, and E. Zaffanella. A new encoding and implementation of not neces-
sarily closed convex polyhedra. In M. Leuschel, S. Gruner, and S. Lo Presti, editors, Proceedings of
the 3rd Workshop on Automated Verification of Critical Systems, pages 161-176, Southampton, UK,
2003. Published as TR Number DSSE-TR-2003-2, University of Southampton.

[BHZ03b] R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset domains. In
B. Steffen and G. Levi, editors, Proceedings of the Fifth International Conference on Verification,
Model Checking and Abstract Interpretation (VMCAI 2004), volume 2937 of Lecture Notes in Com-
puter Science, pages 135-148, Venice, Italy, 2003. Springer-Verlag, Berlin.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.comp.leeds.ac.uk/research/pubs/reports.shtml
http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/ppl/

1.12 Bibliography 26

[BHZ04] R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset domains.
Quaderno 349, Dipartimento di Matematica, Università di Parma, Italy, 2004. Available at
http://www.cs.unipr.it/Publications/.

[BJT99] F. Besson, T. P. Jensen, and J.-P. Talpin. Polyhedral analysis for synchronous languages. In
A. Cortesi and G. Filé, editors, Static Analysis: Proceedings of the 6th International Symposium,
volume 1694 of Lecture Notes in Computer Science, pages 51-68, Venice, Italy, 1999. Springer-
Verlag, Berlin.

[BRZH02a] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex polyhedra and
the Parma Polyhedra Library. In M. V. Hermenegildo and G. Puebla, editors, Static Analysis: Pro-
ceedings of the 9th International Symposium, volume 2477 of Lecture Notes in Computer Science,
pages 213-229, Madrid, Spain, 2002. Springer-Verlag, Berlin.

[BRZH02b] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex polyhedra and
the Parma Polyhedra Library. Quaderno 286, Dipartimento di Matematica, Università di Parma, Italy,
2002. See also [BRZH02c]. Available at http://www.cs.unipr.it/Publications/.

[BRZH02c] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Errata for technical report “Quaderno
286”. Available at http://www.cs.unipr.it/Publications/, 2002. See [BRZH02b].

[CC76] P. Cousot and R. Cousot. Static Determination of Dynamic Properties of Programs. In B. Robinet,
editor, Proceedings of the 2nd International Symposium on Programming, pages 106-130, Paris,
France, 1976.

[CC92] P. Cousot and R. Cousot. Comparing the Galois connection and widening/narrowing approaches
to abstract interpretation. In M. Bruynooghe and M. Wirsing, editors, Proceedings of the 4th Inter-
national Symposium on Programming Language Implementation and Logic Programming, volume
631 of Lecture Notes in Computer Science, pages 269-295, Leuven, Belgium, 1992. Springer-Verlag,
Berlin.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a
program. In Conference Record of the Fifth Annual ACM Symposium on Principles of Programming
Languages, pages 84-96, Tucson, Arizona, 1978. ACM Press.

[Che64] N. V. Chernikova. Algorithm for finding a general formula for the non-negative solutions of sys-
tem of linear equations. U.S.S.R. Computational Mathematics and Mathematical Physics, 4(4):151-
158, 1964.

[Che65] N. V. Chernikova. Algorithm for finding a general formula for the non-negative solutions of
system of linear inequalities. U.S.S.R. Computational Mathematics and Mathematical Physics,
5(2):228-233, 1965.

[Che68] N. V. Chernikova. Algorithm for discovering the set of all solutions of a linear programming
problem. U.S.S.R. Computational Mathematics and Mathematical Physics, 8(6):282-293, 1968.

[Dan63] G. B. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton, NJ,
1963.

[FP96] K. Fukuda and A. Prodon. Double description method revisited. In M. Deza, R. Euler, and
Y. Manoussakis, editors, Combinatorics and Computer Science, 8th Franco-Japanese and 4th
Franco-Chinese Conference, Brest, France, July 3-5, 1995, Selected Papers, volume 1120 of Lecture
Notes in Computer Science, pages 91-111. Springer-Verlag, Berlin, 1996.

[Fuk98] K. Fukuda. Polyhedral computation FAQ. Swiss Federal Insti-
tute of Technology, Lausanne and Zurich, Switzerland, available at
http://www.ifor.math.ethz.ch/∼fukuda/fukuda.html, 1998.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/Publications/
http://www.ifor.math.ethz.ch/~fukuda/fukuda.html
http://www.cs.unipr.it/ppl/

1.12 Bibliography 27

[GDD+ 04] D. Gopan, F. DiMaio, N. Dor, T. Reps, and M. Sagiv. Numeric domains with summarized
dimensions. In K. Jensen and A. Podelski, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 10th International Conference, TACAS 2004, volume 2988 of Lecture Notes in
Computer Science, pages 512-529. Springer-Verlag, Berlin, 2004.

[GJ00] E. Gawrilow and M. Joswig. polymake: a framework for analyzing convex polytopes. In
G. Kalai and G. M. Ziegler, editors, Polytopes - Combinatorics and Computation, pages 43-74.
Birkhäuser, 2000.

[GJ01] E. Gawrilow and M. Joswig. polymake: an approach to modular software design in computa-
tional geometry. In Proceedings of the 17th Annual Symposium on Computational Geometry, pages
222-231, Medford, MA, USA, 2001. ACM.

[Hal79] N. Halbwachs. Détermination Automatique de Relations Linéaires Vérifiées par les Variables
d’un Programme. Thèse de 3ème cycle d’informatique, Université scientifique et médicale de Greno-
ble, Grenoble, France, March 1979.

[Hal93] N. Halbwachs. Delay analysis in synchronous programs. In C. Courcoubetis, editor, Computer
Aided Verification: Proceedings of the 5th International Conference, volume 697 of Lecture Notes
in Computer Science, pages 333-346, Elounda, Greece, 1993. Springer-Verlag, Berlin.

[HH95] T. A. Henzinger and P.-H. Ho. A note on abstract interpretation strategies for hybrid automata.
In P. J. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors, Hybrid Systems II, volume 999 of
Lecture Notes in Computer Science, pages 252-264. Springer-Verlag, Berlin, 1995.

[HKP95] N. Halbwachs, A. Kerbrat, and Y.-E. Proy. POLyhedra INtegrated Environment. Verimag,
France, version 1.0 of POLINE edition, September 1995. Documentation taken from source code.

[HLW94] V. Van Dongen H. Le Verge and D. K. Wilde. Loop nest synthesis using the polyhedral library.
Publication interne 830, IRISA, Campus de Beaulieu, Rennes, France, 1994.

[HPR94] N. Halbwachs, Y.-E. Proy, and P. Raymond. Verification of linear hybrid systems by means
of convex approximations. In B. Le Charlier, editor, Static Analysis: Proceedings of the 1st Inter-
national Symposium, volume 864 of Lecture Notes in Computer Science, pages 223-237, Namur,
Belgium, 1994. Springer-Verlag, Berlin.

[HPR97] N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-time systems using linear
relation analysis. Formal Methods in System Design, 11(2):157-185, 1997.

[HPWT01] T. A. Henzinger, J. Preussig, and H. Wong-Toi. Some lessons from the hytech experience.
In Proceedings of the 40th Annual Conference on Decision and Control, pages 2887-2892. IEEE
Computer Society Press, 2001.

[Jea02] B. Jeannet. Convex Polyhedra Library, release 1.1.3c edition,
March 2002. Documentation of the “New Polka” library available at
http://www.irisa.fr/prive/Bertrand.Jeannet/newpolka.html.

[Kuh56] H. W. Kuhn. Solvability and consistency for linear equations and inequalities. American Math-
ematical Monthly, 63:217-232, 1956.

[Le 92] H. Le Verge. A note on Chernikova’s algorithm. Publication interne 635, IRISA, Campus de
Beaulieu, Rennes, France, 1992.

[Loe99] V. Loechner. PolyLib: A library for manipulating parameterized polyhedra. Available at
http://icps.u-strasbg.fr/∼loechner/polylib/, March 1999. Declares itself to be
a continuation of [Wil93].

[LW97] V. Loechner and D. K. Wilde. Parameterized polyhedra and their vertices. International Journal
of Parallel Programming, 25(6):525-549, 1997.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.irisa.fr/prive/Bertrand.Jeannet/newpolka.html
http://icps.u-strasbg.fr/~loechner/polylib/
http://www.cs.unipr.it/ppl/

2 PPL Module Index 28

[Mas92] F. Masdupuy. Array operations abstraction using semantic analysis of trapezoid congruences.
In Proceedings of the 6th ACM International Conference on Supercomputing, pages 226-235, Wash-
ington, DC, USA, 1992. ACM Press.

[Mas93] F. Masdupuy. Array Indices Relational Semantic Analysis Using Rational Cosets and Trape-
zoids. Thèse d’informatique, École Polytechnique, Palaiseau, France, December 1993.

[MRTT53] T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall. The double description method.
In H. W. Kuhn and A. W. Tucker, editors, Contributions to the Theory of Games - Volume II, num-
ber 28 in Annals of Mathematics Studies, pages 51-73. Princeton University Press, Princeton, New
Jersey, 1953.

[NR00] S. P. K. Nookala and T. Risset. A library for Z-polyhedral operations. Publication interne 1330,
IRISA, Campus de Beaulieu, Rennes, France, 2000.

[NW88] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley Interscience
Series in Discrete Mathematics and Optimization. John Wiley & Sons, 1988.

[Sch99] A. Schrijver. Theory of Linear and Integer Programming. Wiley Interscience Series in Discrete
Mathematics and Optimization. John Wiley & Sons, 1999.

[Sri93] D. Srivastava. Subsumption and indexing in constraint query languages with linear arithmetic
constraints. Annals of Mathematics and Artificial Intelligence, 8(3-4):315-343, 1993.

[SW70] J. Stoer and C. Witzgall. Convexity and Optimization in Finite Dimensions I. Springer-Verlag,
Berlin, 1970.

[Wey35] H. Weyl. Elementare theorie der konvexen polyeder. Commentarii Mathematici Helvetici,
7:290-306, 1935. English translation in [Wey50].

[Wey50] H. Weyl. The elementary theory of convex polyhedra. In H. W. Kuhn, editor, Contributions to
the Theory of Games - Volume I, number 24 in Annals of Mathematics Studies, pages 3-18. Princeton
University Press, Princeton, New Jersey, 1950. Translated from [Wey35] by H. W. Kuhn.

[Wil93] D. K. Wilde. A library for doing polyhedral operations. Master’s thesis, Oregon State University,
Corvallis, Oregon, December 1993. Also published as IRISA Publication interne 785, Rennes,
France, 1993.

2 PPL Module Index

2.1 PPL Modules

Here is a list of all modules:

C++ Language Interface 32

C Language Interface 39

Prolog Language Interface 72

3 PPL Namespace Index

3.1 PPL Namespace List

Here is a list of all documented namespaces with brief descriptions:

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

4 PPL Hierarchical Index 29

Parma_Polyhedra_Library (The entire library is confined to this namespace) 95

Parma_Polyhedra_Library::IO_Operators (All input/output operators are confined to this
namespace) 100

std (The standard C++ namespace) 101

4 PPL Hierarchical Index

4.1 PPL Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Parma_Polyhedra_Library::BD_Shape< T > 101

Parma_Polyhedra_Library::BHRZ03_Certificate 119

Parma_Polyhedra_Library::BHRZ03_Certificate::Compare 120

Parma_Polyhedra_Library::Checked_Number< T, Policy > 125

Parma_Polyhedra_Library::Congruence 134

Parma_Polyhedra_Library::Congruence_System 140

Parma_Polyhedra_Library::Congruence_System::const_iterator 144

Parma_Polyhedra_Library::Constraint 145

Parma_Polyhedra_Library::Constraint_System 151

Parma_Polyhedra_Library::Constraint_System::const_iterator 154

Parma_Polyhedra_Library::Determinate< PH > 155

Parma_Polyhedra_Library::From_Bounding_Box 157

Parma_Polyhedra_Library::From_Covering_Box 157

Parma_Polyhedra_Library::Generator 157

Parma_Polyhedra_Library::Grid_Generator 204

Parma_Polyhedra_Library::Generator_System 164

Parma_Polyhedra_Library::Grid_Generator_System 211

Parma_Polyhedra_Library::Generator_System::const_iterator 167

Parma_Polyhedra_Library::Grid_Generator_System::const_iterator 216

Parma_Polyhedra_Library::GMP_Integer 168

Parma_Polyhedra_Library::Grid 170

Parma_Polyhedra_Library::Grid_Certificate 203

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

5 PPL Class Index 30

Parma_Polyhedra_Library::Grid_Certificate::Compare 204

Parma_Polyhedra_Library::H79_Certificate 217

Parma_Polyhedra_Library::H79_Certificate::Compare 219

Parma_Polyhedra_Library::Linear_Expression 219

Parma_Polyhedra_Library::LP_Problem 224

Parma_Polyhedra_Library::Poly_Con_Relation 232

Parma_Polyhedra_Library::Poly_Gen_Relation 233

Parma_Polyhedra_Library::Polyhedron 242

Parma_Polyhedra_Library::C_Polyhedron 121

Parma_Polyhedra_Library::NNC_Polyhedron 228

Parma_Polyhedra_Library::Powerset< D > 272

Parma_Polyhedra_Library::Powerset< Parma_Polyhedra_Library::Determinate< PH > > 272

Parma_Polyhedra_Library::Polyhedra_Powerset< PH > 234

Parma_Polyhedra_Library::Throwable 278

Parma_Polyhedra_Library::Variable 278

Parma_Polyhedra_Library::Variable::Compare 280

5 PPL Class Index

5.1 PPL Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Parma_Polyhedra_Library::BD_Shape< T > (A bounded difference shape) 101

Parma_Polyhedra_Library::BHRZ03_Certificate (The convergence certificate for the
BHRZ03 widening operator) 119

Parma_Polyhedra_Library::BHRZ03_Certificate::Compare (A total ordering on BHRZ03
certificates) 120

Parma_Polyhedra_Library::C_Polyhedron (A closed convex polyhedron) 121

Parma_Polyhedra_Library::Checked_Number< T, Policy > (A wrapper for numeric types
implementing a given policy) 125

Parma_Polyhedra_Library::Congruence (A linear congruence) 134

Parma_Polyhedra_Library::Congruence_System (A system of congruences) 140

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

5.1 PPL Class List 31

Parma_Polyhedra_Library::Congruence_System::const_iterator (An iterator over a system
of congruences) 144

Parma_Polyhedra_Library::Constraint (A linear equality or inequality) 145

Parma_Polyhedra_Library::Constraint_System (A system of constraints) 151

Parma_Polyhedra_Library::Constraint_System::const_iterator (An iterator over a system of
constraints) 154

Parma_Polyhedra_Library::Determinate< PH > (Wraps a PPL class into a determinate con-
straint system interface) 155

Parma_Polyhedra_Library::From_Bounding_Box (A tag class) 157

Parma_Polyhedra_Library::From_Covering_Box (A tag class) 157

Parma_Polyhedra_Library::Generator (A line, ray, point or closure point) 157

Parma_Polyhedra_Library::Generator_System (A system of generators) 164

Parma_Polyhedra_Library::Generator_System::const_iterator (An iterator over a system of
generators) 167

Parma_Polyhedra_Library::GMP_Integer (Unbounded integers as provided by the GMP li-
brary) 168

Parma_Polyhedra_Library::Grid (A grid) 170

Parma_Polyhedra_Library::Grid_Certificate (The convergence certificate for the Grid
widening operator) 203

Parma_Polyhedra_Library::Grid_Certificate::Compare (A total ordering on Grid certifi-
cates) 204

Parma_Polyhedra_Library::Grid_Generator (A line, parameter or point) 204

Parma_Polyhedra_Library::Grid_Generator_System (A system of grid generators) 211

Parma_Polyhedra_Library::Grid_Generator_System::const_iterator (An iterator over a sys-
tem of grid generators) 216

Parma_Polyhedra_Library::H79_Certificate (A convergence certificate for the H79 widening
operator) 217

Parma_Polyhedra_Library::H79_Certificate::Compare (A total ordering on H79 certificates
) 219

Parma_Polyhedra_Library::Linear_Expression (A linear expression) 219

Parma_Polyhedra_Library::LP_Problem (A Linear Programming problem) 224

Parma_Polyhedra_Library::NNC_Polyhedron (A not necessarily closed convex polyhedron)228

Parma_Polyhedra_Library::Poly_Con_Relation (The relation between a polyhedron and a
constraint) 232

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6 PPL Page Index 32

Parma_Polyhedra_Library::Poly_Gen_Relation (The relation between a polyhedron and a
generator) 233

Parma_Polyhedra_Library::Polyhedra_Powerset< PH > (The powerset construction instan-
tiated on PPL polyhedra) 234

Parma_Polyhedra_Library::Polyhedron (The base class for convex polyhedra) 242

Parma_Polyhedra_Library::Powerset< D > (The powerset construction on a base-level do-
main) 272

Parma_Polyhedra_Library::Throwable (User objects the PPL can throw) 278

Parma_Polyhedra_Library::Variable (A dimension of the vector space) 278

Parma_Polyhedra_Library::Variable::Compare (Binary predicate defining the total ordering
on variables) 280

6 PPL Page Index

6.1 PPL Related Pages

Here is a list of all related documentation pages:

GNU General Public License 281

GNU Free Documentation License 286

7 PPL Module Documentation

7.1 C++ Language Interface

The core implementation of the Parma Polyhedra Library is written in C++.

Namespaces

• namespace Parma_Polyhedra_Library
The entire library is confined to this namespace.

• namespace Parma_Polyhedra_Library::IO_Operators
All input/output operators are confined to this namespace.

• namespace std
The standard C++ namespace.

Classes

• class Parma_Polyhedra_Library::Checked_Number< T, Policy >

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.1 C++ Language Interface 33

A wrapper for numeric types implementing a given policy.

• class Parma_Polyhedra_Library::Throwable
User objects the PPL can throw.

• struct Parma_Polyhedra_Library::From_Bounding_Box
A tag class.

• struct Parma_Polyhedra_Library::From_Covering_Box
A tag class.

• class Parma_Polyhedra_Library::Constraint_System
A system of constraints.

• class Parma_Polyhedra_Library::Constraint_System::const_iterator
An iterator over a system of constraints.

• class Parma_Polyhedra_Library::Variable
A dimension of the vector space.

• struct Parma_Polyhedra_Library::Variable::Compare
Binary predicate defining the total ordering on variables.

• class Parma_Polyhedra_Library::Poly_Con_Relation
The relation between a polyhedron and a constraint.

• class Parma_Polyhedra_Library::Generator_System
A system of generators.

• class Parma_Polyhedra_Library::Generator_System::const_iterator
An iterator over a system of generators.

• class Parma_Polyhedra_Library::Grid_Generator_System
A system of grid generators.

• class Parma_Polyhedra_Library::Grid_Generator_System::const_iterator
An iterator over a system of grid generators.

• class Parma_Polyhedra_Library::Congruence_System
A system of congruences.

• class Parma_Polyhedra_Library::Congruence_System::const_iterator
An iterator over a system of congruences.

• class Parma_Polyhedra_Library::Linear_Expression
A linear expression.

• class Parma_Polyhedra_Library::Constraint
A linear equality or inequality.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.1 C++ Language Interface 34

• class Parma_Polyhedra_Library::Generator
A line, ray, point or closure point.

• class Parma_Polyhedra_Library::Grid_Generator
A line, parameter or point.

• class Parma_Polyhedra_Library::Congruence
A linear congruence.

• class Parma_Polyhedra_Library::LP_Problem
A Linear Programming problem.

• class Parma_Polyhedra_Library::Poly_Gen_Relation
The relation between a polyhedron and a generator.

• class Parma_Polyhedra_Library::BHRZ03_Certificate
The convergence certificate for the BHRZ03 widening operator.

• struct Parma_Polyhedra_Library::BHRZ03_Certificate::Compare
A total ordering on BHRZ03 certificates.

• class Parma_Polyhedra_Library::H79_Certificate
A convergence certificate for the H79 widening operator.

• struct Parma_Polyhedra_Library::H79_Certificate::Compare
A total ordering on H79 certificates.

• class Parma_Polyhedra_Library::Polyhedron
The base class for convex polyhedra.

• class Parma_Polyhedra_Library::Grid_Certificate
The convergence certificate for the Grid widening operator.

• class Parma_Polyhedra_Library::Grid
A grid.

• class Parma_Polyhedra_Library::C_Polyhedron
A closed convex polyhedron.

• class Parma_Polyhedra_Library::NNC_Polyhedron
A not necessarily closed convex polyhedron.

• class Parma_Polyhedra_Library::BD_Shape< T >

A bounded difference shape.

• class Parma_Polyhedra_Library::Determinate< PH >

Wraps a PPL class into a determinate constraint system interface.

• class Parma_Polyhedra_Library::Powerset< D >

The powerset construction on a base-level domain.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.1 C++ Language Interface 35

• class Parma_Polyhedra_Library::Polyhedra_Powerset< PH >

The powerset construction instantiated on PPL polyhedra.

• class Parma_Polyhedra_Library::GMP_Integer
Unbounded integers as provided by the GMP library.

Defines

• #define PPL_VERSION_MAJOR 0
The major number of the PPL version.

• #define PPL_VERSION_MINOR 9
The minor number of the PPL version.

• #define PPL_VERSION_REVISION 0
The revision number of the PPL version.

• #define PPL_VERSION_BETA 0
The beta number of the PPL version. This is zero for official releases and nonzero for development snap-
shots.

• #define PPL_VERSION "0.9"
A string containing the PPL version.

Typedefs

• typedef size_t Parma_Polyhedra_Library::dimension_type
An unsigned integral type for representing space dimensions.

• typedef size_t Parma_Polyhedra_Library::memory_size_type
An unsigned integral type for representing memory size in bytes.

• typedef COEFFICIENT_TYPE Parma_Polyhedra_Library::Coefficient
An alias for easily naming the type of PPL coefficients.

• typedef std::set< Variable, Variable::Compare > Parma_Polyhedra_Library::Variables_Set
An std::set containing variables in increasing order of dimension index.

Enumerations

• enum Parma_Polyhedra_Library::Result { ,

Parma_Polyhedra_Library::VC_NORMAL, Parma_Polyhedra_Library::V_LT, Parma_Polyhedra_-
Library::V_GT, Parma_Polyhedra_Library::V_EQ,

Parma_Polyhedra_Library::V_NE, Parma_Polyhedra_Library::V_LE, Parma_Polyhedra_-
Library::V_GE, Parma_Polyhedra_Library::V_LGE,

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.1 C++ Language Interface 36

Parma_Polyhedra_Library::VC_MINUS_INFINITY, Parma_Polyhedra_Library::V_NEG_-
OVERFLOW, Parma_Polyhedra_Library::VC_PLUS_INFINITY, Parma_Polyhedra_Library::V_-
POS_OVERFLOW,

Parma_Polyhedra_Library::VC_NAN, Parma_Polyhedra_Library::V_CVT_STR_UNK, Parma_-
Polyhedra_Library::V_DIV_ZERO, Parma_Polyhedra_Library::V_INF_ADD_INF,

Parma_Polyhedra_Library::V_INF_DIV_INF, Parma_Polyhedra_Library::V_INF_MOD, Parma_-
Polyhedra_Library::V_INF_MUL_ZERO, Parma_Polyhedra_Library::V_INF_SUB_INF,

Parma_Polyhedra_Library::V_MOD_ZERO, Parma_Polyhedra_Library::V_SQRT_NEG, Parma_-
Polyhedra_Library::V_UNKNOWN_NEG_OVERFLOW, Parma_Polyhedra_Library::V_-
UNKNOWN_POS_OVERFLOW,

Parma_Polyhedra_Library::V_UNORD_COMP }
Possible outcomes of a checked arithmetic computation.

• enum Parma_Polyhedra_Library::Rounding_Dir { Parma_Polyhedra_Library::ROUND_DOWN,
Parma_Polyhedra_Library::ROUND_UP, Parma_Polyhedra_Library::ROUND_IGNORE , Parma_-
Polyhedra_Library::ROUND_NOT_NEEDED }

Rounding directions for arithmetic computations.

• enum Parma_Polyhedra_Library::Degenerate_Element { Parma_Polyhedra_Library::UNIVERSE,
Parma_Polyhedra_Library::EMPTY }

Kinds of degenerate abstract elements.

• enum Parma_Polyhedra_Library::Relation_Symbol {

Parma_Polyhedra_Library::LESS_THAN, Parma_Polyhedra_Library::LESS_THAN_OR_EQUAL,
Parma_Polyhedra_Library::EQUAL, Parma_Polyhedra_Library::GREATER_THAN_OR_EQUAL,

Parma_Polyhedra_Library::GREATER_THAN }
Relation symbols.

• enum Parma_Polyhedra_Library::Complexity_Class { Parma_Polyhedra_-
Library::POLYNOMIAL_COMPLEXITY, Parma_Polyhedra_Library::SIMPLEX_-
COMPLEXITY, Parma_Polyhedra_Library::ANY_COMPLEXITY }

Complexity pseudo-classes.

• enum Parma_Polyhedra_Library::Optimization_Mode { Parma_Polyhedra_-
Library::MINIMIZATION, Parma_Polyhedra_Library::MAXIMIZATION }

Possible optimization modes.

• enum Parma_Polyhedra_Library::LP_Problem_Status { Parma_Polyhedra_-
Library::UNFEASIBLE_LP_PROBLEM, Parma_Polyhedra_Library::UNBOUNDED_LP_-
PROBLEM, Parma_Polyhedra_Library::OPTIMIZED_LP_PROBLEM }

Possible outcomes of the LP_Problem solver.

Variables

• const Throwable ∗volatile Parma_Polyhedra_Library::abandon_expensive_computations
A pointer to an exception object.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.1 C++ Language Interface 37

7.1.1 Detailed Description

The core implementation of the Parma Polyhedra Library is written in C++.

See Namespace, Hierarchical and Compound indexes for additional information about each single data
type.

7.1.2 Define Documentation

7.1.2.1 #define PPL_VERSION "0.9"

A string containing the PPL version.

Let M and m denote the numbers associated to PPL_VERSION_MAJOR and PPL_VERSION_MINOR,
respectively. The format of PPL_VERSION is M "." m if both PPL_VERSION_REVISION (r) and
PPL_VERSION_BETA (b)are zero, M "." m "pre" b if PPL_VERSION_REVISION is zero and
PPL_VERSION_BETA is not zero, M "." m "." r if PPL_VERSION_REVISION is not zero and
PPL_VERSION_BETA is zero, M "." m "." r "pre" b if neither PPL_VERSION_REVISION
nor PPL_VERSION_BETA are zero.

7.1.3 Typedef Documentation

7.1.3.1 typedef COEFFICIENT_TYPE Parma_Polyhedra_Library::Coefficient

An alias for easily naming the type of PPL coefficients.

Objects of type Coefficient are used to implement the integral valued coefficients occurring in linear expres-
sions, constraints, generators, intervals, bounding boxes and so on. Depending on the chosen configuration
options (see file README.configure), a Coefficient may actually be:

• The GMP_Integer type, which in turn is an alias for the mpz_class type implemented by the C++
interface of the GMP library (this is the default configuration);

• An instance of the Checked_Number class template: with its default policy (Checked_Number_-
Default_Policy), this implements overflow detection on top of a native integral type (available tem-
plate instances include checked integers having 8, 16, 32 or 64 bits); with the Checked_Number_-
Transparent_Policy, this is a wrapper for native integral types with no overflow detection (available
template instances are as above).

7.1.4 Enumeration Type Documentation

7.1.4.1 enum Parma_Polyhedra_Library::Result

Possible outcomes of a checked arithmetic computation.

Enumerator:

VC_NORMAL Ordinary result class.

V_LT The computed result is inexact and rounded up.

V_GT The computed result is inexact and rounded down.

V_EQ The computed result is exact.

V_NE The computed result is inexact.

V_LE The computed result may be inexact and rounded up.

V_GE The computed result may be inexact and rounded down.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.1 C++ Language Interface 38

V_LGE The computed result may be inexact.
VC_MINUS_INFINITY Negative infinity unrepresentable result class.
V_NEG_OVERFLOW A negative overflow occurred.
VC_PLUS_INFINITY Positive infinity unrepresentable result class.
V_POS_OVERFLOW A positive overflow occurred.
VC_NAN Not a number result class.
V_CVT_STR_UNK Converting from unknown string.
V_DIV_ZERO Dividing by zero.
V_INF_ADD_INF Adding two infinities having opposite signs.
V_INF_DIV_INF Dividing two infinities.
V_INF_MOD Taking the modulus of an infinity.
V_INF_MUL_ZERO Multiplying an infinity by zero.
V_INF_SUB_INF Subtracting two infinities having the same sign.
V_MOD_ZERO Computing a remainder modulo zero.
V_SQRT_NEG Taking the square root of a negative number.
V_UNKNOWN_NEG_OVERFLOW Unknown result due to intermediate negative overflow.
V_UNKNOWN_POS_OVERFLOW Unknown result due to intermediate positive overflow.
V_UNORD_COMP Unordered comparison.

7.1.4.2 enum Parma_Polyhedra_Library::Rounding_Dir

Rounding directions for arithmetic computations.

Enumerator:

ROUND_DOWN Round toward −∞.
ROUND_UP Round toward +∞.
ROUND_IGNORE Rounding is delegated to lower level. Result info is evaluated lazily.
ROUND_NOT_NEEDED Rounding is not needed: client code must ensure the operation is exact.

7.1.4.3 enum Parma_Polyhedra_Library::Degenerate_Element

Kinds of degenerate abstract elements.

Enumerator:

UNIVERSE The universe element, i.e., the whole vector space.
EMPTY The empty element, i.e., the empty set.

7.1.4.4 enum Parma_Polyhedra_Library::Relation_Symbol

Relation symbols.

Enumerator:

LESS_THAN Less than.
LESS_THAN_OR_EQUAL Less than or equal to.
EQUAL Equal to.
GREATER_THAN_OR_EQUAL Greater than or equal to.
GREATER_THAN Greater than.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 C Language Interface 39

7.1.4.5 enum Parma_Polyhedra_Library::Complexity_Class

Complexity pseudo-classes.

Enumerator:

POLYNOMIAL_COMPLEXITY Worst-case polynomial complexity.

SIMPLEX_COMPLEXITY Worst-case exponential complexity but typically polynomial behavior.

ANY_COMPLEXITY Any complexity.

7.1.4.6 enum Parma_Polyhedra_Library::Optimization_Mode

Possible optimization modes.

Enumerator:

MINIMIZATION Minimization is requested.

MAXIMIZATION Maximization is requested.

7.1.4.7 enum Parma_Polyhedra_Library::LP_Problem_Status

Possible outcomes of the LP_Problem solver.

Enumerator:

UNFEASIBLE_LP_PROBLEM The problem is unfeasible.

UNBOUNDED_LP_PROBLEM The problem is unbounded.

OPTIMIZED_LP_PROBLEM The problem has an optimal solution.

7.1.5 Variable Documentation

7.1.5.1 const Throwable∗ volatile Parma_Polyhedra_Library::abandon_expensive_computations

A pointer to an exception object.

This pointer, which is initialized to zero, is repeatedly checked along any super-linear (i.e., computationally
expensive) computation path in the library. When it is found nonzero the exception it points to is thrown. In
other words, making this pointer point to an exception (and leaving it in this state) ensures that the library
will return control to the client application, possibly by throwing the given exception, within a time that is
a linear function of the size of the representation of the biggest object (powerset of polyhedra, polyhedron,
system of constraints or generators) on which the library is operating upon.

Note:

The only sensible way to assign to this pointer is from within a signal handler or from a parallel thread.
For this reason, the library, apart from ensuring that the pointer is initially set to zero, never assigns to
it. In particular, it does not zero it again when the exception is thrown: it is the client’s responsibility
to do so.

7.2 C Language Interface

Some details about the C Interface.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 C Language Interface 40

Version Checking

• #define PPL_VERSION_MAJOR 0
The major number of the PPL version.

• #define PPL_VERSION_MINOR 9
The minor number of the PPL version.

• #define PPL_VERSION_REVISION 0
The revision number of the PPL version.

• #define PPL_VERSION_BETA 0
The beta number of the PPL version. This is zero for official releases and nonzero for development snap-
shots.

• #define PPL_VERSION "0.9"
A string containing the PPL version.

• int ppl_version_major (void)
Returns the major number of the PPL version.

• int ppl_version_minor (void)
Returns the minor number of the PPL version.

• int ppl_version_revision (void)
Returns the revision number of the PPL version.

• int ppl_version_beta (void)
Returns the beta number of the PPL version.

• int ppl_version (const char ∗∗p)
Writes to ∗p a pointer to a character string containing the PPL version.

• int ppl_banner (const char ∗∗p)
Writes to ∗p a pointer to a character string containing the PPL banner.

Simple I/O Functions

• typedef const char ∗ ppl_io_variable_output_function_type (ppl_dimension_type var)
The type of output functions used for printing variables.

• int ppl_io_print_variable (ppl_dimension_type var)
Pretty-prints var to stdout.

• int ppl_io_fprint_variable (FILE ∗stream, ppl_dimension_type var)
Pretty-prints var to the given output stream.

• int ppl_io_set_variable_output_function (ppl_io_variable_output_function_type ∗p)
Sets the output function to be used for printing variables to p.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 C Language Interface 41

• int ppl_io_get_variable_output_function (ppl_io_variable_output_function_type ∗∗pp)
Writes a pointer to the current variable output function to pp.

Initialization, Error Handling and Auxiliary Functions

• int ppl_max_space_dimension (ppl_dimension_type ∗m)
Writes to m the maximum space dimension this library can handle.

• int ppl_not_a_dimension (ppl_dimension_type ∗m)
Writes to m a value that does not designate a valid dimension.

• int ppl_initialize (void)
Initializes the Parma Polyhedra Library. This function must be called before any other function.

• int ppl_finalize (void)
Finalizes the Parma Polyhedra Library. This function must be called after any other function.

• int ppl_set_error_handler (void(∗h)(enum ppl_enum_error_code code, const char ∗description))
Installs the user-defined error handler pointed at by h.

Functions Related to Coefficients

• int ppl_new_Coefficient (ppl_Coefficient_t ∗pc)
Creates a new coefficient with value 0 and writes a handle for the newly created coefficient at address pc.

• int ppl_new_Coefficient_from_mpz_t (ppl_Coefficient_t ∗pc, mpz_t z)
Creates a new coefficient with the value given by the GMP integer z and writes a handle for the newly
created coefficient at address pc.

• int ppl_new_Coefficient_from_Coefficient (ppl_Coefficient_t ∗pc, ppl_const_Coefficient_t c)
Builds a coefficient that is a copy of c; writes a handle for the newly created coefficient at address pc.

• int ppl_assign_Coefficient_from_mpz_t (ppl_Coefficient_t dst, mpz_t z)
Assign to dst the value given by the GMP integer z.

• int ppl_assign_Coefficient_from_Coefficient (ppl_Coefficient_t dst, ppl_const_Coefficient_t src)
Assigns a copy of the coefficient src to dst.

• int ppl_delete_Coefficient (ppl_const_Coefficient_t c)
Invalidates the handle c: this makes sure the corresponding resources will eventually be released.

• int ppl_Coefficient_to_mpz_t (ppl_const_Coefficient_t c, mpz_t z)
Sets the value of the GMP integer z to the value of c.

• int ppl_Coefficient_OK (ppl_const_Coefficient_t c)
Returns a positive integer if c is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps makes some noise if c is broken. Useful for debugging purposes.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 C Language Interface 42

• int ppl_Coefficient_is_bounded (void)
Returns a positive integer if coefficients are bounded; returns 0 otherwise.

• int ppl_Coefficient_min (mpz_t min)
Returns a positive integer if coefficients are bounded, in which case min is set to their minimum value;
returns 0 otherwise.

• int ppl_Coefficient_max (mpz_t max)
Returns a positive integer if coefficients are bounded, in which case max is set to their maximum value;
returns 0 otherwise.

Functions Related to Linear Expressions

• int ppl_new_Linear_Expression (ppl_Linear_Expression_t ∗ple)
Creates a new linear expression corresponding to the constant 0 in a zero-dimensional space; writes a
handle for the new linear expression at address ple.

• int ppl_new_Linear_Expression_with_dimension (ppl_Linear_Expression_t ∗ple, ppl_dimension_-
type d)

Creates a new linear expression corresponding to the constant 0 in a d-dimensional space; writes a handle
for the new linear expression at address ple.

• int ppl_new_Linear_Expression_from_Linear_Expression (ppl_Linear_Expression_t ∗ple, ppl_-
const_Linear_Expression_t le)

Builds a linear expression that is a copy of le; writes a handle for the newly created linear expression at
address ple.

• int ppl_new_Linear_Expression_from_Constraint (ppl_Linear_Expression_t ∗ple, ppl_const_-
Constraint_t c)

Builds a linear expression corresponding to constraint c; writes a handle for the newly created linear
expression at address ple.

• int ppl_new_Linear_Expression_from_Generator (ppl_Linear_Expression_t ∗ple, ppl_const_-
Generator_t g)

Builds a linear expression corresponding to generator g; writes a handle for the newly created linear
expression at address ple.

• int ppl_delete_Linear_Expression (ppl_const_Linear_Expression_t le)
Invalidates the handle le: this makes sure the corresponding resources will eventually be released.

• int ppl_assign_Linear_Expression_from_Linear_Expression (ppl_Linear_Expression_t dst, ppl_-
const_Linear_Expression_t src)

Assigns a copy of the linear expression src to dst.

• int ppl_Linear_Expression_add_to_coefficient (ppl_Linear_Expression_t le, ppl_dimension_type
var, ppl_const_Coefficient_t n)

Adds n to the coefficient of variable var in the linear expression le. The space dimension is set to be the
maximum between var + 1 and the old space dimension.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 C Language Interface 43

• int ppl_Linear_Expression_add_to_inhomogeneous (ppl_Linear_Expression_t le, ppl_const_-
Coefficient_t n)

Adds n to the inhomogeneous term of the linear expression le.

• int ppl_add_Linear_Expression_to_Linear_Expression (ppl_Linear_Expression_t dst, ppl_const_-
Linear_Expression_t src)

Adds the linear expression src to dst.

• int ppl_subtract_Linear_Expression_from_Linear_Expression (ppl_Linear_Expression_t dst, ppl_-
const_Linear_Expression_t src)

Subtracts the linear expression src from dst.

• int ppl_multiply_Linear_Expression_by_Coefficient (ppl_Linear_Expression_t le, ppl_const_-
Coefficient_t n)

Multiply the linear expression dst by n.

• int ppl_Linear_Expression_space_dimension (ppl_const_Linear_Expression_t le, ppl_dimension_-
type ∗m)

Writes to m the space dimension of le.

• int ppl_Linear_Expression_coefficient (ppl_const_Linear_Expression_t le, ppl_dimension_type var,
ppl_Coefficient_t n)

Copies into n the coefficient of variable var in the linear expression le.

• int ppl_Linear_Expression_inhomogeneous_term (ppl_const_Linear_Expression_t le, ppl_-
Coefficient_t n)

Copies into n the inhomogeneous term of linear expression le.

• int ppl_Linear_Expression_OK (ppl_const_Linear_Expression_t le)
Returns a positive integer if le is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps makes some noise if le is broken. Useful for debugging purposes.

Functions Related to Constraints

• int ppl_new_Constraint (ppl_Constraint_t ∗pc, ppl_const_Linear_Expression_t le, enum ppl_-
enum_Constraint_Type rel)

Creates the new constraint ‘le rel 0’ and writes a handle for it at address pc. The space dimension of
the new constraint is equal to the space dimension of le.

• int ppl_new_Constraint_zero_dim_false (ppl_Constraint_t ∗pc)
Creates the unsatisfiable (zero-dimension space) constraint 0 = 1 and writes a handle for it at address pc.

• int ppl_new_Constraint_zero_dim_positivity (ppl_Constraint_t ∗pc)
Creates the true (zero-dimension space) constraint 0 ≤ 1, also known as positivity constraint. A handle for
the newly created constraint is written at address pc.

• int ppl_new_Constraint_from_Constraint (ppl_Constraint_t ∗pc, ppl_const_Constraint_t c)
Builds a constraint that is a copy of c; writes a handle for the newly created constraint at address pc.

• int ppl_delete_Constraint (ppl_const_Constraint_t c)

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 C Language Interface 44

Invalidates the handle c: this makes sure the corresponding resources will eventually be released.

• int ppl_assign_Constraint_from_Constraint (ppl_Constraint_t dst, ppl_const_Constraint_t src)
Assigns a copy of the constraint src to dst.

• int ppl_Constraint_space_dimension (ppl_const_Constraint_t c, ppl_dimension_type ∗m)
Writes to m the space dimension of c.

• int ppl_Constraint_type (ppl_const_Constraint_t c)
Returns the type of constraint c.

• int ppl_Constraint_coefficient (ppl_const_Constraint_t c, ppl_dimension_type var, ppl_Coefficient_t
n)

Copies into n the coefficient of variable var in constraint c.

• int ppl_Constraint_inhomogeneous_term (ppl_const_Constraint_t c, ppl_Coefficient_t n)
Copies into n the inhomogeneous term of constraint c.

• int ppl_Constraint_OK (ppl_const_Constraint_t c)
Returns a positive integer if c is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps makes some noise if c is broken. Useful for debugging purposes.

Functions Related to Constraint Systems

• int ppl_new_Constraint_System (ppl_Constraint_System_t ∗pcs)
Builds an empty system of constraints and writes a handle to it at address pcs.

• int ppl_new_Constraint_System_zero_dim_empty (ppl_Constraint_System_t ∗pcs)
Builds a zero-dimensional, unsatisfiable constraint system and writes a handle to it at address pcs.

• int ppl_new_Constraint_System_from_Constraint (ppl_Constraint_System_t ∗pcs, ppl_const_-
Constraint_t c)

Builds the singleton constraint system containing only a copy of constraint c; writes a handle for the newly
created system at address pcs.

• int ppl_new_Constraint_System_from_Constraint_System (ppl_Constraint_System_t ∗pcs, ppl_-
const_Constraint_System_t cs)

Builds a constraint system that is a copy of cs; writes a handle for the newly created system at address
pcs.

• int ppl_delete_Constraint_System (ppl_const_Constraint_System_t cs)
Invalidates the handle cs: this makes sure the corresponding resources will eventually be released.

• int ppl_assign_Constraint_System_from_Constraint_System (ppl_Constraint_System_t dst, ppl_-
const_Constraint_System_t src)

Assigns a copy of the constraint system src to dst.

• int ppl_Constraint_System_space_dimension (ppl_const_Constraint_System_t cs, ppl_dimension_-
type ∗m)

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 C Language Interface 45

Writes to m the dimension of the vector space enclosing cs.

• int ppl_Constraint_System_has_strict_inequalities (ppl_const_Constraint_System_t cs)
Returns a positive integer if cs contains any (non-trivial) strict inequality; returns 0 otherwise.

• int ppl_Constraint_System_clear (ppl_Constraint_System_t cs)
Removes all the constraints from the constraint system cs and sets its space dimension to 0.

• int ppl_Constraint_System_insert_Constraint (ppl_Constraint_System_t cs, ppl_const_Constraint_t
c)

Inserts a copy of the constraint c into cs; the space dimension is increased, if necessary.

• int ppl_Constraint_System_OK (ppl_const_Constraint_System_t c)
Returns a positive integer if cs is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps makes some noise if cs is broken. Useful for debugging purposes.

• int ppl_new_Constraint_System_const_iterator (ppl_Constraint_System_const_iterator_t ∗pcit)
Builds a new ‘const iterator’ and writes a handle to it at address pcit.

• int ppl_new_Constraint_System_const_iterator_from_Constraint_System_const_iterator (ppl_-
Constraint_System_const_iterator_t ∗pcit, ppl_const_Constraint_System_const_iterator_t cit)

Builds a const iterator that is a copy of cit; writes an handle for the newly created const iterator at address
pcit.

• int ppl_delete_Constraint_System_const_iterator (ppl_const_Constraint_System_const_iterator_-
t cit)

Invalidates the handle cit: this makes sure the corresponding resources will eventually be released.

• int ppl_assign_Constraint_System_const_iterator_from_Constraint_System_const_iterator (ppl_-
Constraint_System_const_iterator_t dst, ppl_const_Constraint_System_const_iterator_t src)

Assigns a copy of the const iterator src to dst.

• int ppl_Constraint_System_begin (ppl_const_Constraint_System_t cs, ppl_Constraint_System_-
const_iterator_t cit)

Assigns to cit a const iterator "pointing" to the beginning of the constraint system cs.

• int ppl_Constraint_System_end (ppl_const_Constraint_System_t cs, ppl_Constraint_System_-
const_iterator_t cit)

Assigns to cit a const iterator "pointing" past the end of the constraint system cs.

• int ppl_Constraint_System_const_iterator_dereference (ppl_const_Constraint_System_const_-
iterator_t cit, ppl_const_Constraint_t ∗pc)

Dereference cit writing a const handle to the resulting constraint at address pc.

• int ppl_Constraint_System_const_iterator_increment (ppl_Constraint_System_const_iterator_t cit)
Increment cit so that it "points" to the next constraint.

• int ppl_Constraint_System_const_iterator_equal_test (ppl_const_Constraint_System_const_-
iterator_t x, ppl_const_Constraint_System_const_iterator_t y)

Returns a positive integer if the iterators corresponding to x and y are equal; returns 0 if they are different.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 C Language Interface 46

Functions Related to Generators

• int ppl_new_Generator (ppl_Generator_t ∗pg, ppl_const_Linear_Expression_t le, enum ppl_enum_-
Generator_Type t, ppl_const_Coefficient_t d)

Creates a new generator of direction le and type t. If the generator to be created is a point or a closure
point, the divisor d is applied to le. For other types of generators d is simply disregarded. A handle for
the new generator is written at address pg. The space dimension of the new generator is equal to the space
dimension of le.

• int ppl_new_Generator_zero_dim_point (ppl_Generator_t ∗pg)
Creates the point that is the origin of the zero-dimensional space R0. Writes a handle for the new generator
at address pg.

• int ppl_new_Generator_zero_dim_closure_point (ppl_Generator_t ∗pg)
Creates, as a closure point, the point that is the origin of the zero-dimensional space R0. Writes a handle
for the new generator at address pg.

• int ppl_new_Generator_from_Generator (ppl_Generator_t ∗pg, ppl_const_Generator_t g)
Builds a generator that is a copy of g; writes a handle for the newly created generator at address pg.

• int ppl_delete_Generator (ppl_const_Generator_t g)
Invalidates the handle g: this makes sure the corresponding resources will eventually be released.

• int ppl_assign_Generator_from_Generator (ppl_Generator_t dst, ppl_const_Generator_t src)
Assigns a copy of the generator src to dst.

• int ppl_Generator_space_dimension (ppl_const_Generator_t g, ppl_dimension_type ∗m)
Writes to m the space dimension of g.

• int ppl_Generator_type (ppl_const_Generator_t g)
Returns the type of generator g.

• int ppl_Generator_coefficient (ppl_const_Generator_t g, ppl_dimension_type var, ppl_Coefficient_t
n)

Copies into n the coefficient of variable var in generator g.

• int ppl_Generator_divisor (ppl_const_Generator_t g, ppl_Coefficient_t n)
If g is a point or a closure point assigns its divisor to n.

• int ppl_Generator_OK (ppl_const_Generator_t g)
Returns a positive integer if g is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps makes some noise if g is broken. Useful for debugging purposes.

Functions Related to Generator Systems

• int ppl_new_Generator_System (ppl_Generator_System_t ∗pgs)
Builds an empty system of generators and writes a handle to it at address pgs.

• int ppl_new_Generator_System_from_Generator (ppl_Generator_System_t ∗pgs, ppl_const_-
Generator_t g)

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 C Language Interface 47

Builds the singleton generator system containing only a copy of generator g; writes a handle for the newly
created system at address pgs.

• int ppl_new_Generator_System_from_Generator_System (ppl_Generator_System_t ∗pgs, ppl_-
const_Generator_System_t gs)

Builds a generator system that is a copy of gs; writes a handle for the newly created system at address pgs.

• int ppl_delete_Generator_System (ppl_const_Generator_System_t gs)
Invalidates the handle gs: this makes sure the corresponding resources will eventually be released.

• int ppl_assign_Generator_System_from_Generator_System (ppl_Generator_System_t dst, ppl_-
const_Generator_System_t src)

Assigns a copy of the generator system src to dst.

• int ppl_Generator_System_space_dimension (ppl_const_Generator_System_t gs, ppl_dimension_-
type ∗m)

Writes to m the dimension of the vector space enclosing gs.

• int ppl_Generator_System_clear (ppl_Generator_System_t gs)
Removes all the generators from the generator system gs and sets its space dimension to 0.

• int ppl_Generator_System_insert_Generator (ppl_Generator_System_t gs, ppl_const_Generator_t g)

Inserts a copy of the generator g into gs; the space dimension is increased, if necessary.

• int ppl_Generator_System_OK (ppl_const_Generator_System_t c)
Returns a positive integer if gs is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps makes some noise if gs is broken. Useful for debugging purposes.

• int ppl_new_Generator_System_const_iterator (ppl_Generator_System_const_iterator_t ∗pgit)
Builds a new ‘const iterator’ and writes a handle to it at address pgit.

• int ppl_new_Generator_System_const_iterator_from_Generator_System_const_iterator (ppl_-
Generator_System_const_iterator_t ∗pgit, ppl_const_Generator_System_const_iterator_t git)

Builds a const iterator that is a copy of git; writes an handle for the newly created const iterator at address
pgit.

• int ppl_delete_Generator_System_const_iterator (ppl_const_Generator_System_const_iterator_-
t git)

Invalidates the handle git: this makes sure the corresponding resources will eventually be released.

• int ppl_assign_Generator_System_const_iterator_from_Generator_System_const_iterator (ppl_-
Generator_System_const_iterator_t dst, ppl_const_Generator_System_const_iterator_t src)

Assigns a copy of the const iterator src to dst.

• int ppl_Generator_System_begin (ppl_const_Generator_System_t gs, ppl_Generator_System_-
const_iterator_t git)

Assigns to git a const iterator "pointing" to the beginning of the generator system gs.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 C Language Interface 48

• int ppl_Generator_System_end (ppl_const_Generator_System_t gs, ppl_Generator_System_const_-
iterator_t git)

Assigns to git a const iterator "pointing" past the end of the generator system gs.

• int ppl_Generator_System_const_iterator_dereference (ppl_const_Generator_System_const_-
iterator_t git, ppl_const_Generator_t ∗pg)

Dereference git writing a const handle to the resulting generator at address pg.

• int ppl_Generator_System_const_iterator_increment (ppl_Generator_System_const_iterator_t git)
Increment git so that it "points" to the next generator.

• int ppl_Generator_System_const_iterator_equal_test (ppl_const_Generator_System_const_-
iterator_t x, ppl_const_Generator_System_const_iterator_t y)

Returns a positive integer if the iterators corresponding to x and y are equal; returns 0 if they are different.

Functions Related to Polyhedra

• int ppl_new_C_Polyhedron_from_dimension (ppl_Polyhedron_t ∗pph, ppl_dimension_type d)
Builds a universe C polyhedron of dimension d and writes an handle to it at address pph.

• int ppl_new_NNC_Polyhedron_from_dimension (ppl_Polyhedron_t ∗pph, ppl_dimension_type d)
Builds a universe NNC polyhedron of dimension d and writes an handle to it at address pph.

• int ppl_new_C_Polyhedron_empty_from_dimension (ppl_Polyhedron_t ∗pph, ppl_dimension_type
d)

Builds an empty C polyhedron of space dimension d and writes an handle to it at address pph.

• int ppl_new_NNC_Polyhedron_empty_from_dimension (ppl_Polyhedron_t ∗pph, ppl_dimension_-
type d)

Builds an empty NNC polyhedron of space dimension d and writes an handle to it at address pph.

• int ppl_new_C_Polyhedron_from_C_Polyhedron (ppl_Polyhedron_t ∗pph, ppl_const_Polyhedron_t
ph)

Builds a C polyhedron that is a copy of ph; writes a handle for the newly created polyhedron at address
pph.

• int ppl_new_C_Polyhedron_from_NNC_Polyhedron (ppl_Polyhedron_t ∗pph, ppl_const_-
Polyhedron_t ph)

Builds a C polyhedron that is a copy of of the NNC polyhedron ph; writes a handle for the newly created
polyhedron at address pph.

• int ppl_new_NNC_Polyhedron_from_C_Polyhedron (ppl_Polyhedron_t ∗pph, ppl_const_-
Polyhedron_t ph)

Builds an NNC polyhedron that is a copy of the C polyhedron ph; writes a handle for the newly created
polyhedron at address pph.

• int ppl_new_NNC_Polyhedron_from_NNC_Polyhedron (ppl_Polyhedron_t ∗pph, ppl_const_-
Polyhedron_t ph)

Builds an NNC polyhedron that is a copy of ph; writes a handle for the newly created polyhedron at address
pph.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 C Language Interface 49

• int ppl_new_C_Polyhedron_from_Constraint_System (ppl_Polyhedron_t ∗pph, ppl_const_-
Constraint_System_t cs)

Builds a new C polyhedron from the system of constraints cs and writes a handle for the newly created
polyhedron at address pph.

• int ppl_new_C_Polyhedron_recycle_Constraint_System (ppl_Polyhedron_t ∗pph, ppl_Constraint_-
System_t cs)

Builds a new C polyhedron recycling the system of constraints cs and writes a handle for the newly created
polyhedron at address pph.

• int ppl_new_NNC_Polyhedron_from_Constraint_System (ppl_Polyhedron_t ∗pph, ppl_const_-
Constraint_System_t cs)

Builds a new NNC polyhedron from the system of constraints cs and writes a handle for the newly created
polyhedron at address pph.

• int ppl_new_NNC_Polyhedron_recycle_Constraint_System (ppl_Polyhedron_t ∗pph, ppl_-
Constraint_System_t cs)

Builds a new NNC polyhedron recycling the system of constraints cs and writes a handle for the newly
created polyhedron at address pph.

• int ppl_new_C_Polyhedron_from_Generator_System (ppl_Polyhedron_t ∗pph, ppl_const_-
Generator_System_t gs)

Builds a new C polyhedron from the system of generators gs and writes a handle for the newly created
polyhedron at address pph.

• int ppl_new_C_Polyhedron_recycle_Generator_System (ppl_Polyhedron_t ∗pph, ppl_Generator_-
System_t gs)

Builds a new C polyhedron recycling the system of generators gs and writes a handle for the newly created
polyhedron at address pph.

• int ppl_new_NNC_Polyhedron_from_Generator_System (ppl_Polyhedron_t ∗pph, ppl_const_-
Generator_System_t gs)

Builds a new NNC polyhedron from the system of generators gs and writes a handle for the newly created
polyhedron at address pph.

• int ppl_new_NNC_Polyhedron_recycle_Generator_System (ppl_Polyhedron_t ∗pph, ppl_-
Generator_System_t gs)

Builds a new NNC polyhedron recycling the system of generators gs and writes a handle for the newly
created polyhedron at address pph.

• int ppl_new_C_Polyhedron_from_bounding_box (ppl_Polyhedron_t ∗pph, ppl_dimension_-
type(∗space_dimension)(void), int(∗is_empty)(void), int(∗get_lower_bound)(ppl_dimension_type
k, int closed, ppl_Coefficient_t n, ppl_Coefficient_t d), int(∗get_upper_bound)(ppl_dimension_type
k, int closed, ppl_Coefficient_t n, ppl_Coefficient_t d))

Builds a new C polyhedron corresponding to an interval-based bounding box, writing a handle for the newly
created polyhedron at address pph.

• int ppl_new_NNC_Polyhedron_from_bounding_box (ppl_Polyhedron_t ∗pph, ppl_dimension_-
type(∗space_dimension)(void), int(∗is_empty)(void), int(∗get_lower_bound)(ppl_dimension_type
k, int closed, ppl_Coefficient_t n, ppl_Coefficient_t d), int(∗get_upper_bound)(ppl_dimension_type
k, int closed, ppl_Coefficient_t n, ppl_Coefficient_t d))

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 C Language Interface 50

Builds a new NNC polyhedron corresponding to an interval-based bounding box, writing a handle for the
newly created polyhedron at address pph.

• int ppl_assign_C_Polyhedron_from_C_Polyhedron (ppl_Polyhedron_t dst, ppl_const_Polyhedron_t
src)

Assigns a copy of the C polyhedron src to the C polyhedron dst.

• int ppl_assign_NNC_Polyhedron_from_NNC_Polyhedron (ppl_Polyhedron_t dst, ppl_const_-
Polyhedron_t src)

Assigns a copy of the NNC polyhedron src to the NNC polyhedron dst.

• int ppl_delete_Polyhedron (ppl_const_Polyhedron_t ph)
Invalidates the handle ph: this makes sure the corresponding resources will eventually be released.

• int ppl_Polyhedron_space_dimension (ppl_const_Polyhedron_t ph, ppl_dimension_type ∗m)
Writes to m the dimension of the vector space enclosing ph.

• int ppl_Polyhedron_affine_dimension (ppl_const_Polyhedron_t ph)
Writes to m the affine dimension of ph (not to be confused with the dimension of its enclosing vector space)
or 0, if ph is empty.

• int ppl_Polyhedron_constraints (ppl_const_Polyhedron_t ph, ppl_const_Constraint_System_t ∗pcs)

Writes a const handle to the constraint system defining the polyhedron ph at address pcs.

• int ppl_Polyhedron_minimized_constraints (ppl_const_Polyhedron_t ph, ppl_const_Constraint_-
System_t ∗pcs)

Writes a const handle to the minimized constraint system defining the polyhedron ph at address pcs.

• int ppl_Polyhedron_generators (ppl_const_Polyhedron_t ph, ppl_const_Generator_System_t ∗pgs)
Writes a const handle to the generator system defining the polyhedron ph at address pgs.

• int ppl_Polyhedron_minimized_generators (ppl_const_Polyhedron_t ph, ppl_const_Generator_-
System_t ∗pgs)

Writes a const handle to the minimized generator system defining the polyhedron ph at address pgs.

• int ppl_Polyhedron_relation_with_Constraint (ppl_const_Polyhedron_t ph, ppl_const_Constraint_t
c)

Checks the relation between the polyhedron ph and the constraint c.

• int ppl_Polyhedron_relation_with_Generator (ppl_const_Polyhedron_t ph, ppl_const_Generator_-
t g)

Checks the relation between the polyhedron ph and the generator g.

• int ppl_Polyhedron_shrink_bounding_box (ppl_const_Polyhedron_t ph, unsigned int complexity,
void(∗set_empty)(void), void(∗raise_lower_bound)(ppl_dimension_type k, int closed, ppl_const_-
Coefficient_t n, ppl_const_Coefficient_t d), void(∗lower_upper_bound)(ppl_dimension_type k, int
closed, ppl_const_Coefficient_t n, ppl_const_Coefficient_t d))

Use ph to shrink a generic, interval-based bounding box. The bounding box is abstractly provided by means
of the parameters.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 C Language Interface 51

• int ppl_Polyhedron_is_empty (ppl_const_Polyhedron_t ph)
Returns a positive integer if ph is empty; returns 0 if ph is not empty.

• int ppl_Polyhedron_is_universe (ppl_const_Polyhedron_t ph)
Returns a positive integer if ph is a universe polyhedron; returns 0 if it is not.

• int ppl_Polyhedron_is_bounded (ppl_const_Polyhedron_t ph)
Returns a positive integer if ph is bounded; returns 0 if ph is unbounded.

• int ppl_Polyhedron_bounds_from_above (ppl_const_Polyhedron_t ph, ppl_const_Linear_-
Expression_t le)

Returns a positive integer if le is bounded from above in ph; returns 0 otherwise.

• int ppl_Polyhedron_bounds_from_below (ppl_const_Polyhedron_t ph, ppl_const_Linear_-
Expression_t le)

Returns a positive integer if le is bounded from below in ph; returns 0 otherwise.

• int ppl_Polyhedron_maximize (ppl_const_Polyhedron_t ph, ppl_const_Linear_Expression_t le,
ppl_Coefficient_t sup_n, ppl_Coefficient_t sup_d, int ∗pmaximum, ppl_Generator_t point)

Returns a positive integer if ph is not empty and le is bounded from above in ph, in which case the
supremum value and a point where le reaches it are computed.

• int ppl_Polyhedron_minimize (ppl_const_Polyhedron_t ph, ppl_const_Linear_Expression_t le,
ppl_Coefficient_t inf_n, ppl_Coefficient_t inf_d, int ∗pminimum, ppl_Generator_t point)

Returns a positive integer if ph is not empty and le is bounded from below in ph, in which case the infimum
value and a point where le reaches it are computed.

• int ppl_Polyhedron_is_topologically_closed (ppl_const_Polyhedron_t ph)
Returns a positive integer if ph is topologically closed; returns 0 if ph is not topologically closed.

• int ppl_Polyhedron_contains_Polyhedron (ppl_const_Polyhedron_t x, ppl_const_Polyhedron_t y)
Returns a positive integer if x contains or is equal to y; returns 0 if it does not.

• int ppl_Polyhedron_strictly_contains_Polyhedron (ppl_const_Polyhedron_t x, ppl_const_-
Polyhedron_t y)

Returns a positive integer if x strictly contains y; returns 0 if it does not.

• int ppl_Polyhedron_is_disjoint_from_Polyhedron (ppl_const_Polyhedron_t x, ppl_const_-
Polyhedron_t y)

Returns a positive integer if x and y are disjoint; returns 0 if they are not.

• int ppl_Polyhedron_equals_Polyhedron (ppl_const_Polyhedron_t x, ppl_const_Polyhedron_t y)
Returns a positive integer if x and y are the same polyhedron; returns 0 if they are different.

• int ppl_Polyhedron_OK (ppl_const_Polyhedron_t ph)
Returns a positive integer if ph is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps makes some noise if ph is broken. Useful for debugging purposes.

• int ppl_Polyhedron_add_constraint (ppl_Polyhedron_t ph, ppl_const_Constraint_t c)
Adds a copy of the constraint c to the system of constraints of ph.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 C Language Interface 52

• int ppl_Polyhedron_add_constraint_and_minimize (ppl_Polyhedron_t ph, ppl_const_Constraint_t c)

Adds a copy of the constraint c to the system of constraints of ph. Returns a positive integer if the resulting
polyhedron is non-empty; returns 0 if it is empty. Upon successful return, ph is guaranteed to be minimized.

• int ppl_Polyhedron_add_generator (ppl_Polyhedron_t ph, ppl_const_Generator_t g)
Adds a copy of the generator g to the system of generators of ph.

• int ppl_Polyhedron_add_generator_and_minimize (ppl_Polyhedron_t ph, ppl_const_Generator_t g)

Adds a copy of the generator g to the system of generators of ph. Returns a positive integer if the resulting
polyhedron is non-empty; returns 0 if it is empty. Upon successful return, ph is guaranteed to be minimized.

• int ppl_Polyhedron_add_constraints (ppl_Polyhedron_t ph, ppl_const_Constraint_System_t cs)
Adds a copy of the system of constraints cs to the system of constraints of ph.

• int ppl_Polyhedron_add_constraints_and_minimize (ppl_Polyhedron_t ph, ppl_const_Constraint_-
System_t cs)

Adds a copy of the system of constraints cs to the system of constraints of ph. Returns a positive integer if
the resulting polyhedron is non-empty; returns 0 if it is empty. Upon successful return, ph is guaranteed to
be minimized.

• int ppl_Polyhedron_add_generators (ppl_Polyhedron_t ph, ppl_const_Generator_System_t gs)
Adds a copy of the system of generators gs to the system of generators of ph.

• int ppl_Polyhedron_add_generators_and_minimize (ppl_Polyhedron_t ph, ppl_const_Generator_-
System_t gs)

Adds a copy of the system of generators gs to the system of generators of ph. Returns a positive integer if
the resulting polyhedron is non-empty; returns 0 if it is empty. Upon successful return, ph is guaranteed to
be minimized.

• int ppl_Polyhedron_add_recycled_constraints (ppl_Polyhedron_t ph, ppl_Constraint_System_t cs)
Adds the system of constraints cs to the system of constraints of ph.

• int ppl_Polyhedron_add_recycled_constraints_and_minimize (ppl_Polyhedron_t ph, ppl_-
Constraint_System_t cs)

Adds the system of constraints cs to the system of constraints of ph. Returns a positive integer if the
resulting polyhedron is non-empty; returns 0 if it is empty. Upon successful return, ph is guaranteed to be
minimized.

• int ppl_Polyhedron_add_recycled_generators (ppl_Polyhedron_t ph, ppl_Generator_System_t gs)
Adds the system of generators gs to the system of generators of ph.

• int ppl_Polyhedron_add_recycled_generators_and_minimize (ppl_Polyhedron_t ph, ppl_-
Generator_System_t gs)

Adds the system of generators gs to the system of generators of ph. Returns a positive integer if the resulting
polyhedron is non-empty; returns 0 if it is empty. Upon successful return, ph is guaranteed to be minimized.

• int ppl_Polyhedron_intersection_assign (ppl_Polyhedron_t x, ppl_const_Polyhedron_t y)
Intersects x with polyhedron y and assigns the result to x.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 C Language Interface 53

• int ppl_Polyhedron_intersection_assign_and_minimize (ppl_Polyhedron_t x, ppl_const_-
Polyhedron_t y)

Intersects x with polyhedron y and assigns the result to x. Returns a positive integer if the resulting
polyhedron is non-empty; returns 0 if it is empty. Upon successful return, x is also guaranteed to be
minimized.

• int ppl_Polyhedron_poly_hull_assign (ppl_Polyhedron_t x, ppl_const_Polyhedron_t y)
Assigns to x the poly-hull of x and y.

• int ppl_Polyhedron_poly_hull_assign_and_minimize (ppl_Polyhedron_t x, ppl_const_Polyhedron_t
y)

Assigns to x the poly-hull of x and y. Returns a positive integer if the resulting polyhedron is non-empty;
returns 0 if it is empty. Upon successful return, x is also guaranteed to be minimized.

• int ppl_Polyhedron_poly_difference_assign (ppl_Polyhedron_t x, ppl_const_Polyhedron_t y)
Assigns to x the poly-difference of x and y.

• int ppl_Polyhedron_affine_image (ppl_Polyhedron_t ph, ppl_dimension_type var, ppl_const_-
Linear_Expression_t le, ppl_const_Coefficient_t d)

Transforms the polyhedron ph, assigning an affine expression to the specified variable.

• int ppl_Polyhedron_affine_preimage (ppl_Polyhedron_t ph, ppl_dimension_type var, ppl_const_-
Linear_Expression_t le, ppl_const_Coefficient_t d)

Transforms the polyhedron ph, substituting an affine expression to the specified variable.

• int ppl_Polyhedron_bounded_affine_image (ppl_Polyhedron_t ph, ppl_dimension_type var, ppl_-
const_Linear_Expression_t lb, ppl_const_Linear_Expression_t ub, ppl_const_Coefficient_t d)

Assigns to ph the image of ph with respect to the generalized affine transfer relation lb
d
≤ var′ ≤ ub

d
.

• int ppl_Polyhedron_bounded_affine_preimage (ppl_Polyhedron_t ph, ppl_dimension_type var,
ppl_const_Linear_Expression_t lb, ppl_const_Linear_Expression_t ub, ppl_const_Coefficient_t d)

Assigns to ph the preimage of ph with respect to the generalized affine transfer relation lb
d
≤ var′ ≤ ub

d
.

• int ppl_Polyhedron_generalized_affine_image (ppl_Polyhedron_t ph, ppl_dimension_type var,
enum ppl_enum_Constraint_Type relsym, ppl_const_Linear_Expression_t le, ppl_const_-
Coefficient_t d)

Assigns to ph the image of ph with respect to the generalized affine transfer relation var′ ./ le
d

, where ./ is
the relation symbol encoded by relsym.

• int ppl_Polyhedron_generalized_affine_preimage (ppl_Polyhedron_t ph, ppl_dimension_type
var, enum ppl_enum_Constraint_Type relsym, ppl_const_Linear_Expression_t le, ppl_const_-
Coefficient_t d)

Assigns to ph the preimage of ph with respect to the generalized affine transfer relation var′ ./ le
d

, where
./ is the relation symbol encoded by relsym.

• int ppl_Polyhedron_generalized_affine_image_lhs_rhs (ppl_Polyhedron_t ph, ppl_const_Linear_-
Expression_t lhs, enum ppl_enum_Constraint_Type relsym, ppl_const_Linear_Expression_t rhs)

Assigns to ph the image of ph with respect to the generalized affine transfer relation lhs′ ./ rhs, where ./
is the relation symbol encoded by relsym.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 C Language Interface 54

• int ppl_Polyhedron_generalized_affine_preimage_lhs_rhs (ppl_Polyhedron_t ph, ppl_const_-
Linear_Expression_t lhs, enum ppl_enum_Constraint_Type relsym, ppl_const_Linear_Expression_t
rhs)

Assigns to ph the preimage of ph with respect to the generalized affine transfer relation lhs′ ./ rhs, where
./ is the relation symbol encoded by relsym.

• int ppl_Polyhedron_time_elapse_assign (ppl_Polyhedron_t x, ppl_const_Polyhedron_t y)
Assigns to x the time-elapse between the polyhedra x and y.

• int ppl_Polyhedron_BHRZ03_widening_assign_with_tokens (ppl_Polyhedron_t x, ppl_const_-
Polyhedron_t y, unsigned ∗tp)

If the polyhedron y is contained in (or equal to) the polyhedron x, assigns to x the BHRZ03-widening of x
and y. If tp is not the null pointer, the widening with tokens delay technique is applied with ∗tp available
tokens.

• int ppl_Polyhedron_BHRZ03_widening_assign (ppl_Polyhedron_t x, ppl_const_Polyhedron_t y)
If the polyhedron y is contained in (or equal to) the polyhedron x, assigns to x the BHRZ03-widening of x
and y.

• int ppl_Polyhedron_limited_BHRZ03_extrapolation_assign_with_tokens (ppl_Polyhedron_t x,
ppl_const_Polyhedron_t y, ppl_const_Constraint_System_t cs, unsigned ∗tp)

If the polyhedron y is contained in (or equal to) the polyhedron x, assigns to x the BHRZ03-widening of
x and y intersected with the constraints in cs that are satisfied by all the points of x. If tp is not the null
pointer, the widening with tokens delay technique is applied with ∗tp available tokens.

• int ppl_Polyhedron_limited_BHRZ03_extrapolation_assign (ppl_Polyhedron_t x, ppl_const_-
Polyhedron_t y, ppl_const_Constraint_System_t cs)

If the polyhedron y is contained in (or equal to) the polyhedron x, assigns to x the BHRZ03-widening of x
and y intersected with the constraints in cs that are satisfied by all the points of x.

• int ppl_Polyhedron_bounded_BHRZ03_extrapolation_assign_with_tokens (ppl_Polyhedron_t x,
ppl_const_Polyhedron_t y, ppl_const_Constraint_System_t cs, unsigned ∗tp)

If the polyhedron y is contained in (or equal to) the polyhedron x, assigns to x the BHRZ03-widening of x
and y intersected with the constraints in cs that are satisfied by all the points of x, further intersected with
all the constraints of the form ±v ≤ r and ±v < r, with r ∈ Q, that are satisfied by all the points of x. If
tp is not the null pointer, the widening with tokens delay technique is applied with ∗tp available tokens.

• int ppl_Polyhedron_bounded_BHRZ03_extrapolation_assign (ppl_Polyhedron_t x, ppl_const_-
Polyhedron_t y, ppl_const_Constraint_System_t cs)

If the polyhedron y is contained in (or equal to) the polyhedron x, assigns to x the BHRZ03-widening of x
and y intersected with the constraints in cs that are satisfied by all the points of x, further intersected with
all the constraints of the form ±v ≤ r and ±v < r, with r ∈ Q, that are satisfied by all the points of x.

• int ppl_Polyhedron_H79_widening_assign_with_tokens (ppl_Polyhedron_t x, ppl_const_-
Polyhedron_t y, unsigned ∗tp)

If the polyhedron y is contained in (or equal to) the polyhedron x, assigns to x the H79-widening of x and
y. If tp is not the null pointer, the widening with tokens delay technique is applied with ∗tp available
tokens.

• int ppl_Polyhedron_H79_widening_assign (ppl_Polyhedron_t x, ppl_const_Polyhedron_t y)
If the polyhedron y is contained in (or equal to) the polyhedron x, assigns to x the H79-widening of x and
y.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 C Language Interface 55

• int ppl_Polyhedron_limited_H79_extrapolation_assign_with_tokens (ppl_Polyhedron_t x, ppl_-
const_Polyhedron_t y, ppl_const_Constraint_System_t cs, unsigned ∗tp)

If the polyhedron y is contained in (or equal to) the polyhedron x, assigns to x the H79-widening of x and
y intersected with the constraints in cs that are satisfied by all the points of x. If tp is not the null pointer,
the widening with tokens delay technique is applied with ∗tp available tokens.

• int ppl_Polyhedron_limited_H79_extrapolation_assign (ppl_Polyhedron_t x, ppl_const_-
Polyhedron_t y, ppl_const_Constraint_System_t cs)

If the polyhedron y is contained in (or equal to) the polyhedron x, assigns to x the H79-widening of x and
y intersected with the constraints in cs that are satisfied by all the points of x.

• int ppl_Polyhedron_bounded_H79_extrapolation_assign_with_tokens (ppl_Polyhedron_t x, ppl_-
const_Polyhedron_t y, ppl_const_Constraint_System_t cs, unsigned ∗tp)

If the polyhedron y is contained in (or equal to) the polyhedron x, assigns to x the H79-widening of x and
y intersected with the constraints in cs that are satisfied by all the points of x, further intersected with all
the constraints of the form ±v ≤ r and ±v < r, with r ∈ Q, that are satisfied by all the points of x. If tp
is not the null pointer, the widening with tokens delay technique is applied with ∗tp available tokens.

• int ppl_Polyhedron_bounded_H79_extrapolation_assign (ppl_Polyhedron_t x, ppl_const_-
Polyhedron_t y, ppl_const_Constraint_System_t cs)

If the polyhedron y is contained in (or equal to) the polyhedron x, assigns to x the H79-widening of x and
y intersected with the constraints in cs that are satisfied by all the points of x, further intersected with all
the constraints of the form ±v ≤ r and ±v < r, with r ∈ Q, that are satisfied by all the points of x.

• int ppl_Polyhedron_topological_closure_assign (ppl_Polyhedron_t ph)
Assigns to ph its topological closure.

• int ppl_Polyhedron_add_space_dimensions_and_embed (ppl_Polyhedron_t ph, ppl_dimension_-
type d)

Adds d new dimensions to the space enclosing the polyhedron ph and to ph itself.

• int ppl_Polyhedron_add_space_dimensions_and_project (ppl_Polyhedron_t ph, ppl_dimension_-
type d)

Adds d new dimensions to the space enclosing the polyhedron ph.

• int ppl_Polyhedron_concatenate_assign (ppl_Polyhedron_t x, ppl_const_Polyhedron_t y)
Seeing a polyhedron as a set of tuples (its points), assigns to x all the tuples that can be obtained by
concatenating, in the order given, a tuple of x with a tuple of y.

• int ppl_Polyhedron_remove_space_dimensions (ppl_Polyhedron_t ph, ppl_dimension_type ds[],
size_t n)

Removes from the vector space enclosing ph the space dimensions that are specified in first n positions of
the array ds. The presence of duplicates in ds is a waste but an innocuous one.

• int ppl_Polyhedron_remove_higher_space_dimensions (ppl_Polyhedron_t ph, ppl_dimension_type
d)

Removes the higher dimensions from the vector space enclosing ph so that, upon successful return, the new
space dimension is d.

• int ppl_Polyhedron_map_space_dimensions (ppl_Polyhedron_t ph, ppl_dimension_type maps[],
size_t n)

Remaps the dimensions of the vector space according to a partial function. This function is specified by
means of the maps array, which has n entries.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 C Language Interface 56

• int ppl_Polyhedron_expand_space_dimension (ppl_Polyhedron_t ph, ppl_dimension_type d, ppl_-
dimension_type m)

Expands the d-th dimension of the vector space enclosing ph to m new space dimensions.

• int ppl_Polyhedron_fold_space_dimensions (ppl_Polyhedron_t ph, ppl_dimension_type ds[], size_t
n, ppl_dimension_type d)

Modifies ph by folding the space dimensions contained in the first n positions of the array ds into dimension
d. The presence of duplicates in ds is a waste but an innocuous one.

Functions Related to LP Problems

• int ppl_new_LP_Problem_trivial (ppl_LP_Problem_t ∗plp)
Builds a trivial LP problem and writes a handle to it at address plp.

• int ppl_new_LP_Problem (ppl_LP_Problem_t ∗plp, ppl_const_Constraint_System_t cs, ppl_const_-
Linear_Expression_t le, int m)

Builds an LP problem having feasible region cs, objective function le and optimization mode m; writes a
handle to it at address plp.

• int ppl_new_LP_Problem_from_LP_Problem (ppl_LP_Problem_t ∗plp, ppl_const_LP_Problem_-
t lp)

Builds an LP problem that is a copy of lp; writes a handle for the newly created system at address plp.

• int ppl_delete_LP_Problem (ppl_const_LP_Problem_t lp)
Invalidates the handle lp: this makes sure the corresponding resources will eventually be released.

• int ppl_assign_LP_Problem_from_LP_Problem (ppl_LP_Problem_t dst, ppl_const_LP_Problem_t
src)

Assigns a copy of the LP problem src to dst.

• int ppl_LP_Problem_space_dimension (ppl_const_LP_Problem_t lp, ppl_dimension_type ∗m)
Writes to m the dimension of the vector space enclosing lp.

• int ppl_LP_Problem_constraints (ppl_const_LP_Problem_t lp, ppl_const_Constraint_System_-
t ∗pcs)

Writes a const handle to the constraint system defining the feasible region of the LP problem lp at address
pcs.

• int ppl_LP_Problem_objective_function (ppl_const_LP_Problem_t lp, ppl_const_Linear_-
Expression_t ∗ple)

Writes a const handle to the linear expression defining the objective function of the LP problem lp at
address ple.

• int ppl_LP_Problem_optimization_mode (ppl_const_LP_Problem_t lp)
Returns the optimization mode of the LP problem lp.

• int ppl_LP_Problem_clear (ppl_LP_Problem_t lp)
Resets the LP problem to be a trivial problem of space dimension 0.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 C Language Interface 57

• int ppl_LP_Problem_add_constraint (ppl_LP_Problem_t lp, ppl_const_Constraint_t c)
Modifies the feasible region of the LP problem lp by adding a copy of the constraint c; the space dimension
is increased, if necessary.

• int ppl_LP_Problem_add_constraints (ppl_LP_Problem_t lp, ppl_const_Constraint_System_t cs)
Modifies the feasible region of the LP problem lp by adding a copy of the constraints in cs; the space
dimension is increased, if necessary.

• int ppl_LP_Problem_set_objective_function (ppl_LP_Problem_t lp, ppl_const_Linear_-
Expression_t le)

Sets the objective function of the LP problem lp to a copy of le.

• int ppl_LP_Problem_set_optimization_mode (ppl_LP_Problem_t lp, int mode)
Sets the optimization mode of the LP problem lp to mode.

• int ppl_LP_Problem_is_satisfiable (ppl_const_LP_Problem_t lp)
Returns a positive integer if lp is satisfiable; returns 0 otherwise.

• int ppl_LP_Problem_solve (ppl_const_LP_Problem_t lp)
Solves the LP problem lp, returning an exit status.

• int ppl_LP_Problem_evaluate_objective_function (ppl_const_LP_Problem_t lp, ppl_const_-
Generator_t g, ppl_Coefficient_t num, ppl_Coefficient_t den)

Evaluates the objective function of lp on point g.

• int ppl_LP_Problem_feasible_point (ppl_const_LP_Problem_t lp, ppl_const_Generator_t ∗pg)
Writes a const handle to a feasible point for the LP problem lp at address pg.

• int ppl_LP_Problem_optimizing_point (ppl_const_LP_Problem_t lp, ppl_const_Generator_t ∗pg)
Writes a const handle to an optimizing point for the LP problem lp at address pg.

• int ppl_LP_Problem_optimal_value (ppl_const_LP_Problem_t lp, ppl_Coefficient_t num, ppl_-
Coefficient_t den)

Returns the optimal value for lp.

• int ppl_LP_Problem_OK (ppl_const_LP_Problem_t lp)
Returns a positive integer if lp is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps makes some noise if lp is broken. Useful for debugging purposes.

Typedefs

• typedef size_t ppl_dimension_type
An unsigned integral type for representing space dimensions.

• typedef ppl_Coefficient_tag ∗ ppl_Coefficient_t
Opaque pointer.

• typedef ppl_Coefficient_tag const ∗ ppl_const_Coefficient_t
Opaque pointer to const object.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 C Language Interface 58

• typedef ppl_Linear_Expression_tag ∗ ppl_Linear_Expression_t
Opaque pointer.

• typedef ppl_Linear_Expression_tag const ∗ ppl_const_Linear_Expression_t
Opaque pointer to const object.

• typedef ppl_Constraint_tag ∗ ppl_Constraint_t
Opaque pointer.

• typedef ppl_Constraint_tag const ∗ ppl_const_Constraint_t
Opaque pointer to const object.

• typedef ppl_Constraint_System_tag ∗ ppl_Constraint_System_t
Opaque pointer.

• typedef ppl_Constraint_System_tag const ∗ ppl_const_Constraint_System_t
Opaque pointer to const object.

• typedef ppl_Constraint_System_const_iterator_tag ∗ ppl_Constraint_System_const_iterator_t
Opaque pointer.

• typedef ppl_Constraint_System_const_iterator_tag const ∗ ppl_const_Constraint_System_const_-
iterator_t

Opaque pointer to const object.

• typedef ppl_Generator_tag ∗ ppl_Generator_t
Opaque pointer.

• typedef ppl_Generator_tag const ∗ ppl_const_Generator_t
Opaque pointer to const object.

• typedef ppl_Generator_System_tag ∗ ppl_Generator_System_t
Opaque pointer.

• typedef ppl_Generator_System_tag const ∗ ppl_const_Generator_System_t
Opaque pointer to const object.

• typedef ppl_Generator_System_const_iterator_tag ∗ ppl_Generator_System_const_iterator_t
Opaque pointer.

• typedef ppl_Generator_System_const_iterator_tag const ∗ ppl_const_Generator_System_const_-
iterator_t

Opaque pointer to const object.

• typedef ppl_Polyhedron_tag ∗ ppl_Polyhedron_t
Opaque pointer.

• typedef ppl_Polyhedron_tag const ∗ ppl_const_Polyhedron_t
Opaque pointer to const object.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 C Language Interface 59

• typedef ppl_LP_Problem_tag ∗ ppl_LP_Problem_t
Opaque pointer.

• typedef ppl_LP_Problem_tag const ∗ ppl_const_LP_Problem_t
Opaque pointer to const object.

Enumerations

• enum ppl_enum_error_code {

PPL_ERROR_OUT_OF_MEMORY, PPL_ERROR_INVALID_ARGUMENT, PPL_ERROR_-
DOMAIN_ERROR, PPL_ERROR_LENGTH_ERROR,

PPL_ARITHMETIC_OVERFLOW, PPL_STDIO_ERROR, PPL_ERROR_INTERNAL_ERROR,
PPL_ERROR_UNKNOWN_STANDARD_EXCEPTION,

PPL_ERROR_UNEXPECTED_ERROR }
Defines the error codes that any function may return.

• enum ppl_enum_Constraint_Type {

PPL_CONSTRAINT_TYPE_LESS_THAN, PPL_CONSTRAINT_TYPE_LESS_THAN_OR_-
EQUAL, PPL_CONSTRAINT_TYPE_EQUAL, PPL_CONSTRAINT_TYPE_GREATER_-
THAN_OR_EQUAL,

PPL_CONSTRAINT_TYPE_GREATER_THAN }
Describes the relations represented by a constraint.

• enum ppl_enum_Generator_Type { PPL_GENERATOR_TYPE_LINE, PPL_GENERATOR_-
TYPE_RAY, PPL_GENERATOR_TYPE_POINT, PPL_GENERATOR_TYPE_CLOSURE_-
POINT }

Describes the different kinds of generators.

Variables

• unsigned int PPL_COMPLEXITY_CLASS_POLYNOMIAL
Code of the worst-case polynomial complexity class.

• unsigned int PPL_COMPLEXITY_CLASS_SIMPLEX
Code of the worst-case exponential but typically polynomial complexity class.

• unsigned int PPL_COMPLEXITY_CLASS_ANY
Code of the universal complexity class.

• int PPL_LP_PROBLEM_STATUS_UNFEASIBLE
Code of the "unfeasible LP problem" status.

• int PPL_LP_PROBLEM_STATUS_UNBOUNDED
Code of the "unbounded LP problem" status.

• int PPL_LP_PROBLEM_STATUS_OPTIMIZED

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 C Language Interface 60

Code of the "optimized LP problem" status.

• int PPL_LP_PROBLEM_MAXIMIZATION
Code of the "maximization" optimization mode.

• int PPL_LP_PROBLEM_MINIMIZATION
Code of the "minimization" optimization mode.

• unsigned int PPL_POLY_CON_RELATION_IS_DISJOINT
Individual bit saying that the polyhedron and the set of points satisfying the constraint are disjoint.

• unsigned int PPL_POLY_CON_RELATION_STRICTLY_INTERSECTS
Individual bit saying that the polyhedron intersects the set of points satisfying the constraint, but it is not
included in it.

• unsigned int PPL_POLY_CON_RELATION_IS_INCLUDED
Individual bit saying that the polyhedron is included in the set of points satisfying the constraint.

• unsigned int PPL_POLY_CON_RELATION_SATURATES
Individual bit saying that the polyhedron is included in the set of points saturating the constraint.

• unsigned int PPL_POLY_GEN_RELATION_SUBSUMES
Individual bit saying that adding the generator would not change the polyhedron.

7.2.1 Detailed Description

Some details about the C Interface.

All the declarations needed for using the PPL’s C interface (preprocessor symbols, data types, variables and
functions) are collected in the header file ppl_c.h. This file, which is designed to work with pre-ANSI
and ANSI C compilers as well as C99 and C++ compilers, should be included, either directly or via some
other header file, with the directive

#include <ppl_c.h>

If this directive does not work, then your compiler is unable to find the file ppl_c.h. So check that the
library is installed (if it is not installed, you may want to make install, perhaps with root privileges)
in the right place (if not you may want to reconfigure the library using the appropriate pathname for the
-prefix option); and that your compiler knows where it is installed (if not you should add the path to the
directory where ppl_c.h is located to the compiler’s include file search path; this is usually done with
the -I option).

The name space of the PPL’s C interface is PPL_∗ for preprocessor symbols, enumeration values and
variables; and ppl_∗ for data types and function names. The interface systematically uses opaque data
types (generic pointers that completely hide the internal representations from the client code) and provides
all required access functions. By using just the interface, the client code can exploit all the functionalities
of the library yet avoid directly manipulating the library’s data structures. The advantages are that (1)
applications do not depend on the internals of the library (these may change from release to release), and
(2) the interface invariants can be thoroughly checked (by the access functions).

The PPL’s C interface is initialized by means of the ppl_initialize function. This function must be
called before using any other interface of the library. The application can release the resources allocated

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 C Language Interface 61

by the library by calling the ppl_finalize function. After this function is called no other interface of
the library may be used until the interface is re-initialized using ppl_initialize.

Any application using the PPL should make sure that only the intended version(s) of the library are ever
used. The version used can be checked at compile-time thanks to the macros PPL_VERSION_MAJOR,
PPL_VERSION_MINOR, PPL_VERSION_REVISION and PPL_VERSION_BETA, which give, respec-
tively major, minor, revision and beta numbers of the PPL version. This is an example of their use:

#if PPL_VERSION_MAJOR == 0 && PPL_VERSION_MINOR < 6
error "PPL version 0.6 or following is required"
#endif

Compile-time checking, however, is not normally enough, particularly in an environment where there is dy-
namic linking. Run-time checking can be performed by means of the functions ppl_version_major,
ppl_version_minor, ppl_version_revision, and ppl_version_beta. The PPL’s C inter-
face also provides functions ppl_version, returning character string containing the full version number,
and ppl_banner, returning a string that, in addition, provides (pointers to) other useful information for
the library user.

All programs using the PPL’s C interface must link with the following libraries: libppl_c (PPL’s C
interface), libppl (PPL’s core), libgmpxx (GMP’s C++ interface), and libgmp (GMP’s library core).
On most Unix-like systems, this is done by adding -lppl_c, -lppl, -lgmpxx, and -lgmp to the
compiler’s or linker’s command line. For example:

gcc myprogram.o -lppl_c -lppl -lgmpxx -lgmp

If this does not work, it means that your compiler/linker is not finding the libraries where it expects. Again,
this could be because you forgot to install the library or you installed it in a non-standard location. In the
latter case you will need to use the appropriate options (usually -L) and, if you use shared libraries, some
sort of run-time path selection mechanisms. Consult your compiler’s documentation for details. Notice
that the PPL is built using Libtool and an application can exploit this fact to significantly simplify the
linking phase. See Libtool’s documentation for details. Those working under Linux can find a lot of useful
information on how to use program libraries (including static, shared, and dynamically loaded libraries) in
the Program Library HOWTO.

For examples on how to use the functions provided by the C interface, you are referred to the directory
demos/ppl_lpsol/ in the source distribution. It contains a Linear Programming solver written in C.
In order to use this solver you will need to install GLPK (the GNU Linear Programming Kit): this is used
to read linear programs in MPS format.

7.2.2 Define Documentation

7.2.2.1 #define PPL_VERSION "0.9"

A string containing the PPL version.

Let M and m denote the numbers associated to PPL_VERSION_MAJOR and PPL_VERSION_MINOR,
respectively. The format of PPL_VERSION is M "." m if both PPL_VERSION_REVISION (r) and
PPL_VERSION_BETA (b)are zero, M "." m "pre" b if PPL_VERSION_REVISION is zero and
PPL_VERSION_BETA is not zero, M "." m "." r if PPL_VERSION_REVISION is not zero and
PPL_VERSION_BETA is zero, M "." m "." r "pre" b if neither PPL_VERSION_REVISION
nor PPL_VERSION_BETA are zero.

7.2.3 Typedef Documentation

7.2.3.1 typedef const char∗ ppl_io_variable_output_function_type(ppl_dimension_type var)

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.gnu.org/software/libtool/
http://www.dwheeler.com/program-library/
http://www.gnu.org/software/glpk/
http://www.cs.unipr.it/ppl/

7.2 C Language Interface 62

The type of output functions used for printing variables.

An output function for variables must write a textual representation for var to a character buffer, null-
terminate it, and return a pointer to the beginning of the buffer. In case the operation fails, 0 should be
returned and perhaps errno should be set in a meaningful way. The library does nothing with the buffer,
besides printing its contents.

7.2.4 Enumeration Type Documentation

7.2.4.1 enum ppl_enum_error_code

Defines the error codes that any function may return.

Enumerator:

PPL_ERROR_OUT_OF_MEMORY The virtual memory available to the process has been ex-
hausted.

PPL_ERROR_INVALID_ARGUMENT A function has been invoked with an invalid argument.

PPL_ERROR_DOMAIN_ERROR A function has been invoked outside its domain of definition.

PPL_ERROR_LENGTH_ERROR The construction of an object that would exceed its maximum
permitted size was attempted.

PPL_ARITHMETIC_OVERFLOW An arithmetic overflow occurred and the computation was con-
sequently interrupted. This can only happen in library’s incarnations using bounded integers as
coefficients.

PPL_STDIO_ERROR An error occurred during a C input/output operation. A more precise indica-
tion of what went wrong is available via errno.

PPL_ERROR_INTERNAL_ERROR An internal error that was diagnosed by the PPL itself. This
indicates a bug in the PPL.

PPL_ERROR_UNKNOWN_STANDARD_EXCEPTION A standard exception has been raised by
the C++ run-time environment. This indicates a bug in the PPL.

PPL_ERROR_UNEXPECTED_ERROR A totally unknown, totally unexpected error happened.
This indicates a bug in the PPL.

7.2.4.2 enum ppl_enum_Constraint_Type

Describes the relations represented by a constraint.

Enumerator:

PPL_CONSTRAINT_TYPE_LESS_THAN The constraint is of the form e < 0.

PPL_CONSTRAINT_TYPE_LESS_THAN_OR_EQUAL The constraint is of the form e ≤ 0.

PPL_CONSTRAINT_TYPE_EQUAL The constraint is of the form e = 0.

PPL_CONSTRAINT_TYPE_GREATER_THAN_OR_EQUAL The constraint is of the form e ≥ 0.

PPL_CONSTRAINT_TYPE_GREATER_THAN The constraint is of the form e > 0.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 C Language Interface 63

7.2.4.3 enum ppl_enum_Generator_Type

Describes the different kinds of generators.

Enumerator:

PPL_GENERATOR_TYPE_LINE The generator is a line.

PPL_GENERATOR_TYPE_RAY The generator is a ray.

PPL_GENERATOR_TYPE_POINT The generator is a point.

PPL_GENERATOR_TYPE_CLOSURE_POINT The generator is a closure point.

7.2.5 Function Documentation

7.2.5.1 int ppl_banner (const char ∗∗ p)

Writes to ∗p a pointer to a character string containing the PPL banner.

The banner provides information about the PPL version, the licensing, the lack of any warranty whatsoever,
the C++ compiler used to build the library, where to report bugs and where to look for further information.

7.2.5.2 int ppl_initialize (void)

Initializes the Parma Polyhedra Library. This function must be called before any other function.

Returns:

PPL_ERROR_INVALID_ARGUMENT if the library was already initialized.

7.2.5.3 int ppl_finalize (void)

Finalizes the Parma Polyhedra Library. This function must be called after any other function.

Returns:

PPL_ERROR_INVALID_ARGUMENT if the library was already finalized.

7.2.5.4 int ppl_set_error_handler (void(∗)(enum ppl_enum_error_code code, const char
∗description) h)

Installs the user-defined error handler pointed at by h.

The error handler takes an error code and a textual description that gives further information about the
actual error. The C string containing the textual description is read-only and its existence is not guaranteed
after the handler has returned.

7.2.5.5 int ppl_new_C_Polyhedron_from_Constraint_System (ppl_Polyhedron_t ∗ pph, ppl_-
const_Constraint_System_t cs)

Builds a new C polyhedron from the system of constraints cs and writes a handle for the newly created
polyhedron at address pph.

The new polyhedron will inherit the space dimension of cs.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 C Language Interface 64

7.2.5.6 int ppl_new_C_Polyhedron_recycle_Constraint_System (ppl_Polyhedron_t ∗ pph, ppl_-
Constraint_System_t cs)

Builds a new C polyhedron recycling the system of constraints cs and writes a handle for the newly created
polyhedron at address pph.

Since cs will be the system of constraints of the new polyhedron, the space dimension is also inherited.

Warning:

This function modifies the constraint system referenced by cs: upon return, no assumption can be
made on its value.

7.2.5.7 int ppl_new_NNC_Polyhedron_from_Constraint_System (ppl_Polyhedron_t ∗ pph, ppl_-
const_Constraint_System_t cs)

Builds a new NNC polyhedron from the system of constraints cs and writes a handle for the newly created
polyhedron at address pph.

The new polyhedron will inherit the space dimension of cs.

7.2.5.8 int ppl_new_NNC_Polyhedron_recycle_Constraint_System (ppl_Polyhedron_t ∗ pph, ppl_-
Constraint_System_t cs)

Builds a new NNC polyhedron recycling the system of constraints cs and writes a handle for the newly
created polyhedron at address pph.

Since cs will be the system of constraints of the new polyhedron, the space dimension is also inherited.

Warning:

This function modifies the constraint system referenced by cs: upon return, no assumption can be
made on its value.

7.2.5.9 int ppl_new_C_Polyhedron_from_Generator_System (ppl_Polyhedron_t ∗ pph, ppl_const_-
Generator_System_t gs)

Builds a new C polyhedron from the system of generators gs and writes a handle for the newly created
polyhedron at address pph.

The new polyhedron will inherit the space dimension of gs.

7.2.5.10 int ppl_new_C_Polyhedron_recycle_Generator_System (ppl_Polyhedron_t ∗ pph, ppl_-
Generator_System_t gs)

Builds a new C polyhedron recycling the system of generators gs and writes a handle for the newly created
polyhedron at address pph.

Since gs will be the system of generators of the new polyhedron, the space dimension is also inherited.

Warning:

This function modifies the generator system referenced by gs: upon return, no assumption can be
made on its value.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 C Language Interface 65

7.2.5.11 int ppl_new_NNC_Polyhedron_from_Generator_System (ppl_Polyhedron_t ∗ pph, ppl_-
const_Generator_System_t gs)

Builds a new NNC polyhedron from the system of generators gs and writes a handle for the newly created
polyhedron at address pph.

The new polyhedron will inherit the space dimension of gs.

7.2.5.12 int ppl_new_NNC_Polyhedron_recycle_Generator_System (ppl_Polyhedron_t ∗ pph,
ppl_Generator_System_t gs)

Builds a new NNC polyhedron recycling the system of generators gs and writes a handle for the newly
created polyhedron at address pph.

Since gs will be the system of generators of the new polyhedron, the space dimension is also inherited.

Warning:

This function modifies the generator system referenced by gs: upon return, no assumption can be
made on its value.

7.2.5.13 int ppl_new_C_Polyhedron_from_bounding_box (ppl_Polyhedron_t ∗ pph, ppl_-
dimension_type(∗)(void) space_dimension, int(∗)(void) is_empty, int(∗)(ppl_dimension_type k,
int closed, ppl_Coefficient_t n, ppl_Coefficient_t d) get_lower_bound, int(∗)(ppl_dimension_type k,
int closed, ppl_Coefficient_t n, ppl_Coefficient_t d) get_upper_bound)

Builds a new C polyhedron corresponding to an interval-based bounding box, writing a handle for the
newly created polyhedron at address pph.

If an interval of the bounding box is provided with any finite but open bound, then the polyhedron is not
built and the value PPL_ERROR_INVALID_ARGUMENT is returned. The bounding box is accessed by
using the following functions, passed as arguments:

ppl_dimension_type space_dimension()

returns the dimension of the vector space enclosing the polyhedron represented by the bounding box.

int is_empty()

returns 0 if and only if the bounding box describes a non-empty set. The function is_empty() will
always be called before the other functions. However, if is_empty() does not return 0, none of the
functions below will be called.

int get_lower_bound(ppl_dimension_type k, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

Let I the interval corresponding to the k-th space dimension. If I is not bounded from below, simply return
0. Otherwise, set closed, n and d as follows: closed is set to 0 if the lower boundary of I is open
and is set to a value different from zero otherwise; n and d are assigned the integers n and d such that the
canonical fraction n/d corresponds to the greatest lower bound of I . The fraction n/d is in canonical form
if and only if n and d have no common factors and d is positive, 0/1 being the unique representation for
zero.

int get_upper_bound(ppl_dimension_type k, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 C Language Interface 66

Let I the interval corresponding to the k-th space dimension. If I is not bounded from above, simply return
0. Otherwise, set closed, n and d as follows: closed is set to 0 if the upper boundary of I is open
and is set to a value different from 0 otherwise; n and d are assigned the integers n and d such that the
canonical fraction n/d corresponds to the least upper bound of I .

7.2.5.14 int ppl_new_NNC_Polyhedron_from_bounding_box (ppl_Polyhedron_t ∗ pph, ppl_-
dimension_type(∗)(void) space_dimension, int(∗)(void) is_empty, int(∗)(ppl_dimension_type k, int
closed, ppl_Coefficient_t n, ppl_Coefficient_t d) get_lower_bound, int(∗)(ppl_dimension_type k, int
closed, ppl_Coefficient_t n, ppl_Coefficient_t d) get_upper_bound)

Builds a new NNC polyhedron corresponding to an interval-based bounding box, writing a handle for the
newly created polyhedron at address pph.

The bounding box is accessed by using the following functions, passed as arguments:

ppl_dimension_type space_dimension()

returns the dimension of the vector space enclosing the polyhedron represented by the bounding box.

int is_empty()

returns 0 if and only if the bounding box describes a non-empty set. The function is_empty() will
always be called before the other functions. However, if is_empty() does not return 0, none of the
functions below will be called.

int get_lower_bound(ppl_dimension_type k, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

Let I the interval corresponding to the k-th space dimension. If I is not bounded from below, simply return
0. Otherwise, set closed, n and d as follows: closed is set to 0 if the lower boundary of I is open
and is set to a value different from zero otherwise; n and d are assigned the integers n and d such that the
canonical fraction n/d corresponds to the greatest lower bound of I . The fraction n/d is in canonical form
if and only if n and d have no common factors and d is positive, 0/1 being the unique representation for
zero.

int get_upper_bound(ppl_dimension_type k, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

Let I the interval corresponding to the k-th space dimension. If I is not bounded from above, simply return
0. Otherwise, set closed, n and d as follows: closed is set to 0 if the upper boundary of I is open
and is set to a value different from 0 otherwise; n and d are assigned the integers n and d such that the
canonical fraction n/d corresponds to the least upper bound of I .

7.2.5.15 int ppl_Polyhedron_relation_with_Constraint (ppl_const_Polyhedron_t ph, ppl_const_-
Constraint_t c)

Checks the relation between the polyhedron ph and the constraint c.

If successful, returns a non-negative integer that is obtained as the bitwise or of the bits (cho-
sen among PPL_POLY_CON_RELATION_IS_DISJOINT PPL_POLY_CON_RELATION_STRICTLY_-
INTERSECTS, PPL_POLY_CON_RELATION_IS_INCLUDED, and PPL_POLY_CON_RELATION_-
SATURATES) that describe the relation between ph and c.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 C Language Interface 67

7.2.5.16 int ppl_Polyhedron_relation_with_Generator (ppl_const_Polyhedron_t ph, ppl_const_-
Generator_t g)

Checks the relation between the polyhedron ph and the generator g.

If successful, returns a non-negative integer that is obtained as the bitwise or of the bits (only PPL_POLY_-
GEN_RELATION_SUBSUMES, at present) that describe the relation between ph and g.

7.2.5.17 int ppl_Polyhedron_shrink_bounding_box (ppl_const_Polyhedron_t ph, unsigned int com-
plexity, void(∗)(void) set_empty, void(∗)(ppl_dimension_type k, int closed, ppl_const_Coefficient_t n,
ppl_const_Coefficient_t d) raise_lower_bound, void(∗)(ppl_dimension_type k, int closed, ppl_const_-
Coefficient_t n, ppl_const_Coefficient_t d) lower_upper_bound)

Use ph to shrink a generic, interval-based bounding box. The bounding box is abstractly provided by
means of the parameters.

Parameters:

ph The polyhedron that is used to shrink the bounding box;
complexity The code of the complexity class of the algorithm to be used. Must be one of

PPL_COMPLEXITY_CLASS_POLYNOMIAL, PPL_COMPLEXITY_CLASS_SIMPLEX, or
PPL_COMPLEXITY_CLASS_ANY;

set_empty A pointer to a void function with no arguments that causes the bounding box to become
empty, i.e., to represent the empty set;

raise_lower_bound A pointer to a void function with arguments (ppl_dimension_type k,
int closed, ppl_const_Coefficient_t n, ppl_const_Coefficient_t
d) that intersects the interval corresponding to the k-th space dimension with [n/d,+∞) if
closed is non-zero, with (n/d,+∞) if closed is zero. The fraction n/d is in canonical form,
that is, n and d have no common factors and d is positive, 0/1 being the unique representation
for zero;

lower_upper_bound a pointer to a void function with argument (ppl_dimension_type k,
int closed, ppl_const_Coefficient_t n, ppl_const_Coefficient_t
d) that intersects the interval corresponding to the k-th space dimension with (−∞, n/d] if
closed is non-zero, with (−∞, n/d) if closed is zero. The fraction n/d is in canonical
form.

7.2.5.18 int ppl_Polyhedron_maximize (ppl_const_Polyhedron_t ph, ppl_const_Linear_-
Expression_t le, ppl_Coefficient_t sup_n, ppl_Coefficient_t sup_d, int ∗ pmaximum, ppl_Generator_t
point)

Returns a positive integer if ph is not empty and le is bounded from above in ph, in which case the
supremum value and a point where le reaches it are computed.

Parameters:

ph The polyhedron constraining le;
le The linear expression to be maximized subject to ph;
sup_n Will be assigned the numerator of the supremum value;
sup_d Will be assigned the denominator of the supremum value;
pmaximum Will store 1 in this location if the supremum is also the maximum, will store 0 otherwise;
point Will be assigned the point or closure point where le reaches the extremum value.

If ph is empty or le is not bounded from above, 0 will be returned and sup_n, sup_d, ∗pmaximum and
point will be left untouched.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 C Language Interface 68

7.2.5.19 int ppl_Polyhedron_minimize (ppl_const_Polyhedron_t ph, ppl_const_Linear_-
Expression_t le, ppl_Coefficient_t inf_n, ppl_Coefficient_t inf_d, int ∗ pminimum, ppl_Generator_t
point)

Returns a positive integer if ph is not empty and le is bounded from below in ph, in which case the
infimum value and a point where le reaches it are computed.

Parameters:

ph The polyhedron constraining le;

le The linear expression to be minimized subject to ph;

inf_n Will be assigned the numerator of the infimum value;

inf_d Will be assigned the denominator of the infimum value;

pminimum Will store 1 in this location if the infimum is also the minimum, will store 0 otherwise;

point Will be assigned the point or closure point where le reaches the extremum value.

If ph is empty or le is not bounded from below, 0 will be returned and sup_n, sup_d, ∗pmaximum and
point will be left untouched.

7.2.5.20 int ppl_Polyhedron_equals_Polyhedron (ppl_const_Polyhedron_t x, ppl_const_-
Polyhedron_t y)

Returns a positive integer if x and y are the same polyhedron; returns 0 if they are different.

Note that x and y may be topology- and/or dimension-incompatible polyhedra: in those cases, the value 0
is returned.

7.2.5.21 int ppl_Polyhedron_add_recycled_constraints (ppl_Polyhedron_t ph, ppl_Constraint_-
System_t cs)

Adds the system of constraints cs to the system of constraints of ph.

Warning:

This function modifies the constraint system referenced by cs: upon return, no assumption can be
made on its value.

7.2.5.22 int ppl_Polyhedron_add_recycled_constraints_and_minimize (ppl_Polyhedron_t ph, ppl_-
Constraint_System_t cs)

Adds the system of constraints cs to the system of constraints of ph. Returns a positive integer if the
resulting polyhedron is non-empty; returns 0 if it is empty. Upon successful return, ph is guaranteed to be
minimized.

Warning:

This function modifies the constraint system referenced by cs: upon return, no assumption can be
made on its value.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 C Language Interface 69

7.2.5.23 int ppl_Polyhedron_add_recycled_generators (ppl_Polyhedron_t ph, ppl_Generator_-
System_t gs)

Adds the system of generators gs to the system of generators of ph.

Warning:

This function modifies the generator system referenced by gs: upon return, no assumption can be
made on its value.

7.2.5.24 int ppl_Polyhedron_add_recycled_generators_and_minimize (ppl_Polyhedron_t ph, ppl_-
Generator_System_t gs)

Adds the system of generators gs to the system of generators of ph. Returns a positive integer if the
resulting polyhedron is non-empty; returns 0 if it is empty. Upon successful return, ph is guaranteed to be
minimized.

Warning:

This function modifies the generator system referenced by gs: upon return, no assumption can be
made on its value.

7.2.5.25 int ppl_Polyhedron_affine_image (ppl_Polyhedron_t ph, ppl_dimension_type var, ppl_-
const_Linear_Expression_t le, ppl_const_Coefficient_t d)

Transforms the polyhedron ph, assigning an affine expression to the specified variable.

Parameters:

ph The polyhedron that is transformed;

var The variable to which the affine expression is assigned;

le The numerator of the affine expression;

d The denominator of the affine expression.

7.2.5.26 int ppl_Polyhedron_affine_preimage (ppl_Polyhedron_t ph, ppl_dimension_type var, ppl_-
const_Linear_Expression_t le, ppl_const_Coefficient_t d)

Transforms the polyhedron ph, substituting an affine expression to the specified variable.

Parameters:

ph The polyhedron that is transformed;

var The variable to which the affine expression is substituted;

le The numerator of the affine expression;

d The denominator of the affine expression.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 C Language Interface 70

7.2.5.27 int ppl_Polyhedron_bounded_affine_image (ppl_Polyhedron_t ph, ppl_dimension_type
var, ppl_const_Linear_Expression_t lb, ppl_const_Linear_Expression_t ub, ppl_const_Coefficient_t
d)

Assigns to ph the image of ph with respect to the generalized affine transfer relation lb
d ≤ var′ ≤ ub

d .

Parameters:

ph The polyhedron that is transformed;

var The variable bounded by the generalized affine transfer relation;

lb The numerator of the lower bounding affine expression;

ub The numerator of the upper bounding affine expression;

d The (common) denominator of the lower and upper bounding affine expressions.

7.2.5.28 int ppl_Polyhedron_bounded_affine_preimage (ppl_Polyhedron_t ph, ppl_dimension_-
type var, ppl_const_Linear_Expression_t lb, ppl_const_Linear_Expression_t ub, ppl_const_-
Coefficient_t d)

Assigns to ph the preimage of ph with respect to the generalized affine transfer relation lb
d ≤ var′ ≤ ub

d .

Parameters:

ph The polyhedron that is transformed;

var The variable bounded by the generalized affine transfer relation;

lb The numerator of the lower bounding affine expression;

ub The numerator of the upper bounding affine expression;

d The (common) denominator of the lower and upper bounding affine expressions.

7.2.5.29 int ppl_Polyhedron_generalized_affine_image (ppl_Polyhedron_t ph, ppl_dimension_-
type var, enum ppl_enum_Constraint_Type relsym, ppl_const_Linear_Expression_t le, ppl_const_-
Coefficient_t d)

Assigns to ph the image of ph with respect to the generalized affine transfer relation var′ ./ le
d , where ./

is the relation symbol encoded by relsym.

Parameters:

ph The polyhedron that is transformed;

var The left hand side variable of the generalized affine transfer relation;

relsym The relation symbol;

le The numerator of the right hand side affine expression;

d The denominator of the right hand side affine expression.

7.2.5.30 int ppl_Polyhedron_generalized_affine_preimage (ppl_Polyhedron_t ph, ppl_dimension_-
type var, enum ppl_enum_Constraint_Type relsym, ppl_const_Linear_Expression_t le, ppl_const_-
Coefficient_t d)

Assigns to ph the preimage of ph with respect to the generalized affine transfer relation var′ ./ le
d , where

./ is the relation symbol encoded by relsym.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 C Language Interface 71

Parameters:

ph The polyhedron that is transformed;

var The left hand side variable of the generalized affine transfer relation;

relsym The relation symbol;

le The numerator of the right hand side affine expression;

d The denominator of the right hand side affine expression.

7.2.5.31 int ppl_Polyhedron_generalized_affine_image_lhs_rhs (ppl_Polyhedron_t ph, ppl_const_-
Linear_Expression_t lhs, enum ppl_enum_Constraint_Type relsym, ppl_const_Linear_Expression_t
rhs)

Assigns to ph the image of ph with respect to the generalized affine transfer relation lhs′ ./ rhs, where ./
is the relation symbol encoded by relsym.

Parameters:

ph The polyhedron that is transformed;

lhs The left hand side affine expression;

relsym The relation symbol;

rhs The right hand side affine expression.

7.2.5.32 int ppl_Polyhedron_generalized_affine_preimage_lhs_rhs (ppl_Polyhedron_t ph, ppl_-
const_Linear_Expression_t lhs, enum ppl_enum_Constraint_Type relsym, ppl_const_Linear_-
Expression_t rhs)

Assigns to ph the preimage of ph with respect to the generalized affine transfer relation lhs′ ./ rhs, where
./ is the relation symbol encoded by relsym.

Parameters:

ph The polyhedron that is transformed;

lhs The left hand side affine expression;

relsym The relation symbol;

rhs The right hand side affine expression.

7.2.5.33 int ppl_Polyhedron_map_space_dimensions (ppl_Polyhedron_t ph, ppl_dimension_type
maps[], size_t n)

Remaps the dimensions of the vector space according to a partial function. This function is specified by
means of the maps array, which has n entries.

The partial function is defined on dimension i if i < n and maps[i] != ppl_not_a_dimension;
otherwise it is undefined on dimension i. If the function is defined on dimension i, then dimension i is
mapped onto dimension maps[i].

The result is undefined if maps does not encode a partial function with the properties described in the
specification of the mapping operator.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 Prolog Language Interface 72

7.2.5.34 int ppl_LP_Problem_solve (ppl_const_LP_Problem_t lp)

Solves the LP problem lp, returning an exit status.

Returns:

PPL_LP_PROBLEM_STATUS_UNFEASIBLE if the LP problem is not satisfiable; PPL_LP_-
PROBLEM_STATUS_UNBOUNDED if the LP problem is satisfiable but there is no finite bound to
the value of the objective function; PPL_LP_PROBLEM_STATUS_OPTIMIZED if the LP problem
admits an optimal solution.

7.2.5.35 int ppl_LP_Problem_evaluate_objective_function (ppl_const_LP_Problem_t lp, ppl_-
const_Generator_t g, ppl_Coefficient_t num, ppl_Coefficient_t den)

Evaluates the objective function of lp on point g.

Parameters:

lp The LP problem defining the objective function;
g The generator on which the objective function will be evaluated;
num Will be assigned the numerator of the objective function value;
den Will be assigned the denominator of the objective function value;

7.2.5.36 int ppl_LP_Problem_optimal_value (ppl_const_LP_Problem_t lp, ppl_Coefficient_t num,
ppl_Coefficient_t den)

Returns the optimal value for lp.

Parameters:

lp The LP problem;
num Will be assigned the numerator of the optimal value;
den Will be assigned the denominator of the optimal value.

7.3 Prolog Language Interface

The Parma Polyhedra Library comes equipped with a Prolog interface. Despite the lack of standardization
of Prolog’s foreign language interfaces, the PPL Prolog interface supports several Prolog systems and, to
the extent this is possible, provides a uniform view of the library from each such systems.

The system-independent features of the library are described in Section System-Independent Features.
Section Compilation and Installation explains how the various incarnations of the Prolog interface are
compiled and installed. Section System-Dependent Features illustrates the system-dependent features of
the interface for all the supported systems.

In the sequel, prefix is the prefix under which you have installed the library (typically /usr or
/usr/local).

System-Independent Features

The Prolog interface provides access to the PPL polyhedra. A general introduction to convex polyhedra,
their representation in the PPL and the operations provided by the PPL is given in Sections The Main
Features, Convex Polyhedra, Representations of Convex Polyhedra and Operations on Convex Polyhedra
of this manual. Here we just describe those aspects that are specific to the Prolog interface.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 Prolog Language Interface 73

Overview First, here is a list of notes with general information and advice on the use of the interface.

• The Prolog interface files are all installed in the directory prefix/lib/ppl. Since this includes
shared and dynamically loaded libraries, you must make your dynamic linker/loader aware of this
fact. If you use a GNU/Linux system, try the commands man ld.so and man ldconfig for
more information.

• The Prolog interface to the PPL is initialized and finalized by the predicates ppl_initialize/0
and ppl_finalize/0. Thus the only interface predicates callable after ppl_finalize/0 are
ppl_finalize/0 itself (this further call has no effect) and ppl_initialize/0, after which
the interface’s services are usable again. Some Prolog systems allow the specification of initializa-
tion and deinitialization functions in their foreign language interfaces. The corresponding incarna-
tions of the PPL-Prolog interface have been written so that ppl_initialize/0 and/or ppl_-
finalize/0 are called automatically. Section System-Dependent Features will detail in which
cases initialization and finalization is automatically performed or is left to the Prolog programmer’s
responsibility. However, for portable applications, it is best to invoke ppl_initialize/0 and
ppl_finalize/0 explicitly: since they can be called multiple times without problems, this will
result in enhanced portability at a cost that is, by all means, negligible.

• A PPL polyhedron can only be accessed by means of a Prolog term called a handle. Note, however,
that the data structure of a handle, is implementation-dependent, system-dependent and version-
dependent, and, for this reason, deliberately left unspecified. What we do guarantee is that the
handle requires very little memory.

• A Prolog term can be bound to a valid handle by using predicates such as

ppl_new_C_Polyhedron_from_space_dimension/3,
ppl_new_C_Polyhedron_from_C_Polyhedron/2,
ppl_new_C_Polyhedron_from_constraints/2,
ppl_new_C_Polyhedron_from_generators/2,
ppl_new_C_Polyhedron_from_bounding_box/2.

These predicates will create or copy a PPL polyhedron and construct a valid handle for referencing
it. The last argument is a Prolog term that is unified with a new valid handle for accessing this
polyhedron.

• As soon as a PPL polyhedron is no longer required, the memory occupied by it should be released
using the PPL predicate ppl_delete_Polyhedron/1. To understand why this is important,
consider a Prolog program and a variable that is bound to a Herbrand term. When the variable dies
(goes out of scope) or is uninstantiated (on backtracking) the term it is bound to is amenable to
garbage collection. But this only applies for the standard domain of the language: Herbrand terms.
In Prolog+PPL, when a variable bound to a handle for a PPL Polyhedron dies or is uninstantiated, the
handle can be garbage-collected, but the polyhedra to which the handle refers will not be released.
Once a handle has been used as an argument in ppl_delete_Polyhedron/1, it becomes in-
valid.

• For a PPL polyhedron with space dimension k, the identifiers used for the PPL variables must lie
between 0 and k − 1 and correspond to the indices of the associated Cartesian axes. When using the
predicates that combine PPL polyhedra or add constraints or generators to a representation of a PPL
polyhedron, the polyhedra referenced and any constraints or generators in the call should follow all
the (space) dimension-compatibility rules stated in Section Representations of Convex Polyhedra.

• As explained above, a polyhedron has a fixed topology C or NNC, that is determined at the time
of its initialization. All subsequent operations on the polyhedron must respect all the topological
compatibility rules stated in Section Representations of Convex Polyhedra.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 Prolog Language Interface 74

• Any application using the PPL should make sure that only the intended version(s) of the library are
ever used. Predicates

ppl_version_major/1,
ppl_version_minor/1,
ppl_version_revision/1,
ppl_version_beta/1,
ppl_version/1,
ppl_banner.

allow run-time checking of information about the version being used.

PPL Predicate List Here is a list of all the PPL predicates provided by the Prolog interface.

ppl_version_major(?C_int)

ppl_version_minor(?C_int)

ppl_version_revision(?C_int)

ppl_version_beta(?C_int)

ppl_version(?Atom)

ppl_banner(?Atom)

ppl_max_space_dimension(?Dimension_Type)

ppl_Coefficient_is_bounded

ppl_Coefficient_max(?Coefficient)

ppl_Coefficient_min(?Coefficient)

ppl_initialize

ppl_finalize

ppl_set_timeout_exception_atom(+Atom)

ppl_set_timeout(+C_unsigned)

ppl_reset_timeout

ppl_new_C_Polyhedron_from_space_dimension(+Dimension_Type, +Universe_-
or_Empty, -Handle)

ppl_new_NNC_Polyhedron_from_space_dimension(+Dimension_Type,
+Universe_or_Empty, -Handle)

ppl_new_C_Polyhedron_from_C_Polyhedron(+Handle_1, -Handle_2)

ppl_new_C_Polyhedron_from_NNC_Polyhedron(+Handle_1, -Handle_2)

ppl_new_NNC_Polyhedron_from_C_Polyhedron(+Handle_1, -Handle_2)

ppl_new_NNC_Polyhedron_from_NNC_Polyhedron(+Handle_1, -Handle_2)

ppl_new_C_Polyhedron_from_constraints(+Constraint_System, -Handle)

ppl_new_NNC_Polyhedron_from_constraints(+Constraint_System, -Handle)

ppl_new_C_Polyhedron_from_generators(+Generator_System, -Handle)

ppl_new_NNC_Polyhedron_from_generators(+Generator_System, -Handle)

ppl_new_C_Polyhedron_from_bounding_box(+Box, -Handle)

ppl_new_NNC_Polyhedron_from_bounding_box(+Box, -Handle)

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 Prolog Language Interface 75

ppl_Polyhedron_swap(+Handle_1, +Handle_2)

ppl_delete_Polyhedron(+Handle)

ppl_Polyhedron_space_dimension(+Handle, ?Dimension_Type)

ppl_Polyhedron_affine_dimension(+Handle, ?Dimension_Type)

ppl_Polyhedron_get_constraints(+Handle, -Constraint_System)

ppl_Polyhedron_get_minimized_constraints(+Handle, -Constraint_System)

ppl_Polyhedron_get_generators(+Handle, -Generator_System)

ppl_Polyhedron_get_minimized_generators(+Handle, -Generator_System)

ppl_Polyhedron_relation_with_constraint(+Handle, +Constraint,
-Relation)

ppl_Polyhedron_relation_with_generator(+Handle, +Generator,
-Relation)

ppl_Polyhedron_get_bounding_box(+Handle, +Complexity, -Box)

ppl_Polyhedron_is_empty(+Handle)

ppl_Polyhedron_is_universe(+Handle)

ppl_Polyhedron_is_bounded(+Handle)

ppl_Polyhedron_bounds_from_above(+Handle, +Lin_Expr)

ppl_Polyhedron_bounds_from_below(+Handle, +Lin_Expr)

ppl_Polyhedron_maximize(+Handle, +Lin_Expr, ?Coefficient_1,
?Coefficient_2, ?Boolean)

ppl_Polyhedron_maximize_with_point(+Handle, +Lin_Expr, ?Coefficient_1,
?Coefficient_2, ?Boolean, ?Point)

ppl_Polyhedron_minimize(+Handle, +Lin_Expr, ?Coefficient_1,
?Coefficient_2, ?Boolean)

ppl_Polyhedron_minimize_with_point(+Handle, +Lin_Expr, ?Coefficient_1,
?Coefficient_2, ?Boolean, ?Point)

ppl_Polyhedron_is_topologically_closed(+Handle)

ppl_Polyhedron_contains_Polyhedron(+Handle_1, +Handle_2)

ppl_Polyhedron_strictly_contains_Polyhedron(+Handle_1, +Handle_2)

ppl_Polyhedron_is_disjoint_from_Polyhedron(+Handle_1, +Handle_2)

ppl_Polyhedron_equals_Polyhedron(+Handle_1, +Handle_2)

ppl_Polyhedron_OK(+Handle)

ppl_Polyhedron_add_constraint(+Handle, +Constraint)

ppl_Polyhedron_add_constraint_and_minimize(+Handle, +Constraint)

ppl_Polyhedron_add_generator(+Handle, +Generator)

ppl_Polyhedron_add_generator_and_minimize(+Handle, +Generator)

ppl_Polyhedron_add_constraints(+Handle, +Constraint_System)

ppl_Polyhedron_add_constraints_and_minimize(+Handle, +Constraint_-
System)

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 Prolog Language Interface 76

ppl_Polyhedron_add_generators(+Handle, +Generator_System)

ppl_Polyhedron_add_generators_and_minimize(+Handle, +Generator_-
System)

ppl_Polyhedron_intersection_assign(+Handle_1, +Handle_2)

ppl_Polyhedron_intersection_assign_and_minimize(+Handle_1, +Handle_2)

ppl_Polyhedron_poly_hull_assign(+Handle_1, +Handle_2)

ppl_Polyhedron_poly_hull_assign_and_minimize(+Handle_1, +Handle_2)

ppl_Polyhedron_poly_difference_assign(+Handle_1, +Handle_2)

ppl_Polyhedron_affine_image(+Handle, +PPL_Var, +Lin_Expr,
+Coefficient)

ppl_Polyhedron_affine_preimage(+Handle, +PPL_Var, +Lin_Expr,
+Coefficient)

ppl_Polyhedron_bounded_affine_image(+Handle, +PPL_Var, +Lin_Expr_1,
+Lin_Expr_2, +Coefficient)

ppl_Polyhedron_generalized_affine_image(+Handle, +PPL_Var, +Relation_-
Symbol, +Lin_Expr, +Coefficient)

ppl_Polyhedron_generalized_affine_image_lhs_rhs(+Handle, +Lin_Expr_1,
+Relation_Symbol, +Lin_Expr_2)

ppl_Polyhedron_time_elapse_assign(+Handle_1, +Handle_2)

ppl_Polyhedron_BHRZ03_widening_assign_with_tokens(+Handle_1, +Handle_-
2, +C_unsigned_1, ?C_unsigned_2)

ppl_Polyhedron_BHRZ03_widening_assign(+Handle_1, +Handle_2)

ppl_Polyhedron_limited_BHRZ03_extrapolation_assign_with_-
tokens(+Handle_1, +Handle_2, +Constraint_System, +C_unsigned_1, ?C_-
unsigned_2)

ppl_Polyhedron_limited_BHRZ03_extrapolation_assign(+Handle_1,
+Handle_2, +Constraint_System)

ppl_Polyhedron_bounded_BHRZ03_extrapolation_assign_with_-
tokens(+Handle_1, +Handle_2, +Constraint_System, +C_unsigned_1, ?C_-
unsigned_2)

ppl_Polyhedron_bounded_BHRZ03_extrapolation_assign(+Handle_1,
+Handle_2, +Constraint_System)

ppl_Polyhedron_H79_widening_assign_with_tokens(+Handle_1, +Handle_2,
+C_unsigned_1, ?C_unsigned_2)

ppl_Polyhedron_H79_widening_assign(+Handle_1, +Handle_2)

ppl_Polyhedron_limited_H79_extrapolation_assign_with_tokens(+Handle_1,
+Handle_2, +Constraint_System, +C_unsigned_1, ?C_unsigned_2)

ppl_Polyhedron_limited_H79_extrapolation_assign(+Handle_1, +Handle_2,
+Constraint_System)

ppl_Polyhedron_bounded_H79_extrapolation_assign_with_tokens(+Handle_1,
+Handle_2, +Constraint_System, +C_unsigned_1, ?C_unsigned_2)

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 Prolog Language Interface 77

ppl_Polyhedron_bounded_H79_extrapolation_assign(+Handle_1, +Handle_2,
+Constraint_System)

ppl_Polyhedron_topological_closure_assign(+Handle)

ppl_Polyhedron_add_space_dimensions_and_embed(+Handle, +Dimension_-
Type)

ppl_Polyhedron_add_space_dimensions_and_project(+Handle, +Dimension_-
Type)

ppl_Polyhedron_concatenate_assign(+Handle_1, +Handle_2)

ppl_Polyhedron_remove_space_dimensions(+Handle, +List_of_PPL_Vars)

ppl_Polyhedron_remove_higher_space_dimensions(+Handle, +Dimension_-
Type))

ppl_Polyhedron_expand_space_dimension(+Handle, +PPL_Var, +Dimension_-
Type))

ppl_Polyhedron_fold_space_dimensions(+Handle, +List_of_PPL_Vars,
+PPL_Var))

ppl_Polyhedron_map_space_dimensions(+Handle, +P_Func))

ppl_new_LP_Problem_trivial(-Handle)

ppl_new_LP_Problem(+Constraint_System, +Lin_Expr, +Optimization_Mode,
-Handle)

ppl_new_LP_Problem_from_LP_Problem(+Handle_1, -Handle_2)

ppl_LP_Problem_swap(+Handle_1, +Handle_2)

ppl_delete_LP_Problem(+Handle)

ppl_LP_Problem_space_dimension(+Handle, ?Dimension_Type)

ppl_LP_Problem_constraints(+Handle, -Constraint_System)

ppl_LP_Problem_objective_function(+Handle, -Lin_Expr)

ppl_LP_Problem_optimization_mode(+Handle, ?Optimization_Mode)

ppl_LP_Problem_clear(+Handle)

ppl_LP_Problem_add_constraint(+Handle, +Constraint)

ppl_LP_Problem_add_constraints(+Handle, +Constraint_System)

ppl_LP_Problem_set_objective_function(+Handle, +Lin_Expr)

ppl_LP_Problem_set_optimization_mode(+Handle, +Optimization_Mode)

ppl_LP_Problem_is_satisfiable(+Handle)

ppl_LP_Problem_solve(+Handle, ?LP_Problem_Status)

ppl_LP_Problem_feasible_point(+Handle, -Generator)

ppl_LP_Problem_optimizing_point(+Handle, -Generator)

ppl_LP_Problem_optimal_value(+Handle, ?Coefficient_1, ?Coefficient_2)

ppl_LP_Problem_evaluate_objective_function(+Handle, +Generator,
?Coefficient_1, ?Coefficient_2)

ppl_LP_Problem_OK(+Handle)

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 Prolog Language Interface 78

PPL Predicate Specifications The PPL predicates provided by the Prolog interface are specified below.
The specification uses the following grammar rules:

Number --> unsigned integer ranging from 0 to an upper bound
depending on the actual Prolog system.

C_int --> Number | - Number C integer

C_unsigned --> Number C unsigned integer

Coefficient --> Number used in linear expressions;
the upper bound will depend on how
the PPL has been configured

Dimension_Type
--> Number used for the number of affine and

space dimensions and the names of
the dimensions;
the upper bound will depend on
the maximum number of dimensions
allowed by the PPL
(see ppl_max_space_dimensions/1)

Boolean --> true | false

Handle --> Prolog term used to identify a Polyhedron

Topology --> c | nnc Polyhedral kind;
c is closed and nnc is NNC

VarId --> Dimension_Type variable identifier

PPL_Var --> ’$VAR’(VarId) PPL variable

Lin_Expr --> PPL_Var PPL variable
| Coefficient
| Lin_Expr unary plus
| - Lin_Expr unary minus
| Lin_Expr + Lin_Expr addition
| Lin_Expr - Lin_Expr subtraction
| Coefficient * Lin_Expr multiplication
| Lin_Expr * Coefficient multiplication

Relation_Symbol
--> = equals

| =< less than or equal
| >= greater than or equal
| < strictly less than
| > strictly greater than

Constraint --> Lin_Expr Relation_Symbol Lin_Expr
constraint

Constraint_System list of constraints
--> []

| [Constraint | Constraint_System]

Generator_Denominator --> Coefficient must be non-zero
| Coefficient
| - Coefficient

Generator --> point(Lin_Expr) point
| point(Lin_Expr, Generator_Denominator)

point
| closure_point(Lin_Expr) closure point
| closure_point(Lin_Expr, Generator_Denominator)

closure point

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 Prolog Language Interface 79

| ray(Lin_Expr) ray
| line(Lin_Expr) line

Generator_System list of generators
--> []

| [Generator | Generator_System]

Atom --> Prolog atom

Universe_or_Empty polyhedron
--> universe

| empty

Poly_Relation polyhedron relation:
--> is_disjoint with a constraint

| strictly_intersects with a constraint
| is_included with a constraint
| saturates with a constraint
| subsumes with a generator

Poly_Relation_List list of polyhedron relations
--> []

| [Poly_Relation | Poly_Relation_List]

Complexity --> polynomial | simplex | any

Rational_Numerator
--> Coefficient | - Coefficient

Rational_Denominator
--> Coefficient must be non-zero

Rational --> Rational_Numerator rational number
| Rational_Numerator/Rational_Denominator

Bound --> c(Rational) closed rational limit
| o(Rational) open rational limit
| o(pinf) unbounded in the positive direction
| o(minf) unbounded in the negative direction

Interval --> i(Bound, Bound) rational interval

Box --> [] list of intervals
| [Interval | Box]

Vars_Pair --> PPLVar - PPLVar map relation

P_Func --> [] list of map relations
| [Vars_Pair | P_Func].

Optimization_Mode
--> max | min

LP_Problem_Status
--> unfeasible | unbounded | optimized

Below is a short description of each of the interface predicates. For full definitions of terminology used
here, see Sections The Main Features, Convex Polyhedra, Representations of Convex Polyhedra and Oper-
ations on Convex Polyhedra of this manual.

ppl_version_major(?C_int) Unifies C_int with the major number of the PPL version.

ppl_version_minor(?C_int) Unifies C_int with the minor number of the PPL version.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 Prolog Language Interface 80

ppl_version_revision(?C_int) Unifies C_int with the revision number of the PPL version.

ppl_version_beta(?C_int) Unifies C_int with the beta number of the PPL version.

ppl_version(?Atom) Unifies Atom with the PPL version.

ppl_banner(?Atom) Unifies Atom with information about the PPL version, the licensing, the lack
of any warranty whatsoever, the C++ compiler used to build the library, where to report bugs and where to
look for further information.

ppl_Coefficient_is_bounded Succeeds if and only if the Coefficients in the C++ interface are
bounded.

ppl_Coefficient_max(Max) If the Coefficients in the C++ interface are bounded, then the maxi-
mum coefficient the C++ interface can handle is unified with Max. If the Prolog system cannot handle this
coefficient, then an exception is thrown. It fails if the Coefficients in the C++ interface are unbounded.

ppl_Coefficient_min(Min) If the Coefficients in the C++ interface are bounded, then the mini-
mum coefficient the C++ interface can handle is unified with Min. If the Prolog system cannot handle this
coefficient, then an exception is thrown. It fails if the Coefficients in the C++ interface are unbounded.

ppl_max_space_dimension(?Dimension_Type) Unifies Dimension_Type with the max-
imum space dimension this library can handle.

ppl_initialize Initializes the PPL interface. Multiple calls to ppl_initialize does no harm.

ppl_finalize Finalizes the PPL interface. Once this is executed, the next call to an interface pred-
icate must either be to ppl_initialize or to ppl_finalize. Multiple calls to ppl_finalize
does no harm.

ppl_set_timeout_exception_atom(+Atom) Sets the atom to be thrown by timeout exceptions
to Atom. The default value is time_out.

ppl_timeout_exception_atom(?Atom) The atom to be thrown by timeout exceptions is unified
with Atom.

ppl_set_timeout(+C_unsigned) Computations taking exponential time will be interrupted
some time after C_unsigned ms after that call. If the computation is interrupted that way, the current
timeout exception atom will be thrown. C_unsigned must be strictly greater than zero.

ppl_reset_timeout Resets the timeout time so that the computation is not interrupted.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 Prolog Language Interface 81

ppl_new_C_Polyhedron_from_space_dimension(+Dimension_Type, +Universe_-
or_Empty, -Handle) Creates a C polyhedron P with Dimension_Type dimensions; it is
empty or the universe polyhedron depending on whether Atom is empty or universe, respectively.
Handle is unified with the handle for P . Thus the query

?- ppl_new_C_Polyhedron_from_space_dimension(3, universe, X).

creates the C polyhedron defining the 3-dimensional vector space R3 with X bound to a valid handle for
accessing it.

ppl_new_NNC_Polyhedron_from_space_dimension(+Dimension_Type,
+Universe_or_Empty, -Handle) Creates an NNC polyhedron P with Dimension_-
Type dimensions; it is empty or the universe polyhedron depending on whether Atom is empty or
universe, respectively. Handle is unified with the handle for P . Thus the query

?- ppl_new_NNC_Polyhedron_from_space_dimension(3, empty, X).

creates an empty NNC polyhedron embedded in R3 with X bound to a valid handle for accessing it.

ppl_new_C_Polyhedron_from_C_Polyhedron(+Handle_1, -Handle_2) If
Handle_1 refers to a C polyhedron P1, then this creates a copy P2 of P1. Handle_2 is unified
with the handle for P2.

ppl_new_C_Polyhedron_from_NNC_Polyhedron(+Handle_1, -Handle_2) If
Handle_1 refers to an NNC polyhedron P1, then this creates a copy of P1 as a C polyhedron P2.
Handle_2 is unified with the handle for P2. Thus the query

?- ppl_new_NNC_Polyhedron_from_space_dimension(3, empty, X),
ppl_new_C_Polyhedron_from_NNC_Polyhedron(X, Y).

creates an empty NNC polyhedron embedded in R3 referenced by X and then makes a copy, converting the
topology to a C polyhedron. with Y bound to a valid handle for accessing it.

When using ppl_new_C_Polyhedron_from_NNC_Polyhedron/2, care must be taken that the
source polyhedron referenced by Handle_1 is topologically closed.

ppl_new_NNC_Polyhedron_from_C_Polyhedron(+Handle_1, -Handle_2) If
Handle_1 refers to a C polyhedron P1, then this creates a copy of P1 as an NNC polyhedron P2.
Handle_2 is unified with the handle for P2.

ppl_new_NNC_Polyhedron_from_NNC_Polyhedron(+Handle_1, -Handle_2) If
Handle_1 refers to a NNC polyhedron P1, then this creates a copy P2 of P1. Handle_2 is unified with
the handle for P2.

ppl_new_C_Polyhedron_from_constraints(+Constraint_System, -Handle) Cre-
ates a C polyhedron P represented by Constraint_System. Handle is unified with the handle for
P .

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 Prolog Language Interface 82

ppl_new_NNC_Polyhedron_from_constraints(+Constraint_System, -Handle)
Creates an NNC polyhedron P represented by Constraint_System. Handle is unified with the
handle for P .

ppl_new_C_Polyhedron_from_generators(+Generator_System, -Handle) Creates
a C polyhedron P represented by Generator_System. Handle is unified with the handle for P .

ppl_new_NNC_Polyhedron_from_generators(+Generator_System, -Handle) Cre-
ates an NNC polyhedron P represented by Generator_System. Handle is unified with the handle
for P .

ppl_new_C_Polyhedron_from_bounding_box(+Box, -Handle) Creates a C polyhedron
P represented by Box. Handle is unified with the handle for P . There must be no bounds of the form
o(Rational) in an interval in Box.

ppl_new_NNC_Polyhedron_from_bounding_box(+Box, -Handle) Creates an NNC
polyhedron P represented by Box. Handle is unified with the handle for P .

ppl_Polyhedron_swap(+Handle_1, +Handle_2) Swaps the polyhedron referenced by
Handle_1 with the one referenced by Handle_2. The polyhedra P andQmust have the same topology.

ppl_delete_Polyhedron(+Handle) Deletes the polyhedron referenced by Handle. After exe-
cution, Handle is no longer a valid handle for a PPL polyhedron.

ppl_Polyhedron_space_dimension(+Handle, ?Dimension_Type) Unifies the dimen-
sion of the vector space in which the polyhedron referenced by Handle is embedded with Dimension_-
Type.

ppl_Polyhedron_affine_dimension(+Handle, ?Dimension_Type) Unifies the actual
dimension of the polyhedron referenced by Handle with Dimension_Type.

ppl_Polyhedron_get_constraints(+Handle, ?Constraint_System) Unifies
Constraint_System with a list of the constraints in the constraints system representing the
polyhedron referenced by Handle.

ppl_Polyhedron_get_minimized_constraints(+Handle, ?Constraint_System)
Unifies Constraint_System with a minimized list of the constraints in the constraints system
representing the polyhedron referenced by Handle.

ppl_Polyhedron_get_generators(+Handle, ?Generator_System) Unifies
Generator_System with a list of the generators in the generators system representing the poly-
hedron referenced by Handle.

ppl_Polyhedron_get_minimized_generators(+Handle, ?Generator_System)
Unifies Generator_System with a minimized list of the generators in the generators system
representing the polyhedron referenced by Handle.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 Prolog Language Interface 83

ppl_Polyhedron_relation_with_constraint(+Handle, +Constraint, ?Poly_-
Relation_List) Unifies Poly_Relation_List with the list of relations the polyhedron
referenced by Handle has with Constraint. The possible relations are listed in the grammar rules
above; their meaning is given in Section specifying the relation_with operations.

ppl_Polyhedron_relation_with_generator(+Handle, +Generator, ?Poly_-
Relation_List) Unifies Poly_Relation_List with the list of relations the polyhedron
referenced by Handle has with Generator. The possible relations are listed in the grammar rules
above; their meaning is given in Section specifying the relation_with operations.

ppl_Polyhedron_get_bounding_box(+Handle, +Complexity, ?Box) Succeeds if
and only if the bounding box of the polyhedron referenced by Handle unifies with the box defined by
Box. E.g.,

?- A = ’$VAR’(0), B = ’$VAR’(1),
ppl_new_NNC_Polyhedron_from_constraints([B > 0, 4*A =< 2], X),
ppl_Polyhedron_get_bounding_box(X, any, Box).

Box = [i(o(minf), c(1/2)), i(o(0), o(pinf))].

Note that the rational numbers in Box are in canonical form. E.g., the following will fail:

?- A = ’$VAR’(0), B = ’$VAR’(1),
ppl_new_NNC_Polyhedron_from_constraints([B > 0, 4*A =< 2], X),
ppl_Polyhedron_get_bounding_box(X, any, Box),
Box = [i(o(minf), c(2/4)), i(o(0), o(pinf))].

The complexity class Complexity determining the algorithm to be used has the following meaning:

• polynomial allows code of the worst-case polynomial complexity class;

• simplex allows code of the worst-case exponential but typically polynomial complexity class;

• any allows code of the universal complexity class.

ppl_Polyhedron_is_empty(+Handle) Succeeds if and only if the polyhedron referenced by
Handle is empty.

ppl_Polyhedron_is_universe(+Handle) Succeeds if and only if the polyhedron referenced
by Handle is the universe.

ppl_Polyhedron_is_bounded(+Handle) Succeeds if and only if the polyhedron referenced by
Handle is bounded.

ppl_Polyhedron_bounds_from_above(+Handle, +Lin_Expr) Succeeds if and only if
Lin_Expr is bounded from above in the polyhedron referenced by Handle.

ppl_Polyhedron_bounds_from_below(+Handle, +Lin_Expr) Succeeds if and only if
Lin_Expr is bounded from below in the polyhedron referenced by Handle.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 Prolog Language Interface 84

ppl_Polyhedron_maximize(+Handle, +Lin_Expr, ?Coefficient_1,
?Coefficient_2, ?Boolean) Succeeds if and only if the polyhedron P referenced by Handle
is not empty and Lin_Expr is bounded from above in P .

Coefficient_1 is unified with the numerator of the supremum value and Coefficient_2 with the
denominator of the supremum value. If the supremum is also the maximum, Boolean is unified with the
atom true and, otherwise, unified with the atom false.

ppl_Polyhedron_maximize_with_point(+Handle, +Lin_Expr, ?Coefficient_1,
?Coefficient_2, ?Boolean, ?Point) Succeeds if and only if the polyhedron P referenced
by Handle is not empty and Lin_Expr is bounded from above in P .

Coefficient_1 is unified with the numerator of the supremum value, Coefficient_2 with the
denominator of the supremum value, and Point with a point or closure point where Lin_Expr reaches
this value. If the supremum is also the maximum, Boolean is unified with the atom true and, otherwise,
unified with the atom false.

ppl_Polyhedron_minimize(+Handle, +Lin_Expr, ?Coefficient_1,
?Coefficient_2, ?Boolean) Succeeds if and only if the polyhedron P referenced by Handle
is not empty and Lin_Expr is bounded from below in P .

Coefficient_1 is unified with the numerator of the infimum value and Coefficient_2 with the
denominator of the infimum value. If the infimum is also the minimum, Boolean is unified with the atom
true and, otherwise, unified with the atom false.

ppl_Polyhedron_minimize_with_point(+Handle, +Lin_Expr, ?Coefficient_1,
?Coefficient_2, ?Boolean, ?Point) Succeeds if and only if the polyhedron P referenced
by Handle is not empty and Lin_Expr is bounded from below in P .

Coefficient_1 is unified with the numerator of the infimum value, Coefficient_2 with the de-
nominator of the infimum value, and Point with a point or closure point where Lin_Expr reaches this
value. If the infimum is also the minimum, Boolean is unified with the atom true and, otherwise,
unified with the atom false.

ppl_Polyhedron_is_topologically_closed(+Handle) Succeeds if and only if the poly-
hedron referenced by Handle is topologically closed.

ppl_Polyhedron_contains_Polyhedron(+Handle_1, +Handle_2) Succeeds if and
only if the polyhedron referenced by Handle_2 is included in or equal to the polyhedron referenced by
Handle_1.

ppl_Polyhedron_strictly_contains_Polyhedron(+Handle_1, +Handle_2) Suc-
ceeds if and only if the polyhedron referenced by Handle_2 is included in but not equal to the polyhedron
referenced by Handle_1.

ppl_Polyhedron_is_disjoint_from_Polyhedron(+Handle_1, +Handle_2) Suc-
ceeds if and only if the polyhedron referenced by Handle_1 is disjoint from the polyhedron referenced
by Handle_2.

ppl_Polyhedron_equals_Polyhedron(+Handle_1, +Handle_2) Succeeds if and only if
the polyhedron referenced by Handle_1 is equal to the polyhedron referenced by Handle_2.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 Prolog Language Interface 85

ppl_Polyhedron_OK(+Handle) Succeeds only if the polyhedron referenced by Handle is well
formed, i.e., if it satisfies all its implementation invariants. Useful for debugging purposes.

ppl_Polyhedron_add_constraint(+Handle, +Constraint)

ppl_Polyhedron_add_constraint_and_minimize(+Handle, +Constraint) Up-
dates the polyhedron referenced by Handle to one obtained by adding Constraint to its constraint
system. Thus, the query

?- ppl_new_C_Polyhedron_from_space_dimension(3, universe, X),
A = ’$VAR’(0), B = ’$VAR’(1), C = ’$VAR’(2),
ppl_Polyhedron_add_constraint(X, 4*A + B - 2*C >= 5).

will update the polyhedron with handle X to consist of the set of points in the vector space R3 satisfying
the constraint 4x + y − 2z >= 5.

Note that ppl_Polyhedron_add_constraint_and_minimize/2 will fail if, after adding the
constraint, the polyhedron is empty.

ppl_Polyhedron_add_generator(+Handle, +Generator)

ppl_Polyhedron_add_generator_and_minimize(+Handle, +Generator) Updates
the polyhedron referenced by Handle to one obtained by adding Generator to its generator system.
Thus, after the query

?- ppl_new_C_Polyhedron_from_space_dimension(3, universe, X),
A = ’$VAR’(0), B = ’$VAR’(1), C = ’$VAR’(2),
ppl_Polyhedron_add_generator(X, point(-100*A - 5*B, 8)).

will update the polyhedron with handle X to be the single point (−12.5,−0.625, 0)T in the vector space
R3.

ppl_Polyhedron_add_constraints(+Handle, +Constraint_System) Updates the
polyhedron referenced by Handle to one obtained by adding to its constraint system the constraints in
Constraint_System. E.g.,

| ?- ppl_new_C_Polyhedron_from_space_dimension(2, universe, X),
A = ’$VAR’(0), B = ’$VAR’(1),
ppl_Polyhedron_add_constraints(X, [4*A + B >= 3, A = 1]),
ppl_Polyhedron_get_constraints(X, CS).

CS = [4*A+1*B>=3,1*A=1] ?

The updated polyhedron referenced by Handle can be empty and a query will succeed even when
Constraint_System is unsatisfiable.

ppl_Polyhedron_add_constraints_and_minimize(+Handle, +Constraint_-
System) Updates the polyhedron referenced by Handle to one obtained by adding to its constraint
system the constraints in Constraint_System. E.g.,

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 Prolog Language Interface 86

?- ppl_new_C_Polyhedron_from_space_dimension(2, universe, X),
A = ’$VAR’(0), B = ’$VAR’(1),
ppl_Polyhedron_add_constraints_and_minimize(X, [4*A + B >= 3, A = 1]),
ppl_Polyhedron_get_constraints(X, CS).

CS = [1*B>= -1,1*A=1]

This will fail if, after adding the constraints, the polyhedron is empty. E.g., the following will fail,

?- A = ’$VAR’(0), B = ’$VAR’(1),
ppl_new_C_Polyhedron_from_space_dimension(2, universe, X),
ppl_Polyhedron_add_constraints_and_minimize(X,

[4*A + B >= 3, A = 0, B =< 0]),
ppl_Polyhedron_get_constraints(X, CS).

ppl_C_Polyhedron_add_generators(+Handle, +Generator_System) Updates the
polyhedron referenced by Handle to one obtained by adding to its generator system the generators in
Generator_System.

If the system of generators representing a polyhedron is non-empty, then it must include a point (see Section
Generators Representation). Thus care must be taken to ensure that, before calling this predicate, either the
polyhedron referenced by Handle is non-empty or that whenever Generator_System is non-empty
the first element defines a point. E.g.,

?- ppl_new_C_Polyhedron_from_space_dimension(3, empty, X),
A=’$VAR’(0), B = ’$VAR’(1), C = ’$VAR’(2),
ppl_Polyhedron_add_generators(X,

[point(1*A + 1*B + 1*C, 1), ray(1*A), ray(2*A)]),
ppl_Polyhedron_get_generators(X, GS).

GS = [ray(2*A), point(1*A+1*B+1*C), ray(1*A)]

ppl_Polyhedron_add_generators_and_minimize(+Handle, +Generator_System)
Updates the polyhedron referenced by Handle to one obtained by adding to its generator system the
generators in Generator_System.

Unlike the predicate ppl_add_generators, the order of the generators in Generator_System is
not important. E.g.,

?- ppl_new_C_Polyhedron_from_space_dimension(3, empty, X),
A=’$VAR’(0), B = ’$VAR’(1), C = ’$VAR’(2),
ppl_Polyhedron_add_generators_and_minimize(X,

[ray(1*A), ray(2*A), point(1*A + 1*B + 1*C, 1)]),
ppl_Polyhedron_get_generators(X, GS).

GS = [point(1*A+1*B+1*C), ray(1*A)]

ppl_Polyhedron_intersection_assign(+Handle_1, +Handle_2)

ppl_Polyhedron_intersection_assign_and_minimize(+Handle_1, +Handle_2)
Assigns to the polyhedron referenced by Handle_1 its intersection with the polyhedron referenced by
Handle_2.

ppl_Polyhedron_poly_hull_assign(+Handle_1, +Handle_2)

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 Prolog Language Interface 87

ppl_Polyhedron_poly_hull_assign_and_minimize(+Handle_1, +Handle_2) As-
signs to the polyhedron referenced by Handle_1 its poly-hull with the polyhedron referenced by
Handle_2.

ppl_Polyhedron_poly_difference_assign(+Handle_1, +Handle_2) Assigns to the
polyhedron referenced by Handle_1 its poly-difference with the polyhedron referenced by Handle_2.

ppl_Polyhedron_affine_image(+Handle, +PPL_Var, +Lin_Expr,
+Coefficient) Transforms the polyhedron referenced by Handle assigning the affine expression
Lin_Expr/Coefficient to PPL_Var.

ppl_Polyhedron_affine_preimage(+Handle, +PPL_Var, +Lin_Expr,
+Coefficient) This is the inverse transformation to that for ppl_affine_image.

ppl_Polyhedron_bounded_affine_image(+Handle, +PPL_Var, +Lin_Expr_1,
+Lin_Expr_2, +Coefficient) Transforms the polyhedron referenced by Handle assigning
the image with respect to the transfer relation Lin_Expr_1/Coefficient <= PPL_Var <=
Lin_Expr_2/Coefficient.

ppl_Polyhedron_generalized_affine_image(+Handle, +PPL_Var, +Relation_-
Symbol +Lin_Expr, +Coefficient) Transforms the polyhedron referenced by Handle
assigning the generalized affine image with respect to the transfer function PPL_Var Relation_-
Symbol Lin_Expr/Coefficient.

ppl_Polyhedron_generalized_affine_image_lhs_rhs(+Handle, +Lin_Expr_1,
+Relation_Symbol +Lin_Expr_2) Transforms the polyhedron referenced by Handle assign-
ing the generalized affine image with respect to the transfer function Lin_Expr_1 Relation_Symbol
Lin_Expr_2.

ppl_Polyhedron_time_elapse_assign(+Handle_1, +Handle_2) Assigns to the poly-
hedron P referenced by Handle_1 the time-elapse (P ↗ Q) with the polyhedron Q referenced by
Handle_2.

ppl_Polyhedron_BHRZ03_widening_assign(+Handle_1, +Handle_2) If the polyhe-
dron P1 referenced by Handle_1 contains the polyhedron P2 referenced by Handle_2, then
Handle_1 will refer to the BHRZ03-widening of P1 with P2.

ppl_Polyhedron_BHRZ03_widening_assign_with_tokens(+Handle_1, +Handle_-
2, +C_unsigned_1, ?C_unsigned_2) It is assumed that the polyhedron P1 referenced by
Handle_1 contains the polyhedron P2 referenced by Handle_2; let P denote the BHRZ03-widening
of P1 with P2, Assuming that the quantity t1 given by C_unsigned_1 is the number of tokens available,
C_unsigned_2 will be unified with the number of tokens t2 remaining at the end of the operation.

If t1 > 0, then the polyhedron referenced by Handle_1 will remain as P1 and either t2 = t1 − 1 or
t2 = t1 depending on whether or not P is different from P1 itself.

If t1 = 0, then t2 = 0 and the polyhedron referenced by Handle_1 is updated to P .

In all cases, the polyhedron referenced by Handle_2 will remain unchanged as P2.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 Prolog Language Interface 88

ppl_Polyhedron_limited_BHRZ03_extrapolation_assign(+Handle_1,
+Handle_2, +Constraint_System) If the polyhedron P1 referenced by Handle_1 contains
the polyhedron P2 referenced by Handle_2, then Handle_1 will refer to the BHRZ03-extrapolation of
P1 with P2 improved by enforcing the constraints in Constraint_System.

ppl_Polyhedron_limited_BHRZ03_extrapolation_assign_with_tokens(
+Handle_1, +Handle_2, +Constraint_System, +C_unsigned_1, ?C_unsigned_-
2) It is assumed that the polyhedron P1 referenced by Handle_1 contains the polyhedron P2

referenced by Handle_2; let P denote the BHRZ03-extrapolation of P1 with P2, improved by enforcing
those constraints in Constraint_System.

Assuming that the quantity t1 given by C_unsigned_1 is the number of tokens available, C_-
unsigned_2 will be unified with the number of tokens t2 remaining at the end of the operation.

If t1 > 0, then the polyhedron referenced by Handle_1 will remain as P1 and either t2 = t1 − 1 or
t2 = t1 depending on whether or not P is different from P1 itself.

If t1 = 0, then t2 = 0 and the polyhedron referenced by Handle_1 is updated to P .

In all cases, the polyhedron referenced by Handle_2 will remain unchanged as P2.

ppl_Polyhedron_bounded_BHRZ03_extrapolation_assign(+Handle_1,
+Handle_2, +Constraint_System) If the polyhedron P1 referenced by Handle_1 contains
the polyhedron P2 referenced by Handle_2, then Handle_1 will refer to the BHRZ03-extrapolation of
P1 with P2 improved by enforcing the constraints in Constraint_System together with all constraints
of the form ±x ≤ r and ±x < r that are satisfied by every point in P1.

ppl_Polyhedron_bounded_BHRZ03_extrapolation_assign_with_tokens(
+Handle_1, +Handle_2, +Constraint_System, +C_unsigned_1, ?C_unsigned_-
2) It is assumed that the polyhedron P1 referenced by Handle_1 contains the polyhedron P2

referenced by Handle_2; let P denote the BHRZ03-extrapolation of P1 with P2, improved by enforcing
those constraints in Constraint_System together with all constraints of the form±x ≤ r and±x < r
that are satisfied by every point in P1.

Assuming that the quantity t1 given by C_unsigned_1 is the number of tokens available, C_-
unsigned_2 will be unified with the number of tokens t2 remaining at the end of the operation.

If t1 > 0, then the polyhedron referenced by Handle_1 will remain as P1 and either t2 = t1 − 1 or
t2 = t1 depending on whether or not P is different from P1 itself.

If t1 = 0, then t2 = 0 and the polyhedron referenced by Handle_1 is updated to P .

In all cases, the polyhedron referenced by Handle_2 will remain unchanged as P2.

ppl_Polyhedron_H79_widening_assign(+Handle_1, +Handle_2) If the polyhedron
P1 referenced by Handle_1 contains the polyhedron P2 referenced by Handle_2, then Handle_1
will refer to the H79-widening of P1 with P2.

ppl_Polyhedron_H79_widening_assign_with_tokens(+Handle_1, +Handle_-
2, +C_unsigned_1, ?C_unsigned_2) It is assumed that the polyhedron P1 referenced by
Handle_1 contains the polyhedron P2 referenced by Handle_2; let P denote the H79-widening of P1

with P2,

Assuming that the quantity t1 given by C_unsigned_1 is the number of tokens available, C_-
unsigned_2 will be unified with the number of tokens t2 remaining at the end of the operation.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 Prolog Language Interface 89

If t1 > 0, then the polyhedron referenced by Handle_1will remain as P1and either t2 = t1−1 or t2 = t1
depending on whether or not P is different from P1 itself.

If t1 = 0, then t2 = 0 and the polyhedron referenced by Handle_1 is updated to P .

In all cases, the polyhedron referenced by Handle_2 will remain unchanged as P2.

ppl_Polyhedron_limited_H79_extrapolation_assign(+Handle_1, +Handle_2,
+Constraint_System) If the polyhedron P1 referenced by Handle_1 contains the polyhedron P2

referenced by Handle_2, then Handle_1 will refer to the H79-extrapolation of P1 with P2 improved
by enforcing the constraints in Constraint_System.

ppl_Polyhedron_limited_H79_extrapolation_assign_with_tokens(+Handle_-
1, +Handle_2, +Constraint_System, +C_unsigned_1, ?C_unsigned_2) It is
assumed that the polyhedron P1 referenced by Handle_1 contains the polyhedron P2 referenced by
Handle_2; let P denote the H79-extrapolation of P1 with P2, improved by enforcing those constraints
in Constraint_System.

Assuming that the quantity t1 given by C_unsigned_1 is the number of tokens available, C_-
unsigned_2 will be unified with the number of tokens t2 remaining at the end of the operation.

If t1 > 0, then the polyhedron referenced by Handle_1 will remain as P1 and either t2 = t1 − 1 or
t2 = t1 depending on whether or not P is different from P1 itself.

If t1 = 0, then t2 = 0 and the polyhedron referenced by Handle_1 is updated to P .

In all cases, the polyhedron referenced by Handle_2 will remain unchanged as P2.

ppl_Polyhedron_bounded_H79_extrapolation_assign(+Handle_1, +Handle_2,
+Constraint_System) If the polyhedron P1 referenced by Handle_1 contains the polyhedron P2

referenced by Handle_2, then Handle_1 will refer to the H79-extrapolation of P1 with P2 improved
by enforcing the constraints in Constraint_System together with all constraints of the form ±x ≤ r
and ±x < r that are satisfied by every point in P1.

ppl_Polyhedron_bounded_H79_extrapolation_assign_with_tokens(+Handle_-
1, +Handle_2, +Constraint_System, +C_unsigned_1, ?C_unsigned_2) It is
assumed that the polyhedron P1 referenced by Handle_1 contains the polyhedron P2 referenced by
Handle_2; let P denote the H79-extrapolation of P1 with P2, improved by enforcing those constraints
in Constraint_System together with all constraints of the form ±x ≤ r and ±x < r that are satisfied
by every point in P1.

Assuming that the quantity t1 given by C_unsigned_1 is the number of tokens available, C_-
unsigned_2 will be unified with the number of tokens t2 remaining at the end of the operation.

If t1 > 0, then the polyhedron referenced by Handle_1 will remain as P1 and either t2 = t1 − 1 or
t2 = t1 depending on whether or not P is different from P1 itself.

If t1 = 0, then t2 = 0 and the polyhedron referenced by Handle_1 is updated to P .

In all cases, the polyhedron referenced by Handle_2 will remain unchanged as P2.

ppl_Polyhedron_topological_closure_assign(+Handle) Assigns to the polyhedron
referenced by Handle its topological closure.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 Prolog Language Interface 90

ppl_Polyhedron_add_space_dimensions_and_embed(+Handle, +Dimension_-
Type) Embeds the polyhedron referenced by Handle in a space that is enlarged by Dimension_-
Type dimensions, E.g.,

?- ppl_new_C_Polyhedron_from_space_dimension(0, empty, X),
ppl_Polyhedron_add_space_dimensions_and_embed(X, 2),
ppl_Polyhedron_get_constraints(X, CS),
ppl_Polyhedron_get_generators(X, GS).

CS = [],
GS = [point(0),line(1*A),line(1*B)]

ppl_Polyhedron_concatenate_assign(+Handle_1, +Handle_2) Updates the polyhe-
dron P1 referenced by Handle_1 by first embedding P1 in a new space enlarged by the space dimensions
of the polyhedron P2 referenced by Handle_2, and then adds to its system of constraints a renamed-apart
version of the constraints of P2.

E.g.,

?- ppl_new_NNC_Polyhedron_from_space_dimension(2, universe, X),
A = ’$VAR’(0), B = ’$VAR’(1), C = ’$VAR’(2),
D = ’$VAR’(3), E = ’$VAR’(4),
ppl_new_NNC_Polyhedron_from_constraints([A > 1, B >= 0, C >= 0], Y),
ppl_Polyhedron_concatenate_assign(X, Y),
ppl_Polyhedron_get_constraints(X, CS).

CS = [1*C > 1, 1*D >= 0, 1*E >= 0]

ppl_Polyhedron_add_space_dimensions_and_project(+Handle, +Dimension_-
Type) Projects the polyhedron referenced by Handle onto a space that is enlarged by Dimension_-
Type dimensions, E.g.,

?- ppl_new_C_Polyhedron_from_space_dimension(0, empty, X),
ppl_Polyhedron_add_space_dimensions_and_project(X, 2),
ppl_Polyhedron_get_constraints(X, CS),
ppl_Polyhedron_get_generators(X, GS).

CS = [1*A = 0, 1*B = 0],
GS = [point(0)]

ppl_Polyhedron_remove_space_dimensions(+Handle, +List_of_PPL_Vars) Re-
moves the space dimensions given by the identifiers of the PPL variables in list List_of_PPL_Vars
from the polyhedron referenced by Handle. The identifiers for the remaining PPL variables are
renumbered so that they are consecutive and the maximum index is less than the number of dimensions.
E.g.,

?- ppl_new_C_Polyhedron_from_space_dimension(3, empty, X),
A=’$VAR’(0), B = ’$VAR’(1), C = ’$VAR’(2),
ppl_Polyhedron_remove_space_dimensions(X, [B]),
ppl_Polyhedron_space_dimension(X, K),
ppl_Polyhedron_get_generators(X, GS).

K = 2,
GS = [point(0),line(1*A),line(1*B),line(0)]

ppl_Polyhedron_remove_higher_space_dimensions(+Handle, +Dimension_-
Type)) Projects the polyhedron referenced to by Handle onto the first Dimension_Type
dimension. E.g.,

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 Prolog Language Interface 91

?- ppl_new_C_Polyhedron_from_space_dimension(5, empty, X),
ppl_Polyhedron_remove_higher_space_dimensions(X, 3),
ppl_Polyhedron_space_dimension(X, K).

ppl_Polyhedron_expand_space_dimension(+Handle, +PPL_Var, +Dimension_-
Type)) Dimension_Type copies of the space dimension referenced by PPL_Var are added to the
polyhedron referenced to by Handle.

ppl_Polyhedron_fold_space_dimensions(+Handle, +List_of_PPL_Vars,
+PPL_Var)) The space dimensions referenced by the PPL variables in list List_of_PPL_-
Vars are folded into the dimension referenced by PPL_Var and removed. The result is undefined if
List_of_PPL_Vars does not have the properties described in Section fold_space_dimensions.

ppl_Polyhedron_map_space_dimensions(+Handle, +P_Func)) Maps the space di-
mensions of the polyhedron referenced by Handle using the partial function defined by P_Func. The
result is undefined if P_Func does not encode a partial function with the properties described in Section
specifying the map_space_dimensions operator.

ppl_new_LP_Problem_trivial(-Handle) Creates an LP Problem LP with the feasible region
the 0-dimensional universe, objective function 0 and optimization mode max. Handle is unified with the
handle for LP.

ppl_new_LP_Problem(+Constraint_System, +Lin_Expr, +Optimization_Mode,
-Handle) Creates an LP Problem LP with the feasible region represented by Constraint_-
System, objective function Lin_Expr and optimization mode Optimization_Mode. Handle is
unified with the handle for LP.

ppl_LP_Problem_swap(+Handle_1, +Handle_2) Swaps the LP Problem referenced by
Handle_1 with the one referenced by Handle_2.

ppl_delete_LP_Problem(+Handle) Deletes the LP Problem referenced by Handle. After ex-
ecution, Handle is no longer a valid handle for a PPL LP Problem.

ppl_LP_Problem_space_dimension(+Handle, ?Dimension_Type) Unifies the dimen-
sion of the vector space in which the LP Problem referenced by Handle is embedded with Dimension_-
Type.

ppl_LP_Problem_constraints(+Handle, -Constraint_System) Unifies
Constraint_System with a list of the constraints in the constraints system representing the
feasible region for the LP Problem referenced by Handle.

ppl_LP_Problem_objective_function(+Handle, -Lin_Expr) Unifies Lin_Expr
with the objective function for the LP Problem referenced by Handle.

ppl_LP_Problem_optimization_mode(+Handle, ?Optimization_Mode) Unifies
Optimization_Mode with the optimization mode for the LP Problem referenced by Handle.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 Prolog Language Interface 92

ppl_LP_Problem_clear(+Handle) Resets the LP problem referenced by Handle to be the triv-
ial problem with the feasible region the 0-dimensional universe, objective function 0 and optimization
mode max.

ppl_LP_Problem_add_constraint(+Handle, +Constraint) Updates the LP Problem
referenced by Handle so that the feasible region is represented by the original constraint system together
with the constraint Constraint.

ppl_LP_Problem_add_constraints(+Handle, +Constraint_System) Updates the LP
Problem referenced by Handle so that the feasible region is represented by the original constraint system
together with all the constraints in Constraint_System.

ppl_LP_Problem_set_objective_function(+Handle, +Lin_Expr) Updates the LP
Problem referenced by Handle so that the objective function is changed to Lin_Expr.

ppl_LP_Problem_set_optimization_mode(+Handle, +Optimization_Mode)
Updates the LP Problem referenced by Handle so that the optimization mode is changed to
Optimization_Mode.

ppl_LP_Problem_is_satisfiable(+Handle) Succeeds if and only if the LP Problem refer-
enced by Handle is satisfiable.

ppl_LP_Problem_solve(+Handle, ?LP_Problem_Status) Solves the LP problem refer-
enced by Handle and unifies LP_Problem_Status with: unfeasible, if the LP problem is not
satisfiable; unbounded, if the LP problem is satisfiable but there is no finite bound to the value of the
objective function; optimized, if the LP problem admits an optimal solution.

ppl_LP_Problem_feasible_point(+Handle, ?Generator) Unifies Generator with a
feasible point for the LP problem referenced by Handle.

ppl_LP_Problem_optimizing_point(+Handle, ?Generator) Unifies Generator
with an optimizing point for the LP problem referenced by Handle.

ppl_LP_Problem_optimal_value(+Handle, ?Coefficient_1, ?Coefficient_2)
Unifies Coefficient_1 and Coefficient_2 with the numerator and denominator, respectively, for
the optimal value for the LP problem referenced by Handle.

ppl_LP_Problem_evaluate_objective_function(+Handle, +Generator,
?Coefficient_1, ?Coefficient_2) Evaluates the objective function of the LP problem
referenced by Handle at point Generator. Coefficient_1 is unified with the numerator and
Coefficient_2 is unified with the denominator of the objective function value at Generator.

ppl_LP_Problem_OK(+Handle) Succeeds only if the LP Problem referenced by Handle is well
formed, i.e., if it satisfies all its implementation invariants. Useful for debugging purposes.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 Prolog Language Interface 93

Compilation and Installation

When the Parma Polyhedra Library is configured, it tests for the existence of each supported Prolog system.
If a supported Prolog system is correctly installed in a standard location, things are arranged so that the
corresponding interface is built and installed.

As an option, the Prolog interface can track the creation and disposal of polyhedra. In fact, differently from
native Prolog data, PPL polyhedra must be explicitly disposed and forgetting to do so is a very common
mistake. To enable this option, configure the library adding -DPROLOG_TRACK_ALLOCATION to the
options passed to the C++ compiler. Your configure command would then look like

path/to/configure --with-cxxflags="-DPROLOG_TRACK_ALLOCATION" ...

System-Dependent Features

CIAO Prolog The Ciao Prolog interface to the PPL is available both as “PPL enhanced” Ciao Prolog
interpreter and as a library that can be linked to Ciao Prolog programs. Only Ciao Prolog versions 1.10 #5
and later are supported.

So that it can be used with the Ciao Prolog PPL interface, the Ciao Prolog installation must be configured
with the -disable-regs option.

The ppl_ciao Executable If an appropriate version of Ciao Prolog is installed on the machine on
which you compiled the library, the command make install will install the executable ppl_ciao
in the directory prefix/bin. The ppl_ciao executable is simply the Ciao Prolog interpreter with
the Parma Polyhedra Library linked in. The only thing you should do to use the library is to call ppl_-
initialize/0 before any other PPL predicate and to call ppl_finalize/0 when you are done with
the library.

Linking the Library To Ciao Prolog Programs In order to allow linking Ciao Prolog programs to the
PPL, the following files are installed in the directory prefix/lib/ppl: ppl_ciao.pl contains the
required foreign declarations; libppl_ciao.∗ contain the executable code for the Ciao Prolog interface
in various formats (static library, shared library, libtool library). If your Ciao Prolog program is consti-
tuted by, say, source1.pl and source2.pl and you want to create the executable myprog, your
compilation command may look like

ciaoc -o myprog prefix/lib/ppl/ppl_ciao.pl ciao_pl_check.pl \
-L ’-Lprefix/lib/ppl -lppl_ciao -Lprefix/lib -lppl -lgmpxx -lgmp -lstdc++’

GNU Prolog The GNU Prolog interface to the PPL is available both as a “PPL enhanced”
GNU Prolog interpreter and as a library that can be linked to GNU Prolog programs. The only
GNU Prolog version that is known to work is a patched version of the “unstable version” tagged
20040608 (which unpacks to a directory called gprolog-1.2.18). The patch is contained in the
interfaces/Prolog/GNU/README file of the PPL’s distribution.

So that it can be used with the GNU Prolog PPL interface (and, for that matter, with any foreign code), the
GNU Prolog installation must be configured with the -disable-regs option.

The ppl_gprolog Executable If an appropriate version of GNU Prolog is installed on the machine
on which you compiled the library, the command make install will install the executable ppl_-
gprolog in the directory prefix/bin. The ppl_gprolog executable is simply the GNU Prolog

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

ftp://ftp.inria.fr/INRIA/Projects/contraintes/gprolog/unstable/gprolog-20040608.tgz
http://www.cs.unipr.it/ppl/

7.3 Prolog Language Interface 94

interpreter with the Parma Polyhedra Library linked in. The only thing you should do to use the library is
to call ppl_initialize/0 before any other PPL predicate and to call ppl_finalize/0 when you
are done with the library.

Linking the Library To GNU Prolog Programs In order to allow linking GNU Prolog programs to the
PPL, the following files are installed in the directory prefix/lib/ppl: ppl_gprolog.pl contains
the required foreign declarations; libppl_gprolog.∗ contain the executable code for the GNU Prolog
interface in various formats (static library, shared library, libtool library). If your GNU Prolog program
is constituted by, say, source1.pl and source2.pl and you want to create the executable myprog,
your compilation command may look like

gplc -o myprog prefix/lib/ppl/ppl_gprolog.pl source1.pl source2.pl \
-L ’-Lprefix/lib/ppl -lppl_gprolog -Lprefix/lib -lppl -lgmpxx -lgmp -lstdc++’

SICStus Prolog The SICStus Prolog interface to the PPL is available both as a statically linked module
or as a dynamically linked one. Only SICStus Prolog versions 3.9.0 and later are supported.

The Statically Linked ppl_sicstus Executable If an appropriate version of SICStus Prolog is in-
stalled on the machine on which you compiled the library, the command make install will install the
executable ppl_sicstus in the directory prefix/bin. The ppl_sicstus executable is simply the
SICStus Prolog system with the Parma Polyhedra Library statically linked. The only thing you should do
to use the library is to load prefix/lib/ppl/ppl_sicstus.pl.

Loading the SICStus Interface Dynamically In order to dynamically load the library from SICStus Pro-
log you should simply load prefix/lib/ppl/ppl_sicstus.pl. Notice that, for dynamic linking
to work, you should have configured the library with the -enable-shared option.

SWI-Prolog The SWI-Prolog interface to the PPL is available both as a statically linked module or as a
dynamically linked one. Only SWI-Prolog version 5.6.0 and later versions are supported.

The ppl_pl Executable If an appropriate version of SWI-Prolog is installed on the machine on which
you compiled the library, the command make install will install the executable ppl_pl in the direc-
tory prefix/bin. The ppl_pl executable is simply the SWI-Prolog shell with the Parma Polyhedra
Library statically linked: from within ppl_pl all the services of the library are available without further
action.

Loading the SWI-Prolog Interface Dynamically In order to dynamically load the library from SWI-
Prolog you should simply load prefix/lib/ppl/ppl_swiprolog.pl. This will invoke ppl_-
initialize/0 and ppl_finalize/0 automatically. Alternatively, you can load the library directly
with

:- load_foreign_library(’prefix/lib/ppl/libppl_swiprolog’).

This will call ppl_initialize/0 automatically. Analogously,

:- unload_foreign_library(’prefix/lib/ppl/libppl_swiprolog’).

will, as part of the unload process, invoke ppl_finalize/0.

Notice that, for dynamic linking to work, you should have configured the library with the
-enable-shared option.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8 PPL Namespace Documentation 95

XSB The XSB Prolog interface to the PPL is available as a dynamically linked module. Only some CVS
versions of XSB starting from 2 July 2005 are known to work. CVS versions starting from 11 November
2005 are known not to work.

In order to dynamically load the library from XSB you should load the ppl_xsb module and import the
predicates you need. For things to work, you may have to copy the files prefix/lib/ppl/ppl_-
xsb.xwam and prefix/lib/ppl/ppl_xsb.so in your current directory or in one of the XSB li-
brary directories.

YAP The YAP Prolog interface to the PPL is available as a dynamically linked mod-
ule. Only YAP versions following 5.1.0 and CVS HEAD versions starting from 4
January 2006 are supported. Notice that support for unbounded integers in YAP
is young and may have errors that could affect programs using the PPL (see, e.g.,
http://www.cs.unipr.it/pipermail/ppl-devel/2006-January/007780.html).

In order to dynamically load the library from YAP you should simply load prefix/lib/ppl/ppl_-
yap.pl. This will invoke ppl_initialize/0 automatically; it is the programmer’s responsibility to
call ppl_finalize/0 when the PPL library is no longer needed. Notice that, for dynamic linking to
work, you should have configured the library with the -enable-shared option.

8 PPL Namespace Documentation

8.1 Parma_Polyhedra_Library Namespace Reference

The entire library is confined to this namespace.

Classes

• class Checked_Number
A wrapper for numeric types implementing a given policy.

• class Throwable
User objects the PPL can throw.

• struct From_Bounding_Box
A tag class.

• struct From_Covering_Box
A tag class.

• class Constraint_System
A system of constraints.

• class Variable
A dimension of the vector space.

• class Poly_Con_Relation
The relation between a polyhedron and a constraint.

• class Generator_System

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/pipermail/ppl-devel/2006-January/007780.html
http://www.cs.unipr.it/ppl/

8.1 Parma_Polyhedra_Library Namespace Reference 96

A system of generators.

• class Grid_Generator_System
A system of grid generators.

• class Congruence_System
A system of congruences.

• class Linear_Expression
A linear expression.

• class Constraint
A linear equality or inequality.

• class Generator
A line, ray, point or closure point.

• class Grid_Generator
A line, parameter or point.

• class Congruence
A linear congruence.

• class LP_Problem
A Linear Programming problem.

• class Poly_Gen_Relation
The relation between a polyhedron and a generator.

• class BHRZ03_Certificate
The convergence certificate for the BHRZ03 widening operator.

• class H79_Certificate
A convergence certificate for the H79 widening operator.

• class Polyhedron
The base class for convex polyhedra.

• class Grid_Certificate
The convergence certificate for the Grid widening operator.

• class Grid
A grid.

• class C_Polyhedron
A closed convex polyhedron.

• class NNC_Polyhedron
A not necessarily closed convex polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.1 Parma_Polyhedra_Library Namespace Reference 97

• class BD_Shape
A bounded difference shape.

• class Determinate
Wraps a PPL class into a determinate constraint system interface.

• class Powerset
The powerset construction on a base-level domain.

• class Polyhedra_Powerset
The powerset construction instantiated on PPL polyhedra.

• class GMP_Integer
Unbounded integers as provided by the GMP library.

Namespaces

• namespace IO_Operators
All input/output operators are confined to this namespace.

Typedefs

• typedef size_t dimension_type
An unsigned integral type for representing space dimensions.

• typedef size_t memory_size_type
An unsigned integral type for representing memory size in bytes.

• typedef COEFFICIENT_TYPE Coefficient
An alias for easily naming the type of PPL coefficients.

• typedef std::set< Variable, Variable::Compare > Variables_Set
An std::set containing variables in increasing order of dimension index.

Enumerations

• enum Result { ,

VC_NORMAL, V_LT, V_GT, V_EQ,

V_NE, V_LE, V_GE, V_LGE,

VC_MINUS_INFINITY, V_NEG_OVERFLOW, VC_PLUS_INFINITY, V_POS_OVERFLOW,

VC_NAN, V_CVT_STR_UNK, V_DIV_ZERO, V_INF_ADD_INF,

V_INF_DIV_INF, V_INF_MOD, V_INF_MUL_ZERO, V_INF_SUB_INF,

V_MOD_ZERO, V_SQRT_NEG, V_UNKNOWN_NEG_OVERFLOW, V_UNKNOWN_POS_-
OVERFLOW,

V_UNORD_COMP }

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.1 Parma_Polyhedra_Library Namespace Reference 98

Possible outcomes of a checked arithmetic computation.

• enum Rounding_Dir { ROUND_DOWN, ROUND_UP, ROUND_IGNORE , ROUND_NOT_-
NEEDED }

Rounding directions for arithmetic computations.

• enum Degenerate_Element { UNIVERSE, EMPTY }
Kinds of degenerate abstract elements.

• enum Relation_Symbol {

LESS_THAN, LESS_THAN_OR_EQUAL, EQUAL, GREATER_THAN_OR_EQUAL,

GREATER_THAN }
Relation symbols.

• enum Complexity_Class { POLYNOMIAL_COMPLEXITY, SIMPLEX_COMPLEXITY, ANY_-
COMPLEXITY }

Complexity pseudo-classes.

• enum Optimization_Mode { MINIMIZATION, MAXIMIZATION }
Possible optimization modes.

• enum LP_Problem_Status { UNFEASIBLE_LP_PROBLEM, UNBOUNDED_LP_PROBLEM,
OPTIMIZED_LP_PROBLEM }

Possible outcomes of the LP_Problem solver.

Functions

• unsigned version_major ()
Returns the major number of the PPL version.

• unsigned version_minor ()
Returns the minor number of the PPL version.

• unsigned version_revision ()
Returns the revision number of the PPL version.

• unsigned version_beta ()
Returns the beta number of the PPL version.

• const char ∗ version ()
Returns a character string containing the PPL version.

• const char ∗ banner ()
Returns a character string containing the PPL banner.

• fpu_rounding_direction_type fpu_get_rounding_direction ()
Returns the current FPU rounding direction.

• void fpu_set_rounding_direction (fpu_rounding_direction_type dir)

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.1 Parma_Polyhedra_Library Namespace Reference 99

Sets the FPU rounding direction to dir.

• fpu_rounding_control_word_type fpu_save_rounding_direction (fpu_rounding_direction_type dir)
Sets the FPU rounding direction to dir and returns the rounding control word previously in use.

• fpu_rounding_control_word_type fpu_save_rounding_direction_reset_inexact (fpu_rounding_-
direction_type dir)

Sets the FPU rounding direction to dir, clears the inexact computation status, and returns the rounding
control word previously in use.

• void fpu_restore_rounding_direction (fpu_rounding_control_word_type w)
Restores the FPU rounding rounding control word to cw.

• void fpu_reset_inexact ()
Clears the inexact computation status.

• int fpu_check_inexact ()
Queries the inexact computation status.

• Rounding_Dir inverse (Rounding_Dir dir)
Returns the inverse rounding mode of dir, ROUND_IGNORE being the inverse of itself.

• unsigned rational_sqrt_precision_parameter ()
Returns the precision parameter used for rational square root calculations.

• void set_rational_sqrt_precision_parameter (const unsigned p)
Sets the precision parameter used for rational square root calculations.

• dimension_type not_a_dimension ()
Returns a value that does not designate a valid dimension.

• dimension_type max_space_dimension ()
Returns the maximum space dimension this library can handle.

Variables

• const Throwable ∗volatile abandon_expensive_computations
A pointer to an exception object.

8.1.1 Detailed Description

The entire library is confined to this namespace.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.2 Parma_Polyhedra_Library::IO_Operators Namespace Reference 100

8.1.2 Function Documentation

8.1.2.1 const char∗ Parma_Polyhedra_Library::banner ()

Returns a character string containing the PPL banner.

The banner provides information about the PPL version, the licensing, the lack of any warranty whatsoever,
the C++ compiler used to build the library, where to report bugs and where to look for further information.

8.1.2.2 int Parma_Polyhedra_Library::fpu_check_inexact () [inline]

Queries the inexact computation status.

Returns 0 if the computation was definitely exact, 1 if it was definitely inexact, -1 if definite exactness
information is unavailable.

8.1.2.3 void Parma_Polyhedra_Library::set_rational_sqrt_precision_parameter (const unsigned
p) [inline]

Sets the precision parameter used for rational square root calculations.

If p is less than or equal to INT_MAX, sets the precision parameter used for rational square root calculations
to p.

Exceptions:

std::invalid_argument Thrown if p is greater than INT_MAX.

8.2 Parma_Polyhedra_Library::IO_Operators Namespace Reference

All input/output operators are confined to this namespace.

8.2.1 Detailed Description

All input/output operators are confined to this namespace.

This is done so that the library’s input/output operators do not interfere with those the user might want
to define. In fact, it is highly unlikely that any pre-defined I/O operator will suit the needs of a client
application. On the other hand, those applications for which the PPL I/O operator are enough can easily
obtain access to them. For example, a directive like

using namespace Parma_Polyhedra_Library::IO_Operators;

would suffice for most uses. In more complex situations, such as

const Constraint_System& cs = ...;
copy(cs.begin(), cs.end(),

ostream_iterator<Constraint>(cout, "\n"));

the Parma_Polyhedra_Library namespace must be suitably extended. This can be done as follows:

namespace Parma_Polyhedra_Library {
// Import all the output operators into the main PPL namespace.
using IO_Operators::operator<<;

}

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 std Namespace Reference 101

8.3 std Namespace Reference

The standard C++ namespace.

8.3.1 Detailed Description

The standard C++ namespace.

The Parma Polyhedra Library conforms to the C++ standard and, in particular, as far as reserved names are
concerned (17.4.3.1, [lib.reserved.names]). The PPL, however, defines several template specializations for
the standard library function templates swap() and iter_swap() (25.2.2, [lib.alg.swap]), and for the
class template numeric_limits (18.2.1, [lib.limits]).

Note:

The PPL provides the specializations of the class template numeric_limits not only for PPL-
specific numeric types, but also for the GMP types mpz_class and mpq_class. These specializa-
tions will be removed as soon as they will be provided by the C++ interface of GMP.

9 PPL Class Documentation

9.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference

A bounded difference shape.

Public Types

• typedef T base_type
The numeric base type upon which bounded differences are built.

• typedef N coefficient_type
The (extended) numeric type of the inhomogeneous term of the inequalities defining a BDS.

Public Member Functions

Constructors, Assignment, Swap and Destructor

• BD_Shape (dimension_type num_dimensions=0, Degenerate_Element kind=UNIVERSE)
Builds a universe or empty BDS of the specified space dimension.

• BD_Shape (const BD_Shape &y)
Ordinary copy-constructor.

• template<typename U> BD_Shape (const BD_Shape< U > &y)
Builds a conservative, upward approximation of y.

• BD_Shape (const Constraint_System &cs)
Builds a BDS from the system of constraints cs.

• BD_Shape (const Generator_System &gs)

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 102

Builds a BDS from the system of generators gs.

• BD_Shape (const Polyhedron &ph, Complexity_Class complexity=ANY_COMPLEXITY)
Builds a BDS from the polyhedron ph.

• BD_Shape & operator= (const BD_Shape &y)
The assignment operator (∗this and y can be dimension-incompatible).

• void swap (BD_Shape &y)
Swaps ∗this with y (∗this and y can be dimension-incompatible).

• ∼BD_Shape ()
Destructor.

Member Functions that Do Not Modify the BD_Shape

• dimension_type space_dimension () const
Returns the dimension of the vector space enclosing ∗this.

• dimension_type affine_dimension () const
Returns 0, if ∗this is empty; otherwise, returns the affine dimension of ∗this.

• Constraint_System constraints () const
Returns a system of constraints defining ∗this.

• Constraint_System minimized_constraints () const
Returns a minimized system of constraints defining ∗this.

• bool contains (const BD_Shape &y) const
Returns true if and only if ∗this contains y.

• bool strictly_contains (const BD_Shape &y) const
Returns true if and only if ∗this strictly contains y.

• Poly_Con_Relation relation_with (const Constraint &c) const
Returns the relations holding between ∗this and the constraint c.

• Poly_Gen_Relation relation_with (const Generator &g) const
Returns the relations holding between ∗this and the generator g.

• bool is_empty () const
Returns true if and only if ∗this is an empty BDS.

• bool is_universe () const
Returns true if and only if ∗this is a universe BDS.

• bool OK () const
Returns true if and only if ∗this satisfies all its invariants.

Space-Dimension Preserving Member Functions that May Modify the BD_Shape

• void add_constraint (const Constraint &c)

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 103

Adds a copy of constraint c to the system of bounded differences defining ∗this.

• bool add_constraint_and_minimize (const Constraint &c)
Adds a copy of constraint c to the system of bounded differences defining ∗this.

• void add_constraints (const Constraint_System &cs)
Adds the constraints in cs to the system of bounded differences defining ∗this.

• bool add_constraints_and_minimize (const Constraint_System &cs)
Adds the constraints in cs to the system of bounded differences defining ∗this.

• void intersection_assign (const BD_Shape &y)
Assigns to ∗this the intersection of ∗this and y.

• bool intersection_assign_and_minimize (const BD_Shape &y)
Assigns to ∗this the intersection of ∗this and y.

• void bds_hull_assign (const BD_Shape &y)
Assigns to ∗this the smallest BDS containing the convex union of ∗this and y.

• bool bds_hull_assign_and_minimize (const BD_Shape &y)
Assigns to ∗this the smallest BDS containing the convex union of ∗this and y.

• void upper_bound_assign (const BD_Shape &y)
Same as bds_hull_assign.

• bool bds_hull_assign_if_exact (const BD_Shape &y)
If the bds-hull of ∗this and y is exact, it is assigned to ∗this and true is returned, otherwise false
is returned.

• bool upper_bound_assign_if_exact (const BD_Shape &y)
Same as bds_hull_assign_if_exact.

• void bds_difference_assign (const BD_Shape &y)
Assigns to ∗this the poly-difference of ∗this and y.

• void difference_assign (const BD_Shape &y)
Same as bds_difference_assign.

• void affine_image (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())

Assigns to ∗this the affine image of ∗this under the function mapping variable var into the affine
expression specified by expr and denominator.

• void affine_preimage (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())

Assigns to ∗this the affine preimage of ∗this under the function mapping variable var into the affine
expression specified by expr and denominator.

• void generalized_affine_image (Variable var, Relation_Symbol relsym, const Linear_Expression
&expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to ∗this the image of ∗this with respect to the affine relation var′ ./ expr
denominator

, where ./
is the relation symbol encoded by relsym.

• void generalized_affine_image (const Linear_Expression &lhs, Relation_Symbol relsym, const
Linear_Expression &rhs)

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 104

Assigns to ∗this the image of ∗this with respect to the affine relation lhs′ ./ rhs, where ./ is the
relation symbol encoded by relsym.

• void generalized_affine_preimage (Variable var, Relation_Symbol relsym, const Linear_-
Expression &expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to ∗this the preimage of ∗this with respect to the affine relation var′ ./ expr
denominator

, where
./ is the relation symbol encoded by relsym.

• void time_elapse_assign (const BD_Shape &y)
Assigns to ∗this the result of computing the time-elapse between ∗this and y.

• void CC76_extrapolation_assign (const BD_Shape &y, unsigned ∗tp=0)
Assigns to ∗this the result of computing the CC76-extrapolation between ∗this and y.

• template<typename Iterator> void CC76_extrapolation_assign (const BD_Shape &y, Iterator
first, Iterator last, unsigned ∗tp=0)

Assigns to ∗this the result of computing the CC76-extrapolation between ∗this and y.

• void BHMZ05_widening_assign (const BD_Shape &y, unsigned ∗tp=0)
Assigns to ∗this the result of computing the BHMZ05-widening of ∗this and y.

• void limited_BHMZ05_extrapolation_assign (const BD_Shape &y, const Constraint_System
&cs, unsigned ∗tp=0)

Improves the result of the BHMZ05-widening computation by also enforcing those constraints in cs that
are satisfied by all the points of ∗this.

• void CC76_narrowing_assign (const BD_Shape &y)
Assigns to ∗this the result of restoring in y the constraints of ∗this that were lost by CC76-
extrapolation applications.

• void limited_CC76_extrapolation_assign (const BD_Shape &y, const Constraint_System &cs,
unsigned ∗tp=0)

Improves the result of the CC76-extrapolation computation by also enforcing those constraints in cs
that are satisfied by all the points of ∗this.

• void H79_widening_assign (const BD_Shape &y, unsigned ∗tp=0)
Assigns to ∗this the result of computing the H79-widening between ∗this and y.

• void limited_H79_extrapolation_assign (const BD_Shape &y, const Constraint_System &cs, un-
signed ∗tp=0)

Improves the result of the H79-widening computation by also enforcing those constraints in cs that are
satisfied by all the points of ∗this.

Member Functions that May Modify the Dimension of the Vector Space

• void add_space_dimensions_and_embed (dimension_type m)
Adds m new dimensions and embeds the old BDS into the new space.

• void add_space_dimensions_and_project (dimension_type m)
Adds m new dimensions to the BDS and does not embed it in the new vector space.

• void concatenate_assign (const BD_Shape &y)
Seeing a BDS as a set of tuples (its points), assigns to ∗this all the tuples that can be obtained by
concatenating, in the order given, a tuple of ∗this with a tuple of y.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 105

• void remove_space_dimensions (const Variables_Set &to_be_removed)
Removes all the specified dimensions.

• void remove_higher_space_dimensions (dimension_type new_dimension)
Removes the higher dimensions so that the resulting space will have dimension new_dimension.

• template<typename PartialFunction> void map_space_dimensions (const PartialFunction
&pfunc)

Remaps the dimensions of the vector space according to a partial function.

Static Public Member Functions

• static dimension_type max_space_dimension ()
Returns the maximum space dimension that a BDS can handle.

Friends

• std::ostream & operator<< (std::ostream &s, const BD_Shape< T > &c)
Output operator.

Related Functions

(Note that these are not member functions.)

• bool operator== (const BD_Shape< T > &x, const BD_Shape< T > &y)
Returns true if and only if x and y are the same BDS.

• bool operator!= (const BD_Shape< T > &x, const BD_Shape< T > &y)
Returns true if and only if x and y aren’t the same BDS.

• bool rectilinear_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
BD_Shape< T > &x, const BD_Shape< T > &y, const Rounding_Dir dir)

Computes the rectilinear (or Manhattan) distance between x and y.

• bool rectilinear_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
BD_Shape< T > &x, const BD_Shape< T > &y, const Rounding_Dir dir, Temp &tmp0, Temp
&tmp1, Temp &tmp2)

Computes the rectilinear (or Manhattan) distance between x and y.

• bool euclidean_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
BD_Shape< T > &x, const BD_Shape< T > &y, const Rounding_Dir dir)

Computes the euclidean distance between x and y.

• bool euclidean_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
BD_Shape< T > &x, const BD_Shape< T > &y, const Rounding_Dir dir, Temp &tmp0, Temp
&tmp1, Temp &tmp2)

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 106

Computes the euclidean distance between x and y.

• bool l_infinity_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
BD_Shape< T > &x, const BD_Shape< T > &y, const Rounding_Dir dir)

Computes the L∞ distance between x and y.

• bool l_infinity_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
BD_Shape< T > &x, const BD_Shape< T > &y, const Rounding_Dir dir, Temp &tmp0, Temp
&tmp1, Temp &tmp2)

Computes the L∞ distance between x and y.

• void swap (Parma_Polyhedra_Library::BD_Shape< T > &x, Parma_Polyhedra_Library::BD_-
Shape< T > &y)

Specializes std::swap.

9.1.1 Detailed Description

template<typename T> class Parma_Polyhedra_Library::BD_Shape< T >

A bounded difference shape.

The class template BD_Shape<T> allows for the efficient representation of a restricted kind of topologi-
cally closed convex polyhedra called bounded difference shapes (BDSs, for short). The name comes from
the fact that the closed affine half-spaces that characterize the polyhedron can be expressed by constraints
of the form ±xi ≤ k or xi − xj ≤ k, where the inhomogeneous term k is a rational number.

Based on the class template type parameter T, a family of extended numbers is built and used to approx-
imate the inhomogeneous term of bounded differences. These extended numbers provide a representation
for the value +∞, as well as rounding-aware implementations for several arithmetic functions. The value
of the type parameter T may be one of the following:

• a bounded precision integer type (e.g., int32_t or int64_t);

• a bounded precision floating point type (e.g., float or double);

• an unbounded integer or rational type, as provided by GMP (i.e., mpz_class or mpq_class).

The user interface for BDSs is meant to be as similar as possible to the one developed for the polyhe-
dron class C_Polyhedron. At the interface level, bounded differences are specified using objects of type
Constraint: such a constraint is a bounded difference if it is of the form

aixi − ajxj ./ b

where ./ ∈ {≤,=,≥} and ai, aj , b are integer coefficients such that ai = 0, or aj = 0, or ai = aj .
The user is warned that the above Constraint object will be mapped into a correct approximation that,
depending on the expressive power of the chosen template argument T, may loose some precision. In
particular, constraint objects that do not encode a bounded difference will be simply (and safely) ignored.

For instance, a Constraint object encoding 3x− 3y ≤ 1 will be approximated by:

• x− y ≤ 1, if T is a (bounded or unbounded) integer type;

• x− y ≤ 1
3 , if T is the unbounded rational type mpq_class;

• x− y ≤ k, where k > 1
3 , if T is a floating point type (having no exact representation for 1

3).

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 107

On the other hand, a Constraint object encoding 3x−y ≤ 1 will be safely ignored in all of the above cases.

In the following examples it is assumed that the type argument T is one of the possible instances listed
above and that variables x, y and z are defined (where they are used) as follows:

Variable x(0);
Variable y(1);
Variable z(2);

Example 1

The following code builds a BDS corresponding to a cube in R3, given as a system of constraints:

Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x <= 1);
cs.insert(y >= 0);
cs.insert(y <= 1);
cs.insert(z >= 0);
cs.insert(z <= 1);
BD_Shape<T> bd(cs);

Since only those constraints having the syntactic form of a bounded difference are considered, the
following code will build the same BDS as above (i.e., the constraints 7, 8, and 9 are ignored):

Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x <= 1);
cs.insert(y >= 0);
cs.insert(y <= 1);
cs.insert(z >= 0);
cs.insert(z <= 1);
cs.insert(x + y <= 0); // 7
cs.insert(x - z + x >= 0); // 8
cs.insert(3*z - y <= 1); // 9
BD_Shape<T> bd(cs);

9.1.2 Constructor & Destructor Documentation

9.1.2.1 template<typename T> Parma_Polyhedra_Library::BD_Shape< T >::BD_Shape
(dimension_type num_dimensions = 0, Degenerate_Element kind = UNIVERSE) [inline,
explicit]

Builds a universe or empty BDS of the specified space dimension.

Parameters:

num_dimensions The number of dimensions of the vector space enclosing the BDS;
kind Specifies whether the universe or the empty BDS has to be built.

9.1.2.2 template<typename T> Parma_Polyhedra_Library::BD_Shape< T >::BD_Shape (const
Constraint_System & cs) [inline]

Builds a BDS from the system of constraints cs.

The BDS inherits the space dimension of cs.

Parameters:

cs A system of constraints: constraints that are not bounded differences are ignored (even though they
may have contributed to the space dimension).

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 108

Exceptions:

std::invalid_argument Thrown if the system of constraints cs contains strict inequalities.

9.1.2.3 template<typename T> Parma_Polyhedra_Library::BD_Shape< T >::BD_Shape (const
Generator_System & gs)

Builds a BDS from the system of generators gs.

Builds the smallest BDS containing the polyhedron defined by gs. The BDS inherits the space dimension
of gs.

Exceptions:

std::invalid_argument Thrown if the system of generators is not empty but has no points.

9.1.2.4 template<typename T> Parma_Polyhedra_Library::BD_Shape< T >::BD_Shape (const
Polyhedron & ph, Complexity_Class complexity = ANY_COMPLEXITY)

Builds a BDS from the polyhedron ph.

Builds a BDS containing ph using algorithms whose complexity does not exceed the one specified by
complexity. If complexity is ANY_COMPLEXITY, then the BDS built is the smallest one containing
ph.

9.1.3 Member Function Documentation

9.1.3.1 template<typename T> bool Parma_Polyhedra_Library::BD_Shape< T >::contains
(const BD_Shape< T > & y) const

Returns true if and only if ∗this contains y.

Exceptions:

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

9.1.3.2 template<typename T> bool Parma_Polyhedra_Library::BD_Shape< T >::strictly_-
contains (const BD_Shape< T > & y) const [inline]

Returns true if and only if ∗this strictly contains y.

Exceptions:

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

9.1.3.3 template<typename T> Poly_Con_Relation Parma_Polyhedra_Library::BD_Shape< T
>::relation_with (const Constraint & c) const

Returns the relations holding between ∗this and the constraint c.

Exceptions:

std::invalid_argument Thrown if ∗this and constraint c are dimension-incompatible or if c is a
strict inequality or if c is not a bounded difference constraint.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 109

9.1.3.4 template<typename T> Poly_Gen_Relation Parma_Polyhedra_Library::BD_Shape< T
>::relation_with (const Generator & g) const

Returns the relations holding between ∗this and the generator g.

Exceptions:

std::invalid_argument Thrown if ∗this and generator g are dimension-incompatible.

9.1.3.5 template<typename T> void Parma_Polyhedra_Library::BD_Shape< T >::add_-
constraint (const Constraint & c)

Adds a copy of constraint c to the system of bounded differences defining ∗this.

Parameters:

c The constraint to be added. If it is not a bounded difference, it will be simply ignored.

Exceptions:

std::invalid_argument Thrown if ∗this and constraint c are dimension-incompatible, or if c is a
strict inequality.

9.1.3.6 template<typename T> bool Parma_Polyhedra_Library::BD_Shape< T >::add_-
constraint_and_minimize (const Constraint & c) [inline]

Adds a copy of constraint c to the system of bounded differences defining ∗this.

Returns:

false if and only if the result is empty.

Parameters:

c The constraint to be added. If it is not a bounded difference, it will be simply ignored.

Exceptions:

std::invalid_argument Thrown if ∗this and constraint c are dimension-incompatible, or if c is a
strict inequality.

9.1.3.7 template<typename T> void Parma_Polyhedra_Library::BD_Shape< T >::add_-
constraints (const Constraint_System & cs) [inline]

Adds the constraints in cs to the system of bounded differences defining ∗this.

Parameters:

cs The constraints that will be added. Constraints that are not bounded differences will be simply
ignored.

Exceptions:

std::invalid_argument Thrown if ∗this and cs are dimension-incompatible, or if cs contains a
strict inequality.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 110

9.1.3.8 template<typename T> bool Parma_Polyhedra_Library::BD_Shape< T >::add_-
constraints_and_minimize (const Constraint_System & cs) [inline]

Adds the constraints in cs to the system of bounded differences defining ∗this.

Returns:

false if and only if the result is empty.

Parameters:

cs The constraints that will be added. Constraints that are not bounded differences will be simply
ignored.

Exceptions:

std::invalid_argument Thrown if ∗this and cs are dimension-incompatible, or if cs contains a
strict inequality.

9.1.3.9 template<typename T> void Parma_Polyhedra_Library::BD_Shape< T >::intersection_-
assign (const BD_Shape< T > & y)

Assigns to ∗this the intersection of ∗this and y.

Exceptions:

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

9.1.3.10 template<typename T> bool Parma_Polyhedra_Library::BD_Shape< T
>::intersection_assign_and_minimize (const BD_Shape< T > & y) [inline]

Assigns to ∗this the intersection of ∗this and y.

Returns:

false if and only if the result is empty.

Exceptions:

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

9.1.3.11 template<typename T> void Parma_Polyhedra_Library::BD_Shape< T >::bds_hull_-
assign (const BD_Shape< T > & y)

Assigns to ∗this the smallest BDS containing the convex union of ∗this and y.

Exceptions:

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 111

9.1.3.12 template<typename T> bool Parma_Polyhedra_Library::BD_Shape< T >::bds_hull_-
assign_and_minimize (const BD_Shape< T > & y) [inline]

Assigns to ∗this the smallest BDS containing the convex union of ∗this and y.

Returns:

false if and only if the result is empty.

Exceptions:

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

9.1.3.13 template<typename T> bool Parma_Polyhedra_Library::BD_Shape< T >::bds_hull_-
assign_if_exact (const BD_Shape< T > & y) [inline]

If the bds-hull of ∗this and y is exact, it is assigned to ∗this and true is returned, otherwise false
is returned.

Exceptions:

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

9.1.3.14 template<typename T> void Parma_Polyhedra_Library::BD_Shape< T >::bds_-
difference_assign (const BD_Shape< T > & y)

Assigns to ∗this the poly-difference of ∗this and y.

Exceptions:

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

9.1.3.15 template<typename T> void Parma_Polyhedra_Library::BD_Shape< T >::affine_image
(Variable var, const Linear_Expression & expr, Coefficient_traits::const_reference denominator =
Coefficient_one())

Assigns to ∗this the affine image of ∗this under the function mapping variable var into the affine
expression specified by expr and denominator.

Parameters:

var The variable to which the affine expression is assigned.

expr The numerator of the affine expression.

denominator The denominator of the affine expression.

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a dimension of ∗this.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 112

9.1.3.16 template<typename T> void Parma_Polyhedra_Library::BD_Shape< T >::affine_-
preimage (Variable var, const Linear_Expression & expr, Coefficient_traits::const_reference denom-
inator = Coefficient_one())

Assigns to ∗this the affine preimage of ∗this under the function mapping variable var into the affine
expression specified by expr and denominator.

Parameters:

var The variable to which the affine expression is substituted.
expr The numerator of the affine expression.
denominator The denominator of the affine expression.

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a dimension of ∗this.

9.1.3.17 template<typename T> void Parma_Polyhedra_Library::BD_Shape< T
>::generalized_affine_image (Variable var, Relation_Symbol relsym, const Linear_Expression
& expr, Coefficient_traits::const_reference denominator = Coefficient_one())

Assigns to ∗this the image of ∗this with respect to the affine relation var′ ./ expr
denominator , where ./ is

the relation symbol encoded by relsym.

Parameters:

var The left hand side variable of the generalized affine transfer function.
relsym The relation symbol.
expr The numerator of the right hand side affine expression.
denominator The denominator of the right hand side affine expression.

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a dimension of ∗this or if relsym is a strict relation symbol.

9.1.3.18 template<typename T> void Parma_Polyhedra_Library::BD_Shape< T
>::generalized_affine_image (const Linear_Expression & lhs, Relation_Symbol relsym, const
Linear_Expression & rhs)

Assigns to ∗this the image of ∗this with respect to the affine relation lhs′ ./ rhs, where ./ is the
relation symbol encoded by relsym.

Parameters:

lhs The left hand side affine expression.
relsym The relation symbol.
rhs The right hand side affine expression.

Exceptions:

std::invalid_argument Thrown if ∗this is dimension-incompatible with lhs or rhs or if relsym
is a strict relation symbol.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 113

9.1.3.19 template<typename T> void Parma_Polyhedra_Library::BD_Shape< T
>::generalized_affine_preimage (Variable var, Relation_Symbol relsym, const Linear_Expression &
expr, Coefficient_traits::const_reference denominator = Coefficient_one())

Assigns to ∗this the preimage of ∗this with respect to the affine relation var′ ./ expr
denominator , where ./

is the relation symbol encoded by relsym.

Parameters:

var The left hand side variable of the generalized affine transfer function.

relsym The relation symbol.

expr The numerator of the right hand side affine expression.

denominator The denominator of the right hand side affine expression.

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a dimension of ∗this or if relsym is a strict relation symbol.

9.1.3.20 template<typename T> void Parma_Polyhedra_Library::BD_Shape< T >::time_-
elapse_assign (const BD_Shape< T > & y) [inline]

Assigns to ∗this the result of computing the time-elapse between ∗this and y.

Exceptions:

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

9.1.3.21 template<typename T> void Parma_Polyhedra_Library::BD_Shape< T >::CC76_-
extrapolation_assign (const BD_Shape< T > & y, unsigned ∗ tp = 0) [inline]

Assigns to ∗this the result of computing the CC76-extrapolation between ∗this and y.

Parameters:

y A BDS that must be contained in ∗this.

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

9.1.3.22 template<typename T> template<typename Iterator> void Parma_Polyhedra_-
Library::BD_Shape< T >::CC76_extrapolation_assign (const BD_Shape< T > & y, Iterator first,
Iterator last, unsigned ∗ tp = 0)

Assigns to ∗this the result of computing the CC76-extrapolation between ∗this and y.

Parameters:

y A BDS that must be contained in ∗this.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 114

first An iterator referencing the first stop-point.

last An iterator referencing one past the last stop-point.

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

9.1.3.23 template<typename T> void Parma_Polyhedra_Library::BD_Shape< T >::BHMZ05_-
widening_assign (const BD_Shape< T > & y, unsigned ∗ tp = 0)

Assigns to ∗this the result of computing the BHMZ05-widening of ∗this and y.

Parameters:

y A BDS that must be contained in ∗this.

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

9.1.3.24 template<typename T> void Parma_Polyhedra_Library::BD_Shape< T >::limited_-
BHMZ05_extrapolation_assign (const BD_Shape< T > & y, const Constraint_System & cs, unsigned
∗ tp = 0)

Improves the result of the BHMZ05-widening computation by also enforcing those constraints in cs that
are satisfied by all the points of ∗this.

Parameters:

y A BDS that must be contained in ∗this.

cs The system of constraints used to improve the widened BDS.

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if ∗this, y and cs are dimension-incompatible or if cs contains a
strict inequality.

9.1.3.25 template<typename T> void Parma_Polyhedra_Library::BD_Shape< T >::CC76_-
narrowing_assign (const BD_Shape< T > & y)

Assigns to ∗this the result of restoring in y the constraints of ∗this that were lost by CC76-extrapolation
applications.

Parameters:

y A BDS that must contain ∗this.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 115

Exceptions:

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

Note:

As was the case for widening operators, the argument y is meant to denote the value computed in the
previous iteration step, whereas ∗this denotes the value computed in the current iteration step (in the
descreasing iteration sequence). Hence, the call x.CC76_narrowing_assign(y) will assign to
x the result of the computation y∆x.

9.1.3.26 template<typename T> void Parma_Polyhedra_Library::BD_Shape< T >::limited_-
CC76_extrapolation_assign (const BD_Shape< T > & y, const Constraint_System & cs, unsigned
∗ tp = 0)

Improves the result of the CC76-extrapolation computation by also enforcing those constraints in cs that
are satisfied by all the points of ∗this.

Parameters:

y A BDS that must be contained in ∗this.

cs The system of constraints used to improve the widened BDS.

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if ∗this, y and cs are dimension-incompatible or if cs contains a
strict inequality.

9.1.3.27 template<typename T> void Parma_Polyhedra_Library::BD_Shape< T >::H79_-
widening_assign (const BD_Shape< T > & y, unsigned ∗ tp = 0) [inline]

Assigns to ∗this the result of computing the H79-widening between ∗this and y.

Parameters:

y A BDS that must be contained in ∗this.

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

9.1.3.28 template<typename T> void Parma_Polyhedra_Library::BD_Shape< T >::limited_-
H79_extrapolation_assign (const BD_Shape< T > & y, const Constraint_System & cs, unsigned
∗ tp = 0) [inline]

Improves the result of the H79-widening computation by also enforcing those constraints in cs that are
satisfied by all the points of ∗this.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 116

Parameters:

y A BDS that must be contained in ∗this.
cs The system of constraints used to improve the widened BDS.
tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when

applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if ∗this, y and cs are dimension-incompatible.

9.1.3.29 template<typename T> void Parma_Polyhedra_Library::BD_Shape< T >::add_space_-
dimensions_and_embed (dimension_type m)

Adds m new dimensions and embeds the old BDS into the new space.

Parameters:

m The number of dimensions to add.

The new dimensions will be those having the highest indexes in the new BDS, which is defined by a system
of bounded differences in which the variables running through the new dimensions are unconstrained. For
instance, when starting from the BDS B ⊆ R2 and adding a third dimension, the result will be the BDS{

(x, y, z)T ∈ R3
∣∣ (x, y)T ∈ B

}
.

9.1.3.30 template<typename T> void Parma_Polyhedra_Library::BD_Shape< T >::add_space_-
dimensions_and_project (dimension_type m)

Adds m new dimensions to the BDS and does not embed it in the new vector space.

Parameters:

m The number of dimensions to add.

The new dimensions will be those having the highest indexes in the new BDS, which is defined by a system
of bounded differences in which the variables running through the new dimensions are all constrained to
be equal to 0. For instance, when starting from the BDS B ⊆ R2 and adding a third dimension, the result
will be the BDS {

(x, y, 0)T ∈ R3
∣∣ (x, y)T ∈ B

}
.

9.1.3.31 template<typename T> void Parma_Polyhedra_Library::BD_Shape< T
>::concatenate_assign (const BD_Shape< T > & y)

Seeing a BDS as a set of tuples (its points), assigns to ∗this all the tuples that can be obtained by
concatenating, in the order given, a tuple of ∗this with a tuple of y.

Let B ⊆ Rn and D ⊆ Rm be the BDSs corresponding, on entry, to ∗this and y, respectively. Upon
successful completion, ∗this will represent the BDS R ⊆ Rn+m such that

R
def=

{
(x1, . . . , xn, y1, . . . , ym)T

∣∣∣ (x1, . . . , xn)T ∈ B, (y1, . . . , ym)T ∈ D
}

.

Another way of seeing it is as follows: first increases the space dimension of ∗this by adding
y.space_dimension() new dimensions; then adds to the system of constraints of ∗this a renamed-
apart version of the constraints of y.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 117

9.1.3.32 template<typename T> void Parma_Polyhedra_Library::BD_Shape< T >::remove_-
space_dimensions (const Variables_Set & to_be_removed)

Removes all the specified dimensions.

Parameters:

to_be_removed The set of Variable objects corresponding to the dimensions to be removed.

Exceptions:

std::invalid_argument Thrown if ∗this is dimension-incompatible with one of the Variable objects
contained in to_be_removed.

9.1.3.33 template<typename T> void Parma_Polyhedra_Library::BD_Shape< T >::remove_-
higher_space_dimensions (dimension_type new_dimension) [inline]

Removes the higher dimensions so that the resulting space will have dimension new_dimension.

Exceptions:

std::invalid_argument Thrown if new_dimension is greater than the space dimension of ∗this.

9.1.3.34 template<typename T> template<typename PartialFunction> void Parma_Polyhedra_-
Library::BD_Shape< T >::map_space_dimensions (const PartialFunction & pfunc)

Remaps the dimensions of the vector space according to a partial function.

Parameters:

pfunc The partial function specifying the destiny of each dimension.

The template class PartialFunction must provide the following methods.

bool has_empty_codomain() const

returns true if and only if the represented partial function has an empty co-domain (i.e., it is always
undefined). The has_empty_codomain() method will always be called before the methods below.
However, if has_empty_codomain() returns true, none of the functions below will be called.

dimension_type max_in_codomain() const

returns the maximum value that belongs to the co-domain of the partial function.

bool maps(dimension_type i, dimension_type& j) const

Let f be the represented function and k be the value of i. If f is defined in k, then f(k) is assigned to j
and true is returned. If f is undefined in k, then false is returned.

The result is undefined if pfunc does not encode a partial function with the properties described in the
specification of the mapping operator.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 118

9.1.4 Friends And Related Function Documentation

9.1.4.1 template<typename T> std::ostream & operator<< (std::ostream & s, const BD_Shape<
T > & c) [friend]

Output operator.

Writes a textual representation of bds on s: false is written if bds is an empty polyhedron; true is
written if bds is the universe polyhedron; a system of constraints defining bds is written otherwise, all
constraints separated by ", ".

9.1.4.2 template<typename T> bool operator== (const BD_Shape< T > & x, const BD_Shape< T
> & y) [related]

Returns true if and only if x and y are the same BDS.

Note that x and y may be dimension-incompatible shapes: in this case, the value false is returned.

9.1.4.3 template<typename T> bool operator!= (const BD_Shape< T > & x, const BD_Shape< T
> & y) [related]

Returns true if and only if x and y aren’t the same BDS.

Note that x and y may be dimension-incompatible shapes: in this case, the value true is returned.

9.1.4.4 template<typename T> bool rectilinear_distance_assign (Checked_Number< To,
Extended_Number_Policy > & r, const BD_Shape< T > & x, const BD_Shape< T > & y,
const Rounding_Dir dir) [related]

Computes the rectilinear (or Manhattan) distance between x and y.

If the rectilinear distance between x and y is defined, stores an approximation of it into r and returns
true; returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<To, Extended_Number_-
Policy>.

9.1.4.5 template<typename T> bool rectilinear_distance_assign (Checked_Number< To,
Extended_Number_Policy > & r, const BD_Shape< T > & x, const BD_Shape< T > & y,
const Rounding_Dir dir, Temp & tmp0, Temp & tmp1, Temp & tmp2) [related]

Computes the rectilinear (or Manhattan) distance between x and y.

If the rectilinear distance between x and y is defined, stores an approximation of it into r and returns
true; returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using the temporary variables tmp0, tmp1 and tmp2.

9.1.4.6 template<typename T> bool euclidean_distance_assign (Checked_Number< To,
Extended_Number_Policy > & r, const BD_Shape< T > & x, const BD_Shape< T > & y,
const Rounding_Dir dir) [related]

Computes the euclidean distance between x and y.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.2 Parma_Polyhedra_Library::BHRZ03_Certificate Class Reference 119

If the euclidean distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<To, Extended_Number_-
Policy>.

9.1.4.7 template<typename T> bool euclidean_distance_assign (Checked_Number< To,
Extended_Number_Policy > & r, const BD_Shape< T > & x, const BD_Shape< T > & y,
const Rounding_Dir dir, Temp & tmp0, Temp & tmp1, Temp & tmp2) [related]

Computes the euclidean distance between x and y.

If the euclidean distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using the temporary variables tmp0, tmp1 and tmp2.

9.1.4.8 template<typename T> bool l_infinity_distance_assign (Checked_Number< To,
Extended_Number_Policy > & r, const BD_Shape< T > & x, const BD_Shape< T > & y,
const Rounding_Dir dir) [related]

Computes the L∞ distance between x and y.

If the L∞ distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<To, Extended_Number_-
Policy>.

9.1.4.9 template<typename T> bool l_infinity_distance_assign (Checked_Number< To,
Extended_Number_Policy > & r, const BD_Shape< T > & x, const BD_Shape< T > & y,
const Rounding_Dir dir, Temp & tmp0, Temp & tmp1, Temp & tmp2) [related]

Computes the L∞ distance between x and y.

If the L∞ distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using the temporary variables tmp0, tmp1 and tmp2.

9.2 Parma_Polyhedra_Library::BHRZ03_Certificate Class Reference

The convergence certificate for the BHRZ03 widening operator.

Public Member Functions

• BHRZ03_Certificate ()
Default constructor.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.3 Parma_Polyhedra_Library::BHRZ03_Certificate::Compare Struct Reference 120

• BHRZ03_Certificate (const Polyhedron &ph)
Constructor: computes the certificate for ph.

• BHRZ03_Certificate (const BHRZ03_Certificate &y)
Copy constructor.

• ∼BHRZ03_Certificate ()
Destructor.

• int compare (const BHRZ03_Certificate &y) const
The comparison function for certificates.

• int compare (const Polyhedron &ph) const
Compares ∗this with the certificate for polyhedron ph.

Classes

• struct Compare
A total ordering on BHRZ03 certificates.

9.2.1 Detailed Description

The convergence certificate for the BHRZ03 widening operator.

Convergence certificates are used to instantiate the BHZ03 framework so as to define widening operators
for the finite powerset domain.

Note:

Each convergence certificate has to be used together with a compatible widening operator. In particular,
BHRZ03_Certificate can certify the convergence of both the BHRZ03 and the H79 widenings.

9.2.2 Member Function Documentation

9.2.2.1 int Parma_Polyhedra_Library::BHRZ03_Certificate::compare (const BHRZ03_Certificate
& y) const

The comparison function for certificates.

Returns:

−1, 0 or 1 depending on whether ∗this is smaller than, equal to, or greater than y, respectively.

Compares ∗this with y, using a total ordering which is a refinement of the limited growth ordering
relation for the BHRZ03 widening.

9.3 Parma_Polyhedra_Library::BHRZ03_Certificate::Compare Struct Reference

A total ordering on BHRZ03 certificates.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.4 Parma_Polyhedra_Library::C_Polyhedron Class Reference 121

Public Member Functions

• bool operator() (const BHRZ03_Certificate &x, const BHRZ03_Certificate &y) const
Returns true if and only if x comes before y.

9.3.1 Detailed Description

A total ordering on BHRZ03 certificates.

This binary predicate defines a total ordering on BHRZ03 certificates which is used when storing informa-
tion about sets of polyhedra.

9.4 Parma_Polyhedra_Library::C_Polyhedron Class Reference

A closed convex polyhedron.

Inherits Parma_Polyhedra_Library::Polyhedron.

Public Member Functions

• C_Polyhedron (dimension_type num_dimensions=0, Degenerate_Element kind=UNIVERSE)
Builds either the universe or the empty C polyhedron.

• C_Polyhedron (const Constraint_System &cs)
Builds a C polyhedron from a system of constraints.

• C_Polyhedron (Constraint_System &cs)
Builds a C polyhedron recycling a system of constraints.

• C_Polyhedron (const Generator_System &gs)
Builds a C polyhedron from a system of generators.

• C_Polyhedron (Generator_System &gs)
Builds a C polyhedron recycling a system of generators.

• C_Polyhedron (const Congruence_System &cgs)
Builds a C polyhedron from a system of congruences.

• C_Polyhedron (Congruence_System &cgs)
Builds an C polyhedron recycling a system of congruences.

• C_Polyhedron (const NNC_Polyhedron &y)
Builds a C polyhedron representing the topological closure of the NNC polyhedron y.

• template<typename Box> C_Polyhedron (const Box &box, From_Bounding_Box dummy)
Builds a C polyhedron out of a generic, interval-based bounding box.

• C_Polyhedron (const C_Polyhedron &y)
Ordinary copy-constructor.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.4 Parma_Polyhedra_Library::C_Polyhedron Class Reference 122

• C_Polyhedron & operator= (const C_Polyhedron &y)
The assignment operator. (∗this and y can be dimension-incompatible.).

• C_Polyhedron & operator= (const NNC_Polyhedron &y)
Assigns to ∗this the topological closure of the NNC polyhedron y.

• ∼C_Polyhedron ()
Destructor.

• bool poly_hull_assign_if_exact (const C_Polyhedron &y)
If the poly-hull of ∗this and y is exact it is assigned to ∗this and true is returned, otherwise false
is returned.

• bool upper_bound_assign_if_exact (const C_Polyhedron &y)
Same as poly_hull_assign_if_exact(y).

9.4.1 Detailed Description

A closed convex polyhedron.

An object of the class C_Polyhedron represents a topologically closed convex polyhedron in the vector
space Rn.

When building a closed polyhedron starting from a system of constraints, an exception is thrown if the
system contains a strict inequality constraint. Similarly, an exception is thrown when building a closed
polyhedron starting from a system of generators containing a closure point.

Note:

Such an exception will be obtained even if the system of constraints (resp., generators) actually defines
a topologically closed subset of the vector space, i.e., even if all the strict inequalities (resp., closure
points) in the system happen to be redundant with respect to the system obtained by removing all
the strict inequality constraints (resp., all the closure points). In contrast, when building a closed
polyhedron starting from an object of the class NNC_Polyhedron, the precise topological closure test
will be performed.

9.4.2 Constructor & Destructor Documentation

9.4.2.1 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (dimension_type num_-
dimensions = 0, Degenerate_Element kind = UNIVERSE) [inline, explicit]

Builds either the universe or the empty C polyhedron.

Parameters:

num_dimensions The number of dimensions of the vector space enclosing the C polyhedron;
kind Specifies whether a universe or an empty C polyhedron should be built.

Exceptions:

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

Both parameters are optional: by default, a 0-dimension space universe C polyhedron is built.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.4 Parma_Polyhedra_Library::C_Polyhedron Class Reference 123

9.4.2.2 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (const Constraint_System & cs)
[inline, explicit]

Builds a C polyhedron from a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:

cs The system of constraints defining the polyhedron.

Exceptions:

std::invalid_argument Thrown if the system of constraints contains strict inequalities.

9.4.2.3 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (Constraint_System & cs)
[inline, explicit]

Builds a C polyhedron recycling a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:

cs The system of constraints defining the polyhedron. It is not declared const because its data-
structures will be recycled to build the polyhedron.

Exceptions:

std::invalid_argument Thrown if the system of constraints contains strict inequalities.

9.4.2.4 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (const Generator_System & gs)
[inline, explicit]

Builds a C polyhedron from a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:

gs The system of generators defining the polyhedron.

Exceptions:

std::invalid_argument Thrown if the system of generators is not empty but has no points, or if it
contains closure points.

9.4.2.5 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (Generator_System & gs)
[inline, explicit]

Builds a C polyhedron recycling a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:

gs The system of generators defining the polyhedron. It is not declared const because its data-
structures will be recycled to build the polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.4 Parma_Polyhedra_Library::C_Polyhedron Class Reference 124

Exceptions:

std::invalid_argument Thrown if the system of generators is not empty but has no points, or if it
contains closure points.

9.4.2.6 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (const Congruence_System &
cgs) [explicit]

Builds a C polyhedron from a system of congruences.

The polyhedron inherits the space dimension of the congruence system.

Parameters:

cgs The system of congruences defining the polyhedron. It is not declared const because its data-
structures will be recycled to build the polyhedron.

9.4.2.7 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (Congruence_System & cgs)
[explicit]

Builds an C polyhedron recycling a system of congruences.

The polyhedron inherits the space dimension of the congruence system.

Parameters:

cgs The system of congruences defining the polyhedron. It is not declared const because its data-
structures will be recycled to build the polyhedron.

9.4.2.8 template<typename Box> Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron
(const Box & box, From_Bounding_Box dummy) [inline]

Builds a C polyhedron out of a generic, interval-based bounding box.

For a description of the methods that should be provided by the template class Box, see the documentation
of the protected method: template <typename Box> Polyhedron::Polyhedron(Topology topol, const Box&
box);

Parameters:

box The bounding box representing the polyhedron to be built;

dummy A dummy tag to syntactically differentiate this one from the other constructors.

Exceptions:

std::length_error Thrown if the space dimension of box exceeds the maximum allowed space di-
mension.

std::invalid_argument Thrown if box has intervals that are not topologically closed (i.e., having
some finite but open bounds).

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.5 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 125

9.4.3 Member Function Documentation

9.4.3.1 bool Parma_Polyhedra_Library::C_Polyhedron::poly_hull_assign_if_exact (const C_-
Polyhedron & y)

If the poly-hull of ∗this and y is exact it is assigned to ∗this and true is returned, otherwise false
is returned.

Exceptions:

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

9.5 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template
Reference

A wrapper for numeric types implementing a given policy.

Public Member Functions

• bool OK () const
Checks if all the invariants are satisfied.

• Result classify (bool nan=true, bool inf=true, bool sign=true) const
Classifies ∗this.

Constructors

• Checked_Number ()
Default constructor.

• Checked_Number (const Checked_Number &y)
Copy-constructor.

• template<typename From, typename From_Policy> Checked_Number (const Checked_-
Number< From, From_Policy > &y, Rounding_Dir dir)

Direct initialization from a Checked_Number and rounding mode.

• Checked_Number (const signed char y, Rounding_Dir dir)
Direct initialization from a signed char and rounding mode.

• Checked_Number (const signed short y, Rounding_Dir dir)
Direct initialization from a signed short and rounding mode.

• Checked_Number (const signed int y, Rounding_Dir dir)
Direct initialization from a signed int and rounding mode.

• Checked_Number (const signed long y, Rounding_Dir dir)
Direct initialization from a signed long and rounding mode.

• Checked_Number (const signed long long y, Rounding_Dir dir)
Direct initialization from a signed long long and rounding mode.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.5 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 126

• Checked_Number (const unsigned char y, Rounding_Dir dir)
Direct initialization from an unsigned char and rounding mode.

• Checked_Number (const unsigned short y, Rounding_Dir dir)
Direct initialization from an unsigned short and rounding mode.

• Checked_Number (const unsigned int y, Rounding_Dir dir)
Direct initialization from an unsigned int and rounding mode.

• Checked_Number (const unsigned long y, Rounding_Dir dir)
Direct initialization from an unsigned long and rounding mode.

• Checked_Number (const unsigned long long y, Rounding_Dir dir)
Direct initialization from an unsigned long long and rounding mode.

• Checked_Number (const float y, Rounding_Dir dir)
Direct initialization from a float and rounding mode.

• Checked_Number (const double y, Rounding_Dir dir)
Direct initialization from a double and rounding mode.

• Checked_Number (const long double y, Rounding_Dir dir)
Direct initialization from a long double and rounding mode.

• Checked_Number (const mpq_class &y, Rounding_Dir dir)
Direct initialization from a rational and rounding mode.

• Checked_Number (const mpz_class &y, Rounding_Dir dir)
Direct initialization from an unbounded integer and rounding mode.

• Checked_Number (const char ∗y, Rounding_Dir dir)
Direct initialization from a C string and rounding mode.

• Checked_Number (const Minus_Infinity &y, Rounding_Dir dir)
Direct initialization from minus infinity and rounding mode.

• Checked_Number (const Plus_Infinity &y, Rounding_Dir dir)
Direct initialization from plus infinity and rounding mode.

• Checked_Number (const Not_A_Number &y, Rounding_Dir dir)
Direct initialization from NAN and rounding mode.

• template<typename From, typename From_Policy> Checked_Number (const Checked_-
Number< From, From_Policy > &y)

Direct initialization from a Checked_Number, default rounding mode.

• Checked_Number (const signed char y)
Direct initialization from a signed char, default rounding mode.

• Checked_Number (const signed short y)
Direct initialization from a signed short, default rounding mode.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.5 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 127

• Checked_Number (const signed int y)
Direct initialization from a signed int, default rounding mode.

• Checked_Number (const signed long y)
Direct initialization from a signed long, default rounding mode.

• Checked_Number (const signed long long y)
Direct initialization from a signed long long, default rounding mode.

• Checked_Number (const unsigned char y)
Direct initialization from an unsigned char, default rounding mode.

• Checked_Number (const unsigned short y)
Direct initialization from an unsigned short, default rounding mode.

• Checked_Number (const unsigned int y)
Direct initialization from an unsigned int, default rounding mode.

• Checked_Number (const unsigned long y)
Direct initialization from an unsigned long, default rounding mode.

• Checked_Number (const unsigned long long y)
Direct initialization from an unsigned long long, default rounding mode.

• Checked_Number (const float y)
Direct initialization from a float, default rounding mode.

• Checked_Number (const double y)
Direct initialization from a double, default rounding mode.

• Checked_Number (const long double y)
Direct initialization from a long double, default rounding mode.

• Checked_Number (const mpq_class &y)
Direct initialization from a rational, default rounding mode.

• Checked_Number (const mpz_class &y)
Direct initialization from an unbounded integer, default rounding mode.

• Checked_Number (const char ∗y)
Direct initialization from a C string, default rounding mode.

• Checked_Number (const Minus_Infinity &y)
Direct initialization from minus infinity, default rounding mode.

• Checked_Number (const Plus_Infinity &y)
Direct initialization from plus infinity, default rounding mode.

• Checked_Number (const Not_A_Number &y)
Direct initialization from NAN, default rounding mode.

Accessors and Conversions

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.5 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 128

• operator T () const
Conversion operator: returns a copy of the underlying numeric value.

• T & raw_value ()
Returns a reference to the underlying numeric value.

• const T & raw_value () const
Returns a const reference to the underlying numeric value.

Assignment Operators

• Checked_Number & operator= (const Checked_Number &y)
Assignment operator.

• template<typename From, typename From_Policy> Checked_Number & operator= (const
Checked_Number< From, From_Policy > &y)

Assignment operator.

• template<typename From> Checked_Number & operator= (const From &y)
Assignment operator.

• Checked_Number & operator= (const Not_A_Number &y)
Assignment operator.

• Checked_Number & operator= (const Minus_Infinity &y)
Assignment operator.

• Checked_Number & operator= (const Plus_Infinity &y)
Assignment operator.

• template<typename From_Policy> Checked_Number & operator+= (const Checked_Number<
T, From_Policy > &y)

Add and assign operator.

• Checked_Number & operator+= (const T &y)
Add and assign operator.

• template<typename From, typename From_Policy> Checked_Number & operator+= (const
Checked_Number< From, From_Policy > &y)

Add and assign operator.

• template<typename From_Policy> Checked_Number & operator-= (const Checked_Number<
T, From_Policy > &y)

Subtract and assign operator.

• Checked_Number & operator-= (const T &y)
Subtract and assign operator.

• template<typename From, typename From_Policy> Checked_Number & operator-= (const
Checked_Number< From, From_Policy > &y)

Subtract and assign operator.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.5 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 129

• template<typename From> Checked_Number & operator-= (const From &y)
Subtract and assign operator.

• template<typename From_Policy> Checked_Number & operator ∗= (const Checked_Number<
T, From_Policy > &y)

Multiply and assign operator.

• Checked_Number & operator ∗= (const T &y)
Multiply and assign operator.

• template<typename From, typename From_Policy> Checked_Number & operator ∗= (const
Checked_Number< From, From_Policy > &y)

Multiply and assign operator.

• template<typename From> Checked_Number & operator ∗= (const From &y)
Multiply and assign operator.

• template<typename From_Policy> Checked_Number & operator/= (const Checked_Number<
T, From_Policy > &y)

Divide and assign operator.

• Checked_Number & operator/= (const T &y)
Divide and assign operator.

• template<typename From, typename From_Policy> Checked_Number & operator/= (const
Checked_Number< From, From_Policy > &y)

Divide and assign operator.

• template<typename From> Checked_Number & operator/= (const From &y)
Divide and assign operator.

• template<typename From_Policy> Checked_Number & operator%= (const Checked_Number<
T, From_Policy > &y)

Compute remainder and assign operator.

• Checked_Number & operator%= (const T &y)
Compute remainder and assign operator.

• template<typename From, typename From_Policy> Checked_Number & operator%= (const
Checked_Number< From, From_Policy > &y)

Compute remainder and assign operator.

• template<typename From> Checked_Number & operator%= (const From &y)
Compute remainder and assign operator.

Increment and Decrement Operators

• Checked_Number & operator++ ()
Pre-increment operator.

• Checked_Number operator++ (int)
Post-increment operator.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.5 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 130

• Checked_Number & operator– ()
Pre-decrement operator.

• Checked_Number operator– (int)
Post-decrement operator.

Related Functions

(Note that these are not member functions.)

• void swap (Checked_Number< T, Policy > &x, Checked_Number< T, Policy > &y)
Swaps ∗this with y.

Accessor Functions

• const T & raw_value (const Checked_Number< T, Policy > &x)
Returns a const reference to the underlying native integer value.

• T & raw_value (Checked_Number< T, Policy > &x)
Returns a reference to the underlying native integer value.

Memory Size Inspection Functions

• size_t total_memory_in_bytes (const Checked_Number< T, Policy > &x)
Returns the total size in bytes of the memory occupied by x.

• size_t external_memory_in_bytes (const Checked_Number< T, Policy > &x)
Returns the size in bytes of the memory managed by x.

Arithmetic Operators

• Checked_Number< T, Policy > operator+ (const Checked_Number< T, Policy > &x)
Unary plus operator.

• Checked_Number< T, Policy > operator- (const Checked_Number< T, Policy > &x)
Unary minus operator.

• void neg_assign (Checked_Number< T, Policy > &x)
Assigns to x its negation.

• void add_mul_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy
> &y, const Checked_Number< T, Policy > &z)

Assigns to x the value x + y ∗ z.

• void sub_mul_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy
> &y, const Checked_Number< T, Policy > &z)

Assigns to x the value x - y ∗ z.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.5 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 131

• void gcd_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy > &y,
const Checked_Number< T, Policy > &z)

Assigns to x the greatest common divisor of y and z.

• void gcdext_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy >
&y, const Checked_Number< T, Policy > &z, Checked_Number< T, Policy > &s, Checked_-
Number< T, Policy > &t)

Assigns to x the greatest common divisor of y and z, setting s and t such that s∗y + t∗z = x = gcd(y, z).

• void lcm_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy > &y,
const Checked_Number< T, Policy > &z)

Assigns to x the least common multiple of y and z.

• void exact_div_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy
> &y, const Checked_Number< T, Policy > &z)

If z divides y, assigns to x the quotient of the integer division of y and z.

• void sqrt_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy > &y)

Assigns to x the integer square root of y.

Relational Operators and Comparison Functions

• bool operator== (const Checked_Number< T1, Policy1 > &x, const Checked_Number< T2,
Policy2 > &y)

Equality operator.

• bool operator!= (const Checked_Number< T1, Policy1 > &x, const Checked_Number< T2, Pol-
icy2 > &y)

Disequality operator.

• bool operator>= (const Checked_Number< T1, Policy1 > &x, const Checked_Number< T2,
Policy2 > &y)

Greater than or equal to operator.

• bool operator> (const Checked_Number< T1, Policy1 > &x, const Checked_Number< T2, Pol-
icy2 > &y)

Greater than operator.

• bool operator<= (const Checked_Number< T1, Policy1 > &x, const Checked_Number< T2,
Policy2 > &y)

Less than or equal to operator.

• bool operator< (const Checked_Number< T1, Policy1 > &x, const Checked_Number< T2, Pol-
icy2 > &y)

Less than operator.

• int sgn (const Checked_Number< T, Policy > &x)
Returns −1, 0 or 1 depending on whether the value of x is negative, zero or positive, respectively.

• int cmp (const Checked_Number< T1, Policy1 > &x, const Checked_Number< T2, Policy2 >
&y)

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.5 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 132

Returns a negative, zero or positive value depending on whether x is lower than, equal to or greater than
y, respectively.

Input-Output Operators

• std::ostream & operator<< (std::ostream &os, const Checked_Number< T, Policy > &x)
Output operator.

• Result input (std::istream &is, Checked_Number< T, Policy > &x, Rounding_Dir dir)
Input function.

• std::istream & operator>> (std::istream &is, Checked_Number< T, Policy > &x)
Input operator.

9.5.1 Detailed Description

template<typename T, typename Policy> class Parma_Polyhedra_Library::Checked_Number< T,
Policy >

A wrapper for numeric types implementing a given policy.

The wrapper and related functions implement an interface which is common to all kinds of coefficient
types, therefore allowing for a uniform coding style. This class also implements the policy encoded by the
second template parameter. The default policy is to perform the detection of overflow errors.

9.5.2 Member Function Documentation

9.5.2.1 template<typename T, typename Policy> Result Parma_Polyhedra_Library::Checked_-
Number< T, Policy >::classify (bool nan = true, bool inf = true, bool sign = true) const
[inline]

Classifies ∗this.

Returns the appropriate Result characterizing:

• whether ∗this is NAN, if nan is true;

• whether ∗this is a (positive or negative) infinity, if inf is true;

• the sign of ∗this, if sign is true.

9.5.3 Friends And Related Function Documentation

9.5.3.1 template<typename T, typename Policy> void exact_div_assign (Checked_Number< T,
Policy > & x, const Checked_Number< T, Policy > & y, const Checked_Number< T, Policy > & z)
[related]

If z divides y, assigns to x the quotient of the integer division of y and z.

The behavior is undefined if z does not divide y.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.5 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 133

9.5.3.2 template<typename T, typename Policy> Result input (std::istream & is, Checked_-
Number< T, Policy > & x, Rounding_Dir dir) [related]

Input function.

Parameters:

is Input stream to read from;

x Number (possibly extended) to assign to in case of successful reading;

dir Rounding mode to be applied.

Returns:

Result of the input operation. Success, success with imprecision, overflow, parsing error: all possibil-
ities are taken into account, checked for, and properly reported.

This function attempts reading a (possibly extended) number from the given stream is, possibly rounding
as specified by dir, assigning the result to x upon success, and returning the appropriate Result.

The input syntax allows the specification of:

• plain base-10 integer numbers as 34976098, -77 and +13;

• base-10 integer numbers in scientific notation as 15e2 and 15∗∧2 (both meaning 15 · 102 = 1500),
9200e-2 and -18∗∧+11111111111111111;

• base-10 rational numbers in fraction notation as 15/3 and 15/-3;

• base-10 rational numbers in fraction/scientific notation as 15/30e-1 (meaning 5) and
15∗∧-3/29e2 (meaning 3/580000);

• base-10 rational numbers in floating point notation as 71.3 (meaning 713/10) and -0.123456
(meaning −1929/15625);

• base-10 rational numbers in floating point scientific notation as 2.2e-1 (meaning 11/50) and
-2.20001∗∧+3 (meaning −220001/100);

• integers and rationals (in fractional, floating point and scientific notations) specified by using
Mathematica-style bases, in the range from 2 to 36, as 2∧∧11 (meaning 3), 36∧∧z (mean-
ing 35), 36∧∧xyz (meaning 44027), 2∧∧11.1 (meaning 7/2), 10∧∧2e3 (meaning 2000),
8∧∧2e3 (meaning 1024), 8∧∧2.1e3 (meaning 1088), 8∧∧20402543.120347e7 (meaning
9073863231288), 8∧∧2.1 (meaning 17/8); note that the base and the exponent are always written
as plain base-10 integer numbers; also, when an ambiguity may arise, the character e is interpreted
as a digit, so that 16∧∧1e2 (meaning 482) is different from 16∧∧1∗∧2 (meaning 256);

• the C-style hexadecimal prefix 0x is interpreted as the Mathematica-style prefix 16∧∧;

• special values like inf and +inf (meaning +∞), -inf (meaning −∞), and nan (meaning "not a
number").

The rationale behind the accepted syntax can be summarized as follows:

• if the syntax is accepted by Mathematica, then this function accepts it with the same semantics;

• if the syntax is acceptable as standard C++ integer or floating point literal (except for octal notation
and type suffixes, which are not supported), then this function accepts it with the same semantics;

• natural extensions of the above are accepted with the natural extensions of the semantics;

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.6 Parma_Polyhedra_Library::Congruence Class Reference 134

• special values are accepted.

Valid syntax is more formally and completely specified by the following grammar, with the additional
provisos that everything is case insensitive, that the syntactic category BDIGIT is further restricted by the
current base and that for all bases above 14, any e is always interpreted as a digit and never as a delimiter
for the exponent part (if such a delimiter is desired, it has to be written as ∗∧).

number : NAN INF : ’inf’
| SIGN INF ;
| INF
| num NAN : ’nan’
| num DIV num ;
;

SIGN : ’-’
num : unum | ’+’

| SIGN unum ;

unum : unum1 EXP : ’e’
| HEX unum1 | ’*^’
| base BASE unum1 ;
;

POINT : ’.’
unum1 : mantissa ;

| mantissa EXP exponent
; DIV : ’/’

;
mantissa: bdigits

| POINT bdigits MINUS : ’-’
| bdigits POINT ;
| bdigits POINT bdigits
; PLUS : ’+’

;
exponent: SIGN digits

| digits HEX : ’0x’
; ;

bdigits : BDIGIT BASE : ’^^’
| bdigits BDIGIT ;
;

DIGIT : ’0’ .. ’9’
digits : DIGIT ;

| digits DIGIT
; BDIGIT : ’0’ .. ’9’

| ’a’ .. ’z’
;

9.6 Parma_Polyhedra_Library::Congruence Class Reference

A linear congruence.

Public Member Functions

• Congruence (const Congruence &cg)
Ordinary copy-constructor.

• Congruence (const Constraint &c)
Copy-constructs (modulo 0) from equality constraint c.

• ∼Congruence ()

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.6 Parma_Polyhedra_Library::Congruence Class Reference 135

Destructor.

• Congruence & operator= (const Congruence &cg)
Assignment operator.

• dimension_type space_dimension () const
Returns the dimension of the vector space enclosing ∗this.

• Coefficient_traits::const_reference coefficient (Variable v) const
Returns the coefficient of v in ∗this.

• Coefficient_traits::const_reference inhomogeneous_term () const
Returns the inhomogeneous term of ∗this.

• Coefficient_traits::const_reference modulus () const
Returns a const reference to the modulus of ∗this.

• Congruence & operator/= (const Coefficient_traits::const_reference k)
Multiplies k into the modulus of ∗this.

• bool is_trivial_true () const
Returns true if and only if ∗this is a trivially true congruence.

• bool is_trivial_false () const
Returns true if and only if ∗this is a trivially false congruence.

• bool is_proper_congruence () const
Returns true if the modulus is greater than zero.

• bool is_equality () const
Returns true if ∗this is an equality.

• bool is_equal_at_dimension (dimension_type dim, const Congruence &cg) const
Returns true if ∗this is equal to cg in dimension dim.

• memory_size_type total_memory_in_bytes () const
Returns a lower bound to the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

• bool OK () const
Checks if all the invariants are satisfied.

Static Public Member Functions

• static dimension_type max_space_dimension ()
Returns the maximum space dimension a Congruence can handle.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.6 Parma_Polyhedra_Library::Congruence Class Reference 136

• static const Congruence & zero_dim_integrality ()
Returns a reference to the true (zero-dimension space) congruence 0 = 1 (mod 1), also known as the
integrality congruence.

• static const Congruence & zero_dim_false ()
Returns a reference to the false (zero-dimension space) congruence 0 = 1 (mod 0).

Protected Member Functions

• void sign_normalize ()
Normalizes the signs.

• void normalize ()
Normalizes signs and the inhomogeneous term.

• void strong_normalize ()
Calls normalize, then divides out common factors.

Friends

• void swap (PPL::Congruence &x, PPL::Congruence &y)
Specializes std::swap.

Related Functions

(Note that these are not member functions.)

• std::ostream & operator<< (std::ostream &s, const Congruence &c)
Output operators.

• bool operator== (const Congruence &x, const Congruence &y)
Returns true if and only if x and y are equivalent.

• bool operator!= (const Congruence &x, const Congruence &y)
Returns false if and only if x and y are equivalent.

• Congruence operator/ (const Congruence &cg, const Coefficient_traits::const_reference k)
Returns a copy of cg, multiplying k into the copy’s modulus.

• Congruence operator/ (const Constraint &c, const Coefficient_traits::const_reference m)
Creates a congruence from c, with m as the modulus.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.6 Parma_Polyhedra_Library::Congruence Class Reference 137

9.6.1 Detailed Description

A linear congruence.

An object of the class Congruence is a congruence:

• cg =
∑n−1

i=0 aixi + b = 0 (mod m)

where n is the dimension of the space, ai is the integer coefficient of variable xi, b is the integer inho-
mogeneous term and m is the integer modulus; if m = 0, then cg represents the equality congruence∑n−1

i=0 aixi + b = 0 and, if m 6= 0, then the congruence cg is said to be a proper congruence.

How to build a congruence

Congruences (mod 1) are typically built by applying the congruence symbol ‘%=’ to a pair of lin-
ear expressions. Congruences with modulus m are typically constructed by building a congruence
(mod 1) using the given pair of linear expressions and then adding the modulus m using the modulus
symbol is ‘/’.

The space dimension of a congruence is defined as the maximum space dimension of the arguments of its
constructor.

In the following examples it is assumed that variables x, y and z are defined as follows:

Variable x(0);
Variable y(1);
Variable z(2);

Example 1

The following code builds the equality congruence 3x + 5y − z = 0, having space dimension 3:

Congruence eq_cg((3*x + 5*y - z %= 0) / 0);

The following code builds the congruence 4x = 2y − 13 (mod 1), having space dimension 2:

Congruence mod1_cg(4*x %= 2*y - 13);

The following code builds the congruence 4x = 2y − 13 (mod 2), having space dimension 2:

Congruence mod2_cg((4*x %= 2*y - 13) / 2);

An unsatisfiable congruence on the zero-dimension space R0 can be specified as follows:

Congruence false_cg = Congruence::zero_dim_false();

Equivalent, but more involved ways are the following:

Congruence false_cg1((Linear_Expression::zero() %= 1) / 0);
Congruence false_cg2((Linear_Expression::zero() %= 1) / 2);

In contrast, the following code defines an unsatisfiable congruence having space dimension 3:

Congruence false_cg3((0*z %= 1) / 0);

How to inspect a congruence

Several methods are provided to examine a congruence and extract all the encoded information: its
space dimension, its modulus and the value of its integer coefficients.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.6 Parma_Polyhedra_Library::Congruence Class Reference 138

Example 2

The following code shows how it is possible to access the modulus as well as each of the coefficients.
Given a congruence with linear expression e and modulus m (in this case x− 5y + 3z = 4 (mod 5)),
we construct a new congruence with the same modulus m but where the linear expression is 2e (2x −
10y + 6z = 8 (mod 5)).

Congruence cg1((x - 5*y + 3*z %= 4) / 5);
cout << "Congruence cg1: " << cg1 << endl;
Coefficient m = cg1.modulus();
if (m == 0)

cout << "Congruence cg1 is an equality." << endl;
else {

Linear_Expression e;
for (int i = cg1.space_dimension() - 1; i >= 0; --i)

e += 2 * cg1.coefficient(Variable(i)) * Variable(i);
e += 2 * cg1.inhomogeneous_term();

Congruence cg2((e %= 0) / m);
cout << "Congruence cg2: " << cg2 << endl;

}

The actual output could be the following:

Congruence cg1: A - 5*B + 3*C %= 4 / 5
Congruence cg2: 2*A - 10*B + 6*C %= 8 / 5

Note that, in general, the particular output obtained can be syntactically different from the (semanti-
cally equivalent) congruence considered.

9.6.2 Constructor & Destructor Documentation

9.6.2.1 Parma_Polyhedra_Library::Congruence::Congruence (const Constraint & c)
[explicit]

Copy-constructs (modulo 0) from equality constraint c.

Exceptions:

std::invalid_argument Thrown if c is a relation.

9.6.3 Member Function Documentation

9.6.3.1 Coefficient_traits::const_reference Parma_Polyhedra_Library::Congruence::coefficient
(Variable v) const [inline]

Returns the coefficient of v in ∗this.

Exceptions:

std::invalid_argument thrown if the index of v is greater than or equal to the space dimension of
∗this.

9.6.3.2 Congruence & Parma_Polyhedra_Library::Congruence::operator/= (const Coefficient_-
traits::const_reference k) [inline]

Multiplies k into the modulus of ∗this.

If called with ∗this representing the congruence e1 = e2 (mod m), then it returns with ∗this represent-
ing the congruence e1 = e2 (mod mk).

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.6 Parma_Polyhedra_Library::Congruence Class Reference 139

9.6.3.3 bool Parma_Polyhedra_Library::Congruence::is_trivial_true () const

Returns true if and only if ∗this is a trivially true congruence.

Trivially true congruences are of one the following two forms:

• an equality:
∑n−1

i=0 0xi + 0 == 0; or

• a proper congruence:
∑n−1

i=0 0xi +b% = 0/m, where n is the space dimension and m is the modulus.

9.6.3.4 bool Parma_Polyhedra_Library::Congruence::is_trivial_false () const

Returns true if and only if ∗this is a trivially false congruence.

Trivially false congruences have one of the following two forms:

• an equality:
∑n−1

i=0 0xi + b == 0 where b 6= 0; or

• a congruence:
∑n−1

i=0 0xi + b% = 0/m, where b 6= 0 (mod m).

9.6.3.5 bool Parma_Polyhedra_Library::Congruence::is_proper_congruence () const [inline]

Returns true if the modulus is greater than zero.

A congruence with a modulus of 0 is a linear equality.

9.6.3.6 bool Parma_Polyhedra_Library::Congruence::is_equality () const [inline]

Returns true if ∗this is an equality.

A modulus of zero denotes a linear equality.

9.6.3.7 void Parma_Polyhedra_Library::Congruence::sign_normalize () [protected]

Normalizes the signs.

The signs of the coefficients and the inhomogeneous term are normalized, leaving the first non-zero homo-
geneous coefficient positive.

9.6.3.8 void Parma_Polyhedra_Library::Congruence::normalize () [protected]

Normalizes signs and the inhomogeneous term.

Applies sign_normalize, then reduces the inhomogeneous term to the smallest possible positive number.

9.6.3.9 void Parma_Polyhedra_Library::Congruence::strong_normalize () [protected]

Calls normalize, then divides out common factors.

Strongly normalized Congruences have equivalent semantics if and only if their syntaxes (as output by
operator<<) are equal.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.7 Parma_Polyhedra_Library::Congruence_System Class Reference 140

9.6.4 Friends And Related Function Documentation

9.6.4.1 Congruence operator/ (const Congruence & cg, const Coefficient_traits::const_reference k)
[related]

Returns a copy of cg, multiplying k into the copy’s modulus.

If cg represents the congruence e1 = e2 (mod m), then the result represents the congruence e1 = e2

(mod mk).

9.7 Parma_Polyhedra_Library::Congruence_System Class Reference

A system of congruences.

Public Member Functions

• Congruence_System ()
Default constructor: builds an empty system of congruences.

• Congruence_System (const Congruence &cg)
Builds the singleton system containing only congruence cg.

• Congruence_System (const Constraint &c)
If c represents the constraint e1 = e2, builds the singleton system containing only constraint e1 = e2

(mod 0).

• Congruence_System (const Constraint_System &cs)
Builds a system containing copies of any equalities in cs.

• Congruence_System (const Congruence_System &cgs)
Ordinary copy-constructor.

• ∼Congruence_System ()
Destructor.

• Congruence_System & operator= (const Congruence_System &cgs)
Assignment operator.

• dimension_type space_dimension () const
Returns the dimension of the vector space enclosing ∗this.

• bool is_equal_to (const Congruence_System &cgs) const
Returns true if and only if ∗this is exactly equal to cgs.

• bool has_linear_equalities () const
Returns true if and only if ∗this contains one or more linear equalities.

• void clear ()
Removes all the congruences and sets the space dimension to 0.

• void insert (const Congruence &cg)

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.7 Parma_Polyhedra_Library::Congruence_System Class Reference 141

Inserts in ∗this a copy of the congruence cg, increasing the number of space dimensions if needed.

• void insert (const Constraint &c)
Inserts in ∗this a copy of the equality constraint c, seen as a modulo 0 congruence, increasing the number
of space dimensions if needed.

• void insert (const Congruence_System &cgs)
Inserts in ∗this a copy of the congruences in cgs, increasing the number of space dimensions if needed.

• void recycling_insert (Congruence_System &cgs)
Inserts into ∗this the congruences in cgs, increasing the number of space dimensions if needed.

• const_iterator begin () const
Returns the const_iterator pointing to the first congruence, if this is not empty; otherwise, returns the
past-the-end const_iterator.

• const_iterator end () const
Returns the past-the-end const_iterator.

• bool OK () const
Checks if all the invariants are satisfied.

• memory_size_type total_memory_in_bytes () const
Returns the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

• dimension_type num_equalities () const
Returns the number of equalities.

• dimension_type num_proper_congruences () const
Returns the number of proper congruences.

• void swap (Congruence_System &cgs)
Swaps ∗this with y.

• void add_unit_rows_and_columns (dimension_type dims)
Adds dims rows and dims columns of zeroes to the matrix, initializing the added rows as in the unit
congruence system.

• void concatenate (const Congruence_System &cgs)
Concatenates copies of the congruences from cgs onto ∗this.

Static Public Member Functions

• static dimension_type max_space_dimension ()
Returns the maximum space dimension a Congruence_System can handle.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.7 Parma_Polyhedra_Library::Congruence_System Class Reference 142

• static const Congruence_System & zero_dim_empty ()
Returns the system containing only Congruence::zero_dim_false().

Protected Member Functions

• bool satisfies_all_congruences (const Grid_Generator &g) const
Returns true if g satisfies all the congruences.

Friends

• void swap (Parma_Polyhedra_Library::Congruence_System &x, Parma_Polyhedra_-
Library::Congruence_System &y)

Specializes std::swap.

• bool operator== (const Congruence_System &x, const Congruence_System &y)
Returns true if and only if x and y are equivalent.

Related Functions

(Note that these are not member functions.)

• std::ostream & operator<< (std::ostream &s, const Congruence_System &cgs)
Output operator.

Classes

• class const_iterator
An iterator over a system of congruences.

9.7.1 Detailed Description

A system of congruences.

An object of the class Congruence_System is a system of congruences, i.e., a multiset of objects of the
class Congruence. When inserting congruences in a system, space dimensions are automatically adjusted
so that all the congruences in the system are defined on the same vector space.

In all the examples it is assumed that variables x and y are defined as follows:

Variable x(0);
Variable y(1);

Example 1

The following code builds a system of congruences corresponding to an integer grid in R2:

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.7 Parma_Polyhedra_Library::Congruence_System Class Reference 143

Congruence_System cgs;
cgs.insert(x %= 0);
cgs.insert(y %= 0);

Note that: the congruence system is created with space dimension zero; the first and second congruence
insertions increase the space dimension to 1 and 2, respectively.

Example 2

By adding to the congruence system of the previous example, the congruence x + y = 1 (mod 2):

cgs.insert((x + y %= 1) / 2);

we obtain the grid containing just those integral points where the sum of the x and y values is odd.

Example 3

The following code builds a system of congruences corresponding to the grid in Z2 containing just the
integral points on the x axis:

Congruence_System cgs;
cgs.insert(x %= 0);
cgs.insert((y %= 0) / 0);

Note:

After inserting a multiset of congruences in a congruence system, there are no guarantees that an exact
copy of them can be retrieved: in general, only an equivalent congruence system will be available,
where original congruences may have been reordered, removed (if they are trivial, duplicate or implied
by other congruences), linearly combined, etc.

9.7.2 Constructor & Destructor Documentation

9.7.2.1 Parma_Polyhedra_Library::Congruence_System::Congruence_System (const Constraint
& c) [inline, explicit]

If c represents the constraint e1 = e2, builds the singleton system containing only constraint e1 = e2

(mod 0).

Exceptions:

std::invalid_argument Thrown if c is not an equality constraint.

9.7.3 Member Function Documentation

9.7.3.1 void Parma_Polyhedra_Library::Congruence_System::insert (const Congruence & cg)
[inline]

Inserts in ∗this a copy of the congruence cg, increasing the number of space dimensions if needed.

The copy of cg will be strongly normalized after being inserted.

9.7.3.2 void Parma_Polyhedra_Library::Congruence_System::insert (const Constraint & c)

Inserts in ∗this a copy of the equality constraint c, seen as a modulo 0 congruence, increasing the number
of space dimensions if needed.

The modulo 0 congruence will be strongly normalized after being inserted.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.8 Parma_Polyhedra_Library::Congruence_System::const_iterator Class Reference 144

Exceptions:

std::invalid_argument Thrown if c is a relation.

9.7.3.3 void Parma_Polyhedra_Library::Congruence_System::insert (const Congruence_System
& cgs)

Inserts in ∗this a copy of the congruences in cgs, increasing the number of space dimensions if needed.

The inserted copies will be strongly normalized.

9.7.3.4 void Parma_Polyhedra_Library::Congruence_System::add_unit_rows_and_columns
(dimension_type dims)

Adds dims rows and dims columns of zeroes to the matrix, initializing the added rows as in the unit
congruence system.

Parameters:

dims The number of rows and columns to be added: must be strictly positive.

Turns the r × c matrix A into the (r + dims) × (c + dims) matrix
(

0
A

B
A

)
where B is the dims × dims

unit matrix of the form
(

0
1

1
0

)
. The matrix is expanded avoiding reallocation whenever possible.

9.7.3.5 void Parma_Polyhedra_Library::Congruence_System::concatenate (const Congruence_-
System & cgs)

Concatenates copies of the congruences from cgs onto ∗this.

The matrix for the new system of congruences is obtained by leaving the old system in the upper left-hand
side and placing the congruences of cgs in the lower right-hand side, and padding with zeroes.

9.7.4 Friends And Related Function Documentation

9.7.4.1 std::ostream & operator<< (std::ostream & s, const Congruence_System & cgs)
[related]

Output operator.

Writes true if cgs is empty. Otherwise, writes on s the congruences of cgs, all in one row and separated
by ", ".

9.8 Parma_Polyhedra_Library::Congruence_System::const_iterator Class Refer-
ence

An iterator over a system of congruences.

Public Member Functions

• const_iterator ()
Default constructor.

• const_iterator (const const_iterator &y)

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.9 Parma_Polyhedra_Library::Constraint Class Reference 145

Ordinary copy-constructor.

• ∼const_iterator ()
Destructor.

• const_iterator & operator= (const const_iterator &y)
Assignment operator.

• const Congruence & operator ∗ () const
Dereference operator.

• const Congruence ∗ operator → () const
Indirect member selector.

• const_iterator & operator++ ()
Prefix increment operator.

• const_iterator operator++ (int)
Postfix increment operator.

• bool operator== (const const_iterator &y) const
Returns true if and only if ∗this and y are identical.

• bool operator!= (const const_iterator &y) const
Returns true if and only if ∗this and y are different.

9.8.1 Detailed Description

An iterator over a system of congruences.

A const_iterator is used to provide read-only access to each congruence contained in an object of
Congruence_System.

Example

The following code prints the system of congruences defining the grid gr:

const Congruence_System& cgs = gr.congruences();
for (Congruence_System::const_iterator i = cgs.begin(),

cgs_end = cgs.end(); i != cgs_end; ++i)
cout << *i << endl;

9.9 Parma_Polyhedra_Library::Constraint Class Reference

A linear equality or inequality.

Public Types

• enum Type { EQUALITY, NONSTRICT_INEQUALITY, STRICT_INEQUALITY }
The constraint type.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.9 Parma_Polyhedra_Library::Constraint Class Reference 146

Public Member Functions

• Constraint (const Constraint &c)
Ordinary copy-constructor.

• ∼Constraint ()
Destructor.

• Constraint & operator= (const Constraint &c)
Assignment operator.

• dimension_type space_dimension () const
Returns the dimension of the vector space enclosing ∗this.

• Type type () const
Returns the constraint type of ∗this.

• bool is_equality () const
Returns true if and only if ∗this is an equality constraint.

• bool is_inequality () const
Returns true if and only if ∗this is an inequality constraint (either strict or non-strict).

• bool is_nonstrict_inequality () const
Returns true if and only if ∗this is a non-strict inequality constraint.

• bool is_strict_inequality () const
Returns true if and only if ∗this is a strict inequality constraint.

• Coefficient_traits::const_reference coefficient (Variable v) const
Returns the coefficient of v in ∗this.

• Coefficient_traits::const_reference inhomogeneous_term () const
Returns the inhomogeneous term of ∗this.

• memory_size_type total_memory_in_bytes () const
Returns a lower bound to the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

• bool is_tautological () const
Returns true if and only if ∗this is a tautology (i.e., an always true constraint).

• bool is_inconsistent () const
Returns true if and only if ∗this is inconsistent (i.e., an always false constraint).

• bool is_equivalent_to (const Constraint &y) const
Returns true if and only if ∗this and y are equivalent constraints.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.9 Parma_Polyhedra_Library::Constraint Class Reference 147

• bool OK () const
Checks if all the invariants are satisfied.

• void swap (Constraint &y)
Swaps ∗this with y.

Static Public Member Functions

• static dimension_type max_space_dimension ()
Returns the maximum space dimension a Constraint can handle.

• static const Constraint & zero_dim_false ()
The unsatisfiable (zero-dimension space) constraint 0 = 1.

• static const Constraint & zero_dim_positivity ()
The true (zero-dimension space) constraint 0 ≤ 1, also known as positivity constraint.

Friends

• Constraint operator== (const Linear_Expression &e1, const Linear_Expression &e2)
Returns the constraint e1 = e2.

• Constraint operator== (const Linear_Expression &e, Coefficient_traits::const_reference n)
Returns the constraint e = n.

• Constraint operator== (Coefficient_traits::const_reference n, const Linear_Expression &e)
Returns the constraint n = e.

• Constraint operator>= (const Linear_Expression &e1, const Linear_Expression &e2)
Returns the constraint e1 >= e2.

• Constraint operator>= (const Linear_Expression &e, Coefficient_traits::const_reference n)
Returns the constraint e >= n.

• Constraint operator>= (Coefficient_traits::const_reference n, const Linear_Expression &e)
Returns the constraint n >= e.

• Constraint operator<= (const Linear_Expression &e1, const Linear_Expression &e2)
Returns the constraint e1 <= e2.

• Constraint operator<= (const Linear_Expression &e, Coefficient_traits::const_reference n)
Returns the constraint e <= n.

• Constraint operator<= (Coefficient_traits::const_reference n, const Linear_Expression &e)
Returns the constraint n <= e.

• Constraint operator> (const Linear_Expression &e1, const Linear_Expression &e2)

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.9 Parma_Polyhedra_Library::Constraint Class Reference 148

Returns the constraint e1 > e2.

• Constraint operator> (const Linear_Expression &e, Coefficient_traits::const_reference n)
Returns the constraint e > n.

• Constraint operator> (Coefficient_traits::const_reference n, const Linear_Expression &e)
Returns the constraint n > e.

• Constraint operator< (const Linear_Expression &e1, const Linear_Expression &e2)
Returns the constraint e1 < e2.

• Constraint operator< (const Linear_Expression &e, Coefficient_traits::const_reference n)
Returns the constraint e < n.

• Constraint operator< (Coefficient_traits::const_reference n, const Linear_Expression &e)
Returns the constraint n < e.

Related Functions

(Note that these are not member functions.)

• bool operator== (const Constraint &x, const Constraint &y)
Returns true if and only if x is equivalent to y.

• bool operator!= (const Constraint &x, const Constraint &y)
Returns true if and only if x is not equivalent to y.

• void swap (Parma_Polyhedra_Library::Constraint &x, Parma_Polyhedra_Library::Constraint &y)
Specializes std::swap.

• std::ostream & operator<< (std::ostream &s, const Constraint &c)
Output operator.

• std::ostream & operator<< (std::ostream &s, const Constraint::Type &t)
Output operator.

9.9.1 Detailed Description

A linear equality or inequality.

An object of the class Constraint is either:

• an equality:
∑n−1

i=0 aixi + b = 0;

• a non-strict inequality:
∑n−1

i=0 aixi + b ≥ 0; or

• a strict inequality:
∑n−1

i=0 aixi + b > 0;

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.9 Parma_Polyhedra_Library::Constraint Class Reference 149

where n is the dimension of the space, ai is the integer coefficient of variable xi and b is the integer
inhomogeneous term.

How to build a constraint

Constraints are typically built by applying a relation symbol to a pair of linear expressions. Available
relation symbols are equality (==), non-strict inequalities (>= and <=) and strict inequalities (< and
>). The space dimension of a constraint is defined as the maximum space dimension of the arguments
of its constructor.

In the following examples it is assumed that variables x, y and z are defined as follows:

Variable x(0);
Variable y(1);
Variable z(2);

Example 1

The following code builds the equality constraint 3x + 5y − z = 0, having space dimension 3:

Constraint eq_c(3*x + 5*y - z == 0);

The following code builds the (non-strict) inequality constraint 4x ≥ 2y−13, having space dimension
2:

Constraint ineq_c(4*x >= 2*y - 13);

The corresponding strict inequality constraint 4x > 2y − 13 is obtained as follows:

Constraint strict_ineq_c(4*x > 2*y - 13);

An unsatisfiable constraint on the zero-dimension space R0 can be specified as follows:

Constraint false_c = Constraint::zero_dim_false();

Equivalent, but more involved ways are the following:

Constraint false_c1(Linear_Expression::zero() == 1);
Constraint false_c2(Linear_Expression::zero() >= 1);
Constraint false_c3(Linear_Expression::zero() > 0);

In contrast, the following code defines an unsatisfiable constraint having space dimension 3:

Constraint false_c(0*z == 1);

How to inspect a constraint

Several methods are provided to examine a constraint and extract all the encoded information: its
space dimension, its type (equality, non-strict inequality, strict inequality) and the value of its integer
coefficients.

Example 2

The following code shows how it is possible to access each single coefficient of a constraint. Given an
inequality constraint (in this case x − 5y + 3z ≤ 4), we construct a new constraint corresponding to
its complement (thus, in this case we want to obtain the strict inequality constraint x− 5y + 3z > 4).

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.9 Parma_Polyhedra_Library::Constraint Class Reference 150

Constraint c1(x - 5*y + 3*z <= 4);
cout << "Constraint c1: " << c1 << endl;
if (c1.is_equality())

cout << "Constraint c1 is not an inequality." << endl;
else {

Linear_Expression e;
for (int i = c1.space_dimension() - 1; i >= 0; i--)

e += c1.coefficient(Variable(i)) * Variable(i);
e += c1.inhomogeneous_term();
Constraint c2 = c1.is_strict_inequality() ? (e <= 0) : (e < 0);
cout << "Complement c2: " << c2 << endl;

}

The actual output is the following:

Constraint c1: -A + 5*B - 3*C >= -4
Complement c2: A - 5*B + 3*C > 4

Note that, in general, the particular output obtained can be syntactically different from the (semanti-
cally equivalent) constraint considered.

9.9.2 Member Enumeration Documentation

9.9.2.1 enum Parma_Polyhedra_Library::Constraint::Type

The constraint type.

Enumerator:

EQUALITY The constraint is an equality.

NONSTRICT_INEQUALITY The constraint is a non-strict inequality.

STRICT_INEQUALITY The constraint is a strict inequality.

9.9.3 Member Function Documentation

9.9.3.1 Coefficient_traits::const_reference Parma_Polyhedra_Library::Constraint::coefficient
(Variable v) const [inline]

Returns the coefficient of v in ∗this.

Exceptions:

std::invalid_argument thrown if the index of v is greater than or equal to the space dimension of
∗this.

9.9.3.2 bool Parma_Polyhedra_Library::Constraint::is_tautological () const

Returns true if and only if ∗this is a tautology (i.e., an always true constraint).

A tautology can have either one of the following forms:

• an equality:
∑n−1

i=0 0xi + 0 = 0; or

• a non-strict inequality:
∑n−1

i=0 0xi + b ≥ 0, where b ≥ 0; or

• a strict inequality:
∑n−1

i=0 0xi + b > 0, where b > 0.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.10 Parma_Polyhedra_Library::Constraint_System Class Reference 151

9.9.3.3 bool Parma_Polyhedra_Library::Constraint::is_inconsistent () const

Returns true if and only if ∗this is inconsistent (i.e., an always false constraint).

An inconsistent constraint can have either one of the following forms:

• an equality:
∑n−1

i=0 0xi + b = 0, where b 6= 0; or

• a non-strict inequality:
∑n−1

i=0 0xi + b ≥ 0, where b < 0; or

• a strict inequality:
∑n−1

i=0 0xi + b > 0, where b ≤ 0.

9.9.3.4 bool Parma_Polyhedra_Library::Constraint::is_equivalent_to (const Constraint & y) const

Returns true if and only if ∗this and y are equivalent constraints.

Constraints having different space dimensions are not equivalent. Note that constraints having different
types may nonetheless be equivalent, if they both are tautologies or inconsistent.

9.10 Parma_Polyhedra_Library::Constraint_System Class Reference

A system of constraints.

Public Member Functions

• Constraint_System ()
Default constructor: builds an empty system of constraints.

• Constraint_System (const Constraint &c)
Builds the singleton system containing only constraint c.

• Constraint_System (const Constraint_System &cs)
Ordinary copy-constructor.

• ∼Constraint_System ()
Destructor.

• Constraint_System & operator= (const Constraint_System &y)
Assignment operator.

• dimension_type space_dimension () const
Returns the dimension of the vector space enclosing ∗this.

• bool has_strict_inequalities () const
Returns true if and only if ∗this contains one or more strict inequality constraints.

• void clear ()
Removes all the constraints from the constraint system and sets its space dimension to 0.

• void insert (const Constraint &c)

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.10 Parma_Polyhedra_Library::Constraint_System Class Reference 152

Inserts in ∗this a copy of the constraint c, increasing the number of space dimensions if needed.

• const_iterator begin () const
Returns the const_iterator pointing to the first constraint, if ∗this is not empty; otherwise, returns the
past-the-end const_iterator.

• const_iterator end () const
Returns the past-the-end const_iterator.

• bool OK () const
Checks if all the invariants are satisfied.

• memory_size_type total_memory_in_bytes () const
Returns the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

• void swap (Constraint_System &y)
Swaps ∗this with y.

Static Public Member Functions

• static dimension_type max_space_dimension ()
Returns the maximum space dimension a Constraint_System can handle.

• static const Constraint_System & zero_dim_empty ()
Returns the singleton system containing only Constraint::zero_dim_false().

Friends

• bool operator== (const Polyhedron &x, const Polyhedron &y)
Returns true if and only if x and y are the same polyhedron.

Related Functions

(Note that these are not member functions.)

• std::ostream & operator<< (std::ostream &s, const Constraint_System &cs)
Output operator.

• void swap (Parma_Polyhedra_Library::Constraint_System &x, Parma_Polyhedra_-
Library::Constraint_System &y)

Specializes std::swap.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.10 Parma_Polyhedra_Library::Constraint_System Class Reference 153

Classes

• class const_iterator
An iterator over a system of constraints.

9.10.1 Detailed Description

A system of constraints.

An object of the class Constraint_System is a system of constraints, i.e., a multiset of objects of the class
Constraint. When inserting constraints in a system, space dimensions are automatically adjusted so that all
the constraints in the system are defined on the same vector space.

In all the examples it is assumed that variables x and y are defined as follows:

Variable x(0);
Variable y(1);

Example 1

The following code builds a system of constraints corresponding to a square in R2:

Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x <= 3);
cs.insert(y >= 0);
cs.insert(y <= 3);

Note that: the constraint system is created with space dimension zero; the first and third constraint
insertions increase the space dimension to 1 and 2, respectively.

Example 2

By adding four strict inequalities to the constraint system of the previous example, we can remove just
the four vertices from the square defined above.

cs.insert(x + y > 0);
cs.insert(x + y < 6);
cs.insert(x - y < 3);
cs.insert(y - x < 3);

Example 3

The following code builds a system of constraints corresponding to a half-strip in R2:

Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x - y <= 0);
cs.insert(x - y + 1 >= 0);

Note:

After inserting a multiset of constraints in a constraint system, there are no guarantees that an exact
copy of them can be retrieved: in general, only an equivalent constraint system will be available, where
original constraints may have been reordered, removed (if they are trivial, duplicate or implied by other
constraints), linearly combined, etc.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.11 Parma_Polyhedra_Library::Constraint_System::const_iterator Class Reference 154

9.10.2 Friends And Related Function Documentation

9.10.2.1 bool operator== (const Polyhedron & x, const Polyhedron & y) [friend]

Returns true if and only if x and y are the same polyhedron.

Note that x and y may be topology- and/or dimension-incompatible polyhedra: in those cases, the value
false is returned.

9.10.2.2 std::ostream & operator<< (std::ostream & s, const Constraint_System & cs)
[related]

Output operator.

Writes true if cs is empty. Otherwise, writes on s the constraints of cs, all in one row and separated by
", ".

9.11 Parma_Polyhedra_Library::Constraint_System::const_iterator Class Refer-
ence

An iterator over a system of constraints.

Public Member Functions

• const_iterator ()
Default constructor.

• const_iterator (const const_iterator &y)
Ordinary copy-constructor.

• ∼const_iterator ()
Destructor.

• const_iterator & operator= (const const_iterator &y)
Assignment operator.

• const Constraint & operator ∗ () const
Dereference operator.

• const Constraint ∗ operator → () const
Indirect member selector.

• const_iterator & operator++ ()
Prefix increment operator.

• const_iterator operator++ (int)
Postfix increment operator.

• bool operator== (const const_iterator &y) const
Returns true if and only if ∗this and y are identical.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.12 Parma_Polyhedra_Library::Determinate< PH > Class Template Reference 155

• bool operator!= (const const_iterator &y) const
Returns true if and only if ∗this and y are different.

9.11.1 Detailed Description

An iterator over a system of constraints.

A const_iterator is used to provide read-only access to each constraint contained in a Constraint_System
object.

Example

The following code prints the system of constraints defining the polyhedron ph:

const Constraint_System& cs = ph.constraints();
for (Constraint_System::const_iterator i = cs.begin(),

cs_end = cs.end(); i != cs_end; ++i)
cout << *i << endl;

9.12 Parma_Polyhedra_Library::Determinate< PH > Class Template Reference

Wraps a PPL class into a determinate constraint system interface.

Public Member Functions

Constructors and Destructor

• Determinate (const PH &p)
Injection operator: builds the determinate constraint system element corresponding to the base-level
element p.

• Determinate (const Constraint_System &cs)
Injection operator: builds the determinate constraint system element corresponding to the base-level
element represented by cs.

• Determinate (const Congruence_System &cgs)
corresponding to the base-level element represented by cgs.

• Determinate (const Determinate &y)
Copy constructor.

• ∼Determinate ()
Destructor.

Member Functions that Do Not Modify the Domain Element

• const PH & element () const
Returns a const reference to the embedded element.

• bool is_top () const
Returns true if and only if ∗this is the top of the determinate constraint system (i.e., the whole vector
space).

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.12 Parma_Polyhedra_Library::Determinate< PH > Class Template Reference 156

• bool is_bottom () const
Returns true if and only if ∗this is the bottom of the determinate constraint system.

• bool definitely_entails (const Determinate &y) const
Returns true if and only if ∗this entails y.

• bool is_definitely_equivalent_to (const Determinate &y) const
Returns true if and only if ∗this and y are equivalent.

• memory_size_type total_memory_in_bytes () const
Returns a lower bound to the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns a lower bound to the size in bytes of the memory managed by ∗this.

• bool OK () const
Checks if all the invariants are satisfied.

Member Functions that May Modify the Domain Element

• void upper_bound_assign (const Determinate &y)
Assigns to ∗this the upper bound of ∗this and y.

• void meet_assign (const Determinate &y)
Assigns to ∗this the meet of ∗this and y.

• void concatenate_assign (const Determinate &y)
Assigns to ∗this the concatenation of ∗this and y, taken in this order.

• PH & element ()
Returns a reference to the embedded element.

• Determinate & operator= (const Determinate &y)
Assignment operator.

• void swap (Determinate &y)
Swaps ∗this with y.

Friends

• bool operator== (const Determinate< PH > &x, const Determinate< PH > &y)
Returns true if and only if x and y are the same domain element.

• bool operator!= (const Determinate< PH > &x, const Determinate< PH > &y)
Returns true if and only if x and y are different domain elements.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.13 Parma_Polyhedra_Library::From_Bounding_Box Struct Reference 157

Related Functions

(Note that these are not member functions.)

• std::ostream & operator<< (std::ostream &, const Determinate< PH > &)
Output operator.

• void swap (Parma_Polyhedra_Library::Determinate< PH > &x, Parma_Polyhedra_-
Library::Determinate< PH > &y)

Specializes std::swap.

9.12.1 Detailed Description

template<typename PH> class Parma_Polyhedra_Library::Determinate< PH >

Wraps a PPL class into a determinate constraint system interface.

9.13 Parma_Polyhedra_Library::From_Bounding_Box Struct Reference

A tag class.

9.13.1 Detailed Description

A tag class.

Tag class to differentiate the C_Polyhedron and NNC_Polyhedron constructors that build a polyhedron out
of a bounding box.

9.14 Parma_Polyhedra_Library::From_Covering_Box Struct Reference

A tag class.

9.14.1 Detailed Description

A tag class.

Tag class to make the Grid covering box constructor unique.

9.15 Parma_Polyhedra_Library::Generator Class Reference

A line, ray, point or closure point.

Inherited by Parma_Polyhedra_Library::Grid_Generator[private].

Public Types

• enum Type { LINE, RAY, POINT, CLOSURE_POINT }
The generator type.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.15 Parma_Polyhedra_Library::Generator Class Reference 158

Public Member Functions

• Generator (const Generator &g)
Ordinary copy-constructor.

• ∼Generator ()
Destructor.

• Generator & operator= (const Generator &g)
Assignment operator.

• dimension_type space_dimension () const
Returns the dimension of the vector space enclosing ∗this.

• Type type () const
Returns the generator type of ∗this.

• bool is_line () const
Returns true if and only if ∗this is a line.

• bool is_ray () const
Returns true if and only if ∗this is a ray.

• bool is_point () const
Returns true if and only if ∗this is a point.

• bool is_closure_point () const
Returns true if and only if ∗this is a closure point.

• Coefficient_traits::const_reference coefficient (Variable v) const
Returns the coefficient of v in ∗this.

• Coefficient_traits::const_reference divisor () const
If ∗this is either a point or a closure point, returns its divisor.

• memory_size_type total_memory_in_bytes () const
Returns a lower bound to the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

• bool is_equivalent_to (const Generator &y) const
Returns true if and only if ∗this and y are equivalent generators.

• bool OK () const
Checks if all the invariants are satisfied.

• void swap (Generator &y)
Swaps ∗this with y.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.15 Parma_Polyhedra_Library::Generator Class Reference 159

Static Public Member Functions

• static Generator line (const Linear_Expression &e)
Shorthand for Generator Generator::line(const Linear_Expression& e).

• static Generator ray (const Linear_Expression &e)
Shorthand for Generator Generator::ray(const Linear_Expression& e).

• static Generator point (const Linear_Expression &e=Linear_Expression::zero(), Coefficient_-
traits::const_reference d=Coefficient_one())

Shorthand for Generator Generator::point(const Linear_Expression& e, Coefficient_traits::const_-
reference d).

• static Generator closure_point (const Linear_Expression &e=Linear_Expression::zero(),
Coefficient_traits::const_reference d=Coefficient_one())

Shorthand for Generator Generator::closure_point(const Linear_Expression& e, Coefficient_-
traits::const_reference d).

• static dimension_type max_space_dimension ()
Returns the maximum space dimension a Generator can handle.

• static const Generator & zero_dim_point ()
Returns the origin of the zero-dimensional space R0.

• static const Generator & zero_dim_closure_point ()
Returns, as a closure point, the origin of the zero-dimensional space R0.

Friends

• std::ostream & operator<< (std::ostream &s, const Generator &g)
Output operator.

Related Functions

(Note that these are not member functions.)

• void swap (Parma_Polyhedra_Library::Generator &x, Parma_Polyhedra_Library::Generator &y)
Specializes std::swap.

• bool operator== (const Generator &x, const Generator &y)
Returns true if and only if x is equivalent to y.

• bool operator!= (const Generator &x, const Generator &y)
Returns true if and only if x is not equivalent to y.

• std::ostream & operator<< (std::ostream &s, const Generator::Type &t)
Output operator.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.15 Parma_Polyhedra_Library::Generator Class Reference 160

9.15.1 Detailed Description

A line, ray, point or closure point.

An object of the class Generator is one of the following:

• a line l = (a0, . . . , an−1)T;

• a ray r = (a0, . . . , an−1)T;

• a point p = (a0
d , . . . , an−1

d)T;

• a closure point c = (a0
d , . . . , an−1

d)T;

where n is the dimension of the space and, for points and closure points, d > 0 is the divisor.

A note on terminology.

As observed in Section Representations of Convex Polyhedra, there are cases when, in order to repre-
sent a polyhedron P using the generator system G = (L,R, P, C), we need to include in the finite set
P even points of P that are not vertices of P . This situation is even more frequent when working with
NNC polyhedra and it is the reason why we prefer to use the word ‘point’ where other libraries use the
word ‘vertex’.

How to build a generator.

Each type of generator is built by applying the corresponding function (line, ray, point or
closure_point) to a linear expression, representing a direction in the space; the space dimen-
sion of the generator is defined as the space dimension of the corresponding linear expression. Linear
expressions used to define a generator should be homogeneous (any constant term will be simply ig-
nored). When defining points and closure points, an optional Coefficient argument can be used as a
common divisor for all the coefficients occurring in the provided linear expression; the default value
for this argument is 1.

In all the following examples it is assumed that variables x, y and z are defined as follows:

Variable x(0);
Variable y(1);
Variable z(2);

Example 1

The following code builds a line with direction x− y − z and having space dimension 3:

Generator l = line(x - y - z);

As mentioned above, the constant term of the linear expression is not relevant. Thus, the following
code has the same effect:

Generator l = line(x - y - z + 15);

By definition, the origin of the space is not a line, so that the following code throws an exception:

Generator l = line(0*x);

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.15 Parma_Polyhedra_Library::Generator Class Reference 161

Example 2

The following code builds a ray with the same direction as the line in Example 1:

Generator r = ray(x - y - z);

As is the case for lines, when specifying a ray the constant term of the linear expression is not relevant;
also, an exception is thrown when trying to build a ray from the origin of the space.

Example 3

The following code builds the point p = (1, 0, 2)T ∈ R3:

Generator p = point(1*x + 0*y + 2*z);

The same effect can be obtained by using the following code:

Generator p = point(x + 2*z);

Similarly, the origin 0 ∈ R3 can be defined using either one of the following lines of code:

Generator origin3 = point(0*x + 0*y + 0*z);
Generator origin3_alt = point(0*z);

Note however that the following code would have defined a different point, namely 0 ∈ R2:

Generator origin2 = point(0*y);

The following two lines of code both define the only point having space dimension zero, namely
0 ∈ R0. In the second case we exploit the fact that the first argument of the function point is
optional.

Generator origin0 = Generator::zero_dim_point();
Generator origin0_alt = point();

Example 4

The point p specified in Example 3 above can also be obtained with the following code, where we
provide a non-default value for the second argument of the function point (the divisor):

Generator p = point(2*x + 0*y + 4*z, 2);

Obviously, the divisor can be usefully exploited to specify points having some non-integer (but ratio-
nal) coordinates. For instance, the point q = (−1.5, 3.2, 2.1)T ∈ R3 can be specified by the following
code:

Generator q = point(-15*x + 32*y + 21*z, 10);

If a zero divisor is provided, an exception is thrown.

Example 5

Closure points are specified in the same way we defined points, but invoking their specific constructor
function. For instance, the closure point c = (1, 0, 2)T ∈ R3 is defined by

Generator c = closure_point(1*x + 0*y + 2*z);

For the particular case of the (only) closure point having space dimension zero, we can use any of the
following:

Generator closure_origin0 = Generator::zero_dim_closure_point();
Generator closure_origin0_alt = closure_point();

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.15 Parma_Polyhedra_Library::Generator Class Reference 162

How to inspect a generator

Several methods are provided to examine a generator and extract all the encoded information: its space
dimension, its type and the value of its integer coefficients.

Example 6

The following code shows how it is possible to access each single coefficient of a generator. If g1
is a point having coordinates (a0, . . . , an−1)T, we construct the closure point g2 having coordinates
(a0, 2a1, . . . , (i + 1)ai, . . . , nan−1)T.

if (g1.is_point()) {
cout << "Point g1: " << g1 << endl;
Linear_Expression e;
for (int i = g1.space_dimension() - 1; i >= 0; i--)

e += (i + 1) * g1.coefficient(Variable(i)) * Variable(i);
Generator g2 = closure_point(e, g1.divisor());
cout << "Closure point g2: " << g2 << endl;

}
else

cout << "Generator g1 is not a point." << endl;

Therefore, for the point

Generator g1 = point(2*x - y + 3*z, 2);

we would obtain the following output:

Point g1: p((2*A - B + 3*C)/2)
Closure point g2: cp((2*A - 2*B + 9*C)/2)

When working with (closure) points, be careful not to confuse the notion of coefficient with the notion
of coordinate: these are equivalent only when the divisor of the (closure) point is 1.

9.15.2 Member Enumeration Documentation

9.15.2.1 enum Parma_Polyhedra_Library::Generator::Type

The generator type.

Enumerator:

LINE The generator is a line.
RAY The generator is a ray.
POINT The generator is a point.
CLOSURE_POINT The generator is a closure point.

Reimplemented in Parma_Polyhedra_Library::Grid_Generator.

9.15.3 Member Function Documentation

9.15.3.1 Generator line (const Linear_Expression & e) [inline, static]

Shorthand for Generator Generator::line(const Linear_Expression& e).

Exceptions:

std::invalid_argument Thrown if the homogeneous part of e represents the origin of the vector space.

Reimplemented in Parma_Polyhedra_Library::Grid_Generator.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.15 Parma_Polyhedra_Library::Generator Class Reference 163

9.15.3.2 Generator ray (const Linear_Expression & e) [inline, static]

Shorthand for Generator Generator::ray(const Linear_Expression& e).

Exceptions:

std::invalid_argument Thrown if the homogeneous part of e represents the origin of the vector space.

9.15.3.3 Generator point (const Linear_Expression & e = Linear_Expression::zero(),
Coefficient_traits::const_reference d = Coefficient_one()) [inline, static]

Shorthand for Generator Generator::point(const Linear_Expression& e, Coefficient_traits::const_reference
d).

Both e and d are optional arguments, with default values Linear_Expression::zero() and Coefficient_one(),
respectively.

Exceptions:

std::invalid_argument Thrown if d is zero.

Reimplemented in Parma_Polyhedra_Library::Grid_Generator.

9.15.3.4 Generator closure_point (const Linear_Expression & e = Linear_-
Expression::zero(), Coefficient_traits::const_reference d = Coefficient_one())
[inline, static]

Shorthand for Generator Generator::closure_point(const Linear_Expression& e, Coefficient_traits::const_-
reference d).

Both e and d are optional arguments, with default values Linear_Expression::zero() and Coefficient_one(),
respectively.

Exceptions:

std::invalid_argument Thrown if d is zero.

9.15.3.5 Coefficient_traits::const_reference Parma_Polyhedra_Library::Generator::coefficient
(Variable v) const [inline]

Returns the coefficient of v in ∗this.

Exceptions:

std::invalid_argument Thrown if the index of v is greater than or equal to the space dimension of
∗this.

9.15.3.6 Coefficient_traits::const_reference Parma_Polyhedra_Library::Generator::divisor ()
const [inline]

If ∗this is either a point or a closure point, returns its divisor.

Exceptions:

std::invalid_argument Thrown if ∗this is neither a point nor a closure point.

Reimplemented in Parma_Polyhedra_Library::Grid_Generator.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.16 Parma_Polyhedra_Library::Generator_System Class Reference 164

9.15.3.7 bool Parma_Polyhedra_Library::Generator::is_equivalent_to (const Generator & y) const

Returns true if and only if ∗this and y are equivalent generators.

Generators having different space dimensions are not equivalent.

9.16 Parma_Polyhedra_Library::Generator_System Class Reference

A system of generators.

Inherited by Parma_Polyhedra_Library::Grid_Generator_System[private].

Public Member Functions

• Generator_System ()
Default constructor: builds an empty system of generators.

• Generator_System (const Generator &g)
Builds the singleton system containing only generator g.

• Generator_System (const Generator_System &gs)
Ordinary copy-constructor.

• ∼Generator_System ()
Destructor.

• Generator_System & operator= (const Generator_System &y)
Assignment operator.

• dimension_type space_dimension () const
Returns the dimension of the vector space enclosing ∗this.

• void clear ()
Removes all the generators from the generator system and sets its space dimension to 0.

• void insert (const Generator &g)
Inserts in ∗this a copy of the generator g, increasing the number of space dimensions if needed.

• const_iterator begin () const
Returns the const_iterator pointing to the first generator, if ∗this is not empty; otherwise, returns the
past-the-end const_iterator.

• const_iterator end () const
Returns the past-the-end const_iterator.

• bool OK () const
Checks if all the invariants are satisfied.

• memory_size_type total_memory_in_bytes () const
Returns the total size in bytes of the memory occupied by ∗this.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.16 Parma_Polyhedra_Library::Generator_System Class Reference 165

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

• void swap (Generator_System &y)
Swaps ∗this with y.

Static Public Member Functions

• static dimension_type max_space_dimension ()
Returns the maximum space dimension a Generator_System can handle.

• static const Generator_System & zero_dim_univ ()
Returns the singleton system containing only Generator::zero_dim_point().

Related Functions

(Note that these are not member functions.)

• std::ostream & operator<< (std::ostream &s, const Generator_System &gs)
Output operator.

• void swap (Parma_Polyhedra_Library::Generator_System &x, Parma_Polyhedra_-
Library::Generator_System &y)

Specializes std::swap.

Classes

• class const_iterator
An iterator over a system of generators.

9.16.1 Detailed Description

A system of generators.

An object of the class Generator_System is a system of generators, i.e., a multiset of objects of the class
Generator (lines, rays, points and closure points). When inserting generators in a system, space dimensions
are automatically adjusted so that all the generators in the system are defined on the same vector space. A
system of generators which is meant to define a non-empty polyhedron must include at least one point: the
reason is that lines, rays and closure points need a supporting point (lines and rays only specify directions
while closure points only specify points in the topological closure of the NNC polyhedron).

In all the examples it is assumed that variables x and y are defined as follows:

Variable x(0);
Variable y(1);

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.16 Parma_Polyhedra_Library::Generator_System Class Reference 166

Example 1

The following code defines the line having the same direction as the x axis (i.e., the first Cartesian
axis) in R2:

Generator_System gs;
gs.insert(line(x + 0*y));

As said above, this system of generators corresponds to an empty polyhedron, because the line has no
supporting point. To define a system of generators that does correspond to the x axis, we can add the
following code which inserts the origin of the space as a point:

gs.insert(point(0*x + 0*y));

Since space dimensions are automatically adjusted, the following code obtains the same effect:

gs.insert(point(0*x));

In contrast, if we had added the following code, we would have defined a line parallel to the x axis
through the point (0, 1)T ∈ R2.

gs.insert(point(0*x + 1*y));

Example 2

The following code builds a ray having the same direction as the positive part of the x axis in R2:

Generator_System gs;
gs.insert(ray(x + 0*y));

To define a system of generators indeed corresponding to the set{
(x, 0)T ∈ R2

∣∣ x ≥ 0
}
,

one just has to add the origin:

gs.insert(point(0*x + 0*y));

Example 3

The following code builds a system of generators having four points and corresponding to a square in
R2 (the same as Example 1 for the system of constraints):

Generator_System gs;
gs.insert(point(0*x + 0*y));
gs.insert(point(0*x + 3*y));
gs.insert(point(3*x + 0*y));
gs.insert(point(3*x + 3*y));

Example 4

By using closure points, we can define the kernel (i.e., the largest open set included in a given set)
of the square defined in the previous example. Note that a supporting point is needed and, for that
purpose, any inner point could be considered.

Generator_System gs;
gs.insert(point(x + y));
gs.insert(closure_point(0*x + 0*y));
gs.insert(closure_point(0*x + 3*y));
gs.insert(closure_point(3*x + 0*y));
gs.insert(closure_point(3*x + 3*y));

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.17 Parma_Polyhedra_Library::Generator_System::const_iterator Class Reference 167

Example 5

The following code builds a system of generators having two points and a ray, corresponding to a
half-strip in R2 (the same as Example 2 for the system of constraints):

Generator_System gs;
gs.insert(point(0*x + 0*y));
gs.insert(point(0*x + 1*y));
gs.insert(ray(x - y));

Note:

After inserting a multiset of generators in a generator system, there are no guarantees that an exact
copy of them can be retrieved: in general, only an equivalent generator system will be available,
where original generators may have been reordered, removed (if they are duplicate or redundant), etc.

9.16.2 Member Function Documentation

9.16.2.1 bool Parma_Polyhedra_Library::Generator_System::OK () const

Checks if all the invariants are satisfied.

Returns true if and only if ∗this is a valid Linear_System and each row in the system is a valid Gener-
ator.

Reimplemented in Parma_Polyhedra_Library::Grid_Generator_System.

9.16.3 Friends And Related Function Documentation

9.16.3.1 std::ostream & operator<< (std::ostream & s, const Generator_System & gs)
[related]

Output operator.

Writes false if gs is empty. Otherwise, writes on s the generators of gs, all in one row and separated
by ", ".

9.17 Parma_Polyhedra_Library::Generator_System::const_iterator Class Refer-
ence

An iterator over a system of generators.

Inherited by Parma_Polyhedra_Library::Grid_Generator_System::const_iterator[private].

Public Member Functions

• const_iterator ()
Default constructor.

• const_iterator (const const_iterator &y)
Ordinary copy-constructor.

• ∼const_iterator ()
Destructor.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.18 Parma_Polyhedra_Library::GMP_Integer Class Reference 168

• const_iterator & operator= (const const_iterator &y)
Assignment operator.

• const Generator & operator ∗ () const
Dereference operator.

• const Generator ∗ operator → () const
Indirect member selector.

• const_iterator & operator++ ()
Prefix increment operator.

• const_iterator operator++ (int)
Postfix increment operator.

• bool operator== (const const_iterator &y) const
Returns true if and only if ∗this and y are identical.

• bool operator!= (const const_iterator &y) const
Returns true if and only if ∗this and y are different.

9.17.1 Detailed Description

An iterator over a system of generators.

A const_iterator is used to provide read-only access to each generator contained in an object of Generator_-
System.

Example

The following code prints the system of generators of the polyhedron ph:

const Generator_System& gs = ph.generators();
for (Generator_System::const_iterator i = gs.begin(),

gs_end = gs.end(); i != gs_end; ++i)
cout << *i << endl;

The same effect can be obtained more concisely by using more features of the STL:

const Generator_System& gs = ph.generators();
copy(gs.begin(), gs.end(), ostream_iterator<Generator>(cout, "\n"));

9.18 Parma_Polyhedra_Library::GMP_Integer Class Reference

Unbounded integers as provided by the GMP library.

Related Functions

(Note that these are not member functions.)

• void swap (Parma_Polyhedra_Library::GMP_Integer &x, Parma_Polyhedra_Library::GMP_Integer
&y)

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.18 Parma_Polyhedra_Library::GMP_Integer Class Reference 169

Specializes std::swap.

Accessor Functions

• const mpz_class & raw_value (const GMP_Integer &x)
Returns a const reference to the underlying integer value.

• mpz_class & raw_value (GMP_Integer &x)
Returns a reference to the underlying integer value.

Memory Size Inspection Functions

• memory_size_type total_memory_in_bytes (const GMP_Integer &x)
Returns the total size in bytes of the memory occupied by x.

• memory_size_type external_memory_in_bytes (const GMP_Integer &x)
Returns the size in bytes of the memory managed by x.

Arithmetic Operators

• void neg_assign (GMP_Integer &x)
Assigns to x its negation.

• void neg_assign (GMP_Integer &x, const GMP_Integer &y)
Assigns to x the negation of y.

• void gcd_assign (GMP_Integer &x, const GMP_Integer &y, const GMP_Integer &z)
Assigns to x the greatest common divisor of y and z.

• void gcdext_assign (GMP_Integer &x, const GMP_Integer &y, const GMP_Integer &z, GMP_-
Integer &s, GMP_Integer &t)

Extended GCD.

• void lcm_assign (GMP_Integer &x, const GMP_Integer &y, const GMP_Integer &z)
Assigns to x the least common multiple of y and z.

• void add_mul_assign (GMP_Integer &x, const GMP_Integer &y, const GMP_Integer &z)
Assigns to x the value x + y ∗ z.

• void sub_mul_assign (GMP_Integer &x, const GMP_Integer &y, const GMP_Integer &z)
Assigns to x the value x - y ∗ z.

• void exact_div_assign (GMP_Integer &x, const GMP_Integer &y, const GMP_Integer &z)
If z divides y, assigns to x the quotient of the integer division of y and z.

• void sqrt_assign (GMP_Integer &x, const GMP_Integer &y)
Assigns to x the integer square root of y.

• int cmp (const GMP_Integer &x, const GMP_Integer &y)
Returns a negative, zero or positive value depending on whether x is lower than, equal to or greater than
y, respectively.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Grid Class Reference 170

9.18.1 Detailed Description

Unbounded integers as provided by the GMP library.

GMP_Integer is an alias for the mpz_class type defined in the C++ interface of the GMP library. For
more information, see http://www.swox.com/gmp/

9.18.2 Friends And Related Function Documentation

9.18.2.1 void gcdext_assign (GMP_Integer & x, const GMP_Integer & y, const GMP_Integer & z,
GMP_Integer & s, GMP_Integer & t) [related]

Extended GCD.

Assigns to x the greatest common divisor of y and z, and to s and t the values such that y ∗ s + z ∗ t =
x.

9.18.2.2 void exact_div_assign (GMP_Integer & x, const GMP_Integer & y, const GMP_Integer &
z) [related]

If z divides y, assigns to x the quotient of the integer division of y and z.

The behavior is undefined if z does not divide y.

9.19 Parma_Polyhedra_Library::Grid Class Reference

A grid.

Public Member Functions

• Grid (dimension_type num_dimensions=0, const Degenerate_Element kind=UNIVERSE)
Builds a grid having the specified properties.

• Grid (const Congruence_System &cgs)
Builds a grid, copying a system of congruences.

• Grid (Congruence_System &cgs)
Builds a grid, recycling a system of congruences.

• Grid (const Constraint_System &cs)
Builds a grid, copying a system of constraints.

• Grid (Constraint_System &cs)
Builds a grid, recycling a system of constraints.

• Grid (const Grid_Generator_System &const_gs)
Builds a grid, copying a system of generators.

• Grid (Grid_Generator_System &gs)
Builds a grid, recycling a system of generators.

• template<typename Box> Grid (const Box &box, From_Bounding_Box dummy)

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.swox.com/gmp/
http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Grid Class Reference 171

Builds a grid out of a generic, interval-based bounding box.

• template<typename Box> Grid (const Box &box, From_Covering_Box dummy)
Builds a grid out of a generic, interval-based covering box.

• Grid (const Grid &y)
Ordinary copy-constructor.

• Grid & operator= (const Grid &y)
The assignment operator. (∗this and y can be dimension-incompatible.).

Member Functions that Do Not Modify the Grid

• dimension_type space_dimension () const
Returns the dimension of the vector space enclosing ∗this.

• dimension_type affine_dimension () const
Returns 0, if ∗this is empty; otherwise, returns the affine dimension of ∗this.

• const Congruence_System & congruences () const
Returns the system of congruences.

• const Congruence_System & minimized_congruences () const
Returns the system of congruences in reduced form.

• const Grid_Generator_System & generators () const
Returns the system of generators.

• const Grid_Generator_System & minimized_generators () const
Returns the minimized system of generators.

• Poly_Con_Relation relation_with (const Congruence &cg) const
Returns the relations holding between ∗this and cg.

• Poly_Gen_Relation relation_with (const Grid_Generator &g) const
Returns the relations holding between ∗this and g.

• bool is_empty () const
Returns true if and only if ∗this is an empty grid.

• bool is_universe () const
Returns true if and only if ∗this is a universe grid.

• bool is_topologically_closed () const
Returns true if and only if ∗this is a topologically closed subset of the vector space.

• bool is_disjoint_from (const Grid &y) const
Returns true if and only if ∗this and y are disjoint.

• bool is_discrete () const
Returns true if and only if ∗this is discrete.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Grid Class Reference 172

• bool is_bounded () const
Returns true if and only if ∗this is bounded.

• bool bounds_from_above (const Linear_Expression &expr) const
Returns true if and only if expr is bounded in ∗this.

• bool bounds_from_below (const Linear_Expression &expr) const
Returns true if and only if expr is bounded in ∗this.

• bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum) const

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value is computed.

• bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum, Grid_Generator &point) const

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value and a point where expr reaches it are computed.

• bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum) const

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value is computed.

• bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum, Grid_Generator &point) const

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value and a point where expr reaches it are computed.

• bool contains (const Grid &y) const
Returns true if and only if ∗this contains y.

• bool strictly_contains (const Grid &y) const
Returns true if and only if ∗this strictly contains y.

• template<typename Box> void shrink_bounding_box (Box &box) const
Uses ∗this to shrink a generic, interval-based bounding box.

• template<typename Box> void get_covering_box (Box &box) const
Writes the covering box for ∗this into box.

• bool OK (bool check_not_empty=false) const
Checks if all the invariants are satisfied.

Space Dimension Preserving Member Functions that May Modify the Grid

• void add_congruence (const Congruence &cg)
Adds a copy of congruence cg to ∗this.

• void add_congruence (const Constraint &c)
Adds constraint c to ∗this.

• bool add_congruence_and_minimize (const Congruence &c)
Adds a copy of congruence cg to the system of congruences of this, reducing the result.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Grid Class Reference 173

• bool add_congruence_and_minimize (const Constraint &c)
Adds a copy of constraint c to ∗this, reducing the result.

• void add_generator (const Grid_Generator &g)
Adds a copy of generator g to the system of generators of this.

• bool add_generator_and_minimize (const Grid_Generator &g)
Adds a copy of generator g to the system of generators of this, reducing the result.

• void add_congruences (const Congruence_System &cgs)
Adds a copy of each congruence in cgs to ∗this.

• void add_congruences (const Constraint_System &cs)
Adds a copy of each equality constraint in cs to ∗this.

• void add_recycled_congruences (Congruence_System &cgs)
Adds the congruences in cgs to ∗this.

• void add_recycled_congruences (Constraint_System &cs)
Adds the equality constraints in cs to ∗this.

• bool add_congruences_and_minimize (const Congruence_System &cgs)
Adds a copy of the congruences in cgs to the system of congruences of ∗this, reducing the result.

• bool add_congruences_and_minimize (const Constraint_System &cs)
Adds a copy of each equality constraint in cs to ∗this, reducing the result.

• bool add_recycled_congruences_and_minimize (Congruence_System &cgs)
Adds the congruences in cgs to the system of congruences of this, reducing the result.

• bool add_recycled_congruences_and_minimize (Constraint_System &cs)
Adds the equalities in cs to ∗this, reducing the result.

• void add_constraint (const Constraint &c)
Adds constraint c to ∗this.

• bool add_constraint_and_minimize (const Constraint &c)
Adds constraint c to ∗this, reducing the result.

• void add_constraints (const Constraint_System &cs)
Adds copies of the equality constraints in cs to ∗this.

• bool add_constraints_and_minimize (const Constraint_System &cs)
Adds copies of the equality constraints in cs to ∗this, reducing the result.

• void add_recycled_constraints (Constraint_System &cs)
Adds the equality constraints in cs to ∗this.

• bool add_recycled_constraints_and_minimize (Constraint_System &cs)
• void add_generators (const Grid_Generator_System &gs)

Adds a copy of the generators in gs to the system of generators of ∗this.

• void add_recycled_generators (Grid_Generator_System &gs)
Adds the generators in gs to the system of generators of this.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Grid Class Reference 174

• bool add_generators_and_minimize (const Grid_Generator_System &gs)
Adds a copy of the generators in gs to the system of generators of ∗this, reducing the result.

• bool add_recycled_generators_and_minimize (Grid_Generator_System &gs)
Adds the generators in gs to the system of generators of this, reducing the result.

• void intersection_assign (const Grid &y)
Assigns to ∗this the intersection of ∗this and y. The result is not guaranteed to be reduced.

• bool intersection_assign_and_minimize (const Grid &y)
Assigns to ∗this the intersection of ∗this and y, reducing the result.

• void join_assign (const Grid &y)
Assigns to ∗this the join of ∗this and y.

• bool join_assign_and_minimize (const Grid &y)
Assigns to ∗this the join of ∗this and y, reducing the result.

• void upper_bound_assign (const Grid &y)
Same as join_assign(y).

• bool join_assign_if_exact (const Grid &y)
If the join of ∗this and y is exact it is assigned to this and true is returned, otherwise false is
returned.

• bool upper_bound_assign_if_exact (const Grid &y)
Same as join_assign_if_exact(y).

• void grid_difference_assign (const Grid &y)
Assigns to ∗this the grid-difference of ∗this and y.

• void difference_assign (const Grid &y)
Same as grid_difference_assign(y).

• void affine_image (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())

Assigns to ∗this the affine image of this under the function mapping variable var to the affine
expression specified by expr and denominator.

• void affine_preimage (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())

Assigns to ∗this the affine preimage of ∗this under the function mapping variable var to the affine
expression specified by expr and denominator.

• void generalized_affine_image (Variable var, const Linear_Expression &expr, Coefficient_-
traits::const_reference denominator=Coefficient_one(), Coefficient_traits::const_reference
modulus=Coefficient_one())

Assigns to ∗this the image of ∗this with respect to the generalized affine relation var′ = expr
denominator

(mod modulus).

• void generalized_affine_preimage (Variable var, const Linear_Expression &expr, Coefficient_-
traits::const_reference denominator=Coefficient_one(), Coefficient_traits::const_reference
modulus=Coefficient_one())

Assigns to ∗this the preimage of ∗this with respect to the generalized affine relation var′ =
expr

denominator
(mod modulus).

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Grid Class Reference 175

• void generalized_affine_image (const Linear_Expression &lhs, const Linear_Expression &rhs,
Coefficient_traits::const_reference modulus=Coefficient_one())

Assigns to ∗this the image of ∗this with respect to the generalized affine relation lhs′ = rhs
(mod modulus).

• void generalized_affine_preimage (const Linear_Expression &lhs, const Linear_Expression &rhs,
Coefficient_traits::const_reference modulus=Coefficient_one())

Assigns to ∗this the preimage of ∗this with respect to the generalized affine relation lhs′ = rhs
(mod modulus).

• void time_elapse_assign (const Grid &y)
Assigns to ∗this the result of computing the time-elapse between ∗this and y.

• void topological_closure_assign ()
Assigns to ∗this its topological closure.

• void widening_assign (const Grid &y, unsigned ∗tp=NULL)
Assigns to ∗this the result of computing the Grid widening between ∗this and y.

• void limited_extrapolation_assign (const Grid &y, const Congruence_System &cgs, unsigned
∗tp=NULL)

Improves the result of the Grid widening computation by also enforcing those congruences in cgs that
are satisfied by all the points of ∗this.

Member Functions that May Modify the Dimension of the Vector Space

• void add_space_dimensions_and_embed (dimension_type m)
Adds m new space dimensions and embeds the old grid in the new vector space.

• void add_space_dimensions_and_project (dimension_type m)
Adds m new space dimensions to the grid and does not embed it in the new vector space.

• void concatenate_assign (const Grid &y)
Assigns to ∗this the concatenation of ∗this and y, taken in this order.

• void remove_space_dimensions (const Variables_Set &to_be_removed)
Removes all the specified dimensions from the vector space.

• void remove_higher_space_dimensions (dimension_type new_dimension)
Removes the higher dimensions of the vector space so that the resulting space will have dimension
new_dimension.

• template<typename Partial_Function> void map_space_dimensions (const Partial_Function
&pfunc)

Remaps the dimensions of the vector space according to a partial function.

• void expand_space_dimension (Variable var, dimension_type m)
Creates m copies of the space dimension corresponding to var.

• void fold_space_dimensions (const Variables_Set &to_be_folded, Variable var)
Folds the space dimensions in to_be_folded into var.

Miscellaneous Member Functions

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Grid Class Reference 176

• ∼Grid ()
Destructor.

• void swap (Grid &y)
Swaps ∗this with grid y. (∗this and y can be dimension-incompatible.).

• memory_size_type total_memory_in_bytes () const
Returns the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

Static Public Member Functions

• static dimension_type max_space_dimension ()
Returns the maximum space dimension all kinds of Grid can handle.

Friends

• bool operator== (const Grid &x, const Grid &y)
Returns true if and only if x and y are the same grid.

Related Functions

(Note that these are not member functions.)

• std::ostream & operator<< (std::ostream &s, const Grid &gr)
Output operator.

• bool operator!= (const Grid &x, const Grid &y)
Returns true if and only if x and y are different grids.

• void swap (Parma_Polyhedra_Library::Grid &x, Parma_Polyhedra_Library::Grid &y)
Specializes std::swap.

9.19.1 Detailed Description

A grid.

An object of the class Grid represents a rational grid.

A grid can be specified as either a finite system of congruences or a finite system of generators (see Section
Rational Grids) and it is always possible to obtain either representation. That is, if we know the system
of congruences, we can obtain from this the system of generators that define the same grid and vice versa.
These systems can contain redundant members, or they can be in the minimal form. Most operators on grids
are provided with two implementations: one of these, denoted <operator-name>_and_minimize,

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Grid Class Reference 177

also enforces the minimization of the representations, and returns the boolean value false whenever the
resulting grid turns out to be empty.

A key attributes of any grid is its space dimension (the dimension n ∈ N of the enclosing vector space):

• all grids, the empty ones included, are endowed with a space dimension;

• most operations working on a grid and another object (another grid, a congruence, a generator, a set
of variables, etc.) will throw an exception if the grid and the object are not dimension-compatible
(see Section Space Dimensions and Dimension-compatibility for Grids);

• the only ways in which the space dimension of a grid can be changed are with explicit calls to
operators provided for that purpose, and with standard copy, assignment and swap operators.

Note that two different grids can be defined on the zero-dimension space: the empty grid and the universe
grid R0.

In all the examples it is assumed that variables x and y are defined (where they are used) as follows:

Variable x(0);
Variable y(1);

Example 1

The following code builds a grid corresponding to the even integer pairs in R2, given as a system of
congruences:

Congruence_System cgs;
cgs.insert((x %= 0) / 2);
cgs.insert((y %= 0) / 2);
Grid gr(cgs);

The following code builds the same grid as above, but starting from a system of generators specifying
three of the points:

Grid_Generator_System gs;
gs.insert(grid_point(0*x + 0*y));
gs.insert(grid_point(0*x + 2*y));
gs.insert(grid_point(2*x + 0*y));
Grid gr(gs);

Example 2

The following code builds a grid corresponding to a line in R2 by adding a single congruence to the
universe grid:

Congruence_System cgs;
cgs.insert(x - y == 0);
Grid gr(cgs);

The following code builds the same grid as above, but starting from a system of generators specifying
a point and a line:

Grid_Generator_System gs;
gs.insert(grid_point(0*x + 0*y));
gs.insert(grid_line(x + y));
Grid gr(gs);

Example 3

The following code builds a grid corresponding to the integral points on the line x = y in R2 con-
structed by adding an equality and congruence to the universe grid:

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Grid Class Reference 178

Congruence_System cgs;
cgs.insert(x - y == 0);
cgs.insert(x %= 0);
Grid gr(cgs);

The following code builds the same grid as above, but starting from a system of generators specifying
a point and a parameter:

Grid_Generator_System gs;
gs.insert(grid_point(0*x + 0*y));
gs.insert(parameter(x + y));
Grid gr(gs);

Example 4

The following code builds the grid corresponding to a plane by creating the universe grid in R2:

Grid gr(2);

The following code builds the same grid as above, but starting from the empty grid in R2 and inserting
the appropriate generators (a point, and two lines).

Grid gr(2, EMPTY);
gr.add_generator(grid_point(0*x + 0*y));
gr.add_generator(grid_line(x));
gr.add_generator(grid_line(y));

Note that a generator system must contain a point when describing a grid. To ensure that this is
always the case it is required that the first generator inserted in an empty grid is a point (otherwise, an
exception is thrown).

Example 5

The following code shows the use of the function add_space_dimensions_and_embed:

Grid gr(1);
gr.add_congruence(x == 2);
gr.add_space_dimensions_and_embed(1);

We build the universe grid in the 1-dimension space R. Then we add a single equality congruence,
thus obtaining the grid corresponding to the singleton set {2} ⊆ R. After the last line of code, the
resulting grid is {

(2, y)T ∈ R2
∣∣ y ∈ R

}
.

Example 6

The following code shows the use of the function add_space_dimensions_and_project:

Grid gr(1);
gr.add_congruence(x == 2);
gr.add_space_dimensions_and_project(1);

The first two lines of code are the same as in Example 4 for add_space_dimensions_and_-
embed. After the last line of code, the resulting grid is the singleton set

{
(2, 0)T

}
⊆ R2.

Example 7

The following code shows the use of the function affine_image:

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Grid Class Reference 179

Grid gr(2, EMPTY);
gr.add_generator(grid_point(0*x + 0*y));
gr.add_generator(grid_point(4*x + 0*y));
gr.add_generator(grid_point(0*x + 2*y));
Linear_Expression expr = x + 3;
gr.affine_image(x, expr);

In this example the starting grid is all the pairs of x and y in R2 where x is an integer multiple of 4
and y is an integer multiple of 2. The considered variable is x and the affine expression is x + 3. The
resulting grid is the given grid translated 3 integers to the right (all the pairs (x, y) where x is -1 plus
an integer multiple of 4 and y is an integer multiple of 2). Moreover, if the affine transformation for
the same variable x is instead x + y:

Linear_Expression expr = x + y;

the resulting grid is every second integral point along the x = y line, with this line of points repeated
at every fourth integral value along the x axis. Instead, if we do not use an invertible transformation
for the same variable; for example, the affine expression y:

Linear_Expression expr = y;

the resulting grid is every second point along the x = y line.

Example 8

The following code shows the use of the function affine_preimage:

Grid gr(2, EMPTY);
gr.add_generator(grid_point(0*x + 0*y));
gr.add_generator(grid_point(4*x + 0*y));
gr.add_generator(grid_point(0*x + 2*y));
Linear_Expression expr = x + 3;
gr.affine_preimage(x, expr);

In this example the starting grid, var and the affine expression and the denominator are the same as
in Example 6, while the resulting grid is similar but translated 3 integers to the left (all the pairs (x, y)
where x is -3 plus an integer multiple of 4 and y is an integer multiple of 2).. Moreover, if the affine
transformation for x is x + y

Linear_Expression expr = x + y;

the resulting grid is a similar grid to the result in Example 6, only the grid is slanted along x = −y.
Instead, if we do not use an invertible transformation for the same variable x, for example, the affine
expression y:

Linear_Expression expr = y;

the resulting grid is every fourth line parallel to the x axis.

Example 9

For this example we also use the variables:

Variable z(2);
Variable w(3);

The following code shows the use of the function remove_space_dimensions:

Grid_Generator_System gs;
gs.insert(grid_point(3*x + y +0*z + 2*w));
Grid gr(gs);
Variables_Set to_be_removed;
to_be_removed.insert(y);
to_be_removed.insert(z);
gr.remove_space_dimensions(to_be_removed);

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Grid Class Reference 180

The starting grid is the singleton set
{
(3, 1, 0, 2)T

}
⊆ R4, while the resulting grid is

{
(3, 2)T

}
⊆

R2. Be careful when removing space dimensions incrementally: since dimensions are automatically
renamed after each application of the remove_space_dimensions operator, unexpected results
can be obtained. For instance, by using the following code we would obtain a different result:

set<Variable> to_be_removed1;
to_be_removed1.insert(y);
gr.remove_space_dimensions(to_be_removed1);
set<Variable> to_be_removed2;
to_be_removed2.insert(z);
gr.remove_space_dimensions(to_be_removed2);

In this case, the result is the grid
{
(3, 0)T

}
⊆ R2: when removing the set of dimensions to_-

be_removed2 we are actually removing variable w of the original grid. For the same reason, the
operator remove_space_dimensions is not idempotent: removing twice the same non-empty
set of dimensions is never the same as removing them just once.

9.19.2 Constructor & Destructor Documentation

9.19.2.1 Parma_Polyhedra_Library::Grid::Grid (dimension_type num_dimensions = 0, const
Degenerate_Element kind = UNIVERSE) [explicit]

Builds a grid having the specified properties.

Parameters:

num_dimensions The number of dimensions of the vector space enclosing the grid;

kind Specifies whether the universe or the empty grid has to be built.

Exceptions:

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

9.19.2.2 Parma_Polyhedra_Library::Grid::Grid (const Congruence_System & cgs) [inline,
explicit]

Builds a grid, copying a system of congruences.

The grid inherits the space dimension of the congruence system.

Parameters:

cgs The system of congruences defining the grid.

Exceptions:

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

9.19.2.3 Parma_Polyhedra_Library::Grid::Grid (Congruence_System & cgs) [inline,
explicit]

Builds a grid, recycling a system of congruences.

The grid inherits the space dimension of the congruence system.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Grid Class Reference 181

Parameters:

cgs The system of congruences defining the grid. Its data-structures will be recycled to build the grid.

Exceptions:

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

9.19.2.4 Parma_Polyhedra_Library::Grid::Grid (const Constraint_System & cs) [explicit]

Builds a grid, copying a system of constraints.

The grid inherits the space dimension of the constraint system.

Parameters:

cs The system of constraints defining the grid.

Exceptions:

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

9.19.2.5 Parma_Polyhedra_Library::Grid::Grid (Constraint_System & cs) [explicit]

Builds a grid, recycling a system of constraints.

The grid inherits the space dimension of the constraint system.

Parameters:

cs The system of constraints defining the grid.

Exceptions:

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

9.19.2.6 Parma_Polyhedra_Library::Grid::Grid (const Grid_Generator_System & const_gs)
[inline, explicit]

Builds a grid, copying a system of generators.

The grid inherits the space dimension of the generator system.

Parameters:

const_gs The system of generators defining the grid.

Exceptions:

std::invalid_argument Thrown if the system of generators is not empty but has no points.

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Grid Class Reference 182

9.19.2.7 Parma_Polyhedra_Library::Grid::Grid (Grid_Generator_System & gs) [inline,
explicit]

Builds a grid, recycling a system of generators.

The grid inherits the space dimension of the generator system.

Parameters:

gs The system of generators defining the grid. Its data-structures will be recycled to build the grid.

Exceptions:

std::invalid_argument Thrown if the system of generators is not empty but has no points.

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

9.19.2.8 template<typename Box> Parma_Polyhedra_Library::Grid::Grid (const Box & box,
From_Bounding_Box dummy)

Builds a grid out of a generic, interval-based bounding box.

Parameters:

box The bounding box representing the grid to be built. The box can contain only point and universe
intervals;

dummy A dummy tag to make this constructor syntactically unique.

Exceptions:

std::length_error Thrown if the space dimension of box exceeds the maximum allowed space di-
mension.

std::invalid_argument Thrown if box contains at least one interval with: a topologically open bound,
a single bound, or two bounds which have space between them.

The template class Box must provide the following methods.

dimension_type space_dimension() const

returns the dimension of the vector space enclosing the grid represented by the bounding box.

bool is_empty() const

returns true if and only if the bounding box describes the empty set.

bool get_lower_bound(dimension_type k, bool closed,
Coefficient& n, Coefficient& d) const

Let I be the interval corresponding to the k-th space dimension. If I is not bounded from below, simply
return false. Otherwise, set closed, n and d as follows: closed is set to true if the lower boundary
of I is closed and is set to false otherwise; n and d are assigned the integers n and d such that the
canonical fraction n/d corresponds to the greatest lower bound of I . The fraction n/d is in canonical form
if and only if n and d have no common factors and d is positive, 0/1 being the unique representation for
zero.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Grid Class Reference 183

bool get_upper_bound(dimension_type k, bool closed,
Coefficient& n, Coefficient& d) const

Let I be the interval corresponding to the k-th space dimension. If I is not bounded from above, simply
return false. Otherwise, set closed, n and d as follows: closed is set to true if the upper boundary
of I is closed and is set to false otherwise; n and d are assigned the integers n and d such that the
canonical fraction n/d corresponds to the least upper bound of I .

9.19.2.9 template<typename Box> Parma_Polyhedra_Library::Grid::Grid (const Box & box,
From_Covering_Box dummy)

Builds a grid out of a generic, interval-based covering box.

The covering box is a set of upper and lower values for each dimension. When a covering box is tiled onto
empty space the corners of the tiles form a rectilinear grid.

A box interval with only one bound fixes the values of all grid points in the dimension associated with the
box to the value of the bound. A box interval which has upper and lower bounds of equal value allows all
grid points with any value in the dimension associated with the interval. The presence of a universe interval
results in the empty grid. The empty box produces the empty grid of the same dimension as the box.

Parameters:

box The covering box representing the grid to be built;

dummy A dummy tag to make this constructor syntactically unique.

Exceptions:

std::length_error Thrown if the space dimension of box exceeds the maximum allowed space di-
mension.

std::invalid_argument Thrown if box contains any topologically open bounds.

The template class Box must provide the following methods.

dimension_type space_dimension() const

returns the dimension of the vector space enclosing the grid represented by the covering box.

bool is_empty() const

returns true if and only if the covering box describes the empty set.

bool get_lower_bound(dimension_type k, bool closed,
Coefficient& n, Coefficient& d) const

Let I be the interval corresponding to the k-th space dimension. If I is not bounded from below, simply
return false. Otherwise, set closed, n and d as follows: closed is set to true if the lower boundary
of I is closed and is set to false otherwise; n and d are assigned the integers n and d such that the
canonical fraction n/d corresponds to the greatest lower bound of I . The fraction n/d is in canonical form
if and only if n and d have no common factors and d is positive, 0/1 being the unique representation for
zero.

bool get_upper_bound(dimension_type k, bool closed,
Coefficient& n, Coefficient& d) const

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Grid Class Reference 184

Let I be the interval corresponding to the k-th space dimension. If I is not bounded from above, simply
return false. Otherwise, set closed, n and d as follows: closed is set to true if the upper boundary
of I is closed and is set to false otherwise; n and d are assigned the integers n and d such that the
canonical fraction n/d corresponds to the least upper bound of I .

9.19.3 Member Function Documentation

9.19.3.1 bool Parma_Polyhedra_Library::Grid::is_disjoint_from (const Grid & y) const

Returns true if and only if ∗this and y are disjoint.

Exceptions:

std::invalid_argument Thrown if x and y are dimension-incompatible.

9.19.3.2 bool Parma_Polyhedra_Library::Grid::is_discrete () const

Returns true if and only if ∗this is discrete.

A grid is discrete if it can be defined by a generator system which contains only points and parameters.
This includes the empty grid and any grid in dimension zero.

9.19.3.3 bool Parma_Polyhedra_Library::Grid::bounds_from_above (const Linear_Expression &
expr) const [inline]

Returns true if and only if expr is bounded in ∗this.

This method is the same as bounds_from_below.

Exceptions:

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

9.19.3.4 bool Parma_Polyhedra_Library::Grid::bounds_from_below (const Linear_Expression &
expr) const [inline]

Returns true if and only if expr is bounded in ∗this.

This method is the same as bounds_from_above.

Exceptions:

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

9.19.3.5 bool Parma_Polyhedra_Library::Grid::maximize (const Linear_Expression & expr, Coef-
ficient & sup_n, Coefficient & sup_d, bool & maximum) const [inline]

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value is computed.

Parameters:

expr The linear expression to be maximized subject to ∗this;

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Grid Class Reference 185

sup_n The numerator of the supremum value;

sup_d The denominator of the supremum value;

maximum true if the supremum value can be reached in this. Always true when this bounds
expr. Present for interface compatibility with class Polyhedron, where closure points can result
in a value of false.

Exceptions:

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded by ∗this, false is returned and sup_n, sup_d and
maximum are left untouched.

9.19.3.6 bool Parma_Polyhedra_Library::Grid::maximize (const Linear_Expression & expr, Coef-
ficient & sup_n, Coefficient & sup_d, bool & maximum, Grid_Generator & point) const [inline]

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value and a point where expr reaches it are computed.

Parameters:

expr The linear expression to be maximized subject to ∗this;

sup_n The numerator of the supremum value;

sup_d The denominator of the supremum value;

maximum true if the supremum value can be reached in this. Always true when this bounds
expr. Present for interface compatibility with class Polyhedron, where closure points can result
in a value of false;

point When maximization succeeds, will be assigned a point where expr reaches its supremum value.

Exceptions:

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded by ∗this, false is returned and sup_n, sup_d, maximum
and point are left untouched.

9.19.3.7 bool Parma_Polyhedra_Library::Grid::minimize (const Linear_Expression & expr, Coef-
ficient & inf_n, Coefficient & inf_d, bool & minimum) const [inline]

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value is computed.

Parameters:

expr The linear expression to be minimized subject to ∗this;

inf_n The numerator of the infimum value;

inf_d The denominator of the infimum value;

minimum true if the is the infimum value can be reached in this. Always true when this
bounds expr. Present for interface compatibility with class Polyhedron, where closure points
can result in a value of false.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Grid Class Reference 186

Exceptions:

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded from below, false is returned and inf_n, inf_d and
minimum are left untouched.

9.19.3.8 bool Parma_Polyhedra_Library::Grid::minimize (const Linear_Expression & expr, Coef-
ficient & inf_n, Coefficient & inf_d, bool & minimum, Grid_Generator & point) const [inline]

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value and a point where expr reaches it are computed.

Parameters:

expr The linear expression to be minimized subject to ∗this;

inf_n The numerator of the infimum value;

inf_d The denominator of the infimum value;

minimum true if the is the infimum value can be reached in this. Always true when this
bounds expr. Present for interface compatibility with class Polyhedron, where closure points
can result in a value of false;

point When minimization succeeds, will be assigned a point where expr reaches its infimum value.

Exceptions:

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded from below, false is returned and inf_n, inf_d, minimum
and point are left untouched.

9.19.3.9 bool Parma_Polyhedra_Library::Grid::contains (const Grid & y) const

Returns true if and only if ∗this contains y.

Exceptions:

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

9.19.3.10 bool Parma_Polyhedra_Library::Grid::strictly_contains (const Grid & y) const
[inline]

Returns true if and only if ∗this strictly contains y.

Exceptions:

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Grid Class Reference 187

9.19.3.11 template<typename Box> void Parma_Polyhedra_Library::Grid::shrink_bounding_-
box (Box & box) const

Uses ∗this to shrink a generic, interval-based bounding box.

Parameters:

box The bounding box to be shrunk.

Exceptions:

std::invalid_argument Thrown if ∗this and box are dimension-incompatible, or if box contains
any topologically open bounds.

The template class Box must provide the following methods

dimension_type space_dimension() const

returns the dimension of the vector space enclosing the grid represented by the bounding box.

bool get_lower_bound(dimension_type k, bool closed,
Coefficient& n, Coefficient& d) const

Let I be the interval corresponding to the k-th space dimension. If I is not bounded from below, simply
return false. Otherwise, set closed, n and d as follows: closed is set to true if the lower boundary
of I is closed and is set to false otherwise; n and d are assigned the integers n and d such that the
canonical fraction n/d corresponds to the greatest lower bound of I . The fraction n/d is in canonical form
if and only if n and d have no common factors and d is positive, 0/1 being the unique representation for
zero.

bool get_upper_bound(dimension_type k, bool closed,
Coefficient& n, Coefficient& d) const

Let I be the interval corresponding to the k-th space dimension. If I is not bounded from above, simply
return false. Otherwise, set closed, n and d as follows: closed is set to true if the upper boundary
of I is closed and is set to false otherwise; n and d are assigned the integers n and d such that the
canonical fraction n/d corresponds to the least upper bound of I .

set_empty()

Causes the box to become empty, i.e., to represent the empty set.

raise_lower_bound(dimension_type k, bool closed,
Coefficient_traits::const_reference n,
Coefficient_traits::const_reference d)

intersects the interval corresponding to the k-th space dimension with [n/d,+∞). closed is always
passed as true.

lower_upper_bound(dimension_type k, bool closed,
Coefficient_traits::const_reference n,
Coefficient_traits::const_reference d)

intersects the interval corresponding to the k-th space dimension with (−∞, n/d]. closed is always
passed as true.

The function raise_lower_bound(k, closed, n, d) will be called at most once for each pos-
sible value for k and for all such calls the fraction n/d will be in canonical form, that is, n and d have
no common factors and d is positive, 0/1 being the unique representation for zero. The same guarantee is
offered for the function lower_upper_bound(k, closed, n, d).

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Grid Class Reference 188

9.19.3.12 template<typename Box> void Parma_Polyhedra_Library::Grid::get_covering_box
(Box & box) const

Writes the covering box for ∗this into box.

The covering box is a set of upper and lower values for each dimension. When the covering box written
into box is tiled onto empty space the corners of the tiles form the sparsest rectilinear grid that includes
∗this.

The value of the lower bound of each interval of the resulting box are as close as possible to the origin,
with positive values taking preference when the lowest positive value equals the lowest negative value.

If all the points have a single value in a particular dimension of the grid then there is only a lower bound
on the interval produced in box, and the lower bound denotes the single value for the dimension. If the
coordinates of the points in a particular dimension include every value then the upper and lower bounds of
the associated interval in box are set equal. The empty grid produces the empty box. The zero dimension
universe grid produces the zero dimension universe box.

Parameters:

box The Box into which the covering box is written.

Exceptions:

std::invalid_argument Thrown if ∗this and box are dimension-incompatible.

The template class Box must provide the following methods

Box(dimension_type space_dimension)

Creates a universe box of space_dimension dimensions.

dimension_type space_dimension() const

returns the dimension of the vector space enclosing the grid represented by the covering box.

set_empty()

Causes the box to become empty, i.e., to represent the empty set.

raise_lower_bound(dimension_type k, bool closed,
Coefficient_traits::const_reference n,
Coefficient_traits::const_reference d)

intersects the interval corresponding to the k-th space dimension with [n/d,+∞). closed is always
passed as true.

lower_upper_bound(dimension_type k, bool closed,
Coefficient_traits::const_reference n,
Coefficient_traits::const_reference d)

intersects the interval corresponding to the k-th space dimension with (−∞, n/d]. closed is always
passed as true.

The function raise_lower_bound(k, closed, n, d) will be called at most once for each pos-
sible value for k and for all such calls the fraction n/d will be in canonical form, that is, n and d have
no common factors and d is positive, 0/1 being the unique representation for zero. The same guarantee is
offered for the function lower_upper_bound(k, closed, n, d).

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Grid Class Reference 189

9.19.3.13 bool Parma_Polyhedra_Library::Grid::OK (bool check_not_empty = false) const

Checks if all the invariants are satisfied.

Returns:

true if and only if ∗this satisfies all the invariants and either check_not_empty is false or
∗this is not empty.

Parameters:

check_not_empty true if and only if, in addition to checking the invariants, ∗this must be checked
to be not empty.

The check is performed so as to intrude as little as possible. If the library has been compiled with run-
time assertions enabled, error messages are written on std::cerr in case invariants are violated. This is
useful for the purpose of debugging the library.

9.19.3.14 void Parma_Polyhedra_Library::Grid::add_congruence (const Congruence & cg)

Adds a copy of congruence cg to ∗this.

Exceptions:

std::invalid_argument Thrown if ∗this and congruence cg are dimension-incompatible.

9.19.3.15 void Parma_Polyhedra_Library::Grid::add_congruence (const Constraint & c)

Adds constraint c to ∗this.

The addition can only affect ∗this if c is an equality.

Exceptions:

std::invalid_argument Thrown if ∗this and constraint c are dimension-incompatible.

9.19.3.16 bool Parma_Polyhedra_Library::Grid::add_congruence_and_minimize (const Congru-
ence & c)

Adds a copy of congruence cg to the system of congruences of this, reducing the result.

Returns:

false if and only if the result is empty.

Exceptions:

std::invalid_argument Thrown if ∗this and congruence cg are dimension-incompatible.

9.19.3.17 bool Parma_Polyhedra_Library::Grid::add_congruence_and_minimize (const Con-
straint & c)

Adds a copy of constraint c to ∗this, reducing the result.

The addition can only affect ∗this if c is an equality.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Grid Class Reference 190

Returns:

false if and only if the result is empty.

Exceptions:

std::invalid_argument Thrown if ∗this and constraint c are dimension-incompatible.

9.19.3.18 void Parma_Polyhedra_Library::Grid::add_generator (const Grid_Generator & g)

Adds a copy of generator g to the system of generators of this.

Exceptions:

std::invalid_argument Thrown if ∗this and generator g are dimension-incompatible, or if ∗this
is an empty grid and g is not a point.

9.19.3.19 bool Parma_Polyhedra_Library::Grid::add_generator_and_minimize (const Grid_-
Generator & g)

Adds a copy of generator g to the system of generators of this, reducing the result.

Returns:

false if and only if the result is empty.

Exceptions:

std::invalid_argument Thrown if ∗this and generator g are dimension-incompatible, or if ∗this
is an empty grid and g is not a point.

9.19.3.20 void Parma_Polyhedra_Library::Grid::add_congruences (const Congruence_System &
cgs)

Adds a copy of each congruence in cgs to ∗this.

Parameters:

cgs Contains the congruences that will be added to the system of congruences of ∗this.

Exceptions:

std::invalid_argument Thrown if ∗this and cgs are dimension-incompatible.

9.19.3.21 void Parma_Polyhedra_Library::Grid::add_congruences (const Constraint_System &
cs)

Adds a copy of each equality constraint in cs to ∗this.

Parameters:

cs The congruences that will be considered for addition to the system of congruences of ∗this.

Exceptions:

std::invalid_argument Thrown if ∗this and cgs are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Grid Class Reference 191

9.19.3.22 void Parma_Polyhedra_Library::Grid::add_recycled_congruences (Congruence_System
& cgs)

Adds the congruences in cgs to ∗this.

Parameters:

cgs The congruence system that will be recycled, adding its congruences to the system of congruences
of ∗this.

Exceptions:

std::invalid_argument Thrown if ∗this and cs are dimension-incompatible.

Warning:

The only assumption that can be made about cgs upon successful or exceptional return is that it can
be safely destroyed.

9.19.3.23 void Parma_Polyhedra_Library::Grid::add_recycled_congruences (Constraint_System
& cs)

Adds the equality constraints in cs to ∗this.

Parameters:

cs The constraint system from which constraints will be considered for addition to the system of
congruences of ∗this.

Exceptions:

std::invalid_argument Thrown if ∗this and cs are dimension-incompatible.

Warning:

The only assumption that can be made about cs upon successful or exceptional return is that it can be
safely destroyed.

9.19.3.24 bool Parma_Polyhedra_Library::Grid::add_congruences_and_minimize (const
Congruence_System & cgs)

Adds a copy of the congruences in cgs to the system of congruences of ∗this, reducing the result.

Returns:

false if and only if the result is empty.

Parameters:

cgs Contains the congruences that will be added to the system of congruences of ∗this.

Exceptions:

std::invalid_argument Thrown if ∗this and cgs are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Grid Class Reference 192

9.19.3.25 bool Parma_Polyhedra_Library::Grid::add_congruences_and_minimize (const
Constraint_System & cs)

Adds a copy of each equality constraint in cs to ∗this, reducing the result.

Returns:

false if and only if the result is empty.

Parameters:

cs Contains the constraints that will be added to the system of congruences of ∗this.

Exceptions:

std::invalid_argument Thrown if ∗this and cs are dimension-incompatible.

9.19.3.26 bool Parma_Polyhedra_Library::Grid::add_recycled_congruences_and_minimize
(Congruence_System & cgs)

Adds the congruences in cgs to the system of congruences of this, reducing the result.

Returns:

false if and only if the result is empty.

Parameters:

cgs The congruence system that will be recycled, adding its congruences to the system of congruences
of ∗this.

Exceptions:

std::invalid_argument Thrown if ∗this and cgs are dimension-incompatible.

Warning:

The only assumption that can be made about cgs upon successful or exceptional return is that it can
be safely destroyed.

9.19.3.27 bool Parma_Polyhedra_Library::Grid::add_recycled_congruences_and_minimize
(Constraint_System & cs)

Adds the equalities in cs to ∗this, reducing the result.

Returns:

false if and only if the result is empty.

Parameters:

cs The constraint system that will be recycled, adding its equalities to the system of congruences of
∗this.

Exceptions:

std::invalid_argument Thrown if ∗this and cs are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Grid Class Reference 193

Warning:

The only assumption that can be made about cs upon successful or exceptional return is that it can be
safely destroyed.

9.19.3.28 void Parma_Polyhedra_Library::Grid::add_constraint (const Constraint & c)

Adds constraint c to ∗this.

The addition can only affect ∗this if c is an equality.

Exceptions:

std::invalid_argument Thrown if ∗this and c are dimension-incompatible.

9.19.3.29 bool Parma_Polyhedra_Library::Grid::add_constraint_and_minimize (const Constraint
& c)

Adds constraint c to ∗this, reducing the result.

The addition can only affect ∗this if c is an equality.

Returns:

false if and only if the result is empty.

Exceptions:

std::invalid_argument Thrown if ∗this and c are dimension-incompatible.

9.19.3.30 void Parma_Polyhedra_Library::Grid::add_constraints (const Constraint_System & cs)

Adds copies of the equality constraints in cs to ∗this.

Exceptions:

std::invalid_argument Thrown if ∗this and cs are dimension-incompatible.

9.19.3.31 bool Parma_Polyhedra_Library::Grid::add_constraints_and_minimize (const
Constraint_System & cs)

Adds copies of the equality constraints in cs to ∗this, reducing the result.

Returns:

false if and only if the result is empty.

Exceptions:

std::invalid_argument Thrown if ∗this and cs are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Grid Class Reference 194

9.19.3.32 void Parma_Polyhedra_Library::Grid::add_recycled_constraints (Constraint_System &
cs)

Adds the equality constraints in cs to ∗this.

Exceptions:

std::invalid_argument Thrown if ∗this and cs are dimension-incompatible.

Warning:

The only assumption that can be made about cs upon successful or exceptional return is that it can be
safely destroyed.

9.19.3.33 bool Parma_Polyhedra_Library::Grid::add_recycled_constraints_and_minimize
(Constraint_System & cs)

Returns:

false if and only if the result is empty.

Exceptions:

std::invalid_argument Thrown if ∗this and cs are dimension-incompatible.

Warning:

The only assumption that can be made about cs upon successful or exceptional return is that it can be
safely destroyed.

9.19.3.34 void Parma_Polyhedra_Library::Grid::add_generators (const Grid_Generator_System
& gs)

Adds a copy of the generators in gs to the system of generators of ∗this.

Parameters:

gs Contains the generators that will be added to the system of generators of ∗this.

Exceptions:

std::invalid_argument Thrown if ∗this and gs are dimension-incompatible, or if ∗this is empty
and the system of generators gs is not empty, but has no points.

9.19.3.35 void Parma_Polyhedra_Library::Grid::add_recycled_generators (Grid_Generator_-
System & gs)

Adds the generators in gs to the system of generators of this.

Parameters:

gs The generator system that will be recycled, adding its generators to the system of generators of
∗this.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Grid Class Reference 195

Exceptions:

std::invalid_argument Thrown if ∗this and gs are dimension-incompatible, or if ∗this is empty
and the system of generators gs is not empty, but has no points.

Warning:

The only assumption that can be made about gs upon successful or exceptional return is that it can be
safely destroyed.

9.19.3.36 bool Parma_Polyhedra_Library::Grid::add_generators_and_minimize (const Grid_-
Generator_System & gs)

Adds a copy of the generators in gs to the system of generators of ∗this, reducing the result.

Returns:

false if and only if the result is empty.

Parameters:

gs Contains the generators that will be added to the system of generators of ∗this.

Exceptions:

std::invalid_argument Thrown if ∗this and gs are dimension-incompatible, or if this is empty
and the system of generators gs is not empty, but has no points.

9.19.3.37 bool Parma_Polyhedra_Library::Grid::add_recycled_generators_and_minimize
(Grid_Generator_System & gs)

Adds the generators in gs to the system of generators of this, reducing the result.

Returns:

false if and only if the result is empty.

Parameters:

gs The generator system that will be recycled, adding its generators to the system of generators of
∗this.

Exceptions:

std::invalid_argument Thrown if ∗this and gs are dimension-incompatible, or if this is empty
and the system of generators gs is not empty, but has no points.

Warning:

The only assumption that can be made about gs upon successful or exceptional return is that it can be
safely destroyed.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Grid Class Reference 196

9.19.3.38 void Parma_Polyhedra_Library::Grid::intersection_assign (const Grid & y)

Assigns to ∗this the intersection of ∗this and y. The result is not guaranteed to be reduced.

Exceptions:

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

9.19.3.39 bool Parma_Polyhedra_Library::Grid::intersection_assign_and_minimize (const Grid
& y)

Assigns to ∗this the intersection of ∗this and y, reducing the result.

Returns:

false if and only if the result is empty.

Exceptions:

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

9.19.3.40 void Parma_Polyhedra_Library::Grid::join_assign (const Grid & y)

Assigns to ∗this the join of ∗this and y.

Exceptions:

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

9.19.3.41 bool Parma_Polyhedra_Library::Grid::join_assign_and_minimize (const Grid & y)

Assigns to ∗this the join of ∗this and y, reducing the result.

Returns:

false if and only if the result is empty.

Exceptions:

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

9.19.3.42 bool Parma_Polyhedra_Library::Grid::join_assign_if_exact (const Grid & y)

If the join of ∗this and y is exact it is assigned to this and true is returned, otherwise false is
returned.

Exceptions:

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Grid Class Reference 197

9.19.3.43 void Parma_Polyhedra_Library::Grid::grid_difference_assign (const Grid & y)

Assigns to ∗this the grid-difference of ∗this and y.

The grid difference between grids x and y is the smallest grid containing all the points from x and y that
are only in x.

Exceptions:

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

9.19.3.44 void Parma_Polyhedra_Library::Grid::affine_image (Variable var, const Linear_-
Expression & expr, Coefficient_traits::const_reference denominator = Coefficient_one())

Assigns to ∗this the affine image of this under the function mapping variable var to the affine expres-
sion specified by expr and denominator.

Parameters:

var The variable to which the affine expression is assigned;

expr The numerator of the affine expression;

denominator The denominator of the affine expression (optional argument with default value 1).

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a space dimension of ∗this.

9.19.3.45 void Parma_Polyhedra_Library::Grid::affine_preimage (Variable var, const Linear_-
Expression & expr, Coefficient_traits::const_reference denominator = Coefficient_one())

Assigns to ∗this the affine preimage of ∗this under the function mapping variable var to the affine
expression specified by expr and denominator.

Parameters:

var The variable to which the affine expression is substituted;

expr The numerator of the affine expression;

denominator The denominator of the affine expression (optional argument with default value 1).

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a space dimension of ∗this.

9.19.3.46 void Parma_Polyhedra_Library::Grid::generalized_affine_image (Variable var, const
Linear_Expression & expr, Coefficient_traits::const_reference denominator = Coefficient_-
one(), Coefficient_traits::const_reference modulus = Coefficient_one())

Assigns to ∗this the image of ∗this with respect to the generalized affine relation var′ = expr
denominator

(mod modulus).

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Grid Class Reference 198

Parameters:

var The left hand side variable of the generalized affine relation;

expr The numerator of the right hand side affine expression;

denominator The denominator of the right hand side affine expression. Optional argument with an
automatic value of one;

modulus The modulus of the congruence lhs = rhs. A modulus of zero indicates lhs == rhs. Optional
argument with an automatic value of one.

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a space dimension of this.

9.19.3.47 void Parma_Polyhedra_Library::Grid::generalized_affine_preimage (Variable var, const
Linear_Expression & expr, Coefficient_traits::const_reference denominator = Coefficient_-
one(), Coefficient_traits::const_reference modulus = Coefficient_one())

Assigns to ∗this the preimage of ∗thiswith respect to the generalized affine relation var′ = expr
denominator

(mod modulus).

Parameters:

var The left hand side variable of the generalized affine relation;

expr The numerator of the right hand side affine expression;

denominator The denominator of the right hand side affine expression. Optional argument with an
automatic value of one;

modulus The modulus of the congruence lhs = rhs. A modulus of zero indicates lhs == rhs. Optional
argument with an automatic value of one.

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a space dimension of this.

9.19.3.48 void Parma_Polyhedra_Library::Grid::generalized_affine_image (const Linear_-
Expression & lhs, const Linear_Expression & rhs, Coefficient_traits::const_reference modulus =
Coefficient_one())

Assigns to ∗this the image of ∗this with respect to the generalized affine relation lhs′ = rhs
(mod modulus).

Parameters:

lhs The left hand side affine expression.

rhs The right hand side affine expression.

modulus The modulus of the congruence lhs = rhs. A modulus of zero indicates lhs == rhs. Optional
argument with an automatic value of one.

Exceptions:

std::invalid_argument Thrown if ∗this is dimension-incompatible with lhs or rhs.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Grid Class Reference 199

9.19.3.49 void Parma_Polyhedra_Library::Grid::generalized_affine_preimage (const Linear_-
Expression & lhs, const Linear_Expression & rhs, Coefficient_traits::const_reference modulus =
Coefficient_one())

Assigns to ∗this the preimage of ∗this with respect to the generalized affine relation lhs′ = rhs
(mod modulus).

Parameters:

lhs The left hand side affine expression;

rhs The right hand side affine expression;

modulus The modulus of the congruence lhs = rhs. A modulus of zero indicates lhs == rhs. Optional
argument with an automatic value of one.

Exceptions:

std::invalid_argument Thrown if ∗this is dimension-incompatible with lhs or rhs.

9.19.3.50 void Parma_Polyhedra_Library::Grid::time_elapse_assign (const Grid & y)

Assigns to ∗this the result of computing the time-elapse between ∗this and y.

Exceptions:

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

9.19.3.51 void Parma_Polyhedra_Library::Grid::widening_assign (const Grid & y, unsigned ∗ tp =
NULL)

Assigns to ∗this the result of computing the Grid widening between ∗this and y.

Parameters:

y A grid that must be contained in ∗this;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

9.19.3.52 void Parma_Polyhedra_Library::Grid::limited_extrapolation_assign (const Grid & y,
const Congruence_System & cgs, unsigned ∗ tp = NULL)

Improves the result of the Grid widening computation by also enforcing those congruences in cgs that are
satisfied by all the points of ∗this.

Parameters:

y A grid that must be contained in ∗this;

cgs The system of congruences used to improve the widened grid;

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Grid Class Reference 200

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if ∗this, y and cs are dimension-incompatible.

9.19.3.53 void Parma_Polyhedra_Library::Grid::add_space_dimensions_and_embed
(dimension_type m)

Adds m new space dimensions and embeds the old grid in the new vector space.

Parameters:

m The number of dimensions to add.

Exceptions:

std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed
dimension max_space_dimension().

The new space dimensions will be those having the highest indexes in the new grid, which is characterized
by a system of congruences in which the variables which are the new dimensions can have any value. For
instance, when starting from the grid L ⊆ R2 and adding a third space dimension, the result will be the
grid {

(x, y, z)T ∈ R3
∣∣ (x, y)T ∈ L

}
.

9.19.3.54 void Parma_Polyhedra_Library::Grid::add_space_dimensions_and_project
(dimension_type m)

Adds m new space dimensions to the grid and does not embed it in the new vector space.

Parameters:

m The number of space dimensions to add.

Exceptions:

std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed
dimension max_space_dimension().

The new space dimensions will be those having the highest indexes in the new grid, which is characterized
by a system of congruences in which the variables running through the new dimensions are all constrained
to be equal to 0. For instance, when starting from the grid L ⊆ R2 and adding a third space dimension, the
result will be the grid {

(x, y, 0)T ∈ R3
∣∣ (x, y)T ∈ L

}
.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Grid Class Reference 201

9.19.3.55 void Parma_Polyhedra_Library::Grid::concatenate_assign (const Grid & y)

Assigns to ∗this the concatenation of ∗this and y, taken in this order.

Exceptions:

std::length_error Thrown if the concatenation would cause the vector space to exceed dimension
max_space_dimension().

9.19.3.56 void Parma_Polyhedra_Library::Grid::remove_space_dimensions (const Variables_Set
& to_be_removed)

Removes all the specified dimensions from the vector space.

Parameters:

to_be_removed The set of Variable objects corresponding to the space dimensions to be removed.

Exceptions:

std::invalid_argument Thrown if ∗this is dimension-incompatible with one of the Variable objects
contained in to_be_removed.

9.19.3.57 void Parma_Polyhedra_Library::Grid::remove_higher_space_dimensions (dimension_-
type new_dimension)

Removes the higher dimensions of the vector space so that the resulting space will have dimension new_-
dimension.

Exceptions:

std::invalid_argument Thrown if new_dimensions is greater than the space dimension of ∗this.

9.19.3.58 template<typename Partial_Function> void Parma_Polyhedra_Library::Grid::map_-
space_dimensions (const Partial_Function & pfunc)

Remaps the dimensions of the vector space according to a partial function.

If pfunc maps only some of the dimensions of ∗this then the rest will be projected away.

If the highest dimension mapped to by pfunc is higher than the highest dimension in ∗this then the
number of dimensions in this will be increased to the highest dimension mapped to by pfunc.

Parameters:

pfunc The partial function specifying the destiny of each space dimension.

The template class Partial_Function must provide the following methods.

bool has_empty_codomain() const

returns true if and only if the represented partial function has an empty codomain (i.e., it is always
undefined). The has_empty_codomain() method will always be called before the methods below.
However, if has_empty_codomain() returns true, none of the functions below will be called.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Grid Class Reference 202

dimension_type max_in_codomain() const

returns the maximum value that belongs to the codomain of the partial function. The max_in_-
codomain() method is called at most once.

bool maps(dimension_type i, dimension_type& j) const

Let f be the represented function and k be the value of i. If f is defined in k, then f(k) is assigned to
j and true is returned. If f is undefined in k, then false is returned. This method is called at most n
times, where n is the dimension of the vector space enclosing the grid.

The result is undefined if pfunc does not encode a partial function with the properties described in the
specification of the mapping operator.

9.19.3.59 void Parma_Polyhedra_Library::Grid::expand_space_dimension (Variable var,
dimension_type m)

Creates m copies of the space dimension corresponding to var.

Parameters:

var The variable corresponding to the space dimension to be replicated;

m The number of replicas to be created.

Exceptions:

std::invalid_argument Thrown if var does not correspond to a dimension of the vector space.

std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed
dimension max_space_dimension().

If ∗this has space dimension n, with n > 0, and var has space dimension k ≤ n, then the k-th space
dimension is expanded to m new space dimensions n, n + 1, . . . , n + m− 1.

9.19.3.60 void Parma_Polyhedra_Library::Grid::fold_space_dimensions (const Variables_Set &
to_be_folded, Variable var)

Folds the space dimensions in to_be_folded into var.

Parameters:

to_be_folded The set of Variable objects corresponding to the space dimensions to be folded;

var The variable corresponding to the space dimension that is the destination of the folding operation.

Exceptions:

std::invalid_argument Thrown if ∗this is dimension-incompatible with var or with one of the
Variable objects contained in to_be_folded. Also thrown if var is contained in to_be_-
folded.

If ∗this has space dimension n, with n > 0, var has space dimension k ≤ n, to_be_folded is a set
of variables whose maximum space dimension is also less than or equal to n, and var is not a member of
to_be_folded, then the space dimensions corresponding to variables in to_be_folded are folded
into the k-th space dimension.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.20 Parma_Polyhedra_Library::Grid_Certificate Class Reference 203

9.19.4 Friends And Related Function Documentation

9.19.4.1 bool operator== (const Grid & x, const Grid & y) [friend]

Returns true if and only if x and y are the same grid.

Note that x and y may be dimension-incompatible grids: in those cases, the value false is returned.

9.19.4.2 std::ostream & operator<< (std::ostream & s, const Grid & gr) [related]

Output operator.

Writes a textual representation of gr on s: false is written if gr is an empty grid; true is written if gr
is a universe grid; a minimized system of congruences defining gr is written otherwise, all congruences in
one row separated by ", "s.

9.19.4.3 bool operator!= (const Grid & x, const Grid & y) [related]

Returns true if and only if x and y are different grids.

Note that x and y may be dimension-incompatible grids: in those cases, the value true is returned.

9.20 Parma_Polyhedra_Library::Grid_Certificate Class Reference

The convergence certificate for the Grid widening operator.

Public Member Functions

• Grid_Certificate ()
Default constructor.

• Grid_Certificate (const Grid &gr)
Constructor: computes the certificate for gr.

• Grid_Certificate (const Grid_Certificate &y)
Copy constructor.

• ∼Grid_Certificate ()
Destructor.

• int compare (const Grid_Certificate &y) const
The comparison function for certificates.

• int compare (const Grid &gr) const
Compares ∗this with the certificate for grid gr.

Classes

• struct Compare
A total ordering on Grid certificates.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.21 Parma_Polyhedra_Library::Grid_Certificate::Compare Struct Reference 204

9.20.1 Detailed Description

The convergence certificate for the Grid widening operator.

Convergence certificates are used to instantiate the BHZ03 framework so as to define widening operators
for the finite powerset domain.

Note:

Each convergence certificate has to be used together with a compatible widening operator. In particular,
Grid_Certificate can certify the Grid widening.

9.20.2 Member Function Documentation

9.20.2.1 int Parma_Polyhedra_Library::Grid_Certificate::compare (const Grid_Certificate & y)
const

The comparison function for certificates.

Returns:

−1, 0 or 1 depending on whether ∗this is smaller than, equal to, or greater than y, respectively.

9.21 Parma_Polyhedra_Library::Grid_Certificate::Compare Struct Reference

A total ordering on Grid certificates.

Public Member Functions

• bool operator() (const Grid_Certificate &x, const Grid_Certificate &y) const
Returns true if and only if x comes before y.

9.21.1 Detailed Description

A total ordering on Grid certificates.

This binary predicate defines a total ordering on Grid certificates which is used when storing information
about sets of grids.

9.22 Parma_Polyhedra_Library::Grid_Generator Class Reference

A line, parameter or point.

Inherits Parma_Polyhedra_Library::Generator.

Public Types

• enum Type { LINE, PARAMETER, POINT }
The generator type.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.22 Parma_Polyhedra_Library::Grid_Generator Class Reference 205

Public Member Functions

• dimension_type space_dimension () const
Returns the dimension of the vector space enclosing ∗this.

• Type type () const
Returns the generator type of ∗this.

• bool is_line () const
Returns true if and only if ∗this is a line.

• bool is_parameter () const
Returns true if and only if ∗this is a parameter.

• bool is_line_or_parameter () const
Returns true if and only if ∗this is a line or a parameter.

• bool is_point () const
Returns true if and only if ∗this is a point.

• bool is_parameter_or_point () const
Returns true if and only if ∗this row represents a parameter or a point.

• Grid_Generator & operator= (const Grid_Generator &g)
Assignment operator.

• Grid_Generator & operator= (const Generator &g)
Assignment operator.

• Coefficient_traits::const_reference divisor () const
Returns the divisor of ∗this.

• memory_size_type total_memory_in_bytes () const
Returns a lower bound to the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

• bool is_equivalent_to (const Grid_Generator &y) const
Returns true if and only if ∗this and y are equivalent generators.

• bool is_equal_to (const Grid_Generator &y) const
Returns true if ∗this is exactly equal to y.

• bool all_homogeneous_terms_are_zero () const
Returns true if and only if all the homogeneous terms of ∗this are 0.

• void scale_to_divisor (Coefficient_traits::const_reference d)
Scales ∗this to be represented with a divisor of d (if \∗this is a parameter or point).

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.22 Parma_Polyhedra_Library::Grid_Generator Class Reference 206

• bool OK () const
Checks if all the invariants are satisfied.

• void swap (Grid_Generator &y)
Swaps ∗this with y.

• void coefficient_swap (Grid_Generator &y)
Swaps ∗this with y, leaving ∗this with the original capacity.

Static Public Member Functions

• static Grid_Generator line (const Linear_Expression &e)
Returns the line of direction e.

• static Grid_Generator parameter (const Linear_Expression &e=Linear_Expression::zero(),
Coefficient_traits::const_reference d=Coefficient_one())

Shorthand for Grid_Generator Grid_Generator::parameter(const Linear_Expression& e, Coefficient_-
traits::const_reference d).

• static Grid_Generator point (const Linear_Expression &e=Linear_Expression::zero(), Coefficient_-
traits::const_reference d=Coefficient_one())

Returns the point at e / d.

Related Functions

(Note that these are not member functions.)

• std::ostream & operator<< (std::ostream &s, const Grid_Generator &g)
Output operator.

• void swap (Parma_Polyhedra_Library::Grid_Generator &x, Parma_Polyhedra_Library::Grid_-
Generator &y)

Specializes std::swap.

• Grid_Generator grid_line (const Linear_Expression &e)
Shorthand for Grid_Generator Grid_Generator::line(const Linear_Expression& e).

• Grid_Generator grid_point (const Linear_Expression &e=Linear_Expression::zero(), Coefficient_-
traits::const_reference d=Coefficient_one())

Shorthand for Grid_Generator Grid_Generator::point(const Linear_Expression& e, Coefficient_-
traits::const_reference d).

• bool operator== (const Grid_Generator &x, const Grid_Generator &y)
Returns true if and only if x is equivalent to y.

• bool operator!= (const Grid_Generator &x, const Grid_Generator &y)
Returns true if and only if x is not equivalent to y.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.22 Parma_Polyhedra_Library::Grid_Generator Class Reference 207

• std::ostream & operator<< (std::ostream &s, const Grid_Generator::Type &t)
Output operator.

9.22.1 Detailed Description

A line, parameter or point.

An object of the class Grid_Generator is one of the following:

• a line l = (a0, . . . , an−1)T;

• a parameter q = (a0
d , . . . , an−1

d)T;

• a point p = (a0
d , . . . , an−1

d)T;

where n is the dimension of the space and, for points and parameters, d > 0 is the divisor.

How to build a grid generator.

Each type of generator is built by applying the corresponding function (line, parameter or
point) to a linear expression; the space dimension of the generator is defined as the space dimen-
sion of the corresponding linear expression. Linear expressions used to define a generator should be
homogeneous (any constant term will be simply ignored). When defining points and parameters, an
optional Coefficient argument can be used as a common divisor for all the coefficients occurring in the
provided linear expression; the default value for this argument is 1.

In all the following examples it is assumed that variables x, y and z are defined as follows:

Variable x(0);
Variable y(1);
Variable z(2);

Example 1

The following code builds a line with direction x− y − z and having space dimension 3:

Grid_Generator l = grid_line(x - y - z);

By definition, the origin of the space is not a line, so that the following code throws an exception:

Grid_Generator l = grid_line(0*x);

Example 2

The following code builds the parameter as the vector p = (1,−1,−1)T ∈ R3 which has the same
direction as the line in Example 1:

Grid_Generator q = parameter(x - y - z);

Note that, unlike lines, for parameters, the length as well as the direction of the vector represented by
the code is significant. Thus q is not the same as the parameter q1 defined by

Grid_Generator q1 = parameter(2x - 2y - 2z);

By definition, the origin of the space is not a parameter, so that the following code throws an exception:

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.22 Parma_Polyhedra_Library::Grid_Generator Class Reference 208

Grid_Generator q = parameter(0*x);

Example 3

The following code builds the point p = (1, 0, 2)T ∈ R3:

Grid_Generator p = grid_point(1*x + 0*y + 2*z);

The same effect can be obtained by using the following code:

Grid_Generator p = grid_point(x + 2*z);

Similarly, the origin 0 ∈ R3 can be defined using either one of the following lines of code:

Grid_Generator origin3 = grid_point(0*x + 0*y + 0*z);
Grid_Generator origin3_alt = grid_point(0*z);

Note however that the following code would have defined a different point, namely 0 ∈ R2:

Grid_Generator origin2 = grid_point(0*y);

The following two lines of code both define the only point having space dimension zero, namely
0 ∈ R0. In the second case we exploit the fact that the first argument of the function point is
optional.

Grid_Generator origin0 = Generator::zero_dim_point();
Grid_Generator origin0_alt = grid_point();

Example 4

The point p specified in Example 3 above can also be obtained with the following code, where we
provide a non-default value for the second argument of the function grid_point (the divisor):

Grid_Generator p = grid_point(2*x + 0*y + 4*z, 2);

Obviously, the divisor can be used to specify points having some non-integer (but rational) coordinates.
For instance, the point p1 = (−1.5, 3.2, 2.1)T ∈ R3 can be specified by the following code:

Grid_Generator p1 = grid_point(-15*x + 32*y + 21*z, 10);

If a zero divisor is provided, an exception is thrown.

Example 5

Parameters, like points can have a divisor. For instance, the parameter q = (1, 0, 2)T ∈ R3 can be
defined:

Grid_Generator q = parameter(2*x + 0*y + 4*z, 2);

Also, the divisor can be used to specify parameters having some non-integer (but rational) coordinates.
For instance, the parameter q = (−1.5, 3.2, 2.1)T ∈ R3 can be defined:

Grid_Generator q = parameter(-15*x + 32*y + 21*z, 10);

If a zero divisor is provided, an exception is thrown.

How to inspect a grid generator

Several methods are provided to examine a grid generator and extract all the encoded information: its
space dimension, its type and the value of its integer coefficients and the value of the denominator.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.22 Parma_Polyhedra_Library::Grid_Generator Class Reference 209

Example 6

The following code shows how it is possible to access each single coefficient of a grid generator. If
g1 is a point having coordinates (a0, . . . , an−1)T, we construct the parameter g2 having coordinates
(a0, 2a1, . . . , (i + 1)ai, . . . , nan−1)T.

if (g1.is_point()) {
cout << "Point g1: " << g1 << endl;
Linear_Expression e;
for (int i = g1.space_dimension() - 1; i >= 0; i--)

e += (i + 1) * g1.coefficient(Variable(i)) * Variable(i);
Grid_Generator g2 = parameter(e, g1.divisor());
cout << "Parameter g2: " << g2 << endl;

}
else

cout << "Grid Generator g1 is not a point." << endl;

Therefore, for the point

Grid_Generator g1 = grid_point(2*x - y + 3*z, 2);

we would obtain the following output:

Point g1: p((2*A - B + 3*C)/2)
Parameter g2: parameter((2*A - 2*B + 9*C)/2)

When working with points and parameters, be careful not to confuse the notion of coefficient with the
notion of coordinate: these are equivalent only when the divisor is 1.

9.22.2 Member Enumeration Documentation

9.22.2.1 enum Parma_Polyhedra_Library::Grid_Generator::Type

The generator type.

Enumerator:

LINE The generator is a line.

PARAMETER The generator is a parameter.

POINT The generator is a point.

Reimplemented from Parma_Polyhedra_Library::Generator.

9.22.3 Member Function Documentation

9.22.3.1 static Grid_Generator Parma_Polyhedra_Library::Grid_Generator::line (const Linear_-
Expression & e) [static]

Returns the line of direction e.

Exceptions:

std::invalid_argument Thrown if the homogeneous part of e represents the origin of the vector space.

Reimplemented from Parma_Polyhedra_Library::Generator.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.22 Parma_Polyhedra_Library::Grid_Generator Class Reference 210

9.22.3.2 Grid_Generator parameter (const Linear_Expression & e = Linear_-
Expression::zero(), Coefficient_traits::const_reference d = Coefficient_one())
[inline, static]

Shorthand for Grid_Generator Grid_Generator::parameter(const Linear_Expression& e, Coefficient_-
traits::const_reference d).

Both e and d are optional arguments, with default values Linear_Expression::zero() and Coefficient_one(),
respectively.

Exceptions:

std::invalid_argument Thrown if d is zero.

9.22.3.3 static Grid_Generator Parma_Polyhedra_Library::Grid_Generator::point (const
Linear_Expression & e = Linear_Expression::zero(), Coefficient_traits::const_reference d
= Coefficient_one()) [static]

Returns the point at e / d.

Both e and d are optional arguments, with default values Linear_Expression::zero() and Coefficient_one(),
respectively.

Exceptions:

std::invalid_argument Thrown if d is zero.

Reimplemented from Parma_Polyhedra_Library::Generator.

9.22.3.4 Coefficient_traits::const_reference Parma_Polyhedra_Library::Grid_Generator::divisor
() const [inline]

Returns the divisor of ∗this.

Exceptions:

std::invalid_argument Thrown if ∗this is a line.

Reimplemented from Parma_Polyhedra_Library::Generator.

9.22.3.5 bool Parma_Polyhedra_Library::Grid_Generator::is_equivalent_to (const Grid_-
Generator & y) const

Returns true if and only if ∗this and y are equivalent generators.

Generators having different space dimensions are not equivalent.

9.22.3.6 void Parma_Polyhedra_Library::Grid_Generator::scale_to_divisor (Coefficient_-
traits::const_reference d)

Scales ∗this to be represented with a divisor of d (if \∗this is a parameter or point).

Exceptions:

std::invalid_argument Thrown if d is zero.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.23 Parma_Polyhedra_Library::Grid_Generator_System Class Reference 211

9.22.3.7 void Parma_Polyhedra_Library::Grid_Generator::coefficient_swap (Grid_Generator &
y)

Swaps ∗this with y, leaving ∗this with the original capacity.

All up to and including the last element of the smaller of this and y are swapped. The parameter divisor
element of y is swapped with the divisor element of ∗this.

9.23 Parma_Polyhedra_Library::Grid_Generator_System Class Reference

A system of grid generators.

Inherits Parma_Polyhedra_Library::Generator_System.

Public Member Functions

• Grid_Generator_System ()
Default constructor: builds an empty system of generators.

• Grid_Generator_System (const Grid_Generator_System &gs)
Ordinary copy-constructor.

• Grid_Generator_System (dimension_type dim)
Builds an empty system of generators of dimension dim.

• Grid_Generator_System (const Grid_Generator &g)
Builds the singleton system containing only generator g.

• dimension_type space_dimension () const
Returns the dimension of the vector space enclosing ∗this.

• void clear ()
Removes all the generators from the generator system and sets its space dimension to 0.

• void insert (const Grid_Generator &g)
Inserts into ∗this a copy of the generator g, increasing the number of space dimensions if needed.

• void recycling_insert (Grid_Generator &g)
Inserts into ∗this the generator g, increasing the number of space dimensions if needed.

• void recycling_insert (Grid_Generator_System &gs)
Inserts into ∗this the generators in gs, increasing the number of space dimensions if needed.

• const_iterator begin () const
Returns the const_iterator pointing to the first generator, if this is not empty; otherwise, returns the past-
the-end const_iterator.

• const_iterator end () const
Returns the past-the-end const_iterator.

• void swap (Grid_Generator_System &y)

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.23 Parma_Polyhedra_Library::Grid_Generator_System Class Reference 212

Swaps ∗this with y.

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

• memory_size_type total_memory_in_bytes () const
Returns the total size in bytes of the memory occupied by ∗this.

• void affine_image (dimension_type v, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator)

Assigns to a given variable an affine expression.

• dimension_type num_generators () const
Returns the number of generators in the system.

• dimension_type num_parameters () const
Returns the number of parameters in the system.

• dimension_type num_lines () const
Returns the number of lines in the system.

• bool has_points () const
Returns true if and only if ∗this contains one or more points.

• bool is_equal_to (const Grid_Generator_System y) const
Returns true if ∗this is identical to y.

• Grid_Generator & operator[] (dimension_type k)
Returns the k- th generator of the system.

• const Grid_Generator & operator[] (dimension_type k) const
Returns a constant reference to the k- th generator of the system.

• bool OK () const
Checks if all the invariants are satisfied.

• void add_universe_rows_and_columns (dimension_type dims)
Adds dims rows and dims columns of zeroes to the matrix, initializing the added rows as in the universe
system.

• void remove_space_dimensions (const Variables_Set &to_be_removed)
Removes all the specified dimensions from the generator system.

• void remove_higher_space_dimensions (dimension_type new_dimension)
Removes the higher dimensions of the system so that the resulting system will have dimension new_-
dimension.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.23 Parma_Polyhedra_Library::Grid_Generator_System Class Reference 213

Static Public Member Functions

• static dimension_type max_space_dimension ()
Returns the maximum space dimension a Grid_Generator_System can handle.

Friends

• bool operator== (const Grid_Generator_System &x, const Grid_Generator_System &y)
Returns true if and only if x and y are identical.

Related Functions

(Note that these are not member functions.)

• std::ostream & operator<< (std::ostream &s, const Grid_Generator_System &gs)
Output operator.

• void swap (Parma_Polyhedra_Library::Grid_Generator_System &x, Parma_Polyhedra_-
Library::Grid_Generator_System &y)

Specializes std::swap.

Classes

• class const_iterator
An iterator over a system of grid generators.

9.23.1 Detailed Description

A system of grid generators.

An object of the class Grid_Generator_System is a system of grid generators, i.e., a multiset of objects
of the class Grid_Generator (lines, parameters and points). When inserting generators in a system, space
dimensions are automatically adjusted so that all the generators in the system are defined on the same vector
space. A system of grid generators which is meant to define a non-empty grid must include at least one
point: the reason is that lines and parameters need a supporting point (lines only specify directions while
parameters only specify direction and distance.

In all the examples it is assumed that variables x and y are defined as follows:

Variable x(0);
Variable y(1);

Example 1

The following code defines the line having the same direction as the x axis (i.e., the first Cartesian
axis) in R2:

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.23 Parma_Polyhedra_Library::Grid_Generator_System Class Reference 214

Grid_Generator_System gs;
gs.insert(grid_line(x + 0*y));

As said above, this system of generators corresponds to an empty grid, because the line has no sup-
porting point. To define a system of generators that does correspond to the x axis, we can add the
following code which inserts the origin of the space as a point:

gs.insert(grid_point(0*x + 0*y));

Since space dimensions are automatically adjusted, the following code obtains the same effect:

gs.insert(grid_point(0*x));

In contrast, if we had added the following code, we would have defined a line parallel to the x axis
through the point (0, 1)T ∈ R2.

gs.insert(grid_point(0*x + 1*y));

Example 2

The following code builds a system of generators corresponding to the grid consisting of all the integral
points on the x axes; that is, all points satisfying the congruence relation{

(x, 0)T ∈ R2
∣∣ x (mod 1) 0

}
,

Grid_Generator_System gs;
gs.insert(parameter(x + 0*y));
gs.insert(grid_point(0*x + 0*y));

Example 3

The following code builds a system of generators having three points corresponding to a non-relational
grid consisting of all points whose coordinates are integer multiple of 3.

Grid_Generator_System gs;
gs.insert(grid_point(0*x + 0*y));
gs.insert(grid_point(0*x + 3*y));
gs.insert(grid_point(3*x + 0*y));

Example 4

By using parameters instead of two of the points we can define the same grid as that defined in the
previous example. Note that there has to be at least one point and, for this purpose, any point in the
grid could be considered. Thus the following code builds two identical grids from the grid generator
systems gs and gs1.

Grid_Generator_System gs;
gs.insert(grid_point(0*x + 0*y));
gs.insert(parameter(0*x + 3*y));
gs.insert(parameter(3*x + 0*y));
Grid_Generator_System gs1;
gs1.insert(grid_point(3*x + 3*y));
gs1.insert(parameter(0*x + 3*y));
gs1.insert(parameter(3*x + 0*y));

Example 5

The following code builds a system of generators having one point and a parameter corresponding to
all the integral points that lie on x + y = 2 in R2

Grid_Generator_System gs;
gs.insert(grid_point(1*x + 1*y));
gs.insert(parameter(1*x - 1*y));

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.23 Parma_Polyhedra_Library::Grid_Generator_System Class Reference 215

Note:

After inserting a multiset of generators in a grid generator system, there are no guarantees that an exact
copy of them can be retrieved: in general, only an equivalent grid generator system will be available,
where original generators may have been reordered, removed (if they are duplicate or redundant), etc.

9.23.2 Member Function Documentation

9.23.2.1 void Parma_Polyhedra_Library::Grid_Generator_System::insert (const Grid_Generator
& g)

Inserts into ∗this a copy of the generator g, increasing the number of space dimensions if needed.

If g is an all-zero parameter then the only action is to ensure that the space dimension of ∗this is at least
the space dimension of g.

9.23.2.2 void Parma_Polyhedra_Library::Grid_Generator_System::affine_image (dimension_-
type v, const Linear_Expression & expr, Coefficient_traits::const_reference denominator)

Assigns to a given variable an affine expression.

Parameters:

v Index of the column to which the affine transformation is assigned;

expr The numerator of the affine transformation:
∑n−1

i=0 aixi + b;

denominator The denominator of the affine transformation;

We allow affine transformations (see the Section Operations on Rational Grids)to have rational coefficients.
Since the coefficients of linear expressions are integers we also provide an integer denominator that will
be used as denominator of the affine transformation. The denominator is required to be a positive integer
and its default value is 1.

The affine transformation assigns to each element of v -th column the follow expression:∑n−1
i=0 aixi + b

denominator
.

expr is a constant parameter and unaltered by this computation.

Reimplemented from Parma_Polyhedra_Library::Generator_System.

9.23.2.3 bool Parma_Polyhedra_Library::Grid_Generator_System::OK () const

Checks if all the invariants are satisfied.

Returns true if and only if ∗this is a valid Linear_System and each row in the system is a valid Grid_-
Generator.

Reimplemented from Parma_Polyhedra_Library::Generator_System.

9.23.2.4 void Parma_Polyhedra_Library::Grid_Generator_System::add_universe_rows_and_-
columns (dimension_type dims)

Adds dims rows and dims columns of zeroes to the matrix, initializing the added rows as in the universe
system.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.24 Parma_Polyhedra_Library::Grid_Generator_System::const_iterator Class Reference 216

Parameters:

dims The number of rows and columns to be added: must be strictly positive.

Turns the r × c matrix A into the (r + dims) × (c + dims) matrix
(

A
0

0
B

)
where B is the dims × dims

unit matrix of the form
(

1
0

0
1

)
. The matrix is expanded avoiding reallocation whenever possible.

9.23.2.5 void Parma_Polyhedra_Library::Grid_Generator_System::remove_space_dimensions
(const Variables_Set & to_be_removed)

Removes all the specified dimensions from the generator system.

Exceptions:

std::invalid_argument Thrown if the highest space dimension of the variables in to_be_removed
is higher than the space dimension of ∗this.

9.23.2.6 void Parma_Polyhedra_Library::Grid_Generator_System::remove_higher_space_-
dimensions (dimension_type new_dimension)

Removes the higher dimensions of the system so that the resulting system will have dimension new_-
dimension.

Exceptions:

std::invalid_argument Thrown if the new_dimension is higher than the space dimension of
∗this.

9.23.3 Friends And Related Function Documentation

9.23.3.1 std::ostream & operator<< (std::ostream & s, const Grid_Generator_System & gs)
[related]

Output operator.

Writes false if gs is empty. Otherwise, writes on s the generators of gs, all in one row and separated
by ", ".

9.24 Parma_Polyhedra_Library::Grid_Generator_System::const_iterator Class
Reference

An iterator over a system of grid generators.

Inherits Parma_Polyhedra_Library::Generator_System::const_iterator.

Public Member Functions

• const_iterator ()
Default constructor.

• const_iterator (const const_iterator &y)
Ordinary copy-constructor.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.25 Parma_Polyhedra_Library::H79_Certificate Class Reference 217

• ∼const_iterator ()
Destructor.

• const_iterator & operator= (const const_iterator &y)
Assignment operator.

• const Grid_Generator & operator ∗ () const
Dereference operator.

• const Grid_Generator ∗ operator → () const
Indirect member selector.

• const_iterator & operator++ ()
Prefix increment operator.

• const_iterator operator++ (int)
Postfix increment operator.

• bool operator== (const const_iterator &y) const
Returns true if and only if ∗this and y are identical.

• bool operator!= (const const_iterator &y) const
Returns true if and only if ∗this and y are different.

9.24.1 Detailed Description

An iterator over a system of grid generators.

A const_iterator is used to provide read-only access to each generator contained in an object of Grid_-
Generator_System.

Example

The following code prints the system of generators of the grid gr:

const Grid_Generator_System& gs = gr.generators();
for (Grid_Generator_System::const_iterator i = gs.begin(),

gs_end = gs.end(); i != gs_end; ++i)
cout << *i << endl;

The same effect can be obtained more concisely by using more features of the STL:

const Generator_System& gs = gr.generators();
copy(gs.begin(), gs.end(), ostream_iterator<Grid_Generator>(cout, "\n"));

9.25 Parma_Polyhedra_Library::H79_Certificate Class Reference

A convergence certificate for the H79 widening operator.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.25 Parma_Polyhedra_Library::H79_Certificate Class Reference 218

Public Member Functions

• H79_Certificate ()
Default constructor.

• template<typename PH> H79_Certificate (const PH &ph)
Constructor: computes the certificate for ph.

• H79_Certificate (const Polyhedron &ph)
Constructor: computes the certificate for ph.

• H79_Certificate (const H79_Certificate &y)
Copy constructor.

• ∼H79_Certificate ()
Destructor.

• int compare (const H79_Certificate &y) const
The comparison function for certificates.

• template<typename PH> int compare (const PH &ph) const
Compares ∗this with the certificate for polyhedron ph.

• int compare (const Polyhedron &ph) const
Compares ∗this with the certificate for polyhedron ph.

Classes

• struct Compare
A total ordering on H79 certificates.

9.25.1 Detailed Description

A convergence certificate for the H79 widening operator.

Convergence certificates are used to instantiate the BHZ03 framework so as to define widening operators
for the finite powerset domain.

Note:

The convergence of the H79 widening can also be certified by BHRZ03_Certificate.

9.25.2 Member Function Documentation

9.25.2.1 int Parma_Polyhedra_Library::H79_Certificate::compare (const H79_Certificate & y)
const

The comparison function for certificates.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.26 Parma_Polyhedra_Library::H79_Certificate::Compare Struct Reference 219

Returns:

−1, 0 or 1 depending on whether ∗this is smaller than, equal to, or greater than y, respectively.

Compares ∗this with y, using a total ordering which is a refinement of the limited growth ordering
relation for the H79 widening.

9.26 Parma_Polyhedra_Library::H79_Certificate::Compare Struct Reference

A total ordering on H79 certificates.

Public Member Functions

• bool operator() (const H79_Certificate &x, const H79_Certificate &y) const
Returns true if and only if x comes before y.

9.26.1 Detailed Description

A total ordering on H79 certificates.

This binary predicate defines a total ordering on H79 certificates which is used when storing information
about sets of polyhedra.

9.27 Parma_Polyhedra_Library::Linear_Expression Class Reference

A linear expression.

Public Member Functions

• Linear_Expression ()
Default constructor: returns a copy of Linear_Expression::zero().

• Linear_Expression (const Linear_Expression &e)
Ordinary copy-constructor.

• ∼Linear_Expression ()
Destructor.

• Linear_Expression (Coefficient_traits::const_reference n)
Builds the linear expression corresponding to the inhomogeneous term n.

• Linear_Expression (const Constraint &c)
Builds the linear expression corresponding to constraint c.

• Linear_Expression (const Generator &g)
Builds the linear expression corresponding to generator g (for points and closure points, the divisor is not
copied).

• Linear_Expression (const Congruence &cg)

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.27 Parma_Polyhedra_Library::Linear_Expression Class Reference 220

Builds the linear expression corresponding to congruence cg.

• dimension_type space_dimension () const
Returns the dimension of the vector space enclosing ∗this.

• Coefficient_traits::const_reference coefficient (Variable v) const
Returns the coefficient of v in ∗this.

• Coefficient_traits::const_reference inhomogeneous_term () const
Returns the inhomogeneous term of ∗this.

• memory_size_type total_memory_in_bytes () const
Returns a lower bound to the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

• bool OK () const
Checks if all the invariants are satisfied.

• void swap (Linear_Expression &y)
Swaps ∗this with y.

Static Public Member Functions

• static dimension_type max_space_dimension ()
Returns the maximum space dimension a Linear_Expression can handle.

• static const Linear_Expression & zero ()
Returns the (zero-dimension space) constant 0.

Friends

• Linear_Expression operator+ (const Linear_Expression &e1, const Linear_Expression &e2)
Returns the linear expression e1 + e2.

• Linear_Expression operator+ (Coefficient_traits::const_reference n, const Linear_Expression &e)
Returns the linear expression n + e.

• Linear_Expression operator+ (const Linear_Expression &e, Coefficient_traits::const_reference n)
Returns the linear expression e + n.

• Linear_Expression operator- (const Linear_Expression &e)
Returns the linear expression - e.

• Linear_Expression operator- (const Linear_Expression &e1, const Linear_Expression &e2)
Returns the linear expression e1 - e2.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.27 Parma_Polyhedra_Library::Linear_Expression Class Reference 221

• Linear_Expression operator- (Coefficient_traits::const_reference n, const Linear_Expression &e)
Returns the linear expression n - e.

• Linear_Expression operator- (const Linear_Expression &e, Coefficient_traits::const_reference n)
Returns the linear expression e - n.

• Linear_Expression operator ∗ (Coefficient_traits::const_reference n, const Linear_Expression &e)
Returns the linear expression n ∗ e.

• Linear_Expression operator ∗ (const Linear_Expression &e, Coefficient_traits::const_reference n)
Returns the linear expression e ∗ n.

• Linear_Expression & operator+= (Linear_Expression &e1, const Linear_Expression &e2)
Returns the linear expression e1 + e2 and assigns it to e1.

• Linear_Expression & operator+= (Linear_Expression &e, Variable v)
Returns the linear expression e + v and assigns it to e.

• Linear_Expression & operator+= (Linear_Expression &e, Coefficient_traits::const_reference n)
Returns the linear expression e + n and assigns it to e.

• Linear_Expression & operator-= (Linear_Expression &e1, const Linear_Expression &e2)
Returns the linear expression e1 - e2 and assigns it to e1.

• Linear_Expression & operator-= (Linear_Expression &e, Variable v)
Returns the linear expression e - v and assigns it to e.

• Linear_Expression & operator-= (Linear_Expression &e, Coefficient_traits::const_reference n)
Returns the linear expression e - n and assigns it to e.

• Linear_Expression & operator ∗= (Linear_Expression &e, Coefficient_traits::const_reference n)
Returns the linear expression n ∗ e and assigns it to e.

• std::ostream & operator<< (std::ostream &s, const Linear_Expression &e)
Output operator.

• Congruence operator%= (const Linear_Expression &e1, const Linear_Expression &e2)
Returns the congruence e1 = e2 (mod 1).

• Congruence operator%= (const Linear_Expression &e, Coefficient_traits::const_reference n)
Returns the congruence e = n (mod 1).

Related Functions

(Note that these are not member functions.)

• Linear_Expression (Variable v)

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.27 Parma_Polyhedra_Library::Linear_Expression Class Reference 222

Builds the linear expression corresponding to the variable v.

• Linear_Expression operator+ (Variable v, Variable w)
Returns the linear expression v + w.

• Linear_Expression operator+ (Variable v, const Linear_Expression &e)
Returns the linear expression v + e.

• Linear_Expression operator+ (const Linear_Expression &e, Variable v)
Returns the linear expression e + v.

• Linear_Expression operator+ (const Linear_Expression &e)
Returns the linear expression e.

• Linear_Expression operator- (Variable v, Variable w)
Returns the linear expression v - w.

• Linear_Expression operator- (Variable v, const Linear_Expression &e)
Returns the linear expression v - e.

• Linear_Expression operator- (const Linear_Expression &e, Variable v)
Returns the linear expression e - v.

• void swap (Parma_Polyhedra_Library::Linear_Expression &x, Parma_Polyhedra_Library::Linear_-
Expression &y)

Specializes std::swap.

9.27.1 Detailed Description

A linear expression.

An object of the class Linear_Expression represents the linear expression

n−1∑
i=0

aixi + b

where n is the dimension of the vector space, each ai is the integer coefficient of the i-th variable xi and b
is the integer for the inhomogeneous term.

How to build a linear expression.

Linear expressions are the basic blocks for defining both constraints (i.e., linear equalities or inequalities)
and generators (i.e., lines, rays, points and closure points). A full set of functions is defined to provide a
convenient interface for building complex linear expressions starting from simpler ones and from objects
of the classes Variable and Coefficient: available operators include unary negation, binary addition and
subtraction, as well as multiplication by a Coefficient. The space dimension of a linear expression is defined
as the maximum space dimension of the arguments used to build it: in particular, the space dimension of a
Variable x is defined as x.id()+1, whereas all the objects of the class Coefficient have space dimension
zero.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.27 Parma_Polyhedra_Library::Linear_Expression Class Reference 223

Example

The following code builds the linear expression 4x− 2y − z + 14, having space dimension 3:

Linear_Expression e = 4*x - 2*y - z + 14;

Another way to build the same linear expression is:

Linear_Expression e1 = 4*x;
Linear_Expression e2 = 2*y;
Linear_Expression e3 = z;
Linear_Expression e = Linear_Expression(14);
e += e1 - e2 - e3;

Note that e1, e2 and e3 have space dimension 1, 2 and 3, respectively; also, in the fourth line of code,
e is created with space dimension zero and then extended to space dimension 3 in the fifth line.

9.27.2 Constructor & Destructor Documentation

9.27.2.1 Parma_Polyhedra_Library::Linear_Expression::Linear_Expression (const Constraint &
c) [explicit]

Builds the linear expression corresponding to constraint c.

Given the constraint c =
(∑n−1

i=0 aixi + b ./ 0
)
, where ./ ∈ {=,≥, >}, this builds the linear expression∑n−1

i=0 aixi + b. If c is an inequality (resp., equality) constraint, then the built linear expression is unique
up to a positive (resp., non-zero) factor.

9.27.2.2 Parma_Polyhedra_Library::Linear_Expression::Linear_Expression (const Generator &
g) [explicit]

Builds the linear expression corresponding to generator g (for points and closure points, the divisor is not
copied).

Given the generator g = (a0
d , . . . , an−1

d)T (where, for lines and rays, we have d = 1), this builds the linear
expression

∑n−1
i=0 aixi. The inhomogeneous term of the linear expression will always be 0. If g is a ray,

point or closure point (resp., a line), then the linear expression is unique up to a positive (resp., non-zero)
factor.

9.27.2.3 Parma_Polyhedra_Library::Linear_Expression::Linear_Expression (const Congruence
& cg) [explicit]

Builds the linear expression corresponding to congruence cg.

Given the congruence cg =
(∑n−1

i=0 aixi+b = 0 (mod m)
)
, this builds the linear expression

∑n−1
i=0 aixi+

b.

9.27.3 Friends And Related Function Documentation

9.27.3.1 Parma_Polyhedra_Library::Linear_Expression::Linear_Expression (Variable v)
[related]

Builds the linear expression corresponding to the variable v.

Exceptions:

std::length_error Thrown if the space dimension of v exceeds Linear_Expression::max_-
space_dimension().

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.28 Parma_Polyhedra_Library::LP_Problem Class Reference 224

9.27.3.2 Linear_Expression & operator+= (Linear_Expression & e, Variable v) [friend]

Returns the linear expression e + v and assigns it to e.

Exceptions:

std::length_error Thrown if the space dimension of v exceeds Linear_Expression::max_-
space_dimension().

9.27.3.3 Linear_Expression & operator-= (Linear_Expression & e, Variable v) [friend]

Returns the linear expression e - v and assigns it to e.

Exceptions:

std::length_error Thrown if the space dimension of v exceeds Linear_Expression::max_-
space_dimension().

9.28 Parma_Polyhedra_Library::LP_Problem Class Reference

A Linear Programming problem.

Public Member Functions

• LP_Problem ()
Default constructor: builds a trivial LP problem.

• LP_Problem (const Constraint_System &cs, const Linear_Expression &obj=Linear_-
Expression::zero(), Optimization_Mode mode=MAXIMIZATION)

Builds an LP problem from the constraint system cs, the objective function obj and optimization mode
mode.

• LP_Problem (const LP_Problem &y)
Ordinary copy-constructor.

• ∼LP_Problem ()
Destructor.

• LP_Problem & operator= (const LP_Problem &y)
Assignment operator.

• dimension_type space_dimension () const
Returns the space dimension of the current LP problem.

• const Constraint_System & constraints () const
Returns the constraints defining the current feasible region.

• const Linear_Expression & objective_function () const
Returns the current objective function.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.28 Parma_Polyhedra_Library::LP_Problem Class Reference 225

• Optimization_Mode optimization_mode () const
Returns the current optimization mode.

• void clear ()
Resets ∗this to be equal to the trivial LP problem.

• void add_constraint (const Constraint &c)
Adds a copy of constraint c to the current LP problem, increasing the number of space dimensions if needed.

• void add_constraints (const Constraint_System &cs)
Adds a copy of the constraints in cs to the current LP problem, increasing the number of space dimensions
if needed.

• void set_objective_function (const Linear_Expression &obj)
Sets the objective function to obj.

• void set_optimization_mode (Optimization_Mode mode)
Sets the optimization mode to mode.

• bool is_satisfiable () const
Checks satisfiability of ∗this.

• LP_Problem_Status solve () const
Optimizes the current LP problem using the primal simplex algorithm.

• void evaluate_objective_function (const Generator &evaluating_point, Coefficient &num, Coeffi-
cient &den) const

Sets num and den so that num
den

is the result of evaluating the objective function on evaluating_point.

• const Generator & feasible_point () const
Returns a feasible point for ∗this, if it exists.

• const Generator & optimizing_point () const
Returns an optimal point for ∗this, if it exists.

• void optimal_value (Coefficient &num, Coefficient &den) const
Sets num and den so that num

den
is the solution of the optimization problem.

• bool OK () const
Checks if all the invariants are satisfied.

• memory_size_type total_memory_in_bytes () const
Returns the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

• void swap (LP_Problem &y)
Swaps ∗this with y.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.28 Parma_Polyhedra_Library::LP_Problem Class Reference 226

Static Public Member Functions

• static dimension_type max_space_dimension ()
Returns the maximum space dimension a LP_Problem can handle.

9.28.1 Detailed Description

A Linear Programming problem.

9.28.2 Constructor & Destructor Documentation

9.28.2.1 Parma_Polyhedra_Library::LP_Problem::LP_Problem () [inline]

Default constructor: builds a trivial LP problem.

The trivial LP problem requires to maximize the objective function 0 on the zero-dimensional vector space
under no constraints at all: the origin of the vector space is the optimal solution.

9.28.2.2 Parma_Polyhedra_Library::LP_Problem::LP_Problem (const Constraint_System & cs,
const Linear_Expression & obj = Linear_Expression::zero(), Optimization_Mode mode =
MAXIMIZATION) [inline, explicit]

Builds an LP problem from the constraint system cs, the objective function obj and optimization mode
mode.

Parameters:

cs The constraint system defining the feasible region for the LP problem.

obj The objective function for the LP problem (optional argument with default value 0).

mode The optimization mode (optional argument with default value MAXIMIZATION).

Exceptions:

std::invalid_argument Thrown if the constraint system contains any strict inequality or if the space
dimension of the objective function is strictly greater than the space dimension of the constraint
system.

9.28.3 Member Function Documentation

9.28.3.1 void Parma_Polyhedra_Library::LP_Problem::add_constraint (const Constraint & c)
[inline]

Adds a copy of constraint c to the current LP problem, increasing the number of space dimensions if
needed.

Exceptions:

std::invalid_argument Thrown if the constraint c is a strict inequality.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.28 Parma_Polyhedra_Library::LP_Problem Class Reference 227

9.28.3.2 void Parma_Polyhedra_Library::LP_Problem::add_constraints (const Constraint_-
System & cs) [inline]

Adds a copy of the constraints in cs to the current LP problem, increasing the number of space dimensions
if needed.

Exceptions:

std::invalid_argument Thrown if the constraint system cs contains any strict inequality.

9.28.3.3 void Parma_Polyhedra_Library::LP_Problem::set_objective_function (const Linear_-
Expression & obj) [inline]

Sets the objective function to obj.

Exceptions:

std::invalid_argument Thrown if the space dimension of obj is strictly greater than the space dimen-
sion of ∗this.

9.28.3.4 bool Parma_Polyhedra_Library::LP_Problem::is_satisfiable () const

Checks satisfiability of ∗this.

Returns:

true if and only if the LP problem is satisfiable.

9.28.3.5 LP_Problem_Status Parma_Polyhedra_Library::LP_Problem::solve () const [inline]

Optimizes the current LP problem using the primal simplex algorithm.

Returns:

An LP_Problem_Status flag indicating the outcome of the optimization attempt (unfeasible, un-
bounded or optimized problem).

9.28.3.6 void Parma_Polyhedra_Library::LP_Problem::evaluate_objective_function (const Gener-
ator & evaluating_point, Coefficient & num, Coefficient & den) const

Sets num and den so that num
den is the result of evaluating the objective function on evaluating_point.

Parameters:

evaluating_point The point on which the objective function will be evaluated.

num On exit will contain the numerator of the evaluated value.

den On exit will contain the denominator of the evaluated value.

Exceptions:

std::invalid_argument Thrown if ∗this and evaluating_point are dimension-incompatible or
if the generator evaluating_point is not a point.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.29 Parma_Polyhedra_Library::NNC_Polyhedron Class Reference 228

9.28.3.7 const Generator & Parma_Polyhedra_Library::LP_Problem::feasible_point () const
[inline]

Returns a feasible point for ∗this, if it exists.

Exceptions:

std::domain_error Thrown if the LP problem is not satisfiable.

9.28.3.8 const Generator & Parma_Polyhedra_Library::LP_Problem::optimizing_point () const
[inline]

Returns an optimal point for ∗this, if it exists.

Exceptions:

std::domain_error Thrown if ∗this doesn’t not have an optimizing point, i.e., if the LP problem is
unbounded or not satisfiable.

9.28.3.9 void Parma_Polyhedra_Library::LP_Problem::optimal_value (Coefficient & num, Coeffi-
cient & den) const [inline]

Sets num and den so that num
den is the solution of the optimization problem.

Exceptions:

std::domain_error Thrown if ∗this doesn’t not have an optimizing point, i.e., if the LP problem is
unbounded or not satisfiable.

9.29 Parma_Polyhedra_Library::NNC_Polyhedron Class Reference

A not necessarily closed convex polyhedron.

Inherits Parma_Polyhedra_Library::Polyhedron.

Public Member Functions

• NNC_Polyhedron (dimension_type num_dimensions=0, Degenerate_Element kind=UNIVERSE)
Builds either the universe or the empty NNC polyhedron.

• NNC_Polyhedron (const Constraint_System &cs)
Builds an NNC polyhedron from a system of constraints.

• NNC_Polyhedron (Constraint_System &cs)
Builds an NNC polyhedron recycling a system of constraints.

• NNC_Polyhedron (const Generator_System &gs)
Builds an NNC polyhedron from a system of generators.

• NNC_Polyhedron (Generator_System &gs)
Builds an NNC polyhedron recycling a system of generators.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.29 Parma_Polyhedra_Library::NNC_Polyhedron Class Reference 229

• NNC_Polyhedron (const Congruence_System &cgs)
Builds an NNC polyhedron from a system of congruences.

• NNC_Polyhedron (Congruence_System &cgs)
Builds an NNC polyhedron recycling a system of congruences.

• NNC_Polyhedron (const C_Polyhedron &y)
Builds an NNC polyhedron from the C polyhedron y.

• template<typename Box> NNC_Polyhedron (const Box &box, From_Bounding_Box dummy)
Builds an NNC polyhedron out of a generic, interval-based bounding box.

• NNC_Polyhedron (const NNC_Polyhedron &y)
Ordinary copy-constructor.

• NNC_Polyhedron & operator= (const NNC_Polyhedron &y)
The assignment operator. (∗this and y can be dimension-incompatible.).

• NNC_Polyhedron & operator= (const C_Polyhedron &y)
Assigns to ∗this the C polyhedron y.

• ∼NNC_Polyhedron ()
Destructor.

• bool poly_hull_assign_if_exact (const NNC_Polyhedron &y)
If the poly-hull of ∗this and y is exact it is assigned to ∗this and true is returned, otherwise false
is returned.

• bool upper_bound_assign_if_exact (const NNC_Polyhedron &y)
Same as poly_hull_assign_if_exact(y).

9.29.1 Detailed Description

A not necessarily closed convex polyhedron.

An object of the class NNC_Polyhedron represents a not necessarily closed (NNC) convex polyhedron in
the vector space Rn.

Note:

Since NNC polyhedra are a generalization of closed polyhedra, any object of the class C_Polyhedron
can be (explicitly) converted into an object of the class NNC_Polyhedron. The reason for defining
two different classes is that objects of the class C_Polyhedron are characterized by a more efficient
implementation, requiring less time and memory resources.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.29 Parma_Polyhedra_Library::NNC_Polyhedron Class Reference 230

9.29.2 Constructor & Destructor Documentation

9.29.2.1 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (dimension_type
num_dimensions = 0, Degenerate_Element kind = UNIVERSE) [inline, explicit]

Builds either the universe or the empty NNC polyhedron.

Parameters:

num_dimensions The number of dimensions of the vector space enclosing the NNC polyhedron;

kind Specifies whether a universe or an empty NNC polyhedron should be built.

Exceptions:

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

Both parameters are optional: by default, a 0-dimension space universe NNC polyhedron is built.

9.29.2.2 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (const Constraint_-
System & cs) [inline, explicit]

Builds an NNC polyhedron from a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:

cs The system of constraints defining the polyhedron.

9.29.2.3 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (Constraint_System &
cs) [inline, explicit]

Builds an NNC polyhedron recycling a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:

cs The system of constraints defining the polyhedron. It is not declared const because its data-
structures will be recycled to build the polyhedron.

9.29.2.4 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (const Generator_-
System & gs) [inline, explicit]

Builds an NNC polyhedron from a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:

gs The system of generators defining the polyhedron.

Exceptions:

std::invalid_argument Thrown if the system of generators is not empty but has no points.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.29 Parma_Polyhedra_Library::NNC_Polyhedron Class Reference 231

9.29.2.5 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (Generator_System &
gs) [inline, explicit]

Builds an NNC polyhedron recycling a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:

gs The system of generators defining the polyhedron. It is not declared const because its data-
structures will be recycled to build the polyhedron.

Exceptions:

std::invalid_argument Thrown if the system of generators is not empty but has no points.

9.29.2.6 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (const Congruence_-
System & cgs) [explicit]

Builds an NNC polyhedron from a system of congruences.

The polyhedron inherits the space dimension of the congruence system.

Parameters:

cgs The system of congruences defining the polyhedron. It is not declared const because its data-
structures will be recycled to build the polyhedron.

9.29.2.7 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (Congruence_System
& cgs) [explicit]

Builds an NNC polyhedron recycling a system of congruences.

The polyhedron inherits the space dimension of the congruence system.

Parameters:

cgs The system of congruences defining the polyhedron. It is not declared const because its data-
structures will be recycled to build the polyhedron.

9.29.2.8 template<typename Box> Parma_Polyhedra_Library::NNC_Polyhedron::NNC_-
Polyhedron (const Box & box, From_Bounding_Box dummy) [inline]

Builds an NNC polyhedron out of a generic, interval-based bounding box.

For a description of the methods that should be provided by the template class Box, see the documentation
of the protected method: template <typename Box> Polyhedron::Polyhedron(Topology topol, const Box&
box);

Parameters:

box The bounding box representing the polyhedron to be built;
dummy A dummy tag to syntactically differentiate this one from the other constructors.

Exceptions:

std::length_error Thrown if the space dimension of box exceeds the maximum allowed space di-
mension.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.30 Parma_Polyhedra_Library::Poly_Con_Relation Class Reference 232

9.29.3 Member Function Documentation

9.29.3.1 bool Parma_Polyhedra_Library::NNC_Polyhedron::poly_hull_assign_if_exact (const
NNC_Polyhedron & y)

If the poly-hull of ∗this and y is exact it is assigned to ∗this and true is returned, otherwise false
is returned.

Exceptions:

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

9.30 Parma_Polyhedra_Library::Poly_Con_Relation Class Reference

The relation between a polyhedron and a constraint.

Public Member Functions

• bool implies (const Poly_Con_Relation &y) const
True if and only if ∗this implies y.

• bool OK () const
Checks if all the invariants are satisfied.

Static Public Member Functions

• static Poly_Con_Relation nothing ()
The assertion that says nothing.

• static Poly_Con_Relation is_disjoint ()
The polyhedron and the set of points satisfying the constraint are disjoint.

• static Poly_Con_Relation strictly_intersects ()
The polyhedron intersects the set of points satisfying the constraint, but it is not included in it.

• static Poly_Con_Relation is_included ()
The polyhedron is included in the set of points satisfying the constraint.

• static Poly_Con_Relation saturates ()
The polyhedron is included in the set of points saturating the constraint.

Friends

• bool operator== (const Poly_Con_Relation &x, const Poly_Con_Relation &y)
True if and only if x and y are logically equivalent.

• bool operator!= (const Poly_Con_Relation &x, const Poly_Con_Relation &y)
True if and only if x and y are not logically equivalent.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.31 Parma_Polyhedra_Library::Poly_Gen_Relation Class Reference 233

• Poly_Con_Relation operator && (const Poly_Con_Relation &x, const Poly_Con_Relation &y)
Yields the logical conjunction of x and y.

• Poly_Con_Relation operator- (const Poly_Con_Relation &x, const Poly_Con_Relation &y)
Yields the assertion with all the conjuncts of x that are not in y.

• std::ostream & operator<< (std::ostream &s, const Poly_Con_Relation &r)
Output operator.

9.30.1 Detailed Description

The relation between a polyhedron and a constraint.

This class implements conjunctions of assertions on the relation between a polyhedron and a constraint.

9.31 Parma_Polyhedra_Library::Poly_Gen_Relation Class Reference

The relation between a polyhedron and a generator.

Public Member Functions

• bool implies (const Poly_Gen_Relation &y) const
True if and only if ∗this implies y.

• bool OK () const
Checks if all the invariants are satisfied.

Static Public Member Functions

• static Poly_Gen_Relation nothing ()
The assertion that says nothing.

• static Poly_Gen_Relation subsumes ()
Adding the generator would not change the polyhedron.

Friends

• bool operator== (const Poly_Gen_Relation &x, const Poly_Gen_Relation &y)
True if and only if x and y are logically equivalent.

• bool operator!= (const Poly_Gen_Relation &x, const Poly_Gen_Relation &y)
True if and only if x and y are not logically equivalent.

• Poly_Gen_Relation operator && (const Poly_Gen_Relation &x, const Poly_Gen_Relation &y)
Yields the logical conjunction of x and y.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.32 Parma_Polyhedra_Library::Polyhedra_Powerset< PH > Class Template Reference 234

• Poly_Gen_Relation operator- (const Poly_Gen_Relation &x, const Poly_Gen_Relation &y)
Yields the assertion with all the conjuncts of x that are not in y.

• std::ostream & operator<< (std::ostream &s, const Poly_Gen_Relation &r)
Output operator.

9.31.1 Detailed Description

The relation between a polyhedron and a generator.

This class implements conjunctions of assertions on the relation between a polyhedron and a generator.

9.32 Parma_Polyhedra_Library::Polyhedra_Powerset< PH > Class Template
Reference

The powerset construction instantiated on PPL polyhedra.

Inherits Parma_Polyhedra_Library::Powerset< Parma_Polyhedra_Library::Determinate< PH > >.

Public Member Functions

Constructors

• Polyhedra_Powerset (dimension_type num_dimensions=0, Degenerate_Element
kind=UNIVERSE)

Builds a universe (top) or empty (bottom) Polyhedra_Powerset.

• Polyhedra_Powerset (const Polyhedra_Powerset &y)
Ordinary copy-constructor.

• Polyhedra_Powerset (const PH &ph)
If ph is nonempty, builds a powerset containing only ph. Builds the empty powerset otherwise.

• template<typename QH> Polyhedra_Powerset (const Polyhedra_Powerset< QH > &y)
Copy-constructor allowing a source powerset with elements of a different polyhedron kind.

• Polyhedra_Powerset (const Constraint_System &cs)
Creates a Polyhedra_Powerset with a single polyhedron with the same information contents as cs.

• Polyhedra_Powerset (const Congruence_System &cgs)
with the same information contents as cgs.

Member Functions that Do Not Modify the Powerset of Polyhedra

• dimension_type space_dimension () const
Returns the dimension of the vector space enclosing ∗this.

• bool geometrically_covers (const Polyhedra_Powerset &y) const

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.32 Parma_Polyhedra_Library::Polyhedra_Powerset< PH > Class Template Reference 235

Returns true if and only if ∗this geometrically covers y, i.e., if any point (in some element) of y is
also a point (of some element) of ∗this.

• bool geometrically_equals (const Polyhedra_Powerset &y) const
Returns true if and only if ∗this is geometrically equal to y, i.e., if (the elements of) ∗this and y
contain the same set of points.

• memory_size_type total_memory_in_bytes () const
Returns a lower bound to the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns a lower bound to the size in bytes of the memory managed by ∗this.

• bool OK () const
Checks if all the invariants are satisfied.

Space Dimension Preserving Member Functions that May Modify the Powerset of Polyhedra

• void add_disjunct (const PH &ph)
Adds to ∗this the disjunct ph.

• void add_constraint (const Constraint &c)
Intersects ∗this with constraint c.

• bool add_constraint_and_minimize (const Constraint &c)
Intersects ∗this with the constraint c, minimizing the result.

• void add_constraints (const Constraint_System &cs)
Intersects ∗this with the constraints in cs.

• bool add_constraints_and_minimize (const Constraint_System &cs)
Intersects ∗this with the constraints in cs, minimizing the result.

• void pairwise_reduce ()
Assign to ∗this the result of (recursively) merging together the pairs of polyhedra whose poly-hull is
the same as their set-theoretical union.

• template<typename Widening> void BGP99_extrapolation_assign (const Polyhedra_Powerset
&y, Widening wf, unsigned max_disjuncts)

Assigns to ∗this the result of applying the BGP99 extrapolation operator to ∗this and y, using the
widening function wf and the cardinality threshold max_disjuncts.

• template<typename Cert, typename Widening> void BHZ03_widening_assign (const
Polyhedra_Powerset &y, Widening wf)

Assigns to ∗this the result of computing the BHZ03-widening between ∗this and y, using the widen-
ing function wf certified by the convergence certificate Cert.

Member Functions that May Modify the Dimension of the Vector Space

• Polyhedra_Powerset & operator= (const Polyhedra_Powerset &y)
The assignment operator (∗this and y can be dimension-incompatible).

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.32 Parma_Polyhedra_Library::Polyhedra_Powerset< PH > Class Template Reference 236

• template<typename QH> Polyhedra_Powerset & operator= (const Polyhedra_Powerset< QH >
&y)

Assignment operator allowing a source powerset with elements of a different polyhedron kind (∗this
and y can be dimension-incompatible).

• void swap (Polyhedra_Powerset &y)
Swaps ∗this with y.

• void add_space_dimensions_and_embed (dimension_type m)
Adds m new dimensions to the vector space containing ∗this and embeds each polyhedron in ∗this
in the new space.

• void add_space_dimensions_and_project (dimension_type m)
Adds m new dimensions to the vector space containing ∗this without embedding the polyhedra in
∗this in the new space.

• void intersection_assign (const Polyhedra_Powerset &y)
Assigns to ∗this the intersection of ∗this and y.

• void poly_difference_assign (const Polyhedra_Powerset &y)
Assigns to ∗this the difference of ∗this and y.

• void concatenate_assign (const Polyhedra_Powerset &y)
Assigns to ∗this the concatenation of ∗this and y.

• void time_elapse_assign (const Polyhedra_Powerset &y)
Assigns to ∗this the result of computing the time-elapse between ∗this and y.

• void remove_space_dimensions (const Variables_Set &to_be_removed)
Removes all the specified space dimensions.

• void remove_higher_space_dimensions (dimension_type new_dimension)
Removes the higher space dimensions so that the resulting space will have dimension new_-
dimension.

• template<typename Partial_Function> void map_space_dimensions (const Partial_Function
&pfunc)

Remaps the dimensions of the vector space according to a partial function.

Static Public Member Functions

• static dimension_type max_space_dimension ()
Returns the maximum space dimension a Polyhedra_Powerset<PH> can handle.

Related Functions

(Note that these are not member functions.)

• Widening_Function< PH > widen_fun_ref (void(PH::∗wm)(const PH &, unsigned ∗))
Wraps a widening method into a function object.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.32 Parma_Polyhedra_Library::Polyhedra_Powerset< PH > Class Template Reference 237

• Limited_Widening_Function< PH, CS > widen_fun_ref (void(PH::∗lwm)(const PH &, const CS &,
unsigned ∗), const CS &cs)

Wraps a limited widening method into a function object.

• std::pair< PH, Polyhedra_Powerset< NNC_Polyhedron > > linear_partition (const PH &p, const
PH &q)

Partitions q with respect to p.

• bool check_containment (const NNC_Polyhedron &ph, const Polyhedra_Powerset< NNC_-
Polyhedron > &ps)

Returns true if and only if the union of the NNC polyhedra in ps contains the NNC polyhedron ph.

• bool check_containment (const PH &ph, const Polyhedra_Powerset< PH > &ps)
Returns true if and only if the union of the objects in ps contains ph.

• void swap (Parma_Polyhedra_Library::Polyhedra_Powerset< PH > &x, Parma_Polyhedra_-
Library::Polyhedra_Powerset< PH > &y)

Specializes std::swap.

9.32.1 Detailed Description

template<typename PH> class Parma_Polyhedra_Library::Polyhedra_Powerset< PH >

The powerset construction instantiated on PPL polyhedra.

9.32.2 Constructor & Destructor Documentation

9.32.2.1 template<typename PH> Parma_Polyhedra_Library::Polyhedra_Powerset< PH
>::Polyhedra_Powerset (dimension_type num_dimensions = 0, Degenerate_Element kind =
UNIVERSE) [inline, explicit]

Builds a universe (top) or empty (bottom) Polyhedra_Powerset.

Parameters:

num_dimensions The number of dimensions of the vector space enclosing the powerset;

kind Specifies whether the universe or the empty powerset has to be built.

9.32.3 Member Function Documentation

9.32.3.1 template<typename PH> bool Parma_Polyhedra_Library::Polyhedra_Powerset< PH
>::geometrically_covers (const Polyhedra_Powerset< PH > & y) const [inline]

Returns true if and only if ∗this geometrically covers y, i.e., if any point (in some element) of y is also
a point (of some element) of ∗this.

Exceptions:

std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-
incompatible.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.32 Parma_Polyhedra_Library::Polyhedra_Powerset< PH > Class Template Reference 238

Warning:

This may be really expensive!

9.32.3.2 template<typename PH> bool Parma_Polyhedra_Library::Polyhedra_Powerset< PH
>::geometrically_equals (const Polyhedra_Powerset< PH > & y) const [inline]

Returns true if and only if ∗this is geometrically equal to y, i.e., if (the elements of) ∗this and y
contain the same set of points.

Exceptions:

std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-
incompatible.

Warning:

This may be really expensive!

9.32.3.3 template<typename PH> void Parma_Polyhedra_Library::Polyhedra_Powerset< PH
>::add_disjunct (const PH & ph)

Adds to ∗this the disjunct ph.

Exceptions:

std::invalid_argument Thrown if ∗this and ph are dimension-incompatible.

9.32.3.4 template<typename PH> void Parma_Polyhedra_Library::Polyhedra_Powerset< PH
>::add_constraint (const Constraint & c)

Intersects ∗this with constraint c.

Exceptions:

std::invalid_argument Thrown if ∗this and constraint c are topology-incompatible or dimension-
incompatible.

9.32.3.5 template<typename PH> bool Parma_Polyhedra_Library::Polyhedra_Powerset< PH
>::add_constraint_and_minimize (const Constraint & c)

Intersects ∗this with the constraint c, minimizing the result.

Returns:

false if and only if the result is empty.

Exceptions:

std::invalid_argument Thrown if ∗this and c are topology-incompatible or dimension-
incompatible.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.32 Parma_Polyhedra_Library::Polyhedra_Powerset< PH > Class Template Reference 239

9.32.3.6 template<typename PH> void Parma_Polyhedra_Library::Polyhedra_Powerset< PH
>::add_constraints (const Constraint_System & cs)

Intersects ∗this with the constraints in cs.

Parameters:

cs The constraints to intersect with.

Exceptions:

std::invalid_argument Thrown if ∗this and cs are topology-incompatible or dimension-
incompatible.

9.32.3.7 template<typename PH> bool Parma_Polyhedra_Library::Polyhedra_Powerset< PH
>::add_constraints_and_minimize (const Constraint_System & cs)

Intersects ∗this with the constraints in cs, minimizing the result.

Returns:

false if and only if the result is empty.

Parameters:

cs The constraints to intersect with.

Exceptions:

std::invalid_argument Thrown if ∗this and cs are topology-incompatible or dimension-
incompatible.

9.32.3.8 template<typename PH> void Parma_Polyhedra_Library::Polyhedra_Powerset< PH
>::pairwise_reduce ()

Assign to ∗this the result of (recursively) merging together the pairs of polyhedra whose poly-hull is the
same as their set-theoretical union.

On exit, for all the pairs P , Q of different polyhedra in ∗this, we have P]Q 6= P ∪Q.

9.32.3.9 template<typename PH> template<typename Widening> void Parma_Polyhedra_-
Library::Polyhedra_Powerset< PH >::BGP99_extrapolation_assign (const Polyhedra_Powerset<
PH > & y, Widening wf, unsigned max_disjuncts)

Assigns to ∗this the result of applying the BGP99 extrapolation operator to ∗this and y, using the
widening function wf and the cardinality threshold max_disjuncts.

Parameters:

y A finite powerset of polyhedra. It must definitely entail ∗this;

wf The widening function to be used on polyhedra objects. It is obtained from the corre-
sponding widening method by using the helper function Parma_Polyhedra_Library::widen_-
fun_ref. Legal values are, e.g., widen_fun_ref(&Polyhedron::H79_widening_-
assign) and widen_fun_ref(&Polyhedron::limited_H79_extrapolation_-
assign, cs);

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.32 Parma_Polyhedra_Library::Polyhedra_Powerset< PH > Class Template Reference 240

max_disjuncts The maximum number of disjuncts occurring in the powerset ∗this before starting
the computation. If this number is exceeded, some of the disjuncts in ∗this are collapsed (i.e.,
joined together).

Exceptions:

std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-
incompatible.

For a description of the extrapolation operator, see [BGP99] and [BHZ03b].

9.32.3.10 template<typename PH> template<typename Cert, typename Widening> void Parma_-
Polyhedra_Library::Polyhedra_Powerset< PH >::BHZ03_widening_assign (const Polyhedra_-
Powerset< PH > & y, Widening wf)

Assigns to ∗this the result of computing the BHZ03-widening between ∗this and y, using the widening
function wf certified by the convergence certificate Cert.

Parameters:

y The finite powerset of polyhedra computed in the previous iteration step. It must definitely entail
∗this;

wf The widening function to be used on polyhedra objects. It is obtained from the cor-
responding widening method by using the helper function widen_fun_ref. Legal values
are, e.g., widen_fun_ref(&Polyhedron::H79_widening_assign) and widen_-
fun_ref(&Polyhedron::limited_H79_extrapolation_assign, cs).

Exceptions:

std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-
incompatible.

Warning:

In order to obtain a proper widening operator, the template parameter Cert should be a finite con-
vergence certificate for the base-level widening function wf; otherwise, an extrapolation operator is
obtained. For a description of the methods that should be provided by Cert, see BHRZ03_Certificate
or H79_Certificate.

9.32.3.11 template<typename PH> void Parma_Polyhedra_Library::Polyhedra_Powerset< PH
>::intersection_assign (const Polyhedra_Powerset< PH > & y) [inline]

Assigns to ∗this the intersection of ∗this and y.

The result is obtained by intersecting each polyhedron in ∗this with each polyhedron in y and collecting
all these intersections.

9.32.3.12 template<typename PH> void Parma_Polyhedra_Library::Polyhedra_Powerset< PH
>::poly_difference_assign (const Polyhedra_Powerset< PH > & y)

Assigns to ∗this the difference of ∗this and y.

The result is obtained by computing the poly-difference of each polyhedron in ∗thiswith each polyhedron
in y and collecting all these differences.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.32 Parma_Polyhedra_Library::Polyhedra_Powerset< PH > Class Template Reference 241

9.32.3.13 template<typename PH> void Parma_Polyhedra_Library::Polyhedra_Powerset< PH
>::concatenate_assign (const Polyhedra_Powerset< PH > & y)

Assigns to ∗this the concatenation of ∗this and y.

The result is obtained by computing the pairwise concatenation of each polyhedron in ∗this with each
polyhedron in y.

9.32.3.14 template<typename PH> void Parma_Polyhedra_Library::Polyhedra_Powerset< PH
>::time_elapse_assign (const Polyhedra_Powerset< PH > & y) [inline]

Assigns to ∗this the result of computing the time-elapse between ∗this and y.

The result is obtained by computing the pairwise time elapse of each polyhedron in ∗this with each
polyhedron in y.

9.32.3.15 template<typename PH> void Parma_Polyhedra_Library::Polyhedra_Powerset< PH
>::remove_space_dimensions (const Variables_Set & to_be_removed)

Removes all the specified space dimensions.

Parameters:

to_be_removed The set of Variable objects corresponding to the space dimensions to be removed.

Exceptions:

std::invalid_argument Thrown if ∗this is dimension-incompatible with one of the Variable objects
contained in to_be_removed.

9.32.3.16 template<typename PH> void Parma_Polyhedra_Library::Polyhedra_Powerset< PH
>::remove_higher_space_dimensions (dimension_type new_dimension)

Removes the higher space dimensions so that the resulting space will have dimension new_dimension.

Exceptions:

std::invalid_argument Thrown if new_dimensions is greater than the space dimension of ∗this.

9.32.3.17 template<typename PH> template<typename Partial_Function> void Parma_-
Polyhedra_Library::Polyhedra_Powerset< PH >::map_space_dimensions (const Partial_Function
& pfunc)

Remaps the dimensions of the vector space according to a partial function.

See also Polyhedron::map_space_dimensions.

9.32.4 Friends And Related Function Documentation

9.32.4.1 template<typename PH> Widening_Function< PH > widen_fun_ref (void(PH::∗)(const
PH &, unsigned ∗) wm) [related]

Wraps a widening method into a function object.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.33 Parma_Polyhedra_Library::Polyhedron Class Reference 242

Parameters:

wm The widening method.

9.32.4.2 template<typename PH> Limited_Widening_Function< PH, CS > widen_fun_ref
(void(PH::∗)(const PH &, const CS &, unsigned ∗) lwm, const CS & cs) [related]

Wraps a limited widening method into a function object.

Parameters:

lwm The limited widening method.

cs The constraint system limiting the widening.

9.32.4.3 template<typename PH> std::pair< PH, Polyhedra_Powerset< NNC_Polyhedron > >
linear_partition (const PH & p, const PH & q) [related]

Partitions q with respect to p.

Let p and q be two polyhedra. The function returns an object r of type std::pair<PH,
Polyhedra_Powerset<NNC_Polyhedron> > such that

• r.first is the intersection of p and q;

• r.second has the property that all its elements are pairwise disjoint and disjoint from p;

• the union of r.first with all the elements of r.second gives q (i.e., r is the representation of a
partition of q).

9.32.4.4 template<typename PH> bool check_containment (const PH & ph, const Polyhedra_-
Powerset< PH > & ps) [related]

Returns true if and only if the union of the objects in ps contains ph.

Note:

It is assumed that the template parameter PH can be converted without precision loss into an NNC_-
Polyhedron; otherwise, an incorrect result might be obtained.

9.33 Parma_Polyhedra_Library::Polyhedron Class Reference

The base class for convex polyhedra.

Inherited by Parma_Polyhedra_Library::C_Polyhedron, and Parma_Polyhedra_Library::NNC_-
Polyhedron.

Public Member Functions

Member Functions that Do Not Modify the Polyhedron

• dimension_type space_dimension () const
Returns the dimension of the vector space enclosing ∗this.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.33 Parma_Polyhedra_Library::Polyhedron Class Reference 243

• dimension_type affine_dimension () const
Returns 0, if ∗this is empty; otherwise, returns the affine dimension of ∗this.

• const Constraint_System & constraints () const
Returns the system of constraints.

• const Constraint_System & minimized_constraints () const
Returns the system of constraints, with no redundant constraint.

• const Generator_System & generators () const
Returns the system of generators.

• const Generator_System & minimized_generators () const
Returns the system of generators, with no redundant generator.

• Poly_Con_Relation relation_with (const Constraint &c) const
Returns the relations holding between the polyhedron ∗this and the constraint c.

• Poly_Gen_Relation relation_with (const Generator &g) const
Returns the relations holding between the polyhedron ∗this and the generator g.

• bool is_empty () const
Returns true if and only if ∗this is an empty polyhedron.

• bool is_universe () const
Returns true if and only if ∗this is a universe polyhedron.

• bool is_topologically_closed () const
Returns true if and only if ∗this is a topologically closed subset of the vector space.

• bool is_disjoint_from (const Polyhedron &y) const
Returns true if and only if ∗this and y are disjoint.

• bool is_bounded () const
Returns true if and only if ∗this is a bounded polyhedron.

• bool bounds_from_above (const Linear_Expression &expr) const
Returns true if and only if expr is bounded from above in ∗this.

• bool bounds_from_below (const Linear_Expression &expr) const
Returns true if and only if expr is bounded from below in ∗this.

• bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum) const

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value is computed.

• bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum, Generator &point) const

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value and a point where expr reaches it are computed.

• bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum) const

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.33 Parma_Polyhedra_Library::Polyhedron Class Reference 244

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value is computed.

• bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum, Generator &point) const

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value and a point where expr reaches it are computed.

• bool contains (const Polyhedron &y) const
Returns true if and only if ∗this contains y.

• bool strictly_contains (const Polyhedron &y) const
Returns true if and only if ∗this strictly contains y.

• template<typename Box> void shrink_bounding_box (Box &box, Complexity_Class
complexity=ANY_COMPLEXITY) const

Uses ∗this to shrink a generic, interval-based bounding box. Assigns to box the intersection of box
with the smallest bounding box containing ∗this.

• bool OK (bool check_not_empty=false) const
Checks if all the invariants are satisfied.

Space Dimension Preserving Member Functions that May Modify the Polyhedron

• void add_constraint (const Constraint &c)
Adds a copy of constraint c to the system of constraints of ∗this (without minimizing the result).

• bool add_constraint_and_minimize (const Constraint &c)
Adds a copy of constraint c to the system of constraints of ∗this, minimizing the result.

• void add_generator (const Generator &g)
Adds a copy of generator g to the system of generators of ∗this (without minimizing the result).

• bool add_generator_and_minimize (const Generator &g)
Adds a copy of generator g to the system of generators of ∗this, minimizing the result.

• void add_congruence (const Congruence &cg)
Adds a copy of congruence cg to the system of congruences of this (without minimizing the result).

• void add_constraints (const Constraint_System &cs)
Adds a copy of the constraints in cs to the system of constraints of ∗this (without minimizing the
result).

• void add_recycled_constraints (Constraint_System &cs)
Adds the constraints in cs to the system of constraints of ∗this (without minimizing the result).

• bool add_constraints_and_minimize (const Constraint_System &cs)
Adds a copy of the constraints in cs to the system of constraints of ∗this, minimizing the result.

• bool add_recycled_constraints_and_minimize (Constraint_System &cs)
Adds the constraints in cs to the system of constraints of ∗this, minimizing the result.

• void add_generators (const Generator_System &gs)
Adds a copy of the generators in gs to the system of generators of ∗this (without minimizing the result).

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.33 Parma_Polyhedra_Library::Polyhedron Class Reference 245

• void add_recycled_generators (Generator_System &gs)
Adds the generators in gs to the system of generators of ∗this (without minimizing the result).

• bool add_generators_and_minimize (const Generator_System &gs)
Adds a copy of the generators in gs to the system of generators of ∗this, minimizing the result.

• bool add_recycled_generators_and_minimize (Generator_System &gs)
Adds the generators in gs to the system of generators of ∗this, minimizing the result.

• void add_congruences (const Congruence_System &cgs)
Adds to ∗this constraints equivalent to the congruences in cgs (without minimizing the result).

• void intersection_assign (const Polyhedron &y)
Assigns to ∗this the intersection of ∗this and y. The result is not guaranteed to be minimized.

• bool intersection_assign_and_minimize (const Polyhedron &y)
Assigns to ∗this the intersection of ∗this and y, minimizing the result.

• void poly_hull_assign (const Polyhedron &y)
Assigns to ∗this the poly-hull of ∗this and y. The result is not guaranteed to be minimized.

• bool poly_hull_assign_and_minimize (const Polyhedron &y)
Assigns to ∗this the poly-hull of ∗this and y, minimizing the result.

• void upper_bound_assign (const Polyhedron &y)
Same as poly_hull_assign(y).

• void poly_difference_assign (const Polyhedron &y)
Assigns to ∗this the poly-difference of ∗this and y. The result is not guaranteed to be minimized.

• void difference_assign (const Polyhedron &y)
Same as poly_difference_assign(y).

• void affine_image (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())

Assigns to ∗this the affine image of ∗this under the function mapping variable var to the affine
expression specified by expr and denominator.

• void affine_preimage (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())

Assigns to ∗this the affine preimage of ∗this under the function mapping variable var to the affine
expression specified by expr and denominator.

• void generalized_affine_image (Variable var, const Relation_Symbol relsym, const Linear_-
Expression &expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to ∗this the image of ∗this with respect to the generalized affine relation var′ ./ expr
denominator

,
where ./ is the relation symbol encoded by relsym.

• void generalized_affine_preimage (Variable var, const Relation_Symbol relsym, const Linear_-
Expression &expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to ∗this the preimage of ∗this with respect to the generalized affine relation var′ ./
expr

denominator
, where ./ is the relation symbol encoded by relsym.

• void generalized_affine_image (const Linear_Expression &lhs, const Relation_Symbol relsym,
const Linear_Expression &rhs)

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.33 Parma_Polyhedra_Library::Polyhedron Class Reference 246

Assigns to ∗this the image of ∗this with respect to the generalized affine relation lhs′ ./ rhs, where
./ is the relation symbol encoded by relsym.

• void generalized_affine_preimage (const Linear_Expression &lhs, const Relation_Symbol rel-
sym, const Linear_Expression &rhs)

Assigns to ∗this the preimage of ∗this with respect to the generalized affine relation lhs′ ./ rhs,
where ./ is the relation symbol encoded by relsym.

• void bounded_affine_image (Variable var, const Linear_Expression &lb_expr, const Linear_-
Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to ∗this the image of ∗this with respect to the bounded affine relation lb_expr
denominator

≤ var′ ≤
ub_expr

denominator
.

• void bounded_affine_preimage (Variable var, const Linear_Expression &lb_expr, const Linear_-
Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to ∗this the preimage of ∗this with respect to the bounded affine relation lb_expr
denominator

≤
var′ ≤ ub_expr

denominator
.

• void time_elapse_assign (const Polyhedron &y)
Assigns to ∗this the result of computing the time-elapse between ∗this and y.

• void topological_closure_assign ()
Assigns to ∗this its topological closure.

• void BHRZ03_widening_assign (const Polyhedron &y, unsigned ∗tp=0)
Assigns to ∗this the result of computing the BHRZ03-widening between ∗this and y.

• void limited_BHRZ03_extrapolation_assign (const Polyhedron &y, const Constraint_System
&cs, unsigned ∗tp=0)

Improves the result of the BHRZ03-widening computation by also enforcing those constraints in cs that
are satisfied by all the points of ∗this.

• void bounded_BHRZ03_extrapolation_assign (const Polyhedron &y, const Constraint_System
&cs, unsigned ∗tp=0)

Improves the result of the BHRZ03-widening computation by also enforcing those constraints in cs that
are satisfied by all the points of ∗this, plus all the constraints of the form ±x ≤ r and ±x < r, with
r ∈ Q, that are satisfied by all the points of ∗this.

• void H79_widening_assign (const Polyhedron &y, unsigned ∗tp=0)
Assigns to ∗this the result of computing the H79-widening between ∗this and y.

• void limited_H79_extrapolation_assign (const Polyhedron &y, const Constraint_System &cs, un-
signed ∗tp=0)

Improves the result of the H79-widening computation by also enforcing those constraints in cs that are
satisfied by all the points of ∗this.

• void bounded_H79_extrapolation_assign (const Polyhedron &y, const Constraint_System &cs,
unsigned ∗tp=0)

Improves the result of the H79-widening computation by also enforcing those constraints in cs that are
satisfied by all the points of ∗this, plus all the constraints of the form ±x ≤ r and ±x < r, with
r ∈ Q, that are satisfied by all the points of ∗this.

Member Functions that May Modify the Dimension of the Vector Space

• void add_space_dimensions_and_embed (dimension_type m)

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.33 Parma_Polyhedra_Library::Polyhedron Class Reference 247

Adds m new space dimensions and embeds the old polyhedron in the new vector space.

• void add_space_dimensions_and_project (dimension_type m)
Adds m new space dimensions to the polyhedron and does not embed it in the new vector space.

• void concatenate_assign (const Polyhedron &y)
Assigns to ∗this the concatenation of ∗this and y, taken in this order.

• void remove_space_dimensions (const Variables_Set &to_be_removed)
Removes all the specified dimensions from the vector space.

• void remove_higher_space_dimensions (dimension_type new_dimension)
Removes the higher dimensions of the vector space so that the resulting space will have dimension
new_dimension.

• template<typename Partial_Function> void map_space_dimensions (const Partial_Function
&pfunc)

Remaps the dimensions of the vector space according to a partial function.

• void expand_space_dimension (Variable var, dimension_type m)
Creates m copies of the space dimension corresponding to var.

• void fold_space_dimensions (const Variables_Set &to_be_folded, Variable var)
Folds the space dimensions in to_be_folded into var.

Miscellaneous Member Functions

• ∼Polyhedron ()
Destructor.

• void swap (Polyhedron &y)
Swaps ∗this with polyhedron y. (∗this and y can be dimension-incompatible.).

• memory_size_type total_memory_in_bytes () const
Returns the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

Static Public Member Functions

• static dimension_type max_space_dimension ()
Returns the maximum space dimension all kinds of Polyhedron can handle.

Protected Member Functions

• Polyhedron (Topology topol, dimension_type num_dimensions, Degenerate_Element kind)
Builds a polyhedron having the specified properties.

• Polyhedron (const Polyhedron &y)

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.33 Parma_Polyhedra_Library::Polyhedron Class Reference 248

Ordinary copy-constructor.

• Polyhedron (Topology topol, const Constraint_System &cs)
Builds a polyhedron from a system of constraints.

• Polyhedron (Topology topol, Constraint_System &cs)
Builds a polyhedron recycling a system of constraints.

• Polyhedron (Topology topol, const Generator_System &gs)
Builds a polyhedron from a system of generators.

• Polyhedron (Topology topol, Generator_System &gs)
Builds a polyhedron recycling a system of generators.

• template<typename Box> Polyhedron (Topology topol, const Box &box)
Builds a polyhedron out of a generic, interval-based bounding box.

• Polyhedron & operator= (const Polyhedron &y)
The assignment operator. (∗this and y can be dimension-incompatible.).

Related Functions

(Note that these are not member functions.)

• std::ostream & operator<< (std::ostream &s, const Polyhedron &ph)
Output operator.

• bool operator!= (const Polyhedron &x, const Polyhedron &y)
Returns true if and only if x and y are different polyhedra.

• void swap (Parma_Polyhedra_Library::Polyhedron &x, Parma_Polyhedra_Library::Polyhedron &y)

Specializes std::swap.

9.33.1 Detailed Description

The base class for convex polyhedra.

An object of the class Polyhedron represents a convex polyhedron in the vector space Rn.

A polyhedron can be specified as either a finite system of constraints or a finite system of generators (see
Section Representations of Convex Polyhedra) and it is always possible to obtain either representation. That
is, if we know the system of constraints, we can obtain from this the system of generators that define the
same polyhedron and vice versa. These systems can contain redundant members: in this case we say that
they are not in the minimal form. Most operators on polyhedra are provided with two implementations:
one of these, denoted <operator-name>_and_minimize, also enforces the minimization of the
representations, and returns the Boolean value false whenever the resulting polyhedron turns out to be
empty.

Two key attributes of any polyhedron are its topological kind (recording whether it is a C_Polyhedron or
an NNC_Polyhedron object) and its space dimension (the dimension n ∈ N of the enclosing vector space):

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.33 Parma_Polyhedra_Library::Polyhedron Class Reference 249

• all polyhedra, the empty ones included, are endowed with a specific topology and space dimension;

• most operations working on a polyhedron and another object (i.e., another polyhedron, a constraint
or generator, a set of variables, etc.) will throw an exception if the polyhedron and the object are
not both topology-compatible and dimension-compatible (see Section Representations of Convex
Polyhedra);

• the topology of a polyhedron cannot be changed; rather, there are constructors for each of the two
derived classes that will build a new polyhedron with the topology of that class from another poly-
hedron from either class and any topology;

• the only ways in which the space dimension of a polyhedron can be changed are:

– explicit calls to operators provided for that purpose;

– standard copy, assignment and swap operators.

Note that four different polyhedra can be defined on the zero-dimension space: the empty polyhedron,
either closed or NNC, and the universe polyhedron R0, again either closed or NNC.

In all the examples it is assumed that variables x and y are defined (where they are used) as follows:

Variable x(0);
Variable y(1);

Example 1

The following code builds a polyhedron corresponding to a square in R2, given as a system of con-
straints:

Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x <= 3);
cs.insert(y >= 0);
cs.insert(y <= 3);
C_Polyhedron ph(cs);

The following code builds the same polyhedron as above, but starting from a system of generators
specifying the four vertices of the square:

Generator_System gs;
gs.insert(point(0*x + 0*y));
gs.insert(point(0*x + 3*y));
gs.insert(point(3*x + 0*y));
gs.insert(point(3*x + 3*y));
C_Polyhedron ph(gs);

Example 2

The following code builds an unbounded polyhedron corresponding to a half-strip in R2, given as a
system of constraints:

Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x - y <= 0);
cs.insert(x - y + 1 >= 0);
C_Polyhedron ph(cs);

The following code builds the same polyhedron as above, but starting from the system of generators
specifying the two vertices of the polyhedron and one ray:

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.33 Parma_Polyhedra_Library::Polyhedron Class Reference 250

Generator_System gs;
gs.insert(point(0*x + 0*y));
gs.insert(point(0*x + y));
gs.insert(ray(x - y));
C_Polyhedron ph(gs);

Example 3

The following code builds the polyhedron corresponding to a half-plane by adding a single constraint
to the universe polyhedron in R2:

C_Polyhedron ph(2);
ph.add_constraint(y >= 0);

The following code builds the same polyhedron as above, but starting from the empty polyhedron in
the space R2 and inserting the appropriate generators (a point, a ray and a line).

C_Polyhedron ph(2, EMPTY);
ph.add_generator(point(0*x + 0*y));
ph.add_generator(ray(y));
ph.add_generator(line(x));

Note that, although the above polyhedron has no vertices, we must add one point, because otherwise
the result of the Minkowski’s sum would be an empty polyhedron. To avoid subtle errors related to the
minimization process, it is required that the first generator inserted in an empty polyhedron is a point
(otherwise, an exception is thrown).

Example 4

The following code shows the use of the function add_space_dimensions_and_embed:

C_Polyhedron ph(1);
ph.add_constraint(x == 2);
ph.add_space_dimensions_and_embed(1);

We build the universe polyhedron in the 1-dimension space R. Then we add a single equality con-
straint, thus obtaining the polyhedron corresponding to the singleton set {2} ⊆ R. After the last line
of code, the resulting polyhedron is {

(2, y)T ∈ R2
∣∣ y ∈ R

}
.

Example 5

The following code shows the use of the function add_space_dimensions_and_project:

C_Polyhedron ph(1);
ph.add_constraint(x == 2);
ph.add_space_dimensions_and_project(1);

The first two lines of code are the same as in Example 4 for add_space_dimensions_and_-
embed. After the last line of code, the resulting polyhedron is the singleton set

{
(2, 0)T

}
⊆ R2.

Example 6

The following code shows the use of the function affine_image:

C_Polyhedron ph(2, EMPTY);
ph.add_generator(point(0*x + 0*y));
ph.add_generator(point(0*x + 3*y));
ph.add_generator(point(3*x + 0*y));
ph.add_generator(point(3*x + 3*y));
Linear_Expression expr = x + 4;
ph.affine_image(x, expr);

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.33 Parma_Polyhedra_Library::Polyhedron Class Reference 251

In this example the starting polyhedron is a square in R2, the considered variable is x and the affine
expression is x + 4. The resulting polyhedron is the same square translated to the right. Moreover, if
the affine transformation for the same variable x is x + y:

Linear_Expression expr = x + y;

the resulting polyhedron is a parallelogram with the height equal to the side of the square and the
oblique sides parallel to the line x − y. Instead, if we do not use an invertible transformation for the
same variable; for example, the affine expression y:

Linear_Expression expr = y;

the resulting polyhedron is a diagonal of the square.

Example 7

The following code shows the use of the function affine_preimage:

C_Polyhedron ph(2);
ph.add_constraint(x >= 0);
ph.add_constraint(x <= 3);
ph.add_constraint(y >= 0);
ph.add_constraint(y <= 3);
Linear_Expression expr = x + 4;
ph.affine_preimage(x, expr);

In this example the starting polyhedron, var and the affine expression and the denominator are the
same as in Example 6, while the resulting polyhedron is again the same square, but translated to the
left. Moreover, if the affine transformation for x is x + y

Linear_Expression expr = x + y;

the resulting polyhedron is a parallelogram with the height equal to the side of the square and the
oblique sides parallel to the line x + y. Instead, if we do not use an invertible transformation for the
same variable x, for example, the affine expression y:

Linear_Expression expr = y;

the resulting polyhedron is a line that corresponds to the y axis.

Example 8

For this example we use also the variables:

Variable z(2);
Variable w(3);

The following code shows the use of the function remove_space_dimensions:

Generator_System gs;
gs.insert(point(3*x + y +0*z + 2*w));
C_Polyhedron ph(gs);
Variables_Set to_be_removed;
to_be_removed.insert(y);
to_be_removed.insert(z);
ph.remove_space_dimensions(to_be_removed);

The starting polyhedron is the singleton set
{
(3, 1, 0, 2)T

}
⊆ R4, while the resulting polyhedron

is
{
(3, 2)T

}
⊆ R2. Be careful when removing space dimensions incrementally: since dimensions

are automatically renamed after each application of the remove_space_dimensions operator,
unexpected results can be obtained. For instance, by using the following code we would obtain a
different result:

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.33 Parma_Polyhedra_Library::Polyhedron Class Reference 252

set<Variable> to_be_removed1;
to_be_removed1.insert(y);
ph.remove_space_dimensions(to_be_removed1);
set<Variable> to_be_removed2;
to_be_removed2.insert(z);
ph.remove_space_dimensions(to_be_removed2);

In this case, the result is the polyhedron
{
(3, 0)T

}
⊆ R2: when removing the set of dimensions

to_be_removed2 we are actually removing variable w of the original polyhedron. For the same
reason, the operator remove_space_dimensions is not idempotent: removing twice the same
non-empty set of dimensions is never the same as removing them just once.

9.33.2 Constructor & Destructor Documentation

9.33.2.1 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topology topol, dimension_type
num_dimensions, Degenerate_Element kind) [protected]

Builds a polyhedron having the specified properties.

Parameters:

topol The topology of the polyhedron;
num_dimensions The number of dimensions of the vector space enclosing the polyhedron;
kind Specifies whether the universe or the empty polyhedron has to be built.

9.33.2.2 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topology topol, const Constraint_-
System & cs) [protected]

Builds a polyhedron from a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:

topol The topology of the polyhedron;
cs The system of constraints defining the polyhedron.

Exceptions:

std::invalid_argument Thrown if the topology of cs is incompatible with topol.

9.33.2.3 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topology topol, Constraint_System
& cs) [protected]

Builds a polyhedron recycling a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:

topol The topology of the polyhedron;
cs The system of constraints defining the polyhedron. It is not declared const because its data-

structures will be recycled to build the polyhedron.

Exceptions:

std::invalid_argument Thrown if the topology of cs is incompatible with topol.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.33 Parma_Polyhedra_Library::Polyhedron Class Reference 253

9.33.2.4 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topology topol, const Generator_-
System & gs) [protected]

Builds a polyhedron from a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:

topol The topology of the polyhedron;

gs The system of generators defining the polyhedron.

Exceptions:

std::invalid_argument Thrown if the topology of gs is incompatible with topol, or if the system of
generators is not empty but has no points.

9.33.2.5 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topology topol, Generator_System
& gs) [protected]

Builds a polyhedron recycling a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:

topol The topology of the polyhedron;

gs The system of generators defining the polyhedron. It is not declared const because its data-
structures will be recycled to build the polyhedron.

Exceptions:

std::invalid_argument Thrown if the topology of gs is incompatible with topol, or if the system of
generators is not empty but has no points.

9.33.2.6 template<typename Box> Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topol-
ogy topol, const Box & box) [protected]

Builds a polyhedron out of a generic, interval-based bounding box.

Parameters:

topol The topology of the polyhedron;

box The bounding box representing the polyhedron to be built.

Exceptions:

std::invalid_argument Thrown if box has intervals that are incompatible with topol.

The template class Box must provide the following methods.

dimension_type space_dimension() const

returns the dimension of the vector space enclosing the polyhedron represented by the bounding box.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.33 Parma_Polyhedra_Library::Polyhedron Class Reference 254

bool is_empty() const

returns true if and only if the bounding box describes the empty set. The is_empty() method will
always be called before the methods below. However, if is_empty() returns true, none of the functions
below will be called.

bool get_lower_bound(dimension_type k, bool closed,
Coefficient& n, Coefficient& d) const

Let I the interval corresponding to the k-th space dimension. If I is not bounded from below, simply return
false. Otherwise, set closed, n and d as follows: closed is set to true if the the lower boundary of
I is closed and is set to false otherwise; n and d are assigned the integers n and d such that the canonical
fraction n/d corresponds to the greatest lower bound of I . The fraction n/d is in canonical form if and
only if n and d have no common factors and d is positive, 0/1 being the unique representation for zero.

bool get_upper_bound(dimension_type k, bool closed,
Coefficient& n, Coefficient& d) const

Let I the interval corresponding to the k-th space dimension. If I is not bounded from above, simply return
false. Otherwise, set closed, n and d as follows: closed is set to true if the the upper boundary of
I is closed and is set to false otherwise; n and d are assigned the integers n and d such that the canonical
fraction n/d corresponds to the least upper bound of I .

9.33.3 Member Function Documentation

9.33.3.1 Poly_Con_Relation Parma_Polyhedra_Library::Polyhedron::relation_with (const Con-
straint & c) const

Returns the relations holding between the polyhedron ∗this and the constraint c.

Exceptions:

std::invalid_argument Thrown if ∗this and constraint c are dimension-incompatible.

9.33.3.2 Poly_Gen_Relation Parma_Polyhedra_Library::Polyhedron::relation_with (const Gener-
ator & g) const

Returns the relations holding between the polyhedron ∗this and the generator g.

Exceptions:

std::invalid_argument Thrown if ∗this and generator g are dimension-incompatible.

9.33.3.3 bool Parma_Polyhedra_Library::Polyhedron::is_disjoint_from (const Polyhedron & y)
const

Returns true if and only if ∗this and y are disjoint.

Exceptions:

std::invalid_argument Thrown if x and y are topology-incompatible or dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.33 Parma_Polyhedra_Library::Polyhedron Class Reference 255

9.33.3.4 bool Parma_Polyhedra_Library::Polyhedron::bounds_from_above (const Linear_-
Expression & expr) const [inline]

Returns true if and only if expr is bounded from above in ∗this.

Exceptions:

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

9.33.3.5 bool Parma_Polyhedra_Library::Polyhedron::bounds_from_below (const Linear_-
Expression & expr) const [inline]

Returns true if and only if expr is bounded from below in ∗this.

Exceptions:

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

9.33.3.6 bool Parma_Polyhedra_Library::Polyhedron::maximize (const Linear_Expression &
expr, Coefficient & sup_n, Coefficient & sup_d, bool & maximum) const [inline]

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value is computed.

Parameters:

expr The linear expression to be maximized subject to ∗this;

sup_n The numerator of the supremum value;

sup_d The denominator of the supremum value;

maximum true if and only if the supremum is also the maximum value.

Exceptions:

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded from above, false is returned and sup_n, sup_d and
maximum are left untouched.

9.33.3.7 bool Parma_Polyhedra_Library::Polyhedron::maximize (const Linear_Expression &
expr, Coefficient & sup_n, Coefficient & sup_d, bool & maximum, Generator & point) const
[inline]

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value and a point where expr reaches it are computed.

Parameters:

expr The linear expression to be maximized subject to ∗this;

sup_n The numerator of the supremum value;

sup_d The denominator of the supremum value;

maximum true if and only if the supremum is also the maximum value;

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.33 Parma_Polyhedra_Library::Polyhedron Class Reference 256

point When maximization succeeds, will be assigned the point or closure point where expr reaches
its supremum value.

Exceptions:

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded from above, false is returned and sup_n, sup_d, maximum
and point are left untouched.

9.33.3.8 bool Parma_Polyhedra_Library::Polyhedron::minimize (const Linear_Expression & expr,
Coefficient & inf_n, Coefficient & inf_d, bool & minimum) const [inline]

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value is computed.

Parameters:

expr The linear expression to be minimized subject to ∗this;

inf_n The numerator of the infimum value;

inf_d The denominator of the infimum value;

minimum true if and only if the infimum is also the minimum value.

Exceptions:

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded from below, false is returned and inf_n, inf_d and
minimum are left untouched.

9.33.3.9 bool Parma_Polyhedra_Library::Polyhedron::minimize (const Linear_Expression & expr,
Coefficient & inf_n, Coefficient & inf_d, bool & minimum, Generator & point) const [inline]

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value and a point where expr reaches it are computed.

Parameters:

expr The linear expression to be minimized subject to ∗this;

inf_n The numerator of the infimum value;

inf_d The denominator of the infimum value;

minimum true if and only if the infimum is also the minimum value;

point When minimization succeeds, will be assigned a point or closure point where expr reaches its
infimum value.

Exceptions:

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded from below, false is returned and inf_n, inf_d, minimum
and point are left untouched.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.33 Parma_Polyhedra_Library::Polyhedron Class Reference 257

9.33.3.10 bool Parma_Polyhedra_Library::Polyhedron::contains (const Polyhedron & y) const

Returns true if and only if ∗this contains y.

Exceptions:

std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-
incompatible.

9.33.3.11 bool Parma_Polyhedra_Library::Polyhedron::strictly_contains (const Polyhedron & y)
const [inline]

Returns true if and only if ∗this strictly contains y.

Exceptions:

std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-
incompatible.

9.33.3.12 template<typename Box> void Parma_Polyhedra_Library::Polyhedron::shrink_-
bounding_box (Box & box, Complexity_Class complexity = ANY_COMPLEXITY) const

Uses ∗this to shrink a generic, interval-based bounding box. Assigns to box the intersection of box
with the smallest bounding box containing ∗this.

Parameters:

box The bounding box to be shrunk;

complexity The complexity class of the algorithm to be used.

If the polyhedron ∗this or box is empty, then the empty box is returned.

If ∗this and box are non-empty, then, for each space dimension k with variable var, let u be the upper
and l the lower bound of the smallest interval containing ∗this.

If l is infinite, then box is unaltered; if l is finite, then the box interval for space dimension k is (destruc-
tively) intersected with [l, +infty) if a point of ∗this satisfies var == l and with (l, +infty) otherwise.

Similarly, if u is infinite, then box is unaltered; if u is finite, then the box interval for space dimension k
is (destructively) intersected with (−infty, u] if a point of ∗this satisfies var == u and with (−infty, u)
otherwise.

The template class Box must provide the following methods, whose return values, if any, are simply ig-
nored.

set_empty()

causes the box to become empty, i.e., to represent the empty set.

raise_lower_bound(dimension_type k, bool closed,
Coefficient_traits::const_reference n,
Coefficient_traits::const_reference d)

intersects the interval corresponding to the k-th space dimension with [n/d,+∞) if closed is true,
with (n/d,+∞) if closed is false.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.33 Parma_Polyhedra_Library::Polyhedron Class Reference 258

lower_upper_bound(dimension_type k, bool closed,
Coefficient_traits::const_reference n,
Coefficient_traits::const_reference d)

intersects the interval corresponding to the k-th space dimension with (−∞, n/d] if closed is true,
with (−∞, n/d) if closed is false.

The function raise_lower_bound(k, closed, n, d) will be called at most once for each pos-
sible value for k and for all such calls the fraction n/d will be in canonical form, that is, n and d have
no common factors and d is positive, 0/1 being the unique representation for zero. The same guarantee is
offered for the function lower_upper_bound(k, closed, n, d).

9.33.3.13 bool Parma_Polyhedra_Library::Polyhedron::OK (bool check_not_empty = false)
const

Checks if all the invariants are satisfied.

Returns:

true if and only if ∗this satisfies all the invariants and either check_not_empty is false or
∗this is not empty.

Parameters:

check_not_empty true if and only if, in addition to checking the invariants, ∗this must be checked
to be not empty.

The check is performed so as to intrude as little as possible. If the library has been compiled with run-
time assertions enabled, error messages are written on std::cerr in case invariants are violated. This is
useful for the purpose of debugging the library.

9.33.3.14 void Parma_Polyhedra_Library::Polyhedron::add_constraint (const Constraint & c)

Adds a copy of constraint c to the system of constraints of ∗this (without minimizing the result).

Exceptions:

std::invalid_argument Thrown if ∗this and constraint c are topology-incompatible or dimension-
incompatible.

9.33.3.15 bool Parma_Polyhedra_Library::Polyhedron::add_constraint_and_minimize (const
Constraint & c)

Adds a copy of constraint c to the system of constraints of ∗this, minimizing the result.

Returns:

false if and only if the result is empty.

Exceptions:

std::invalid_argument Thrown if ∗this and constraint c are topology-incompatible or dimension-
incompatible.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.33 Parma_Polyhedra_Library::Polyhedron Class Reference 259

9.33.3.16 void Parma_Polyhedra_Library::Polyhedron::add_generator (const Generator & g)

Adds a copy of generator g to the system of generators of ∗this (without minimizing the result).

Exceptions:

std::invalid_argument Thrown if ∗this and generator g are topology-incompatible or dimension-
incompatible, or if ∗this is an empty polyhedron and g is not a point.

9.33.3.17 bool Parma_Polyhedra_Library::Polyhedron::add_generator_and_minimize (const
Generator & g)

Adds a copy of generator g to the system of generators of ∗this, minimizing the result.

Returns:

false if and only if the result is empty.

Exceptions:

std::invalid_argument Thrown if ∗this and generator g are topology-incompatible or dimension-
incompatible, or if ∗this is an empty polyhedron and g is not a point.

9.33.3.18 void Parma_Polyhedra_Library::Polyhedron::add_congruence (const Congruence & cg)

Adds a copy of congruence cg to the system of congruences of this (without minimizing the result).

Exceptions:

std::invalid_argument Thrown if ∗this and congruence cg are topology-incompatible or
dimension-incompatible.

9.33.3.19 void Parma_Polyhedra_Library::Polyhedron::add_constraints (const Constraint_-
System & cs)

Adds a copy of the constraints in cs to the system of constraints of ∗this (without minimizing the result).

Parameters:

cs Contains the constraints that will be added to the system of constraints of ∗this.

Exceptions:

std::invalid_argument Thrown if ∗this and cs are topology-incompatible or dimension-
incompatible.

9.33.3.20 void Parma_Polyhedra_Library::Polyhedron::add_recycled_constraints (Constraint_-
System & cs)

Adds the constraints in cs to the system of constraints of ∗this (without minimizing the result).

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.33 Parma_Polyhedra_Library::Polyhedron Class Reference 260

Parameters:

cs The constraint system that will be recycled, adding its constraints to the system of constraints of
∗this.

Exceptions:

std::invalid_argument Thrown if ∗this and cs are topology-incompatible or dimension-
incompatible.

Warning:

The only assumption that can be made on cs upon successful or exceptional return is that it can be
safely destroyed.

9.33.3.21 bool Parma_Polyhedra_Library::Polyhedron::add_constraints_and_minimize (const
Constraint_System & cs)

Adds a copy of the constraints in cs to the system of constraints of ∗this, minimizing the result.

Returns:

false if and only if the result is empty.

Parameters:

cs Contains the constraints that will be added to the system of constraints of ∗this.

Exceptions:

std::invalid_argument Thrown if ∗this and cs are topology-incompatible or dimension-
incompatible.

9.33.3.22 bool Parma_Polyhedra_Library::Polyhedron::add_recycled_constraints_and_minimize
(Constraint_System & cs)

Adds the constraints in cs to the system of constraints of ∗this, minimizing the result.

Returns:

false if and only if the result is empty.

Parameters:

cs The constraint system that will be recycled, adding its constraints to the system of constraints of
∗this.

Exceptions:

std::invalid_argument Thrown if ∗this and cs are topology-incompatible or dimension-
incompatible.

Warning:

The only assumption that can be made on cs upon successful or exceptional return is that it can be
safely destroyed.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.33 Parma_Polyhedra_Library::Polyhedron Class Reference 261

9.33.3.23 void Parma_Polyhedra_Library::Polyhedron::add_generators (const Generator_System
& gs)

Adds a copy of the generators in gs to the system of generators of ∗this (without minimizing the result).

Parameters:

gs Contains the generators that will be added to the system of generators of ∗this.

Exceptions:

std::invalid_argument Thrown if ∗this and gs are topology-incompatible or dimension-
incompatible, or if ∗this is empty and the system of generators gs is not empty, but has no
points.

9.33.3.24 void Parma_Polyhedra_Library::Polyhedron::add_recycled_generators (Generator_-
System & gs)

Adds the generators in gs to the system of generators of ∗this (without minimizing the result).

Parameters:

gs The generator system that will be recycled, adding its generators to the system of generators of
∗this.

Exceptions:

std::invalid_argument Thrown if ∗this and gs are topology-incompatible or dimension-
incompatible, or if ∗this is empty and the system of generators gs is not empty, but has no
points.

Warning:

The only assumption that can be made on gs upon successful or exceptional return is that it can be
safely destroyed.

9.33.3.25 bool Parma_Polyhedra_Library::Polyhedron::add_generators_and_minimize (const
Generator_System & gs)

Adds a copy of the generators in gs to the system of generators of ∗this, minimizing the result.

Returns:

false if and only if the result is empty.

Parameters:

gs Contains the generators that will be added to the system of generators of ∗this.

Exceptions:

std::invalid_argument Thrown if ∗this and gs are topology-incompatible or dimension-
incompatible, or if ∗this is empty and the the system of generators gs is not empty, but has no
points.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.33 Parma_Polyhedra_Library::Polyhedron Class Reference 262

9.33.3.26 bool Parma_Polyhedra_Library::Polyhedron::add_recycled_generators_and_minimize
(Generator_System & gs)

Adds the generators in gs to the system of generators of ∗this, minimizing the result.

Returns:

false if and only if the result is empty.

Parameters:

gs The generator system that will be recycled, adding its generators to the system of generators of
∗this.

Exceptions:

std::invalid_argument Thrown if ∗this and gs are topology-incompatible or dimension-
incompatible, or if ∗this is empty and the the system of generators gs is not empty, but has no
points.

Warning:

The only assumption that can be made on gs upon successful or exceptional return is that it can be
safely destroyed.

9.33.3.27 void Parma_Polyhedra_Library::Polyhedron::add_congruences (const Congruence_-
System & cgs)

Adds to ∗this constraints equivalent to the congruences in cgs (without minimizing the result).

Parameters:

cgs Contains the congruences that will be added to the system of constraints of ∗this.

Exceptions:

std::invalid_argument Thrown if ∗this and cgs are topology-incompatible or dimension-
incompatible.

9.33.3.28 void Parma_Polyhedra_Library::Polyhedron::intersection_assign (const Polyhedron &
y)

Assigns to ∗this the intersection of ∗this and y. The result is not guaranteed to be minimized.

Exceptions:

std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-
incompatible.

9.33.3.29 bool Parma_Polyhedra_Library::Polyhedron::intersection_assign_and_minimize (const
Polyhedron & y)

Assigns to ∗this the intersection of ∗this and y, minimizing the result.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.33 Parma_Polyhedra_Library::Polyhedron Class Reference 263

Returns:

false if and only if the result is empty.

Exceptions:

std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-
incompatible.

9.33.3.30 void Parma_Polyhedra_Library::Polyhedron::poly_hull_assign (const Polyhedron & y)

Assigns to ∗this the poly-hull of ∗this and y. The result is not guaranteed to be minimized.

Exceptions:

std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-
incompatible.

9.33.3.31 bool Parma_Polyhedra_Library::Polyhedron::poly_hull_assign_and_minimize (const
Polyhedron & y)

Assigns to ∗this the poly-hull of ∗this and y, minimizing the result.

Returns:

false if and only if the result is empty.

Exceptions:

std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-
incompatible.

9.33.3.32 void Parma_Polyhedra_Library::Polyhedron::poly_difference_assign (const Polyhedron
& y)

Assigns to ∗this the poly-difference of ∗this and y. The result is not guaranteed to be minimized.

Exceptions:

std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-
incompatible.

9.33.3.33 void Parma_Polyhedra_Library::Polyhedron::affine_image (Variable var, const Linear_-
Expression & expr, Coefficient_traits::const_reference denominator = Coefficient_one())

Assigns to ∗this the affine image of ∗this under the function mapping variable var to the affine
expression specified by expr and denominator.

Parameters:

var The variable to which the affine expression is assigned;

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.33 Parma_Polyhedra_Library::Polyhedron Class Reference 264

expr The numerator of the affine expression;

denominator The denominator of the affine expression (optional argument with default value 1.)

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a space dimension of ∗this.

9.33.3.34 void Parma_Polyhedra_Library::Polyhedron::affine_preimage (Variable var, const
Linear_Expression & expr, Coefficient_traits::const_reference denominator = Coefficient_-
one())

Assigns to ∗this the affine preimage of ∗this under the function mapping variable var to the affine
expression specified by expr and denominator.

Parameters:

var The variable to which the affine expression is substituted;

expr The numerator of the affine expression;

denominator The denominator of the affine expression (optional argument with default value 1.)

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a space dimension of ∗this.

9.33.3.35 void Parma_Polyhedra_Library::Polyhedron::generalized_affine_image (Variable var,
const Relation_Symbol relsym, const Linear_Expression & expr, Coefficient_traits::const_reference
denominator = Coefficient_one())

Assigns to ∗this the image of ∗this with respect to the generalized affine relation var′ ./ expr
denominator ,

where ./ is the relation symbol encoded by relsym.

Parameters:

var The left hand side variable of the generalized affine relation;

relsym The relation symbol;

expr The numerator of the right hand side affine expression;

denominator The denominator of the right hand side affine expression (optional argument with default
value 1.)

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a space dimension of ∗this or if ∗this is a C_Polyhedron
and relsym is a strict relation symbol.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.33 Parma_Polyhedra_Library::Polyhedron Class Reference 265

9.33.3.36 void Parma_Polyhedra_Library::Polyhedron::generalized_affine_preimage (Variable
var, const Relation_Symbol relsym, const Linear_Expression & expr, Coefficient_traits::const_-
reference denominator = Coefficient_one())

Assigns to ∗this the preimage of ∗this with respect to the generalized affine relation var′ ./
expr

denominator , where ./ is the relation symbol encoded by relsym.

Parameters:

var The left hand side variable of the generalized affine relation;
relsym The relation symbol;
expr The numerator of the right hand side affine expression;
denominator The denominator of the right hand side affine expression (optional argument with default

value 1.)

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a space dimension of ∗this or if ∗this is a C_Polyhedron
and relsym is a strict relation symbol.

9.33.3.37 void Parma_Polyhedra_Library::Polyhedron::generalized_affine_image (const Linear_-
Expression & lhs, const Relation_Symbol relsym, const Linear_Expression & rhs)

Assigns to ∗this the image of ∗this with respect to the generalized affine relation lhs′ ./ rhs, where ./
is the relation symbol encoded by relsym.

Parameters:

lhs The left hand side affine expression;
relsym The relation symbol;
rhs The right hand side affine expression.

Exceptions:

std::invalid_argument Thrown if ∗this is dimension-incompatible with lhs or rhs or if ∗this is
a C_Polyhedron and relsym is a strict relation symbol.

9.33.3.38 void Parma_Polyhedra_Library::Polyhedron::generalized_affine_preimage (const
Linear_Expression & lhs, const Relation_Symbol relsym, const Linear_Expression & rhs)

Assigns to ∗this the preimage of ∗this with respect to the generalized affine relation lhs′ ./ rhs, where
./ is the relation symbol encoded by relsym.

Parameters:

lhs The left hand side affine expression;
relsym The relation symbol;
rhs The right hand side affine expression.

Exceptions:

std::invalid_argument Thrown if ∗this is dimension-incompatible with lhs or rhs or if ∗this is
a C_Polyhedron and relsym is a strict relation symbol.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.33 Parma_Polyhedra_Library::Polyhedron Class Reference 266

9.33.3.39 void Parma_Polyhedra_Library::Polyhedron::bounded_affine_image (Variable var,
const Linear_Expression & lb_expr, const Linear_Expression & ub_expr, Coefficient_traits::const_-
reference denominator = Coefficient_one())

Assigns to ∗this the image of ∗this with respect to the bounded affine relation lb_expr
denominator ≤ var′ ≤

ub_expr
denominator .

Parameters:

var The variable updated by the affine relation;

lb_expr The numerator of the lower bounding affine expression;

ub_expr The numerator of the upper bounding affine expression;

denominator The (common) denominator for the lower and upper bounding affine expressions (op-
tional argument with default value 1.)

Exceptions:

std::invalid_argument Thrown if denominator is zero or if lb_expr (resp., ub_expr) and
∗this are dimension-incompatible or if var is not a space dimension of ∗this.

9.33.3.40 void Parma_Polyhedra_Library::Polyhedron::bounded_affine_preimage (Variable var,
const Linear_Expression & lb_expr, const Linear_Expression & ub_expr, Coefficient_traits::const_-
reference denominator = Coefficient_one())

Assigns to ∗this the preimage of ∗thiswith respect to the bounded affine relation lb_expr
denominator ≤ var′ ≤

ub_expr
denominator .

Parameters:

var The variable updated by the affine relation;

lb_expr The numerator of the lower bounding affine expression;

ub_expr The numerator of the upper bounding affine expression;

denominator The (common) denominator for the lower and upper bounding affine expressions (op-
tional argument with default value 1.)

Exceptions:

std::invalid_argument Thrown if denominator is zero or if lb_expr (resp., ub_expr) and
∗this are dimension-incompatible or if var is not a space dimension of ∗this.

9.33.3.41 void Parma_Polyhedra_Library::Polyhedron::time_elapse_assign (const Polyhedron &
y)

Assigns to ∗this the result of computing the time-elapse between ∗this and y.

Exceptions:

std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-
incompatible.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.33 Parma_Polyhedra_Library::Polyhedron Class Reference 267

9.33.3.42 void Parma_Polyhedra_Library::Polyhedron::BHRZ03_widening_assign (const Polyhe-
dron & y, unsigned ∗ tp = 0)

Assigns to ∗this the result of computing the BHRZ03-widening between ∗this and y.

Parameters:

y A polyhedron that must be contained in ∗this;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-
incompatible.

9.33.3.43 void Parma_Polyhedra_Library::Polyhedron::limited_BHRZ03_extrapolation_assign
(const Polyhedron & y, const Constraint_System & cs, unsigned ∗ tp = 0)

Improves the result of the BHRZ03-widening computation by also enforcing those constraints in cs that
are satisfied by all the points of ∗this.

Parameters:

y A polyhedron that must be contained in ∗this;

cs The system of constraints used to improve the widened polyhedron;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if ∗this, y and cs are topology-incompatible or dimension-
incompatible.

9.33.3.44 void Parma_Polyhedra_Library::Polyhedron::bounded_BHRZ03_extrapolation_assign
(const Polyhedron & y, const Constraint_System & cs, unsigned ∗ tp = 0)

Improves the result of the BHRZ03-widening computation by also enforcing those constraints in cs that
are satisfied by all the points of ∗this, plus all the constraints of the form ±x ≤ r and ±x < r, with
r ∈ Q, that are satisfied by all the points of ∗this.

Parameters:

y A polyhedron that must be contained in ∗this;

cs The system of constraints used to improve the widened polyhedron;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if ∗this, y and cs are topology-incompatible or dimension-
incompatible.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.33 Parma_Polyhedra_Library::Polyhedron Class Reference 268

9.33.3.45 void Parma_Polyhedra_Library::Polyhedron::H79_widening_assign (const Polyhedron
& y, unsigned ∗ tp = 0)

Assigns to ∗this the result of computing the H79-widening between ∗this and y.

Parameters:

y A polyhedron that must be contained in ∗this;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-
incompatible.

9.33.3.46 void Parma_Polyhedra_Library::Polyhedron::limited_H79_extrapolation_assign (const
Polyhedron & y, const Constraint_System & cs, unsigned ∗ tp = 0)

Improves the result of the H79-widening computation by also enforcing those constraints in cs that are
satisfied by all the points of ∗this.

Parameters:

y A polyhedron that must be contained in ∗this;

cs The system of constraints used to improve the widened polyhedron;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if ∗this, y and cs are topology-incompatible or dimension-
incompatible.

9.33.3.47 void Parma_Polyhedra_Library::Polyhedron::bounded_H79_extrapolation_assign
(const Polyhedron & y, const Constraint_System & cs, unsigned ∗ tp = 0)

Improves the result of the H79-widening computation by also enforcing those constraints in cs that are
satisfied by all the points of ∗this, plus all the constraints of the form ±x ≤ r and ±x < r, with r ∈ Q,
that are satisfied by all the points of ∗this.

Parameters:

y A polyhedron that must be contained in ∗this;

cs The system of constraints used to improve the widened polyhedron;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if ∗this, y and cs are topology-incompatible or dimension-
incompatible.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.33 Parma_Polyhedra_Library::Polyhedron Class Reference 269

9.33.3.48 void Parma_Polyhedra_Library::Polyhedron::add_space_dimensions_and_embed
(dimension_type m)

Adds m new space dimensions and embeds the old polyhedron in the new vector space.

Parameters:

m The number of dimensions to add.

Exceptions:

std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed
dimension max_space_dimension().

The new space dimensions will be those having the highest indexes in the new polyhedron, which is char-
acterized by a system of constraints in which the variables running through the new dimensions are not
constrained. For instance, when starting from the polyhedron P ⊆ R2 and adding a third space dimension,
the result will be the polyhedron {

(x, y, z)T ∈ R3
∣∣ (x, y)T ∈ P

}
.

9.33.3.49 void Parma_Polyhedra_Library::Polyhedron::add_space_dimensions_and_project
(dimension_type m)

Adds m new space dimensions to the polyhedron and does not embed it in the new vector space.

Parameters:

m The number of space dimensions to add.

Exceptions:

std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed
dimension max_space_dimension().

The new space dimensions will be those having the highest indexes in the new polyhedron, which is char-
acterized by a system of constraints in which the variables running through the new dimensions are all
constrained to be equal to 0. For instance, when starting from the polyhedron P ⊆ R2 and adding a third
space dimension, the result will be the polyhedron{

(x, y, 0)T ∈ R3
∣∣ (x, y)T ∈ P

}
.

9.33.3.50 void Parma_Polyhedra_Library::Polyhedron::concatenate_assign (const Polyhedron &
y)

Assigns to ∗this the concatenation of ∗this and y, taken in this order.

Exceptions:

std::invalid_argument Thrown if ∗this and y are topology-incompatible.

std::length_error Thrown if the concatenation would cause the vector space to exceed dimension
max_space_dimension().

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.33 Parma_Polyhedra_Library::Polyhedron Class Reference 270

9.33.3.51 void Parma_Polyhedra_Library::Polyhedron::remove_space_dimensions (const
Variables_Set & to_be_removed)

Removes all the specified dimensions from the vector space.

Parameters:

to_be_removed The set of Variable objects corresponding to the space dimensions to be removed.

Exceptions:

std::invalid_argument Thrown if ∗this is dimension-incompatible with one of the Variable objects
contained in to_be_removed.

9.33.3.52 void Parma_Polyhedra_Library::Polyhedron::remove_higher_space_dimensions
(dimension_type new_dimension)

Removes the higher dimensions of the vector space so that the resulting space will have dimension new_-
dimension.

Exceptions:

std::invalid_argument Thrown if new_dimensions is greater than the space dimension of ∗this.

9.33.3.53 template<typename Partial_Function> void Parma_Polyhedra_-
Library::Polyhedron::map_space_dimensions (const Partial_Function & pfunc)

Remaps the dimensions of the vector space according to a partial function.

Parameters:

pfunc The partial function specifying the destiny of each space dimension.

The template class Partial_Function must provide the following methods.

bool has_empty_codomain() const

returns true if and only if the represented partial function has an empty codomain (i.e., it is always
undefined). The has_empty_codomain() method will always be called before the methods below.
However, if has_empty_codomain() returns true, none of the functions below will be called.

dimension_type max_in_codomain() const

returns the maximum value that belongs to the codomain of the partial function. The max_in_-
codomain() method is called at most once.

bool maps(dimension_type i, dimension_type& j) const

Let f be the represented function and k be the value of i. If f is defined in k, then f(k) is assigned to
j and true is returned. If f is undefined in k, then false is returned. This method is called at most n
times, where n is the dimension of the vector space enclosing the polyhedron.

The result is undefined if pfunc does not encode a partial function with the properties described in the
specification of the mapping operator.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.33 Parma_Polyhedra_Library::Polyhedron Class Reference 271

9.33.3.54 void Parma_Polyhedra_Library::Polyhedron::expand_space_dimension (Variable var,
dimension_type m)

Creates m copies of the space dimension corresponding to var.

Parameters:

var The variable corresponding to the space dimension to be replicated;
m The number of replicas to be created.

Exceptions:

std::invalid_argument Thrown if var does not correspond to a dimension of the vector space.
std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed

dimension max_space_dimension().

If ∗this has space dimension n, with n > 0, and var has space dimension k ≤ n, then the k-th space
dimension is expanded to m new space dimensions n, n + 1, . . . , n + m− 1.

9.33.3.55 void Parma_Polyhedra_Library::Polyhedron::fold_space_dimensions (const Variables_-
Set & to_be_folded, Variable var)

Folds the space dimensions in to_be_folded into var.

Parameters:

to_be_folded The set of Variable objects corresponding to the space dimensions to be folded;
var The variable corresponding to the space dimension that is the destination of the folding operation.

Exceptions:

std::invalid_argument Thrown if ∗this is dimension-incompatible with var or with one of the
Variable objects contained in to_be_folded. Also thrown if var is contained in to_be_-
folded.

If ∗this has space dimension n, with n > 0, var has space dimension k ≤ n, to_be_folded is a set
of variables whose maximum space dimension is also less than or equal to n, and var is not a member of
to_be_folded, then the space dimensions corresponding to variables in to_be_folded are folded
into the k-th space dimension.

9.33.3.56 void Parma_Polyhedra_Library::Polyhedron::swap (Polyhedron & y) [inline]

Swaps ∗this with polyhedron y. (∗this and y can be dimension-incompatible.).

Exceptions:

std::invalid_argument Thrown if x and y are topology-incompatible.

9.33.4 Friends And Related Function Documentation

9.33.4.1 std::ostream & operator<< (std::ostream & s, const Polyhedron & ph) [related]

Output operator.

Writes a textual representation of ph on s: false is written if ph is an empty polyhedron; true is
written if ph is a universe polyhedron; a minimized system of constraints defining ph is written otherwise,
all constraints in one row separated by ", ".

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.34 Parma_Polyhedra_Library::Powerset< D > Class Template Reference 272

9.33.4.2 bool operator!= (const Polyhedron & x, const Polyhedron & y) [related]

Returns true if and only if x and y are different polyhedra.

Note that x and y may be topology- and/or dimension-incompatible polyhedra: in those cases, the value
true is returned.

9.34 Parma_Polyhedra_Library::Powerset< D > Class Template Reference

The powerset construction on a base-level domain.

Public Types

• typedef omega_iterator iterator
Alias for a read-only bidirectional iterator on the disjuncts of a Powerset element.

• typedef omega_const_iterator const_iterator
A bidirectional const_iterator on the disjuncts of a Powerset element.

• typedef std::reverse_iterator< iterator > reverse_iterator
The reverse iterator type built from Powerset::iterator.

• typedef std::reverse_iterator< const_iterator > const_reverse_iterator
The reverse iterator type built from Powerset::const_iterator.

Public Member Functions

Constructors and Destructor

• Powerset ()
Default constructor: builds the bottom of the powerset constraint system (i.e., the empty powerset).

• Powerset (const Powerset &y)
Copy constructor.

• Powerset (const D &d)
If d is not bottom, builds a powerset containing only d. Builds the empty powerset otherwise.

• ∼Powerset ()
Destructor.

Member Functions that Do Not Modify the Powerset Element

• bool definitely_entails (const Powerset &y) const
Returns true if ∗this definitely entails y. Returns false if ∗this may not entail y (i.e., if ∗this
does not entail y or if entailment could not be decided).

• bool is_top () const
Returns true if and only if ∗this is the top element of the powerset constraint system (i.e., it represents
the universe).

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.34 Parma_Polyhedra_Library::Powerset< D > Class Template Reference 273

• bool is_bottom () const
Returns true if and only if ∗this is the bottom element of the powerset constraint system (i.e., it
represents the empty set).

• memory_size_type total_memory_in_bytes () const
Returns a lower bound to the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns a lower bound to the size in bytes of the memory managed by ∗this.

• bool OK (bool disallow_bottom=false) const
Checks if all the invariants are satisfied.

Member Functions for the Direct Manipulation of Disjuncts

• void omega_reduce () const
Drops from the sequence of disjuncts in ∗this all the non-maximal elements so that ∗this is non-
redundant.

• size_type size () const
Returns the number of disjuncts.

• bool empty () const
Returns true if and only if there are no disjuncts.

• iterator begin ()
Returns an iterator pointing to the first disjunct, if ∗this is not empty; otherwise, returns the past-the-
end iterator.

• iterator end ()
Returns the past-the-end iterator.

• const_iterator begin () const
Returns a const_iterator pointing to the first disjunct, if ∗this is not empty; otherwise, returns the
past-the-end const_iterator.

• const_iterator end () const
Returns the past-the-end const_iterator.

• reverse_iterator rbegin ()
Returns a reverse_iterator pointing to the last disjunct, if ∗this is not empty; otherwise, returns the
before-the-start reverse_iterator.

• reverse_iterator rend ()
Returns the before-the-start reverse_iterator.

• const_reverse_iterator rbegin () const
Returns a const_reverse_iterator pointing to the last disjunct, if ∗this is not empty; otherwise, returns
the before-the-start const_reverse_iterator.

• const_reverse_iterator rend () const
Returns the before-the-start const_reverse_iterator.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.34 Parma_Polyhedra_Library::Powerset< D > Class Template Reference 274

• void add_disjunct (const D &d)
Adds to ∗this the disjunct d.

• iterator drop_disjunct (iterator position)
Drops the disjunct in ∗this pointed to by position, returning an iterator to the disjunct following
position.

• void drop_disjuncts (iterator first, iterator last)
Drops all the disjuncts from first to last (excluded).

• void clear ()
Drops all the disjuncts, making ∗this an empty powerset.

Member Functions that May Modify the Powerset Element

• Powerset & operator= (const Powerset &y)
The assignment operator.

• void swap (Powerset &y)
Swaps ∗this with y.

• void least_upper_bound_assign (const Powerset &y)
Assigns to ∗this the least upper bound of ∗this and y.

• void upper_bound_assign (const Powerset &y)
Assigns to ∗this an upper bound of ∗this and y.

• void meet_assign (const Powerset &y)
Assigns to ∗this the meet of ∗this and y.

• void collapse ()
If ∗this is not empty (i.e., it is not the bottom element), it is reduced to a singleton obtained by comput-
ing an upper-bound of all the disjuncts.

Protected Types

• typedef std::list< D > Sequence
A powerset is implemented as a sequence of elements.

• typedef Sequence::iterator Sequence_iterator
Alias for the low-level iterator on the disjuncts.

• typedef Sequence::const_iterator Sequence_const_iterator
Alias for the low-level const_iterator on the disjuncts.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.34 Parma_Polyhedra_Library::Powerset< D > Class Template Reference 275

Protected Member Functions

• bool is_omega_reduced () const
Returns true if and only if ∗this does not contain non-maximal elements.

• void collapse (unsigned max_disjuncts)
Upon return, ∗this will contain at most max_disjuncts elements; the set of disjuncts in positions
greater than or equal to max_disjuncts, will be replaced at that position by their upper-bound.

• iterator add_non_bottom_disjunct (const D &d, iterator first, iterator last)
Adds to ∗this the disjunct d, assuming d is not the bottom element and ensuring partial Omega-reduction.

• void add_non_bottom_disjunct (const D &d)
Adds to ∗this the disjunct d, assuming d is not the bottom element.

• template<typename Binary_Operator_Assign> void pairwise_apply_assign (const Powerset &y,
Binary_Operator_Assign op_assign)

Assigns to ∗this the result of applying op_assign pairwise to the elements in ∗this and y.

Protected Attributes

• Sequence sequence
The sequence container holding powerset’s elements.

• bool reduced
If true, ∗this is Omega-reduced.

Related Functions

(Note that these are not member functions.)

• bool operator== (const Powerset< D > &x, const Powerset< D > &y)
Returns true if and only if x and y are equivalent.

• bool operator!= (const Powerset< D > &x, const Powerset< D > &y)
Returns true if and only if x and y are not equivalent.

• std::ostream & operator<< (std::ostream &s, const Powerset< D > &x)
Output operator.

• void swap (Parma_Polyhedra_Library::Powerset< D > &x, Parma_Polyhedra_Library::Powerset<
D > &y)

Specializes std::swap.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.34 Parma_Polyhedra_Library::Powerset< D > Class Template Reference 276

9.34.1 Detailed Description

template<typename D> class Parma_Polyhedra_Library::Powerset< D >

The powerset construction on a base-level domain.

This class offers a generic implementation of a powerset domain as defined in Section The Powerset Con-
struction.

Besides invoking the available methods on the disjuncts of a Powerset, this class also provides bidirectional
iterators that allow for a direct inspection of these disjuncts. For a consistent handling of Omega-reduction,
all the iterators are read-only, meaning that the disjuncts cannot be overwritten. Rather, by using the class
iterator, it is possible to drop one or more disjuncts (possibly so as to later add back modified versions).
As an example of iterator usage, the following templatic function drops from powerset ps all the disjuncts
that would have become redundant by the addition of an external element d.

template <typename D>
void
drop_subsumed(Powerset<D>& ps, const D& d) {

for (typename Powerset<D>::iterator i = ps.begin(),
ps_end = ps.end(), i != ps_end;)

if (i->definitely_entails(d))
i = ps.drop_disjunct(i);

else
++i;

}

The template class D must provide the following methods.

memory_size_type total_memory_in_bytes() const

Returns a lower bound on the total size in bytes of the memory occupied by the instance of D.

bool is_top() const

Returns true if and only if the instance of D is the top element of the domain.

bool is_bottom() const

Returns true if and only if the instance of D is the bottom element of the domain.

bool definitely_entails(const D& y) const

Returns true if the instance of D definitely entails y. Returns false if the instance may not entail y
(i.e., if the instance does not entail y or if entailment could not be decided).

void upper_bound_assign(const D& y)

Assigns to the instance of D an upper bound of the instance and y.

void meet_assign(const D& y)

Assigns to the instance of D the meet of the instance and y.

bool OK() const

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.34 Parma_Polyhedra_Library::Powerset< D > Class Template Reference 277

Returns true if the instance of D is in a consistent state, else returns false.

The following operators on the template class D must be defined.

operator<<(std::ostream& s, const D& x)

Writes a textual representation of the instance of D on s.

operator==(const D& x, const D& y)

Returns true if and only if x and y are equivalent D’s.

operator!=(const D& x, const D& y)

Returns true if and only if x and y are different D’s.

9.34.2 Member Typedef Documentation

9.34.2.1 template<typename D> typedef std::list<D> Parma_Polyhedra_Library::Powerset< D
>::Sequence [protected]

A powerset is implemented as a sequence of elements.

The particular sequence employed must support efficient deletion in any position and efficient back inser-
tion.

9.34.2.2 template<typename D> typedef omega_iterator Parma_Polyhedra_Library::Powerset<
D >::iterator

Alias for a read-only bidirectional iterator on the disjuncts of a Powerset element.

By using this iterator type, the disjuncts cannot be overwritten, but they can be removed
using methods drop_disjunct(iterator position) and drop_disjuncts(iterator
first, iterator last), while still ensuring a correct handling of Omega-reduction.

9.34.3 Member Function Documentation

9.34.3.1 template<typename D> void Parma_Polyhedra_Library::Powerset< D >::omega_reduce
() const

Drops from the sequence of disjuncts in ∗this all the non-maximal elements so that ∗this is non-
redundant.

This method is declared const because, even though Omega-reduction may change the syntactic repre-
sentation of ∗this, its semantics will be unchanged.

9.34.3.2 template<typename D> void Parma_Polyhedra_Library::Powerset< D >::upper_-
bound_assign (const Powerset< D > & y) [inline]

Assigns to ∗this an upper bound of ∗this and y.

The result will be the least upper bound of ∗this and y.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.35 Parma_Polyhedra_Library::Throwable Class Reference 278

9.34.3.3 template<typename D> Powerset< D >::iterator Parma_Polyhedra_Library::Powerset<
D >::add_non_bottom_disjunct (const D & d, iterator first, iterator last) [protected]

Adds to ∗this the disjunct d, assuming d is not the bottom element and ensuring partial Omega-reduction.

If d is not the bottom element and is not Omega-redundant with respect to elements in positions between
first and last, all elements in these positions that would be made Omega-redundant by the addition of
d are dropped and d is added to the reduced sequence.

9.34.3.4 template<typename D> template<typename Binary_Operator_Assign> void Parma_-
Polyhedra_Library::Powerset< D >::pairwise_apply_assign (const Powerset< D > & y, Binary_-
Operator_Assign op_assign) [protected]

Assigns to ∗this the result of applying op_assign pairwise to the elements in ∗this and y.

The elements of the powerset result are obtained by applying op_assign to each pair of elements whose
components are drawn from ∗this and y, respectively.

9.35 Parma_Polyhedra_Library::Throwable Class Reference

User objects the PPL can throw.

Public Member Functions

• virtual void throw_me () const =0
Throws the user defined exception object.

• virtual ∼Throwable ()
Virtual destructor.

9.35.1 Detailed Description

User objects the PPL can throw.

This abstract base class should be instantiated by those users willing to provide a polynomial upper bound
to the time spent by any invocation of a library operator.

9.36 Parma_Polyhedra_Library::Variable Class Reference

A dimension of the vector space.

Public Types

• typedef void output_function_type (std::ostream &s, const Variable &v)
Type of output functions.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.36 Parma_Polyhedra_Library::Variable Class Reference 279

Public Member Functions

• Variable (dimension_type i)
Builds the variable corresponding to the Cartesian axis of index i.

• dimension_type id () const
Returns the index of the Cartesian axis associated to the variable.

• dimension_type space_dimension () const
Returns the dimension of the vector space enclosing ∗this.

• memory_size_type total_memory_in_bytes () const
Returns the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

• bool OK () const
Checks if all the invariants are satisfied.

Static Public Member Functions

• static dimension_type max_space_dimension ()
Returns the maximum space dimension a Variable can handle.

• static void set_output_function (output_function_type ∗p)
Sets the output function to be used for printing Variable objects.

• static output_function_type ∗ get_output_function ()
Returns the pointer to the current output function.

Friends

• std::ostream & operator<< (std::ostream &s, const Variable &v)
Output operator.

Related Functions

(Note that these are not member functions.)

• bool less (Variable v, Variable w)
Defines a total ordering on variables.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.37 Parma_Polyhedra_Library::Variable::Compare Struct Reference 280

Classes

• struct Compare
Binary predicate defining the total ordering on variables.

9.36.1 Detailed Description

A dimension of the vector space.

An object of the class Variable represents a dimension of the space, that is one of the Cartesian axes.
Variables are used as basic blocks in order to build more complex linear expressions. Each variable is
identified by a non-negative integer, representing the index of the corresponding Cartesian axis (the first
axis has index 0). The space dimension of a variable is the dimension of the vector space made by all the
Cartesian axes having an index less than or equal to that of the considered variable; thus, if a variable has
index i, its space dimension is i + 1.

Note that the “meaning” of an object of the class Variable is completely specified by the integer index
provided to its constructor: be careful not to be mislead by C++ language variable names. For instance,
in the following example the linear expressions e1 and e2 are equivalent, since the two variables x and z
denote the same Cartesian axis.

Variable x(0);
Variable y(1);
Variable z(0);
Linear_Expression e1 = x + y;
Linear_Expression e2 = y + z;

9.36.2 Constructor & Destructor Documentation

9.36.2.1 Parma_Polyhedra_Library::Variable::Variable (dimension_type i) [inline,
explicit]

Builds the variable corresponding to the Cartesian axis of index i.

Exceptions:

std::length_error Thrown if the i+1 exceeds Variable::max_space_dimension().

9.36.3 Member Function Documentation

9.36.3.1 dimension_type Parma_Polyhedra_Library::Variable::space_dimension () const
[inline]

Returns the dimension of the vector space enclosing ∗this.

The returned value is id()+1.

9.37 Parma_Polyhedra_Library::Variable::Compare Struct Reference

Binary predicate defining the total ordering on variables.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10 PPL Page Documentation 281

Public Member Functions

• bool operator() (Variable x, Variable y) const
Returns true if and only if x comes before y.

9.37.1 Detailed Description

Binary predicate defining the total ordering on variables.

10 PPL Page Documentation

10.1 GNU General Public License

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software–
to make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation’s software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives
you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there
is no warranty for this free software. If the software is modified by someone else and passed on, we want
its recipients to know that what they have is not the original, so that any problems introduced by others will
not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 GNU General Public License 282

proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use
or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program" means either the Program or any
derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included
without limitation in the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running the Program is not restricted, and the output from the Program is covered only
if its contents constitute a work based on the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

• a) You must cause the modified files to carry prominent notices stating that you changed the files and
the date of any change.

• b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

• c) If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if the Program itself is interactive
but does not normally print such an announcement, your work based on the Program is not required
to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Program.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 GNU General Public License 283

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

• a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

• b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge
no more than your cost of physically performing source distribution, a complete machine-readable
copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above
on a medium customarily used for software interchange; or,

• c) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and
so on) of the operating system on which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and
will automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants
you permission to modify or distribute the Program or its derivative works. These actions are prohibited
by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any
work based on the Program), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 GNU General Public License 284

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or
to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the
free software distribution system, which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add
an explicit geographical distribution limitation excluding those countries, so that distribution is permitted
only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and "any later version", you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of this License, you may choose any version ever published by
the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTH-
ERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DE-
FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORREC-
TION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR RE-
DISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARIS-
ING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 GNU General Public License 285

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright"
line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’. This is free software, and you are welcome
to redistribute it under certain conditions; type ‘show c’
for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the General
Public License. Of course, the commands you use may be called something other than ‘show w’ and
‘show c’; they could even be mouse-clicks or menu items–whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright
disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’
(which makes passes at compilers) written
by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your
program is a subroutine library, you may consider it more useful to permit linking proprietary applications
with the library. If this is what you want to do, use the GNU Library General Public License instead of this
License.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 GNU Free Documentation License 286

10.2 GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free"
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author
and publisher a way to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
"Document", below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclu-
sively with the relationship of the publishers or authors of the Document to the Document’s overall subject
(or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections
then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 GNU Free Documentation License 287

widely available drawing editor, and that is suitable for input to text formatters or for automatic translation
to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image for-
mats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not
generally available, and the machine-generated HTML, PostScript or PDF produced by some word proces-
sors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, "Title Page" means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or
contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for
a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements",
or "History".) To "Preserve the Title" of such a section when you modify the Document means that it
remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies
to the Document. These Warranty Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may
have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using public has access to download
using public-standard network protocols a complete Transparent copy of the Document, free of added

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 GNU Free Documentation License 288

material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution
of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified Ver-
sion filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

• A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.

• B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

• C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

• D. Preserve all the copyright notices of the Document.

• E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

• F. Include, immediately after the copyright notices, a license notice giving the public permission to
use the Modified Version under the terms of this License, in the form shown in the Addendum below.

• G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given
in the Document’s license notice.

• H. Include an unaltered copy of this License.

• I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least
the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If
there is no section Entitled "History" in the Document, create one stating the title, year, authors,
and publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

• J. Preserve the network location, if any, given in the Document for public access to a Transpar-
ent copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the "History" section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

• K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

• L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

• M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified
Version.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 GNU Free Documentation License 289

• N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any
Invariant Section.

• O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your
Modified Version by various parties–for example, statements of peer review or that the text has been ap-
proved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents,
forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and
any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting
from the compilation is not used to limit the legal rights of the compilation’s users beyond what the indi-
vidual works permit. When the Document is included in an aggregate, this License does not apply to the
other works in the aggregate which are not themselves derivative works of the Document.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 GNU Free Documentation License 290

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers
that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement
(section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

How to use this License for your documents To use this License in a document you have written,
include a copy of the License in the document and put the following copyright and license notices just after
the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled
"GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line
with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.gnu.org/copyleft/
http://www.cs.unipr.it/ppl/

10.2 GNU Free Documentation License 291

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those
two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples
in parallel under your choice of free software license, such as the GNU General Public License, to permit
their use in free software.

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

Index
abandon_expensive_computations

PPL_CXX_interface, 39
add_congruence

Parma_Polyhedra_Library::Grid, 189
Parma_Polyhedra_Library::Polyhedron, 259

add_congruence_and_minimize
Parma_Polyhedra_Library::Grid, 189

add_congruences
Parma_Polyhedra_Library::Grid, 190
Parma_Polyhedra_Library::Polyhedron, 262

add_congruences_and_minimize
Parma_Polyhedra_Library::Grid, 191

add_constraint
Parma_Polyhedra_Library::BD_Shape, 109
Parma_Polyhedra_Library::Grid, 193
Parma_Polyhedra_Library::LP_Problem, 226
Parma_Polyhedra_Library::Polyhedra_-

Powerset, 238
Parma_Polyhedra_Library::Polyhedron, 258

add_constraint_and_minimize
Parma_Polyhedra_Library::BD_Shape, 109
Parma_Polyhedra_Library::Grid, 193
Parma_Polyhedra_Library::Polyhedra_-

Powerset, 238
Parma_Polyhedra_Library::Polyhedron, 258

add_constraints
Parma_Polyhedra_Library::BD_Shape, 109
Parma_Polyhedra_Library::Grid, 193
Parma_Polyhedra_Library::LP_Problem, 226
Parma_Polyhedra_Library::Polyhedra_-

Powerset, 238
Parma_Polyhedra_Library::Polyhedron, 259

add_constraints_and_minimize
Parma_Polyhedra_Library::BD_Shape, 109
Parma_Polyhedra_Library::Grid, 193
Parma_Polyhedra_Library::Polyhedra_-

Powerset, 239
Parma_Polyhedra_Library::Polyhedron, 260

add_disjunct
Parma_Polyhedra_Library::Polyhedra_-

Powerset, 238
add_generator

Parma_Polyhedra_Library::Grid, 190
Parma_Polyhedra_Library::Polyhedron, 258

add_generator_and_minimize
Parma_Polyhedra_Library::Grid, 190
Parma_Polyhedra_Library::Polyhedron, 259

add_generators
Parma_Polyhedra_Library::Grid, 194
Parma_Polyhedra_Library::Polyhedron, 260

add_generators_and_minimize
Parma_Polyhedra_Library::Grid, 195
Parma_Polyhedra_Library::Polyhedron, 261

add_non_bottom_disjunct
Parma_Polyhedra_Library::Powerset, 277

add_recycled_congruences
Parma_Polyhedra_Library::Grid, 190, 191

add_recycled_congruences_and_minimize
Parma_Polyhedra_Library::Grid, 192

add_recycled_constraints
Parma_Polyhedra_Library::Grid, 193
Parma_Polyhedra_Library::Polyhedron, 259

add_recycled_constraints_and_minimize
Parma_Polyhedra_Library::Grid, 194
Parma_Polyhedra_Library::Polyhedron, 260

add_recycled_generators
Parma_Polyhedra_Library::Grid, 194
Parma_Polyhedra_Library::Polyhedron, 261

add_recycled_generators_and_minimize
Parma_Polyhedra_Library::Grid, 195
Parma_Polyhedra_Library::Polyhedron, 261

add_space_dimensions_and_embed
Parma_Polyhedra_Library::BD_Shape, 116
Parma_Polyhedra_Library::Grid, 200
Parma_Polyhedra_Library::Polyhedron, 268

add_space_dimensions_and_project
Parma_Polyhedra_Library::BD_Shape, 116
Parma_Polyhedra_Library::Grid, 200
Parma_Polyhedra_Library::Polyhedron, 269

add_unit_rows_and_columns
Parma_Polyhedra_Library::Congruence_-

System, 144
add_universe_rows_and_columns

Parma_Polyhedra_Library::Grid_Generator_-
System, 215

affine_image
Parma_Polyhedra_Library::BD_Shape, 111
Parma_Polyhedra_Library::Grid, 197
Parma_Polyhedra_Library::Grid_Generator_-

System, 215
Parma_Polyhedra_Library::Polyhedron, 263

affine_preimage
Parma_Polyhedra_Library::BD_Shape, 111
Parma_Polyhedra_Library::Grid, 197
Parma_Polyhedra_Library::Polyhedron, 264

ANY_COMPLEXITY
PPL_CXX_interface, 38

banner
Parma_Polyhedra_Library, 100

BD_Shape

INDEX 293

Parma_Polyhedra_Library::BD_Shape, 107,
108

bds_difference_assign
Parma_Polyhedra_Library::BD_Shape, 111

bds_hull_assign
Parma_Polyhedra_Library::BD_Shape, 110

bds_hull_assign_and_minimize
Parma_Polyhedra_Library::BD_Shape, 110

bds_hull_assign_if_exact
Parma_Polyhedra_Library::BD_Shape, 111

BGP99_extrapolation_assign
Parma_Polyhedra_Library::Polyhedra_-

Powerset, 239
BHMZ05_widening_assign

Parma_Polyhedra_Library::BD_Shape, 114
BHRZ03_widening_assign

Parma_Polyhedra_Library::Polyhedron, 266
BHZ03_widening_assign

Parma_Polyhedra_Library::Polyhedra_-
Powerset, 240

bounded_affine_image
Parma_Polyhedra_Library::Polyhedron, 265

bounded_affine_preimage
Parma_Polyhedra_Library::Polyhedron, 266

bounded_BHRZ03_extrapolation_assign
Parma_Polyhedra_Library::Polyhedron, 267

bounded_H79_extrapolation_assign
Parma_Polyhedra_Library::Polyhedron, 268

bounds_from_above
Parma_Polyhedra_Library::Grid, 184
Parma_Polyhedra_Library::Polyhedron, 254

bounds_from_below
Parma_Polyhedra_Library::Grid, 184
Parma_Polyhedra_Library::Polyhedron, 255

C Language Interface, 39
C++ Language Interface, 32
C_Polyhedron

Parma_Polyhedra_Library::C_Polyhedron,
122–124

CC76_extrapolation_assign
Parma_Polyhedra_Library::BD_Shape, 113

CC76_narrowing_assign
Parma_Polyhedra_Library::BD_Shape, 114

check_containment
Parma_Polyhedra_Library::Polyhedra_-

Powerset, 242
classify

Parma_Polyhedra_Library::Checked_Number,
132

CLOSURE_POINT
Parma_Polyhedra_Library::Generator, 162

closure_point
Parma_Polyhedra_Library::Generator, 163

Coefficient
PPL_CXX_interface, 37

coefficient
Parma_Polyhedra_Library::Congruence, 138
Parma_Polyhedra_Library::Constraint, 150
Parma_Polyhedra_Library::Generator, 163

coefficient_swap
Parma_Polyhedra_Library::Grid_Generator,

210
compare

Parma_Polyhedra_Library::BHRZ03_-
Certificate, 120

Parma_Polyhedra_Library::Grid_Certificate,
204

Parma_Polyhedra_Library::H79_Certificate,
218

Complexity_Class
PPL_CXX_interface, 38

concatenate
Parma_Polyhedra_Library::Congruence_-

System, 144
concatenate_assign

Parma_Polyhedra_Library::BD_Shape, 116
Parma_Polyhedra_Library::Grid, 200
Parma_Polyhedra_Library::Polyhedra_-

Powerset, 240
Parma_Polyhedra_Library::Polyhedron, 269

Congruence
Parma_Polyhedra_Library::Congruence, 138

Congruence_System
Parma_Polyhedra_Library::Congruence_-

System, 143
contains

Parma_Polyhedra_Library::BD_Shape, 108
Parma_Polyhedra_Library::Grid, 186
Parma_Polyhedra_Library::Polyhedron, 256

Degenerate_Element
PPL_CXX_interface, 38

divisor
Parma_Polyhedra_Library::Generator, 163
Parma_Polyhedra_Library::Grid_Generator,

210

EMPTY
PPL_CXX_interface, 38

EQUAL
PPL_CXX_interface, 38

EQUALITY
Parma_Polyhedra_Library::Constraint, 150

euclidean_distance_assign
Parma_Polyhedra_Library::BD_Shape, 118,

119
evaluate_objective_function

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 294

Parma_Polyhedra_Library::LP_Problem, 227
exact_div_assign

Parma_Polyhedra_Library::Checked_Number,
132

Parma_Polyhedra_Library::GMP_Integer, 170
expand_space_dimension

Parma_Polyhedra_Library::Grid, 202
Parma_Polyhedra_Library::Polyhedron, 270

feasible_point
Parma_Polyhedra_Library::LP_Problem, 227

fold_space_dimensions
Parma_Polyhedra_Library::Grid, 202
Parma_Polyhedra_Library::Polyhedron, 271

fpu_check_inexact
Parma_Polyhedra_Library, 100

gcdext_assign
Parma_Polyhedra_Library::GMP_Integer, 170

generalized_affine_image
Parma_Polyhedra_Library::BD_Shape, 112
Parma_Polyhedra_Library::Grid, 197, 198
Parma_Polyhedra_Library::Polyhedron, 264,

265
generalized_affine_preimage

Parma_Polyhedra_Library::BD_Shape, 112
Parma_Polyhedra_Library::Grid, 198
Parma_Polyhedra_Library::Polyhedron, 264,

265
geometrically_covers

Parma_Polyhedra_Library::Polyhedra_-
Powerset, 237

geometrically_equals
Parma_Polyhedra_Library::Polyhedra_-

Powerset, 238
get_covering_box

Parma_Polyhedra_Library::Grid, 187
GREATER_THAN

PPL_CXX_interface, 38
GREATER_THAN_OR_EQUAL

PPL_CXX_interface, 38
Grid

Parma_Polyhedra_Library::Grid, 180–183
grid_difference_assign

Parma_Polyhedra_Library::Grid, 196

H79_widening_assign
Parma_Polyhedra_Library::BD_Shape, 115
Parma_Polyhedra_Library::Polyhedron, 267

input
Parma_Polyhedra_Library::Checked_Number,

132
insert

Parma_Polyhedra_Library::Congruence_-
System, 143, 144

Parma_Polyhedra_Library::Grid_Generator_-
System, 215

intersection_assign
Parma_Polyhedra_Library::BD_Shape, 110
Parma_Polyhedra_Library::Grid, 195
Parma_Polyhedra_Library::Polyhedra_-

Powerset, 240
Parma_Polyhedra_Library::Polyhedron, 262

intersection_assign_and_minimize
Parma_Polyhedra_Library::BD_Shape, 110
Parma_Polyhedra_Library::Grid, 196
Parma_Polyhedra_Library::Polyhedron, 262

is_discrete
Parma_Polyhedra_Library::Grid, 184

is_disjoint_from
Parma_Polyhedra_Library::Grid, 184
Parma_Polyhedra_Library::Polyhedron, 254

is_equality
Parma_Polyhedra_Library::Congruence, 139

is_equivalent_to
Parma_Polyhedra_Library::Constraint, 151
Parma_Polyhedra_Library::Generator, 163
Parma_Polyhedra_Library::Grid_Generator,

210
is_inconsistent

Parma_Polyhedra_Library::Constraint, 150
is_proper_congruence

Parma_Polyhedra_Library::Congruence, 139
is_satisfiable

Parma_Polyhedra_Library::LP_Problem, 227
is_tautological

Parma_Polyhedra_Library::Constraint, 150
is_trivial_false

Parma_Polyhedra_Library::Congruence, 139
is_trivial_true

Parma_Polyhedra_Library::Congruence, 138
iterator

Parma_Polyhedra_Library::Powerset, 277

join_assign
Parma_Polyhedra_Library::Grid, 196

join_assign_and_minimize
Parma_Polyhedra_Library::Grid, 196

join_assign_if_exact
Parma_Polyhedra_Library::Grid, 196

l_infinity_distance_assign
Parma_Polyhedra_Library::BD_Shape, 119

LESS_THAN
PPL_CXX_interface, 38

LESS_THAN_OR_EQUAL
PPL_CXX_interface, 38

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 295

limited_BHMZ05_extrapolation_assign
Parma_Polyhedra_Library::BD_Shape, 114

limited_BHRZ03_extrapolation_assign
Parma_Polyhedra_Library::Polyhedron, 267

limited_CC76_extrapolation_assign
Parma_Polyhedra_Library::BD_Shape, 115

limited_extrapolation_assign
Parma_Polyhedra_Library::Grid, 199

limited_H79_extrapolation_assign
Parma_Polyhedra_Library::BD_Shape, 115
Parma_Polyhedra_Library::Polyhedron, 268

LINE
Parma_Polyhedra_Library::Generator, 162
Parma_Polyhedra_Library::Grid_Generator,

209
line

Parma_Polyhedra_Library::Generator, 162
Parma_Polyhedra_Library::Grid_Generator,

209
Linear_Expression

Parma_Polyhedra_Library::Linear_-
Expression, 223

linear_partition
Parma_Polyhedra_Library::Polyhedra_-

Powerset, 242
LP_Problem

Parma_Polyhedra_Library::LP_Problem, 226
LP_Problem_Status

PPL_CXX_interface, 39

map_space_dimensions
Parma_Polyhedra_Library::BD_Shape, 117
Parma_Polyhedra_Library::Grid, 201
Parma_Polyhedra_Library::Polyhedra_-

Powerset, 241
Parma_Polyhedra_Library::Polyhedron, 270

MAXIMIZATION
PPL_CXX_interface, 39

maximize
Parma_Polyhedra_Library::Grid, 184, 185
Parma_Polyhedra_Library::Polyhedron, 255

MINIMIZATION
PPL_CXX_interface, 39

minimize
Parma_Polyhedra_Library::Grid, 185, 186
Parma_Polyhedra_Library::Polyhedron, 256

NNC_Polyhedron
Parma_Polyhedra_Library::NNC_Polyhedron,

230, 231
NONSTRICT_INEQUALITY

Parma_Polyhedra_Library::Constraint, 150
normalize

Parma_Polyhedra_Library::Congruence, 139

OK
Parma_Polyhedra_Library::Generator_-

System, 167
Parma_Polyhedra_Library::Grid, 188
Parma_Polyhedra_Library::Grid_Generator_-

System, 215
Parma_Polyhedra_Library::Polyhedron, 258

omega_reduce
Parma_Polyhedra_Library::Powerset, 277

operator!=
Parma_Polyhedra_Library::BD_Shape, 118
Parma_Polyhedra_Library::Grid, 203
Parma_Polyhedra_Library::Polyhedron, 271

operator+=
Parma_Polyhedra_Library::Linear_-

Expression, 223
operator-=

Parma_Polyhedra_Library::Linear_-
Expression, 224

operator/
Parma_Polyhedra_Library::Congruence, 140

operator/=
Parma_Polyhedra_Library::Congruence, 138

operator<<
Parma_Polyhedra_Library::BD_Shape, 118
Parma_Polyhedra_Library::Congruence_-

System, 144
Parma_Polyhedra_Library::Constraint_-

System, 154
Parma_Polyhedra_Library::Generator_-

System, 167
Parma_Polyhedra_Library::Grid, 203
Parma_Polyhedra_Library::Grid_Generator_-

System, 216
Parma_Polyhedra_Library::Polyhedron, 271

operator==
Parma_Polyhedra_Library::BD_Shape, 118
Parma_Polyhedra_Library::Constraint_-

System, 154
Parma_Polyhedra_Library::Grid, 203

optimal_value
Parma_Polyhedra_Library::LP_Problem, 228

Optimization_Mode
PPL_CXX_interface, 38

OPTIMIZED_LP_PROBLEM
PPL_CXX_interface, 39

optimizing_point
Parma_Polyhedra_Library::LP_Problem, 228

pairwise_apply_assign
Parma_Polyhedra_Library::Powerset, 278

pairwise_reduce
Parma_Polyhedra_Library::Polyhedra_-

Powerset, 239

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 296

PARAMETER
Parma_Polyhedra_Library::Grid_Generator,

209
parameter

Parma_Polyhedra_Library::Grid_Generator,
209

Parma_Polyhedra_Library, 95
banner, 100
fpu_check_inexact, 100
set_rational_sqrt_precision_parameter, 100

Parma_Polyhedra_Library::BD_Shape, 101
add_constraint, 109
add_constraint_and_minimize, 109
add_constraints, 109
add_constraints_and_minimize, 109
add_space_dimensions_and_embed, 116
add_space_dimensions_and_project, 116
affine_image, 111
affine_preimage, 111
BD_Shape, 107, 108
bds_difference_assign, 111
bds_hull_assign, 110
bds_hull_assign_and_minimize, 110
bds_hull_assign_if_exact, 111
BHMZ05_widening_assign, 114
CC76_extrapolation_assign, 113
CC76_narrowing_assign, 114
concatenate_assign, 116
contains, 108
euclidean_distance_assign, 118, 119
generalized_affine_image, 112
generalized_affine_preimage, 112
H79_widening_assign, 115
intersection_assign, 110
intersection_assign_and_minimize, 110
l_infinity_distance_assign, 119
limited_BHMZ05_extrapolation_assign, 114
limited_CC76_extrapolation_assign, 115
limited_H79_extrapolation_assign, 115
map_space_dimensions, 117
operator!=, 118
operator<<, 118
operator==, 118
rectilinear_distance_assign, 118
relation_with, 108
remove_higher_space_dimensions, 117
remove_space_dimensions, 116
strictly_contains, 108
time_elapse_assign, 113

Parma_Polyhedra_Library::BHRZ03_Certificate,
119

compare, 120
Parma_Polyhedra_Library::BHRZ03_-

Certificate::Compare, 120

Parma_Polyhedra_Library::C_Polyhedron, 121
C_Polyhedron, 122–124
poly_hull_assign_if_exact, 125

Parma_Polyhedra_Library::Checked_Number, 125
classify, 132
exact_div_assign, 132
input, 132

Parma_Polyhedra_Library::Congruence, 134
coefficient, 138
Congruence, 138
is_equality, 139
is_proper_congruence, 139
is_trivial_false, 139
is_trivial_true, 138
normalize, 139
operator/, 140
operator/=, 138
sign_normalize, 139
strong_normalize, 139

Parma_Polyhedra_Library::Congruence_System,
140

add_unit_rows_and_columns, 144
concatenate, 144
Congruence_System, 143
insert, 143, 144
operator<<, 144

Parma_Polyhedra_Library::Congruence_-
System::const_iterator, 144

Parma_Polyhedra_Library::Constraint
EQUALITY, 150
NONSTRICT_INEQUALITY, 150
STRICT_INEQUALITY, 150

Parma_Polyhedra_Library::Constraint, 145
coefficient, 150
is_equivalent_to, 151
is_inconsistent, 150
is_tautological, 150
Type, 150

Parma_Polyhedra_Library::Constraint_System, 151
operator<<, 154
operator==, 154

Parma_Polyhedra_Library::Constraint_-
System::const_iterator, 154

Parma_Polyhedra_Library::Determinate, 155
Parma_Polyhedra_Library::From_Bounding_Box,

157
Parma_Polyhedra_Library::From_Covering_Box,

157
Parma_Polyhedra_Library::Generator

CLOSURE_POINT, 162
LINE, 162
POINT, 162
RAY, 162

Parma_Polyhedra_Library::Generator, 157

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 297

closure_point, 163
coefficient, 163
divisor, 163
is_equivalent_to, 163
line, 162
point, 163
ray, 162
Type, 162

Parma_Polyhedra_Library::Generator_System, 164
OK, 167
operator<<, 167

Parma_Polyhedra_Library::Generator_-
System::const_iterator, 167

Parma_Polyhedra_Library::GMP_Integer, 168
exact_div_assign, 170
gcdext_assign, 170

Parma_Polyhedra_Library::Grid, 170
add_congruence, 189
add_congruence_and_minimize, 189
add_congruences, 190
add_congruences_and_minimize, 191
add_constraint, 193
add_constraint_and_minimize, 193
add_constraints, 193
add_constraints_and_minimize, 193
add_generator, 190
add_generator_and_minimize, 190
add_generators, 194
add_generators_and_minimize, 195
add_recycled_congruences, 190, 191
add_recycled_congruences_and_minimize,

192
add_recycled_constraints, 193
add_recycled_constraints_and_minimize, 194
add_recycled_generators, 194
add_recycled_generators_and_minimize, 195
add_space_dimensions_and_embed, 200
add_space_dimensions_and_project, 200
affine_image, 197
affine_preimage, 197
bounds_from_above, 184
bounds_from_below, 184
concatenate_assign, 200
contains, 186
expand_space_dimension, 202
fold_space_dimensions, 202
generalized_affine_image, 197, 198
generalized_affine_preimage, 198
get_covering_box, 187
Grid, 180–183
grid_difference_assign, 196
intersection_assign, 195
intersection_assign_and_minimize, 196
is_discrete, 184

is_disjoint_from, 184
join_assign, 196
join_assign_and_minimize, 196
join_assign_if_exact, 196
limited_extrapolation_assign, 199
map_space_dimensions, 201
maximize, 184, 185
minimize, 185, 186
OK, 188
operator!=, 203
operator<<, 203
operator==, 203
remove_higher_space_dimensions, 201
remove_space_dimensions, 201
shrink_bounding_box, 186
strictly_contains, 186
time_elapse_assign, 199
widening_assign, 199

Parma_Polyhedra_Library::Grid_Certificate, 203
compare, 204

Parma_Polyhedra_Library::Grid_-
Certificate::Compare, 204

Parma_Polyhedra_Library::Grid_Generator
LINE, 209
PARAMETER, 209
POINT, 209

Parma_Polyhedra_Library::Grid_Generator, 204
coefficient_swap, 210
divisor, 210
is_equivalent_to, 210
line, 209
parameter, 209
point, 210
scale_to_divisor, 210
Type, 209

Parma_Polyhedra_Library::Grid_Generator_-
System, 211

add_universe_rows_and_columns, 215
affine_image, 215
insert, 215
OK, 215
operator<<, 216
remove_higher_space_dimensions, 216
remove_space_dimensions, 216

Parma_Polyhedra_Library::Grid_Generator_-
System::const_iterator, 216

Parma_Polyhedra_Library::H79_Certificate, 217
compare, 218

Parma_Polyhedra_Library::H79_-
Certificate::Compare, 219

Parma_Polyhedra_Library::IO_Operators, 100
Parma_Polyhedra_Library::Linear_Expression, 219

Linear_Expression, 223
operator+=, 223

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 298

operator-=, 224
Parma_Polyhedra_Library::LP_Problem, 224

add_constraint, 226
add_constraints, 226
evaluate_objective_function, 227
feasible_point, 227
is_satisfiable, 227
LP_Problem, 226
optimal_value, 228
optimizing_point, 228
set_objective_function, 227
solve, 227

Parma_Polyhedra_Library::NNC_Polyhedron, 228
NNC_Polyhedron, 230, 231
poly_hull_assign_if_exact, 232

Parma_Polyhedra_Library::Poly_Con_Relation,
232

Parma_Polyhedra_Library::Poly_Gen_Relation,
233

Parma_Polyhedra_Library::Polyhedra_Powerset,
234

add_constraint, 238
add_constraint_and_minimize, 238
add_constraints, 238
add_constraints_and_minimize, 239
add_disjunct, 238
BGP99_extrapolation_assign, 239
BHZ03_widening_assign, 240
check_containment, 242
concatenate_assign, 240
geometrically_covers, 237
geometrically_equals, 238
intersection_assign, 240
linear_partition, 242
map_space_dimensions, 241
pairwise_reduce, 239
poly_difference_assign, 240
Polyhedra_Powerset, 237
remove_higher_space_dimensions, 241
remove_space_dimensions, 241
time_elapse_assign, 241
widen_fun_ref, 241, 242

Parma_Polyhedra_Library::Polyhedron, 242
add_congruence, 259
add_congruences, 262
add_constraint, 258
add_constraint_and_minimize, 258
add_constraints, 259
add_constraints_and_minimize, 260
add_generator, 258
add_generator_and_minimize, 259
add_generators, 260
add_generators_and_minimize, 261
add_recycled_constraints, 259

add_recycled_constraints_and_minimize, 260
add_recycled_generators, 261
add_recycled_generators_and_minimize, 261
add_space_dimensions_and_embed, 268
add_space_dimensions_and_project, 269
affine_image, 263
affine_preimage, 264
BHRZ03_widening_assign, 266
bounded_affine_image, 265
bounded_affine_preimage, 266
bounded_BHRZ03_extrapolation_assign, 267
bounded_H79_extrapolation_assign, 268
bounds_from_above, 254
bounds_from_below, 255
concatenate_assign, 269
contains, 256
expand_space_dimension, 270
fold_space_dimensions, 271
generalized_affine_image, 264, 265
generalized_affine_preimage, 264, 265
H79_widening_assign, 267
intersection_assign, 262
intersection_assign_and_minimize, 262
is_disjoint_from, 254
limited_BHRZ03_extrapolation_assign, 267
limited_H79_extrapolation_assign, 268
map_space_dimensions, 270
maximize, 255
minimize, 256
OK, 258
operator!=, 271
operator<<, 271
poly_difference_assign, 263
poly_hull_assign, 263
poly_hull_assign_and_minimize, 263
Polyhedron, 252, 253
relation_with, 254
remove_higher_space_dimensions, 270
remove_space_dimensions, 269
shrink_bounding_box, 257
strictly_contains, 257
swap, 271
time_elapse_assign, 266

Parma_Polyhedra_Library::Powerset, 272
add_non_bottom_disjunct, 277
iterator, 277
omega_reduce, 277
pairwise_apply_assign, 278
Sequence, 277
upper_bound_assign, 277

Parma_Polyhedra_Library::Throwable, 278
Parma_Polyhedra_Library::Variable, 278

space_dimension, 280
Variable, 280

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 299

Parma_Polyhedra_Library::Variable::Compare, 280
POINT

Parma_Polyhedra_Library::Generator, 162
Parma_Polyhedra_Library::Grid_Generator,

209
point

Parma_Polyhedra_Library::Generator, 163
Parma_Polyhedra_Library::Grid_Generator,

210
poly_difference_assign

Parma_Polyhedra_Library::Polyhedra_-
Powerset, 240

Parma_Polyhedra_Library::Polyhedron, 263
poly_hull_assign

Parma_Polyhedra_Library::Polyhedron, 263
poly_hull_assign_and_minimize

Parma_Polyhedra_Library::Polyhedron, 263
poly_hull_assign_if_exact

Parma_Polyhedra_Library::C_Polyhedron,
125

Parma_Polyhedra_Library::NNC_Polyhedron,
232

Polyhedra_Powerset
Parma_Polyhedra_Library::Polyhedra_-

Powerset, 237
Polyhedron

Parma_Polyhedra_Library::Polyhedron, 252,
253

POLYNOMIAL_COMPLEXITY
PPL_CXX_interface, 38

PPL_ARITHMETIC_OVERFLOW
PPL_C_interface, 62

ppl_banner
PPL_C_interface, 63

PPL_C_interface
PPL_ARITHMETIC_OVERFLOW, 62
PPL_CONSTRAINT_TYPE_EQUAL, 62
PPL_CONSTRAINT_TYPE_GREATER_-

THAN, 62
PPL_CONSTRAINT_TYPE_GREATER_-

THAN_OR_EQUAL, 62
PPL_CONSTRAINT_TYPE_LESS_THAN,

62
PPL_CONSTRAINT_TYPE_LESS_THAN_-

OR_EQUAL, 62
PPL_ERROR_DOMAIN_ERROR, 62
PPL_ERROR_INTERNAL_ERROR, 62
PPL_ERROR_INVALID_ARGUMENT, 62
PPL_ERROR_LENGTH_ERROR, 62
PPL_ERROR_OUT_OF_MEMORY, 62
PPL_ERROR_UNEXPECTED_ERROR, 62
PPL_ERROR_UNKNOWN_STANDARD_-

EXCEPTION, 62

PPL_GENERATOR_TYPE_CLOSURE_-
POINT, 63

PPL_GENERATOR_TYPE_LINE, 63
PPL_GENERATOR_TYPE_POINT, 63
PPL_GENERATOR_TYPE_RAY, 63
PPL_STDIO_ERROR, 62

PPL_C_interface
ppl_banner, 63
ppl_enum_Constraint_Type, 62
ppl_enum_error_code, 62
ppl_enum_Generator_Type, 62
ppl_finalize, 63
ppl_initialize, 63
ppl_io_variable_output_function_type, 61
ppl_LP_Problem_evaluate_objective_-

function, 72
ppl_LP_Problem_optimal_value, 72
ppl_LP_Problem_solve, 71
ppl_new_C_Polyhedron_from_bounding_box,

65
ppl_new_C_Polyhedron_from_Constraint_-

System, 63
ppl_new_C_Polyhedron_from_Generator_-

System, 64
ppl_new_C_Polyhedron_recycle_Constraint_-

System, 63
ppl_new_C_Polyhedron_recycle_Generator_-

System, 64
ppl_new_NNC_Polyhedron_from_bounding_-

box, 66
ppl_new_NNC_Polyhedron_from_-

Constraint_System, 64
ppl_new_NNC_Polyhedron_from_-

Generator_System, 64
ppl_new_NNC_Polyhedron_recycle_-

Constraint_System, 64
ppl_new_NNC_Polyhedron_recycle_-

Generator_System, 65
ppl_Polyhedron_add_recycled_constraints, 68
ppl_Polyhedron_add_recycled_constraints_-

and_minimize, 68
ppl_Polyhedron_add_recycled_generators, 68
ppl_Polyhedron_add_recycled_generators_-

and_minimize, 69
ppl_Polyhedron_affine_image, 69
ppl_Polyhedron_affine_preimage, 69
ppl_Polyhedron_bounded_affine_image, 69
ppl_Polyhedron_bounded_affine_preimage,

70
ppl_Polyhedron_equals_Polyhedron, 68
ppl_Polyhedron_generalized_affine_image, 70
ppl_Polyhedron_generalized_affine_image_-

lhs_rhs, 71

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 300

ppl_Polyhedron_generalized_affine_preimage,
70

ppl_Polyhedron_generalized_affine_-
preimage_lhs_rhs, 71

ppl_Polyhedron_map_space_dimensions, 71
ppl_Polyhedron_maximize, 67
ppl_Polyhedron_minimize, 67
ppl_Polyhedron_relation_with_Constraint, 66
ppl_Polyhedron_relation_with_Generator, 66
ppl_Polyhedron_shrink_bounding_box, 67
ppl_set_error_handler, 63
PPL_VERSION, 61

PPL_CONSTRAINT_TYPE_EQUAL
PPL_C_interface, 62

PPL_CONSTRAINT_TYPE_GREATER_THAN
PPL_C_interface, 62

PPL_CONSTRAINT_TYPE_GREATER_THAN_-
OR_EQUAL

PPL_C_interface, 62
PPL_CONSTRAINT_TYPE_LESS_THAN

PPL_C_interface, 62
PPL_CONSTRAINT_TYPE_LESS_THAN_OR_-

EQUAL
PPL_C_interface, 62

PPL_CXX_interface
ANY_COMPLEXITY, 38
EMPTY, 38
EQUAL, 38
GREATER_THAN, 38
GREATER_THAN_OR_EQUAL, 38
LESS_THAN, 38
LESS_THAN_OR_EQUAL, 38
MAXIMIZATION, 39
MINIMIZATION, 39
OPTIMIZED_LP_PROBLEM, 39
POLYNOMIAL_COMPLEXITY, 38
ROUND_DOWN, 38
ROUND_IGNORE, 38
ROUND_NOT_NEEDED, 38
ROUND_UP, 38
SIMPLEX_COMPLEXITY, 38
UNBOUNDED_LP_PROBLEM, 39
UNFEASIBLE_LP_PROBLEM, 39
UNIVERSE, 38
V_CVT_STR_UNK, 37
V_DIV_ZERO, 37
V_EQ, 37
V_GE, 37
V_GT, 37
V_INF_ADD_INF, 37
V_INF_DIV_INF, 37
V_INF_MOD, 37
V_INF_MUL_ZERO, 37
V_INF_SUB_INF, 37

V_LE, 37
V_LGE, 37
V_LT, 37
V_MOD_ZERO, 37
V_NE, 37
V_NEG_OVERFLOW, 37
V_POS_OVERFLOW, 37
V_SQRT_NEG, 37
V_UNKNOWN_NEG_OVERFLOW, 37
V_UNKNOWN_POS_OVERFLOW, 38
V_UNORD_COMP, 38
VC_MINUS_INFINITY, 37
VC_NAN, 37
VC_NORMAL, 37
VC_PLUS_INFINITY, 37

PPL_CXX_interface
abandon_expensive_computations, 39
Coefficient, 37
Complexity_Class, 38
Degenerate_Element, 38
LP_Problem_Status, 39
Optimization_Mode, 38
PPL_VERSION, 36
Relation_Symbol, 38
Result, 37
Rounding_Dir, 38

ppl_enum_Constraint_Type
PPL_C_interface, 62

ppl_enum_error_code
PPL_C_interface, 62

ppl_enum_Generator_Type
PPL_C_interface, 62

PPL_ERROR_DOMAIN_ERROR
PPL_C_interface, 62

PPL_ERROR_INTERNAL_ERROR
PPL_C_interface, 62

PPL_ERROR_INVALID_ARGUMENT
PPL_C_interface, 62

PPL_ERROR_LENGTH_ERROR
PPL_C_interface, 62

PPL_ERROR_OUT_OF_MEMORY
PPL_C_interface, 62

PPL_ERROR_UNEXPECTED_ERROR
PPL_C_interface, 62

PPL_ERROR_UNKNOWN_STANDARD_-
EXCEPTION

PPL_C_interface, 62
ppl_finalize

PPL_C_interface, 63
PPL_GENERATOR_TYPE_CLOSURE_POINT

PPL_C_interface, 63
PPL_GENERATOR_TYPE_LINE

PPL_C_interface, 63
PPL_GENERATOR_TYPE_POINT

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 301

PPL_C_interface, 63
PPL_GENERATOR_TYPE_RAY

PPL_C_interface, 63
ppl_initialize

PPL_C_interface, 63
ppl_io_variable_output_function_type

PPL_C_interface, 61
ppl_LP_Problem_evaluate_objective_function

PPL_C_interface, 72
ppl_LP_Problem_optimal_value

PPL_C_interface, 72
ppl_LP_Problem_solve

PPL_C_interface, 71
ppl_new_C_Polyhedron_from_bounding_box

PPL_C_interface, 65
ppl_new_C_Polyhedron_from_Constraint_System

PPL_C_interface, 63
ppl_new_C_Polyhedron_from_Generator_System

PPL_C_interface, 64
ppl_new_C_Polyhedron_recycle_Constraint_-

System
PPL_C_interface, 63

ppl_new_C_Polyhedron_recycle_Generator_-
System

PPL_C_interface, 64
ppl_new_NNC_Polyhedron_from_bounding_box

PPL_C_interface, 66
ppl_new_NNC_Polyhedron_from_Constraint_-

System
PPL_C_interface, 64

ppl_new_NNC_Polyhedron_from_Generator_-
System

PPL_C_interface, 64
ppl_new_NNC_Polyhedron_recycle_Constraint_-

System
PPL_C_interface, 64

ppl_new_NNC_Polyhedron_recycle_Generator_-
System

PPL_C_interface, 65
ppl_Polyhedron_add_recycled_constraints

PPL_C_interface, 68
ppl_Polyhedron_add_recycled_constraints_and_-

minimize
PPL_C_interface, 68

ppl_Polyhedron_add_recycled_generators
PPL_C_interface, 68

ppl_Polyhedron_add_recycled_generators_and_-
minimize

PPL_C_interface, 69
ppl_Polyhedron_affine_image

PPL_C_interface, 69
ppl_Polyhedron_affine_preimage

PPL_C_interface, 69
ppl_Polyhedron_bounded_affine_image

PPL_C_interface, 69
ppl_Polyhedron_bounded_affine_preimage

PPL_C_interface, 70
ppl_Polyhedron_equals_Polyhedron

PPL_C_interface, 68
ppl_Polyhedron_generalized_affine_image

PPL_C_interface, 70
ppl_Polyhedron_generalized_affine_image_lhs_rhs

PPL_C_interface, 71
ppl_Polyhedron_generalized_affine_preimage

PPL_C_interface, 70
ppl_Polyhedron_generalized_affine_preimage_-

lhs_rhs
PPL_C_interface, 71

ppl_Polyhedron_map_space_dimensions
PPL_C_interface, 71

ppl_Polyhedron_maximize
PPL_C_interface, 67

ppl_Polyhedron_minimize
PPL_C_interface, 67

ppl_Polyhedron_relation_with_Constraint
PPL_C_interface, 66

ppl_Polyhedron_relation_with_Generator
PPL_C_interface, 66

ppl_Polyhedron_shrink_bounding_box
PPL_C_interface, 67

ppl_set_error_handler
PPL_C_interface, 63

PPL_STDIO_ERROR
PPL_C_interface, 62

PPL_VERSION
PPL_C_interface, 61
PPL_CXX_interface, 36

Prolog Language Interface, 72

RAY
Parma_Polyhedra_Library::Generator, 162

ray
Parma_Polyhedra_Library::Generator, 162

rectilinear_distance_assign
Parma_Polyhedra_Library::BD_Shape, 118

Relation_Symbol
PPL_CXX_interface, 38

relation_with
Parma_Polyhedra_Library::BD_Shape, 108
Parma_Polyhedra_Library::Polyhedron, 254

remove_higher_space_dimensions
Parma_Polyhedra_Library::BD_Shape, 117
Parma_Polyhedra_Library::Grid, 201
Parma_Polyhedra_Library::Grid_Generator_-

System, 216
Parma_Polyhedra_Library::Polyhedra_-

Powerset, 241
Parma_Polyhedra_Library::Polyhedron, 270

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 302

remove_space_dimensions
Parma_Polyhedra_Library::BD_Shape, 116
Parma_Polyhedra_Library::Grid, 201
Parma_Polyhedra_Library::Grid_Generator_-

System, 216
Parma_Polyhedra_Library::Polyhedra_-

Powerset, 241
Parma_Polyhedra_Library::Polyhedron, 269

Result
PPL_CXX_interface, 37

ROUND_DOWN
PPL_CXX_interface, 38

ROUND_IGNORE
PPL_CXX_interface, 38

ROUND_NOT_NEEDED
PPL_CXX_interface, 38

ROUND_UP
PPL_CXX_interface, 38

Rounding_Dir
PPL_CXX_interface, 38

scale_to_divisor
Parma_Polyhedra_Library::Grid_Generator,

210
Sequence

Parma_Polyhedra_Library::Powerset, 277
set_objective_function

Parma_Polyhedra_Library::LP_Problem, 227
set_rational_sqrt_precision_parameter

Parma_Polyhedra_Library, 100
shrink_bounding_box

Parma_Polyhedra_Library::Grid, 186
Parma_Polyhedra_Library::Polyhedron, 257

sign_normalize
Parma_Polyhedra_Library::Congruence, 139

SIMPLEX_COMPLEXITY
PPL_CXX_interface, 38

solve
Parma_Polyhedra_Library::LP_Problem, 227

space_dimension
Parma_Polyhedra_Library::Variable, 280

std, 101
STRICT_INEQUALITY

Parma_Polyhedra_Library::Constraint, 150
strictly_contains

Parma_Polyhedra_Library::BD_Shape, 108
Parma_Polyhedra_Library::Grid, 186
Parma_Polyhedra_Library::Polyhedron, 257

strong_normalize
Parma_Polyhedra_Library::Congruence, 139

swap
Parma_Polyhedra_Library::Polyhedron, 271

time_elapse_assign

Parma_Polyhedra_Library::BD_Shape, 113
Parma_Polyhedra_Library::Grid, 199
Parma_Polyhedra_Library::Polyhedra_-

Powerset, 241
Parma_Polyhedra_Library::Polyhedron, 266

Type
Parma_Polyhedra_Library::Constraint, 150
Parma_Polyhedra_Library::Generator, 162
Parma_Polyhedra_Library::Grid_Generator,

209

UNBOUNDED_LP_PROBLEM
PPL_CXX_interface, 39

UNFEASIBLE_LP_PROBLEM
PPL_CXX_interface, 39

UNIVERSE
PPL_CXX_interface, 38

upper_bound_assign
Parma_Polyhedra_Library::Powerset, 277

V_CVT_STR_UNK
PPL_CXX_interface, 37

V_DIV_ZERO
PPL_CXX_interface, 37

V_EQ
PPL_CXX_interface, 37

V_GE
PPL_CXX_interface, 37

V_GT
PPL_CXX_interface, 37

V_INF_ADD_INF
PPL_CXX_interface, 37

V_INF_DIV_INF
PPL_CXX_interface, 37

V_INF_MOD
PPL_CXX_interface, 37

V_INF_MUL_ZERO
PPL_CXX_interface, 37

V_INF_SUB_INF
PPL_CXX_interface, 37

V_LE
PPL_CXX_interface, 37

V_LGE
PPL_CXX_interface, 37

V_LT
PPL_CXX_interface, 37

V_MOD_ZERO
PPL_CXX_interface, 37

V_NE
PPL_CXX_interface, 37

V_NEG_OVERFLOW
PPL_CXX_interface, 37

V_POS_OVERFLOW
PPL_CXX_interface, 37

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 303

V_SQRT_NEG
PPL_CXX_interface, 37

V_UNKNOWN_NEG_OVERFLOW
PPL_CXX_interface, 37

V_UNKNOWN_POS_OVERFLOW
PPL_CXX_interface, 38

V_UNORD_COMP
PPL_CXX_interface, 38

Variable
Parma_Polyhedra_Library::Variable, 280

VC_MINUS_INFINITY
PPL_CXX_interface, 37

VC_NAN
PPL_CXX_interface, 37

VC_NORMAL
PPL_CXX_interface, 37

VC_PLUS_INFINITY
PPL_CXX_interface, 37

widen_fun_ref
Parma_Polyhedra_Library::Polyhedra_-

Powerset, 241, 242
widening_assign

Parma_Polyhedra_Library::Grid, 199

The Parma Polyhedra Library User’s Manual (version 0.9). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

	General Information on the PPL
	PPL Module Index
	PPL Namespace Index
	PPL Hierarchical Index
	PPL Class Index
	PPL Page Index
	PPL Module Documentation
	PPL Namespace Documentation
	PPL Class Documentation
	PPL Page Documentation

