
Biopython Tutorial and Cookbook

Je� Chang, Brad Chapman, Iddo Friedberg, Thomas Hamelryck, Michiel de Hoon, Peter Cock

Contents

1 Introduction 5
1.1 What is Biopython? . 5

4.4 Writing Sequence Files .

8.4 Substitution Matrices . 65
8.4.1 Using common substitution matrices . 65
8.4.2 Creating your own substitution matrix from an alignment 65

8.5 BioRegistry { automatically �nding sequence sources . 67
8.5.1 Finding resources using a con�guration �le . 67

11 Appendix: Useful stu� about Python 107
11.1 What the heck is a handle? . 107

11.1.1 Creating a handle from a string . 107

4

Chapter 1

Introduction

1.1 What is Biopython?

The Biopython Project is an international association of developers of freely available Python (http://www.
python.org) tools for computational molecular biology. The web site http://www.biopython.org

http://www.python.org
http://www.python.org
http://www.biopython.org

� Interfaces to common bioinformatics programs such as:

{ Standalone Blast from NCBI
{ Clustalw alignment program.

� A standard sequence class that deals with sequences, ids on sequences, and sequence features.

� Tools for performing common operations on sequences, such as translation, transcription and weight
calculations.

� Code to perform classi�cation of data using k Nearest Neighbors, Naive Bayes or Support Vector
Machines.

� Code for dealing with alignments, including a standard way to create and deal with substitution
matrices.

� Code making it easy to split up parallelizable tasks into separate processes.

� GUI-based programs to do basic sequence manipulations, translations, BLASTing, etc.

� Extensive documentation and help with using the modules, including this �le, on-line wiki documen-
tation, the web site, and the mailing list.

� Integration with other languages, including the Bioperl and Biojava projects, using the BioCorba
interface standard �17

http://biopython.org/DIST/docs/install/Installation.pdf
http://biopython.org/DIST/docs/install/Installation.html

Chapter 2

Quick Start { What can you do with
Biopython?

http://www.python.org/doc/

http://www.flickr.com/search/?q=lady+slipper+orchid&s=int&z=t
http://www.flickr.com/search/?q=lady+slipper+orchid&s=int&z=t
http://images.google.com/images?q=lady%20slipper%20orchid

2.4 Parsing sequence �le formats

http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Nucleotide
http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Nucleotide
file:examples/ls_orchid.fasta
http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.fasta
file:examples/ls_orchid.gbk
http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.gbk

2.4.2 Simple GenBank parsing example

Now let’s load the GenBank �le instead - notice that the code to do this is almost identical to the snippet
used above for a FASTA �le - the only di�erence is we changed the �lename and the format string:

from Bio import SeqIO
handle = open("ls_orchid.gbk")
for seq_record in SeqIO.parse(handle, "genbank") :

print seq_record.id
print repr(seq_record.seq)
print len(seq_record.seq)

handle.close()

This should give:

http://biopython.org/wiki/SeqIO
http://biopython.org/wiki/SeqIO
http://www.expasy.org/
http://www.ncbi.nlm.nih.gov/Entrez/
http://www.ncbi.nlm.nih.gov/PubMed/

� SCOP

The code is these modules basically makes it easy to write python code that interact with the CGI scripts
on these pages, so that you can get results in an easy to deal with format. In some cases, the results can be
tightly integrated with the Biopython parsers to make it even easier to extract information.

Here we’ll show a simple example of performing a remote Entrez query. More information on the other
services is available in the Cookbook, which begins on page 55.

In section 2.3 of the parsing examples, we talked about using Entrez website to search the NCBI nucleotide
databases for info on Cypripedioideae, our friends the lady slipper orchids. Now, we’ll look at how to
automate that process using a python script. For Entrez searching, this is more useful for displaying results
then as a tool for getting sequences. The NCBI web site is mostly set up to allow remote queries so that

http://scop.mrc-lmb.cam.ac.uk/scop/
http://www.ncbi.nlm.nih.gov/entrez/query/static/linking.html

Snazzy! We can fetch things and display them automatically { you could use this to quickly set up
searches that you want to repeat on a daily basis and check by hand, or to set up a small CGI script to do
queries and locally save the results before displaying them (as a kind of lab notebook of our search results).
Hopefully whatever your task, the database connectivity code will make things lots easier for you!

2.6 What to do next

Now that you’ve made it this far, you hopefully have a good understanding of the basics of Biopython and

Chapter 3

Sequence objects

http://www.chem.qmw.ac.uk/iupac/

Seq(’AGTACACTGGT’, Alphabet())
>>> my_seq.alphabet
Alphabet()

Twothingsareinterestingtonote.First,thisfollowsthenormalconventionsforpythonstrings.Sothe

�rstelementofthesequenceis0(whichisnormalforcomputerscience,butnotsonormalforbiology).

Whenyoudoaslicethe�rstitemisincluded(i.e.4inthiscase)andthelastisexcluded(12inthiscase),

whichisthewaythingsworkinpython,butofcoursenotnecessarilythewayeveryoneintheworldwould

expect.Themaingoalistostayconsistentwithwhatpythondoes.

Thesecondthingtonoticeisthatthesliceisperformedonthesequencedatastring,butthenewobject

ftp://ftp.ncbi.nlm.nih.gov/entrez/misc/data/gc.prt

>>> my_seq = Seq("GCCATTGTAATGGGCCGCTGAAAGGGTGCCCGA", IUPAC.unambiguous_dna)
>>> standard_translator.translate(my_seq)
Seq(’AIVMGR*KGAR’, IUPACProtein())
>>> mito_translator.translate(my_seq)
Seq(’AIVMGRWKGAR’, IUPACProtein())

Notice that the default translation will just go ahead and proceed blindly through a stop codon. If you

Chapter 4

Sequence Input/Output

In this chapter we’ll discuss in more detail the Bio.SeqIO module, which was brie
y introduced in Chapter 2.
This is a relatively new interface, added in Biopython 1.43, which aims to provide a simple interface for
working with assorted sequence �le formats in a uniform way.

The \catch" is that you have to work with SeqRecord

The above example is repeated from the introduction in Section 2.4, and will load the orchid DNA
sequences in the FASTA format �le ls orchid.fasta

http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.fasta
http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.gbk
http://biopython.org/wiki/SeqIO
http://biopython.org/wiki/SeqIO

http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.gbk

ID: Z78533.1
Name: Z78533
Desription: C.irapeanum 5.8S rRNA gene and ITS1 and ITS2 DNA.
/source=Cypripedium irapeanum
/taxonomy=[’Eukaryota’, ’Viridiplantae’, ’Streptophyta’, ..., ’Cypripedium’]
/keywords=[’5.8S ribosomal RNA’, ’5.8S rRNA gene’, ’internal transcribed spacer’, ’ITS1’, ’ITS2’]
/references=[...]

from Bio import SeqIO

Suppose you only want to download a single record? When you expect the handle to contain one and
only one record, in Biopython 1.45 or later you can use the Bio.SeqIO.read() function:

from Bio import GenBank
from Bio import SeqIO
handle = GenBank.download_many(["6273291"])
seq_record = SeqIO.read(handle, "genbank")
handle.close()

4.2.2 Parsing SwissProt sequences from the net

We can access a single SeqRecord

rec2 = SeqRecord(Seq("YPDYYFRITNREHKAELKEKFQRMCDKSMIKKRYMYLTEEILKENPSMCEYMAPSLDARQ" \
+"DMVVVEIPKLGKEAAVKAIKEWGQ", generic_protein),

id="gi|13919613|gb|AAK33142.1|",
description="chalcone synthase [Fragaria vesca subsp. bracteata]")

rec3 = SeqRecord(Seq("MVTVEEFRRAQCAEGPATVMAIGTATPSNCVDQSTYPDYYFRITNSEHKVELKEKFKRMC" \
+"EKSMIKKRYMHLTEEILKENPNICAYMAPSLDARQDIVVVEVPKLGKEAAQKAIKEWGQP" \
+"KSKITHLVFCTTSGVDMPGCDYQLTKLLGLRPSVKRFMMYQQGCFAGGTVLRMAKDLAEN" \

http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.gbk

records = [make_rc_record(rec) for rec in SeqIO.parse(in_handle, "fasta")]

Now list comprehensions have a nice trick up their sleaves, you can add a conditional statement:

records = [make_rc_record(rec) for rec in SeqIO.parse(in_handle, "fasta") if len(rec.seq) < 700]

Chapter 5

BLAST

Hey, everybody loves BLAST right? I mean, geez, how can get it get any easier to do comparisons between
one of your sequences and every other sequence in the known world? Heck, if I was writing the code to do
that it would probably take about a day and a half to complete, and the results still wouldn’t be as good.
But, of course, this section isn’t about how cool BLAST is, since we already know that. It is about the
problem with BLAST { it can be really di�cult to deal with the volume of data generated by large runs,
and to automate BLAST runs in general.

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/
ftp://ftp.ncbi.nlm.nih.gov/toolbox/
ftp://ftp.ncbi.nlm.nih.gov/blast/documents/formatdb.html
ftp://ftp.ncbi.nlm.nih.gov/blast/documents/formatdb.html

file:examples/m_cold.fasta
http://biopython.org/DIST/docs/tutorial/examples/m_cold.fasta
http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ncbi.nlm.nih.gov/BLAST/

First, we need to get the info in the FASTA �le. The easiest way to do this is to use the Bio.SeqIO module.
In this example, we’ll use Bio.SeqIO.parse to parse the FASTA �le and store the �rst FASTA record in
the �le in a SeqRecord object (section 2.4.1 explains Bio.SeqIO.parse in more detail).

http://www.ncbi.nlm.nih.gov/blast/blast.cgi?Jform=0
http://www.ncbi.nlm.nih.gov/blast/blast.cgi?Jform=0
http://www.ncbi.nlm.nih.gov/BLAST/blast_program.html
http://www.ncbi.nlm.nih.gov/BLAST/blast_databases.html

>>> result_handle = open("my_blast.xml")

Figure 5.1: Class diagram for the Blast Record class representing all of the info in a BLAST report

36

Figure 5.2: Class diagram for the PSIBlast Record class.37

>>> from Bio.Blast import NCBIStandalone
>>> error_handle = open(error_file, "w")

http://www.ncbi.nlm.nih.gov/Entrez
http://www.ncbi.nlm.nih.gov/entrez/utils/

http://www.ncbi.nlm.nih.gov/entrez/query/static/esearch_help.html
http://www.ncbi.nlm.nih.gov/entrez/query/static/epost_help.html
http://www.ncbi.nlm.nih.gov/entrez/query/static/esummary_help.html

>>> handle = Entrez.efetch(db="nucleotide", id="57240072",rettype="genbank")
>>> print handle.read()
LOCUS AY851612 892 bp DNA linear PLN 10-APR-2007
DEFINITION Opuntia subulata rpl16 gene, intron; chloroplast.
ACCESSION AY851612
VERSION AY851612.1 GI:57240072
KEYWORDS .
SOURCE chloroplast Austrocylindropuntia subulata
Spermatophyta; Magnoliophyta; eudicotyledons; core eudicotyledons;
Caryophyllales; Cactaceae; Opuntioideae; Austrocylindropuntia.

REFERENCE 1 (bases 1 to 892)
TITLE Molecular Phylogenetics of the Leafy Cactus Genus PereskiaREFERENCE 2 (bases 1 to 892)
TITLE Direct Submission
JOURNAL Submitted (10-DEC-2004) Desert Botanical Garden, 1201 North Galvin

FEATURES Location/Qualifierssource 1..892
/organism="Austrocylindropuntia subulata"
/organelle="plastid:chloroplast"
/mol_type="genomic DNA"

http://www.ncbi.nlm.nih.gov/entrez/query/static/efetchseq_help.html

options. The available formats depend on which database you are downloading from.

http://www.ncbi.nlm.nih.gov/entrez/query/static/elink_help.html

<MenuName>PMC</MenuName>
<Count>359</Count>
<Status>Ok</Status>

</ResultItem>

http://www.ncbi.nlm.nih.gov/entrez/query/static/egquery_help.html
http://www.ncbi.nlm.nih.gov/entrez/query/static/espell_help.html
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=helplinks.chapter.linkshelp

Chapter 7

Swiss-Prot, Prosite, Prodoc, and
ExPASy

7.1 Bio.SwissProt: Parsing Swiss-Prot records

Swiss-Prot (http://www.expasy.org/sprot) is a hand-curated database of protein sequences. In Sec-
tion 4.2.2

http://www.expasy.org/sprot

>>> from Bio import SwissProt
>>> record = SwissProt.read(handle)

>>> from Bio import Prosite
>>> handle = open("mysingleprositerecord.dat")
>>> record = Prosite.read(handle)

This function raises a ValueError if no Prosite record is found, and also if more than one Prosite record is
found.

7.3 Bio.Prosite.Prodoc: Parsing Prodoc records

In the Prosite example above, the record.pdoc accession numbers ’PDOC00001’, ’PDOC00004’, ’PDOC00005’
and so on refer to Prodoc records, which contain the Prosite Documentation. The Prodoc records are
available from ExPASy as individual �les, and as one �le �1’

http://www.expasy.org
http://www.expasy.org

http://www.expasy.org/cgi-bin/sprot-search-de
http://www.expasy.org/cgi-bin/sprot-search-ful
http://www.expasy.org/cgi-bin/sprot-search-ful

Chapter 8

http://www.ncbi.nlm.nih.gov/PubMed/

What we’ve done is create a dictionary like object medline_dict. To get an article we access it like
medline_dict[id_to_get]. What this does is connect with PubMed, get the article you ask for, parse it
into a record object, and return it. Very cool!

Now let’s look at how to use this nice dictionary to print out some information about some ids. We just
need to loop through our ids (orchid_ids from the previous section) and print out the information we are
interested in:

for oid in orchid_ids[0:5]:
cur_record = medline_dict[oid]

http://www.ncbi.nlm.nih.gov/

2. FeatureParser { This parses the raw record in a SeqRecord object with all of the feature table infor-
mation represented in SeqFeatures (see section 9.1 for more info on these objects). This is best to use
if you are interested in getting things in a more standard format. If you use Bio.SeqIO (Chapter 4)
to read a GenBank �le, it will call this FeatureParser for you.

Depending on the type of GenBank �les you are interested in, they will either contain a single record, or
multiple records. Each record will start with a LOCUS line, various other header lines, a list of features, and
�nally the sequence data, ending with a // line.

Dealing with a GenBank �le containing a single record is very easy. For example, let’s use a small
bacterial genome,

ftp://ftp.ncbi.nlm.nih.gov/genbank/genomes/Bacteria/Nanoarchaeum_equitans/AE017199.gbk
http://biopython.org/SRC/biopython/Tests/GenBank/cor6_6.gb

8.2.4 Making your very own GenBank database

One very cool thing that you can do is set up your own personal GenBank database and access it like a
dictionary (this can be extra cool because you can also allow access to these local databases over a network

http://www-igbmc.u-strasbg.fr/BioInfo/ClustalX/Top.html

We’ll need some sequences to align, such as opuntia.fasta (also available online here) which is a small

file:examples/opuntia.fasta
http://biopython.org/DIST/docs/tutorial/examples/opuntia.fasta

consensus Seq(’TATACATNAAAGNAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAAAAAAATGAAT
...’, IUPACAmbiguousDNA())

You can adjust how dumb_consensus works by passing optional parameters:

the threshold This is the threshold specifying how common a particular residue has to be at a position
before it is added. The default is .7.

the ambiguous character

second_seq = alignment.get_seq_by_num(1)
my_pssm = summary_align.pos_specific_score_matrix(second_seq

http://www.lecb.ncifcrf.gov/~toms/paper/primer/
http://www.lecb.ncifcrf.gov/~toms/paper/primer/

Well, now that we have an idea what information content is being calculated in Biopython, let’s look at

8.3.6 Translating between Alignment formats

One thing that you always end up having to do is convert between di�erent formats. Biopython does this

file:examples/protein.aln
http://biopython.org/DIST/docs/tutorial/examples/protein.aln

from Bio import Clustalw
from Bio.Alphabet import IUPAC
from Bio.Align import AlignInfo

get an alignment object from a Clustalw alignment output
c_align = Clustalw.parse_file("protein.aln", IUPAC.protein)

Once you’ve got your log odds matrix, you can display it prettily using the function print_mat. Doing

>>> print db
DBRegistry, exporting ’embl’, ’embl-dbfetch-cgi’, ’embl-ebi-cgi’,
’embl-fast’, ’embl-xembl-cgi’, ’interpro-ebi-cgi’,
’nucleotide-dbfetch-cgi’, ’nucleotide-genbank-cgi’, ’pdb’,
’pdb-ebi-cgi’, ’pdb-rcsb-cgi’, ’prodoc-expasy-cgi’,
’prosite-expasy-cgi’, ’protein-genbank-cgi’, ’swissprot’,
’swissprot-expasy-cgi’
>>> db.keys()
[’embl-dbfetch-cgi’, ’embl-fast’, ’embl’, ’prosite-expasy-cgi’,
’swissprot-expasy-cgi’, ’nucleotide-genbank-cgi’, ’pdb-ebi-cgi’,
’interpro-ebi-cgi’, ’embl-ebi-cgi’, ’embl-xembl-cgi’,
’protein-genbank-cgi’, ’pdb’, ’prodoc-expasy-cgi’,
’nucleotide-dbfetch-cgi’, ’swissprot’, ’pdb-rcsb-cgi’]

Now, let’s say we want to retrieve a swissprot record for one of our orchid chalcone synthases. First, we
get the swissprot connection, then we retrieve an record of interest:

>>> sp = db["swissprot"]
>>> sp
<Bio.DBRegistry.DBGroup instance at 0x82fdb2c>
record_handle = sp[’O23729’]
>>> print record_handle.read()[:200]
ID CHS3_BROFI STANDARD; PRT; 394 AA.
AC O23729;
DT 15-JUL-1999 (Rel. 38, Created)
DT 15-JUL-1999 (Rel. 38, Last sequence update)
DT 15-JUL-1999 (Rel. 38, Last annotation update)

This retrieval method is nice for a number of reasons. First, we didn’t have to worry about where exactly
swissprot records were being retrieved from { we only ask for an object that will give us any swissprot record
we can get. Secondly, once we get the swissprot object, we don’t need to worry about how we are getting
our sequence { we just ask for it by id and don’t worry about the implementation details.

The default biopython database registry object can be used similarly to retrieve sequences from EMBL,
prosite, PDB, interpro, GenBank and XEMBL.

8.5.2.2 Registering and Grouping databases

The basic registry objects are nice in that they provide basic functionality, but if you have a more advanced

doc = "Query a local databases",
failure_cases = [])

Now that we have speci�ed the details for connecting to the CGI script, we are ready to register this CGI
script. We just need one more detail { specifying what the script returns upon failure to �nd a sequence.
We do this using Martel regular expressions:

import Martel
my_failures = [

(Martel.Str("Sequence not available"), "No sequence found")]

Now we’ve got everything we need, and can register the database:

from Bio import register_db
register_db(name = "nucleotide-genbank-local",

key = "uid",
source = local_cgi,
failure = my_failures)

This makes the database available as before, so if we print the keys of the database, we’ll see "nucleotide-

8.8 Going 3D: The PDB module

Biopython also allows you to explore the extensive realm of macromolecular structure. Biopython comes
with a PDBParser class that produces a Structure object. The Structure object can be used to access the

Disordered atoms and residues are represented by DisorderedAtom and DisorderedResidue classes, which
are both subclasses of the DisorderedEntityWrapper base class. They hide the complexity associated with

8.8.1.1 Structure

The Structure object is at the top of the hierarchy. Its id is a user given string. The Structure contains

a.get_sigatm() # std. dev. of atomic parameters
a.get_siguij() # std. dev. of anisotropic B factor
a.get_anisou() # anisotropic B factor
a.get_fullname() # atom name (with spaces, e.g. ".CA.")

To represent the atom coordinates, siguij, anisotropic B factor and sigatm Numpy arrays are used.

8.8.2 Disorder

for residue in chain.get_list():
residue_id=residue.get_id()
hetfield=residue_id[0]
if hetfield[0]=="H":
print residue_id

8.8.5.1.1 Duplicate residues

8.8.6 Other features

http://genepop.curtin.edu.au/

8.9.2 Coalescent simulation

A coalescent simulation is a backward model of population genetics with relation to time. A simulation of

http://cmpg.unibe.ch/software/simcoal2/
http://cmpg.unibe.ch/software/simcoal2/

Figure 8.2: A bottleneck

from Bio.PopGen.SimCoal.Template import generate_simcoal_from_template

generate_simcoal_from_template(’simple’,
[(1, [(’SNP’, [24, 0.0005, 0.0])])],
[(’sample_size’, [30]),
(’pop_size’, [100])])

how to implement chromosome structures using the Biopython interface, not the underlying SIMCOAL2
capabilities.

We will start by implementing a single chromosome, with 24 SNPs with a recombination rate immediately
on the right of each locus of 0.0005 and a minimum frequency of the minor allele of 0. This will be speci�ed
by the following list (to be passed as second parameter to the function generate simcoal from template):

[(1, [(’SNP’, [24, 0.0005, 0.0])])]

This is actually the chromosome structure used in the above examples.

2. Compute average Fst. This is done by datacal inside FDist.

3. Simulate \neutral" markers based on the average Fst and expected number of total populations. This
is the core operation, done by fdist inside FDist.

4. Calculate the con�dence interval, based on the desired con�dence boundaries (typically 95% or 99%).
This is done by cplot and is mainly used to plot the interval.

5. Assess each marker status against the simulation \neutral" con�dence interval. Done by pv. This is
used to detect the outlier status of each marker against the simulation.

We will now discuss each step with illustrating example code (for this example to work FDist binaries
have to be on the executable PATH).

The FDist data format is application speci�c and is not used at all by other applications, as such you will
probably have to convert your data for use with FDist. Biopython can help you do this. Here is an example
converting from GenePop format to FDist format (along with imports that will be needed on examples
further below):

sample size Average number of individuals sampled on each population.

mut Mutation model: 0 - In�nite alleles; 1 - Stepwise mutations

num sims Number of simulations to perform. Typically a number around 40000 will be OK, but if you
get a con�dence interval that looks sharp (this can be detected when plotting the con�dence interval
computed below) the value can be increased (a suggestion would be steps of 10000 simulations).

The confusion in wording between number of samples and sample size stems from the original application.
A �le named out.dat will be created with the simulated heterozygosities and Fsts, it will have as many

lines as the number of simulations requested.
Note that fdist returns the average Fst that it was capable of simulating, for more details about this issue

please read below the paragraph on approximating the desired average Fst.
The next (optional) step is to calculate the con�dence interval:

cpl_interval = ctrl.run_cplot(ci=0.99)

http://www.ebi.ac.uk/interpro/

Chapter 9

Advanced

9.1 The SeqRecord and SeqFeature classes

You read all about the basic Biopython sequence class in Chapter 3, which described how to do many
useful things with just the sequence. However, many times sequences have important additional properties
associated with them { as you will have seen with the SeqRecord object in Chapter 4. This section described

Additionally, you can also pass the id, name and description to the initialization function, but if not they

strand

�

sequence MAKLEITLKRSVIGRPEDQRVTVRTLGLKKTNQTVVHEDNAAIRGMINKVSHLVSVKEQ
end_sequence
begin_sequence
title >gi|132679|sp|P19946|RL15_BACSU 50S RIBOSOMAL PROTEIN L15

hsps_prelim_gapped gapped (not tblastx) and not blastn
hsps_prelim_gap_attempted gapped (not tblastx) and not blastn
hsps_gapped gapped (not tblastx) and not blastn
query_length
database_length
effective_hsp_length
effective_query_length
effective_database_length
effective_search_space
effective_search_space_used
frameshift blastx or tblastn or tblastx
threshold
window_size
dropoff_1st_pass
gap_x_dropoff
gap_x_dropoff_final gapped (not tblastx) and not blastn
gap_trigger
blast_cutoff

9.3.7 Enzyme

The Enzyme.py module works with the enzyme.dat �le included with the Enzyme distribution. The Enzyme
Scanner produces the following events:

record
identification
description
alternate_name
catalytic_activity
cofactor
comment
disease
prosite_reference
databank_reference
terminator

9.3.8 KEGG

9.3.8.1 Bio.KEGG.Enzyme

The Bio.KEGG.Enzyme module works with the ’enzyme’ �le from the Ligand database, which can be
obtained from the KEGG project. (http://www.genome.ad.jp/kegg).

The Bio.KEGG.Enzyme.Record contains all the information stored in a KEGG/Enzyme record. Its

http://www.genome.ad.jp/kegg

product
inhibitor
cofactor
effector
comment
pathway_db
pathway_id
pathway_desc
organism
gene_id
disease_db
disease_id
disease_desc
motif_db
motif_id
motif
structure_db
structure_id
dblinks_db
dblinks_id
record_end

9.3.8.2 Bio.KEGG.Compound

http://www.genome.ad.jp/kegg

9.3.10 Medline

http://www.nlm.nih.gov/pubs/osrm_nlm.html
http://www.nlm.nih.gov/pubs/osrm_nlm.html

sequence_header
sequence_data
terminator

http://www-nbrf.georgetown.edu/pirwww/pirhome.shtml
http://www-nbrf.georgetown.edu/pirwww/pirhome.shtml
http://ndbserver.rutgers.edu/NDB/NDBATLAS/index.html
http://ndbserver.rutgers.edu/NDB/NDBATLAS/index.html
http://pinguin.biologie.uni-jena.de/bioinformatik/networks/
http://numpy.scipy.org/#older_array
http://numpy.scipy.org/#older_array

input_file_name
num_int_metabolites
num_reactions
metabolite_line
unbalancedites

(a) __init__(self,data=None,alphabet=None,
mat_type=NOTYPE,mat_name=’’,build_later=0):

i. data: can be either a dictionary, or another SeqMat instance.
ii.

(’A’,’C’): 10, (’C’,’A’): 12

as order doesn’t matter, user can already provide only one entry:

(’A’,’C’): 22

A SeqMat instance may be initialized with either a full (�rst method of counting: 10, 12) or half

iii. factor: factor used to multiply the log-odds values. Each entry is generated by log(LOM[key])*factor
And rounded to the round_digit place after the decimal point, if required.

4. Example of use

As most people would want to generate a log-odds matrix, with minimum hassle, SubsMat provides
one function which does it all:

make_log_odds_matrix(acc_rep_mat,exp_freq_table=None,logbase=10,
factor=10.0,round_digit=0):

(a) acc_rep_mat: user provided accepted replacements matrix

(b) exp_freq_table

Which means that an expected data count would give a 0.5 frequency for ’C’, a 0.325 probability of
’B’ and a 0.175 probability of ’A’ out of 200 total, sum of A, B and C)

Chapter 10

Where to go from here { contributing
to Biopython

http://www.rpm.org

Macintosh

http://bugzilla.open-bio.org/
http://bugzilla.open-bio.org/
http://biopython.org/wiki/Contributing
http://biopython.org/wiki/Scriptcentral

Chapter 11

Appendix: Useful stu� about Python

If you haven’t spent a lot of time programming in python, many questions and problems that come up in

file:examples/m_cold.fasta
http://biopython.org/DIST/docs/tutorial/examples/m_cold.fasta

>>> my_info = ’A string\n with multiple lines.’
>>> print my_info
A string
with multiple lines.

>>> import cStringIO
>>> my_info_handle = cStringIO.StringIO([(>>>)>9aIO

	Introduction
	What is Biopython?
	What can I find in the Biopython package

	Installing Biopython
	FAQ

	Quick Start -- What can you do with Biopython?
	General overview of what Biopython provides
	Working with sequences
	A usage example
	Parsing sequence file formats
	Simple FASTA parsing example
	Simple GenBank parsing example
	I love parsing -- please don't stop talking about it!

	Connecting with biological databases
	What to do next

	Sequence objects
	Sequences and Alphabets
	Sequences act like strings
	Slicing a sequence
	Turning Seq objects into strings
	Nucleotide sequences and (reverse) complements
	Concatenating or adding sequences
	MutableSeq objects
	Transcribing and Translation
	Working with directly strings

	Sequence Input/Output
	Parsing or Reading Sequences
	Reading Sequence Files
	Iterating over the records in a sequence file
	Getting a list of the records in a sequence file
	Extracting data

	Parsing sequences from the net
	Parsing GenBank records from the net
	Parsing SwissProt sequences from the net

	Sequence files as Dictionaries
	Specifying the dictionary keys
	Indexing a dictionary using the SEGUID checksum

	Writing Sequence Files
	Converting between sequence file formats
	Converting a file of sequences to their reverse complements

	BLAST
	Running BLAST locally
	Running BLAST over the Internet
	Saving BLAST output
	Parsing BLAST output
	The BLAST record class
	Deprecated BLAST parsers
	Parsing plain-text BLAST output
	Parsing a file full of BLAST runs
	Finding a bad record somewhere in a huge file

	Dealing with PSIBlast

	Bio.Entrez: Accessing NCBI's Entrez databases
	EInfo: Obtaining information about the Entrez databases
	ESearch: Searching the Entrez databases
	EPost
	ESummary: Retrieving summaries from primary IDs
	EFetch: Downloading full records from Entrez
	ELink
	EGQuery: Obtaining counts for search terms
	ESpell: Obtaining spelling suggestions
	Creating web links to the Entrez databases

	Swiss-Prot, Prosite, Prodoc, and ExPASy
	Bio.SwissProt: Parsing Swiss-Prot records
	Bio.Prosite: Parsing Prosite records
	Bio.Prosite.Prodoc: Parsing Prodoc records
	Bio.ExPASy: Accessing the ExPASy server
	Retrieving a Swiss-Prot record
	Searching Swiss-Prot
	Retrieving Prosite and Prodoc records

	Cookbook -- Cool things to do with it
	PubMed
	Sending a query to PubMed
	Retrieving a PubMed record

	GenBank
	Retrieving GenBank entries from NCBI
	Parsing GenBank records
	Iterating over GenBank records
	Making your very own GenBank database

	Dealing with alignments
	Clustalw
	Calculating summary information
	Calculating a quick consensus sequence
	Position Specific Score Matrices
	Information Content
	Translating between Alignment formats

	Substitution Matrices
	Using common substitution matrices
	Creating your own substitution matrix from an alignment

	BioRegistry -- automatically finding sequence sources
	Finding resources using a configuration file
	Finding resources through a biopython specific interface

	BioSQL -- storing sequences in a relational database
	BioCorba
	Going 3D: The PDB module
	Structure representation
	Disorder
	Hetero residues
	Some random usage examples
	Common problems in PDB files
	Other features

	Bio.PopGen: Population genetics
	GenePop
	Coalescent simulation
	Other applications
	Future Developments

	InterPro

	Advanced
	The SeqRecord and SeqFeature classes
	Sequence ids and Descriptions -- dealing with SeqRecords
	Features and Annotations -- SeqFeatures

	Regression Testing Framework
	Writing a Regression Test

	Parser Design
	Design Overview
	Events
	`noevent' EVENT
	Scanners
	Consumers
	BLAST
	Enzyme
	KEGG
	Fasta
	Medline
	Prosite
	SWISS-PROT
	NBRF
	Ndb
	MetaTool

	Substitution Matrices
	SubsMat
	FreqTable

	Where to go from here -- contributing to Biopython
	Maintaining a distribution for a platform
	Bug Reports + Feature Requests
	Contributing Code

	Appendix: Useful stuff about Python
	What the heck is a handle?
	Creating a handle from a string

