If the argument of multVar is an object of class InvolutiveBasis, then the i-th set in m consists of the multiplicative variables for the i-th generator in J.
If the arguments of multVar are a chain complex and an integer, where C is the result of either janetResolution or resolution called with the optional argument 'Strategy => Involutive', then the i-th set in m consists of the multiplicative variables for the i-th generator in the n-th differential of C.
i1 : R = QQ[x,y] o1 = R o1 : PolynomialRing |
i2 : I = ideal(x^3,y^2) 3 2 o2 = ideal (x , y ) o2 : Ideal of R |
i3 : J = janetBasis I; |
i4 : multVar J o4 = {set {y}, set {y}, set {y, x}, set {y}} o4 : List |
i5 : R = QQ[x,y,z] o5 = R o5 : PolynomialRing |
i6 : I = ideal(x,y,z) o6 = ideal (x, y, z) o6 : Ideal of R |
i7 : C = res(I, Strategy => Involutive) 1 3 3 1 o7 = R <-- R <-- R <-- R <-- 0 0 1 2 3 4 o7 : ChainComplex |
i8 : multVar(C, 2) o8 = {set {z, y, x}, set {z, y, x}, set {z, y}} o8 : List |