
It comes in the night and sucks the essence from your computers.

Kern Sibbald

January 7, 2008
This manual documents Bacula version 2.0.3 (06 March 2007)

Copyright c©1999-2006, Free Software Foundation Europe e.V.

Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License,

Version 1.2 published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled ”GNU Free

Documentation License”.

Contents

1 What is Bacula? 1

1.1 Who Needs Bacula? . 1

1.2 Bacula Components or Services 2

1.3 Bacula Configuration . 6

1.4 Conventions Used in this Document 7

1.5 Quick Start . 7

1.6 Terminology . 7

1.7 What Bacula is Not . 12

1.8 Interactions Between the Bacula Services 12

2 The Current State of Bacula 15

2.1 What is Implemented . 15

2.2 Advantages Over Other Backup Programs 18

2.3 Current Implementation Restrictions 19

2.4 Design Limitations or Restrictions 20

3 System Requirements 21

4 Supported Operating Systems 23

i

ii CONTENTS

5 Supported Tape Drives 25

5.1 Unsupported Tape Drives . 26

5.2 FreeBSD Users Be Aware!!! 26

5.3 Supported Autochangers . 27

5.4 Tape Specifications . 27

6 Getting Started with Bacula 29

6.1 Understanding Jobs and Schedules 29

6.2 Understanding Pools, Volumes and Labels 30

6.3 Setting Up Bacula Configuration Files 31

6.3.1 Configuring the Console Program 31

6.3.2 Configuring the Monitor Program 32

6.3.3 Configuring the File daemon 33

6.3.4 Configuring the Director 33

6.3.5 Configuring the Storage daemon 34

6.4 Testing your Configuration Files 35

6.5 Testing Compatibility with Your Tape Drive 35

6.6 Get Rid of the /lib/tls Directory 36

6.7 Running Bacula . 36

6.8 Log Rotation . 36

6.9 Log Watch . 36

6.10 Disaster Recovery . 37

7 Installing Bacula 39

7.1 Source Release Files . 39

7.2 Upgrading Bacula . 40

CONTENTS iii

7.3 Releases Numbering . 41

7.4 Beta Releases . 42

7.5 Dependency Packages . 43

7.6 Supported Operating Systems 45

7.7 Building Bacula from Source 45

7.8 What Database to Use? . 49

7.9 Quick Start . 50

7.10 Configure Options . 51

7.11 Recommended Options for Most Systems 58

7.12 Red Hat . 59

7.13 Solaris . 60

7.14 FreeBSD . 61

7.15 Win32 . 61

7.16 One File Configure Script . 61

7.17 Installing Bacula . 62

7.18 Building a File Daemon or Client 63

7.19 Auto Starting the Daemons 63

7.20 Other Make Notes . 64

7.21 Installing Tray Monitor . 66

7.21.1 GNOME . 66

7.21.2 KDE . 66

7.21.3 Other window managers 66

7.22 Modifying the Bacula Configuration Files 66

8 Critical Items to Implement Before Production 67

8.1 Critical Items . 67

iv CONTENTS

8.2 Recommended Items . 69

9 A Brief Tutorial 71

9.1 Before Running Bacula . 72

9.2 Starting the Database . 72

9.3 Starting the Daemons . 73

9.4 Using the Director to Query and Start Jobs 73

9.5 Running a Job . 75

9.6 Restoring Your Files . 81

9.7 Quitting the Console Program 84

9.8 Adding a Second Client . 84

9.9 When The Tape Fills . 86

9.10 Other Useful Console Commands 89

9.11 Debug Daemon Output . 90

9.12 Patience When Starting Daemons or Mounting Blank Tapes . 90

9.13 Difficulties Connecting from the FD to the SD 91

9.14 Daemon Command Line Options 91

9.15 Creating a Pool . 92

9.16 Labeling Your Volumes . 93

9.17 Labeling Volumes with the Console Program 94

10 Customizing the Configuration Files 97

10.1 Resource Directive Format . 98

10.1.1 Comments . 99

10.1.2 Upper and Lower Case and Spaces 99

10.1.3 Including other Configuration Files 100

CONTENTS v

10.1.4 Recognized Primitive Data Types 100

10.2 Resource Types . 102

10.3 Names, Passwords and Authorization 103

10.4 Detailed Information for each Daemon 104

11 Configuring the Director 105

11.1 Director Resource Types . 105

11.2 The Director Resource . 106

11.3 The Job Resource . 110

11.4 The JobDefs Resource . 130

11.5 The Schedule Resource . 131

11.6 Technical Notes on Schedules 135

12 The FileSet Resource 137

12.1 FileSet Examples . 153

12.2 Backing up Raw Partitions 159

12.3 Excluding Files and Directories 159

12.4 Windows FileSets . 160

12.5 Testing Your FileSet . 163

12.6 The Client Resource . 163

12.7 The Storage Resource . 166

12.8 The Pool Resource . 169

12.8.1 The Scratch Pool . 178

12.9 The Catalog Resource . 178

12.10The Messages Resource . 180

12.11The Console Resource . 180

vi CONTENTS

12.12The Counter Resource . 182

12.13Example Director Configuration File 183

13 Client/File daemon Configuration 187

13.1 The Client Resource . 187

13.2 The Director Resource . 191

13.3 The Message Resource . 192

13.4 Example Client Configuration File 192

14 Storage Daemon Configuration 193

14.1 Storage Resource . 194

14.2 Director Resource . 196

14.3 Device Resource . 197

14.4 Edit Codes for Mount and Unmount Directives 210

14.5 Devices that require a mount (DVD) 210

15 Autochanger Resource 213

15.1 Capabilities . 215

15.2 Messages Resource . 215

15.3 Sample Storage Daemon Configuration File 215

16 Messages Resource 219

17 Console Configuration 225

17.1 General . 225

17.2 The Director Resource . 225

17.3 The ConsoleFont Resource . 226

17.4 The Console Resource . 227

CONTENTS vii

17.5 Console Commands . 230

17.6 Sample Console Configuration File 230

18 Monitor Configuration 231

18.1 The Monitor Resource . 231

18.2 The Director Resource . 232

18.3 The Client Resource . 233

18.4 The Storage Resource . 233

18.5 Tray Monitor Security . 234

18.6 Sample Tray Monitor configuration 235

18.6.1 Sample File daemon’s Director record. 235

18.6.2 Sample Storage daemon’s Director record. 236

18.6.3 Sample Director’s Console record. 236

19 Bacula Console 237

19.1 Console Configuration . 238

19.2 Running the Console Program 238

19.3 Stopping the Console Program 239

19.4 Alphabetic List of Console Keywords 239

19.5 Alphabetic List of Console Commands 242

19.6 Special dot Commands . 260

19.7 Special At (@) Commands . 260

19.8 Running the Console from a Shell Script 261

19.9 Adding Volumes to a Pool . 263

19.10General . 265

19.11The Restore Command . 265

viii CONTENTS

19.12Selecting Files by Filename 273

19.13Command Line Arguments 275

19.14Restoring Directory Attributes 276

19.15Restoring on Windows . 277

19.16Restoring Files Can Be Slow 278

19.17Problems Restoring Files . 278

19.18Restore Errors . 279

19.19Example Restore Job Resource 280

19.20File Selection Commands . 280

19.21Restoring When Things Go Wrong 282

20 GUI Programs 289

20.1 List of GUI Programs . 289

20.2 bimagemgr . 292

20.2.1 bimagemgr installation 292

20.2.2 bimagemgr usage . 294

21 Catalog Maintenance 297

21.1 Setting Retention Periods . 297

21.2 Compacting Your MySQL Database 299

21.3 Repairing Your MySQL Database 300

21.4 MySQL Table is Full . 300

21.5 MySQL Server Has Gone Away 301

21.6 Repairing Your PostgreSQL Database 301

21.7 Database Performance Issues 301

21.8 Performance Issues Indexes 302

CONTENTS ix

21.8.1 PostgreSQL Indexes 303

21.8.2 MySQL Indexes . 303

21.8.3 SQLite Indexes . 304

21.9 Compacting Your PostgreSQL Database 304

21.10Compacting Your SQLite Database 305

21.11Migrating from SQLite to MySQL 306

21.12Backing Up Your Bacula Database 306

21.13Backing Up Third Party Databases 307

21.14Database Size . 308

22 Automatic Volume Recycling 311

22.1 Automatic Pruning . 313

22.2 Pruning Directives . 313

22.3 Recycling Algorithm . 316

22.4 Recycle Status . 318

22.5 Making Bacula Use a Single Tape 320

22.6 Daily, Weekly, Monthly Tape Usage Example 320

22.7 Automatic Pruning and Recycling Example 322

22.8 Manually Recycling Volumes 324

23 Basic Volume Management 327

23.1 Key Concepts and Resource Records 327

23.1.1 Pool Options to Limit the Volume Usage 328

23.1.2 Automatic Volume Labeling 330

23.1.3 Restricting the Number of Volumes and Recycling . . 331

23.2 Concurrent Disk Jobs . 332

x CONTENTS

23.3 An Example . 333

23.4 Backing up to Multiple Disks 336

23.5 Considerations for Multiple Clients 338

24 DVD Volumes 343

24.1 DVD Specific SD Directives 344

24.2 Edit Codes for DVD Directives 345

24.3 DVD Specific Director Directives 346

24.4 Other Points . 346

25 Automated Disk Backup 349

25.1 The Problem . 349

25.2 The Solution . 349

25.3 Overall Design . 350

25.3.1 Full Pool . 351

25.3.2 Differential Pool . 351

25.3.3 Incremental Pool . 352

25.4 The Actual Conf Files . 352

26 Migration 357

26.1 Migration Job Resource Directives 359

26.2 Migration Pool Resource Directives 361

26.3 Important Migration Considerations 362

26.4 Example Migration Jobs . 364

27 Backup Strategies 367

27.1 Simple One Tape Backup . 367

CONTENTS xi

27.1.1 Advantages . 367

27.1.2 Disadvantages . 368

27.1.3 Practical Details . 368

27.2 Manually Changing Tapes . 368

27.3 Daily Tape Rotation . 369

27.3.1 Advantages . 369

27.3.2 Disadvantages . 370

27.3.3 Practical Details . 370

28 Autochanger Support 377

28.1 Knowing What SCSI Devices You Have 378

28.2 Example Scripts . 379

28.3 Slots . 380

28.4 Multiple Devices . 380

28.5 Device Configuration Records 381

29 Autochanger Resource 383

29.1 An Example Configuration File 385

29.2 A Multi-drive Example Configuration File 385

29.3 Specifying Slots When Labeling 386

29.4 Changing Cartridges . 387

29.5 Dealing with Multiple Magazines 388

29.6 Simulating Barcodes in your Autochanger 389

29.7 The Full Form of the Update Slots Command 389

29.8 FreeBSD Issues . 390

29.9 Testing Autochanger and Adapting mtx-changer script 391

xii CONTENTS

29.10Using the Autochanger . 393

29.11Barcode Support . 394

29.12Bacula Autochanger Interface 395

30 Supported Autochangers 397

31 Data Spooling 401

31.1 Data Spooling Directives . 402

31.2 !!! MAJOR WARNING !!! . 402

31.3 Other Points . 403

32 Python Scripting 405

32.1 Python Configuration . 405

32.2 Bacula Events . 406

32.3 Python Objects . 406

32.4 Python Console Command 411

32.5 Debugging Python Scripts . 412

32.6 Python Example . 412

33 ANSI and IBM Tape Labels 415

33.1 Director Pool Directive . 415

33.2 Storage Daemon Device Directives 416

34 Bacula Frequently Asked Questions 417

34.1 What is Bacula? . 417

34.2 Does Bacula support Windows? 417

34.3 What language is Bacula written in? 418

34.4 On what machines does Bacula run? 418

CONTENTS xiii

34.5 Is Bacula Stable? . 418

34.6 I’m Getting Authorization Errors. What is Going On? . . . 419

34.7 Bacula Runs Fine but Cannot Access a Client on a Different Machine. Why? 421

34.8 My Catalog is Full of Test Runs, How Can I Start Over? . . . 421

34.9 I Run a Restore Job and Bacula Hangs. What do I do? . . . 422

34.10I Cannot Get My Windows Client to Start Automatically? . 422

34.11My Windows Client Immediately Dies When I Start It 423

34.12My backups are not working on my Windows Client. What should I do?423

34.13All my Jobs are scheduled for the same time. Will this cause problems?424

34.14Can Bacula Backup My System To Files instead of Tape? . . 424

34.15Can I use a dummy device to test the backup? 424

34.16Can Bacula Backup and Restore Files Bigger than 2 Gigabytes?425

34.17I want to stop a job. 425

34.18Why have You Trademarked the Name Bacula? 425

34.19Why is the Online Document for Version 1.39 but the Released Version is 1.38?426

34.20Does Bacula really save and restore all files? 426

34.21I want an Incremental but Bacula runs it as a Full backup. Why?426

34.22Do you really handle unlimited path lengths? 427

34.23What Is the Really Unique Feature of Bacula? 427

34.24How can I force one job to run after another? 428

34.25I Am Not Getting Email Notification, What Can I Do? . . . 428

34.26My retention periods don’t work 428

34.27Why aren’t my files compressed? 429

34.28Incremental backups are not working 430

34.29I am waiting forever for a backup of an offsite machine 430

xiv CONTENTS

34.30SSH hangs forever after starting Bacula 431

34.31I’m confused by retention periods 431

34.32MaxVolumeSize is ignored . 432

34.33I get a Connection refused when connecting to my Client . . 432

34.34Long running jobs die with Pipe Error 433

34.35How to I tell the Job which Volume to use? 433

35 Tips and Suggestions 435

35.1 Upgrading Bacula Versions 435

35.2 Getting Notified of Job Completion 436

35.3 Getting Email Notification to Work 437

35.4 Getting Notified that Bacula is Running 438

35.5 Maintaining a Valid Bootstrap File 440

35.6 Rejected Volumes After a Crash 442

35.7 Security Considerations . 445

35.8 Creating Holiday Schedules 446

35.9 Automatic Labeling Using Your Autochanger 446

35.10Backing Up Portables Using DHCP 447

35.11Going on Vacation . 448

35.12Exclude Files on Windows Regardless of Case 449

35.13Executing Scripts on a Remote Machine 449

35.14Recycling All Your Volumes 450

35.15Backing up ACLs on ext3 or XFS filesystems 451

35.16Total Automation of Bacula Tape Handling 451

35.17Running Concurrent Jobs . 452

CONTENTS xv

36 Volume Utility Tools 455

36.1 Specifying the Configuration File 455

36.2 Specifying a Device Name For a Tape 455

36.3 Specifying a Device Name For a File 456

36.4 Specifying Volumes . 456

36.5 bls . 457

36.5.1 Listing Jobs . 458

36.5.2 Listing Blocks . 459

36.6 bextract . 460

36.6.1 Extracting with Include or Exclude Lists 461

36.6.2 Extracting With a Bootstrap File 462

36.6.3 Extracting From Multiple Volumes 462

36.7 bscan . 462

36.7.1 Using bscan to Compare a Volume to an existing Catalog465

36.7.2 Using bscan to Recreate a Catalog from a Volume . . 465

36.7.3 Using bscan to Correct the Volume File Count 467

36.7.4 After bscan . 467

36.8 bcopy . 468

36.8.1 bcopy Command Options 468

36.9 btape . 468

36.9.1 Using btape to Verify your Tape Drive 469

36.9.2 btape Commands . 469

36.10Other Programs . 471

36.11bsmtp . 471

36.12dbcheck . 472

xvi CONTENTS

36.13bregex . 475

36.14bwild . 476

36.15testfind . 477

37 Testing Your Tape Drive With Bacula 479

37.1 Get Your Tape Drive Working 479

37.1.1 Problems When no Tape in Drive 481

37.1.2 Specifying the Configuration File 482

37.1.3 Specifying a Device Name For a Tape 482

37.1.4 Specifying a Device Name For a File 482

37.2 btape . 483

37.2.1 Using btape to Verify your Tape Drive 483

37.2.2 Linux SCSI Tricks . 485

37.3 Tips for Resolving Problems 486

37.3.1 Bacula Saves But Cannot Restore Files 486

37.3.2 Bacula Cannot Open the Device 488

37.3.3 Incorrect File Number 488

37.3.4 Incorrect Number of Blocks or Positioning Errors . . . 489

37.3.5 Ensuring that the Tape Modes Are Properly Set – Linux Only490

37.3.6 Tape Hardware Compression and Blocking Size 491

37.3.7 Tape Modes on FreeBSD 493

37.3.8 Finding your Tape Drives and Autochangers on FreeBSD495

37.3.9 Using the OnStream driver on Linux Systems 496

37.4 Hardware Compression on EXB-8900 497

37.4.1 Using btape to Simulate Filling a Tape 497

37.5 Recovering Files Written With Fixed Block Sizes 497

CONTENTS xvii

37.6 Tape Blocking Modes . 498

37.7 Details of Tape Modes . 499

37.8 Autochanger Errors . 500

37.9 Syslog Errors . 501

38 What To Do When Bacula Crashes (Kaboom) 503

38.1 Traceback . 503

38.2 Testing The Traceback . 504

38.3 Getting A Traceback On Other Systems 505

38.4 Manually Running Bacula Under The Debugger 505

38.5 Getting Debug Output from Bacula 507

39 The Windows Version of Bacula 509

39.1 Win32 Installation . 510

39.2 Post Win32 Installation . 513

39.3 Uninstalling Bacula on Win32 513

39.4 Dealing with Win32 Problems 513

39.5 Windows Compatibility Considerations 516

39.6 Volume Shadow Copy Service 518

39.7 VSS Problems . 520

39.8 Windows Firewalls . 521

39.9 Windows Port Usage . 521

39.10Windows Disaster Recovery 521

39.11Windows Restore Problems 522

39.12Windows Ownership and Permissions Problems 523

39.13Manually resetting the Permissions 523

xviii CONTENTS

39.14Backing Up the WinNT/XP/2K System State 527

39.15Considerations for Filename Specifications 527

39.16Win32 Specific File daemon Command Line 528

39.17Shutting down Windows Systems 528

40 Disaster Recovery Using Bacula 529

40.1 General . 529

40.2 Important Considerations . 529

40.3 Steps to Take Before Disaster Strikes 530

40.4 Bare Metal Recovery on Linux with a Bacula Rescue CD . . 530

40.5 Requirements . 532

40.6 Directories . 533

40.7 Preparation for a Bare Metal Recovery 533

40.8 Creating a Bacula Rescue CDROM 533

40.9 Putting Multiple Systems on Your Rescue Disk 537

40.10Restoring a Client System . 539

40.11Boot with your Bacula Rescue CDROM 539

40.12Restoring a Server . 545

40.13Linux Problems or Bugs . 546

40.14Bare Metal Recovery using a LiveCD 547

40.15FreeBSD Bare Metal Recovery 548

40.16Solaris Bare Metal Recovery 550

40.17Preparing Solaris Before a Disaster 550

40.18Bugs and Other Considerations 551

40.19Disaster Recovery of Win32 Systems 551

40.20Ownership and Permissions on Win32 Systems 552

CONTENTS xix

40.21Alternate Disaster Recovery Suggestion for Win32 Systems . 553

40.22Restoring to a Running System 554

40.23Additional Resources . 554

41 Bacula TLS – Communications Encryption 555

41.1 TLS Configuration Directives 556

41.2 Creating a Self-signed Certificate 557

41.3 Getting a CA Signed Certificate 558

41.4 Example TLS Configuration Files 558

42 Data Encryption 561

42.1 Building Bacula with Encryption Support 562

42.2 Encryption Technical Details 562

42.3 Generating Private/Public Encryption Keys 563

42.4 Example Data Encryption Configuration 564

43 Bacula Security Issues 565

43.1 Backward Compatibility . 566

43.2 Configuring and Testing TCP Wrappers 567

43.3 Running as non-root . 569

44 Dealing with Firewalls 573

44.1 Technical Details . 573

44.2 A Concrete Example . 574

44.2.1 The Bacula Configuration Files for the Above 576

44.2.2 How Does It Work? 578

44.2.3 Important Note . 579

xx CONTENTS

44.2.4 Firewall Problems . 579

45 Using Bacula to Improve Computer Security 581

45.1 The Details . 582

45.2 Running the Verify . 583

45.3 What To Do When Differences Are Found 585

45.4 A Verify Configuration Example 586

46 Bacula RPM Packaging FAQ 589

46.1 Answers . 589

46.2 Build Options . 593

46.3 RPM Install Problems . 595

47 The Bootstrap File 597

47.1 File Format . 597

47.2 Automatic Generation of Bootstrap Files 602

47.3 A Final Example . 603

48 Installing and Configuring MySQL 605

48.1 Installing and Configuring MySQL – Phase I 605

48.2 Installing and Configuring MySQL – Phase II 607

48.3 Re-initializing the Catalog Database 608

48.4 Linking Bacula with MySQL 609

48.5 Installing MySQL from RPMs 610

48.6 Upgrading MySQL . 610

49 Installing and Configuring PostgreSQL 611

49.1 Installing PostgreSQL . 611

CONTENTS xxi

49.2 Configuring PostgreSQL . 612

49.3 Re-initializing the Catalog Database 615

49.4 Installing PostgreSQL from RPMs 616

49.5 Converting from MySQL to PostgreSQL 616

49.6 Upgrading PostgreSQL . 618

49.7 Credits . 619

50 Installing and Configuring SQLite 621

50.1 Installing and Configuring SQLite – Phase I 621

50.2 Installing and Configuring SQLite – Phase II 622

50.3 Linking Bacula with SQLite 622

50.4 Testing SQLite . 623

50.5 Re-initializing the Catalog Database 623

50.6 Internal Bacula Database . 624

51 Bacula Copyright, Trademark, and Licenses 625

51.1 FDL . 625

51.2 GPL . 625

51.3 LGPL . 626

51.4 Public Domain . 626

51.5 Trademark . 626

51.6 Fiduciary License Agreement 626

51.7 Disclaimer . 627

52 GNU Free Documentation License 629

52.1 Table of Contents . 639

52.2 GNU GENERAL PUBLIC LICENSE 639

xxii CONTENTS

52.3 Preamble . 639

52.4 TERMS AND CONDITIONS 640

52.5 How to Apply These Terms to Your New Programs 645

52.6 Table of Contents . 648

52.7 GNU LESSER GENERAL PUBLIC LICENSE 648

52.8 Preamble . 649

52.9 TERMS AND CONDITIONS 651

52.10 How to Apply These Terms to Your New Libraries 658

53 Bacula Projects 661

54 Thanks 663

54.1 Bacula Bugs . 666

55 Variable Expansion 667

55.1 General Functionality . 667

55.2 Bacula Variables . 668

55.3 Full Syntax . 669

55.4 Semantics . 670

55.5 Examples . 671

56 Using Stunnel to Encrypt Communications 673

56.1 Communications Ports Used 673

56.2 Encryption . 674

56.3 A Picture . 674

56.4 Certificates . 675

56.5 Securing the Data Channel 675

CONTENTS xxiii

56.6 Data Channel Configuration 676

56.7 Stunnel Configuration for the Data Channel 676

56.8 Starting and Testing the Data Encryption 678

56.9 Encrypting the Control Channel 678

56.10Control Channel Configuration 679

56.11Stunnel Configuration for the Control Channel 679

56.12Starting and Testing the Control Channel 680

56.13Using stunnel to Encrypt to a Second Client 681

56.14Creating a Self-signed Certificate 682

56.15Getting a CA Signed Certificate 683

56.16Using ssh to Secure the Communications 683

xxiv CONTENTS

List of Figures

Bacula Applications . 2

Bacula Objects . 6

Interactions between Bacula Services 12

Bacula Tray Monitor . 32

Bacula Objects . 97

Bacula CD Image Manager . 294

Bacula CD Image Burn Progress Window 294

Bacula CD Image Burn Results . 295

Win32 Client Setup Wizard . 510

Win32 Installation Type . 511

Win32 Component Selection Dialog 511

Win32 Configure . 511

Win32 Install Progress . 512

Win32 Client Setup Completed . 512

xxv

xxvi LIST OF FIGURES

List of Tables

Supported Tape Drives . 25

Dependency Packages . 44

Resource Types . 102

Autochangers Known to Work with Bacula 397

WinNT/2K/XP Restore Portability Status 517

SQLite vs MySQL Database Comparison 624

xxvii

Chapter 1

What is Bacula?

Bacula is a set of computer programs that permits the system administrator
to manage backup, recovery, and verification of computer data across a
network of computers of different kinds. Bacula can also run entirely upon
a single computer and can backup to various types of media, including tape
and disk.

In technical terms, it is a network Client/Server based backup program.
Bacula is relatively easy to use and efficient, while offering many advanced
storage management features that make it easy to find and recover lost or
damaged files. Due to its modular design, Bacula is scalable from small
single computer systems to systems consisting of hundreds of computers
located over a large network.

1.1 Who Needs Bacula?

If you are currently using a program such as tar, dump, or bru to backup
your computer data, and you would like a network solution, more flexibility,
or catalog services, Bacula will most likely provide the additional features
you want. However, if you are new to Unix systems or do not have offsetting
experience with a sophisticated backup package, the Bacula project does not
recommend using Bacula as it is much more difficult to setup and use than
tar or dump.

If you want Bacula to behave like the above mentioned simple programs and
write over any tape that you put in the drive, then you will find working
with Bacula difficult. Bacula is designed to protect your data following the
rules you specify, and this means reusing a tape only as the last resort. It is

1

2 CHAPTER 1. WHAT IS BACULA?

possible to ”force” Bacula to write over any tape in the drive, but it is easier
and more efficient to use a simpler program for that kind of operation.

If you are running Amanda and would like a backup program that can
write to multiple volumes (i.e. is not limited by your tape drive capacity),
Bacula can most likely fill your needs. In addition, quite a number of Bacula
users report that Bacula is simpler to setup and use than other equivalent
programs.

If you are currently using a sophisticated commercial package such as Legato
Networker. ARCserveIT, Arkeia, or PerfectBackup+, you may be interested
in Bacula, which provides many of the same features and is free software
available under the GNU Version 2 software license.

1.2 Bacula Components or Services

Bacula is made up of the following five major components or services: Di-
rector, Console, File, Storage, and Monitor services.

1.2. BACULA COMPONENTS OR SERVICES 3

(thanks to Aristedes Maniatis for this graphic and the one below)

Bacula Director

The Bacula Director service is the program that supervises all the backup,
restore, verify and archive operations. The system administrator uses the
Bacula Director to schedule backups and to recover files. For more details see
the Director Services Daemon Design Document in the Bacula Developer’s
Guide. The Director runs as a daemon (or service) in the background.

4 CHAPTER 1. WHAT IS BACULA?

Bacula Console

The Bacula Console service is the program that allows the administrator or
user to communicate with the Bacula Director Currently, the Bacula Console
is available in three versions: text-based console interface, GNOME-based
interface, and a wxWidgets graphical interface. The first and simplest is to
run the Console program in a shell window (i.e. TTY interface). Most sys-
tem administrators will find this completely adequate. The second version
is a GNOME GUI interface that is far from complete, but quite functional
as it has most the capabilities of the shell Console. The third version is a
wxWidgets GUI with an interactive file restore. It also has most of the ca-
pabilities of the shell console, allows command completion with tabulation,
and gives you instant help about the command you are typing. For more
details see the Bacula Console Design Document.

Bacula File

The Bacula File service (also known as the Client program) is the software
program that is installed on the machine to be backed up. It is specific to
the operating system on which it runs and is responsible for providing the
file attributes and data when requested by the Director. The File services
are also responsible for the file system dependent part of restoring the file
attributes and data during a recovery operation. For more details see the File
Services Daemon Design Document in the Bacula Developer’s Guide. This
program runs as a daemon on the machine to be backed up. In addition
to Unix/Linux File daemons, there is a Windows File daemon (normally
distributed in binary format). The Windows File daemon runs on current
Windows versions (NT, 2000, XP, 2003, and possibly Me and 98).

Bacula Storage

The Bacula Storage services consist of the software programs that perform
the storage and recovery of the file attributes and data to the physical backup
media or volumes. In other words, the Storage daemon is responsible for
reading and writing your tapes (or other storage media, e.g. files). For more
details see the Storage Services Daemon Design Document in the Bacula
Developer’s Guide. The Storage services runs as a daemon on the machine
that has the backup device (usually a tape drive).

1.2. BACULA COMPONENTS OR SERVICES 5

Catalog

The Catalog services are comprised of the software programs responsible for
maintaining the file indexes and volume databases for all files backed up.
The Catalog services permit the system administrator or user to quickly
locate and restore any desired file. The Catalog services sets Bacula apart
from simple backup programs like tar and bru, because the catalog maintains
a record of all Volumes used, all Jobs run, and all Files saved, permitting
efficient restoration and Volume management. Bacula currently supports
three different databases, MySQL, PostgreSQL, and SQLite, one of which
must be chosen when building Bacula.

The three SQL databases currently supported (MySQL, PostgreSQL or
SQLite) provide quite a number of features, including rapid indexing, arbi-
trary queries, and security. Although the Bacula project plans to support
other major SQL databases, the current Bacula implementation interfaces
only to MySQL, PostgreSQL and SQLite. For the technical and porting
details see the Catalog Services Design Document in the developer’s docu-
mented.

The packages for MySQL and PostgreSQL are available for several operat-
ing systems. Alternatively, installing from the source is quite easy, see the
Installing and Configuring MySQL chapter of this document for the details.
For more information on MySQL, please see: www.mysql.com. Or see the
Installing and Configuring PostgreSQL chapter of this document for the de-
tails. For more information on PostgreSQL, please see: www.postgresql.org.

Configuring and building SQLite is even easier. For the details of configuring
SQLite, please see the Installing and Configuring SQLite chapter of this
document.

Bacula Monitor

A Bacula Monitor service is the program that allows the administrator
or user to watch current status of Bacula Directors, Bacula File Daemons
and Bacula Storage Daemons Currently, only a GTK+ version is available,
which works with Gnome, KDE, or any window manager that supports the
FreeDesktop.org system tray standard.

To perform a successful save or restore, the following four daemons must be
configured and running: the Director daemon, the File daemon, the Storage
daemon, and the Catalog service (MySQL, PostgreSQL or SQLite).

http://www.mysql.com
http://www.postgresql.org

6 CHAPTER 1. WHAT IS BACULA?

1.3 Bacula Configuration

In order for Bacula to understand your system, what clients you want backed
up and how, you must create a number of configuration files containing
resources (or objects). The following presents an overall picture of this:

1.4. CONVENTIONS USED IN THIS DOCUMENT 7

1.4 Conventions Used in this Document

Bacula is in a state of evolution, and as a consequence, this manual will not
always agree with the code. If an item in this manual is preceded by an
asterisk (*), it indicates that the particular feature is not implemented. If it
is preceded by a plus sign (+), it indicates that the feature may be partially
implemented.

If you are reading this manual as supplied in a released version of the soft-
ware, the above paragraph holds true. If you are reading the online version
of the manual, www.bacula.org, please bear in mind that this version de-
scribes the current version in development (in the CVS) that may contain
features not in the released version. Just the same, it generally lags behind
the code a bit.

1.5 Quick Start

To get Bacula up and running quickly, the author recommends that you first
scan the Terminology section below, then quickly review the next chapter en-
titled The Current State of Bacula, then the Getting Started with Bacula,
which will give you a quick overview of getting Bacula running. Af-
ter which, you should proceed to the chapter on Installing Bacula, then
How to Configure Bacula, and finally the chapter on Running Bacula.

1.6 Terminology

Administrator The person or persons responsible for administrating the
Bacula system.

Backup The term Backup refers to a Bacula Job that saves files.

Bootstrap File The bootstrap file is an ASCII file containing a compact
form of commands that allow Bacula or the stand-alone file extraction
utility (bextract) to restore the contents of one or more Volumes, for
example, the current state of a system just backed up. With a boot-
strap file, Bacula can restore your system without a Catalog. You can
create a bootstrap file from a Catalog to extract any file or files you
wish.

Catalog The Catalog is used to store summary information about the Jobs,
Clients, and Files that were backed up and on what Volume or Vol-

http://www.bacula.org

8 CHAPTER 1. WHAT IS BACULA?

umes. The information saved in the Catalog permits the administrator
or user to determine what jobs were run, their status as well as the
important characteristics of each file that was backed up, and most
importantly, it permits you to choose what files to restore. The Cat-
alog is an online resource, but does not contain the data for the files
backed up. Most of the information stored in the catalog is also stored
on the backup volumes (i.e. tapes). Of course, the tapes will also have
a copy of the file data in addition to the File Attributes (see below).

The catalog feature is one part of Bacula that distinguishes it from
simple backup and archive programs such as dump and tar.

Client In Bacula’s terminology, the word Client refers to the machine being
backed up, and it is synonymous with the File services or File daemon,
and quite often, it is referred to it as the FD. A Client is defined in a
configuration file resource.

Console The program that interfaces to the Director allowing the user or
system administrator to control Bacula.

Daemon Unix terminology for a program that is always present in the
background to carry out a designated task. On Windows systems, as
well as some Unix systems, daemons are called Services.

Directive The term directive is used to refer to a statement or a record
within a Resource in a configuration file that defines one specific set-
ting. For example, the Name directive defines the name of the Re-
source.

Director The main Bacula server daemon that schedules and directs all
Bacula operations. Occasionally, the project refers to the Director as
DIR.

Differential A backup that includes all files changed since the last Full
save started. Note, other backup programs may define this differently.

File Attributes The File Attributes are all the information necessary
about a file to identify it and all its properties such as size, creation
date, modification date, permissions, etc. Normally, the attributes are
handled entirely by Bacula so that the user never needs to be con-
cerned about them. The attributes do not include the file’s data.

File Daemon The daemon running on the client computer to be backed
up. This is also referred to as the File services, and sometimes as the
Client services or the FD.

FileSet A FileSet is a Resource contained in a configuration file that de-
fines the files to be backed up. It consists of a list of included

1.6. TERMINOLOGY 9

files or directories, a list of excluded files, and how the file is to be
stored (compression, encryption, signatures). For more details, see the
FileSet Resource definition in the Director chapter of this document.

Incremental A backup that includes all files changed since the last Full,
Differential, or Incremental backup started. It is normally specified on
the Level directive within the Job resource definition, or in a Schedule
resource.

Job A Bacula Job is a configuration resource that defines the work that Bac-
ula must perform to backup or restore a particular Client. It consists
of the Type (backup, restore, verify, etc), the Level (full, incremen-
tal,...), the FileSet, and Storage the files are to be backed up (Storage
device, Media Pool). For more details, see the Job Resource definition
in the Director chapter of this document.

Monitor The program that interfaces to all the daemons allowing the user
or system administrator to monitor Bacula status.

Resource A resource is a part of a configuration file that defines a specific
unit of information that is available to Bacula. It consists of several
directives (individual configuration statements). For example, the Job
resource defines all the properties of a specific Job: name, schedule,
Volume pool, backup type, backup level, ...

Restore A restore is a configuration resource that describes the operation
of recovering a file from backup media. It is the inverse of a save,
except that in most cases, a restore will normally have a small set of
files to restore, while normally a Save backs up all the files on the
system. Of course, after a disk crash, Bacula can be called upon to do
a full Restore of all files that were on the system.

Schedule A Schedule is a configuration resource that defines when the
Bacula Job will be scheduled for execution. To use the Schedule, the
Job resource will refer to the name of the Schedule. For more details,
see the Schedule Resource definition in the Director chapter of this
document.

Service This is Windows terminology for a daemon – see above. It is
frequently used in Unix environments as well.

Storage Coordinates The information returned from the Storage Services
that uniquely locates a file on a backup medium. It consists of two
parts: one part pertains to each file saved, and the other part pertains
to the whole Job. Normally, this information is saved in the Catalog

10 CHAPTER 1. WHAT IS BACULA?

so that the user doesn’t need specific knowledge of the Storage Coordi-
nates. The Storage Coordinates include the File Attributes (see above)
plus the unique location of the information on the backup Volume.

Storage Daemon The Storage daemon, sometimes referred to as the SD,
is the code that writes the attributes and data to a storage Volume
(usually a tape or disk).

Session Normally refers to the internal conversation between the File dae-
mon and the Storage daemon. The File daemon opens a session with
the Storage daemon to save a FileSet or to restore it. A session has a
one-to-one correspondence to a Bacula Job (see above).

Verify A verify is a job that compares the current file attributes to the
attributes that have previously been stored in the Bacula Catalog.
This feature can be used for detecting changes to critical system files
similar to what a file integrity checker like Tripwire does. One of the
major advantages of using Bacula to do this is that on the machine
you want protected such as a server, you can run just the File daemon,
and the Director, Storage daemon, and Catalog reside on a different
machine. As a consequence, if your server is ever compromised, it is
unlikely that your verification database will be tampered with.

Verify can also be used to check that the most recent Job data written
to a Volume agrees with what is stored in the Catalog (i.e. it compares
the file attributes), *or it can check the Volume contents against the
original files on disk.

*Archive An Archive operation is done after a Save, and it consists of
removing the Volumes on which data is saved from active use. These
Volumes are marked as Archived, and may no longer be used to save
files. All the files contained on an Archived Volume are removed from
the Catalog. NOT YET IMPLEMENTED.

*Update An Update operation causes the files on the remote system to be
updated to be the same as the host system. This is equivalent to an
rdist capability. NOT YET IMPLEMENTED.

Retention Period There are various kinds of retention periods that Bac-
ula recognizes. The most important are the File Retention Period,
Job Retention Period, and the Volume Retention Period. Each of
these retention periods applies to the time that specific records will be
kept in the Catalog database. This should not be confused with the
time that the data saved to a Volume is valid.

The File Retention Period determines the time that File records are
kept in the catalog database. This period is important because the vol-
ume of the database File records by far use the most storage space in

1.6. TERMINOLOGY 11

the database. As a consequence, you must ensure that regular ”prun-
ing” of the database file records is done. (See the Console retention
command for more details on this subject).

The Job Retention Period is the length of time that Job records will
be kept in the database. Note, all the File records are tied to the Job
that saved those files. The File records can be purged leaving the Job
records. In this case, information will be available about the jobs that
ran, but not the details of the files that were backed up. Normally,
when a Job record is purged, all its File records will also be purged.

The Volume Retention Period is the minimum of time that a Volume
will be kept before it is reused. Bacula will normally never overwrite
a Volume that contains the only backup copy of a file. Under ideal
conditions, the Catalog would retain entries for all files backed up
for all current Volumes. Once a Volume is overwritten, the files that
were backed up on that Volume are automatically removed from the
Catalog. However, if there is a very large pool of Volumes or a Volume
is never overwritten, the Catalog database may become enormous. To
keep the Catalog to a manageable size, the backup information should
be removed from the Catalog after the defined File Retention Period.
Bacula provides the mechanisms for the catalog to be automatically
pruned according to the retention periods defined.

Scan A Scan operation causes the contents of a Volume or a series of Vol-
umes to be scanned. These Volumes with the information on which
files they contain are restored to the Bacula Catalog. Once the infor-
mation is restored to the Catalog, the files contained on those Volumes
may be easily restored. This function is particularly useful if cer-
tain Volumes or Jobs have exceeded their retention period and have
been pruned or purged from the Catalog. Scanning data from Vol-
umes into the Catalog is done by using the bscan program. See the
bscan section of the Bacula Utilities Chapter of this manual for more
details.

Volume A Volume is an archive unit, normally a tape or a named disk
file where Bacula stores the data from one or more backup jobs. All
Bacula Volumes have a software label written to the Volume by Bacula
so that it identifies what Volume it is really reading. (Normally there
should be no confusion with disk files, but with tapes, it is easy to
mount the wrong one.)

12 CHAPTER 1. WHAT IS BACULA?

1.7 What Bacula is Not

Bacula is a backup, restore and verification program and is not a complete
disaster recovery system in itself, but it can be a key part of one if you
plan carefully and follow the instructions included in the Disaster Recovery
Chapter of this manual.

With proper planning, as mentioned in the Disaster Recovery chapter, Bac-
ula can be a central component of your disaster recovery system. For ex-
ample, if you have created an emergency boot disk, a Bacula Rescue disk to
save the current partitioning information of your hard disk, and maintain
a complete Bacula backup, it is possible to completely recover your system
from ”bare metal” that is starting from an empty disk.

If you have used the WriteBootstrap record in your job or some other
means to save a valid bootstrap file, you will be able to use it to extract the
necessary files (without using the catalog or manually searching for the files
to restore).

1.8 Interactions Between the Bacula Services

The following block diagram shows the typical interactions between the Bac-
ula Services for a backup job. Each block represents in general a separate
process (normally a daemon). In general, the Director oversees the flow of
information. It also maintains the Catalog.

1.8. INTERACTIONS BETWEEN THE BACULA SERVICES 13

14 CHAPTER 1. WHAT IS BACULA?

Chapter 2

The Current State of Bacula

In other words, what is and what is not currently implemented and func-
tional.

2.1 What is Implemented

• Job Control

– Network backup/restore with centralized Director.

– Internal scheduler for automatic Job execution.

– Scheduling of multiple Jobs at the same time.

– You may run one Job at a time or multiple simultaneous Jobs.

– Job sequencing using priorities.

– Console interface to the Director allowing complete control. A
shell, GNOME GUI and wxWidgets GUI versions of the Console
program are available. Note, the GNOME GUI program cur-
rently offers very few additional features over the shell program.

• Security

– Verification of files previously cataloged, permitting a Tripwire
like capability (system break-in detection).

– CRAM-MD5 password authentication between each component
(daemon).

– Configurable TLS (SSL) communications encryption between
each component.

15

16 CHAPTER 2. THE CURRENT STATE OF BACULA

– Configurable Data (on Volume) encryption on a Client by Client
basis.

– Computation of MD5 or SHA1 signatures of the file data if re-
quested.

• Restore Features

– Restore of one or more files selected interactively either for the
current backup or a backup prior to a specified time and date.

– Restore of a complete system starting from bare metal. This
is mostly automated for Linux systems and partially automated
for Solaris. See Disaster Recovery Using Bacula. This is also
reported to work on Win2K/XP systems.

– Listing and Restoration of files using stand-alone bls and bex-
tract tool programs. Among other things, this permits extrac-
tion of files when Bacula and/or the catalog are not available.
Note, the recommended way to restore files is using the restore
command in the Console. These programs are designed for use
as a last resort.

– Ability to restore the catalog database rapidly by using bootstrap
files (previously saved).

– Ability to recreate the catalog database by scanning backup Vol-
umes using the bscan program.

• SQL Catalog

– Catalog database facility for remembering Volumes, Pools, Jobs,
and Files backed up.

– Support for MySQL, PostgreSQL, and SQLite Catalog databases.

– User extensible queries to the MySQL, PostgreSQL and SQLite
databases.

• Advanced Volume and Pool Management

– Labeled Volumes, preventing accidental overwriting (at least by
Bacula).

– Any number of Jobs and Clients can be backed up to a single
Volume. That is, you can backup and restore Linux, Unix, Sun,
and Windows machines to the same Volume.

– Multi-volume saves. When a Volume is full, Bacula automati-
cally requests the next Volume and continues the backup.

– Pool and Volume library management providing Volume flexibil-
ity (e.g. monthly, weekly, daily Volume sets, Volume sets segre-
gated by Client, ...).

2.1. WHAT IS IMPLEMENTED 17

– Machine independent Volume data format. Linux, Solaris, and
Windows clients can all be backed up to the same Volume if
desired.

– The Volume data format is upwards compatible so that old Vol-
umes can always be read.

– A flexible message handler including routing of messages from
any daemon back to the Director and automatic email reporting.

– Data spooling to disk during backup with subsequent write to
tape from the spooled disk files. This prevents tape ”shoe shine”
during Incremental/Differential backups.

• Advanced Support for most Storage Devices

– Autochanger support using a simple shell interface that can in-
terface to virtually any autoloader program. A script for mtx is
provided.

– Support for autochanger barcodes – automatic tape labeling from
barcodes.

– Automatic support for multiple autochanger magazines either us-
ing barcodes or by reading the tapes.

– Support for multiple drive autochangers.

– Raw device backup/restore. Restore must be to the same device.

– All Volume blocks (approximately 64K bytes) contain a data
checksum.

– Migration support – move data from one Pool to another or one
Volume to another.

– Supports writing to DVD (beta code).

• Multi-Operating System Support

– Programmed to handle arbitrarily long filenames and messages.

– GZIP compression on a file by file basis done by the Client pro-
gram if requested before network transit.

– Saves and restores POSIX ACLs on most OSes if enabled.

– Access control lists for Consoles that permit restricting user ac-
cess to only their data.

– Support for save/restore of files larger than 2GB.

– Support for 64 bit machines, e.g. amd64, Sparc.

– Support ANSI and IBM tape labels.

– Support for Unicode filenames (e.g. Chinese) on Win32 machines
on version 1.37.28 and greater.

18 CHAPTER 2. THE CURRENT STATE OF BACULA

– Consistent backup of open files on Win32 systems (WinXP,
Win2003), but not Win2000, using Volume Shadow Copy (VSS).

– Support for path/filename lengths of up to 64K on Win32 ma-
chines (unlimited on Unix/Linux machines).

• Miscellaneous

– Multi-threaded implementation.

– A comprehensive and extensible configuration file for each dae-
mon.

2.2 Advantages Over Other Backup Programs

• Since there is a client for each machine, you can backup and restore
clients of any type ensuring that all attributes of files are properly
saved and restored.

• It is also possible to backup clients without any client software by
using NFS or Samba. However, if possible, we recommend running a
Client File daemon on each machine to be backed up.

• Bacula handles multi-volume backups.

• A full comprehensive SQL standard database of all files backed up.
This permits online viewing of files saved on any particular Volume.

• Automatic pruning of the database (removal of old records) thus sim-
plifying database administration.

• Any SQL database engine can be used making Bacula very flexible.
Drivers currently exist for MySQL, PostgreSQL, and SQLite.

• The modular but integrated design makes Bacula very scalable.

• Since Bacula uses client file servers, any database or other application
can be properly shutdown by Bacula using the native tools of the
system, backed up, then restarted (all within a Bacula Job).

• Bacula has a built-in Job scheduler.

• The Volume format is documented and there are simple C programs
to read/write it.

• Bacula uses well defined (IANA registered) TCP/IP ports – no rpcs,
no shared memory.

2.3. CURRENT IMPLEMENTATION RESTRICTIONS 19

• Bacula installation and configuration is relatively simple compared to
other comparable products.

• According to one user Bacula is as fast as the big major commercial
applications.

• According to another user Bacula is four times as fast as another
commercial application, probably because that application stores its
catalog information in a large number of individual files rather than
an SQL database as Bacula does.

• Aside from a GUI administrative interface, Bacula has a comprehen-
sive shell administrative interface, which allows the administrator to
use tools such as ssh to administrate any part of Bacula from anywhere
(even from home).

• Bacula has a Rescue CD for Linux systems with the following features:

– You build it on your own system from scratch with one simple
command: make – well, then make burn.

– It uses your kernel

– It captures your current disk parameters and builds scripts that
allow you to automatically repartition a disk and format it to put
it back to what you had before.

– It has a script that will restart your networking (with the right
IP address)

– It has a script to automatically mount your hard disks.

– It has a full Bacula FD statically linked

– You can easily add additional data/programs, ... to the disk.

2.3 Current Implementation Restrictions

• If you have over 4 billion file entries stored in your database, the
database FileId is likely to overflow. This is a monster database, but
still possible. Bacula’s FileId fields have been modified so that they
can be upgraded from 32 to 64 bits in version 1.39 or later, but you
must manually do so.

• Files deleted after a Full save will be included in a restoration. This is
typical for most similar backup programs (we have a project to correct
this).

20 CHAPTER 2. THE CURRENT STATE OF BACULA

• Bacula’s Differential and Incremental backups are based on time
stamps. Consequently, if you move files into an existing directory
or move a whole directory into the backup fileset after a Full backup,
those files will probably not be backed up by an Incremental save
because they will have old dates. You must explicitly update the
date/time stamp on all moved files (we have a project to correct this).

• File System Modules (configurable routines for saving/restoring spe-
cial files) are not yet implemented.

• Bacula supports doing backups and restores to multiple devices of dif-
ferent media type and multiple Storage daemons. However, if you have
backed up a job to multiple storage devices, Bacula can do a restore
from only one device, which means that you will need to manually edit
the bootstrap file to split it into two restores if you split the backup
across storage devices.

• Bacula cannot restore two different jobs in the same restore if those
jobs were run simultaneously, unless you had data spooling turned
on and the spool file held the full contents of both jobs. In other
terms, Bacula cannot restore two jobs in the same restore if the jobs’
data blocks were intermixed on the backup medium. This poses no
restrictions for normal backup jobs even if they are run simultaneously.

2.4 Design Limitations or Restrictions

• Names (resource names, Volume names, and such) defined in Bacula
configuration files are limited to a fixed number of characters. Cur-
rently the limit is defined as 127 characters. Note, this does not apply
to filenames, which may be arbitrarily long.

Chapter 3

System Requirements

• Bacula has been compiled and run on Red Hat Linux, FreeBSD, and
Solaris systems.

• It requires GNU C++ version 2.95 or higher to compile. You can try
with other compilers and older versions, but you are on your own. We
have successfully compiled and used Bacula on RH8.0/RH9/RHEL
3.0/FC3 with GCC 3.4. Note, in general GNU C++ is a separate
package (e.g. RPM) from GNU C, so you need them both loaded.
On Red Hat systems, the C++ compiler is part of the gcc-c++ rpm
package.

• There are certain third party packages that Bacula needs. Except for
MySQL and PostgreSQL, they can all be found in the depkgs and
depkgs1 releases.

• If you want to build the Win32 binaries, you will need a Microsoft
Visual C++ compiler (or Visual Studio). Although all components
build (console has some warnings), only the File daemon has been
tested.

• Bacula requires a good implementation of pthreads to work. This is
not the case on some of the BSD systems.

• The source code has been written with portability in mind and is
mostly POSIX compatible. Thus porting to any POSIX compatible
operating system should be relatively easy.

• The GNOME Console program is developed and tested under GNOME
2.x. It also runs under GNOME 1.4 but this version is deprecated and
thus no longer maintained.

21

22 CHAPTER 3. SYSTEM REQUIREMENTS

• The wxWidgets Console program is developed and tested with the lat-
est stable ANSI or Unicode version of wxWidgets (2.6.1). It works fine
with the Windows and GTK+-2.x version of wxWidgets, and should
also work on other platforms supported by wxWidgets.

• The Tray Monitor program is developed for GTK+-2.x. It needs
Gnome less or equal to 2.2, KDE greater or equal to 3.1 or any window
manager supporting the FreeDesktop system tray standard.

• If you want to enable command line editing and history, you will need
to have /usr/include/termcap.h and either the termcap or the ncurses
library loaded (libtermcap-devel or ncurses-devel).

• If you want to use DVD as backup medium, you will need to down-
load the dvd+rw-tools 5.21.4.10.8, apply the patch to make these tools
compatible with Bacula, then compile and install them. Do not use
the dvd+rw-tools provided by your distribution, they will not work
with Bacula.

http://www.wxwidgets.org/
http://www.freedesktop.org/Standards/systemtray-spec
http://fy.chalmers.se/~appro/linux/DVD+RW/
http://cvs.sourceforge.net/viewcvs.py/*checkout*/bacula/bacula/patches/dvd+rw-tools-5.21.4.10.8.bacula.patch

Chapter 4

Supported Operating
Systems

• Linux systems (built and tested on SuSE 10.2).

• Most flavors of Linux (Gentoo, Red Hat, Fedora, Mandriva, Debian,
Ubuntu, ...).

• Solaris various versions.

• FreeBSD (tape driver supported in 1.30 – for FreeBSD older than
version 5.0, please see some important considerations in the
Tape Modes on FreeBSD section of the Tape Testing chapter of this
manual.)

• Windows (Win98/Me, WinNT/2K/XP) Client (File daemon) binaries.

• MacOS X/Darwin (see http://fink.sourceforge.net/ for obtaining the
packages)

• OpenBSD Client (File daemon).

• Irix Client (File daemon).

• Tru64

• Bacula is said to work on other systems (AIX, BSDI, HPUX, NetBSD,
...) but we do not have first hand knowledge of these systems.

• RHat 7.2 AS2, AS3, AS4, Fedora Core 2,3,4,5, SuSE SLES
7,8,9,10,10.1 and Debian Woody and Sarge Linux on S/390 and Linux
on zSeries.

23

http://fink.sourceforge.net/

24 CHAPTER 4. SUPPORTED OPERATING SYSTEMS

• See the Porting chapter of the Bacula Developer’s Guide for informa-
tion on porting to other systems.

• If you have a older Red Hat Linux system running the 2.4.x kernel and
you have the directory /lib/tls installed on your system (normally by
default), bacula will NOT run. This is the new pthreads library and it
is defective. You must remove this directory prior to running Bacula,
or you can simply change the name to /lib/tls-broken) then you must
reboot your machine (one of the few times Linux must be rebooted).
If you are not able to remove/rename /lib/tls, an alternative is to set
the environment variable ”LD ASSUME KERNEL=2.4.19” prior to
executing Bacula. For this option, you do not need to reboot, and all
programs other than Bacula will continue to use /lib/tls.

• The above mentioned /lib/tls problem does not occur with Linux 2.6
kernels.

Chapter 5

Supported Tape Drives

Even if your drive is on the list below, please check the Tape Testing Chapter
of this manual for procedures that you can use to verify if your tape drive
will work with Bacula. If your drive is in fixed block mode, it may appear
to work with Bacula until you attempt to do a restore and Bacula wants
to position the tape. You can be sure only by following the procedures
suggested above and testing.

It is very difficult to supply a list of supported tape drives, or drives that
are known to work with Bacula because of limited feedback (so if you use
Bacula on a different drive, please let us know). Based on user feedback,
the following drives are known to work with Bacula. A dash in a column
means unknown:

OS Man. Media Model Capacit

- ADIC DLT Adic Scalar 100 DLT 100GB

- ADIC DLT Adic Fastor 22 DLT -

FreeBSD 5.4-RELEASE-p1
amd64

Certance LTO AdicCertance CL400 LTO Ultrium 2 200GB

- - DDS Compaq DDS 2,3,4 -

SuSE 8.1 Pro Compaq AIT Compaq AIT 35 LVD 35/70GB

- Exabyte - Exabyte drives less than 10 years old -

- Exabyte - Exabyte VXA drives -

- HP Travan 4 Colorado T4000S -

- HP DLT HP DLT drives -

- HP LTO HP LTO Ultrium drives -

- IBM ?? 3480, 3480XL, 3490, 3490E, 3580 and
3590 drives

-

FreeBSD 4.10 RELEASE HP DAT HP StorageWorks DAT72i -

25

26 CHAPTER 5. SUPPORTED TAPE DRIVES

- Overland LTO LoaderXpress LTO

- Overland - Neo2000

- OnStream - OnStream drives (see below)

FreeBSD 4.11-Release Quantum SDLT SDLT320

- Quantum DLT DLT-8000

Linux Seagate DDS-4 Scorpio 40

FreeBSD 4.9 STABLE Seagate DDS-4 STA2401LW

FreeBSD 5.2.1 pthreads
patched RELEASE

Seagate AIT-1 STA1701W

Linux Sony DDS-2,3,4 -

Linux Tandberg - Tandbert MLR3

FreeBSD Tandberg - Tandberg SLR6

Solaris Tandberg - Tandberg SLR75

There is a list of supported autochangers in the Supported Autochangers
chapter of this document, where you will find other tape drives that work
with Bacula.

5.1 Unsupported Tape Drives

Previously OnStream IDE-SCSI tape drives did not work with Bacula. As
of Bacula version 1.33 and the osst kernel driver version 0.9.14 or later, they
now work. Please see the testing chapter as you must set a fixed block size.

QIC tapes are known to have a number of particularities (fixed block size,
and one EOF rather than two to terminate the tape). As a consequence,
you will need to take a lot of care in configuring them to make them work
correctly with Bacula.

5.2 FreeBSD Users Be Aware!!!

Unless you have patched the pthreads library on FreeBSD 4.11 systems,
you will lose data when Bacula spans tapes. This is because the unpatched
pthreads library fails to return a warning status to Bacula that the end of
the tape is near. This problem is fixed in FreeBSD systems released after
4.11. Please see the Tape Testing Chapter of this manual for important
information on how to configure your tape drive for compatibility with Bac-
ula.

5.3. SUPPORTED AUTOCHANGERS 27

5.3 Supported Autochangers

For information on supported autochangers, please see the
Autochangers Known to Work with Bacula section of the Supported
Autochangers chapter of this manual.

5.4 Tape Specifications

If you want to know what tape drive to buy that will work with Bacula, we
really cannot tell you. However, we can say that if you are going to buy
a drive, you should try to avoid DDS drives. The technology is rather old
and DDS tape drives need frequent cleaning. DLT drives are generally much
better (newer technology) and do not need frequent cleaning.

Below, you will find a table of DLT and LTO tape specifications that will give
you some idea of the capacity and speed of modern tapes. The capacities
that are listed are the native tape capacity without compression. All modern
drives have hardware compression, and manufacturers often list compressed
capacity using a compression ration of 2:1. The actual compression ratio
will depend mostly on the data you have to backup, but I find that 1.5:1 is
a much more reasonable number (i.e. multiply the value shown in the table
by 1.5 to get a rough average of what you will probably see). The transfer
rates are rounded to the nearest GB/hr. All values are provided by various
manufacturers.

The Media Type is what is designated by the manufacturers and you are not
required to use (but you may) the same name in your Bacula conf resources.

28 CHAPTER 5. SUPPORTED TAPE DRIVES

Media Type Drive Type Media Capacity Transfer Rate

DDS-1 DAT 2 GB ?? GB/hr

DDS-2 DAT 4 GB ?? GB/hr

DDS-3 DAT 12 GB 5.4 GB/hr

Travan 40 Travan 20 GB ?? GB/hr

DDS-4 DAT 20 GB 11 GB/hr

VXA-1 Exabyte 33 GB 11 GB/hr

DAT-72 DAT 36 GB 13 GB/hr

DLT IV DLT8000 40 GB 22 GB/hr

VXA-2 Exabyte 80 GB 22 GB/hr

Half-high Ultrium 1 LTO 1 100 GB 27 GB/hr

Ultrium 1 LTO 1 100 GB 54 GB/hr

Super DLT 1 SDLT 220 110 GB 40 GB/hr

VXA-3 Exabyte 160 GB 43 GB/hr

Super DLT I SDLT 320 160 GB 58 GB/hr

Ultrium 2 LTO 2 200 GB 108 GB/hr

Super DLT II SDLT 600 300 GB 127 GB/hr

VXA-4 Exabyte 320 GB 86 GB/hr

Ultrium 3 LTO 3 400 GB 216 GB/hr

Chapter 6

Getting Started with Bacula

If you are like me, you want to get Bacula running immediately to get a feel
for it, then later you want to go back and read about all the details. This
chapter attempts to accomplish just that: get you going quickly without all
the details. If you want to skip the section on Pools, Volumes and Labels,
you can always come back to it, but please read to the end of this chapter,
and in particular follow the instructions for testing your tape drive.

We assume that you have managed to build and install Bacula, if not,
you might want to first look at the System Requirements then at the
Compiling and Installing Bacula chapter of this manual.

6.1 Understanding Jobs and Schedules

In order to make Bacula as flexible as possible, the directions given to Bacula
are specified in several pieces. The main instruction is the job resource,
which defines a job. A backup job generally consists of a FileSet, a Client,
a Schedule for one or several levels or times of backups, a Pool, as well as
additional instructions. Another way of looking at it is the FileSet is what
to backup; the Client is who to backup; the Schedule defines when, and the
Pool defines where (i.e. what Volume).

Typically one FileSet/Client combination will have one corresponding job.
Most of the directives, such as FileSets, Pools, Schedules, can be mixed and
matched among the jobs. So you might have two different Job definitions
(resources) backing up different servers using the same Schedule, the same
Fileset (backing up the same directories on two machines) and maybe even
the same Pools. The Schedule will define what type of backup will run

29

30 CHAPTER 6. GETTING STARTED WITH BACULA

when (e.g. Full on Monday, incremental the rest of the week), and when
more than one job uses the same schedule, the job priority determines which
actually runs first. If you have a lot of jobs, you might want to use JobDefs,
where you can set defaults for the jobs, which can then be changed int the
job resource, but this saves rewriting the identical parameters for each job.
In addition to the FileSets you want to back up, you should also have a job
that backs up your catalog.

Finally, be aware that in addition to the backup jobs there are restore, verify,
and admin jobs, which have different requirements.

6.2 Understanding Pools, Volumes and Labels

If you have been using a program such as tar to backup your system, Pools,
Volumes, and labeling may be a bit confusing at first. A Volume is a sin-
gle physical tape (or possibly a single file) on which Bacula will write your
backup data. Pools group together Volumes so that a backup is not re-
stricted to the length of a single Volume (tape). Consequently, rather than
explicitly naming Volumes in your Job, you specify a Pool, and Bacula will
select the next appendable Volume from the Pool and request you to mount
it.

Although the basic Pool options are specified in the Director’s Pool resource,
the real Pool is maintained in the Bacula Catalog. It contains information
taken from the Pool resource (bacula-dir.conf) as well as information on all
the Volumes that have been added to the Pool. Adding Volumes to a Pool is
usually done manually with the Console program using the label command.

For each Volume, Bacula maintains a fair amount of catalog information
such as the first write date/time, the last write date/time, the number of
files on the Volume, the number of bytes on the Volume, the number of
Mounts, etc.

Before Bacula will read or write a Volume, the physical Volume must have
a Bacula software label so that Bacula can be sure the correct Volume is
mounted. This is usually done using the label command in the Console
program.

The steps for creating a Pool, adding Volumes to it, and writing software
labels to the Volumes, may seem tedious at first, but in fact, they are quite
simple to do, and they allow you to use multiple Volumes (rather than
being limited to the size of a single tape). Pools also give you significant
flexibility in your backup process. For example, you can have a ”Daily”

6.3. SETTING UP BACULA CONFIGURATION FILES 31

Pool of Volumes for Incremental backups and a ”Weekly” Pool of Volumes
for Full backups. By specifying the appropriate Pool in the daily and weekly
backup Jobs, you thereby insure that no daily Job ever writes to a Volume
in the Weekly Pool and vice versa, and Bacula will tell you what tape is
needed and when.

For more on Pools, see the Pool Resource section of the Director Configu-
ration chapter, or simply read on, and we will come back to this subject
later.

6.3 Setting Up Bacula Configuration Files

After running the appropriate ./configure command and doing a make,
and a make install, if this is the first time you are running Bacula, you
must create valid configuration files for the Director, the File daemon, the
Storage daemon, and the Console programs. If you have followed our recom-
mendations, default configuration files as well as the daemon binaries will
be located in your installation directory. In any case, the binaries are found
in the directory you specified on the --sbindir option to the ./configure
command, and the configuration files are found in the directory you specified
on the --sysconfdir option.

When initially setting up Bacula you will need to invest a bit of time in
modifying the default configuration files to suit your environment. This
may entail starting and stopping Bacula a number of times until you get
everything right. Please do not despair. Once you have created your con-
figuration files, you will rarely need to change them nor will you stop and
start Bacula very often. Most of the work will simply be in changing the
tape when it is full.

6.3.1 Configuring the Console Program

The Console program is used by the administrator to interact with the Di-
rector and to manually start/stop Jobs or to obtain Job status information.

The Console configuration file is found in the directory specified on the
--sysconfdir option that you specified on the ./configure command and
by default is named bconsole.conf.

If you choose to build the GNOME console with the --enable-gnome
option, you also find a default configuration file for it, named gnome-
console.conf.

32 CHAPTER 6. GETTING STARTED WITH BACULA

The same applies to the wxWidgets console, which is build with the
--enable-wx-console option, and the name of the default configuration
file is, in this case, wx-console.conf.

Normally, for first time users, no change is needed to these files. Reasonable
defaults are set.

Further details are in the Console configuration chapter.

6.3.2 Configuring the Monitor Program

The Monitor program is typically an icon in the system tray. However,
once the icon is expanded into a full window, the administrator or user can
obtain status information about the Director or the backup status on the
local workstation or any other Bacula daemon that is configured.

The image shows a tray-monitor configured for three daemons. By clicking
on the radio buttons in the upper left corner of the image, you can see the
status for each of the daemons. The image shows the status for the Storage
daemon (MainSD) that is currently selected.

6.3. SETTING UP BACULA CONFIGURATION FILES 33

The Monitor configuration file is found in the directory specified on the
--sysconfdir option that you specified on the ./configure command and
by default is named tray-monitor.conf. Normally, for first time users, you
just need to change the permission of this file to allow non-root users to run
the Monitor, as this application must run as the same user as the graphical
environment (don’t forget to allow non-root users to execute bacula-tray-
monitor). This is not a security problem as long as you use the default
settings.

More information is in the Monitor configuration chapter.

6.3.3 Configuring the File daemon

The File daemon is a program that runs on each (Client) machine. At the
request of the Director, finds the files to be backed up and sends them (their
data) to the Storage daemon.

The File daemon configuration file is found in the directory specified on
the --sysconfdir option that you specified on the ./configure command.
By default, the File daemon’s configuration file is named bacula-fd.conf.
Normally, for first time users, no change is needed to this file. Reasonable
defaults are set. However, if you are going to back up more than one ma-
chine, you will need to install the File daemon with a unique configuration
file on each machine to be backed up. The information about each File
daemon must appear in the Director’s configuration file.

Further details are in the File daemon configuration chapter.

6.3.4 Configuring the Director

The Director is the central control program for all the other daemons. It
schedules and monitors all jobs to be backed up.

The Director configuration file is found in the directory specified on the
--sysconfdir option that you specified on the ./configure command. Nor-
mally the Director’s configuration file is named bacula-dir.conf.

In general, the only change you must make is modify the FileSet resource
so that the Include configuration directive contains at least one line with
a valid name of a directory (or file) to be saved.

If you do not have a DLT tape drive, you will probably want to edit the
Storage resource to contain names that are more representative of your ac-

34 CHAPTER 6. GETTING STARTED WITH BACULA

tual storage device. You can always use the existing names as you are free to
arbitrarily assign them, but they must agree with the corresponding names
in the Storage daemon’s configuration file.

You may also want to change the email address for notification from the
default root to your email address.

Finally, if you have multiple systems to be backed up, you will need a sepa-
rate File daemon or Client specification for each system, specifying its name,
address, and password. We have found that giving your daemons the same
name as your system but post fixed with -fd helps a lot in debugging. That
is, if your system name is foobaz, you would give the File daemon the name
foobaz-fd. For the Director, you should use foobaz-dir, and for the stor-
age daemon, you might use foobaz-sd. Each of your Bacula components
must have a unique name. If you make them all the same, aside from the
fact that you will not know what daemon is sending what message, if they
share the same working directory, the daemons temporary file names will
not be unique, and you will get many strange failures.

More information is in the Director configuration chapter.

6.3.5 Configuring the Storage daemon

The Storage daemon is responsible, at the Director’s request, for accepting
data from a File daemon and placing it on Storage media, or in the case of
a restore request, to find the data and send it to the File daemon.

The Storage daemon’s configuration file is found in the directory specified on
the --sysconfdir option that you specified on the ./configure command.
By default, the Storage daemon’s file is named bacula-sd.conf. Edit this
file to contain the correct Archive device names for any tape devices that
you have. If the configuration process properly detected your system, they
will already be correctly set. These Storage resource name and Media Type
must be the same as the corresponding ones in the Director’s configuration
file bacula-dir.conf. If you want to backup to a file instead of a tape,
the Archive device must point to a directory in which the Volumes will be
created as files when you label the Volume.

Further information is in the Storage daemon configuration chapter.

6.4. TESTING YOUR CONFIGURATION FILES 35

6.4 Testing your Configuration Files

You can test if your configuration file is syntactically correct by running
the appropriate daemon with the -t option. The daemon will process the
configuration file and print any error messages then terminate. For example,
assuming you have installed your binaries and configuration files in the same
directory.

cd <installation-directory>

./bacula-dir -t -c bacula-dir.conf

./bacula-fd -t -c bacula-fd.conf

./bacula-sd -t -c bacula-sd.conf

./bconsole -t -c bconsole.conf

./gnome-console -t -c gnome-console.conf

./wx-console -t -c wx-console.conf

su <normal user> -c "./bacula-tray-monitor -t -c tray-monitor.conf"

will test the configuration files of each of the main programs. If the config-
uration file is OK, the program will terminate without printing anything.
Please note that, depending on the configure options you choose, some, or
even all, of the three last commands will not be available on your system.
If you have installed the binaries in traditional Unix locations rather than a
single file, you will need to modify the above commands appropriately (no
./ in front of the command name, and a path in front of the conf file name).

6.5 Testing Compatibility with Your Tape Drive

Before spending a lot of time on Bacula only to find that it doesn’t work
with your tape drive, please read the btape – Testing Your Tape Drive chap-
ter of this manual. If you have a modern standard SCSI tape drive on a
Linux or Solaris, most likely it will work, but better test than be sorry.
For FreeBSD (and probably other xBSD flavors), reading the above men-
tioned tape testing chapter is a must. Also, for FreeBSD, please see
The FreeBSD Diary for a detailed description on how to make Bacula work
on your system. In addition, users of FreeBSD prior to 4.9-STABLE dated
Mon Dec 29 15:18:01 2003 UTC who plan to use tape devices, please see
the file platforms/freebsd/pthreads-fix.txt in the main Bacula direc-
tory concerning important information concerning compatibility of Bacula
and your system.

http://www.freebsddiary.org/bacula.php

36 CHAPTER 6. GETTING STARTED WITH BACULA

6.6 Get Rid of the /lib/tls Directory

The new pthreads library /lib/tls installed by default on recent Red Hat
systems running Linux kernel 2.4.x is defective. You must remove it or
rename it, then reboot your system before running Bacula otherwise after a
week or so of running, Bacula will either block for long periods or deadlock
entirely. You may want to use the loader environment variable override
rather than removing /lib/tls. Please see Supported Operating Systems
for more information on this problem.

This problem does not occur on systems running Linux 2.6.x kernels.

6.7 Running Bacula

Probably the most important part of running Bacula is being able to restore
files. If you haven’t tried recovering files at least once, when you actually
have to do it, you will be under a lot more pressure, and prone to make
errors, than if you had already tried it once.

To get a good idea how to use Bacula in a short time, we strongly recom-
mend that you follow the example in the Running Bacula Chapter of this
manual where you will get detailed instructions on how to run Bacula.

6.8 Log Rotation

If you use the default bacula-dir.conf or some variation of it, you will note
that it logs all the Bacula output to a file. To avoid that this file grows
without limit, we recommend that you copy the file logrotate from the
scripts/logrotate to /etc/logrotate.d/bacula. This will cause the log
file to be rotated once a month and kept for a maximum of five months. You
may want to edit this file to change the default log rotation preferences.

6.9 Log Watch

Some systems such as Red Hat and Fedora run the logwatch program every
night, which does an analysis of your log file and sends an email report.
If you wish to include the output from your Bacula jobs in that report,
please look in the scripts/logwatch directory. The README file in that

6.10. DISASTER RECOVERY 37

directory gives a brief explanation on how to install it and what kind of
output to expect.

6.10 Disaster Recovery

If you intend to use Bacula as a disaster recovery tool rather than sim-
ply a program to restore lost or damaged files, you will want to read the
Disaster Recovery Using Bacula Chapter of this manual.

In any case, you are strongly urged to carefully test restoring some files that
you have saved rather than wait until disaster strikes. This way, you will be
prepared.

38 CHAPTER 6. GETTING STARTED WITH BACULA

Chapter 7

Installing Bacula

In general, you will need the Bacula source release, and if you want to run a
Windows client, you will need the Bacula Windows binary release. However,
Bacula needs certain third party packages (such as MySQL, PostgreSQL,
or SQLite to build properly depending on the options you specify. Nor-
mally, MySQL and PostgreSQL are packages that can be installed on
your distribution. However, if you do not have them, to simplify your task,
we have combined a number of these packages into two depkgs releases
(Dependency Packages). This can vastly simplify your life by providing you
with all the necessary packages rather than requiring you to find them on
the Web, load them, and install them.

7.1 Source Release Files

Beginning with Bacula 1.38.0, the source code has been broken into four
separate tar files each corresponding to a different module in the Bacula
CVS. The released files are:

bacula-1.38.0.tar.gz This is the primary source code release for Bacula.
On each release the version number (1.38.0) will be updated.

bacula-docs-1.38.0.tar.gz This file contains a copy of the docs directory
with the documents prebuild. English HTML directory, single HTML
file, and pdf file. The French and German translations are in progress,
but are not built.

bacula-gui-1.38.0.tar.gz This file contains the non-core GUI programs.
Currently, it contains bacula-web, a PHP program for producing man-

39

40 CHAPTER 7. INSTALLING BACULA

agement viewing of your Bacula job status in a browser; and bim-
agemgr a browser program for burning CDROM images with Bacula
Volumes.

bacula-rescue-1.8.1.tar.gz This is the Bacula Rescue CDROM code.
Note, the version number of this package is not tied to the Bacula
release version, so it will be different. Using this code, you can burn
a CDROM with your system configuration and containing a stati-
cally linked version of the File daemon. This can permit you to easily
repartition and reformat your hard disks and reload your system with
Bacula in the case of a hard disk failure.

winbacula-1.38.0.exe This file is the 32 bit Windows installer for in-
stalling the Windows client (File daemon) on a Windows machine.
Beginning with Bacula version 1.39.20, this executable will also load
the Win32 Director and the Win32 Storage daemon.

7.2 Upgrading Bacula

If you are upgrading from one Bacula version to another, you should first
carefully read the ReleaseNotes of all versions between your current version
and the version to which you are upgrading. If the Bacula catalog database
has been upgraded (as it is almost every major release), you will either need
to reinitialize your database starting from scratch (not normally a good
idea), or save an ASCII copy of your database, then proceed to upgrade it.
This is normally done after Bacula is build and installed by:

cd <installed-scripts-dir> (default /etc/bacula)

./update_bacula_tables

This update script can also be find in the Bacula source src/cats directory.

If there are several database upgrades between your version and the version
to which you are upgrading, you will need to apply each database upgrade
script. For your convenience, you can find all the old upgrade scripts in the
upgradedb directory of the source code. You will need to edit the scripts
to correspond to your system configuration. The final upgrade script, if any,
can be applied as noted above.

If you are upgrading from one major version to another, you will need to
replace all your components at the same time as generally the inter-daemon

7.3. RELEASES NUMBERING 41

protocol will change. However, within any particular release (e.g. version
1.32.x) unless there is an oversight or bug, the daemon protocol will not
change. If this is confusing, simply read the ReleaseNotes very carefully as
they will note if all daemons must be upgraded at the same time.

Finally, please note that in general it is not necessary to do a make unin-
stall before doing an upgrade. In fact, if you do so, you will most likely
delete all your conf files, which could be disastrous. The normal procedure
during an upgrade is simply:

./configure (your options)

make

make install

In general none of your existing .conf or .sql files will be overwritten, and
you must do both the make and make install commands, a make install
without the preceding make will not work.

For additional information on upgrading, please see the
Upgrading Bacula Versions in the Tips chapter of this manual.

7.3 Releases Numbering

Every Bacula release whether beta or production has a different number
as well as the date of the release build. The numbering system follows
traditional Open Source conventions in that it is of the form.

major.minor.release

For example:

1.38.11

where each component (major, minor, patch) is a number. The major num-
ber is currently 1 and normally does not change very frequently. The minor
number starts at 0 and increases each for each production release by 2 (i.e.
it is always an even number for a production release), and the patch number
is starts at zero each time the minor number changes. The patch number is
increased each time a bug fix (or fixes) is released to production.

42 CHAPTER 7. INSTALLING BACULA

So, as of this date (10 September 2006), the current production Bacula
release is version 1.38.11. If there are bug fixes, the next release will be
1.38.12 (i.e. the patch number has increased by one).

For all patch releases where the minor version number does not change, the
database and all the daemons will be compatible. That means that you
can safely run a 1.38.0 Director with a 1.38.11 Client. Of course, in this
case, the Director may have bugs that are not fixed. Generally, within a
minor release (some minor releases are not so minor), all patch numbers are
officially released to production. This means that while the current Bacula
version is 1.38.11, versions 1.38.0, 1.38.1, ... 1.38.10 have all been previously
released.

When the minor number is odd, it indicates that the package is under de-
velopment and thus may not be stable. For example, while the current
production release of Bacula is currently 1.38.11, the current development
version is 1.39.22. All patch versions of the development code are available
in the CVS (source repository). However, not all patch versions of the de-
velopment code (odd minor version) are officially released. When they are
released, they are released as beta versions (see below for a definition of
what beta means for Bacula releases).

In general when the minor number increases from one production release
to the next (i.e. 1.38.x to 1.40.0), the catalog database must be upgraded,
the Director and Storage daemon must always be on the same minor release
number, and often (not always), the Clients must also be on the same minor
release. As often as possible, we attempt to make new releases that are
downwards compatible with prior clients, but this is not always possible.
You must check the release notes. In general, you will have fewer problems
if you always run all the components on the same minor version number (i.e.
all either 1.38.x or 1.40.x but not mixed).

7.4 Beta Releases

Towards the end of the development cycle, which typically runs one year
from a major release to another, there will be several beta releases of the
development code prior to a production release. As noted above, beta ver-
sions always have odd minor version numbers (e.g 1.37.x or 1.39.x). The
purpose of the beta releases is to allow early adopter users to test the new
code. Beta releases are made with the following considerations:

• The code passes the regression testing on Linux, FreeBSD, and Solaris

7.5. DEPENDENCY PACKAGES 43

machines. Including tape drive testing on Linux and FreeBSD (not
currently on Solaris).

• There are no known major bugs, or on the rare occasion that there
are, they will be documented.

• Some of the new code/features may not yet be tested.

• Bugs are expected to be found, especially in the new code before the
final production release.

• The code will have been run in production in at least one small site
(mine).

• The Win32 client will have been run in production at least one night
at that small site.

• The documentation in the manual is unlikely to be complete especially
for the new features, and the Release Notes may not be fully organized.

• Beta code is not generally recommended for everyone, but rather for
early adopters.

7.5 Dependency Packages

As discussed above, we have combined a number of third party packages that
Bacula might need into the depkgs release. You can, of course, get the latest
packages from the original authors or from your operating system supplier.
The locations of where we obtained the packages are in the README file
in each package. However, be aware that the packages in the depkgs files
have been tested by us for compatibility with Bacula.

Typically, a dependency package will be named depkgs-
ddMMMyy.tar.gz where dd is the day we release it, MMM is the
abbreviated month (e.g. Jan), and yy is the year. An actual example is:
depkgs-07Apr02.tar.gz. To install and build this package (if needed),
you do the following:

1. Create a bacula directory, into which you will place both the Bacula
source as well as the dependency package.

2. Detar the depkg into the bacula directory.

3. cd bacula/depkgs

44 CHAPTER 7. INSTALLING BACULA

4. make

Although the exact composition of the dependency packages may change
from time to time, the current makeup is the following:

3rd Party Package depkgs

SQLite X

SQLite3 X

mtx X

Note, some of these packages are quite large, so that building them can be
a bit time consuming. The above instructions will build all the packages
contained in the directory. However, when building Bacula, it will take only
those pieces that it actually needs.

Alternatively, you can make just the packages that are needed. For example,

cd bacula/depkgs

make sqlite

will configure and build only the SQLite package.

You should build the packages that you will require in depkgs a prior to
configuring and building Bacula, since Bacula will need them during the
build process.

Even if you do not use SQLite, you might find it worthwhile to build mtx
because the tapeinfo program that comes with it can often provide you
with valuable information about your SCSI tape drive (e.g. compression,
min/max block sizes, ...). Note, most distros provide mtx as part of their
release.

The depkgs1 package is depreciated and previously contained readline,
which should be available on all operating systems.

The depkgs-win32 package is deprecated and no longer used in Bac-
ula version 1.39.x and later. It was previously used to build the na-
tive Win32 client program, but this program is now built on Linux
systems using cross-compiling. All the tools and third party libraries
are automatically downloaded by executing the appropriate scripts. See
src/win32/README.mingw32 for more details.

7.6. SUPPORTED OPERATING SYSTEMS 45

7.6 Supported Operating Systems

Please see the Supported Operating Systems section of the QuickStart
chapter of this manual.

7.7 Building Bacula from Source

The basic installation is rather simple.

1. Install and build any depkgs as noted above. This should be unnec-
essary on most modern Operating Systems.

2. Configure and install MySQL or PostgreSQL (if de-
sired). Installing and Configuring MySQL Phase I or
Installing and Configuring PostgreSQL Phase I. If you are in-
stalling from rpms, and are using MySQL, please be sure to install
mysql-devel, so that the MySQL header files are available while
compiling Bacula. In addition, the MySQL client library mysqlclient
requires the gzip compression library libz.a or libz.so. If you are
using rpm packages, these libraries are in the libz-devel package. On
Debian systems, you will need to load the zlib1g-dev package. If
you are not using rpms or debs, you will need to find the appropriate
package for your system.

Note, if you already have a running MySQL or PostgreSQL on your
system, you can skip this phase provided that you have built the thread
safe libraries. And you have already installed the additional rpms
noted above.

3. As an alternative to MySQL and PostgreSQL, configure and install
SQLite, which is part of the depkgs and also available with most mod-
ern Operating Systems. Installing and Configuring SQLite. SQLite is
probably not suited to a fair size production environment because it
tends to be slow compared to MySQL and it has few or poor tools for
repairing database damage.

4. Detar the Bacula source code preferably into the bacula directory
discussed above.

5. cd to the directory containing the source code.

6. ./configure (with appropriate options as described below)

46 CHAPTER 7. INSTALLING BACULA

7. Check the output of ./configure very carefully, especially the Install
binaries and Install config directories. If they are not correct, please
rerun ./configure until they are. The output from ./configure is stored
in config.out and can be re-displayed at any time without rerunning
the ./configure by doing cat config.out.

8. If after running ./configure once, you decide to change options and
re-run it, that is perfectly fine, but before re-running it, you should
run:

make distclean

so that you are sure to start from scratch and not have a mixture
of the two options. This is because ./configure caches much of the
information. The make distclean is also critical if you move the
source directory from one machine to another. If the make distclean
fails, just ignore it and continue on.

9. make

If you get errors while linking in the Storage daemon directory
(src/stored), it is probably because you have not loaded the static
libraries on your system. I noticed this problem on a Solaris system.
To correct it, make sure that you have not added --enable-static-
tools to the ./configure command.

If you skip this step (make) and proceed immediately to the make
install you are making two serious errors: 1. your install will fail
because Bacula requires a make before a make install. 2. you are
depriving yourself of the chance to make sure there are no errors before
beginning to write files to your system directories.

10. make install Please be sure you have done a make before entering
this command, and that everything has properly compiled and linked
without errors.

11. If you are new to Bacula, we strongly recommend that you skip the
next step and use the default configuration files, then run the exam-
ple program in the next chapter, then come back and modify your
configuration files to suit your particular needs.

12. Customize the configuration files for each of the three daemons (Di-
rectory, File, Storage) and for the Console program. For the details
of how to do this, please see Setting Up Bacula Configuration Files in

7.7. BUILDING BACULA FROM SOURCE 47

the Configuration chapter of this manual. We recommend that you
start by modifying the default configuration files supplied, making the
minimum changes necessary. Complete customization can be done af-
ter you have Bacula up and running. Please take care when modifying
passwords, which were randomly generated, and the Names as the
passwords and names must agree between the configuration files for
security reasons.

13. Create the Bacula MySQL database and tables (if us-
ing MySQL) Installing and Configuring MySQL Phase II
or create the Bacula PostgreSQL database and tables
Configuring PostgreSQL II or alternatively if you are using SQLite
Installing and Configuring SQLite Phase II.

14. Start Bacula (./bacula start) Note. the next chapter shows you how
to do this in detail.

15. Interface with Bacula using the Console program

16. For the previous two items, please follow the instructions in the
Running Bacula chapter of this manual, where you will run a simple
backup and do a restore. Do this before you make heavy modifications
to the configuration files so that you are sure that Bacula works and
are familiar with it. After that changing the conf files will be easier.

17. If after installing Bacula, you decide to ”move it”, that is to install it
in a different set of directories, proceed as follows:

make uninstall

make distclean

./configure (your-new-options)

make

make install

If all goes well, the ./configure will correctly determine which operating
system you are running and configure the source code appropriately. Cur-
rently, FreeBSD, Linux (Red Hat), and Solaris are supported. The Bacula
client (File daemon) is reported to work with MacOS X 10.3 is if readline
support is not enabled (default) when building the client.

If you install Bacula on more than one system, and they are identical, you
can simply transfer the source tree to that other system and do a ”make
install”. However, if there are differences in the libraries or OS versions,
or you wish to install on a different OS, you should start from the original
compress tar file. If you do transfer the source tree, and you have previously
done a ./configure command, you MUST do:

48 CHAPTER 7. INSTALLING BACULA

make distclean

prior to doing your new ./configure. This is because the GNU autoconf
tools cache the configuration, and if you re-use a configuration for a Linux
machine on a Solaris, you can be sure your build will fail. To avoid this, as
mentioned above, either start from the tar file, or do a ”make distclean”.

In general, you will probably want to supply a more complicated configure
statement to ensure that the modules you want are built and that everything
is placed into the correct directories.

For example, on Fedora, Red Hat, or SuSE one could use the following:

CFLAGS="-g -Wall" \

./configure \

--sbindir=$HOME/bacula/bin \

--sysconfdir=$HOME/bacula/bin \

--with-pid-dir=$HOME/bacula/bin/working \

--with-subsys-dir=$HOME/bacula/bin/working \

--with-mysql \

--with-working-dir=$HOME/bacula/bin/working \

--with-dump-email=$USER

Note, the advantage of using the above configuration to start is that every-
thing will be put into a single directory, which you can later delete once you
have run the examples in the next chapter and learned how Bacula works.
In addition, the above can be installed and run as non-root.

For the developer’s convenience, I have added a defaultconfig script to the
examples directory. This script contains the statements that you would
normally use, and each developer/user may modify them to suit his needs.
You should find additional useful examples in this directory as well.

The --enable-conio or --enable-readline options are useful because they
provide a command line history and editing capability for the Console pro-
gram. If you have included either option in the build, either the termcap
or the ncurses package will be needed to link. On most systems, including
Red Hat and SuSE, you should include the ncurses package. If Bacula’s
configure process finds the ncurses libraries, it will use those rather than
the termcap library. On some systems, such as SuSE, the termcap library
is not in the standard library directory. As a consequence, the option may
be disabled or you may get an error message such as:

/usr/lib/gcc-lib/i586-suse-linux/3.3.1/.../ld:

cannot find -ltermcap

collect2: ld returned 1 exit status

7.8. WHAT DATABASE TO USE? 49

while building the Bacula Console. In that case, you will need to set the
LDFLAGS environment variable prior to building.

export LDFLAGS="-L/usr/lib/termcap"

The same library requirements apply if you wish to use the readline sub-
routines for command line editing and history or if you are using a MySQL
library that requires encryption. If you need encryption, you can either
export the appropriate additional library options as shown above or, alter-
natively, you can include them directly on the ./configure line as in:

LDFLAGS="-lssl -lcyrpto" \

./configure <your-options>

On some systems such as Mandriva, readline tends to gobble up prompts,
which makes it totally useless. If this happens to you, use the disable option,
or if you are using version 1.33 and above try using --enable-conio to use
a built-in readline replacement. You will still need either the termcap or
the ncurses library, but it is unlikely that the conio package will gobble up
prompts.

readline is no longer supported after version 1.34. The code within Bacula
remains, so it should be usable, and if users submit patches for it, we will
be happy to apply them. However, due to the fact that each version of
readline seems to be incompatible with previous versions, and that there are
significant differences between systems, we can no longer afford to support
it.

7.8 What Database to Use?

Before building Bacula you need to decide if you want to use SQLite,
MySQL, or PostgreSQL. If you are not already running MySQL or Post-
greSQL, you might want to start by testing with SQLite. This will greatly
simplify the setup for you because SQLite is compiled into Bacula an requires
no administration. It performs well and is suitable for small to medium sized
installations (maximum 10-20 machines). However, we should note that a
number of users have had unexplained database corruption with SQLite. For
that reason, we recommend that you install either MySQL or PostgreSQL
for production work.

If you wish to use MySQL as the Bacula catalog, please see the
Installing and Configuring MySQL chapter of this manual. You will need to

50 CHAPTER 7. INSTALLING BACULA

install MySQL prior to continuing with the configuration of Bacula. MySQL
is a high quality database that is very efficient and is suitable for any sized
installation. It is slightly more complicated than SQLite to setup and ad-
minister because it has a number of sophisticated features such as userids
and passwords. It runs as a separate process, is truly professional and can
manage a database of any size.

If you wish to use PostgreSQL as the Bacula catalog, please see the
Installing and Configuring PostgreSQL chapter of this manual. You will
need to install PostgreSQL prior to continuing with the configuration of
Bacula. PostgreSQL is very similar to MySQL, though it tends to be slightly
more SQL92 compliant and has many more advanced features such as trans-
actions, stored procedures, and the such. It requires a certain knowledge to
install and maintain.

If you wish to use SQLite as the Bacula catalog, please see
Installing and Configuring SQLite chapter of this manual.

7.9 Quick Start

There are a number of options and important considerations given below
that you can skip for the moment if you have not had any problems building
Bacula with a simplified configuration as shown above.

If the ./configure process is unable to find specific libraries (e.g. libintl,
you should ensure that the appropriate package is installed on your system.
Alternatively, if the package is installed in a non-standard location (as far
as Bacula is concerned), then there is generally an option listed below (or
listed with ”./configure --help” that will permit you to specify the directory
that should be searched. In other cases, there are options that will permit
you to disable to feature (e.g. --disable-nls).

If you want to dive right into it, we recommend you skip to the next chapter,
and run the example program. It will teach you a lot about Bacula and as
an example can be installed into a single directory (for easy removal) and
run as non-root. If you have any problems or when you want to do a real
installation, come back to this chapter and read the details presented below.

7.10. CONFIGURE OPTIONS 51

7.10 Configure Options

The following command line options are available for configure to customize
your installation.

--sysbindir=<binary-path> Defines where the Bacula binary (exe-
cutable) files will be placed during a make install command.

--sysconfdir=<config-path> Defines where the Bacula configuration
files should be placed during a make install command.

--mandir=<path> Note, as of Bacula version 1.39.14, the meaning of
any path specified on this option is change from prior versions. It
now specifies the top level man directory. Previously the mandir spec-
ified the full path to where you wanted the man files installed. The
man files will be installed in gzip’ed format under mandir/man1 and
mandir/man8 as appropriate. For the install to succeed you must have
gzip installed on your system.

By default, Bacula will install the Unix man pages in
/usr/share/man/man1 and /usr/share/man/man8. If you wish
the man page to be installed in a different location, use this option to
specify the path. Note, the main HTML and PDF Bacula documents
are in a separate tar file that is not part of the source distribution.

--datadir=<path> If you translate Bacula or parts of Bacula into a dif-
ferent language you may specify the location of the po files using the
--datadir option. You must manually install any po files as Bacula
does not (yet) automatically do so.

--disable-ipv6

--enable-smartalloc This enables the inclusion of the Smartalloc or-
phaned buffer detection code. This option is highly recommended.
Because we never build without this option, you may experience prob-
lems if it is not enabled. In this case, simply re-enable the option.
We strongly recommend keeping this option enabled as it helps detect
memory leaks. This configuration parameter is used while building
Bacula

--enable-gnome If you have GNOME installed on your computer includ-
ing the gnome development libraries, and you want to use the GNOME
GUI Console interface to Bacula, you must specify this option. Doing
so will build everything in the src/gnome-console directory.

52 CHAPTER 7. INSTALLING BACULA

--enable-wx-console If you have wxWidgets installed on your computer
and you want to use the wxWidgets GUI Console interface to Bacula,
you must specify this option. Doing so will build everything in the
src/wx-console directory. This could also be useful to users who
want a GUI Console and don’t want to install Gnome, as wxWidgets
can work with GTK+, Motif or even X11 libraries.

--enable-tray-monitor If you have GTK installed on your computer,
you run a graphical environment or a window manager compatible
with the FreeDesktop system tray standard (like KDE and GNOME)
and you want to use a GUI to monitor Bacula daemons, you must
specify this option. Doing so will build everything in the src/tray-
monitor directory.

--enable-static-tools This option causes the linker to link the Storage
daemon utility tools (bls, bextract, and bscan) statically. This per-
mits using them without having the shared libraries loaded. If you
have problems linking in the src/stored directory, make sure you
have not enabled this option, or explicitly disable static linking by
adding --disable-static-tools.

--enable-static-fd This option causes the make process to build a static-
bacula-fd in addition to the standard File daemon. This static version
will include statically linked libraries and is required for the Bare Metal
recovery. This option is largely superseded by using make static-
bacula-fd from with in the src/filed directory. Also, the --enable-
client-only option described below is useful for just building a client
so that all the other parts of the program are not compiled.

When linking a static binary, the linker needs the static versions of all
the libraries that are used, so frequently users will experience linking
errors when this option is used. The first thing to do is to make
sure you have the static glibc library installed on your system. The
second thing to do is the make sure you do not specify --openssl or
--with-python on your ./configure statement as these options require
additional libraries. You may be able to enable those options, but you
will need to load additional static libraries.

--enable-static-sd This option causes the make process to build a static-
bacula-sd in addition to the standard Storage daemon. This static
version will include statically linked libraries and could be useful dur-
ing a Bare Metal recovery.

When linking a static binary, the linker needs the static versions of all
the libraries that are used, so frequently users will experience linking
errors when this option is used. The first thing to do is to make
sure you have the static glibc library installed on your system. The

7.10. CONFIGURE OPTIONS 53

second thing to do is the make sure you do not specify --openssl or
--with-python on your ./configure statement as these options require
additional libraries. You may be able to enable those options, but you
will need to load additional static libraries.

--enable-static-dir This option causes the make process to build a static-
bacula-dir in addition to the standard Director. This static version
will include statically linked libraries and could be useful during a Bare
Metal recovery.

When linking a static binary, the linker needs the static versions of all
the libraries that are used, so frequently users will experience linking
errors when this option is used. The first thing to do is to make
sure you have the static glibc library installed on your system. The
second thing to do is the make sure you do not specify --openssl or
--with-python on your ./configure statement as these options require
additional libraries. You may be able to enable those options, but you
will need to load additional static libraries.

--enable-static-cons This option causes the make process to build a
static-console and a static-gnome-console in addition to the stan-
dard console. This static version will include statically linked libraries
and could be useful during a Bare Metal recovery.

When linking a static binary, the linker needs the static versions of all
the libraries that are used, so frequently users will experience linking
errors when this option is used. The first thing to do is to make
sure you have the static glibc library installed on your system. The
second thing to do is the make sure you do not specify --openssl or
--with-python on your ./configure statement as these options require
additional libraries. You may be able to enable those options, but you
will need to load additional static libraries.

--enable-client-only This option causes the make process to build only
the File daemon and the libraries that it needs. None of the other
daemons, storage tools, nor the console will be built. Likewise a make
install will then only install the File daemon. To cause all daemons to
be built, you will need to do a configuration without this option. This
option greatly facilitates building a Client on a client only machine.

When linking a static binary, the linker needs the static versions of all
the libraries that are used, so frequently users will experience linking
errors when this option is used. The first thing to do is to make
sure you have the static glibc library installed on your system. The
second thing to do is the make sure you do not specify --openssl or
--with-python on your ./configure statement as these options require

54 CHAPTER 7. INSTALLING BACULA

additional libraries. You may be able to enable those options, but you
will need to load additional static libraries.

--enable-build-dird This option causes the make process to build the
Director and the Director’s tools. By default, this option is on, but
you may turn it off by using --disable-build-dird to prevent the
Director from being built.

--enable-build-stored This option causes the make process to build the
Storage daemon. By default, this option is on, but you may turn it
off by using --disable-build-stored to prevent the Storage daemon
from being built.

--enable-largefile This option (default) causes Bacula to be built with 64
bit file address support if it is available on your system. This permits
Bacula to read and write files greater than 2 GBytes in size. You
may disable this feature and revert to 32 bit file addresses by using
--disable-largefile.

--disable-nls By default, Bacula uses the GNU Native Language Support
(NLS) libraries. On some machines, these libraries may not be present
or may not function correctly (especially on non-Linux implementa-
tions). In such cases, you may specify --disable-nls to disable use of
those libraries. In such a case, Bacula will revert to using English.

--disable-ipv6 By default, Bacula enables IPv6 protocol. On some sys-
tems, the files for IPv6 may exist, but the functionality could be turned
off in the kernel. In that case, in order to correctly build Bacula, you
will explicitly need to use this option so that Bacula does not attempt
to reference OS function calls that do not exist.

--with-sqlite=<sqlite-path> This enables use of the SQLite version
2.8.x database. The sqlite-path is not normally specified as Bac-
ula looks for the necessary components in a standard location (dep-
kgs/sqlite). See Installing and Configuring SQLite chapter of this
manual for more details.

See the note below under the --with-postgresql item.

--with-sqlite3=<sqlite3-path> This enables use of the SQLite version
3.x database. The sqlite3-path is not normally specified as Bac-
ula looks for the necessary components in a standard location (dep-
kgs/sqlite3). See Installing and Configuring SQLite chapter of this
manual for more details.

--with-mysql=<mysql-path> This enables building of the Catalog ser-
vices for Bacula. It assumes that MySQL is running on your sys-
tem, and expects it to be installed in the mysql-path that you

7.10. CONFIGURE OPTIONS 55

specify. Normally, if MySQL is installed in a standard system lo-
cation, you can simply use --with-mysql with no path specification.
If you do use this option, please proceed to installing MySQL in the
Installing and Configuring MySQL chapter before proceeding with the
configuration.

See the note below under the --with-postgresql item.

--with-postgresql=<path> This provides an explicit path to the Post-
greSQL libraries if Bacula cannot find it by default. Normally to build
with PostgreSQL, you would simply use --with-postgresql.

Note, for Bacula to be configured properly, you must specify one of the
four database options supported. That is: --with-sqlite, --with-sqlite3,
--with-mysql, or --with-postgresql, otherwise the ./configure will fail.

--with-openssl=<path> This configuration option is necessary if you
want to enable TLS (ssl), which encrypts the communications within
Bacula or if you want to use File Daemon PKI data encryp-
tion. Normally, the path specification is not necessary since the
configuration searches for the OpenSSL libraries in standard sys-
tem locations. Enabling OpenSSL in Bacula permits secure com-
munications between the daemons and/or data encryption in the
File daemon. For more information on using TLS, please see the
Bacula TLS – Communications Encryption chapter of this manual.
For more information on using PKI data encryption, please see the
Bacula PKI – Data Encryption chapter of this manual.

--with-python=<path> This option enables Bacula support for Python.
If no path is supplied, configure will search the standard library loca-
tions for Python 2.2, 2.3, or 2.4. If it cannot find the library, you will
need to supply a path to your Python library directory. Please see the
Python chapter for the details of using Python scripting.

--with-libintl-prefix=<DIR> This option may be used to tell Bacula to
search DIR/include and DIR/lib for the libintl headers and libraries
needed for Native Language Support (NLS).

--enable-conio Tells Bacula to enable building the small, light weight
readline replacement routine. It is generally much easier to configure
than readline, although, like readline, it needs either the termcap or
ncurses library.

--with-readline=<readline-path> Tells Bacula where readline is in-
stalled. Normally, Bacula will find readline if it is in a standard library.
If it is not found and no --with-readline is specified, readline will be
disabled. This option affects the Bacula build. Readline provides the

56 CHAPTER 7. INSTALLING BACULA

Console program with a command line history and editing capabil-
ity and is no longer supported, so you are on your own if you have
problems.

--enable-readline Tells Bacula to enable readline support. It is normally
disabled due to the large number of configuration problems and the
fact that the package seems to change in incompatible ways from ver-
sion to version.

--with-tcp-wrappers=<path> This specifies that you want TCP wrap-
pers (man hosts access(5)) compiled in. The path is optional since
Bacula will normally find the libraries in the standard locations. This
option affects the Bacula build. In specifying your restrictions in the
/etc/hosts.allow or /etc/hosts.deny files, do not use the twist
option (hosts options(5)) or the Bacula process will be terminated.
Note, when setting up your /etc/hosts.allow or /etc/hosts.deny,
you must identify the Bacula daemon in question with the name you
give it in your conf file rather than the name of the executable.

For more information on configuring and testing TCP wrappers, please
see the Configuring and Testing TCP Wrappers section in the Secu-
rity Chapter.

On SuSE, the libwrappers libraries needed to link Bacula are con-
tained in the tcpd-devel package. On Red Hat, the package is named
tcp wrappers.

--with-working-dir=<working-directory-path> This option is
mandatory and specifies a directory into which Bacula may safely
place files that will remain between Bacula executions. For example,
if the internal database is used, Bacula will keep those files in this
directory. This option is only used to modify the daemon configura-
tion files. You may also accomplish the same thing by directly editing
them later. The working directory is not automatically created by the
install process, so you must ensure that it exists before using Bacula
for the first time.

--with-base-port=<port=number> In order to run, Bacula needs
three TCP/IP ports (one for the Bacula Console, one for the Storage
daemon, and one for the File daemon). The --with-baseport option
will automatically assign three ports beginning at the base port ad-
dress specified. You may also change the port number in the resulting
configuration files. However, you need to take care that the numbers
correspond correctly in each of the three daemon configuration files.
The default base port is 9101, which assigns ports 9101 through 9103.
These ports (9101, 9102, and 9103) have been officially assigned to

7.10. CONFIGURE OPTIONS 57

Bacula by IANA. This option is only used to modify the daemon con-
figuration files. You may also accomplish the same thing by directly
editing them later.

--with-dump-email=<email-address> This option specifies the email
address where any core dumps should be set. This option is normally
only used by developers.

--with-pid-dir=<PATH> This specifies where Bacula should place the
process id file during execution. The default is: /var/run. This
directory is not created by the install process, so you must ensure that
it exists before using Bacula the first time.

--with-subsys-dir=<PATH> This specifies where Bacula should place
the subsystem lock file during execution. The default is
/var/run/subsys. Please make sure that you do not specify the
same directory for this directory and for the sbindir directory. This
directory is used only within the autostart scripts. The subsys direc-
tory is not created by the Bacula install, so you must be sure to create
it before using Bacula.

--with-dir-password=<Password> This option allows you to specify
the password used to access the Directory (normally from the Console
program). If it is not specified, configure will automatically create a
random password.

--with-fd-password=<Password> This option allows you to specify
the password used to access the File daemon (normally called from
the Director). If it is not specified, configure will automatically create
a random password.

--with-sd-password=<Password> This option allows you to specify
the password used to access the Directory (normally called from the
Director). If it is not specified, configure will automatically create a
random password.

--with-dir-user=<User> This option allows you to specify the Userid
used to run the Director. The Director must be started as root, but
doesn’t need to run as root, and after doing preliminary initializations,
it can ”drop” to the UserId specified on this option. If you specify
this option, you must create the User prior to running make install,
because the working directory owner will be set to User.

--with-dir-group=<Group> This option allows you to specify the
GroupId used to run the Director. The Director must be started as
root, but doesn’t need to run as root, and after doing preliminary
initializations, it can ”drop” to the GroupId specified on this option.

58 CHAPTER 7. INSTALLING BACULA

If you specify this option, you must create the Group prior to run-
ning make install, because the working directory group will be set to
Group.

--with-sd-user=<User> This option allows you to specify the Userid
used to run the Storage daemon. The Storage daemon must be started
as root, but doesn’t need to run as root, and after doing preliminary
initializations, it can ”drop” to the UserId specified on this option. If
you use this option, you will need to take care that the Storage daemon
has access to all the devices (tape drives, ...) that it needs.

--with-sd-group=<Group> This option allows you to specify the
GroupId used to run the Storage daemon. The Storage daemon must
be started as root, but doesn’t need to run as root, and after doing
preliminary initializations, it can ”drop” to the GroupId specified on
this option.

--with-fd-user=<User> This option allows you to specify the Userid
used to run the File daemon. The File daemon must be started as
root, and in most cases, it needs to run as root, so this option is used
only in very special cases, after doing preliminary initializations, it can
”drop” to the UserId specified on this option.

--with-fd-group=<Group> This option allows you to specify the
GroupId used to run the File daemon. The File daemon must be
started as root, and in most cases, it must be run as root, however,
after doing preliminary initializations, it can ”drop” to the GroupId
specified on this option.

Note, many other options are presented when you do a ./configure --help,
but they are not implemented.

7.11 Recommended Options for Most Systems

For most systems, we recommend starting with the following options:

./configure \

--enable-smartalloc \

--sbindir=$HOME/bacula/bin \

--sysconfdir=$HOME/bacula/bin \

--with-pid-dir=$HOME/bacula/bin/working \

--with-subsys-dir=$HOME/bacula/bin/working \

--with-mysql=$HOME/mysql \

--with-working-dir=$HOME/bacula/working

7.12. RED HAT 59

If you want to install Bacula in an installation directory rather than run
it out of the build directory (as developers will do most of the time), you
should also include the --sbindir and --sysconfdir options with appropriate
paths. Neither are necessary if you do not use ”make install” as is the case
for most development work. The install process will create the sbindir and
sysconfdir if they do not exist, but it will not automatically create the pid-
dir, subsys-dir, or working-dir, so you must ensure that they exist before
running Bacula for the first time.

7.12 Red Hat

Using SQLite:

CFLAGS="-g -Wall" ./configure \

--sbindir=$HOME/bacula/bin \

--sysconfdir=$HOME/bacula/bin \

--enable-smartalloc \

--with-sqlite=$HOME/bacula/depkgs/sqlite \

--with-working-dir=$HOME/bacula/working \

--with-pid-dir=$HOME/bacula/bin/working \

--with-subsys-dir=$HOME/bacula/bin/working \

--enable-gnome \

--enable-conio

or

CFLAGS="-g -Wall" ./configure \

--sbindir=$HOME/bacula/bin \

--sysconfdir=$HOME/bacula/bin \

--enable-smartalloc \

--with-mysql=$HOME/mysql \

--with-working-dir=$HOME/bacula/working

--with-pid-dir=$HOME/bacula/bin/working \

--with-subsys-dir=$HOME/bacula/bin/working

--enable-gnome \

--enable-conio

or finally, a completely traditional Red Hat Linux install:

CFLAGS="-g -Wall" ./configure \

--prefix=/usr \

--sbindir=/usr/sbin \

60 CHAPTER 7. INSTALLING BACULA

--sysconfdir=/etc/bacula \

--with-scriptdir=/etc/bacula \

--enable-smartalloc \

--enable-gnome \

--with-mysql \

--with-working-dir=/var/bacula \

--with-pid-dir=/var/run \

--with-subsys-dir=/var/lock/subsys \

--enable-conio

Note, Bacula assumes that /var/bacula, /var/run, and /var/loc/subsys exist
so it will not automatically create them during the install process.

Note, with gcc (GCC) 4.0.1 20050727 (Red Hat 4.0.1-5) on an AMD64 CPU
running 64 bit CentOS4, there is a compiler bug that generates bad code
that causes Bacula to segment fault. Typically you will see this in the
Storage daemon first. The solution is to compile Bacula ensuring that no
optimization is turned on (normally it is -O2).

7.13 Solaris

To build Bacula from source, you will need the following installed on your
system (they are not by default): libiconv, gcc 3.3.2, stdc++, libgcc (for
stdc++ and gcc s libraries), make 3.8 or later.

You will probably also need to: Add /usr/local/bin to PATH and Add
/usr/ccs/bin to PATH for ar.

#!/bin/sh

CFLAGS="-g" ./configure \

--sbindir=$HOME/bacula/bin \

--sysconfdir=$HOME/bacula/bin \

--with-mysql=$HOME/mysql \

--enable-smartalloc \

--with-pid-dir=$HOME/bacula/bin/working \

--with-subsys-dir=$HOME/bacula/bin/working \

--with-working-dir=$HOME/bacula/working

As mentioned above, the install process will create the sbindir and sysconfdir
if they do not exist, but it will not automatically create the pid-dir, subsys-
dir, or working-dir, so you must ensure that they exist before running Bacula
for the first time.

Note, you may need to install the following packages to build Bacula from
source:

7.14. FREEBSD 61

SUNWbinutils,

SUNWarc,

SUNWhea,

SUNWGcc,

SUNWGnutls

SUNWGnutls-devel

SUNWGmake

SUNWgccruntime

SUNWlibgcrypt

SUNWzlib

SUNWzlibs

SUNWbinutilsS

SUNWGmakeS

SUNWlibm

export

PATH=/usr/bin::/usr/ccs/bin:/etc:/usr/openwin/bin:/usr/local/bin:/usr/sfw/bin:/opt/sfw/bin:/usr/ucb:/usr/sbin

7.14 FreeBSD

Please see: The FreeBSD Diary for a detailed description on how to make
Bacula work on your system. In addition, users of FreeBSD prior to 4.9-
STABLE dated Mon Dec 29 15:18:01 2003 UTC who plan to use tape de-
vices, please see the Tape Testing Chapter of this manual for important
information on how to configure your tape drive for compatibility with Bac-
ula.

If you are using Bacula with MySQL, you should take care to compile
MySQL with FreeBSD native threads rather than LinuxThreads, since Bac-
ula is normally built with FreeBSD native threads rather than LinuxTreads.
Mixing the two will probably not work.

7.15 Win32

To install the binary Win32 version of the File daemon please see the
Win32 Installation Chapter in this document.

7.16 One File Configure Script

The following script could be used if you want to put everything in a single
file:

http://www.freebsddiary.org/bacula.php

62 CHAPTER 7. INSTALLING BACULA

#!/bin/sh

CFLAGS="-g -Wall" \

./configure \

--sbindir=$HOME/bacula/bin \

--sysconfdir=$HOME/bacula/bin \

--mandir=$HOME/bacula/bin \

--enable-smartalloc \

--enable-gnome \

--enable-wx-console \

--enable-tray-monitor \

--with-pid-dir=$HOME/bacula/bin/working \

--with-subsys-dir=$HOME/bacula/bin/working \

--with-mysql \

--with-working-dir=$HOME/bacula/bin/working \

--with-dump-email=$USER@your-site.com \

--with-job-email=$USER@your-site.com \

--with-smtp-host=mail.your-site.com

exit 0

You may also want to put the following entries in your /etc/services file
as it will make viewing the connections made by Bacula easier to recognize
(i.e. netstat -a):

bacula-dir 9101/tcp

bacula-fd 9102/tcp

bacula-sd 9103/tcp

7.17 Installing Bacula

Before setting up your configuration files, you will want to install Bacula in
its final location. Simply enter:

make install

If you have previously installed Bacula, the old binaries will be overwritten,
but the old configuration files will remain unchanged, and the ”new” config-
uration files will be appended with a .new. Generally if you have previously
installed and run Bacula you will want to discard or ignore the configuration
files with the appended .new.

7.18. BUILDING A FILE DAEMON OR CLIENT 63

7.18 Building a File Daemon or Client

If you run the Director and the Storage daemon on one machine and you
wish to back up another machine, you must have a copy of the File daemon
for that machine. If the machine and the Operating System are identical,
you can simply copy the Bacula File daemon binary file bacula-fd as well
as its configuration file bacula-fd.conf then modify the name and password
in the conf file to be unique. Be sure to make corresponding additions to
the Director’s configuration file (bacula-dir.conf).

If the architecture or the OS level are different, you will need to build a File
daemon on the Client machine. To do so, you can use the same ./configure
command as you did for your main program, starting either from a fresh copy
of the source tree, or using make distclean before the ./configure.

Since the File daemon does not access the Catalog database, you can remove
the --with-mysql or --with-sqlite options, then add --enable-client-
only. This will compile only the necessary libraries and the client programs
and thus avoids the necessity of installing one or another of those database
programs to build the File daemon. With the above option, you simply
enter make and just the client will be built.

7.19 Auto Starting the Daemons

If you wish the daemons to be automatically started and stopped when
your system is booted (a good idea), one more step is necessary. First,
the ./configure process must recognize your system – that is it must be a
supported platform and not unknown, then you must install the platform
dependent files by doing:

(become root)

make install-autostart

Please note, that the auto-start feature is implemented only on systems
that we officially support (currently, FreeBSD, Red Hat/Fedora Linux, and
Solaris), and has only been fully tested on Fedora Linux.

The make install-autostart will cause the appropriate startup scripts
to be installed with the necessary symbolic links. On Red Hat/Fedora
Linux systems, these scripts reside in /etc/rc.d/init.d/bacula-dir
/etc/rc.d/init.d/bacula-fd, and /etc/rc.d/init.d/bacula-sd. However
the exact location depends on what operating system you are using.

64 CHAPTER 7. INSTALLING BACULA

If you only wish to install the File daemon, you may do so with:

make install-autostart-fd

7.20 Other Make Notes

To simply build a new executable in any directory, enter:

make

To clean out all the objects and binaries (including the files named 1, 2, or
3, which are development temporary files), enter:

make clean

To really clean out everything for distribution, enter:

make distclean

note, this cleans out the Makefiles and is normally done from the top level
directory to prepare for distribution of the source. To recover from this
state, you must redo the ./configure in the top level directory, since all the
Makefiles will be deleted.

To add a new file in a subdirectory, edit the Makefile.in in that directory,
then simply do a make. In most cases, the make will rebuild the Makefile
from the new Makefile.in. In some case, you may need to issue the make
a second time. In extreme cases, cd to the top level directory and enter:
make Makefiles.

To add dependencies:

make depend

The make depend appends the header file dependencies for each of the
object files to Makefile and Makefile.in. This command should be done in
each directory where you change the dependencies. Normally, it only needs
to be run when you add or delete source or header files. make depend is
normally automatically invoked during the configuration process.

To install:

7.20. OTHER MAKE NOTES 65

make install

This not normally done if you are developing Bacula, but is used if you are
going to run it to backup your system.

After doing a make install the following files will be installed on your
system (more or less). The exact files and location (directory) for each file
depends on your ./configure command (e.g. gnome-console and gnome-
console.conf are not installed if you do not configure GNOME. Also, if you
are using SQLite instead of mysql, some of the files will be different).

bacula

bacula-dir

bacula-dir.conf

bacula-fd

bacula-fd.conf

bacula-sd

bacula-sd.conf

bacula-tray-monitor

tray-monitor.conf

bextract

bls

bscan

btape

btraceback

btraceback.gdb

bconsole

bconsole.conf

create_mysql_database

dbcheck

delete_catalog_backup

drop_bacula_tables

drop_mysql_tables

fd

gnome-console

gnome-console.conf

make_bacula_tables

make_catalog_backup

make_mysql_tables

mtx-changer

query.sql

bsmtp

startmysql

stopmysql

wx-console

wx-console.conf

9 man pages

66 CHAPTER 7. INSTALLING BACULA

7.21 Installing Tray Monitor

The Tray Monitor is already installed if you used the --enable-tray-
monitor configure option and ran make install.

As you don’t run your graphical environment as root (if you do, you should
change that bad habit), don’t forget to allow your user to read tray-
monitor.conf, and to execute bacula-tray-monitor (this is not a security
issue).

Then log into your graphical environment (KDE, Gnome or something else),
run bacula-tray-monitor as your user, and see if a cassette icon appears
somewhere on the screen, usually on the task bar. If it doesn’t, follow the
instructions below related to your environment or window manager.

7.21.1 GNOME

System tray, or notification area if you use the GNOME terminology, has
been supported in GNOME since version 2.2. To activate it, right-click on
one of your panels, open the menu Add to this Panel, then Utility and
finally click on Notification Area.

7.21.2 KDE

System tray has been supported in KDE since version 3.1. To activate it,
right-click on one of your panels, open the menu Add, then Applet and
finally click on System Tray.

7.21.3 Other window managers

Read the documentation to know if the Freedesktop system tray standard
is supported by your window manager, and if applicable, how to activate it.

7.22 Modifying the Bacula Configuration Files

See the chapter Configuring Bacula in this manual for instructions on how
to set Bacula configuration files.

Chapter 8

Critical Items to Implement
Before Production

We recommend you take your time before implementing a production a
Bacula backup system since Bacula is a rather complex program, and if you
make a mistake, you may suddenly find that you cannot restore your files
in case of a disaster. This is especially true if you have not previously used
a major backup product.

If you follow the instructions in this chapter, you will have covered most of
the major problems that can occur. It goes without saying that if you ever
find that we have left out an important point, please inform us, so that we
can document it to the benefit of everyone.

8.1 Critical Items

The following assumes that you have installed Bacula, you more or less un-
derstand it, you have at least worked through the tutorial or have equivalent
experience, and that you have set up a basic production configuration. If
you haven’t done the above, please do so and then come back here. The
following is a sort of checklist that points with perhaps a brief explanation
of why you should do it. In most cases, you will find the details elsewhere
in the manual. The order is more or less the order you would use in setting
up a production system (if you already are in production, use the checklist
anyway).

• Test your tape drive for compatibility with Bacula by using the test

67

68CHAPTER 8. CRITICAL ITEMS TO IMPLEMENT BEFORE PRODUCTION

command in the btape program.

• Better than doing the above is to walk through the nine steps in the
Tape Testing chapter of the manual. It may take you a bit of time,
but it will eliminate surprises.

• Test the end of tape handling of your tape drive by using the fill
command in the btape program.

• If you are using a Linux 2.4 kernel, make sure that /lib/tls is disabled.
Bacula does not work with this library. See the second point under
Supported Operating Systems.

• Do at least one restore of files. If you backup multiple OS types
(Linux, Solaris, HP, MacOS, FreeBSD, Win32, ...), restore files from
each system type. The Restoring Files chapter shows you how.

• Write a bootstrap file to a separate system for each backup job. The
Write Bootstrap directive is described in the Director Configuration
chapter of the manual, and more details are available in the
Bootstrap File chapter. Also, the default bacula-dir.conf comes with
a Write Bootstrap directive defined. This allows you to recover the
state of your system as of the last backup.

• Backup your catalog. An example of this is found in the default bacula-
dir.conf file. The backup script is installed by default and should
handle any database, though you may want to make your own local
modifications.

• Write a bootstrap file for the catalog. An example of this is found
in the default bacula-dir.conf file. This will allow you to quickly re-
store your catalog in the event it is wiped out – otherwise it is many
excruciating hours of work.

• Make a copy of the bacula-dir.conf, bacula-sd.conf, and bacula-fd.conf
files that you are using on your server. Put it in a safe place (on
another machine) as these files can be difficult to reconstruct if your
server dies.

• Make a Bacula Rescue CDROM! See the
Disaster Recovery Using a Bacula Rescue CDROM chapter. It is
trivial to make such a CDROM, and it can make system recovery in
the event of a lost hard disk infinitely easier.

• Bacula assumes all filenames are in UTF-8 format. This is impor-
tant when saving the filenames to the catalog. For Win32 machine,
Bacula will automatically convert from Unicode to UTF-8, but on

8.2. RECOMMENDED ITEMS 69

Unix, Linux, *BSD, and MacOS X machines, you must explicitly en-
sure that your locale is set properly. Typically this means that the bf
LANG environment variable must end in .UTF-8. An full example
is en US.UTF-8. The exact syntax may vary a bit from OS to OS,
and exactly how you define it will also vary.

8.2 Recommended Items

Although these items may not be critical, they are recommended and will
help you avoid problems.

• Read the Quick Start Guide to Bacula

• After installing and experimenting with Bacula, read and work care-
fully through the examples in the Tutorial chapter of this manual.

• Learn what each of the Bacula Utility Programs does.

• Set up reasonable retention periods so that your catalog does not grow
to be too big. See the following three chapters:
Recycling your Volumes,
Basic Volume Management,
Using Pools to Manage Volumes.

• Perform a bare metal recovery using the Bacula Rescue CDROM. See
the Disaster Recovery Using a Bacula Rescue CDROM chapter.

If you absolutely must implement a system where you write a different tape
each night and take it offsite in the morning. We recommend that you do
several things:

• Write a bootstrap file of your backed up data and a bootstrap file of
your catalog backup to a floppy disk or a CDROM, and take that with
the tape. If this is not possible, try to write those files to another
computer or offsite computer, or send them as email to a friend. If
none of that is possible, at least print the bootstrap files and take that
offsite with the tape. Having the bootstrap files will make recovery
much easier.

• It is better not to force Bacula to load a particular tape each day.
Instead, let Bacula choose the tape. If you need to know what tape
to mount, you can print a list of recycled and appendable tapes daily,

70CHAPTER 8. CRITICAL ITEMS TO IMPLEMENT BEFORE PRODUCTION

and select any tape from that list. Bacula may propose a particular
tape for use that it considers optimal, but it will accept any valid tape
from the correct pool.

Chapter 9

A Brief Tutorial

This chapter will guide you through running Bacula. To do so, we assume
you have installed Bacula, possibly in a single file as shown in the previous
chapter, in which case, you can run Bacula as non-root for these tests.
However, we assume that you have not changed the .conf files. If you have
modified the .conf files, please go back and uninstall Bacula, then reinstall
it, but do not make any changes. The examples in this chapter use the
default configuration files, and will write the volumes to disk in your /tmp
directory, in addition, the data backed up will be the source directory where
you built Bacula. As a consequence, you can run all the Bacula daemons
for these tests as non-root. Please note, in production, your File daemon(s)
must run as root. See the Security chapter for more information on this
subject.

The general flow of running Bacula is:

1. cd <install-directory>

2. Start the Database (if using MySQL or PostgreSQL)

3. Start the Daemons with ./bacula start

4. Start the Console program to interact with the Director

5. Run a job

6. When the Volume fills, unmount the Volume, if it is a tape, label a
new one, and continue running. In this chapter, we will write only to
disk files so you won’t need to worry about tapes for the moment.

71

72 CHAPTER 9. A BRIEF TUTORIAL

7. Test recovering some files from the Volume just written to ensure the
backup is good and that you know how to recover. Better test before
disaster strikes

8. Add a second client.

Each of these steps is described in more detail below.

9.1 Before Running Bacula

Before running Bacula for the first time in production, we recommend that
you run the test command in the btape program as described in the
Utility Program Chapter of this manual. This will help ensure that Bac-
ula functions correctly with your tape drive. If you have a modern HP,
Sony, or Quantum DDS or DLT tape drive running on Linux or Solaris, you
can probably skip this test as Bacula is well tested with these drives and
systems. For all other cases, you are strongly encouraged to run the test
before continuing. btape also has a fill command that attempts to dupli-
cate what Bacula does when filling a tape and writing on the next tape.
You should consider trying this command as well, but be forewarned, it can
take hours (about four hours on my drive) to fill a large capacity tape.

9.2 Starting the Database

If you are using MySQL or PostgreSQL as the Bacula database, you should
start it before you attempt to run a job to avoid getting error messages from
Bacula when it starts. The scripts startmysql and stopmysql are what I
(Kern) use to start and stop my local MySQL. Note, if you are using SQLite,
you will not want to use startmysql or stopmysql. If you are running this
in production, you will probably want to find some way to automatically
start MySQL or PostgreSQL after each system reboot.

If you are using SQLite (i.e. you specified the --with-sqlite=xxx option on
the ./configure command, you need do nothing. SQLite is automatically
started by Bacula.

9.3. STARTING THE DAEMONS 73

9.3 Starting the Daemons

Assuming you have built from source or have installed the rpms, to start
the three daemons, from your installation directory, simply enter:

./bacula start

The bacula script starts the Storage daemon, the File daemon, and the
Director daemon, which all normally run as daemons in the background.
If you are using the autostart feature of Bacula, your daemons will either
be automatically started on reboot, or you can control them individually
with the files bacula-dir, bacula-fd, and bacula-sd, which are usually
located in /etc/init.d, though the actual location is system dependent.
Some distributions may do this differently.

Note, on Windows, currently only the File daemon is ported, and it must
be started differently. Please see the Windows Version of Bacula Chapter
of this manual.

The rpm packages configure the daemons to run as user=root and
group=bacula. The rpm installation also creates the group bacula if it does
not exist on the system. Any users that you add to the group bacula will
have access to files created by the daemons. To disable or alter this behavior
edit the daemon startup scripts:

• /etc/bacula/bacula

• /etc/init.d/bacula-dir

• /etc/init.d/bacula-sd

• /etc/init.d/bacula-fd

and then restart as noted above.

The installation chapter of this manual explains how you can install scripts
that will automatically restart the daemons when the system starts.

9.4 Using the Director to Query and Start Jobs

To communicate with the director and to query the state of Bacula or run
jobs, from the top level directory, simply enter:

74 CHAPTER 9. A BRIEF TUTORIAL

./bconsole

Alternatively to running the command line console, if you have GNOME
installed and used the --enable-gnome on the configure command, you
may use the GNOME Console program:

./gnome-console

Another possibility is to run the wxWidgets program wx-console.

For simplicity, here we will describe only the ./bconsole program. Most
of what is described here applies equally well to ./gnome-console and to
wx-console

The ./bconsole runs the Bacula Console program, which connects to the
Director daemon. Since Bacula is a network program, you can run the
Console program anywhere on your network. Most frequently, however, one
runs it on the same machine as the Director. Normally, the Console program
will print something similar to the following:

[kern@polymatou bin]$./bconsole

Connecting to Director lpmatou:9101

1000 OK: HeadMan Version: 1.30 (28 April 2003)

*

the asterisk is the console command prompt.

Type help to see a list of available commands:

*help

Command Description

======= ===========

add add media to a pool

autodisplay autodisplay [on/off] -- console messages

automount automount [on/off] -- after label

cancel cancel job=nnn -- cancel a job

create create DB Pool from resource

delete delete [pool=<pool-name> | media volume=<volume-name>]

estimate performs FileSet estimate debug=1 give full listing

exit exit = quit

help print this command

label label a tape

list list [pools | jobs | jobtotals | media <pool> |

files jobid=<nn>]; from catalog

llist full or long list like list command

messages messages

mount mount <storage-name>

prune prune expired records from catalog

9.5. RUNNING A JOB 75

purge purge records from catalog

query query catalog

quit quit

relabel relabel a tape

release release <storage-name>

restore restore files

run run <job-name>

setdebug sets debug level

show show (resource records) [jobs | pools | ... | all]

sqlquery use SQL to query catalog

status status [storage | client]=<name>

time print current time

unmount unmount <storage-name>

update update Volume or Pool

use use catalog xxx

var does variable expansion

version print Director version

wait wait until no jobs are running

*

Details of the console program’s commands are explained in the
Console Chapter of this manual.

9.5 Running a Job

At this point, we assume you have done the following:

• Configured Bacula with ./configure --your-options

• Built Bacula using make

• Installed Bacula using make install

• Have created your database with, for example, ./cre-
ate sqlite database

• Have created the Bacula database tables with,
./make bacula tables

• Have possibly edited your bacula-dir.conf file to personalize it a bit.
BE CAREFUL! if you change the Director’s name or password, you
will need to make similar modifications in the other .conf files. For the
moment it is probably better to make no changes.

• You have started Bacula with ./bacula start

• You have invoked the Console program with ./bconsole

76 CHAPTER 9. A BRIEF TUTORIAL

Furthermore, we assume for the moment you are using the default configu-
ration files.

At this point, enter the following command:

show filesets

and you should get something similar to:

FileSet: name=Full Set

O M

N

I /home/kern/bacula/regress/build

N

E /proc

E /tmp

E /.journal

E /.fsck

N

FileSet: name=Catalog

O M

N

I /home/kern/bacula/regress/working/bacula.sql

N

This is a pre-defined FileSet that will backup the Bacula source directory.
The actual directory names printed should correspond to your system con-
figuration. For testing purposes, we have chosen a directory of moderate size
(about 40 Megabytes) and complexity without being too big. The FileSet
Catalog is used for backing up Bacula’s catalog and is not of interest to
us for the moment. The I entries are the files or directories that will be
included in the backup and the E are those that will be excluded, and the
O entries are the options specified for the FileSet. You can change what is
backed up by editing bacula-dir.conf and changing the File = line in the
FileSet resource.

Now is the time to run your first backup job. We are going to backup your
Bacula source directory to a File Volume in your /tmp directory just to
show you how easy it is. Now enter:

status dir

and you should get the following output:

9.5. RUNNING A JOB 77

rufus-dir Version: 1.30 (28 April 2003)

Daemon started 28-Apr-2003 14:03, 0 Jobs run.

Console connected at 28-Apr-2003 14:03

No jobs are running.

Level Type Scheduled Name

===

Incremental Backup 29-Apr-2003 01:05 Client1

Full Backup 29-Apr-2003 01:10 BackupCatalog

====

where the times and the Director’s name will be different according to your
setup. This shows that an Incremental job is scheduled to run for the Job
Client1 at 1:05am and that at 1:10, a BackupCatalog is scheduled to run.
Note, you should probably change the name Client1 to be the name of your
machine, if not, when you add additional clients, it will be very confusing.
For my real machine, I use Rufus rather than Client1 as in this example.

Now enter:

status client

and you should get something like:

The defined Client resources are:

1: rufus-fd

Item 1 selected automatically.

Connecting to Client rufus-fd at rufus:8102

rufus-fd Version: 1.30 (28 April 2003)

Daemon started 28-Apr-2003 14:03, 0 Jobs run.

Director connected at: 28-Apr-2003 14:14

No jobs running.

====

In this case, the client is named rufus-fd your name will be different, but the
line beginning with rufus-fd Version ... is printed by your File daemon,
so we are now sure it is up and running.

Finally do the same for your Storage daemon with:

status storage

and you should get:

The defined Storage resources are:

78 CHAPTER 9. A BRIEF TUTORIAL

1: File

Item 1 selected automatically.

Connecting to Storage daemon File at rufus:8103

rufus-sd Version: 1.30 (28 April 2003)

Daemon started 28-Apr-2003 14:03, 0 Jobs run.

Device /tmp is not open.

No jobs running.

====

You will notice that the default Storage daemon device is named File and
that it will use device /tmp, which is not currently open.

Now, let’s actually run a job with:

run

you should get the following output:

Using default Catalog name=MyCatalog DB=bacula

A job name must be specified.

The defined Job resources are:

1: Client1

2: BackupCatalog

3: RestoreFiles

Select Job resource (1-3):

Here, Bacula has listed the three different Jobs that you can run, and you
should choose number 1 and type enter, at which point you will get:

Run Backup job

JobName: Client1

FileSet: Full Set

Level: Incremental

Client: rufus-fd

Storage: File

Pool: Default

When: 2003-04-28 14:18:57

OK to run? (yes/mod/no):

At this point, take some time to look carefully at what is printed and under-
stand it. It is asking you if it is OK to run a job named Client1 with FileSet
Full Set (we listed above) as an Incremental job on your Client (your client
name will be different), and to use Storage File and Pool Default, and
finally, it wants to run it now (the current time should be displayed by your
console).

9.5. RUNNING A JOB 79

Here we have the choice to run (yes), to modify one or more of the above
parameters (mod), or to not run the job (no). Please enter yes, at which
point you should immediately get the command prompt (an asterisk). If you
wait a few seconds, then enter the command messages you will get back
something like:

28-Apr-2003 14:22 rufus-dir: Last FULL backup time not found. Doing

FULL backup.

28-Apr-2003 14:22 rufus-dir: Start Backup JobId 1,

Job=Client1.2003-04-28_14.22.33

28-Apr-2003 14:22 rufus-sd: Job Client1.2003-04-28_14.22.33 waiting.

Cannot find any appendable volumes.

Please use the "label" command to create a new Volume for:

Storage: FileStorage

Media type: File

Pool: Default

The first message, indicates that no previous Full backup was done, so Bac-
ula is upgrading our Incremental job to a Full backup (this is normal). The
second message indicates that the job started with JobId 1., and the third
message tells us that Bacula cannot find any Volumes in the Pool for writing
the output. This is normal because we have not yet created (labeled) any
Volumes. Bacula indicates to you all the details of the volume it needs.

At this point, the job is BLOCKED waiting for a Volume. You can check
this if you want by doing a status dir. In order to continue, we must create
a Volume that Bacula can write on. We do so with:

label

and Bacula will print:

The defined Storage resources are:

1: File

Item 1 selected automatically.

Enter new Volume name:

at which point, you should enter some name beginning with a letter and
containing only letters and numbers (period, hyphen, and underscore) are
also permitted. For example, enter TestVolume001, and you should get
back:

Defined Pools:

80 CHAPTER 9. A BRIEF TUTORIAL

1: Default

Item 1 selected automatically.

Connecting to Storage daemon File at rufus:8103 ...

Sending label command for Volume "TestVolume001" Slot 0 ...

3000 OK label. Volume=TestVolume001 Device=/tmp

Catalog record for Volume "TestVolume002", Slot 0 successfully created.

Requesting mount FileStorage ...

3001 OK mount. Device=/tmp

Finally, enter messages and you should get something like:

28-Apr-2003 14:30 rufus-sd: Wrote label to prelabeled Volume

"TestVolume001" on device /tmp

28-Apr-2003 14:30 rufus-dir: Bacula 1.30 (28Apr03): 28-Apr-2003 14:30

JobId: 1

Job: Client1.2003-04-28_14.22.33

FileSet: Full Set

Backup Level: Full

Client: rufus-fd

Start time: 28-Apr-2003 14:22

End time: 28-Apr-2003 14:30

Files Written: 1,444

Bytes Written: 38,988,877

Rate: 81.2 KB/s

Software Compression: None

Volume names(s): TestVolume001

Volume Session Id: 1

Volume Session Time: 1051531381

Last Volume Bytes: 39,072,359

FD termination status: OK

SD termination status: OK

Termination: Backup OK

28-Apr-2003 14:30 rufus-dir: Begin pruning Jobs.

28-Apr-2003 14:30 rufus-dir: No Jobs found to prune.

28-Apr-2003 14:30 rufus-dir: Begin pruning Files.

28-Apr-2003 14:30 rufus-dir: No Files found to prune.

28-Apr-2003 14:30 rufus-dir: End auto prune.

If you don’t see the output immediately, you can keep entering messages
until the job terminates, or you can enter, autodisplay on and your mes-
sages will automatically be displayed as soon as they are ready.

If you do an ls -l of your /tmp directory, you will see that you have the
following item:

-rw-r----- 1 kern kern 39072153 Apr 28 14:30 TestVolume001

This is the file Volume that you just wrote and it contains all the data of
the job just run. If you run additional jobs, they will be appended to this

9.6. RESTORING YOUR FILES 81

Volume unless you specify otherwise.

You might ask yourself if you have to label all the Volumes that Bacula is
going to use. The answer for disk Volumes, like the one we used, is no. It
is possible to have Bacula automatically label volumes. For tape Volumes,
you will most likely have to label each of the Volumes you want to use.

If you would like to stop here, you can simply enter quit in the Console
program, and you can stop Bacula with ./bacula stop. To clean up, simply
delete the file /tmp/TestVolume001, and you should also re-initialize
your database using:

./drop_bacula_tables

./make_bacula_tables

Please note that this will erase all information about the previous jobs that
have run, and that you might want to do it now while testing but that
normally you will not want to re-initialize your database.

If you would like to try restoring the files that you just backed up, read the
following section.

9.6 Restoring Your Files

If you have run the default configuration and the save of the Bacula source
code as demonstrated above, you can restore the backed up files in the
Console program by entering:

restore all

where you will get:

First you select one or more JobIds that contain files

to be restored. You will be presented several methods

of specifying the JobIds. Then you will be allowed to

select which files from those JobIds are to be restored.

To select the JobIds, you have the following choices:

1: List last 20 Jobs run

2: List Jobs where a given File is saved

3: Enter list of comma separated JobIds to select

4: Enter SQL list command

5: Select the most recent backup for a client

82 CHAPTER 9. A BRIEF TUTORIAL

6: Select backup for a client before a specified time

7: Enter a list of files to restore

8: Enter a list of files to restore before a specified time

9: Find the JobIds of the most recent backup for a client

10: Find the JobIds for a backup for a client before a specified time

11: Enter a list of directories to restore for found JobIds

12: Cancel

Select item: (1-12):

As you can see, there are a number of options, but for the current demon-
stration, please enter 5 to do a restore of the last backup you did, and you
will get the following output:

Defined Clients:

1: rufus-fd

Item 1 selected automatically.

The defined FileSet resources are:

1: 1 Full Set 2003-04-28 14:22:33

Item 1 selected automatically.

+-------+-------+----------+---------------------+---------------+

| JobId | Level | JobFiles | StartTime | VolumeName |

+-------+-------+----------+---------------------+---------------+

| 1 | F | 1444 | 2003-04-28 14:22:33 | TestVolume002 |

+-------+-------+----------+---------------------+---------------+

You have selected the following JobId: 1

Building directory tree for JobId 1 ...

1 Job inserted into the tree and marked for extraction.

The defined Storage resources are:

1: File

Item 1 selected automatically.

You are now entering file selection mode where you add and

remove files to be restored. All files are initially added.

Enter "done" to leave this mode.

cwd is: /

$

where I have truncated the listing on the right side to make it more read-
able. As you can see by starting at the top of the listing, Bacula knows what
client you have, and since there was only one, it selected it automatically,
likewise for the FileSet. Then Bacula produced a listing containing all the
jobs that form the current backup, in this case, there is only one, and the
Storage daemon was also automatically chosen. Bacula then took all the
files that were in Job number 1 and entered them into a directory tree
(a sort of in memory representation of your filesystem). At this point, you
can use the cd and ls ro dir commands to walk up and down the direc-
tory tree and view what files will be restored. For example, if I enter cd
/home/kern/bacula/bacula-1.30 and then enter dir I will get a listing
of all the files in the Bacula source directory. On your system, the path will

9.6. RESTORING YOUR FILES 83

be somewhat different. For more information on this, please refer to the
Restore Command Chapter of this manual for more details.

To exit this mode, simply enter:

done

and you will get the following output:

Bootstrap records written to

/home/kern/bacula/testbin/working/restore.bsr

The restore job will require the following Volumes:

TestVolume001

1444 files selected to restore.

Run Restore job

JobName: RestoreFiles

Bootstrap: /home/kern/bacula/testbin/working/restore.bsr

Where: /tmp/bacula-restores

Replace: always

FileSet: Full Set

Client: rufus-fd

Storage: File

JobId: *None*

When: 2005-04-28 14:53:54

OK to run? (yes/mod/no):

If you answer yes your files will be restored to /tmp/bacula-restores.
If you want to restore the files to their original locations, you must use the
mod option and explicitly set Where: to nothing (or to /). We recommend
you go ahead and answer yes and after a brief moment, enter messages,
at which point you should get a listing of all the files that were restored as
well as a summary of the job that looks similar to this:

28-Apr-2005 14:56 rufus-dir: Bacula 1.30 (28Apr03): 28-Apr-2003 14:56

JobId: 2

Job: RestoreFiles.2005-04-28_14.56.06

Client: rufus-fd

Start time: 28-Apr-2005 14:56

End time: 28-Apr-2005 14:56

Files Restored: 1,444

Bytes Restored: 38,816,381

Rate: 9704.1 KB/s

FD termination status: OK

Termination: Restore OK

28-Apr-2005 14:56 rufus-dir: Begin pruning Jobs.

28-Apr-2005 14:56 rufus-dir: No Jobs found to prune.

84 CHAPTER 9. A BRIEF TUTORIAL

28-Apr-2005 14:56 rufus-dir: Begin pruning Files.

28-Apr-2005 14:56 rufus-dir: No Files found to prune.

28-Apr-2005 14:56 rufus-dir: End auto prune.

After exiting the Console program, you can examine the files in
/tmp/bacula-restores, which will contain a small directory tree with all
the files. Be sure to clean up at the end with:

rm -rf /tmp/bacula-restore

9.7 Quitting the Console Program

Simply enter the command quit.

9.8 Adding a Second Client

If you have gotten the example shown above to work on your system, you
may be ready to add a second Client (File daemon). That is you have a
second machine that you would like backed up. The only part you need in-
stalled on the other machine is the binary bacula-fd (or bacula-fd.exe for
Windows) and its configuration file bacula-fd.conf. You can start with the
same bacula-fd.conf file that you are currently using and make one minor
modification to it to create the conf file for your second client. Change the
File daemon name from whatever was configured, rufus-fd in the example
above, but your system will have a different name. The best is to change it
to the name of your second machine. For example:

...

#

"Global" File daemon configuration specifications

#

FileDaemon { # this is me

Name = rufus-fd

FDport = 9102 # where we listen for the director

WorkingDirectory = /home/kern/bacula/working

Pid Directory = /var/run

}

...

would become:

9.8. ADDING A SECOND CLIENT 85

...

#

"Global" File daemon configuration specifications

#

FileDaemon { # this is me

Name = matou-fd

FDport = 9102 # where we listen for the director

WorkingDirectory = /home/kern/bacula/working

Pid Directory = /var/run

}

...

where I show just a portion of the file and have changed rufus-fd to matou-
fd. The names you use are your choice. For the moment, I recommend you
change nothing else. Later, you will want to change the password.

Now you should install that change on your second machine. Then you need
to make some additions to your Director’s configuration file to define the
new File daemon or Client. Starting from our original example which should
be installed on your system, you should add the following lines (essentially
copies of the existing data but with the names changed) to your Director’s
configuration file bacula-dir.conf.

#

Define the main nightly save backup job

By default, this job will back up to disk in /tmp

Job {

Name = "Matou"

Type = Backup

Client = matou-fd

FileSet = "Full Set"

Schedule = "WeeklyCycle"

Storage = File

Messages = Standard

Pool = Default

Write Bootstrap = "/home/kern/bacula/working/matou.bsr"

}

Client (File Services) to backup

Client {

Name = matou-fd

Address = matou

FDPort = 9102

Catalog = MyCatalog

Password = "xxxxx" # password for

File Retention = 30d # 30 days

Job Retention = 180d # six months

AutoPrune = yes # Prune expired Jobs/Files

}

86 CHAPTER 9. A BRIEF TUTORIAL

Then make sure that the Address parameter in the Storage resource is set
to the fully qualified domain name and not to something like ”localhost”.
The address specified is sent to the File daemon (client) and it must be a
fully qualified domain name. If you pass something like ”localhost” it will
not resolve correctly and will result in a time out when the File daemon fails
to connect to the Storage daemon.

That is all that is necessary. I copied the existing resource to create a
second Job (Matou) to backup the second client (matou-fd). It has the
name Matou, the Client is named matou-fd, and the bootstrap file name
is changed, but everything else is the same. This means that Matou will be
backed up on the same schedule using the same set of tapes. You may want
to change that later, but for now, let’s keep it simple.

The second change was to add a new Client resource that defines matou-fd
and has the correct address matou, but in real life, you may need a fully
qualified domain name or an IP address. I also kept the password the same
(shown as xxxxx for the example).

At this point, if you stop Bacula and restart it, and start the Client on
the other machine, everything will be ready, and the prompts that you saw
above will now include the second machine.

To make this a real production installation, you will possibly want to use
different Pool, or a different schedule. It is up to you to customize. In any
case, you should change the password in both the Director’s file and the
Client’s file for additional security.

For some important tips on changing names and passwords, and a diagram
of what names and passwords must match, please see Authorization Errors
in the FAQ chapter of this manual.

9.9 When The Tape Fills

If you have scheduled your job, typically nightly, there will come a time
when the tape fills up and Bacula cannot continue. In this case, Bacula
will send you a message similar to the following:

rufus-sd: block.c:337 === Write error errno=28: ERR=No space left

on device

This indicates that Bacula got a write error because the tape is full. Bacula
will then search the Pool specified for your Job looking for an appendable

9.9. WHEN THE TAPE FILLS 87

volume. In the best of all cases, you will have properly set your Reten-
tion Periods and you will have all your tapes marked to be Recycled, and
Bacula will automatically recycle the tapes in your pool requesting and
overwriting old Volumes. For more information on recycling, please see the
Recycling chapter of this manual. If you find that your Volumes were not
properly recycled (usually because of a configuration error), please see the
Manually Recycling Volumes section of the Recycling chapter.

If like me, you have a very large set of Volumes and you label them with the
date the Volume was first writing, or you have not set up your Retention
periods, Bacula will not find a tape in the pool, and it will send you a
message similar to the following:

rufus-sd: Job kernsave.2002-09-19.10:50:48 waiting. Cannot find any

appendable volumes.

Please use the "label" command to create a new Volume for:

Storage: SDT-10000

Media type: DDS-4

Pool: Default

Until you create a new Volume, this message will be repeated an hour later,
then two hours later, and so on doubling the interval each time up to a
maximum interval of one day.

The obvious question at this point is: What do I do now?

The answer is simple: first, using the Console program, close the tape drive
using the unmount command. If you only have a single drive, it will be
automatically selected, otherwise, make sure you release the one specified
on the message (in this case STD-10000).

Next, you remove the tape from the drive and insert a new blank tape. Note,
on some older tape drives, you may need to write an end of file mark (mt
-f /dev/nst0 weof) to prevent the drive from running away when Bacula
attempts to read the label.

Finally, you use the label command in the Console to write a label to the
new Volume. The label command will contact the Storage daemon to write
the software label, if it is successful, it will add the new Volume to the Pool,
then issue a mount command to the Storage daemon. See the previous
sections of this chapter for more details on labeling tapes.

The result is that Bacula will continue the previous Job writing the backup
to the new Volume.

88 CHAPTER 9. A BRIEF TUTORIAL

If you have a Pool of volumes and Bacula is cycling through them, instead
of the above message ”Cannot find any appendable volumes.”, Bacula may
ask you to mount a specific volume. In that case, you should attempt to
do just that. If you do not have the volume any more (for any of a number
of reasons), you can simply mount another volume from the same Pool,
providing it is appendable, and Bacula will use it. You can use the list
volumes command in the console program to determine which volumes are
appendable and which are not.

If like me, you have your Volume retention periods set correctly, but you
have no more free Volumes, you can relabel and reuse a Volume as follows:

• Do a list volumes in the Console and select the oldest Volume for
relabeling.

• If you have setup your Retention periods correctly, the Volume should
have VolStatus Purged.

• If the VolStatus is not set to Purged, you will need to purge the
database of Jobs that are written on that Volume. Do so by using the
command purge jobs volume in the Console. If you have multiple
Pools, you will be prompted for the Pool then enter the VolumeName
(or MediaId) when requested.

• Then simply use the relabel command to relabel the Volume.

To manually relabel the Volume use the following additional steps:

• To delete the Volume from the catalog use the delete volume com-
mand in the Console and select the VolumeName (or MediaId) to be
deleted.

• Use the unmount command in the Console to unmount the old tape.

• Physically relabel the old Volume that you deleted so that it can be
reused.

• Insert the old Volume in the tape drive.

• From a command line do: mt -f /dev/st0 rewind and mt -f
/dev/st0 weof, where you need to use the proper tape drive name
for your system in place of /dev/st0.

• Use the label command in the Console to write a new Bacula label
on your tape.

9.10. OTHER USEFUL CONSOLE COMMANDS 89

• Use the mount command in the Console if it is not automatically
done, so that Bacula starts using your newly labeled tape.

9.10 Other Useful Console Commands

status dir Print a status of all running jobs and jobs scheduled in the next
24 hours.

status The console program will prompt you to select a daemon type, then
will request the daemon’s status.

status jobid=nn Print a status of JobId nn if it is running. The Storage
daemon is contacted and requested to print a current status of the job
as well.

list pools List the pools defined in the Catalog (normally only Default is
used).

list media Lists all the media defined in the Catalog.

list jobs Lists all jobs in the Catalog that have run.

list jobid=nn Lists JobId nn from the Catalog.

list jobtotals Lists totals for all jobs in the Catalog.

list files jobid=nn List the files that were saved for JobId nn.

list jobmedia List the media information for each Job run.

messages Prints any messages that have been directed to the console.

unmount storage=storage-name Unmounts the drive associated with
the storage device with the name storage-name if the drive is not
currently being used. This command is used if you wish Bacula to free
the drive so that you can use it to label a tape.

mount storage=storage-name Causes the drive associated with the
storage device to be mounted again. When Bacula reaches the end
of a volume and requests you to mount a new volume, you must issue
this command after you have placed the new volume in the drive. In
effect, it is the signal needed by Bacula to know to start reading or
writing the new volume.

quit Exit or quit the console program.

Most of the commands given above, with the exception of list, will prompt
you for the necessary arguments if you simply enter the command name.

90 CHAPTER 9. A BRIEF TUTORIAL

9.11 Debug Daemon Output

If you want debug output from the daemons as they are running, start the
daemons from the install directory as follows:

./bacula start -d100

This can be particularly helpful if your daemons do not start correctly,
because direct daemon output to the console is normally directed to the
NULL device, but with the debug level greater than zero, the output will
be sent to the starting terminal.

To stop the three daemons, enter the following from the install directory:

./bacula stop

The execution of bacula stop may complain about pids not found. This is
OK, especially if one of the daemons has died, which is very rare.

To do a full system save, each File daemon must be running as root so that
it will have permission to access all the files. None of the other daemons
require root privileges. However, the Storage daemon must be able to open
the tape drives. On many systems, only root can access the tape drives.
Either run the Storage daemon as root, or change the permissions on the
tape devices to permit non-root access. MySQL and PostgreSQL can be
installed and run with any userid; root privilege is not necessary.

9.12 Patience When Starting Daemons or Mount-

ing Blank Tapes

When you start the Bacula daemons, the Storage daemon attempts to open
all defined storage devices and verify the currently mounted Volume (if con-
figured). Until all the storage devices are verified, the Storage daemon will
not accept connections from the Console program. If a tape was previously
used, it will be rewound, and on some devices this can take several minutes.
As a consequence, you may need to have a bit of patience when first con-
tacting the Storage daemon after starting the daemons. If you can see your
tape drive, once the lights stop flashing, the drive will be ready to be used.

The same considerations apply if you have just mounted a blank tape in
a drive such as an HP DLT. It can take a minute or two before the drive

9.13. DIFFICULTIES CONNECTING FROM THE FD TO THE SD 91

properly recognizes that the tape is blank. If you attempt to mount the tape
with the Console program during this recognition period, it is quite possible
that you will hang your SCSI driver (at least on my Red Hat Linux system).
As a consequence, you are again urged to have patience when inserting blank
tapes. Let the device settle down before attempting to access it.

9.13 Difficulties Connecting from the FD to the

SD

If you are having difficulties getting one or more of your File daemons to
connect to the Storage daemon, it is most likely because you have not used
a fully qualified domain name on the Address directive in the Director’s
Storage resource. That is the resolver on the File daemon’s machine (not
on the Director’s) must be able to resolve the name you supply into an
IP address. An example of an address that is guaranteed not to work:
localhost. An example that may work: megalon. An example that is
more likely to work: magalon.mydomain.com. On Win32 if you don’t
have a good resolver (often true on older Win98 systems), you might try
using an IP address in place of a name.

If your address is correct, then make sure that no other program is using
the port 9103 on the Storage daemon’s machine. The Bacula port number
are authorized by IANA, and should not be used by other programs, but
apparently some HP printers do use these port numbers. A netstat -a on
the Storage daemon’s machine can determine who is using the 9103 port
(used for FD to SD communications in Bacula).

9.14 Daemon Command Line Options

Each of the three daemons (Director, File, Storage) accepts a small set of
options on the command line. In general, each of the daemons as well as
the Console program accepts the following options:

-c <file> Define the file to use as a configuration file. The default is the
daemon name followed by .conf i.e. bacula-dir.conf for the Director,
bacula-fd.conf for the File daemon, and bacula-sd for the Storage
daemon.

-d nn Set the debug level to nn. Higher levels of debug cause more infor-
mation to be displayed on STDOUT concerning what the daemon is

92 CHAPTER 9. A BRIEF TUTORIAL

doing.

-f Run the daemon in the foreground. This option is needed to run the
daemon under the debugger.

-s Do not trap signals. This option is needed to run the daemon under the
debugger.

-t Read the configuration file and print any error messages, then immedi-
ately exit. Useful for syntax testing of new configuration files.

-v Be more verbose or more complete in printing error and informational
messages. Recommended.

-? Print the version and list of options.

The Director has the following additional Director specific option:

-r <job> Run the named job immediately. This is for debugging and
should not be used.

The File daemon has the following File daemon specific option:

-i Assume that the daemon is called from inetd or xinetd. In this case, the
daemon assumes that a connection has already been made and that it
is passed as STDIN. After the connection terminates the daemon will
exit.

The Storage daemon has no Storage daemon specific options.

The Console program has no console specific options.

9.15 Creating a Pool

Creating the Pool is automatically done when Bacula starts, so if you un-
derstand Pools, you can skip to the next section.

When you run a job, one of the things that Bacula must know is what
Volumes to use to backup the FileSet. Instead of specifying a Volume (tape)
directly, you specify which Pool of Volumes you want Bacula to consult when
it wants a tape for writing backups. Bacula will select the first available

9.16. LABELING YOUR VOLUMES 93

Volume from the Pool that is appropriate for the Storage device you have
specified for the Job being run. When a volume has filled up with data,
Bacula will change its VolStatus from Append to Full, and then Bacula
will use the next volume and so on. If no appendable Volume exists in the
Pool, the Director will attempt to recycle an old Volume, if there are still no
appendable Volumes available, Bacula will send a message requesting the
operator to create an appropriate Volume.

Bacula keeps track of the Pool name, the volumes contained in the Pool,
and a number of attributes of each of those Volumes.

When Bacula starts, it ensures that all Pool resource definitions have been
recorded in the catalog. You can verify this by entering:

list pools

to the console program, which should print something like the following:

*list pools

Using default Catalog name=MySQL DB=bacula

+--------+---------+---------+---------+----------+-------------+

| PoolId | Name | NumVols | MaxVols | PoolType | LabelFormat |

+--------+---------+---------+---------+----------+-------------+

| 1 | Default | 3 | 0 | Backup | * |

| 2 | File | 12 | 12 | Backup | File |

+--------+---------+---------+---------+----------+-------------+

*

If you attempt to create the same Pool name a second time, Bacula will
print:

Error: Pool Default already exists.

Once created, you may use the {\bf update} command to

modify many of the values in the Pool record.

9.16 Labeling Your Volumes

Bacula requires that each Volume contains a software label. There are sev-
eral strategies for labeling volumes. The one I use is to label them as they
are needed by Bacula using the console program. That is when Bacula
needs a new Volume, and it does not find one in the catalog, it will send

94 CHAPTER 9. A BRIEF TUTORIAL

me an email message requesting that I add Volumes to the Pool. I then
use the label command in the Console program to label a new Volume and
to define it in the Pool database, after which Bacula will begin writing on
the new Volume. Alternatively, I can use the Console relabel command to
relabel a Volume that is no longer used providing it has VolStatus Purged.

Another strategy is to label a set of volumes at the start, then use them as
Bacula requests them. This is most often done if you are cycling through
a set of tapes, for example using an autochanger. For more details on recy-
cling, please see the Automatic Volume Recycling chapter of this manual.

If you run a Bacula job, and you have no labeled tapes in the Pool, Bacula
will inform you, and you can create them ”on-the-fly” so to speak. In my
case, I label my tapes with the date, for example: DLT-18April02. See
below for the details of using the label command.

9.17 Labeling Volumes with the Console Program

Labeling volumes is normally done by using the console program.

1. ./bconsole

2. label

If Bacula complains that you cannot label the tape because it is already
labeled, simply unmount the tape using the unmount command in the
console, then physically mount a blank tape and re-issue the label com-
mand.

Since the physical storage media is different for each device, the label com-
mand will provide you with a list of the defined Storage resources such as
the following:

The defined Storage resources are:

1: File

2: 8mmDrive

3: DLTDrive

4: SDT-10000

Select Storage resource (1-4):

At this point, you should have a blank tape in the drive corresponding to
the Storage resource that you select.

9.17. LABELING VOLUMES WITH THE CONSOLE PROGRAM 95

It will then ask you for the Volume name.

Enter new Volume name:

If Bacula complains:

Media record for Volume xxxx already exists.

It means that the volume name xxxx that you entered already exists in the
Media database. You can list all the defined Media (Volumes) with the list
media command. Note, the LastWritten column has been truncated for
proper printing.

+---------------+---------+--------+----------------+-----/~/-+------------+-----+

| VolumeName | MediaTyp| VolStat| VolBytes | LastWri | VolReten | Recy|

+---------------+---------+--------+----------------+---------+------------+-----+

| DLTVol0002 | DLT8000 | Purged | 56,128,042,217 | 2001-10 | 31,536,000 | 0 |

| DLT-07Oct2001 | DLT8000 | Full | 56,172,030,586 | 2001-11 | 31,536,000 | 0 |

| DLT-08Nov2001 | DLT8000 | Full | 55,691,684,216 | 2001-12 | 31,536,000 | 0 |

| DLT-01Dec2001 | DLT8000 | Full | 55,162,215,866 | 2001-12 | 31,536,000 | 0 |

| DLT-28Dec2001 | DLT8000 | Full | 57,888,007,042 | 2002-01 | 31,536,000 | 0 |

| DLT-20Jan2002 | DLT8000 | Full | 57,003,507,308 | 2002-02 | 31,536,000 | 0 |

| DLT-16Feb2002 | DLT8000 | Full | 55,772,630,824 | 2002-03 | 31,536,000 | 0 |

| DLT-12Mar2002 | DLT8000 | Full | 50,666,320,453 | 1970-01 | 31,536,000 | 0 |

| DLT-27Mar2002 | DLT8000 | Full | 57,592,952,309 | 2002-04 | 31,536,000 | 0 |

| DLT-15Apr2002 | DLT8000 | Full | 57,190,864,185 | 2002-05 | 31,536,000 | 0 |

| DLT-04May2002 | DLT8000 | Full | 60,486,677,724 | 2002-05 | 31,536,000 | 0 |

| DLT-26May02 | DLT8000 | Append | 1,336,699,620 | 2002-05 | 31,536,000 | 1 |

+---------------+---------+--------+----------------+-----/~/-+------------+-----+

Once Bacula has verified that the volume does not already exist, it will
prompt you for the name of the Pool in which the Volume (tape) is to be
created. If there is only one Pool (Default), it will be automatically selected.

If the tape is successfully labeled, a Volume record will also be created in the
Pool. That is the Volume name and all its other attributes will appear when
you list the Pool. In addition, that Volume will be available for backup if
the MediaType matches what is requested by the Storage daemon.

When you labeled the tape, you answered very few questions about it –
principally the Volume name, and perhaps the Slot. However, a Volume
record in the catalog database (internally known as a Media record) contains
quite a few attributes. Most of these attributes will be filled in from the
default values that were defined in the Pool (i.e. the Pool holds most of the
default attributes used when creating a Volume).

96 CHAPTER 9. A BRIEF TUTORIAL

It is also possible to add media to the pool without physically labeling the
Volumes. This can be done with the add command. For more information,
please see the Console Chapter of this manual.

Chapter 10

Customizing the
Configuration Files

When each of the Bacula programs starts, it reads a configuration file speci-
fied on the command line or the default bacula-dir.conf, bacula-fd.conf,
bacula-sd.conf, or console.conf for the Director daemon, the File dae-
mon, the Storage daemon, and the Console program respectively.

Each service (Director, Client, Storage, Console) has its own configuration
file containing a set of Resource definitions. These resources are very similar
from one service to another, but may contain different directives (records)
depending on the service. For example, in the Director’s resource file, the
Director resource defines the name of the Director, a number of global
Director parameters and his password. In the File daemon configuration
file, the Director resource specifies which Directors are permitted to use
the File daemon.

Before running Bacula for the first time, you must customize the configura-
tion files for each daemon. Default configuration files will have been created
by the installation process, but you will need to modify them to correspond
to your system. An overall view of the resources can be seen in the following:

97

98 CHAPTER 10. CUSTOMIZING THE CONFIGURATION FILES

(thanks to Aristides Maniatis for the above graphic)

10.1 Resource Directive Format

Although, you won’t need to know the details of all the directives a basic
knowledge of Bacula resource directives is essential. Each directive contained
within the resource (within the braces) is composed of a keyword followed
by an equal sign (=) followed by one or more values. The keywords must be

10.1. RESOURCE DIRECTIVE FORMAT 99

one of the known Bacula resource record keywords, and it may be composed
of upper or lower case characters and spaces.

Each resource definition MUST contain a Name directive, and may option-
ally contain a Description directive. The Name directive is used to uniquely
identify the resource. The Description directive is (will be) used during
display of the Resource to provide easier human recognition. For example:

Director {

Name = "MyDir"

Description = "Main Bacula Director"

WorkingDirectory = "$HOME/bacula/bin/working"

}

Defines the Director resource with the name ”MyDir” and a working direc-
tory $HOME/bacula/bin/working. In general, if you want spaces in a name
to the right of the first equal sign (=), you must enclose that name within
double quotes. Otherwise quotes are not generally necessary because once
defined, quoted strings and unquoted strings are all equal.

10.1.1 Comments

When reading the configuration file, blank lines are ignored and everything
after a hash sign (#) until the end of the line is taken to be a comment.
A semicolon (;) is a logical end of line, and anything after the semicolon is
considered as the next statement. If a statement appears on a line by itself,
a semicolon is not necessary to terminate it, so generally in the examples in
this manual, you will not see many semicolons.

10.1.2 Upper and Lower Case and Spaces

Case (upper/lower) and spaces are totally ignored in the resource directive
keywords (the part before the equal sign).

Within the keyword (i.e. before the equal sign), spaces are not significant.
Thus the keywords: name, Name, and N a m e are all identical.

Spaces after the equal sign and before the first character of the value are
ignored.

In general, spaces within a value are significant (not ignored), and if the
value is a name, you must enclose the name in double quotes for the spaces

100 CHAPTER 10. CUSTOMIZING THE CONFIGURATION FILES

to be accepted. Names may contain up to 127 characters. Currently, a name
may contain any ASCII character. Within a quoted string, any character
following a backslash (\) is taken as itself (handy for inserting backslashes
and double quotes (”).

Please note, however, that Bacula resource names as well as certain other
names (e.g. Volume names) must contain only letters (including ISO ac-
cented letters), numbers, and a few special characters (space, underscore,
...). All other characters and punctuation are invalid.

10.1.3 Including other Configuration Files

If you wish to break your configuration file into smaller pieces, you can do
so by including other files using the syntax @filename where filename is
the full path and filename of another file. The @filename specification can
be given anywhere a primitive token would appear.

10.1.4 Recognized Primitive Data Types

When parsing the resource directives, Bacula classifies the data according
to the types listed below. The first time you read this, it may appear a bit
overwhelming, but in reality, it is all pretty logical and straightforward.

name A keyword or name consisting of alphanumeric characters, including
the hyphen, underscore, and dollar characters. The first character of a
name must be a letter. A name has a maximum length currently set
to 127 bytes. Typically keywords appear on the left side of an equal
(i.e. they are Bacula keywords – i.e. Resource names or directive
names). Keywords may not be quoted.

name-string A name-string is similar to a name, except that the name
may be quoted and can thus contain additional characters including
spaces. Name strings are limited to 127 characters in length. Name
strings are typically used on the right side of an equal (i.e. they are
values to be associated with a keyword.

string A quoted string containing virtually any character including spaces,
or a non-quoted string. A string may be of any length. Strings are
typically values that correspond to filenames, directories, or system
command names. A backslash (\) turns the next character into itself,
so to include a double quote in a string, you precede the double quote
with a backslash. Likewise to include a backslash.

10.1. RESOURCE DIRECTIVE FORMAT 101

directory A directory is either a quoted or non-quoted string. A directory
will be passed to your standard shell for expansion when it is scanned.
Thus constructs such as $HOME are interpreted to be their correct
values.

password This is a Bacula password and it is stored internally in MD5
hashed format.

integer A 32 bit integer value. It may be positive or negative.

positive integer A 32 bit positive integer value.

long integer A 64 bit integer value. Typically these are values such as
bytes that can exceed 4 billion and thus require a 64 bit value.

yes—no Either a yes or a no.

size A size specified as bytes. Typically, this is a floating point scientific
input format followed by an optional modifier. The floating point
input is stored as a 64 bit integer value. If a modifier is present, it
must immediately follow the value with no intervening spaces. The
following modifiers are permitted:

k 1,024 (kilobytes)

kb 1,000 (kilobytes)

m 1,048,576 (megabytes)

mb 1,000,000 (megabytes)

g 1,073,741,824 (gigabytes)

gb 1,000,000,000 (gigabytes)

time A time or duration specified in seconds. The time is stored internally
as a 64 bit integer value, but it is specified in two parts: a number part
and a modifier part. The number can be an integer or a floating point
number. If it is entered in floating point notation, it will be rounded
to the nearest integer. The modifier is mandatory and follows the
number part, either with or without intervening spaces. The following
modifiers are permitted:

seconds seconds

minutes minutes (60 seconds)

hours hours (3600 seconds)

days days (3600*24 seconds)

weeks weeks (3600*24*7 seconds)

102 CHAPTER 10. CUSTOMIZING THE CONFIGURATION FILES

months months (3600*24*30 seconds)

quarters quarters (3600*24*91 seconds)

years years (3600*24*365 seconds)

Any abbreviation of these modifiers is also permitted (i.e. seconds
may be specified as sec or s. A specification of m will be taken as
months.

The specification of a time may have as many number/modifier parts
as you wish. For example:

1 week 2 days 3 hours 10 mins

1 month 2 days 30 sec

are valid date specifications.

10.2 Resource Types

The following table lists all current Bacula resource types. It shows what
resources must be defined for each service (daemon). The default config-
uration files will already contain at least one example of each permitted
resource, so you need not worry about creating all these kinds of resources
from scratch.

Resource Director Client Storage Console

Autochanger No No Yes No

Catalog Yes No No No

Client Yes Yes No No

Console Yes No No Yes

Device No No Yes No

Director Yes Yes Yes Yes

FileSet Yes No No No

Job Yes No No No

JobDefs Yes No No No

Message Yes Yes Yes No

Pool Yes No No No

Schedule Yes No No No

Storage Yes No Yes No

10.3. NAMES, PASSWORDS AND AUTHORIZATION 103

10.3 Names, Passwords and Authorization

In order for one daemon to contact another daemon, it must authorize itself
with a password. In most cases, the password corresponds to a particular
name, so both the name and the password must match to be authorized.

The default configuration files are automatically defined for correct autho-
rization with random passwords. If you add to or modify these files, you
will need to take care to keep them consistent.

Here is sort of a picture of what names/passwords in which files/Resources
must match up:

In the left column, you will find the Director, Storage, and Client resources,
with their names and passwords – these are all in bacula-dir.conf. In the
right column are where the corresponding values should be found in the
Console, Storage daemon (SD), and File daemon (FD) configuration files.

Please note that the Address, fd-sd, that appears in the Storage resource

104 CHAPTER 10. CUSTOMIZING THE CONFIGURATION FILES

of the Director, preceded with and asterisk in the above example, is passed
to the File daemon in symbolic form. The File daemon then resolves it to
an IP address. For this reason, you must use either an IP address or a fully
qualified name. A name such as localhost, not being a fully qualified name,
will resolve in the File daemon to the localhost of the File daemon, which is
most likely not what is desired. The password used for the File daemon to
authorize with the Storage daemon is a temporary password unique to each
Job created by the daemons and is not specified in any .conf file.

10.4 Detailed Information for each Daemon

The details of each Resource and the directives permitted therein are de-
scribed in the following chapters.

The following configuration files must be defined:

• Console – to define the resources for the Console program (user inter-
face to the Director). It defines which Directors are available so that
you may interact with them.

• Director – to define the resources necessary for the Director. You define
all the Clients and Storage daemons that you use in this configuration
file.

• Client – to define the resources for each client to be backed up. That
is, you will have a separate Client resource file on each machine that
runs a File daemon.

• Storage – to define the resources to be used by each Storage daemon.
Normally, you will have a single Storage daemon that controls your
tape drive or tape drives. However, if you have tape drives on several
machines, you will have at least one Storage daemon per machine.

Chapter 11

Configuring the Director

Of all the configuration files needed to run Bacula, the Director’s is the
most complicated, and the one that you will need to modify the most often
as you add clients or modify the FileSets.

For a general discussion of configuration files and resources including the
data types recognized by Bacula. Please see the Configuration chapter of
this manual.

11.1 Director Resource Types

Director resource type may be one of the following:

Job, JobDefs, Client, Storage, Catalog, Schedule, FileSet, Pool, Director, or
Messages. We present them here in the most logical order for defining them:

• Director – to define the Director’s name and its access password used
for authenticating the Console program. Only a single Director re-
source definition may appear in the Director’s configuration file. If
you have either /dev/random or bc on your machine, Bacula will
generate a random password during the configuration process, other-
wise it will be left blank.

• Job – to define the backup/restore Jobs and to tie together the Client,
FileSet and Schedule resources to be used for each Job.

• JobDefs – optional resource for providing defaults for Job resources.

105

106 CHAPTER 11. CONFIGURING THE DIRECTOR

• Schedule – to define when a Job is to be automatically run by Bacula’s
internal scheduler.

• FileSet – to define the set of files to be backed up for each Client.

• Client – to define what Client is to be backed up.

• Storage – to define on what physical device the Volumes should be
mounted.

• Pool – to define the pool of Volumes that can be used for a particular
Job.

• Catalog – to define in what database to keep the list of files and the
Volume names where they are backed up.

• Messages – to define where error and information messages are to be
sent or logged.

11.2 The Director Resource

The Director resource defines the attributes of the Directors running on
the network. In the current implementation, there is only a single Director
resource, but the final design will contain multiple Directors to maintain
index and media database redundancy.

Director Start of the Director resource. One and only one director resource
must be supplied.

Name = <name> The director name used by the system administrator.
This directive is required.

Description = <text> The text field contains a description of the Direc-
tor that will be displayed in the graphical user interface. This directive
is optional.

Password = <UA-password> Specifies the password that must be sup-
plied for the default Bacula Console to be authorized. The same pass-
word must appear in the Director resource of the Console configu-
ration file. For added security, the password is never actually passed
across the network but rather a challenge response hash code created
with the password. This directive is required. If you have either
/dev/random or bc on your machine, Bacula will generate a ran-
dom password during the configuration process, otherwise it will be
left blank and you must manually supply it.

11.2. THE DIRECTOR RESOURCE 107

Messages = <Messages-resource-name> The messages resource spec-
ifies where to deliver Director messages that are not associated with a
specific Job. Most messages are specific to a job and will be directed
to the Messages resource specified by the job. However, there are a
few messages that can occur when no job is running. This directive is
required.

Working Directory = <Directory> This directive is mandatory and
specifies a directory in which the Director may put its status files.
This directory should be used only by Bacula but may be shared by
other Bacula daemons. However, please note, if this directory is shared
with other Bacula daemons (the File daemon and Storage daemon),
you must ensure that the Name given to each daemon is unique so
that the temporary filenames used do not collide. By default the
Bacula configure process creates unique daemon names by postfixing
them with -dir, -fd, and -sd. Standard shell expansion of the Direc-
tory is done when the configuration file is read so that values such as
$HOME will be properly expanded. This directive is required. The
working directory specified must already exist and be readable and
writable by the Bacula daemon referencing it.

If you have specified a Director user and/or a Director group on your
./configure line with --with-dir-user and/or --with-dir-group the
Working Directory owner and group will be set to those values.

Pid Directory = <Directory> This directive is mandatory and speci-
fies a directory in which the Director may put its process Id file. The
process Id file is used to shutdown Bacula and to prevent multiple
copies of Bacula from running simultaneously. Standard shell expan-
sion of the Directory is done when the configuration file is read so
that values such as $HOME will be properly expanded.

The PID directory specified must already exist and be readable and
writable by the Bacula daemon referencing it

Typically on Linux systems, you will set this to: /var/run. If you
are not installing Bacula in the system directories, you can use the
Working Directory as defined above. This directive is required.

Scripts Directory = <Directory> This directive is optional and, if de-
fined, specifies a directory in which the Director will look for the
Python startup script DirStartup.py. This directory may be shared
by other Bacula daemons. Standard shell expansion of the directory is
done when the configuration file is read so that values such as $HOME
will be properly expanded.

QueryFile = <Path> This directive is mandatory and specifies a direc-
tory and file in which the Director can find the canned SQL statements

108 CHAPTER 11. CONFIGURING THE DIRECTOR

for the Query command of the Console. Standard shell expansion of
the Path is done when the configuration file is read so that values such
as $HOME will be properly expanded. This directive is required.

Maximum Concurrent Jobs = <number> where <number> is the
maximum number of total Director Jobs that should run concurrently.
The default is set to 1, but you may set it to a larger number.

Please note that the Volume format becomes much more complicated
with multiple simultaneous jobs, consequently, restores can take much
longer if Bacula must sort through interleaved volume blocks from
multiple simultaneous jobs. This can be avoided by having each si-
multaneously running job write to a different volume or by using data
spooling, which will first spool the data to disk simultaneously, then
write each spool file to the volume in sequence.

There may also still be some cases where directives such as Max-
imum Volume Jobs are not properly synchronized with multiple
simultaneous jobs (subtle timing issues can arise), so careful testing is
recommended.

At the current time, there is no configuration parameter set to limit
the number of console connections. A maximum of five simultaneous
console connections are permitted.

FD Connect Timeout = <time> where time is the time that the Di-
rector should continue attempting to contact the File daemon to start
a job, and after which the Director will cancel the job. The default is
30 minutes.

SD Connect Timeout = <time> where time is the time that the Di-
rector should continue attempting to contact the Storage daemon to
start a job, and after which the Director will cancel the job. The
default is 30 minutes.

DirAddresses = <IP-address-specification> Specify the ports and
addresses on which the Director daemon will listen for Bacula Console
connections. Probably the simplest way to explain this is to show an
example:

DirAddresses = {

ip = { addr = 1.2.3.4; port = 1205;}

ipv4 = {

addr = 1.2.3.4; port = http;}

ipv6 = {

addr = 1.2.3.4;

port = 1205;

}

ip = {

11.2. THE DIRECTOR RESOURCE 109

addr = 1.2.3.4

port = 1205

}

ip = { addr = 1.2.3.4 }

ip = { addr = 201:220:222::2 }

ip = {

addr = bluedot.thun.net

}

}

where ip, ip4, ip6, addr, and port are all keywords. Note, that the
address can be specified as either a dotted quadruple, or IPv6 colon
notation, or as a symbolic name (only in the ip specification). Also,
port can be specified as a number or as the mnemonic value from the
/etc/services file. If a port is not specified, the default will be used. If
an ip section is specified, the resolution can be made either by IPv4 or
IPv6. If ip4 is specified, then only IPv4 resolutions will be permitted,
and likewise with ip6.

Please note that if you use the DirAddresses directive, you must not
use either a DirPort or a DirAddress directive in the same resource.

DirPort = <port-number> Specify the port (a positive integer) on
which the Director daemon will listen for Bacula Console connections.
This same port number must be specified in the Director resource of
the Console configuration file. The default is 9101, so normally this
directive need not be specified. This directive should not be used if
you specify DirAddresses (not plural) directive.

DirAddress = <IP-Address> This directive is optional, but if it is spec-
ified, it will cause the Director server (for the Console program) to bind
to the specified IP-Address, which is either a domain name or an IP
address specified as a dotted quadruple in string or quoted string for-
mat. If this directive is not specified, the Director will bind to any
available address (the default). Note, unlike the DirAddresses specifi-
cation noted above, this directive only permits a single address to be
specified. This directive should not be used if you specify a DirAd-
dresses (note plural) directive.

The following is an example of a valid Director resource definition:

Director {

Name = HeadMan

WorkingDirectory = "$HOME/bacula/bin/working"

Password = UA_password

PidDirectory = "$HOME/bacula/bin/working"

QueryFile = "$HOME/bacula/bin/query.sql"

110 CHAPTER 11. CONFIGURING THE DIRECTOR

Messages = Standard

}

11.3 The Job Resource

The Job resource defines a Job (Backup, Restore, ...) that Bacula must
perform. Each Job resource definition contains the name of a Client and a
FileSet to backup, the Schedule for the Job, where the data are to be stored,
and what media Pool can be used. In effect, each Job resource must specify
What, Where, How, and When or FileSet, Storage, Backup/Restore/Level,
and Schedule respectively. Note, the FileSet must be specified for a restore
job for historical reasons, but it is no longer used.

Only a single type (Backup, Restore, ...) can be specified for any job. If
you want to backup multiple FileSets on the same Client or multiple Clients,
you must define a Job for each one.

Note, you define only a single Job to do the Full, Differential, and Incremen-
tal backups since the different backup levels are tied together by a unique
Job name. Normally, you will have only one Job per Client, but if a client
has a really huge number of files (more than several million), you might
want to split it into to Jobs each with a different FileSet covering only part
of the total files.

Job Start of the Job resource. At least one Job resource is required.

Name = <name> The Job name. This name can be specified on the
Run command in the console program to start a job. If the name
contains spaces, it must be specified between quotes. It is generally
a good idea to give your job the same name as the Client that it will
backup. This permits easy identification of jobs.

When the job actually runs, the unique Job Name will consist of the
name you specify here followed by the date and time the job was
scheduled for execution. This directive is required.

Enabled = <yes—no> This directive allows you to enable or disable au-
tomatic execution via the scheduler of a Job.

Type = <job-type> The Type directive specifies the Job type, which
may be one of the following: Backup, Restore, Verify, or Admin.
This directive is required. Within a particular Job Type, there are
also Levels as discussed in the next item.

11.3. THE JOB RESOURCE 111

Backup Run a backup Job. Normally you will have at least one
Backup job for each client you want to save. Normally, unless
you turn off cataloging, most all the important statistics and
data concerning files backed up will be placed in the catalog.

Restore Run a restore Job. Normally, you will specify only one Re-
store job which acts as a sort of prototype that you will modify
using the console program in order to perform restores. Although
certain basic information from a Restore job is saved in the cat-
alog, it is very minimal compared to the information stored for a
Backup job – for example, no File database entries are generated
since no Files are saved.

Verify Run a verify Job. In general, verify jobs permit you to com-
pare the contents of the catalog to the file system, or to what
was backed up. In addition, to verifying that a tape that was
written can be read, you can also use verify as a sort of tripwire
intrusion detection.

Admin Run an admin Job. An Admin job can be used to periodi-
cally run catalog pruning, if you do not want to do it at the end
of each Backup Job. Although an Admin job is recorded in the
catalog, very little data is saved.

Level = <job-level> The Level directive specifies the default Job level to
be run. Each different Job Type (Backup, Restore, ...) has a different
set of Levels that can be specified. The Level is normally overrid-
den by a different value that is specified in the Schedule resource.
This directive is not required, but must be specified either by a Level
directive or as an override specified in the Schedule resource.

For a Backup Job, the Level may be one of the following:

Full When the Level is set to Full all files in the FileSet whether or
not they have changed will be backed up.

Incremental When the Level is set to Incremental all files speci-
fied in the FileSet that have changed since the last successful
backup of the the same Job using the same FileSet and Client,
will be backed up. If the Director cannot find a previous valid
Full backup then the job will be upgraded into a Full backup.
When the Director looks for a valid backup record in the catalog
database, it looks for a previous Job with:

• The same Job name.

• The same Client name.

• The same FileSet (any change to the definition of the FileSet
such as adding or deleting a file in the Include or Exclude
sections constitutes a different FileSet.

112 CHAPTER 11. CONFIGURING THE DIRECTOR

• The Job was a Full, Differential, or Incremental backup.

• The Job terminated normally (i.e. did not fail or was not
canceled).

If all the above conditions do not hold, the Director will up-
grade the Incremental to a Full save. Otherwise, the Incremental
backup will be performed as requested.

The File daemon (Client) decides which files to backup for an
Incremental backup by comparing start time of the prior Job
(Full, Differential, or Incremental) against the time each file was
last ”modified” (st mtime) and the time its attributes were last
”changed”(st ctime). If the file was modified or its attributes
changed on or after this start time, it will then be backed up.

Some virus scanning software may change st ctime while doing
the scan. For example, if the virus scanning program attempts
to reset the access time (st atime), which Bacula does not use,
it will cause st ctime to change and hence Bacula will backup
the file during an Incremental or Differential backup. In the case
of Sophos virus scanning, you can prevent it from resetting the
access time (st atime) and hence changing st ctime by using the
--no-reset-atime option. For other software, please see their
manual.

When Bacula does an Incremental backup, all modified files that
are still on the system are backed up. However, any file that
has been deleted since the last Full backup remains in the Bacula
catalog, which means that if between a Full save and the time you
do a restore, some files are deleted, those deleted files will also be
restored. The deleted files will no longer appear in the catalog
after doing another Full save. However, to remove deleted files
from the catalog during an Incremental backup is quite a time
consuming process and not currently implemented in Bacula.

In addition, if you move a directory rather than copy it, the files
in it do not have their modification time (st mtime) or their at-
tribute change time (st ctime) changed. As a consequence, those
files will probably not be backed up by an Incremental or Dif-
ferential backup which depend solely on these time stamps. If
you move a directory, and wish it to be properly backed up, it is
generally preferable to copy it, then delete the original.

Differential When the Level is set to Differential all files specified
in the FileSet that have changed since the last successful Full
backup of the same Job will be backed up. If the Director cannot
find a valid previous Full backup for the same Job, FileSet, and
Client, backup, then the Differential job will be upgraded into

11.3. THE JOB RESOURCE 113

a Full backup. When the Director looks for a valid Full backup
record in the catalog database, it looks for a previous Job with:

• The same Job name.

• The same Client name.

• The same FileSet (any change to the definition of the FileSet
such as adding or deleting a file in the Include or Exclude
sections constitutes a different FileSet.

• The Job was a FULL backup.

• The Job terminated normally (i.e. did not fail or was not
canceled).

If all the above conditions do not hold, the Director will upgrade
the Differential to a Full save. Otherwise, the Differential backup
will be performed as requested.

The File daemon (Client) decides which files to backup for a
differential backup by comparing the start time of the prior
Full backup Job against the time each file was last ”modi-
fied” (st mtime) and the time its attributes were last ”changed”
(st ctime). If the file was modified or its attributes were changed
on or after this start time, it will then be backed up. The start
time used is displayed after the Since on the Job report. In
rare cases, using the start time of the prior backup may cause
some files to be backed up twice, but it ensures that no change is
missed. As with the Incremental option, you should ensure that
the clocks on your server and client are synchronized or as close
as possible to avoid the possibility of a file being skipped. Note,
on versions 1.33 or greater Bacula automatically makes the nec-
essary adjustments to the time between the server and the client
so that the times Bacula uses are synchronized.

When Bacula does a Differential backup, all modified files that
are still on the system are backed up. However, any file that has
been deleted since the last Full backup remains in the Bacula
catalog, which means that if between a Full save and the time
you do a restore, some files are deleted, those deleted files will
also be restored. The deleted files will no longer appear in the
catalog after doing another Full save. However, to remove deleted
files from the catalog during a Differential backup is quite a time
consuming process and not currently implemented in Bacula. It
is, however, a planned future feature.

As noted above, if you move a directory rather than copy it, the
files in it do not have their modification time (st mtime) or their
attribute change time (st ctime) changed. As a consequence,
those files will probably not be backed up by an Incremental or

114 CHAPTER 11. CONFIGURING THE DIRECTOR

Differential backup which depend solely on these time stamps. If
you move a directory, and wish it to be properly backed up, it is
generally preferable to copy it, then delete the original. Alterna-
tively, you can move the directory, then use the touch program
to update the timestamps.

Every once and a while, someone asks why we need Differential
backups as long as Incremental backups pickup all changed files.
There are possibly many answers to this question, but the one
that is the most important for me is that a Differential backup
effectively merges all the Incremental and Differential backups
since the last Full backup into a single Differential backup. This
has two effects: 1. It gives some redundancy since the old back-
ups could be used if the merged backup cannot be read. 2. More
importantly, it reduces the number of Volumes that are needed
to do a restore effectively eliminating the need to read all the vol-
umes on which the preceding Incremental and Differential back-
ups since the last Full are done.

For a Restore Job, no level needs to be specified.

For a Verify Job, the Level may be one of the following:

InitCatalog does a scan of the specified FileSet and stores the file
attributes in the Catalog database. Since no file data is saved,
you might ask why you would want to do this. It turns out to
be a very simple and easy way to have a Tripwire like feature
using Bacula. In other words, it allows you to save the state of a
set of files defined by the FileSet and later check to see if those
files have been modified or deleted and if any new files have been
added. This can be used to detect system intrusion. Typically
you would specify a FileSet that contains the set of system files
that should not change (e.g. /sbin, /boot, /lib, /bin, ...). Nor-
mally, you run the InitCatalog level verify one time when your
system is first setup, and then once again after each modification
(upgrade) to your system. Thereafter, when your want to check
the state of your system files, you use a Verify level = Catalog.
This compares the results of your InitCatalog with the current
state of the files.

Catalog Compares the current state of the files against the state pre-
viously saved during an InitCatalog. Any discrepancies are re-
ported. The items reported are determined by the verify options
specified on the Include directive in the specified FileSet (see
the FileSet resource below for more details). Typically this com-
mand will be run once a day (or night) to check for any changes
to your system files.

11.3. THE JOB RESOURCE 115

Please note! If you run two Verify Catalog jobs on the same client
at the same time, the results will certainly be incorrect. This
is because Verify Catalog modifies the Catalog database while
running in order to track new files.

VolumeToCatalog This level causes Bacula to read the file attribute
data written to the Volume from the last Job. The file attribute
data are compared to the values saved in the Catalog database
and any differences are reported. This is similar to the Cata-
log level except that instead of comparing the disk file attributes
to the catalog database, the attribute data written to the Vol-
ume is read and compared to the catalog database. Although
the attribute data including the signatures (MD5 or SHA1) are
compared, the actual file data is not compared (it is not in the
catalog).

Please note! If you run two Verify VolumeToCatalog jobs on
the same client at the same time, the results will certainly be
incorrect. This is because the Verify VolumeToCatalog modifies
the Catalog database while running.

DiskToCatalog This level causes Bacula to read the files as they
currently are on disk, and to compare the current file attributes
with the attributes saved in the catalog from the last backup for
the job specified on the VerifyJob directive. This level differs
from the Catalog level described above by the fact that it doesn’t
compare against a previous Verify job but against a previous
backup. When you run this level, you must supply the verify
options on your Include statements. Those options determine
what attribute fields are compared.

This command can be very useful if you have disk problems be-
cause it will compare the current state of your disk against the
last successful backup, which may be several jobs.

Note, the current implementation (1.32c) does not identify files
that have been deleted.

Verify Job = <Job-Resource-Name> If you run a verify job without
this directive, the last job run will be compared with the catalog,
which means that you must immediately follow a backup by a verify
command. If you specify a Verify Job Bacula will find the last job
with that name that ran. This permits you to run all your backups,
then run Verify jobs on those that you wish to be verified (most often
a VolumeToCatalog) so that the tape just written is re-read.

JobDefs = <JobDefs-Resource-Name> If a JobDefs-Resource-Name
is specified, all the values contained in the named JobDefs resource

116 CHAPTER 11. CONFIGURING THE DIRECTOR

will be used as the defaults for the current Job. Any value that you
explicitly define in the current Job resource, will override any defaults
specified in the JobDefs resource. The use of this directive permits
writing much more compact Job resources where the bulk of the di-
rectives are defined in one or more JobDefs. This is particularly useful
if you have many similar Jobs but with minor variations such as dif-
ferent Clients. A simple example of the use of JobDefs is provided in
the default bacula-dir.conf file.

Bootstrap = <bootstrap-file> The Bootstrap directive specifies a boot-
strap file that, if provided, will be used during Restore Jobs and is
ignored in other Job types. The bootstrap file contains the list of
tapes to be used in a restore Job as well as which files are to be re-
stored. Specification of this directive is optional, and if specified, it is
used only for a restore job. In addition, when running a Restore job
from the console, this value can be changed.

If you use the Restore command in the Console program, to start a
restore job, the bootstrap file will be created automatically from the
files you select to be restored.

For additional details of the bootstrap file, please see
Restoring Files with the Bootstrap File chapter of this manual.

Write Bootstrap = <bootstrap-file-specification> The writeboot-
strap directive specifies a file name where Bacula will write a boot-
strap file for each Backup job run. This directive applies only to
Backup Jobs. If the Backup job is a Full save, Bacula will erase
any current contents of the specified file before writing the bootstrap
records. If the Job is an Incremental or Differential save, Bacula will
append the current bootstrap record to the end of the file.

Using this feature, permits you to constantly have a bootstrap file
that can recover the current state of your system. Normally, the file
specified should be a mounted drive on another machine, so that if
your hard disk is lost, you will immediately have a bootstrap record
available. Alternatively, you should copy the bootstrap file to another
machine after it is updated. Note, it is a good idea to write a separate
bootstrap file for each Job backed up including the job that backs up
your catalog database.

If the bootstrap-file-specification begins with a vertical bar (—),
Bacula will use the specification as the name of a program to which it
will pipe the bootstrap record. It could for example be a shell script
that emails you the bootstrap record.

On versions 1.39.22 or greater, before opening the file or executing
the specified command, Bacula performs character substitution like in

11.3. THE JOB RESOURCE 117

RunScript directive. To automatically manage your bootstrap files,
you can use this in your JobDefs resources:

JobDefs {

Write Bootstrap = "%c_%n.bsr"

...

}

For more details on using this file, please see the chapter entitled
The Bootstrap File of this manual.

Client = <client-resource-name> The Client directive specifies the
Client (File daemon) that will be used in the current Job. Only a
single Client may be specified in any one Job. The Client runs on the
machine to be backed up, and sends the requested files to the Storage
daemon for backup, or receives them when restoring. For additional
details, see the Client Resource section of this chapter. This directive
is required.

FileSet = <FileSet-resource-name> The FileSet directive specifies the
FileSet that will be used in the current Job. The FileSet specifies which
directories (or files) are to be backed up, and what options to use (e.g.
compression, ...). Only a single FileSet resource may be specified in
any one Job. For additional details, see the FileSet Resource section
of this chapter. This directive is required.

Messages = <messages-resource-name> The Messages directive de-
fines what Messages resource should be used for this job, and thus
how and where the various messages are to be delivered. For example,
you can direct some messages to a log file, and others can be sent by
email. For additional details, see the Messages Resource Chapter of
this manual. This directive is required.

Pool = <pool-resource-name> The Pool directive defines the pool of
Volumes where your data can be backed up. Many Bacula installa-
tions will use only the Default pool. However, if you want to spec-
ify a different set of Volumes for different Clients or different Jobs,
you will probably want to use Pools. For additional details, see the
Pool Resource section of this chapter. This directive is required.

Full Backup Pool = <pool-resource-name> The Full Backup Pool

specifies a Pool to be used for Full backups. It will override any Pool
specification during a Full backup. This directive is optional.

Differential Backup Pool = <pool-resource-name> The Differential

Backup Pool specifies a Pool to be used for Differential backups. It

118 CHAPTER 11. CONFIGURING THE DIRECTOR

will override any Pool specification during a Differential backup. This
directive is optional.

Incremental Backup Pool = <pool-resource-name> The Incremen-

tal Backup Pool specifies a Pool to be used for Incremental backups.
It will override any Pool specification during an Incremental backup.
This directive is optional.

Schedule = <schedule-name> The Schedule directive defines what
schedule is to be used for the Job. The schedule in turn determines
when the Job will be automatically started and what Job level (i.e.
Full, Incremental, ...) is to be run. This directive is optional, and
if left out, the Job can only be started manually using the Console
program. Although you may specify only a single Schedule resource
for any one job, the Schedule resource may contain multiple Run
directives, which allow you to run the Job at many different times,
and each run directive permits overriding the default Job Level Pool,
Storage, and Messages resources. This gives considerable flexibility in
what can be done with a single Job. For additional details, see the
Schedule Resource Chapter of this manual.

Storage = <storage-resource-name> The Storage directive defines the
name of the storage services where you want to backup the FileSet
data. For additional details, see the Storage Resource Chapter of this
manual. The Storage resource may also be specified in the Job’s Pool
resource, in which case the value in the Pool resource overrides any
value in the Job. This Storage resource definition is not required by
either the Job resource or in the Pool, but it must be specified in one
or the other. If not configuration error will result.

Max Start Delay = <time> The time specifies the maximum delay be-
tween the scheduled time and the actual start time for the Job. For
example, a job can be scheduled to run at 1:00am, but because other
jobs are running, it may wait to run. If the delay is set to 3600 (one
hour) and the job has not begun to run by 2:00am, the job will be can-
celed. This can be useful, for example, to prevent jobs from running
during day time hours. The default is 0 which indicates no limit.

Max Run Time = <time> The time specifies the maximum allowed
time that a job may run, counted from when the job starts, (not
necessarily the same as when the job was scheduled). This directive is
implemented in version 1.33 and later.

Max Wait Time = <time> The time specifies the maximum allowed
time that a job may block waiting for a resource (such as waiting
for a tape to be mounted, or waiting for the storage or file daemons

11.3. THE JOB RESOURCE 119

to perform their duties), counted from the when the job starts, (not
necessarily the same as when the job was scheduled). This directive is
implemented only in version 1.33 and later.

Incremental Max Wait Time = <time> The time specifies the maxi-
mum allowed time that an Incremental backup job may block waiting
for a resource (such as waiting for a tape to be mounted, or waiting for
the storage or file daemons to perform their duties), counted from the
when the job starts, (not necessarily the same as when the job was
scheduled). Please note that if there is a Max Wait Time it may
also be applied to the job.

Differential Max Wait Time = <time> The time specifies the maxi-
mum allowed time that a Differential backup job may block waiting
for a resource (such as waiting for a tape to be mounted, or waiting for
the storage or file daemons to perform their duties), counted from the
when the job starts, (not necessarily the same as when the job was
scheduled). Please note that if there is a Max Wait Time it may
also be applied to the job.

Prefer Mounted Volumes = <yes—no> If the Prefer Mounted Vol-
umes directive is set to yes (default yes), the Storage daemon is re-
quested to select either an Autochanger or a drive with a valid Volume
already mounted in preference to a drive that is not ready. If no drive
with a suitable Volume is available, it will select the first available
drive.

If the directive is set to no, the Storage daemon will prefer finding
an unused drive, otherwise, each job started will append to the same
Volume (assuming the Pool is the same for all jobs). Setting Prefer
Mounted Volumes to no can be useful for those sites particularly with
multiple drive autochangers that prefer to maximize backup through-
put at the expense of using additional drives and Volumes. As an
optimization, when using multiple drives, you will probably want to
start each of your jobs one after another with approximately 5 second
intervals. This will help ensure that each night, the same drive (Vol-
ume) is selected for the same job, otherwise, when you do a restore,
you may find the files spread over many more Volumes than necessary.

Prune Jobs = <yes—no> Normally, pruning of Jobs from the Catalog
is specified on a Client by Client basis in the Client resource with
the AutoPrune directive. If this directive is specified (not normally)
and the value is yes, it will override the value specified in the Client
resource. The default is no.

Prune Files = <yes—no> Normally, pruning of Files from the Catalog
is specified on a Client by Client basis in the Client resource with

120 CHAPTER 11. CONFIGURING THE DIRECTOR

the AutoPrune directive. If this directive is specified (not normally)
and the value is yes, it will override the value specified in the Client
resource. The default is no.

Prune Volumes = <yes—no> Normally, pruning of Volumes from the
Catalog is specified on a Client by Client basis in the Client resource
with the AutoPrune directive. If this directive is specified (not nor-
mally) and the value is yes, it will override the value specified in the
Client resource. The default is no.

RunScript {<body-of-runscript>} This directive is implemented in
version 1.39.22 and later. The RunScript directive behaves like a re-
source in that it requires opening and closing braces around a number
of directives that make up the body of the runscript.

The specified Command (see below for details) is run as an external
program prior or after the current Job. This is optional.

You can use following options may be specified in the body of the
runscript:

Options Value Default Information

Runs On Success Yes/No Yes Run command if JobStatus is successful

Runs On Failure Yes/No No Run command if JobStatus isn’t successful

Runs On Client Yes/No Yes Run command on client

Runs When Before—After—Always Never When run commands

Abort Job On Error Yes/No Yes Abort job if script returns something

Command Path to your script

Any output sent by the command to standard output will be included
in the Bacula job report. The command string must be a valid program
name or name of a shell script.

In addition, the command string is parsed then fed to the OS, which
means that the path will be searched to execute your specified com-
mand, but there is no shell interpretation, as a consequence, if you
invoke complicated commands or want any shell features such as redi-
rection or piping, you must call a shell script and do it inside that
script.

Before submitting the specified command to the operating system,
Bacula performs character substitution of the following characters:

%% = %

%c = Client’s name

%d = Director’s name

%e = Job Exit Status

%i = JobId

11.3. THE JOB RESOURCE 121

%j = Unique Job id

%l = Job Level

%n = Job name

%s = Since time

%t = Job type (Backup, ...)

%v = Volume name

The Job Exit Status code %e edits the following values:

• OK

• Error

• Fatal Error

• Canceled

• Differences

• Unknown term code

Thus if you edit it on a command line, you will need to enclose it
within some sort of quotes.

You can use these following shortcuts:

Keyword RunsOnSuccess RunsOnFailure AbortJobOnError Runs On Client RunsWhen

Run Before Job Yes No Before

Run After Job Yes No No

Run After Failed Job No Yes No

Client Run Before Job Yes Yes Before

Client Run After Job Yes No Yes

Examples:

RunScript {

RunsWhen = Before

AbortJobOnError = No

Command = "/etc/init.d/apache stop"

}

RunScript {

RunsWhen = After

RunsOnFailure = yes

Command = "/etc/init.d/apache start"

}

Special Windows Considerations

122 CHAPTER 11. CONFIGURING THE DIRECTOR

In addition, for a Windows client on version 1.33 and above, please
take note that you must ensure a correct path to your script. The
script or program can be a .com, .exe or a .bat file. If you just put the
program name in then Bacula will search using the same rules that
cmd.exe uses (current directory, Bacula bin directory, and PATH). It
will even try the different extensions in the same order as cmd.exe.
The command can be anything that cmd.exe or command.com will
recognize as an executable file.

However, if you have slashes in the program name then Bacula figures
you are fully specifying the name, so you must also explicitly add the
three character extension.

The command is run in a Win32 environment, so Unix like commands
will not work unless you have installed and properly configured Cygwin
in addition to and separately from Bacula.

The System %Path% will be searched for the command. (under the
environment variable dialog you have have both System Environment
and User Environment, we believe that only the System environment
will be available to bacula-fd, if it is running as a service.)

System environment variables can be referenced with %var% and used
as either part of the command name or arguments.

So if you have a script in the Bacula
bin directory then the following lines should work fine:

Client Run Before Job = systemstate

or

Client Run Before Job = systemstate.bat

or

Client Run Before Job = "systemstate"

or

Client Run Before Job = "systemstate.bat"

or

ClientRunBeforeJob = "\"C:/Program Files/Bacula/systemstate.bat\""

The outer set of quotes is removed when the configuration file is parsed.
You need to escape the inner quotes so that they are there when the
code that parses the command line for execution runs so it can tell
what the program name is.

ClientRunBeforeJob = "\"C:/Program Files/Software

Vendor/Executable\" /arg1 /arg2 \"foo bar\""

The special characters

&<>()@^|

11.3. THE JOB RESOURCE 123

will need to be quoted, if they are part of a filename or argument.

If someone is logged in, a blank ”command” window running the com-
mands will be present during the execution of the command.

Some Suggestions from Phil Stracchino for running on Win32 machines
with the native Win32 File daemon:

1. You might want the ClientRunBeforeJob directive to specify a
.bat file which runs the actual client-side commands, rather than
trying to run (for example) regedit /e directly.

2. The batch file should explicitly ’exit 0’ on successful completion.

3. The path to the batch file should be specified in Unix form:

ClientRunBeforeJob = ”c:/bacula/bin/systemstate.bat”

rather than DOS/Windows form:

ClientRunBeforeJob =

”c:\bacula\bin\systemstate.bat” INCORRECT

For Win32, please note that there are certain limitations:

ClientRunBeforeJob = ”C:/Program Files/Bacula/bin/pre-exec.bat”

Lines like the above do not work because there are limitations of
cmd.exe that is used to execute the command. Bacula prefixes the
string you supply with cmd.exe /c . To test that your command
works you should type cmd /c ”C:/Program Files/test.exe” at a
cmd prompt and see what happens. Once the command is correct in-
sert a backslash (\) before each double quote (”), and then put quotes
around the whole thing when putting it in the director’s .conf file. You
either need to have only one set of quotes or else use the short name
and don’t put quotes around the command path.

Below is the output from cmd’s help as it relates to the command line
passed to the /c option.

If /C or /K is specified, then the remainder of the command line after
the switch is processed as a command line, where the following logic
is used to process quote (”) characters:

1. If all of the following conditions are met, then quote characters
on the command line are preserved:

• no /S switch.

• exactly two quote characters.

• no special characters between the two quote characters,
where special is one of:

&<>()@^|

124 CHAPTER 11. CONFIGURING THE DIRECTOR

• there are one or more whitespace characters between the the
two quote characters.

• the string between the two quote characters is the name of
an executable file.

2. Otherwise, old behavior is to see if the first character is a quote
character and if so, strip the leading character and remove the
last quote character on the command line, preserving any text
after the last quote character.

The following example of the use of the Client Run Before Job directive
was submitted by a user:
You could write a shell script to back up a DB2 database to a FIFO.
The shell script is:

#!/bin/sh

===== backupdb.sh

DIR=/u01/mercuryd

mkfifo $DIR/dbpipe

db2 BACKUP DATABASE mercuryd TO $DIR/dbpipe WITHOUT PROMPTING &

sleep 1

The following line in the Job resource in the bacula-dir.conf file:

Client Run Before Job = "su - mercuryd -c \"/u01/mercuryd/backupdb.sh ’%t’

’%l’\""

When the job is run, you will get messages from the output of the
script stating that the backup has started. Even though the command
being run is backgrounded with &, the job will block until the ”db2
BACKUP DATABASE” command, thus the backup stalls.

To remedy this situation, the ”db2 BACKUP DATABASE” line should
be changed to the following:

db2 BACKUP DATABASE mercuryd TO $DIR/dbpipe WITHOUT PROMPTING > $DIR/backup.log

2>&1 < /dev/null &

It is important to redirect the input and outputs of a backgrounded
command to /dev/null to prevent the script from blocking.

Run Before Job = <command> The specified command is run as an
external program prior to running the current Job. This directive is
not required, but if it is defined, and if the exit code of the program
run is non-zero, the current Bacula job will be canceled.

Run Before Job = "echo test"

11.3. THE JOB RESOURCE 125

it’s equivalent to :

RunScript {

Command = "echo test"

RunsOnClient = No

RunsWhen = Before

}

Lutz Kittler has pointed out that using the RunBeforeJob directive
can be a simple way to modify your schedules during a holiday. For
example, suppose that you normally do Full backups on Fridays, but
Thursday and Friday are holidays. To avoid having to change tapes
between Thursday and Friday when no one is in the office, you can
create a RunBeforeJob that returns a non-zero status on Thursday
and zero on all other days. That way, the Thursday job will not run,
and on Friday the tape you inserted on Wednesday before leaving will
be used.

Run After Job = <command> The specified command is run as an
external program if the current job terminates normally (without error
or without being canceled). This directive is not required. If the
exit code of the program run is non-zero, Bacula will print a warning
message. Before submitting the specified command to the operating
system, Bacula performs character substitution as described above for
the RunScript directive.

An example of the use of this directive is given in the Tips Chapter of
this manual.

See the Run After Failed Job if you want to run a script after the
job has terminated with any non-normal status.

Run After Failed Job = <command> The specified command is run
as an external program after the current job terminates with any error
status. This directive is not required. The command string must be a
valid program name or name of a shell script. If the exit code of the
program run is non-zero, Bacula will print a warning message. Before
submitting the specified command to the operating system, Bacula
performs character substitution as described above for the RunScript
directive. Note, if you wish that your script will run regardless of the
exit status of the Job, you can use this :

RunScript {

Command = "echo test"

RunsWhen = After

RunsOnFailure = yes

126 CHAPTER 11. CONFIGURING THE DIRECTOR

RunsOnClient = no

RunsOnSuccess = yes # default, you can drop this line

}

An example of the use of this directive is given in the Tips Chapter of
this manual.

Client Run Before Job = <command> This directive is the same as
Run Before Job except that the program is run on the client ma-
chine. The same restrictions apply to Unix systems as noted above for
the RunScript.

Client Run After Job = <command> The specified command is run
on the client machine as soon as data spooling is complete in order to
allow restarting applications on the client as soon as possible. .

Note, please see the notes above in RunScript concerning Windows
clients.

Rerun Failed Levels = <yes—no> If this directive is set to yes (de-
fault no), and Bacula detects that a previous job at a higher level (i.e.
Full or Differential) has failed, the current job level will be upgraded
to the higher level. This is particularly useful for Laptops where they
may often be unreachable, and if a prior Full save has failed, you wish
the very next backup to be a Full save rather than whatever level it is
started as.

There are several points that must be taken into account when using
this directive: first, a failed job is defined as one that has not ter-
minated normally, which includes any running job of the same name
(you need to ensure that two jobs of the same name do not run si-
multaneously); secondly, the Ignore FileSet Changes directive is
not considered when checing for failed levels, which means that any
FileSet change will trigger a rerun.

Spool Data = <yes—no> If this directive is set to yes (default no), the
Storage daemon will be requested to spool the data for this Job to disk
rather than write it directly to tape. Once all the data arrives or the
spool files’ maximum sizes are reached, the data will be despooled and
written to tape. When this directive is set to yes, the Spool Attributes
is also automatically set to yes. Spooling data prevents tape shoe-shine
(start and stop) during Incremental saves. This option should not be
used if you are writing to a disk file.

Spool Attributes = <yes—no> The default is set to no, which means
that the File attributes are sent by the Storage daemon to the Director

11.3. THE JOB RESOURCE 127

as they are stored on tape. However, if you want to avoid the possi-
bility that database updates will slow down writing to the tape, you
may want to set the value to yes, in which case the Storage daemon
will buffer the File attributes and Storage coordinates to a temporary
file in the Working Directory, then when writing the Job data to the
tape is completed, the attributes and storage coordinates will be sent
to the Director.

Where = <directory> This directive applies only to a Restore job and
specifies a prefix to the directory name of all files being restored. This
permits files to be restored in a different location from which they were
saved. If Where is not specified or is set to backslash (/), the files will
be restored to their original location. By default, we have set Where
in the example configuration files to be /tmp/bacula-restores. This
is to prevent accidental overwriting of your files.

Replace = <replace-option> This directive applies only to a Restore
job and specifies what happens when Bacula wants to restore a file
or directory that already exists. You have the following options for
replace-option:

always when the file to be restored already exists, it is deleted and
then replaced by the copy that was backed up.

ifnewer if the backed up file (on tape) is newer than the existing file,
the existing file is deleted and replaced by the back up.

ifolder if the backed up file (on tape) is older than the existing file,
the existing file is deleted and replaced by the back up.

never if the backed up file already exists, Bacula skips restoring this
file.

Prefix Links=<yes—no> If a Where path prefix is specified for a re-
covery job, apply it to absolute links as well. The default is No. When
set to Yes then while restoring files to an alternate directory, any ab-
solute soft links will also be modified to point to the new alternate
directory. Normally this is what is desired – i.e. everything is self con-
sistent. However, if you wish to later move the files to their original
locations, all files linked with absolute names will be broken.

Maximum Concurrent Jobs = <number> where <number> is the
maximum number of Jobs from the current Job resource that can
run concurrently. Note, this directive limits only Jobs with the same
name as the resource in which it appears. Any other restrictions on
the maximum concurrent jobs such as in the Director, Client, or Stor-
age resources will also apply in addition to the limit specified here.

128 CHAPTER 11. CONFIGURING THE DIRECTOR

The default is set to 1, but you may set it to a larger number. We
strongly recommend that you read the WARNING documented under
Maximum Concurrent Jobs in the Director’s resource.

Reschedule On Error = <yes—no> If this directive is enabled, and
the job terminates in error, the job will be rescheduled as determined
by the Reschedule Interval and Reschedule Times directives. If
you cancel the job, it will not be rescheduled. The default is no (i.e.
the job will not be rescheduled).

This specification can be useful for portables, laptops, or other ma-
chines that are not always connected to the network or switched on.

Reschedule Interval = <time-specification> If you have specified
Reschedule On Error = yes and the job terminates in error,
it will be rescheduled after the interval of time specified by time-
specification. See the time specification formats in the Configure
chapter for details of time specifications. If no interval is specified,
the job will not be rescheduled on error.

Reschedule Times = <count> This directive specifies the maximum
number of times to reschedule the job. If it is set to zero (the de-
fault) the job will be rescheduled an indefinite number of times.

Run = <job-name> The Run directive (not to be confused with the Run
option in a Schedule) allows you to start other jobs or to clone jobs.
By using the cloning keywords (see below), you can backup the same
data (or almost the same data) to two or more drives at the same
time. The job-name is normally the same name as the current Job
resource (thus creating a clone). However, it may be any Job name,
so one job may start other related jobs.

The part after the equal sign must be enclosed in double quotes, and
can contain any string or set of options (overrides) that you can spec-
ify when entering the Run command from the console. For example
storage=DDS-4 In addition, there are two special keywords
that permit you to clone the current job. They are level=%l and
since=%s. The %l in the level keyword permits entering the actual
level of the current job and the %s in the since keyword permits putting
the same time for comparison as used on the current job. Note, in the
case of the since keyword, the %s must be enclosed in double quotes,
and thus they must be preceded by a backslash since they are already
inside quotes. For example:

run = "Nightly-backup level=%l since=\"%s\" storage=DDS-4"

11.3. THE JOB RESOURCE 129

A cloned job will not start additional clones, so it is not possible to
recurse.

Priority = <number> This directive permits you to control the order in
which your jobs run by specifying a positive non-zero number. The
higher the number, the lower the job priority. Assuming you are not
running concurrent jobs, all queued jobs of priority 1 will run before
queued jobs of priority 2 and so on, regardless of the original scheduling
order.

The priority only affects waiting jobs that are queued to run, not jobs
that are already running. If one or more jobs of priority 2 are already
running, and a new job is scheduled with priority 1, the currently
running priority 2 jobs must complete before the priority 1 job is run.

The default priority is 10.

If you want to run concurrent jobs you should keep these points in
mind:

• To run concurrent jobs, you must set Maximum Concurrent Jobs
= 2 in five or six distinct places: in bacula-dir.conf in the Director,
the Job, the Client, the Storage resources; in bacula-fd in the
FileDaemon (or Client) resource, and in bacula-sd.conf in the
Storage resource. If any one is missing, it will throttle the jobs to
one at a time. You may, of course, set the Maximum Concurrent
Jobs to more than 2.

• Bacula concurrently runs jobs of only one priority at a time. It
will not simultaneously run a priority 1 and a priority 2 job.

• If Bacula is running a priority 2 job and a new priority 1 job is
scheduled, it will wait until the running priority 2 job terminates
even if the Maximum Concurrent Jobs settings would otherwise
allow two jobs to run simultaneously.

• Suppose that bacula is running a priority 2 job and a new priority
1 job is scheduled and queued waiting for the running priority 2
job to terminate. If you then start a second priority 2 job, the
waiting priority 1 job will prevent the new priority 2 job from
running concurrently with the running priority 2 job. That is:
as long as there is a higher priority job waiting to run, no new
lower priority jobs will start even if the Maximum Concurrent
Jobs settings would normally allow them to run. This ensures
that higher priority jobs will be run as soon as possible.

If you have several jobs of different priority, it may not best to start
them at exactly the same time, because Bacula must examine them
one at a time. If by Bacula starts a lower priority job first, then it will

130 CHAPTER 11. CONFIGURING THE DIRECTOR

run before your high priority jobs. If you experience this problem, you
may avoid it by starting any higher priority jobs a few seconds before
lower priority ones. This insures that Bacula will examine the jobs in
the correct order, and that your priority scheme will be respected.

Write Part After Job = <yes—no> This directive is only imple-
mented in version 1.37 and later. If this directive is set to yes (default
no), a new part file will be created after the job is finished.

It should be set to yes when writing to devices that require mount
(for example DVD), so you are sure that the current part, containing
this job’s data, is written to the device, and that no data is left in
the temporary file on the hard disk. However, on some media, like
DVD+R and DVD-R, a lot of space (about 10Mb) is lost every time
a part is written. So, if you run several jobs each after another, you
could set this directive to no for all jobs, except the last one, to avoid
wasting too much space, but to ensure that the data is written to the
medium when all jobs are finished.

This directive is ignored with tape and FIFO devices.

The following is an example of a valid Job resource definition:

Job {

Name = "Minou"

Type = Backup

Level = Incremental # default

Client = Minou

FileSet="Minou Full Set"

Storage = DLTDrive

Pool = Default

Schedule = "MinouWeeklyCycle"

Messages = Standard

}

11.4 The JobDefs Resource

The JobDefs resource permits all the same directives that can appear in a
Job resource. However, a JobDefs resource does not create a Job, rather it
can be referenced within a Job to provide defaults for that Job. This permits
you to concisely define several nearly identical Jobs, each one referencing a
JobDefs resource which contains the defaults. Only the changes from the
defaults need to be mentioned in each Job.

11.5. THE SCHEDULE RESOURCE 131

11.5 The Schedule Resource

The Schedule resource provides a means of automatically scheduling a Job as
well as the ability to override the default Level, Pool, Storage and Messages
resources. If a Schedule resource is not referenced in a Job, the Job can only
be run manually. In general, you specify an action to be taken and when.

Schedule Start of the Schedule directives. No Schedule resource is re-
quired, but you will need at least one if you want Jobs to be automat-
ically started.

Name = <name> The name of the schedule being defined. The Name
directive is required.

Run = <Job-overrides> <Date-time-specification> The Run direc-
tive defines when a Job is to be run, and what overrides if any to apply.
You may specify multiple run directives within a Schedule resource.
If you do, they will all be applied (i.e. multiple schedules). If you have
two Run directives that start at the same time, two Jobs will start at
the same time (well, within one second of each other).

The Job-overrides permit overriding the Level, the Storage, the Mes-
sages, and the Pool specifications provided in the Job resource. In
addition, the FullPool, the IncrementalPool, and the DifferentialPool
specifications permit overriding the Pool specification according to
what backup Job Level is in effect.

By the use of overrides, you may customize a particular Job. For
example, you may specify a Messages override for your Incremental
backups that outputs messages to a log file, but for your weekly or
monthly Full backups, you may send the output by email by using a
different Messages override.

Job-overrides are specified as: keyword=value where the keyword
is Level, Storage, Messages, Pool, FullPool, DifferentialPool, or In-
crementalPool, and the value is as defined on the respective directive
formats for the Job resource. You may specify multiple Job-overrides
on one Run directive by separating them with one or more spaces or
by separating them with a trailing comma. For example:

Level=Full is all files in the FileSet whether or not they have
changed.

Level=Incremental is all files that have changed since the last
backup.

Pool=Weekly specifies to use the Pool named Weekly.

132 CHAPTER 11. CONFIGURING THE DIRECTOR

Storage=DLT Drive specifies to use DLT Drive for the storage
device.

Messages=Verbose specifies to use the Verbose message resource
for the Job.

FullPool=Full specifies to use the Pool named Full if the job is a
full backup, or is upgraded from another type to a full backup.

DifferentialPool=Differential specifies to use the Pool named Dif-
ferential if the job is a differential backup.

IncrementalPool=Incremental specifies to use the Pool named
Incremental if the job is an incremental backup.

SpoolData=yes—no tells Bacula to request the Storage daemon to
spool data to a disk file before putting it on tape.

WritePartAfterJob=yes—no tells Bacula to request the Storage
daemon to write the current part file to the device when the job is
finished (see Write Part After Job directive in the Job resource).
Please note, this directive is implemented only in version 1.37 and
later. The default is yes. We strongly recommend that you keep
this set to yes otherwise, when the last job has finished one part
will remain in the spool file and restore may or may not work.

Date-time-specification determines when the Job is to be run. The
specification is a repetition, and as a default Bacula is set to run a
job at the beginning of the hour of every hour of every day of every
week of every month of every year. This is not normally what you
want, so you must specify or limit when you want the job to run. Any
specification given is assumed to be repetitive in nature and will serve
to override or limit the default repetition. This is done by specifying
masks or times for the hour, day of the month, day of the week, week
of the month, week of the year, and month when you want the job to
run. By specifying one or more of the above, you can define a schedule
to repeat at almost any frequency you want.

Basically, you must supply a month, day, hour, and minute the Job
is to be run. Of these four items to be specified, day is special in that
you may either specify a day of the month such as 1, 2, ... 31, or you
may specify a day of the week such as Monday, Tuesday, ... Sunday.
Finally, you may also specify a week qualifier to restrict the schedule
to the first, second, third, fourth, or fifth week of the month.

For example, if you specify only a day of the week, such as Tuesday
the Job will be run every hour of every Tuesday of every Month. That
is the month and hour remain set to the defaults of every month and
all hours.

11.5. THE SCHEDULE RESOURCE 133

Note, by default with no other specification, your job will run at the
beginning of every hour. If you wish your job to run more than once
in any given hour, you will need to specify multiple run specifications
each with a different minute.

The date/time to run the Job can be specified in the following way in
pseudo-BNF:

<void-keyword> = on

<at-keyword> = at

<week-keyword> = 1st | 2nd | 3rd | 4th | 5th | first |

second | third | fourth | fifth

<wday-keyword> = sun | mon | tue | wed | thu | fri | sat |

sunday | monday | tuesday | wednesday |

thursday | friday | saturday

<week-of-year-keyword> = w00 | w01 | ... w52 | w53

<month-keyword> = jan | feb | mar | apr | may | jun | jul |

aug | sep | oct | nov | dec | january |

february | ... | december

<daily-keyword> = daily

<weekly-keyword> = weekly

<monthly-keyword> = monthly

<hourly-keyword> = hourly

<digit> = 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0

<number> = <digit> | <digit><number>

<12hour> = 0 | 1 | 2 | ... 12

<hour> = 0 | 1 | 2 | ... 23

<minute> = 0 | 1 | 2 | ... 59

<day> = 1 | 2 | ... 31

<time> = <hour>:<minute> |

<12hour>:<minute>am |

<12hour>:<minute>pm

<time-spec> = <at-keyword> <time> |

<hourly-keyword>

<date-keyword> = <void-keyword> <weekly-keyword>

<day-range> = <day>-<day>

<month-range> = <month-keyword>-<month-keyword>

<wday-range> = <wday-keyword>-<wday-keyword>

<range> = <day-range> | <month-range> |

<wday-range>

<date> = <date-keyword> | <day> | <range>

<date-spec> = <date> | <date-spec>

<day-spec> = <day> | <wday-keyword> |

<day-range> | <wday-range> |

<daily-keyword>

<day-spec> = <day> | <wday-keyword> |

<day> | <wday-range> |

<week-keyword> <wday-keyword> |

<week-keyword> <wday-range>

<month-spec> = <month-keyword> | <month-range> |

<monthly-keyword>

<date-time-spec> = <month-spec> <day-spec> <time-spec>

134 CHAPTER 11. CONFIGURING THE DIRECTOR

Note, the Week of Year specification wnn follows the ISO standard definition
of the week of the year, where Week 1 is the week in which the first Thursday
of the year occurs, or alternatively, the week which contains the 4th of
January. Weeks are numbered w01 to w53. w00 for Bacula is the week that
precedes the first ISO week (i.e. has the first few days of the year if any
occur before Thursday). w00 is not defined by the ISO specification. A week
starts with Monday and ends with Sunday.

An example schedule resource that is named WeeklyCycle and runs a
job with level full each Sunday at 1:05am and an incremental job Monday
through Saturday at 1:05am is:

Schedule {

Name = "WeeklyCycle"

Run = Level=Full sun at 1:05

Run = Level=Incremental mon-sat at 1:05

}

An example of a possible monthly cycle is as follows:

Schedule {

Name = "MonthlyCycle"

Run = Level=Full Pool=Monthly 1st sun at 1:05

Run = Level=Differential 2nd-5th sun at 1:05

Run = Level=Incremental Pool=Daily mon-sat at 1:05

}

The first of every month:

Schedule {

Name = "First"

Run = Level=Full on 1 at 1:05

Run = Level=Incremental on 2-31 at 1:05

}

Every 10 minutes:

Schedule {

Name = "TenMinutes"

Run = Level=Full hourly at 0:05

Run = Level=Full hourly at 0:15

Run = Level=Full hourly at 0:25

Run = Level=Full hourly at 0:35

Run = Level=Full hourly at 0:45

Run = Level=Full hourly at 0:55

}

11.6. TECHNICAL NOTES ON SCHEDULES 135

11.6 Technical Notes on Schedules

Internally Bacula keeps a schedule as a bit mask. There are six masks and
a minute field to each schedule. The masks are hour, day of the month
(mday), month, day of the week (wday), week of the month (wom), and
week of the year (woy). The schedule is initialized to have the bits of each
of these masks set, which means that at the beginning of every hour, the
job will run. When you specify a month for the first time, the mask will be
cleared and the bit corresponding to your selected month will be selected.
If you specify a second month, the bit corresponding to it will also be added
to the mask. Thus when Bacula checks the masks to see if the bits are
set corresponding to the current time, your job will run only in the two
months you have set. Likewise, if you set a time (hour), the hour mask will
be cleared, and the hour you specify will be set in the bit mask and the
minutes will be stored in the minute field.

For any schedule you have defined, you can see how these bits are set by
doing a show schedules command in the Console program. Please note
that the bit mask is zero based, and Sunday is the first day of the week (bit
zero).

-

136 CHAPTER 11. CONFIGURING THE DIRECTOR

Chapter 12

The FileSet Resource

The FileSet resource defines what files are to be included or excluded in a
backup job. A FileSet resource is required for each backup Job. It consists
of a list of files or directories to be included, a list of files or directories to be
excluded and the various backup options such as compression, encryption,
and signatures that are to be applied to each file.

Any change to the list of the included files will cause Bacula to automatically
create a new FileSet (defined by the name and an MD5 checksum of the
Include/Exclude contents). Each time a new FileSet is created, Bacula will
ensure that the next backup is always a Full save.

FileSet Start of the FileSet resource. One FileSet resource must be defined
for each Backup job.

Name = <name> The name of the FileSet resource. This directive is
required.

Ignore FileSet Changes = <yes—no> Normally, if you modify the
FileSet Include or Exclude lists, the next backup will be forced to
a Full so that Bacula can guarantee that any additions or deletions
are properly backed up. If this directive is set to yes, any changes you
make to the FileSet Include or Exclude lists will be ignored and not
cause Bacula to immediately perform a Full backup. The default is
no, in which case, if you change the Include or Exclude, Bacula will
force a Full backup to ensure that everything is properly backed up.
It is not recommended to set this directive to yes.

Enable VSS = <yes—no> If this directive is set to yes the File daemon
will be notified that the user wants to use a Volume Shadow Copy

137

138 CHAPTER 12. THE FILESET RESOURCE

Service (VSS) backup for this job. The default is yes. This directive
is effective only for VSS enabled Win32 File daemons. It permits a
consistent copy of open files to be made for cooperating writer appli-
cations, and for applications that are not VSS away, Bacula can at
least copy open files. For more information, please see the Windows
chapter of this manual.

Include { Options {<file-options>} ...; <file-list> }

Options { <file-options> }

Exclude { <file-list> }

The Include resource must contain a list of directories and/or files to be
processed in the backup job. Normally, all files found in all subdirectories
of any directory in the Include File list will be backed up. Note, see below
for the definition of <file-list>. The Include resource may also contain one
or more Options resources that specify options such as compression to be
applied to all or any subset of the files found when processing the file-list
for backup. Please see below for more details concerning Options resources.

There can be any number of Include resources within the FileSet, each
having its own list of directories or files to be backed up and the backup
options defined by one or more Options resources. The file-list consists
of one file or directory name per line. Directory names should be specified
without a trailing slash with Unix path notation.

Windows users, please take note to specify directories (even c:/...) in Unix
path notation. If you use Windows conventions, you will most likely not be
able to restore your files due to the fact that the Windows path separator
was defined as an escape character long before Windows existed, and Bacula
adheres to that convention (i.e.
means the next character appears as itself).

You should always specify a full path for every directory and file that you
list in the FileSet. In addition, on Windows machines, you should always
prefix the directory or filename with the drive specification in lower case
(e.g. c:/xxx) using Unix directory name separators (forward slash).

Bacula’s default for processing directories is to recursively descend in the
directory saving all files and subdirectories. Bacula will not by default cross
filesystems (or mount points in Unix parlance). This means that if you spec-
ify the root partition (e.g. /), Bacula will save only the root partition and
not any of the other mounted filesystems. Similarly on Windows systems,
you must explicitly specify each of the drives you want saved (e.g. c:/ and

139

d:/ ...). In addition, at least for Windows systems, you will most likely
want to enclose each specification within double quotes particularly if the
directory (or file) name contains spaces. The df command on Unix systems
will show you which mount points you must specify to save everything. See
below for an example.

Take special care not to include a directory twice or Bacula will backup the
same files two times wasting a lot of space on your archive device. Including
a directory twice is very easy to do. For example:

Include {

File = /

File = /usr

Options { compression=GZIP }

}

on a Unix system where /usr is a subdirectory (rather than a mounted
filesystem) will cause /usr to be backed up twice. In this case, on Bacula
versions prior to 1.32f-5-09Mar04 due to a bug, you will not be able to
restore hard linked files that were backed up twice.

If you have used Bacula prior to version 1.36.3, you will note three things
in the new FileSet syntax:

1. There is no equal sign (=) after the Include and before the opening
brace ({). The same is true for the Exclude.

2. Each directory (or filename) to be included or excluded is preceded by
a File =. Previously they were simply listed on separate lines.

3. The options that previously appeared on the Include line now must be
specified within their own Options resource.

4. The Exclude resource does not accept Options.

5. When using wild-cards or regular expressions, directory names are
always terminated with a slash (/) and filenames have no trailing slash.

The Options resource is optional, but when specified, it will contain a list
of keyword=value options to be applied to the file-list. See below for the
definition of file-list. Multiple Options resources may be specified one after
another. As the files are found in the specified directories, the Options will
applied to the filenames to determine if and how the file should be backed up.
The wildcard and regular expression pattern matching parts of the Options

140 CHAPTER 12. THE FILESET RESOURCE

resources are checked in the order they are specified in the FileSet until the
first one that matches. Once one matches, the compression and other flags
within the Options specification will apply to the pattern matched.

A key point is that in the absence of an Option or no other Option is
matched, every file is accepted for backing up. This means that if you
want to exclude something, you must explicitly specify an Option with an
exclude = yes and some pattern matching.

Once Bacula determines that the Options resource matches the file under
consideration, that file will be saved without looking at any other Options
resources that may be present. This means that any wild cards must appear
before an Options resource without wild cards.

If for some reason, Bacula checks all the Options resources to a file under
consideration for backup, but there are no matches (generally because of
wild cards that don’t match), Bacula as a default will then backup the file.
This is quite logical if you consider the case of no Options clause is specified,
where you want everything to be backed up, and it is important to keep in
mind when excluding as mentioned above.

However, one additional point is that in the case that no match was found,
Bacula will use the options found in the last Options resource. As a con-
sequence, if you want a particular set of ”default” options, you should put
them in an Options resource after any other Options.

It is a good idea to put all your wild-card and regex expressions inside double
quotes to prevent conf file scanning problems.

This is perhaps a bit overwhelming, so there are a number of examples
included below to illustrate how this works.

The directives within an Options resource may be one of the following:

compression=GZIP All files saved will be software compressed using the
GNU ZIP compression format. The compression is done on a file by
file basis by the File daemon. If there is a problem reading the tape
in a single record of a file, it will at most affect that file and none of
the other files on the tape. Normally this option is not needed if you
have a modern tape drive as the drive will do its own compression. In
fact, if you specify software compression at the same time you have
hardware compression turned on, your files may actually take more
space on the volume.

Software compression is very important if you are writing your Vol-
umes to a file, and it can also be helpful if you have a fast computer

141

but a slow network, otherwise it is generally better to rely your tape
drive’s hardware compression. As noted above, it is not generally a
good idea to do both software and hardware compression.

Specifying GZIP uses the default compression level 6 (i.e. GZIP
is identical to GZIP6). If you want a different compression level (1
through 9), you can specify it by appending the level number with
no intervening spaces to GZIP. Thus compression=GZIP1 would
give minimum compression but the fastest algorithm, and compres-
sion=GZIP9 would give the highest level of compression, but requires
more computation. According to the GZIP documentation, compres-
sion levels greater than six generally give very little extra compression
and are rather CPU intensive.

signature=SHA1 An SHA1 signature will be computed for all The SHA1
algorithm is purported to be some what slower than the MD5 algo-
rithm, but at the same time is significantly better from a cryptographic
point of view (i.e. much fewer collisions, much lower probability of be-
ing hacked.) It adds four more bytes than the MD5 signature. We
strongly recommend that either this option or MD5 be specified as a
default for all files. Note, only one of the two options MD5 or SHA1
can be computed for any file.

signature=MD5 An MD5 signature will be computed for all files saved.
Adding this option generates about 5% extra overhead for each file
saved. In addition to the additional CPU time, the MD5 signature
adds 16 more bytes per file to your catalog. We strongly recommend
that this option or the SHA1 option be specified as a default for all
files.

verify=<options> The options letters specified are used when running
a Verify Level=Catalog as well as the DiskToCatalog level job.
The options letters may be any combination of the following:

i compare the inodes

p compare the permission bits

n compare the number of links

u compare the user id

g compare the group id

s compare the size

a compare the access time

m compare the modification time (st mtime)

c compare the change time (st ctime)

142 CHAPTER 12. THE FILESET RESOURCE

s report file size decreases

5 compare the MD5 signature

1 compare the SHA1 signature

A useful set of general options on the Level=Catalog or
Level=DiskToCatalog verify is pins5 i.e. compare permission bits,
inodes, number of links, size, and MD5 changes.

onefs=yes—no If set to yes (the default), Bacula will remain on a single
file system. That is it will not backup file systems that are mounted
on a subdirectory. If you are using a *nix system, you may not even
be aware that there are several different filesystems as they are often
automatically mounted by the OS (e.g. /dev, /net, /sys, /proc, ...).
With Bacula 1.38.0 or later, it will inform you when it decides not to
traverse into another filesystem. This can be very useful if you forgot
to backup a particular partition. An example of the informational
message in the job report is:

rufus-fd: /misc is a different filesystem. Will not descend from / into /misc

rufus-fd: /net is a different filesystem. Will not descend from / into /net

rufus-fd: /var/lib/nfs/rpc_pipefs is a different filesystem. Will not descend from /var/lib/nfs

rufus-fd: /selinux is a different filesystem. Will not descend from / into /selinux

rufus-fd: /sys is a different filesystem. Will not descend from / into /sys

rufus-fd: /dev is a different filesystem. Will not descend from / into /dev

rufus-fd: /home is a different filesystem. Will not descend from / into /home

Note: in previous versions of Bacula, the above message was of the
form:

Filesystem change prohibited. Will not descend into /misc

If you wish to backup multiple filesystems, you can explicitly list each
filesystem you want saved. Otherwise, if you set the onefs option to
no, Bacula will backup all mounted file systems (i.e. traverse mount
points) that are found within the FileSet. Thus if you have NFS or
Samba file systems mounted on a directory listed in your FileSet, they
will also be backed up. Normally, it is preferable to set onefs=yes
and to explicitly name each filesystem you want backed up. Explicitly
naming the filesystems you want backed up avoids the possibility of
getting into a infinite loop recursing filesystems. Another possibility
is to use onefs=no and to set fstype=ext2, See the example
below for more details.

If you think that Bacula should be backing up a particular directory
and it is not, and you have onefs=no set, before you complain, please
do:

143

stat /

stat <filesystem>

where you replace filesystem with the one in question. If the Device:
number is different for / and for your filesystem, then they are on
different filesystems. E.g.

stat /

File: ‘/’

Size: 4096 Blocks: 16 IO Block: 4096 directory

Device: 302h/770d Inode: 2 Links: 26

Access: (0755/drwxr-xr-x) Uid: (0/ root) Gid: (0/ root)

Access: 2005-11-10 12:28:01.000000000 +0100

Modify: 2005-09-27 17:52:32.000000000 +0200

Change: 2005-09-27 17:52:32.000000000 +0200

stat /net

File: ‘/home’

Size: 4096 Blocks: 16 IO Block: 4096 directory

Device: 308h/776d Inode: 2 Links: 7

Access: (0755/drwxr-xr-x) Uid: (0/ root) Gid: (0/ root)

Access: 2005-11-10 12:28:02.000000000 +0100

Modify: 2005-11-06 12:36:48.000000000 +0100

Change: 2005-11-06 12:36:48.000000000 +0100

Also be aware that even if you include /home in your list of files to
backup, as you most likely should, you will get the informational mes-
sage that ”/home is a different filesystem” when Bacula is processing
the / directory. This message does not indicate an error. This message
means that while examining the File = referred to in the second part
of the message, Bacula will not descend into the directory mentioned
in the first part of the message. However, it is possible that the sep-
arate filesystem will be backed up despite the message. For example,
consider the following FileSet:

File = /

File = /var

where /var is a separate filesystem. In this example, you will get a
message saying that Bacula will not decend from / into /var. But
it is important to realise that Bacula will descend into /var from the
second File directive shown above. In effect, the warning is bogus, but
it is supplied to alert you to possible omissions from your FileSet. In
this example, /var will be backed up. If you changed the FileSet such
that it did not specify /var, then /var will not be backed up.

portable=yes—no If set to yes (default is no), the Bacula File daemon
will backup Win32 files in a portable format, but not all Win32 file

144 CHAPTER 12. THE FILESET RESOURCE

attributes will be saved and restored. By default, this option is set
to no, which means that on Win32 systems, the data will be backed
up using Windows API calls and on WinNT/2K/XP, all the security
and ownership attributes will be properly backed up (and restored).
However this format is not portable to other systems – e.g. Unix,
Win95/98/Me. When backing up Unix systems, this option is ignored,
and unless you have a specific need to have portable backups, we
recommend accept the default (no) so that the maximum information
concerning your files is saved.

recurse=yes—no If set to yes (the default), Bacula will recurse (or de-
scend) into all subdirectories found unless the directory is explicitly
excluded using an exclude definition. If you set recurse=no, Bacula
will save the subdirectory entries, but not descend into the subdirec-
tories, and thus will not save the files or directories contained in the
subdirectories. Normally, you will want the default (yes).

sparse=yes—no Enable special code that checks for sparse files such as
created by ndbm. The default is no, so no checks are made for sparse
files. You may specify sparse=yes even on files that are not sparse
file. No harm will be done, but there will be a small additional over-
head to check for buffers of all zero, and a small additional amount of
space on the output archive will be used to save the seek address of
each non-zero record read.

Restrictions: Bacula reads files in 32K buffers. If the whole buffer
is zero, it will be treated as a sparse block and not written to tape.
However, if any part of the buffer is non-zero, the whole buffer will
be written to tape, possibly including some disk sectors (generally
4098 bytes) that are all zero. As a consequence, Bacula’s detection of
sparse blocks is in 32K increments rather than the system block size.
If anyone considers this to be a real problem, please send in a request
for change with the reason.

If you are not familiar with sparse files, an example is say a file where
you wrote 512 bytes at address zero, then 512 bytes at address 1 mil-
lion. The operating system will allocate only two blocks, and the
empty space or hole will have nothing allocated. However, when you
read the sparse file and read the addresses where nothing was written,
the OS will return all zeros as if the space were allocated, and if you
backup such a file, a lot of space will be used to write zeros to the
volume. Worse yet, when you restore the file, all the previously empty
space will now be allocated using much more disk space. By turning
on the sparse option, Bacula will specifically look for empty space in
the file, and any empty space will not be written to the Volume, nor
will it be restored. The price to pay for this is that Bacula must search

145

each block it reads before writing it. On a slow system, this may be
important. If you suspect you have sparse files, you should benchmark
the difference or set sparse for only those files that are really sparse.

readfifo=yes—no If enabled, tells the Client to read the data on a backup
and write the data on a restore to any FIFO (pipe) that is explicitly
mentioned in the FileSet. In this case, you must have a program al-
ready running that writes into the FIFO for a backup or reads from
the FIFO on a restore. This can be accomplished with the RunBe-
foreJob directive. If this is not the case, Bacula will hang indefinitely
on reading/writing the FIFO. When this is not enabled (default), the
Client simply saves the directory entry for the FIFO.

Unfortunately, when Bacula runs a RunBeforeJob, it waits until that
script terminates, and if the script accesses the FIFO to write into
the it, the Bacula job will block and everything will stall. However,
Vladimir Stavrinov as supplied tip that allows this feature to work
correctly. He simply adds the following to the beginning of the Run-
BeforeJob script:

exec > /dev/null

noatime=yes—no If enabled, and if your Operating System supports the
O NOATIME file open flag, Bacula will open all files to be backed up
with this option. It makes it possible to read a file without updating
the inode atime (and also without the inode ctime update which hap-
pens if you try to set the atime back to its previous value). It also
prevents a race condition when two programs are reading the same
file, but only one does not want to change the atime. It’s most useful
for backup programs and file integrity checkers (and bacula can fit on
both categories).

This option is particularly useful for sites where users are sensitive to
their MailBox file access time. It replaces both the keepatime option
without the inconveniences of that option (see below).

If your Operating System does not support this option, it will be
silently ignored by Bacula.

mtimeonly=yes—no If enabled, tells the Client that the selection of files
during Incremental and Differential backups should based only on the
st mtime value in the stat() packet. The default is no which means
that the selection of files to be backed up will be based on both the
st mtime and the st ctime values. In general, it is not recommended
to use this option.

146 CHAPTER 12. THE FILESET RESOURCE

keepatime=yes—no The default is no. When enabled, Bacula will reset
the st atime (access time) field of files that it backs up to their value
prior to the backup. This option is not generally recommended as there
are very few programs that use st atime, and the backup overhead is
increased because of the additional system call necessary to reset the
times. However, for some files, such as mailboxes, when Bacula backs
up the file, the user will notice that someone (Bacula) has accessed the
file. In this, case keepatime can be useful. (I’m not sure this works on
Win32).

Note, if you use this feature, when Bacula resets the access time, the
change time (st ctime) will automatically be modified by the system,
so on the next incremental job, the file will be backed up even if it has
not changed. As a consequence, you will probably also want to use
mtimeonly = yes as well as keepatime (thanks to Rudolf Cejka for
this tip).

hardlinks=yes—no When enabled (default), this directive will cause hard
links to be backed up. However, the File daemon keeps track of hard
linked files and will backup the data only once. The process of keeping
track of the hard links can be quite expensive if you have lots of them
(tens of thousands or more). This doesn’t occur on normal Unix sys-
tems, but if you use a program like BackupPC, it can create hundreds
of thousands, or even millions of hard links. Backups become very
long and the File daemon will consume a lot of CPU power checking
hard links. In such a case, set hardlinks=no and hard links will not
be backed up. Note, using this option will most likely backup more
data and on a restore the file system will not be restored identically
to the original.

wild=<string> Specifies a wild-card string to be applied to the filenames
and directory names. Note, if Exclude is not enabled, the wild-card
will select which files are to be included. If Exclude=yes is specified,
the wild-card will select which files are to be excluded. Multiple wild-
card directives may be specified, and they will be applied in turn until
the first one that matches. Note, if you exclude a directory, no files or
directories below it will be matched.

You may want to test your expressions prior to running your backup
by using the bwild program. Please see the Utilities chapter of this
manual for more. You can also test your full FileSet definition by
using the estimate command in the Console chapter of this manual. It
is recommended to enclose the string in double quotes.

wilddir=<string> Specifies a wild-card string to be applied to directory
names only. No filenames will be matched by this directive. Note,

147

if Exclude is not enabled, the wild-card will select directories files
are to be included. If Exclude=yes is specified, the wild-card will
select which files are to be excluded. Multiple wild-card directives may
be specified, and they will be applied in turn until the first one that
matches. Note, if you exclude a directory, no files or directories below
it will be matched.

It is recommended to enclose the string in double quotes.

You may want to test your expressions prior to running your backup
by using the bwild program. Please see the Utilities chapter of this
manual for more. You can also test your full FileSet definition by
using the estimate command in the Console chapter of this manual.
An example of excluding with the WildDir option on Win32 machines
is presented below.

wildfile=<string> Specifies a wild-card string to be applied to non-
directories. That is no directory entries will be matched by this di-
rective. However, note that the match is done against the full path
and filename, so your wild-card string must take into account that file-
names are preceded by the full path. If Exclude is not enabled, the
wild-card will select which files are to be included. If Exclude=yes is
specified, the wild-card will select which files are to be excluded. Mul-
tiple wild-card directives may be specified, and they will be applied in
turn until the first one that matches.

It is recommended to enclose the string in double quotes.

You may want to test your expressions prior to running your backup
by using the bwild program. Please see the Utilities chapter of this
manual for more. You can also test your full FileSet definition by
using the estimate command in the Console chapter of this manual.
An example of excluding with the WildFile option on Win32 machines
is presented below.

regex=<string> Specifies a POSIX extended regular expression to be ap-
plied to the filenames and directory names, which include the full path.
If Exclude is not enabled, the regex will select which files are to be
included. If Exclude=yes is specified, the regex will select which files
are to be excluded. Multiple regex directives may be specified within
an Options resource, and they will be applied in turn until the first one
that matches. Note, if you exclude a directory, no files or directories
below it will be matched.

It is recommended to enclose the string in double quotes.

The regex libraries differ from one operating system to another, and in
addition, regular expressions are complicated, so you may want to test
your expressions prior to running your backup by using the bregex

148 CHAPTER 12. THE FILESET RESOURCE

program. Please see the Utilities chapter of this manual for more.
You can also test your full FileSet definition by using the estimate
command in the Console chapter of this manual.

regexfile=<string> Specifies a POSIX extended regular expression to be
applied to non-directories. No directories will be matched by this di-
rective. However, note that the match is done against the full path and
filename, so your regex string must take into account that filenames
are preceded by the full path. If Exclude is not enabled, the regex
will select which files are to be included. If Exclude=yes is specified,
the regex will select which files are to be excluded. Multiple regex
directives may be specified, and they will be applied in turn until the
first one that matches.

It is recommended to enclose the string in double quotes.

The regex libraries differ from one operating system to another, and
in addition, regular expressions are complicated, so you may want to
test your expressions prior to running your backup by using the bregex
program. Please see the Utilities chapter of this manual for more.

regexdir=<string> Specifies a POSIX extended regular expression to be
applied to directory names only. No filenames will be matched by this
directive. Note, if Exclude is not enabled, the regex will select direc-
tories files are to be included. If Exclude=yes is specified, the regex
will select which files are to be excluded. Multiple regex directives
may be specified, and they will be applied in turn until the first one
that matches. Note, if you exclude a directory, no files or directories
below it will be matched.

It is recommended to enclose the string in double quotes.

The regex libraries differ from one operating system to another, and
in addition, regular expressions are complicated, so you may want to
test your expressions prior to running your backup by using the bregex
program. Please see the Utilities chapter of this manual for more.

exclude=yes—no The default is no. When enabled, any files matched
within the Options will be excluded from the backup.

aclsupport=yes—no The default is no. If this option is set to yes, and
you have the POSIX libacl installed on your system, Bacula will
backup the file and directory UNIX Access Control Lists (ACL) as
defined in IEEE Std 1003.1e draft 17 and ”POSIX.1e” (abandoned).
This feature is available on UNIX only and depends on the ACL li-
brary. Bacula is automatically compiled with ACL support if the
libacl library is installed on your system (shown in config.out). While
restoring the files Bacula will try to restore the ACLs, if there is no

149

ACL support available on the system, Bacula restores the files and
directories but not the ACL information. Please note, if you backup
an EXT3 or XFS filesystem with ACLs, then you restore them to a
different filesystem (perhaps reiserfs) that does not have ACLs, the
ACLs will be ignored.

ignore case=yes—no The default is no. On Windows systems, you will
almost surely want to set this to yes. When this directive is set to
yes all the case of character will be ignored in wild-card and regex
comparisons. That is an uppercase A will match a lowercase a.

fstype=filesystem-type This option allows you to select files and direc-
tories by the filesystem type. The permitted filesystem-type names
are:

ext2, jfs, ntfs, proc, reiserfs, xfs, usbdevfs, sysfs, smbfs, iso9660. For
ext3 systems, use ext2.

You may have multiple Fstype directives, and thus permit matching
of multiple filesystem types within a single Options resource. If the
type specified on the fstype directive does not match the filesystem
for a particular directive, that directory will not be backed up. This
directive can be used to prevent backing up non-local filesystems. Nor-
mally, when you use this directive, you would also set onefs=no so
that Bacula will traverse filesystems.

This option is not implemented in Win32 systems.

hfsplussupport=yes—no This option allows you to turn on support for
Mac OSX HFS plus finder information.

<file-list> is a list of directory and/or filename names specified with a File
= directive. To include names containing spaces, enclose the name between
double-quotes. Wild-cards are not interpreted in file-lists. They can only
be specified in Options resources.

There are a number of special cases when specifying directories and files in
a file-list. They are:

• Any name preceded by an at-sign (@) is assumed to be the name of
a file, which contains a list of files each preceded by a ”File =”. The
named file is read once when the configuration file is parsed during the
Director startup. Note, that the file is read on the Director’s machine
and not on the Client’s. In fact, the @filename can appear anywhere
within the conf file where a token would be read, and the contents of
the named file will be logically inserted in the place of the @filename.

150 CHAPTER 12. THE FILESET RESOURCE

What must be in the file depends on the location the @filename is
specified in the conf file. For example:

Include {

Options { compression=GZIP }

@/home/files/my-files

}

• Any name beginning with a vertical bar (—) is assumed to be the
name of a program. This program will be executed on the Director’s
machine at the time the Job starts (not when the Director reads the
configuration file), and any output from that program will be assumed
to be a list of files or directories, one per line, to be included.

This allows you to have a job that, for example, includes all the local
partitions even if you change the partitioning by adding a disk. The
examples below show you how to do this. However, please note two
things:
1. if you want the local filesystems, you probably should be using
the new fstype directive, which was added in version 1.36.3 and set
onefs=no.

2. the exact syntax of the command needed in the examples below is
very system dependent. For example, on recent Linux systems, you
may need to add the -P option, on FreeBSD systems, the options will
be different as well.

In general, you will need to prefix your command or commands with
a sh -c so that they are invoked by a shell. This will not be the case
if you are invoking a script as in the second example below. Also, you
must take care to escape (precede with a \) wild-cards, shell character,
and to ensure that any spaces in your command are escaped as well.
If you use a single quotes (’) within a double quote (”), Bacula will
treat everything between the single quotes as one field so it will not be
necessary to escape the spaces. In general, getting all the quotes and
escapes correct is a real pain as you can see by the next example. As
a consequence, it is often easier to put everything in a file and simply
use the file name within Bacula. In that case the sh -c will not be
necessary providing the first line of the file is #!/bin/sh.

As an example:

Include {

Options { signature = SHA1 }

File = "|sh -c ’df -l | grep \"^/dev/hd[ab]\" | grep -v \".*/tmp\" \

| awk \"{print \\$6}\"’"

}

151

will produce a list of all the local partitions on a Red Hat Linux system.
Note, the above line was split, but should normally be written on one
line. Quoting is a real problem because you must quote for Bacula
which consists of preceding every \ and every ” with a \, and you
must also quote for the shell command. In the end, it is probably
easier just to execute a small file with:

Include {

Options {

signature=MD5

}

File = "|my_partitions"

}

where my partitions has:

#!/bin/sh

df -l | grep "^/dev/hd[ab]" | grep -v ".*/tmp" \

| awk "{print \$6}"

If the vertical bar (—) in front of my partitions is preceded by a back-
slash as in \—, the program will be executed on the Client’s machine
instead of on the Director’s machine. Please note that if the filename
is given within quotes, you will need to use two slashes. An example,
provided by John Donagher, that backs up all the local UFS partitions
on a remote system is:

FileSet {

Name = "All local partitions"

Include {

Options { signature=SHA1; onefs=yes; }

File = "\\|bash -c \"df -klF ufs | tail +2 | awk ’{print \$6}’\""

}

}

The above requires two backslash characters after the double quote
(one preserves the next one). If you are a Linux user, just change the
ufs to ext3 (or your preferred filesystem type), and you will be in
business.

If you know what filesystems you have mounted on your system, e.g.
for Red Hat Linux normally only ext2 and ext3, you can backup all
local filesystems using something like:

Include {

Options { signature = SHA1; onfs=no; fstype=ext2 }

File = /

}

152 CHAPTER 12. THE FILESET RESOURCE

• Any file-list item preceded by a less-than sign (<) will be taken to be
a file. This file will be read on the Director’s machine at the time the
Job starts, and the data will be assumed to be a list of directories or
files, one per line, to be included. The names should start in column
1 and should not be quoted even if they contain spaces. This feature
allows you to modify the external file and change what will be saved
without stopping and restarting Bacula as would be necessary if using
the @ modifier noted above. For example:

Include {

Options { signature = SHA1 }

File = "</home/files/local-filelist"

}

If you precede the less-than sign (<) with a backslash as in \<, the
file-list will be read on the Client machine instead of on the Director’s
machine. Please note that if the filename is given within quotes, you
will need to use two slashes.

Include {

Options { signature = SHA1 }

File = "\\</home/xxx/filelist-on-client"

}

• If you explicitly specify a block device such as /dev/hda1, then Bac-
ula (starting with version 1.28) will assume that this is a raw partition
to be backed up. In this case, you are strongly urged to specify a
sparse=yes include option, otherwise, you will save the whole parti-
tion rather than just the actual data that the partition contains. For
example:

Include {

Options { signature=MD5; sparse=yes }

File = /dev/hd6

}

will backup the data in device /dev/hd6.

Ludovic Strappazon has pointed out that this feature can be used
to backup a full Microsoft Windows disk. Simply boot into the sys-
tem using a Linux Rescue disk, then load a statically linked Bacula
as described in the Disaster Recovery Using Bacula chapter of this
manual. Then save the whole disk partition. In the case of a disaster,
you can then restore the desired partition by again booting with the
rescue disk and doing a restore of the partition.

12.1. FILESET EXAMPLES 153

• If you explicitly specify a FIFO device name (created with mkfifo),
and you add the option readfifo=yes as an option, Bacula will read
the FIFO and back its data up to the Volume. For example:

Include {

Options {

signature=SHA1

readfifo=yes

}

File = /home/abc/fifo

}

if /home/abc/fifo is a fifo device, Bacula will open the fifo, read it,
and store all data thus obtained on the Volume. Please note, you must
have a process on the system that is writing into the fifo, or Bacula
will hang, and after one minute of waiting, Bacula will give up and go
on to the next file. The data read can be anything since Bacula treats
it as a stream.

This feature can be an excellent way to do a ”hot” backup of a very
large database. You can use the RunBeforeJob to create the fifo and
to start a program that dynamically reads your database and writes
it to the fifo. Bacula will then write it to the Volume. Be sure to read
the readfifo section that gives a tip to ensure that the RunBeforeJob
does not block Bacula.

During the restore operation, the inverse is true, after Bacula creates
the fifo if there was any data stored with it (no need to explicitly list
it or add any options), that data will be written back to the fifo. As a
consequence, if any such FIFOs exist in the fileset to be restored, you
must ensure that there is a reader program or Bacula will block, and
after one minute, Bacula will time out the write to the fifo and move
on to the next file.

• A file-list may not contain wild-cards. Use directives in the Options
resource if you wish to specify wild-cards or regular expression match-
ing.

12.1 FileSet Examples

The following is an example of a valid FileSet resource definition. Note, the
first Include pulls in the contents of the file /etc/backup.list when Bacula
is started (i.e. the @), and that file must have each filename to be backed
up preceded by a File = and on a separate line.

154 CHAPTER 12. THE FILESET RESOURCE

FileSet {

Name = "Full Set"

Include {

Options {

Compression=GZIP

signature=SHA1

Sparse = yes

}

@/etc/backup.list

}

Include {

Options {

wildfile = "*.o"

wildfile = "*.exe"

Exclude = yes

}

File = /root/myfile

File = /usr/lib/another_file

}

}

In the above example, all the files contained in /etc/backup.list will be
compressed with GZIP compression, an SHA1 signature will be computed
on the file’s contents (its data), and sparse file handling will apply.

The two directories /root/myfile and /usr/lib/another file will also be saved
without any options, but all files in those directories with the extensions .o
and .exe will be excluded.

Let’s say that you now want to exclude the directory /tmp. The simplest
way to do so is to add an exclude directive that lists /tmp. The example
above would then become:

FileSet {

Name = "Full Set"

Include {

Options {

Compression=GZIP

signature=SHA1

Sparse = yes

}

@/etc/backup.list

}

Include {

Options {

wildfile = "*.o"

wildfile = "*.exe"

Exclude = yes

}

File = /root/myfile

12.1. FILESET EXAMPLES 155

File = /usr/lib/another_file

}

Exclude {

File = /tmp

}

}

You can add wild-cards to the File directives listed in the Exclude directory,
but you need to take care because if you exclude a directory, it and all files
and directories below it will also be excluded.

Now lets take a slight variation on the above and suppose you want to save
all your whole filesystem except /tmp. The problem that comes up is that
Bacula will not normally cross from one filesystem to another. Doing a df
command, you get the following output:

[kern@rufus k]$ df

Filesystem 1k-blocks Used Available Use% Mounted on

/dev/hda5 5044156 439232 4348692 10% /

/dev/hda1 62193 4935 54047 9% /boot

/dev/hda9 20161172 5524660 13612372 29% /home

/dev/hda2 62217 6843 52161 12% /rescue

/dev/hda8 5044156 42548 4745376 1% /tmp

/dev/hda6 5044156 2613132 2174792 55% /usr

none 127708 0 127708 0% /dev/shm

//minimatou/c$ 14099200 9895424 4203776 71% /mnt/mmatou

lmatou:/ 1554264 215884 1258056 15% /mnt/matou

lmatou:/home 2478140 1589952 760072 68% /mnt/matou/home

lmatou:/usr 1981000 1199960 678628 64% /mnt/matou/usr

lpmatou:/ 995116 484112 459596 52% /mnt/pmatou

lpmatou:/home 19222656 2787880 15458228 16% /mnt/pmatou/home

lpmatou:/usr 2478140 2038764 311260 87% /mnt/pmatou/usr

deuter:/ 4806936 97684 4465064 3% /mnt/deuter

deuter:/home 4806904 280100 4282620 7% /mnt/deuter/home

deuter:/files 44133352 27652876 14238608 67% /mnt/deuter/files

And we see that there are a number of separate filesystems (/ /boot /home
/rescue /tmp and /usr not to mention mounted systems). If you specify only
/ in your Include list, Bacula will only save the Filesystem /dev/hda5. To
save all filesystems except /tmp with out including any of the Samba or
NFS mounted systems, and explicitly excluding a /tmp, /proc, .journal, and
.autofsck, which you will not want to be saved and restored, you can use the
following:

FileSet {

Name = Include_example

Include {

156 CHAPTER 12. THE FILESET RESOURCE

Options {

wilddir = /proc

wilddir = /tmp

wildfile = "/.journal"

wildfile = "/.autofsck"

exclude = yes

}

File = /

File = /boot

File = /home

File = /rescue

File = /usr

}

}

Since /tmp is on its own filesystem and it was not explicitly named in the
Include list, it is not really needed in the exclude list. It is better to list it
in the Exclude list for clarity, and in case the disks are changed so that it is
no longer in its own partition.

Now, lets assume you only want to backup .Z and .gz files and nothing
else. This is a bit trickier because Bacula by default will select everything
to backup, so we must exclude everything but .Z and .gz files. If we take
the first example above and make the obvious modifications to it, we might
come up with a FileSet that looks like this:

FileSet {

Name = "Full Set"

Include { !!!!!!!!!!!!

Options { This

wildfile = "*.Z" example

wildfile = "*.gz" doesn’t

work

} !!!!!!!!!!!!

File = /myfile

}

}

The *.Z and *.gz files will indeed be backed up, but all other files that are
not matched by the Options directives will automatically be backed up too
(i.e. that is the default rule).

To accomplish what we want, we must explicitly exclude all other files. We
do this with the following:

FileSet {

Name = "Full Set"

12.1. FILESET EXAMPLES 157

Include {

Options {

wildfile = "*.Z"

wildfile = "*.gz"

}

Options {

Exclude = yes

RegexFile = ".*"

}

File = /myfile

}

}

The ”trick” here was to add a RegexFile expression that matches all files. It
does not match directory names, so all directories in /myfile will be backed
up (the directory entry) and any *.Z and *.gz files contained in them. If you
know that certain directories do not contain any *.Z or *.gz files and you do
not want the directory entries backed up, you will need to explicitly exclude
those directories. Backing up a directory entries is not very expensive.

Bacula uses the system regex library and some of them are different on
different OSes. The above has been reported not to work on FreeBSD. This
can be tested by using the estimate job=job-name listing command in
the console and adapting the RegexFile expression appropriately. In a future
version of Bacula, we will supply our own Regex code to avoid such system
dependencies.

Please be aware that allowing Bacula to traverse or change file systems can
be very dangerous. For example, with the following:

FileSet {

Name = "Bad example"

Include {

Options { onefs=no }

File = /mnt/matou

}

}

you will be backing up an NFS mounted partition (/mnt/matou), and since
onefs is set to no, Bacula will traverse file systems. Now if /mnt/matou
has the current machine’s file systems mounted, as is often the case, you will
get yourself into a recursive loop and the backup will never end.

As a final example, let’s say that you have only one or two subdirectories
of /home that you want to backup. For example, you want to backup only
subdirectories beginning with the letter a and the letter b – i.e. /home/a*
and /home/b*. Now, you might first try:

158 CHAPTER 12. THE FILESET RESOURCE

FileSet {

Name = "Full Set"

Include {

Options {

wilddir = "/home/a*"

wilddir = "/home/b*"

}

File = /home

}

}

The problem is that the above will include everything in /home. To get
things to work correctly, you need to start with the idea of exclusion instead
of inclusion. So, you could simply exclude all directories except the two you
want to use:

FileSet {

Name = "Full Set"

Include {

Options {

RegexDir = "^/home/[c-z]"

exclude = yes

}

File = /home

}

}

And assuming that all subdirectories start with a lowercase letter, this would
work.

An alternative would be to include the two subdirectories desired and ex-
clude everything else:

FileSet {

Name = "Full Set"

Include {

Options {

wilddir = "/home/a*"

wilddir = "/home/b*"

}

Options {

RegexDir = ".*"

exclude = yes

}

File = /home

}

}

12.2. BACKING UP RAW PARTITIONS 159

12.2 Backing up Raw Partitions

The following FileSet definition will backup a raw partition:

FileSet {

Name = "RawPartition"

Include {

Options { sparse=yes }

File = /dev/hda2

}

}

While backing up and restoring a raw partition, you should ensure that
no other process including the system is writing to that partition. As a
precaution, you are strongly urged to ensure that the raw partition is not
mounted or is mounted read-only. If necessary, this can be done using the
RunBeforeJob directive.

12.3 Excluding Files and Directories

You may also include full filenames or directory names in addition to using
wild-cards and Exclude=yes in the Options resource as specified above by
simply including the files to be excluded in an Exclude resource within the
FileSet. For example:

FileSet {

Name = Exclusion_example

Include {

Options {

Signature = SHA1

}

File = /

File = /boot

File = /home

File = /rescue

File = /usr

}

Exclude {

File = /proc

File = /tmp

File = .journal

File = .autofsck

}

}

160 CHAPTER 12. THE FILESET RESOURCE

12.4 Windows FileSets

If you are entering Windows file names, the directory path may be preceded
by the drive and a colon (as in c:). However, the path separators must be
specified in Unix convention (i.e. forward slash (/)). If you wish to include
a quote in a file name, precede the quote with a backslash (\). For example
you might use the following for a Windows machine to backup the ”My
Documents” directory:

FileSet {

Name = "Windows Set"

Include {

Options {

WildFile = "*.obj"

WildFile = "*.exe"

exclude = yes

}

File = "c:/My Documents"

}

}

For exclude lists to work correctly on Windows, you must observe the fol-
lowing rules:

• Filenames are case sensitive, so you must use the correct case.

• To 2 exclude a directory, you must not have a trailing slash on the
directory name.

• I2 f you have spaces in your filename, you must enclose the entire name
in double-quote characters (”). Trying to use a backslash before the
space will not work.

• If you are using the old Exclude syntax (noted below), you may not
specify a drive letter in the exclude. The new syntax noted above
should work fine including driver letters.

Thanks to Thiago Lima for summarizing the above items for us. If you
are having difficulties getting includes or excludes to work, you might want
to try using the estimate job=xxx listing command documented in the
Console chapter of this manual.

On Win32 systems, if you move a directory or file or rename a file into
the set of files being backed up, and a Full backup has already been made,

12.4. WINDOWS FILESETS 161

Bacula will not know there are new files to be saved during an Incremental
or Differential backup (blame Microsoft, not me). To avoid this problem,
please copy any new directory or files into the backup area. If you do not
have enough disk to copy the directory or files, move them, but then initiate
a Full backup.

A Windows Example FileSet The following example was contributed
by Russell Howe. Please note that for presentation purposes, the lines be-
ginning with Data and Internet have been wrapped and should included on
the previous line with one space.

This is my Windows 2000 fileset:

FileSet {

Name = "Windows 2000"

Include {

Options {

signature = MD5

Exclude = yes

IgnoreCase = yes

Exclude Mozilla-based programs’ file caches

WildDir = "[A-Z]:/Documents and Settings/*/Application

Data/*/Profiles/*/*/Cache"

WildDir = "[A-Z]:/Documents and Settings/*/Application

Data/*/Profiles/*/*/Cache.Trash"

WildDir = "[A-Z]:/Documents and Settings/*/Application

Data/*/Profiles/*/*/ImapMail"

Exclude user’s registry files - they’re always in use anyway.

WildFile = "[A-Z]:/Documents and Settings/*/Local Settings/Application

Data/Microsoft/Windows/usrclass.*"

WildFile = "[A-Z]:/Documents and Settings/*/ntuser.*"

Exclude directories full of lots and lots of useless little files

WildDir = "[A-Z]:/Documents and Settings/*/Cookies"

WildDir = "[A-Z]:/Documents and Settings/*/Recent"

WildDir = "[A-Z]:/Documents and Settings/*/Local Settings/History"

WildDir = "[A-Z]:/Documents and Settings/*/Local Settings/Temp"

WildDir = "[A-Z]:/Documents and Settings/*/Local Settings/Temporary

Internet Files"

These are always open and unable to be backed up

WildFile = "[A-Z]:/Documents and Settings/All Users/Application

Data/Microsoft/Network/Downloader/qmgr[01].dat"

Some random bits of Windows we want to ignore

WildFile = "[A-Z]:/WINNT/security/logs/scepol.log"

WildDir = "[A-Z]:/WINNT/system32/config"

WildDir = "[A-Z]:/WINNT/msdownld.tmp"

WildDir = "[A-Z]:/WINNT/Internet Logs"

WildDir = "[A-Z]:/WINNT/$Nt*Uninstall*"

162 CHAPTER 12. THE FILESET RESOURCE

WildDir = "[A-Z]:/WINNT/sysvol"

WildFile = "[A-Z]:/WINNT/cluster/CLUSDB"

WildFile = "[A-Z]:/WINNT/cluster/CLUSDB.LOG"

WildFile = "[A-Z]:/WINNT/NTDS/edb.log"

WildFile = "[A-Z]:/WINNT/NTDS/ntds.dit"

WildFile = "[A-Z]:/WINNT/NTDS/temp.edb"

WildFile = "[A-Z]:/WINNT/ntfrs/jet/log/edb.log"

WildFile = "[A-Z]:/WINNT/ntfrs/jet/ntfrs.jdb"

WildFile = "[A-Z]:/WINNT/ntfrs/jet/temp/tmp.edb"

WildFile = "[A-Z]:/WINNT/system32/CPL.CFG"

WildFile = "[A-Z]:/WINNT/system32/dhcp/dhcp.mdb"

WildFile = "[A-Z]:/WINNT/system32/dhcp/j50.log"

WildFile = "[A-Z]:/WINNT/system32/dhcp/tmp.edb"

WildFile = "[A-Z]:/WINNT/system32/LServer/edb.log"

WildFile = "[A-Z]:/WINNT/system32/LServer/TLSLic.edb"

WildFile = "[A-Z]:/WINNT/system32/LServer/tmp.edb"

WildFile = "[A-Z]:/WINNT/system32/wins/j50.log"

WildFile = "[A-Z]:/WINNT/system32/wins/wins.mdb"

WildFile = "[A-Z]:/WINNT/system32/wins/winstmp.mdb"

Temporary directories & files

WildDir = "[A-Z]:/WINNT/Temp"

WildDir = "[A-Z]:/temp"

WildFile = "*.tmp"

WildDir = "[A-Z]:/tmp"

WildDir = "[A-Z]:/var/tmp"

Recycle bins

WildDir = "[A-Z]:/RECYCLER"

Swap files

WildFile = "[A-Z]:/pagefile.sys"

These are programs and are easier to reinstall than restore from

backup

WildDir = "[A-Z]:/cygwin"

WildDir = "[A-Z]:/Program Files/Grisoft"

WildDir = "[A-Z]:/Program Files/Java"

WildDir = "[A-Z]:/Program Files/Java Web Start"

WildDir = "[A-Z]:/Program Files/JavaSoft"

WildDir = "[A-Z]:/Program Files/Microsoft Office"

WildDir = "[A-Z]:/Program Files/Mozilla Firefox"

WildDir = "[A-Z]:/Program Files/Mozilla Thunderbird"

WildDir = "[A-Z]:/Program Files/mozilla.org"

WildDir = "[A-Z]:/Program Files/OpenOffice*"

}

Our Win2k boxen all have C: and D: as the main hard drives.

File = "C:/"

File = "D:/"

}

}

12.5. TESTING YOUR FILESET 163

Note, the three line of the above Exclude were split to fit on the document
page, they should be written on a single line in real use.

Windows NTFS Naming Considerations NTFS filenames containing
Unicode characters should now be supported as of version 1.37.30 or later.

12.5 Testing Your FileSet

If you wish to get an idea of what your FileSet will really backup or if your
exclusion rules will work correctly, you can test it by using the estimate
command in the Console program. See the estimate in the Console chapter
of this manual.

As an example, suppose you add the following test FileSet:

FileSet {

Name = Test

Include {

File = /home/xxx/test

Options {

regex = ".*\.c$"

}

}

}

You could then add some test files to the directory /home/xxx/test and
use the following command in the console:

estimate job=<any-job-name> listing client=<desired-client> fileset=Test

to give you a listing of all files that match.

12.6 The Client Resource

The Client resource defines the attributes of the Clients that are served by
this Director; that is the machines that are to be backed up. You will need
one Client resource definition for each machine to be backed up.

Client (or FileDaemon) Start of the Client directives.

164 CHAPTER 12. THE FILESET RESOURCE

Name = <name> The client name which will be used in the Job resource
directive or in the console run command. This directive is required.

Address = <address> Where the address is a host name, a fully qualified
domain name, or a network address in dotted quad notation for a
Bacula File server daemon. This directive is required.

FD Port = <port-number> Where the port is a port number at which
the Bacula File server daemon can be contacted. The default is 9102.

Catalog = <Catalog-resource-name> This specifies the name of the
catalog resource to be used for this Client. This directive is required.

Password = <password> This is the password to be used when estab-
lishing a connection with the File services, so the Client configuration
file on the machine to be backed up must have the same password
defined for this Director. This directive is required. If you have either
/dev/random bc on your machine, Bacula will generate a random
password during the configuration process, otherwise it will be left
blank.

File Retention = <time-period-specification> The File Retention di-
rective defines the length of time that Bacula will keep File records in
the Catalog database after the End time of the Job corresponding to
the File records. When this time period expires, and if AutoPrune is
set to yes Bacula will prune (remove) File records that are older than
the specified File Retention period. Note, this affects only records in
the catalog database. It does not affect your archive backups.

File records may actually be retained for a shorter period than you
specify on this directive if you specify either a shorter Job Reten-
tion or a shorter Volume Retention period. The shortest retention
period of the three takes precedence. The time may be expressed in
seconds, minutes, hours, days, weeks, months, quarters, or years. See
the Configuration chapter of this manual for additional details of time
specification.

The default is 60 days.

Job Retention = <time-period-specification> The Job Retention di-
rective defines the length of time that Bacula will keep Job records in
the Catalog database after the Job End time. When this time period
expires, and if AutoPrune is set to yes Bacula will prune (remove)
Job records that are older than the specified File Retention period.
As with the other retention periods, this affects only records in the
catalog and not data in your archive backup.

12.6. THE CLIENT RESOURCE 165

If a Job record is selected for pruning, all associated File and JobMedia
records will also be pruned regardless of the File Retention period set.
As a consequence, you normally will set the File retention period to
be less than the Job retention period. The Job retention period can
actually be less than the value you specify here if you set the Volume
Retention directive in the Pool resource to a smaller duration. This
is because the Job retention period and the Volume retention period
are independently applied, so the smaller of the two takes precedence.

The Job retention period is specified as seconds, minutes, hours, days,
weeks, months, quarters, or years. See the Configuration chapter of
this manual for additional details of time specification.

The default is 180 days.

AutoPrune = <yes—no> If AutoPrune is set to yes (default), Bacula
(version 1.20 or greater) will automatically apply the File retention
period and the Job retention period for the Client at the end of the
Job. If you set AutoPrune = no, pruning will not be done, and your
Catalog will grow in size each time you run a Job. Pruning affects only
information in the catalog and not data stored in the backup archives
(on Volumes).

Maximum Concurrent Jobs = <number> where <number> is the
maximum number of Jobs with the current Client that can run con-
currently. Note, this directive limits only Jobs for Clients with the
same name as the resource in which it appears. Any other restrictions
on the maximum concurrent jobs such as in the Director, Job, or Stor-
age resources will also apply in addition to any limit specified here.
The default is set to 1, but you may set it to a larger number. We
strongly recommend that you read the WARNING documented under
Maximum Concurrent Jobs in the Director’s resource.

Priority = <number> The number specifies the priority of this client
relative to other clients that the Director is processing simultaneously.
The priority can range from 1 to 1000. The clients are ordered such
that the smaller number priorities are performed first (not currently
implemented).

The following is an example of a valid Client resource definition:

Client {

Name = Minimatou

FDAddress = minimatou

Catalog = MySQL

Password = very_good

}

166 CHAPTER 12. THE FILESET RESOURCE

12.7 The Storage Resource

The Storage resource defines which Storage daemons are available for use
by the Director.

Storage Start of the Storage resources. At least one storage resource must
be specified.

Name = <name> The name of the storage resource. This name appears
on the Storage directive specified in the Job resource and is required.

Address = <address> Where the address is a host name, a fully qual-
ified domain name, or an IP address. Please note that the
<address> as specified here will be transmitted to the File daemon
who will then use it to contact the Storage daemon. Hence, it is not,
a good idea to use localhost as the name but rather a fully qualified
machine name or an IP address. This directive is required.

SD Port = <port> Where port is the port to use to contact the storage
daemon for information and to start jobs. This same port number must
appear in the Storage resource of the Storage daemon’s configuration
file. The default is 9103.

Password = <password> This is the password to be used when estab-
lishing a connection with the Storage services. This same password
also must appear in the Director resource of the Storage daemon’s
configuration file. This directive is required. If you have either
/dev/random bc on your machine, Bacula will generate a random
password during the configuration process, otherwise it will be left
blank.

Device = <device-name> This directive specifies the Storage daemon’s
name of the device resource to be used for the storage. This name is
not the physical device name, but the logical device name as defined on
the Name directive contained in the Device resource definition of the
Storage daemon configuration file or if the device is an Autochanger,
you must put the name as defined on the Name directive contained in
the Autochanger resource definition of the Storage daemon. You
can specify any name you would like (even the device name if you
prefer) up to a maximum of 127 characters in length. The physical
device name associated with this device is specified in the Storage
daemon configuration file (as Archive Device). Please take care
not to define two different Storage resource directives in the Director
that point to the same Device in the Storage daemon. Doing so may

12.7. THE STORAGE RESOURCE 167

cause the Storage daemon to block (or hang) attempting to open the
same device that is already open. This directive is required.

Media Type = <MediaType> This directive specifies the Media Type
to be used to store the data. This is an arbitrary string of characters
up to 127 maximum that you define. It can be anything you want.
However, it is best to make it descriptive of the storage media (e.g.
File, DAT, ”HP DLT8000”, 8mm, ...). In addition, it is essential
that you make the Media Type specification unique for each storage
media type. If you have two DDS-4 drives that have incompatible
formats, or if you have a DDS-4 drive and a DDS-4 autochanger, you
almost certainly should specify different Media Types. During a
restore, assuming a DDS-4 Media Type is associated with the Job,
Bacula can decide to use any Storage daemon that supports Media
Type DDS-4 and on any drive that supports it.

If you are writing to disk Volumes, you must make doubly sure that
each Device resource defined in the Storage daemon (and hence in the
Director’s conf file) has a unique media type. Otherwise for Bacula
versions 1.38 and older, your restores may not work because Bacula
will assume that you can mount any Media Type with the same name
on any Device associated with that Media Type. This is possible with
tape drives, but with disk drives, unless you are very clever you cannot
mount a Volume in any directory – this can be done by creating an
appropriate soft link.

Currently Bacula permits only a single Media Type. Consequently, if
you have a drive that supports more than one Media Type, you can
give a unique string to Volumes with different intrinsic Media Type
(Media Type = DDS-3-4 for DDS-3 and DDS-4 types), but then those
volumes will only be mounted on drives indicated with the dual type
(DDS-3-4).

If you want to tie Bacula to using a single Storage daemon or drive, you
must specify a unique Media Type for that drive. This is an important
point that should be carefully understood. Note, this applies equally to
Disk Volumes. If you define more than one disk Device resource in your
Storage daemon’s conf file, the Volumes on those two devices are in fact
incompatible because one can not be mounted on the other device since
they are found in different directories. For this reason, you probably
should use two different Media Types for your two disk Devices (even
though you might think of them as both being File types). You can
find more on this subject in the Basic Volume Management chapter of
this manual.

The MediaType specified here, must correspond to the Media
Type specified in the Device resource of the Storage daemon con-

168 CHAPTER 12. THE FILESET RESOURCE

figuration file. This directive is required, and it is used by the Direc-
tor and the Storage daemon to ensure that a Volume automatically
selected from the Pool corresponds to the physical device. If a Stor-
age daemon handles multiple devices (e.g. will write to various file
Volumes on different partitions), this directive allows you to specify
exactly which device.

As mentioned above, the value specified in the Director’s Storage re-
source must agree with the value specified in the Device resource in the
Storage daemon’s configuration file. It is also an additional check
so that you don’t try to write data for a DLT onto an 8mm device.

Autochanger = <yes—no> If you specify yes for this command (the
default is no), when you use the label command or the add command
to create a new Volume, Bacula will also request the Autochanger Slot
number. This simplifies creating database entries for Volumes in an
autochanger. If you forget to specify the Slot, the autochanger will
not be used. However, you may modify the Slot associated with a
Volume at any time by using the update volume command in the
console program. When autochanger is enabled, the algorithm used
by Bacula to search for available volumes will be modified to consider
only Volumes that are known to be in the autochanger’s magazine.
If no in changer volume is found, Bacula will attempt recycling,
pruning, ..., and if still no volume is found, Bacula will search for any
volume whether or not in the magazine. By privileging in changer
volumes, this procedure minimizes operator intervention. The default
is no.

For the autochanger to be used, you must also specify Autochanger
= yes in the Device Resource in the Storage daemon’s configuration
file as well as other important Storage daemon configuration informa-
tion. Please consult the Using Autochangers manual of this chapter
for the details of using autochangers.

Maximum Concurrent Jobs = <number> where <number> is the
maximum number of Jobs with the current Storage resource that can
run concurrently. Note, this directive limits only Jobs for Jobs using
this Storage daemon. Any other restrictions on the maximum concur-
rent jobs such as in the Director, Job, or Client resources will also apply
in addition to any limit specified here. The default is set to 1, but you
may set it to a larger number. However, if you set the Storage dae-
mon’s number of concurrent jobs greater than one, we recommend that
you read the waring documented under Maximum Concurrent Jobs in
the Director’s resource or simply turn data spooling on as documented
in the Data Spooling chapter of this manual.

12.8. THE POOL RESOURCE 169

The following is an example of a valid Storage resource definition:

Definition of tape storage device

Storage {

Name = DLTDrive

Address = lpmatou

Password = storage_password # password for Storage daemon

Device = "HP DLT 80" # same as Device in Storage daemon

Media Type = DLT8000 # same as MediaType in Storage daemon

}

12.8 The Pool Resource

The Pool resource defines the set of storage Volumes (tapes or files) to be
used by Bacula to write the data. By configuring different Pools, you can
determine which set of Volumes (media) receives the backup data. This
permits, for example, to store all full backup data on one set of Volumes
and all incremental backups on another set of Volumes. Alternatively, you
could assign a different set of Volumes to each machine that you backup.
This is most easily done by defining multiple Pools.

Another important aspect of a Pool is that it contains the default attributes
(Maximum Jobs, Retention Period, Recycle flag, ...) that will be given to a
Volume when it is created. This avoids the need for you to answer a large
number of questions when labeling a new Volume. Each of these attributes
can later be changed on a Volume by Volume basis using the update com-
mand in the console program. Note that you must explicitly specify which
Pool Bacula is to use with each Job. Bacula will not automatically search
for the correct Pool.

Most often in Bacula installations all backups for all machines (Clients) go
to a single set of Volumes. In this case, you will probably only use the
Default Pool. If your backup strategy calls for you to mount a different
tape each day, you will probably want to define a separate Pool for each
day. For more information on this subject, please see the Backup Strategies
chapter of this manual.

To use a Pool, there are three distinct steps. First the Pool must be defined
in the Director’s configuration file. Then the Pool must be written to the
Catalog database. This is done automatically by the Director each time
that it starts, or alternatively can be done using the create command in the
console program. Finally, if you change the Pool definition in the Director’s
configuration file and restart Bacula, the pool will be updated alternatively
you can use the update pool console command to refresh the database

170 CHAPTER 12. THE FILESET RESOURCE

image. It is this database image rather than the Director’s resource image
that is used for the default Volume attributes. Note, for the pool to be
automatically created or updated, it must be explicitly referenced by a Job
resource.

Next the physical media must be labeled. The labeling can either be done
with the label command in the console program or using the btape pro-
gram. The preferred method is to use the label command in the console
program.

Finally, you must add Volume names (and their attributes) to the Pool. For
Volumes to be used by Bacula they must be of the same Media Type as
the archive device specified for the job (i.e. if you are going to back up to a
DLT device, the Pool must have DLT volumes defined since 8mm volumes
cannot be mounted on a DLT drive). The Media Type has particular
importance if you are backing up to files. When running a Job, you must
explicitly specify which Pool to use. Bacula will then automatically select
the next Volume to use from the Pool, but it will ensure that the Media
Type of any Volume selected from the Pool is identical to that required by
the Storage resource you have specified for the Job.

If you use the label command in the console program to label the Volumes,
they will automatically be added to the Pool, so this last step is not normally
required.

It is also possible to add Volumes to the database without explicitly labeling
the physical volume. This is done with the add console command.

As previously mentioned, each time Bacula starts, it scans all the Pools
associated with each Catalog, and if the database record does not already
exist, it will be created from the Pool Resource definition. Bacula probably
should do an update pool if you change the Pool definition, but currently,
you must do this manually using the update pool command in the Console
program.

The Pool Resource defined in the Director’s configuration file (bacula-
dir.conf) may contain the following directives:

Pool Start of the Pool resource. There must be at least one Pool resource
defined.

Name = <name> The name of the pool. For most applications, you will
use the default pool name Default. This directive is required.

Maximum Volumes = <number> This directive specifies the maxi-
mum number of volumes (tapes or files) contained in the pool. This

12.8. THE POOL RESOURCE 171

directive is optional, if omitted or set to zero, any number of volumes
will be permitted. In general, this directive is useful for Autochangers
where there is a fixed number of Volumes, or for File storage where
you wish to ensure that the backups made to disk files do not become
too numerous or consume too much space.

Pool Type = <type> This directive defines the pool type, which corre-
sponds to the type of Job being run. It is required and may be one of
the following:

Backup

*Archive

*Cloned

*Migration

*Copy

*Save

Note, only Backup is current implemented.

Storage = <storage-resource-name> The Storage directive defines the
name of the storage services where you want to backup the FileSet
data. For additional details, see the Storage Resource Chapter of this
manual. The Storage resource may also be specified in the Job re-
source, but the value, if any, in the Pool resource overrides any value
in the Job. This Storage resource definition is not required by either
the Job resource or in the Pool, but it must be specified in one or the
other. If not configuration error will result.

Use Volume Once = <yes—no> This directive if set to yes specifies
that each volume is to be used only once. This is most useful when
the Media is a file and you want a new file for each backup that is done.
The default is no (i.e. use volume any number of times). This directive
will most likely be phased out (deprecated), so you are recommended
to use Maximum Volume Jobs = 1 instead.

The value defined by this directive in the bacula-dir.conf file is the
default value used when a Volume is created. Once the volume is
created, changing the value in the bacula-dir.conf file will not change
what is stored for the Volume. To change the value for an existing
Volume you must use the update command in the Console.

Maximum Volume Jobs = <positive-integer> This directive speci-
fies the maximum number of Jobs that can be written to the Volume.
If you specify zero (the default), there is no limit. Otherwise, when
the number of Jobs backed up to the Volume equals positive-integer

172 CHAPTER 12. THE FILESET RESOURCE

the Volume will be marked Used. When the Volume is marked Used
it can no longer be used for appending Jobs, much like the Full status
but it can be recycled if recycling is enabled, and thus used again. By
setting MaximumVolumeJobs to one, you get the same effect as
setting UseVolumeOnce = yes.

The value defined by this directive in the bacula-dir.conf file is the
default value used when a Volume is created. Once the volume is
created, changing the value in the bacula-dir.conf file will not change
what is stored for the Volume. To change the value for an existing
Volume you must use the update command in the Console.

Maximum Volume Files = <positive-integer> This directive speci-
fies the maximum number of files that can be written to the Volume.
If you specify zero (the default), there is no limit. Otherwise, when
the number of files written to the Volume equals positive-integer the
Volume will be marked Used. When the Volume is marked Used it
can no longer be used for appending Jobs, much like the Full status
but it can be recycled if recycling is enabled and thus used again. This
value is checked and the Used status is set only at the end of a job
that writes to the particular volume.

The value defined by this directive in the bacula-dir.conf file is the
default value used when a Volume is created. Once the volume is
created, changing the value in the bacula-dir.conf file will not change
what is stored for the Volume. To change the value for an existing
Volume you must use the update command in the Console.

Maximum Volume Bytes = <size> This directive specifies the maxi-
mum number of bytes that can be written to the Volume. If you
specify zero (the default), there is no limit except the physical size of
the Volume. Otherwise, when the number of bytes written to the Vol-
ume equals size the Volume will be marked Used. When the Volume
is marked Used it can no longer be used for appending Jobs, much like
the Full status but it can be recycled if recycling is enabled, and thus
the Volume can be re-used after recycling. This value is checked and
the Used status set while the job is writing to the particular volume.

This directive is particularly useful for restricting the size of disk vol-
umes, and will work correctly even in the case of multiple simultaneous
jobs writing to the volume.

The value defined by this directive in the bacula-dir.conf file is the
default value used when a Volume is created. Once the volume is
created, changing the value in the bacula-dir.conf file will not change
what is stored for the Volume. To change the value for an existing
Volume you must use the update command in the Console.

12.8. THE POOL RESOURCE 173

Volume Use Duration = <time-period-specification> The Volume
Use Duration directive defines the time period that the Volume can
be written beginning from the time of first data write to the Volume.
If the time-period specified is zero (the default), the Volume can be
written indefinitely. Otherwise, the next time a job runs that wants
to access this Volume, and the time period from the first write to the
volume (the first Job written) exceeds the time-period-specification,
the Volume will be marked Used, which means that no more Jobs
can be appended to the Volume, but it may be recycled if recycling is
enabled. Using the command status dir applies algorithms similar to
running jobs, so during such a command, the Volume status may also
be changed. Once the Volume is recycled, it will be available for use
again.

You might use this directive, for example, if you have a Volume used
for Incremental backups, and Volumes used for Weekly Full backups.
Once the Full backup is done, you will want to use a different In-
cremental Volume. This can be accomplished by setting the Volume
Use Duration for the Incremental Volume to six days. I.e. it will be
used for the 6 days following a Full save, then a different Incremental
volume will be used. Be careful about setting the duration to short
periods such as 23 hours, or you might experience problems of Bac-
ula waiting for a tape over the weekend only to complete the backups
Monday morning when an operator mounts a new tape.

The use duration is checked and the Used status is set only at the
end of a job that writes to the particular volume, which means that
even though the use duration may have expired, the catalog entry will
not be updated until the next job that uses this volume is run. This
directive is not intended to be used to limit volume sizes and will not
work correctly (i.e. will fail jobs) if the use duration expires while
multiple simultaneous jobs are writing to the volume.

Please note that the value defined by this directive in the bacula-
dir.conf file is the default value used when a Volume is created. Once
the volume is created, changing the value in the bacula-dir.conf file
will not change what is stored for the Volume. To change the value
for an existing Volume you must use the update volume command
in the Console.

Catalog Files = <yes—no> This directive defines whether or not you
want the names of the files that were saved to be put into the catalog.
The default is yes. The advantage of specifying Catalog Files =
No is that you will have a significantly smaller Catalog database. The
disadvantage is that you will not be able to produce a Catalog listing
of the files backed up for each Job (this is often called Browsing). Also,

174 CHAPTER 12. THE FILESET RESOURCE

without the File entries in the catalog, you will not be able to use the
Console restore command nor any other command that references
File entries.

AutoPrune = <yes—no> If AutoPrune is set to yes (default), Bacula
(version 1.20 or greater) will automatically apply the Volume Reten-
tion period when new Volume is needed and no appendable Volumes
exist in the Pool. Volume pruning causes expired Jobs (older than
the Volume Retention period) to be deleted from the Catalog and
permits possible recycling of the Volume.

Volume Retention = <time-period-specification> The Volume Re-
tention directive defines the length of time that Bacula will keep
records associated with the Volume in the Catalog database after the
End time of each Job written to the Volume. When this time period
expires, and if AutoPrune is set to yes Bacula may prune (remove)
Job records that are older than the specified Volume Retention period
if it is necessary to free up a Volume. Recycling will not occur until
it is absolutely necessary to free up a volume (i.e. no other writable
volume exists). All File records associated with pruned Jobs are also
pruned. The time may be specified as seconds, minutes, hours, days,
weeks, months, quarters, or years. The Volume Retention is applied
independently of the Job Retention and the File Retention peri-
ods defined in the Client resource. This means that all the retentions
periods are applied in turn and that the shorter period is the one that
effectively takes precedence. Note, that when the Volume Retention
period has been reached, and it is necessary to obtain a new volume,
Bacula will prune both the Job and the File records. This pruning
could also occur during a status dir command because it uses similar
algorithms for finding the next available Volume.

It is important to know that when the Volume Retention period ex-
pires, Bacula does not automatically recycle a Volume. It attempts
to keep the Volume data intact as long as possible before over writing
the Volume.

By defining multiple Pools with different Volume Retention periods,
you may effectively have a set of tapes that is recycled weekly, another
Pool of tapes that is recycled monthly and so on. However, one must
keep in mind that if your Volume Retention period is too short, it
may prune the last valid Full backup, and hence until the next Full
backup is done, you will not have a complete backup of your system,
and in addition, the next Incremental or Differential backup will be
promoted to a Full backup. As a consequence, the minimum Volume
Retention period should be at twice the interval of your Full backups.
This means that if you do a Full backup once a month, the minimum

12.8. THE POOL RESOURCE 175

Volume retention period should be two months.

The default Volume retention period is 365 days, and either the default
or the value defined by this directive in the bacula-dir.conf file is the
default value used when a Volume is created. Once the volume is
created, changing the value in the bacula-dir.conf file will not change
what is stored for the Volume. To change the value for an existing
Volume you must use the update command in the Console.

RecyclePool = <pool-resource-name> On versions 2.1.4 or greater,
Bacula can recycle media in the pool of your choice. The most useful
setup is to use Scratch.

Recycle = <yes—no> This directive specifies whether or not Purged
Volumes may be recycled. If it is set to yes (default) and Bacula
needs a volume but finds none that are appendable, it will search for
and recycle (reuse) Purged Volumes (i.e. volumes with all the Jobs and
Files expired and thus deleted from the Catalog). If the Volume is re-
cycled, all previous data written to that Volume will be overwritten.
If Recycle is set to no, the Volume will not be recycled, and hence,
the data will remain valid. If you want to reuse (re-write) the Volume,
and the recycle flag is no (0 in the catalog), you may manually set the
recycle flag (update command) for a Volume to be reused.

Please note that the value defined by this directive in the bacula-
dir.conf file is the default value used when a Volume is created. Once
the volume is created, changing the value in the bacula-dir.conf file will
not change what is stored for the Volume. To change the value for an
existing Volume you must use the update command in the Console.

When all Job and File records have been pruned or purged from the
catalog for a particular Volume, if that Volume is marked as Append,
Full, Used, or Error, it will then be marked as Purged. Only Volumes
marked as Purged will be considered to be converted to the Recycled
state if the Recycle directive is set to yes.

Recycle Oldest Volume = <yes—no> This directive instructs the Di-
rector to search for the oldest used Volume in the Pool when another
Volume is requested by the Storage daemon and none are available.
The catalog is then pruned respecting the retention periods of all
Files and Jobs written to this Volume. If all Jobs are pruned (i.e. the
volume is Purged), then the Volume is recycled and will be used as
the next Volume to be written. This directive respects any Job, File,
or Volume retention periods that you may have specified, and as such
it is much better to use this directive than the Purge Oldest Volume.

This directive can be useful if you have a fixed number of Volumes in
the Pool and you want to cycle through them and you have specified

176 CHAPTER 12. THE FILESET RESOURCE

the correct retention periods.

However, if you use this directive and have only one Volume in the
Pool, you will immediately recycle your Volume if you fill it and Bacula
needs another one. Thus your backup will be totally invalid. Please
use this directive with care. The default is no.

Recycle Current Volume = <yes—no> If Bacula needs a new Vol-
ume, this directive instructs Bacula to Prune the volume respecting
the Job and File retention periods. If all Jobs are pruned (i.e. the
volume is Purged), then the Volume is recycled and will be used as
the next Volume to be written. This directive respects any Job, File,
or Volume retention periods that you may have specified, and thus it is
much better to use it rather than the Purge Oldest Volume directive.

This directive can be useful if you have: a fixed number of Volumes
in the Pool, you want to cycle through them, and you have specified
retention periods that prune Volumes before you have cycled through
the Volume in the Pool.

However, if you use this directive and have only one Volume in the
Pool, you will immediately recycle your Volume if you fill it and Bacula
needs another one. Thus your backup will be totally invalid. Please
use this directive with care. The default is no.

Purge Oldest Volume = <yes—no> This directive instructs the Direc-
tor to search for the oldest used Volume in the Pool when another Vol-
ume is requested by the Storage daemon and none are available. The
catalog is then purged irrespective of retention periods of all Files and
Jobs written to this Volume. The Volume is then recycled and will be
used as the next Volume to be written. This directive overrides any
Job, File, or Volume retention periods that you may have specified.

This directive can be useful if you have a fixed number of Volumes in
the Pool and you want to cycle through them and reusing the oldest
one when all Volumes are full, but you don’t want to worry about
setting proper retention periods. However, by using this option you
risk losing valuable data.

Please be aware that Purge Oldest Volume disregards all retention
periods. If you have only a single Volume defined and you turn this
variable on, that Volume will always be immediately overwritten when
it fills! So at a minimum, ensure that you have a decent number of
Volumes in your Pool before running any jobs. If you want retention
periods to apply do not use this directive. To specify a retention
period, use the Volume Retention directive (see above).

We highly recommend against using this directive, because it is sure
that some day, Bacula will recycle a Volume that contains current

12.8. THE POOL RESOURCE 177

data. The default is no.

Cleaning Prefix = <string> This directive defines a prefix string, which
if it matches the beginning of a Volume name during labeling of a Vol-
ume, the Volume will be defined with the VolStatus set to Cleaning
and thus Bacula will never attempt to use this tape. This is primarily
for use with autochangers that accept barcodes where the convention
is that barcodes beginning with CLN are treated as cleaning tapes.

Label Format = <format> This directive specifies the format of the la-
bels contained in this pool. The format directive is used as a sort
of template to create new Volume names during automatic Volume
labeling.

The format should be specified in double quotes, and consists of let-
ters, numbers and the special characters hyphen (-), underscore (),
colon (:), and period (.), which are the legal characters for a Volume
name. The format should be enclosed in double quotes (”).

In addition, the format may contain a number of variable expansion
characters which will be expanded by a complex algorithm allowing
you to create Volume names of many different formats. In all cases,
the expansion process must resolve to the set of characters noted above
that are legal Volume names. Generally, these variable expansion char-
acters begin with a dollar sign ($) or a left bracket ([). If you specify
variable expansion characters, you should always enclose the format
with double quote characters (”). For more details on variable expan-
sion, please see the Variable Expansion Chapter of this manual.

If no variable expansion characters are found in the string, the Volume
name will be formed from the format string appended with the num-
ber of volumes in the pool plus one, which will be edited as four digits
with leading zeros. For example, with a Label Format = ”File-”,
the first volumes will be named File-0001, File-0002, ...

With the exception of Job specific variables, you can test your La-
belFormat by using the var command the Console Chapter of this
manual.

In almost all cases, you should enclose the format specification (part
after the equal sign) in double quotes. Please note that this directive
is deprecated and is replaced in version 1.37 and greater with a Python
script for creating volume names.

In order for a Pool to be used during a Backup Job, the Pool must have at
least one Volume associated with it. Volumes are created for a Pool using
the label or the add commands in the Bacula Console, program. In ad-
dition to adding Volumes to the Pool (i.e. putting the Volume names in the

178 CHAPTER 12. THE FILESET RESOURCE

Catalog database), the physical Volume must be labeled with a valid Bacula
software volume label before Bacula will accept the Volume. This will be
automatically done if you use the label command. Bacula can automati-
cally label Volumes if instructed to do so, but this feature is not yet fully
implemented.

The following is an example of a valid Pool resource definition:

Pool {

Name = Default

Pool Type = Backup

}

12.8.1 The Scratch Pool

In general, you can give your Pools any name you wish, but there is one
important restriction: the Pool named Scratch, if it exists behaves like
a scratch pool of Volumes in that when Bacula needs a new Volume for
writing and it cannot find one, it will look in the Scratch pool, and if it finds
an available Volume, it will move it out of the Scratch pool into the Pool
currently being used by the job.

12.9 The Catalog Resource

The Catalog Resource defines what catalog to use for the current job. Cur-
rently, Bacula can only handle a single database server (SQLite, MySQL,
PostgreSQL) that is defined when configuring Bacula. However, there may
be as many Catalogs (databases) defined as you wish. For example, you
may want each Client to have its own Catalog database, or you may want
backup jobs to use one database and verify or restore jobs to use another
database.

Catalog Start of the Catalog resource. At least one Catalog resource must
be defined.

Name = <name> The name of the Catalog. No necessary relation to
the database server name. This name will be specified in the Client
resource directive indicating that all catalog data for that Client is
maintained in this Catalog. This directive is required.

12.9. THE CATALOG RESOURCE 179

password = <password> This specifies the password to use when log-
ging into the database. This directive is required.

DB Name = <name> This specifies the name of the database. If you
use multiple catalogs (databases), you specify which one here. If you
are using an external database server rather than the internal one, you
must specify a name that is known to the server (i.e. you explicitly
created the Bacula tables using this name. This directive is required.

user = <user> This specifies what user name to use to log into the
database. This directive is required.

DB Socket = <socket-name> This is the name of a socket to use on the
local host to connect to the database. This directive is used only by
MySQL and is ignored by SQLite. Normally, if neither DB Socket
or DB Address are specified, MySQL will use the default socket.

DB Address = <address> This is the host address of the database
server. Normally, you would specify this instead of DB Socket if
the database server is on another machine. In that case, you will also
specify DB Port. This directive is used only by MySQL and is ignored
by SQLite if provided. This directive is optional.

DB Port = <port> This defines the port to be used in conjunction with
DB Address to access the database if it is on another machine. This
directive is used only by MySQL and is ignored by SQLite if provided.
This directive is optional.

the different

The following is an example of a valid Catalog resource definition:

Catalog

{

Name = SQLite

dbname = bacula;

user = bacula;

password = "" # no password = no security

}

or for a Catalog on another machine:

Catalog

{

Name = MySQL

dbname = bacula

180 CHAPTER 12. THE FILESET RESOURCE

user = bacula

password = ""

DB Address = remote.acme.com

DB Port = 1234

}

12.10 The Messages Resource

For the details of the Messages Resource, please see the
Messages Resource Chapter of this manual.

12.11 The Console Resource

As of Bacula version 1.33 and higher, there are three different kinds of con-
soles, which the administrator or user can use to interact with the Director.
These three kinds of consoles comprise three different security levels.

• The first console type is an anonymous or default console, which has
full privileges. There is no console resource necessary for this type since
the password is specified in the Director’s resource and consequently
such consoles do not have a name as defined on a Name = directive.
This is the kind of console that was initially implemented in versions
prior to 1.33 and remains valid. Typically you would use it only for
administrators.

• The second type of console, and new to version 1.33 and higher is a
”named” console defined within a Console resource in both the Direc-
tor’s configuration file and in the Console’s configuration file. Both
the names and the passwords in these two entries must match much
as is the case for Client programs.

This second type of console begins with absolutely no privileges except
those explicitly specified in the Director’s Console resource. Thus you
can have multiple Consoles with different names and passwords, sort
of like multiple users, each with different privileges. As a default, these
consoles can do absolutely nothing – no commands whatsoever. You
give them privileges or rather access to commands and resources by
specifying access control lists in the Director’s Console resource. The
ACLs are specified by a directive followed by a list of access names.
Examples of this are shown below.

12.11. THE CONSOLE RESOURCE 181

• The third type of console is similar to the above mentioned one in that
it requires a Console resource definition in both the Director and the
Console. In addition, if the console name, provided on the Name =
directive, is the same as a Client name, that console is permitted to use
the SetIP command to change the Address directive in the Director’s
client resource to the IP address of the Console. This permits portables
or other machines using DHCP (non-fixed IP addresses) to ”notify”
the Director of their current IP address.

The Console resource is optional and need not be specified. The following
directives are permitted within the Director’s configuration resource:

Name = <name> The name of the console. This name must match the
name specified in the Console’s configuration resource (much as is the
case with Client definitions).

Password = <password> Specifies the password that must be supplied
for a named Bacula Console to be authorized. The same password
must appear in the Console resource of the Console configuration
file. For added security, the password is never actually passed across
the network but rather a challenge response hash code created with the
password. This directive is required. If you have either /dev/random
bc on your machine, Bacula will generate a random password during
the configuration process, otherwise it will be left blank.

JobACL = <name-list> This directive is used to specify a list of Job
resource names that can be accessed by the console. Without this
directive, the console cannot access any of the Director’s Job resources.
Multiple Job resource names may be specified by separating them
with commas, and/or by specifying multiple JobACL directives. For
example, the directive may be specified as:

JobACL = kernsave, "Backup client 1", "Backup client 2"

JobACL = "RestoreFiles"

With the above specification, the console can access the Director’s
resources for the four jobs named on the JobACL directives, but for
no others.

ClientACL = <name-list> This directive is used to specify a list of
Client resource names that can be accessed by the console.

StorageACL = <name-list> This directive is used to specify a list of
Storage resource names that can be accessed by the console.

182 CHAPTER 12. THE FILESET RESOURCE

ScheduleACL = <name-list> This directive is used to specify a list of
Schedule resource names that can be accessed by the console.

PoolACL = <name-list> This directive is used to specify a list of Pool
resource names that can be accessed by the console.

FileSetACL = <name-list> This directive is used to specify a list of
FileSet resource names that can be accessed by the console.

CatalogACL = <name-list> This directive is used to specify a list of
Catalog resource names that can be accessed by the console.

CommandACL = <name-list> This directive is used to specify a list of
of console commands that can be executed by the console.

WhereACL = <string> This directive permits you to specify where a
restricted console can restore files. If this directive is not specified, only
the default restore location is permitted (normally /tmp/bacula-
restores. If *all* is specified any path the user enters will be accepted
(not very secure), any other value specified (there may be multiple
WhereACL directives) will restrict the user to use that path. For
example, on a Unix system, if you specify ”/”, the file will be restored
to the original location. This directive is untested.

Aside from Director resource names and console command names, the special
keyword *all* can be specified in any of the above access control lists.
When this keyword is present, any resource or command name (which ever
is appropriate) will be accepted. For an example configuration file, please
see the Console Configuration chapter of this manual.

12.12 The Counter Resource

The Counter Resource defines a counter variable that can be accessed by
variable expansion used for creating Volume labels with the LabelFormat
directive. See the LabelFormat directive in this chapter for more details.

Counter Start of the Counter resource. Counter directives are optional.

Name = <name> The name of the Counter. This is the name you will
use in the variable expansion to reference the counter value.

Minimum = <integer> This specifies the minimum value that the
counter can have. It also becomes the default. If not supplied, zero is
assumed.

12.13. EXAMPLE DIRECTOR CONFIGURATION FILE 183

Maximum = <integer> This is the maximum value value that the
counter can have. If not specified or set to zero, the counter can
have a maximum value of 2,147,483,648 (2 to the 31 power). When
the counter is incremented past this value, it is reset to the Minimum.

*WrapCounter = <counter-name> If this value is specified, when the
counter is incremented past the maximum and thus reset to the min-
imum, the counter specified on the WrapCounter is incremented.
(This is not currently implemented).

Catalog = <catalog-name> If this directive is specified, the counter and
its values will be saved in the specified catalog. If this directive is not
present, the counter will be redefined each time that Bacula is started.

12.13 Example Director Configuration File

An example Director configuration file might be the following:

#

Default Bacula Director Configuration file

#

The only thing that MUST be changed is to add one or more

file or directory names in the Include directive of the

FileSet resource.

#

For Bacula release 1.15 (5 March 2002) -- redhat

#

You might also want to change the default email address

from root to your address. See the "mail" and "operator"

directives in the Messages resource.

#

Director { # define myself

Name = rufus-dir

QueryFile = "/home/kern/bacula/bin/query.sql"

WorkingDirectory = "/home/kern/bacula/bin/working"

PidDirectory = "/home/kern/bacula/bin/working"

Password = "XkSfzu/Cf/wX4L8Zh4G4/yhCbpLcz3YVdmVoQvU3EyF/"

}

Define the backup Job

Job {

Name = "NightlySave"

Type = Backup

Level = Incremental # default

Client=rufus-fd

FileSet="Full Set"

Schedule = "WeeklyCycle"

Storage = DLTDrive

Messages = Standard

184 CHAPTER 12. THE FILESET RESOURCE

Pool = Default

}

Job {

Name = "Restore"

Type = Restore

Client=rufus-fd

FileSet="Full Set"

Where = /tmp/bacula-restores

Storage = DLTDrive

Messages = Standard

Pool = Default

}

List of files to be backed up

FileSet {

Name = "Full Set"

Include {

Options { signature=SHA1}

#

Put your list of files here, one per line or include an

external list with:

#

@file-name

#

Note: / backs up everything

File = /

}

Exclude {}

}

When to do the backups

Schedule {

Name = "WeeklyCycle"

Run = level=Full sun at 1:05

Run = level=Incremental mon-sat at 1:05

}

Client (File Services) to backup

Client {

Name = rufus-fd

Address = rufus

Catalog = MyCatalog

Password = "MQk6lVinz4GG2hdIZk1dsKE/LxMZGo6znMHiD7t7vzF+"

File Retention = 60d # sixty day file retention

Job Retention = 1y # 1 year Job retention

AutoPrune = yes # Auto apply retention periods

}

Definition of DLT tape storage device

Storage {

Name = DLTDrive

Address = rufus

Password = "jMeWZvfikUHvt3kzKVVPpQ0ccmV6emPnF2cPYFdhLApQ"

Device = "HP DLT 80" # same as Device in Storage daemon

Media Type = DLT8000 # same as MediaType in Storage daemon

}

Definition for a DLT autochanger device

12.13. EXAMPLE DIRECTOR CONFIGURATION FILE 185

Storage {

Name = Autochanger

Address = rufus

Password = "jMeWZvfikUHvt3kzKVVPpQ0ccmV6emPnF2cPYFdhLApQ"

Device = "Autochanger" # same as Device in Storage daemon

Media Type = DLT-8000 # Different from DLTDrive

Autochanger = yes

}

Definition of DDS tape storage device

Storage {

Name = SDT-10000

Address = rufus

Password = "jMeWZvfikUHvt3kzKVVPpQ0ccmV6emPnF2cPYFdhLApQ"

Device = SDT-10000 # same as Device in Storage daemon

Media Type = DDS-4 # same as MediaType in Storage daemon

}

Definition of 8mm tape storage device

Storage {

Name = "8mmDrive"

Address = rufus

Password = "jMeWZvfikUHvt3kzKVVPpQ0ccmV6emPnF2cPYFdhLApQ"

Device = "Exabyte 8mm"

MediaType = "8mm"

}

Definition of file storage device

Storage {

Name = File

Address = rufus

Password = "jMeWZvfikUHvt3kzKVVPpQ0ccmV6emPnF2cPYFdhLApQ"

Device = FileStorage

Media Type = File

}

Generic catalog service

Catalog {

Name = MyCatalog

dbname = bacula; user = bacula; password = ""

}

Reasonable message delivery -- send most everything to

the email address and to the console

Messages {

Name = Standard

mail = root@localhost = all, !skipped, !terminate

operator = root@localhost = mount

console = all, !skipped, !saved

}

Default pool definition

Pool {

Name = Default

Pool Type = Backup

AutoPrune = yes

Recycle = yes

}

#

186 CHAPTER 12. THE FILESET RESOURCE

Restricted console used by tray-monitor to get the status of the director

#

Console {

Name = Monitor

Password = "GN0uRo7PTUmlMbqrJ2Gr1p0fk0HQJTxwnFyE4WSST3MWZseR"

CommandACL = status, .status

}

Chapter 13

Client/File daemon
Configuration

The Client (or File Daemon) Configuration is one of the simpler ones to
specify. Generally, other than changing the Client name so that error mes-
sages are easily identified, you will not need to modify the default Client
configuration file.

For a general discussion of configuration file and resources including the
data types recognized by Bacula, please see the Configuration chapter of
this manual. The following Client Resource definitions must be defined:

• Client – to define what Clients are to be backed up.

• Director – to define the Director’s name and its access password.

• Messages – to define where error and information messages are to be
sent.

13.1 The Client Resource

The Client Resource (or FileDaemon) resource defines the name of the Client
(as used by the Director) as well as the port on which the Client listens for
Director connections.

Client (or FileDaemon) Start of the Client records. There must be one
and only one Client resource in the configuration file, since it defines
the properties of the current client program.

187

188 CHAPTER 13. CLIENT/FILE DAEMON CONFIGURATION

Name = <name> The client name that must be used by the Director
when connecting. Generally, it is a good idea to use a name related to
the machine so that error messages can be easily identified if you have
multiple Clients. This directive is required.

Working Directory = <Directory> This directive is mandatory and
specifies a directory in which the File daemon may put its status files.
This directory should be used only by Bacula, but may be shared
by other Bacula daemons provided the daemon names on the Name
definition are unique for each daemon. This directive is required.

On Win32 systems, in some circumstances you may need to specify a
drive letter in the specified working directory path. Also, please be
sure that this directory is writable by the SYSTEM user otherwise
restores may fail (the bootstrap file that is transferred to the File
daemon from the Director is temporarily put in this directory before
being passed to the Storage daemon).

Pid Directory = <Directory> This directive is mandatory and speci-
fies a directory in which the Director may put its process Id file files.
The process Id file is used to shutdown Bacula and to prevent multiple
copies of Bacula from running simultaneously. This record is required.
Standard shell expansion of the Directory is done when the config-
uration file is read so that values such as $HOME will be properly
expanded.

Typically on Linux systems, you will set this to: /var/run. If you
are not installing Bacula in the system directories, you can use the
Working Directory as defined above.

Heartbeat Interval = <time-interval> This record defines an interval
of time. For each heartbeat that the File daemon receives from the
Storage daemon, it will forward it to the Director. In addition, if no
heartbeat has been received from the Storage daemon and thus for-
warded the File daemon will send a heartbeat signal to the Director
and to the Storage daemon to keep the channels active. The default
interval is zero which disables the heartbeat. This feature is partic-
ularly useful if you have a router such as 3Com that does not follow
Internet standards and times out a valid connection after a short du-
ration despite the fact that keepalive is set. This usually results in a
broken pipe error message.

If you continue getting broken pipe error messages despite using the
Heartbeat Interval, and you are using Windows, you should consider
upgrading your ethernet driver. This is a known problem with NVidia
NForce 3 drivers (4.4.2 17/05/2004), or try the following workaround
suggested by Thomas Simmons for Win32 machines:

13.1. THE CLIENT RESOURCE 189

Browse to: Start > Control Panel > Network Connections

Right click the connection for the nvidia adapter and select properties.
Under the General tab, click ”Configure...”. Under the Advanced tab
set ”Checksum Offload” to disabled and click OK to save the change.

Lack of communications, or communications that get interrupted can
also be caused by Linux firewalls where you have a rule that throttles
connections or traffic.

Maximum Concurrent Jobs = <number> where <number> is the
maximum number of Jobs that should run concurrently. The default
is set to 2, but you may set it to a larger number. Each contact from
the Director (e.g. status request, job start request) is considered as a
Job, so if you want to be able to do a status request in the console
at the same time as a Job is running, you will need to set this value
greater than 1.

FDAddresses = <IP-address-specification> Specify the ports and
addresses on which the File daemon listens for Director connections.
Probably the simplest way to explain is to show an example:

FDAddresses = {

ip = { addr = 1.2.3.4; port = 1205; }

ipv4 = {

addr = 1.2.3.4; port = http; }

ipv6 = {

addr = 1.2.3.4;

port = 1205;

}

ip = {

addr = 1.2.3.4

port = 1205

}

ip = { addr = 1.2.3.4 }

ip = {

addr = 201:220:222::2

}

ip = {

addr = bluedot.thun.net

}

}

where ip, ip4, ip6, addr, and port are all keywords. Note, that the
address can be specified as either a dotted quadruple, or IPv6 colon
notation, or as a symbolic name (only in the ip specification). Also,
port can be specified as a number or as the mnemonic value from the
/etc/services file. If a port is not specified, the default will be used. If
an ip section is specified, the resolution can be made either by IPv4 or

190 CHAPTER 13. CLIENT/FILE DAEMON CONFIGURATION

IPv6. If ip4 is specified, then only IPv4 resolutions will be permitted,
and likewise with ip6.

FDPort = <port-number> This specifies the port number on which the
Client listens for Director connections. It must agree with the FDPort
specified in the Client resource of the Director’s configuration file. The
default is 9102.

FDAddress = <IP-Address> This record is optional, and if it is spec-
ified, it will cause the File daemon server (for Director connections)
to bind to the specified IP-Address, which is either a domain name
or an IP address specified as a dotted quadruple. If this record is
not specified, the File daemon will bind to any available address (the
default).

SDConnectTimeout = <time-interval> This record defines an inter-
val of time that the File daemon will try to connect to the Storage
daemon. The default is 30 minutes. If no connection is made in the
specified time interval, the File daemon cancels the Job.

Maximum Network Buffer Size = <bytes> where <bytes> specifies
the initial network buffer size to use with the File daemon. This size
will be adjusted down if it is too large until it is accepted by the OS.
Please use care in setting this value since if it is too large, it will be
trimmed by 512 bytes until the OS is happy, which may require a large
number of system calls. The default value is 65,536 bytes.

Note, on certain Windows machines, there are reports that the trans-
fer rates are very slow and this seems to be related to the default
65,536 size. On systems where the transfer rates seem abnormally
slow compared to other systems, you might try setting the Maximum
Network Buffer Size to 32,768 in both the File daemon and in the
Storage daemon.

The following is an example of a valid Client resource definition:

Client { # this is me

Name = rufus-fd

WorkingDirectory = $HOME/bacula/bin/working

Pid Directory = $HOME/bacula/bin/working

}

13.2. THE DIRECTOR RESOURCE 191

13.2 The Director Resource

The Director resource defines the name and password of the Directors that
are permitted to contact this Client.

Director Start of the Director records. There may be any number of Di-
rector resources in the Client configuration file. Each one specifies a
Director that is allowed to connect to this Client.

Name = <name> The name of the Director that may contact this Client.
This name must be the same as the name specified on the Director re-
source in the Director’s configuration file. Note, the case (upper/lower)
of the characters in the name are significant (i.e. S is not the same as
s). This directive is required.

Password = <password> Specifies the password that must be supplied
for a Director to be authorized. This password must be the same as the
password specified in the Client resource in the Director’s configuration
file. This directive is required.

Monitor = <yes—no> If Monitor is set to no (default), this director will
have full access to this Client. If Monitor is set to yes, this director
will only be able to fetch the current status of this Client.

Please note that if this director is being used by a Monitor, we highly
recommend to set this directive to yes to avoid serious security prob-
lems.

Thus multiple Directors may be authorized to use this Client’s services.
Each Director will have a different name, and normally a different password
as well.

The following is an example of a valid Director resource definition:

#

List Directors who are permitted to contact the File daemon

#

Director {

Name = HeadMan

Password = very_good # password HeadMan must supply

}

Director {

Name = Worker

Password = not_as_good

Monitor = Yes

}

192 CHAPTER 13. CLIENT/FILE DAEMON CONFIGURATION

13.3 The Message Resource

Please see the Messages Resource Chapter of this manual for the details of
the Messages Resource.

There must be at least one Message resource in the Client configuration file.

13.4 Example Client Configuration File

An example File Daemon configuration file might be the following:

#

Default Bacula File Daemon Configuration file

#

For Bacula release 1.35.2 (16 August 2004) -- gentoo 1.4.16

#

There is not much to change here except perhaps to

set the Director’s name and File daemon’s name

to something more appropriate for your site.

#

#

List Directors who are permitted to contact this File daemon

#

Director {

Name = rufus-dir

Password = "/LqPRkX++saVyQE7w7mmiFg/qxYc1kufww6FEyY/47jU"

}

#

Restricted Director, used by tray-monitor to get the

status of the file daemon

#

Director {

Name = rufus-mon

Password = "FYpq4yyI1y562EMS35bA0J0QC0M2L3t5cZObxT3XQxgxppTn"

Monitor = yes

}

#

"Global" File daemon configuration specifications

#

FileDaemon { # this is me

Name = rufus-fd

WorkingDirectory = $HOME/bacula/bin/working

Pid Directory = $HOME/bacula/bin/working

}

Send all messages except skipped files back to Director

Messages {

Name = Standard

director = rufus-dir = all, !skipped

}

Chapter 14

Storage Daemon
Configuration

The Storage Daemon configuration file has relatively few resource defini-
tions. However, due to the great variation in backup media and system
capabilities, the storage daemon must be highly configurable. As a conse-
quence, there are quite a large number of directives in the Device Resource
definition that allow you to define all the characteristics of your Storage
device (normally a tape drive). Fortunately, with modern storage devices,
the defaults are sufficient, and very few directives are actually needed.

Examples of Device resource directives that are known to work for
a number of common tape drives can be found in the <bacula-
src>/examples/devices directory, and most will also be listed here.

For a general discussion of configuration file and resources including the
data types recognized by Bacula, please see the Configuration chapter of
this manual. The following Storage Resource definitions must be defined:

• Storage – to define the name of the Storage daemon.

• Director – to define the Director’s name and his access password.

• Device – to define the characteristics of your storage device (tape
drive).

• Messages – to define where error and information messages are to be
sent.

193

194 CHAPTER 14. STORAGE DAEMON CONFIGURATION

14.1 Storage Resource

In general, the properties specified under the Storage resource define global
properties of the Storage daemon. Each Storage daemon configuration file
must have one and only one Storage resource definition.

Name = <Storage-Daemon-Name> Specifies the Name of the Storage
daemon. This directive is required.

Working Directory = <Directory> This directive is mandatory and
specifies a directory in which the Storage daemon may put its sta-
tus files. This directory should be used only by Bacula, but may be
shared by other Bacula daemons provided the names given to each
daemon are unique. This directive is required

Pid Directory = <Directory> This directive is mandatory and speci-
fies a directory in which the Director may put its process Id file files.
The process Id file is used to shutdown Bacula and to prevent mul-
tiple copies of Bacula from running simultaneously. This directive is
required. Standard shell expansion of the Directory is done when
the configuration file is read so that values such as $HOME will be
properly expanded.

Typically on Linux systems, you will set this to: /var/run. If you
are not installing Bacula in the system directories, you can use the
Working Directory as defined above.

Heartbeat Interval = <time-interval> This directive defines an inter-
val of time in seconds. When the Storage daemon is waiting for the
operator to mount a tape, each time interval, it will send a heartbeat
signal to the File daemon. The default interval is zero which disables
the heartbeat. This feature is particularly useful if you have a router
such as 3Com that does not follow Internet standards and times out an
valid connection after a short duration despite the fact that keepalive
is set. This usually results in a broken pipe error message.

Client Connect Wait = <time-interval> This directive defines an in-
terval of time in seconds that the Storage daemon will wait for a Client
(the File daemon) to connect. The default is 30 seconds. Be aware that
the longer the Storage daemon waits for a Client, the more resources
will be tied up.

Maximum Concurrent Jobs = <number> where <number> is the
maximum number of Jobs that should run concurrently. The default
is set to 10, but you may set it to a larger number. Each contact from

14.1. STORAGE RESOURCE 195

the Director (e.g. status request, job start request) is considered as
a Job, so if you want to be able to do a status request in the con-
sole at the same time as a Job is running, you will need to set this
value greater than 1. To run simultaneous Jobs, you will need to set a
number of other directives in the Director’s configuration file. Which
ones you set depend on what you want, but you will almost certainly
need to set the Maximum Concurrent Jobs in the Storage resource
in the Director’s configuration file and possibly those in the Job and
Client resources.

SDAddresses = <IP-address-specification> Specify the ports and ad-
dresses on which the Storage daemon will listen for Director connec-
tions. Normally, the default is sufficient and you do not need to specify
this directive. Probably the simplest way to explain how this directive
works is to show an example:

SDAddresses = { ip = {

addr = 1.2.3.4; port = 1205; }

ipv4 = {

addr = 1.2.3.4; port = http; }

ipv6 = {

addr = 1.2.3.4;

port = 1205;

}

ip = {

addr = 1.2.3.4

port = 1205

}

ip = {

addr = 1.2.3.4

}

ip = {

addr = 201:220:222::2

}

ip = {

addr = bluedot.thun.net

}

}

where ip, ip4, ip6, addr, and port are all keywords. Note, that the
address can be specified as either a dotted quadruple, or IPv6 colon
notation, or as a symbolic name (only in the ip specification). Also,
port can be specified as a number or as the mnemonic value from the
/etc/services file. If a port is not specified, the default will be used. If
an ip section is specified, the resolution can be made either by IPv4 or
IPv6. If ip4 is specified, then only IPv4 resolutions will be permitted,
and likewise with ip6.

Using this directive, you can replace both the SDPort and SDAddress
directives shown below.

196 CHAPTER 14. STORAGE DAEMON CONFIGURATION

SDPort = <port-number> Specifies port number on which the Storage
daemon listens for Director connections. The default is 9103.

SDAddress = <IP-Address> This directive is optional, and if it is spec-
ified, it will cause the Storage daemon server (for Director and File
daemon connections) to bind to the specified IP-Address, which is
either a domain name or an IP address specified as a dotted quadruple.
If this directive is not specified, the Storage daemon will bind to any
available address (the default).

The following is a typical Storage daemon Storage definition.

#

"Global" Storage daemon configuration specifications appear

under the Storage resource.

#

Storage {

Name = "Storage daemon"

Address = localhost

WorkingDirectory = "~/bacula/working"

Pid Directory = "~/bacula/working"

}

14.2 Director Resource

The Director resource specifies the Name of the Director which is permitted
to use the services of the Storage daemon. There may be multiple Director
resources. The Director Name and Password must match the corresponding
values in the Director’s configuration file.

Name = <Director-Name> Specifies the Name of the Director allowed
to connect to the Storage daemon. This directive is required.

Password = <Director-password> Specifies the password that must be
supplied by the above named Director. This directive is required.

Monitor = <yes—no> If Monitor is set to no (default), this director will
have full access to this Storage daemon. If Monitor is set to yes, this
director will only be able to fetch the current status of this Storage
daemon.

Please note that if this director is being used by a Monitor, we highly
recommend to set this directive to yes to avoid serious security prob-
lems.

14.3. DEVICE RESOURCE 197

The following is an example of a valid Director resource definition:

Director {

Name = MainDirector

Password = my_secret_password

}

14.3 Device Resource

The Device Resource specifies the details of each device (normally a tape
drive) that can be used by the Storage daemon. There may be multiple
Device resources for a single Storage daemon. In general, the properties
specified within the Device resource are specific to the Device.

Name = Device-Name Specifies the Name that the Director will use when
asking to backup or restore to or from to this device. This is the logical
Device name, and may be any string up to 127 characters in length.
It is generally a good idea to make it correspond to the English name
of the backup device. The physical name of the device is specified on
the Archive Device directive described below. The name you specify
here is also used in your Director’s conf file on the Device directive in
its Storage resource.

Archive Device = name-string The specified name-string gives the sys-
tem file name of the storage device managed by this storage daemon.
This will usually be the device file name of a removable storage device
(tape drive), for example ”/dev/nst0” or ”/dev/rmt/0mbn”. For
a DVD-writer, it will be for example /dev/hdc. It may also be a
directory name if you are archiving to disk storage. In this case, you
must supply the full absolute path to the directory. When specifying
a tape device, it is preferable that the ”non-rewind” variant of the
device file name be given. In addition, on systems such as Sun, which
have multiple tape access methods, you must be sure to specify to use
Berkeley I/O conventions with the device. The b in the Solaris (Sun)
archive specification /dev/rmt/0mbn is what is needed in this case.
Bacula does not support SysV tape drive behavior.

As noted above, normally the Archive Device is the name of a tape
drive, but you may also specify an absolute path to an existing direc-
tory. If the Device is a directory Bacula will write to file storage in the
specified directory, and the filename used will be the Volume name as

198 CHAPTER 14. STORAGE DAEMON CONFIGURATION

specified in the Catalog. If you want to write into more than one direc-
tory (i.e. to spread the load to different disk drives), you will need to
define two Device resources, each containing an Archive Device with
a different directory. In addition to a tape device name or a directory
name, Bacula will accept the name of a FIFO. A FIFO is a special
kind of file that connects two programs via kernel memory. If a FIFO
device is specified for a backup operation, you must have a program
that reads what Bacula writes into the FIFO. When the Storage dae-
mon starts the job, it will wait for MaximumOpenWait seconds for
the read program to start reading, and then time it out and terminate
the job. As a consequence, it is best to start the read program at the
beginning of the job perhaps with the RunBeforeJob directive. For
this kind of device, you never want to specify AlwaysOpen, because
you want the Storage daemon to open it only when a job starts, so
you must explicitly set it to No. Since a FIFO is a one way device,
Bacula will not attempt to read a label of a FIFO device, but will
simply write on it. To create a FIFO Volume in the catalog, use the
add command rather than the label command to avoid attempting
to write a label.

Device {

Name = FifoStorage

Media Type = Fifo

Device Type = Fifo

Archive Device = /tmp/fifo

LabelMedia = yes

Random Access = no

AutomaticMount = no

RemovableMedia = no

MaximumOpenWait = 60

AlwaysOpen = no

}

During a restore operation, if the Archive Device is a FIFO, Bacula will
attempt to read from the FIFO, so you must have an external program
that writes into the FIFO. Bacula will wait MaximumOpenWait
seconds for the program to begin writing and will then time it out and
terminate the job. As noted above, you may use the RunBeforeJob
to start the writer program at the beginning of the job.

The Archive Device directive is required.

Device Type = type-specification The Device Type specification allows
you to explicitly tell Bacula what kind of device you are defining.
It the type-specification may be one of the following:

File Tells Bacula that the device is a file. It may either be a file

14.3. DEVICE RESOURCE 199

defined on fixed medium or a removable filesystem such as USB.
All files must be random access devices.

Tape The device is a tape device and thus is sequential access. Tape
devices are controlled using ioctl() calls.

Fifo The device is a first-in-first out sequential access read-only or
write-only device.

DVD The device is a DVD. DVDs are sequential access for writing,
but random access for reading.

The Device Type directive is not required, and if not specified, Bacula
will attempt to guess what kind of device has been specified using the
Archive Device specification supplied. There are several advantages to
explicitly specifying the Device Type. First, on some systems, block
and character devices have the same type, which means that on those
systems, Bacula is unlikely to be able to correctly guess that a device is
a DVD. Secondly, if you explicitly specify the Device Type, the mount
point need not be defined until the device is opened. This is the case
with most removable devices such as USB that are mounted by the
HAL daemon. If the Device Type is not explicitly specified, then the
mount point must exist when the Storage daemon starts.

This directive was implemented in Bacula version 1.38.6.

Media Type = name-string The specified name-string names the type
of media supported by this device, for example, ”DLT7000”. Media
type names are arbitrary in that you set them to anything you want,
but they must be known to the volume database to keep track of which
storage daemons can read which volumes. In general, each different
storage type should have a unique Media Type associated with it. The
same name-string must appear in the appropriate Storage resource
definition in the Director’s configuration file.

Even though the names you assign are arbitrary (i.e. you choose the
name you want), you should take care in specifying them because
the Media Type is used to determine which storage device Bacula
will select during restore. Thus you should probably use the same
Media Type specification for all drives where the Media can be freely
interchanged. This is not generally an issue if you have a single Storage
daemon, but it is with multiple Storage daemons, especially if they
have incompatible media.

For example, if you specify a Media Type of ”DDS-4” then during
the restore, Bacula will be able to choose any Storage Daemon that
handles ”DDS-4”. If you have an autochanger, you might want to
name the Media Type in a way that is unique to the autochanger,
unless you wish to possibly use the Volumes in other drives. You

200 CHAPTER 14. STORAGE DAEMON CONFIGURATION

should also ensure to have unique Media Type names if the Media is
not compatible between drives. This specification is required for all
devices.

In addition, if you are using disk storage, each Device resource will
generally have a different mount point or directory. In order for Bacula
to select the correct Device resource, each one must have a unique
Media Type.

Autochanger = Yes—No If Yes, this device belongs to an automatic tape
changer, and you must specify an Autochanger resource that points
to the Device resources. You must also specify a Changer Device.
If the Autochanger directive is set to No (default), the volume must
be manually changed. You should also have an identical directive to
the Storage resource in the Director’s configuration file so that when
labeling tapes you are prompted for the slot.

Changer Device = name-string The specified name-string must be the
generic SCSI device name of the autochanger that corresponds to the
normal read/write Archive Device specified in the Device resource.
This generic SCSI device name should be specified if you have an au-
tochanger or if you have a standard tape drive and want to use the
Alert Command (see below). For example, on Linux systems, for
an Archive Device name of /dev/nst0, you would specify /dev/sg0
for the Changer Device name. Depending on your exact configura-
tion, and the number of autochangers or the type of autochanger,
what you specify here can vary. This directive is optional. See the
Using Autochangers chapter of this manual for more details of using

this and the following autochanger directives.

Changer Command = name-string The name-string specifies an exter-
nal program to be called that will automatically change volumes as
required by Bacula. Normally, this directive will be specified only in
the AutoChanger resource, which is then used for all devices. How-
ever, you may also specify the different Changer Command in each
Device resource. Most frequently, you will specify the Bacula supplied
mtx-changer script as follows:

Changer Command = "/path/mtx-changer %c %o %S %a %d"

and you will install the mtx on your system (found in the depkgs
release). An example of this command is in the default bacula-sd.conf
file. For more details on the substitution characters that may be speci-
fied to configure your autochanger please see the Autochangers chapter
of this manual. For FreeBSD users, you might want to see one of the
several chio scripts in examples/autochangers.

14.3. DEVICE RESOURCE 201

Alert Command = name-string The name-string specifies an external
program to be called at the completion of each Job after the device is
released. The purpose of this command is to check for Tape Alerts,
which are present when something is wrong with your tape drive (at
least for most modern tape drives). The same substitution characters
that may be specified in the Changer Command may also be used in
this string. For more information, please see the Autochangers chapter
of this manual.

Note, it is not necessary to have an autochanger to use this command.
The example below uses the tapeinfo program that comes with the
mtx package, but it can be used on any tape drive. However, you will
need to specify a Changer Device directive in your Device resource
(see above) so that the generic SCSI device name can be edited into
the command (with the %c).

An example of the use of this command to print Tape Alerts in the
Job report is:

Alert Command = "sh -c ’tapeinfo -f %c | grep TapeAlert’"

and an example output when there is a problem could be:

bacula-sd Alert: TapeAlert[32]: Interface: Problem with SCSI interface

between tape drive and initiator.

Drive Index = number The Drive Index that you specify is passed to
the mtx-changer script and is thus passed to the mtx program. By
default, the Drive Index is zero, so if you have only one drive in your
autochanger, everything will work normally. However, if you have
multiple drives, you must specify multiple Bacula Device resources
(one for each drive). The first Device should have the Drive Index set
to 0, and the second Device Resource should contain a Drive Index
set to 1, and so on. This will then permit you to use two or more
drives in your autochanger. As of Bacula version 1.38.0, using the
Autochanger resource, Bacula will automatically ensure that only
one drive at a time uses the autochanger script, so you no longer need
locking scripts as in the past – the default mtx-changer script works
for any number of drives.

Autoselect = Yes—No If this directive is set to yes (default), and the
Device belongs to an autochanger, then when the Autochanger is ref-
erenced by the Director, this device can automatically be selected. If
this directive is set to no, then the Device can only be referenced by

202 CHAPTER 14. STORAGE DAEMON CONFIGURATION

directly using the Device name in the Director. This is useful for re-
serving a drive for something special such as a high priority backup or
restore operations.

Maximum Changer Wait = time This directive specifies the maximum
time in seconds for Bacula to wait for an autochanger to change the
volume. If this time is exceeded, Bacula will invalidate the Volume slot
number stored in the catalog and try again. If no additional changer
volumes exist, Bacula will ask the operator to intervene. The default
is 5 minutes.

Maximum Rewind Wait = time This directive specifies the maximum
time in seconds for Bacula to wait for a rewind before timing out. If
this time is exceeded, Bacula will cancel the job. The default is 5
minutes.

Maximum Open Wait = time This directive specifies the maximum
time in seconds for Bacula to wait for a open before timing out. If
this time is exceeded, Bacula will cancel the job. The default is 5
minutes.

Always Open = Yes—No If Yes (default), Bacula will always keep the
device open unless specifically unmounted by the Console program.
This permits Bacula to ensure that the tape drive is always available,
and properly positioned. If you set AlwaysOpen to no Bacula will
only open the drive when necessary, and at the end of the Job if no
other Jobs are using the drive, it will be freed. The next time Bacula
wants to append to a tape on a drive that was freed, Bacula will
rewind the tape and position it to the end. To avoid unnecessary tape
positioning and to minimize unnecessary operator intervention, it is
highly recommended that Always Open = yes. This also ensures
that the drive is available when Bacula needs it.

If you have Always Open = yes (recommended) and you want to
use the drive for something else, simply use the unmount command
in the Console program to release the drive. However, don’t forget to
remount the drive with mount when the drive is available or the next
Bacula job will block.

For File storage, this directive is ignored. For a FIFO storage device,
you must set this to No.

Please note that if you set this directive to No Bacula will release
the tape drive between each job, and thus the next job will rewind
the tape and position it to the end of the data. This can be a very
time consuming operation. In addition, with this directive set to no,
certain multiple drive autochanger operations will fail. We strongly
recommend to keep Always Open set to Yes

14.3. DEVICE RESOURCE 203

Volume Poll Interval = time If the time specified on this directive is
non-zero, after asking the operator to mount a new volume Bacula
will periodically poll (or read) the drive at the specified interval to see
if a new volume has been mounted. If the time interval is zero (the de-
fault), no polling will occur. This directive can be useful if you want to
avoid operator intervention via the console. Instead, the operator can
simply remove the old volume and insert the requested one, and Bac-
ula on the next poll will recognize the new tape and continue. Please
be aware that if you set this interval too small, you may excessively
wear your tape drive if the old tape remains in the drive, since Bacula
will read it on each poll. This can be avoided by ejecting the tape
using the Offline On Unmount and the Close on Poll directives.
However, if you are using a Linux 2.6 kernel or other OSes such as
FreeBSD or Solaris, the Offline On Unmount will leave the drive with
no tape, and Bacula will not be able to properly open the drive and
may fail the job. For more information on this problem, please see the
description of Offline On Unmount in the Tape Testing chapter.

Close on Poll= Yes—No If Yes, Bacula close the device (equivalent to an
unmount except no mount is required) and reopen it at each poll. Nor-
mally this is not too useful unless you have the Offline on Unmount
directive set, in which case the drive will be taken offline preventing
wear on the tape during any future polling. Once the operator inserts
a new tape, Bacula will recognize the drive on the next poll and au-
tomatically continue with the backup. Please see above more more
details.

Maximum Open Wait = time This directive specifies the maximum
amount of time in seconds that Bacula will wait for a device that
is busy. The default is 5 minutes. If the device cannot be obtained,
the current Job will be terminated in error. Bacula will re-attempt to
open the drive the next time a Job starts that needs the the drive.

Removable media = Yes—No If Yes, this device supports removable
media (for example, tapes or CDs). If No, media cannot be removed
(for example, an intermediate backup area on a hard disk). If Re-
movable media is enabled on a File device (as opposed to a tape)
the Storage daemon will assume that device may be something like a
USB device that can be removed or a simply a removable harddisk.
When attempting to open such a device, if the Volume is not found
(for File devices, the Volume name is the same as the Filename), then
the Storage daemon will search the entire device looking for likely Vol-
ume names, and for each one found, it will ask the Director if the
Volume can be used. If so, the Storage daemon will use the first such
Volume found. Thus it acts somewhat like a tape drive – if the correct

204 CHAPTER 14. STORAGE DAEMON CONFIGURATION

Volume is not found, it looks at what actually is found, and if it is an
appendable Volume, it will use it.

If the removable medium is not automatically mounted (e.g. udev),
then you might consider using additional Storage daemon device direc-
tives such as Requires Mount, Mount Point, Mount Command,
and Unmount Command, all of which can be used in conjunction
with Removable Media.

Random access = Yes—No If Yes, the archive device is assumed to be
a random access medium which supports the lseek (or lseek64 if
Largefile is enabled during configuration) facility. This should be set
to Yes for all file systems such as DVD, USB, and fixed files. It should
be set to No for non-random access devices such as tapes and named
pipes.

Requires Mount = Yes—No When this directive is enabled, the Storage
daemon will submit a Mount Command before attempting to open
the device. You must set this directive to yes for DVD-writers and
removable file systems such as USB devices that are not automatically
mounted by the operating system when plugged in or opened by Bac-
ula. It should be set to no for all other devices such as tapes and fixed
filesystems. It should also be set to no for any removable device that
is automatically mounted by the operating system when opened (e.g.
USB devices mounted by udev or hotplug). This directive indicates
if the device requires to be mounted using the Mount Command.
To be able to write a DVD, the following directives must also be de-
fined: Mount Point, Mount Command, Unmount Command
and Write Part Command.

Mount Point = directory Directory where the device can be mounted.
This directive is used only for devices that have Requires Mount
enabled such as DVD or USB file devices.

Mount Command = name-string This directive specifies the command
that must be executed to mount devices such as DVDs and many
USB devices. For DVDs, the device is written directly, but the mount
command is necessary in order to determine the free space left on
the DVD. Before the command is executed, %a is replaced with the
Archive Device, and %m with the Mount Point.

Most frequently, for a DVD, you will define it as follows:

Mount Command = "/bin/mount -t iso9660 -o ro %a %m"

However, if you have defined a mount point in /etc/fstab, you might
be able to use a mount command such as:

14.3. DEVICE RESOURCE 205

Mount Command = "/bin/mount /media/dvd"

See the Edit Codes section below for more details of the editing codes
that can be used in this directive.

Unmount Command = name-string This directive specifies the com-
mand that must be executed to unmount devices such as DVDs and
many USB devices. Before the command is executed, %a is replaced
with the Archive Device, and %m with the Mount Point.

Most frequently, you will define it as follows:

Unmount Command = "/bin/umount %m"

See the Edit Codes section below for more details of the editing codes
that can be used in this directive.

Minimum block size = size-in-bytes On most modern tape drives, you
will not need or want to specify this directive, and if you do so, it will
be to make Bacula use fixed block sizes. This statement applies only
to non-random access devices (e.g. tape drives). Blocks written by the
storage daemon to a non-random archive device will never be smaller
than the given size-in-bytes. The Storage daemon will attempt to
efficiently fill blocks with data received from active sessions but will,
if necessary, add padding to a block to achieve the required minimum
size.

To force the block size to be fixed, as is the case for some non-random
access devices (tape drives), set the Minimum block size and the
Maximum block size to the same value (zero included). The default
is that both the minimum and maximum block size are zero and the
default block size is 64,512 bytes.

For example, suppose you want a fixed block size of 100K bytes, then
you would specify:

Minimum block size = 100K

Maximum block size = 100K

Please note that if you specify a fixed block size as shown above, the
tape drive must either be in variable block size mode, or if it is in fixed
block size mode, the block size (generally defined by mt) must be
identical to the size specified in Bacula – otherwise when you attempt
to re-read your Volumes, you will get an error.

If you want the block size to be variable but with a 64K minimum and
200K maximum (and default as well), you would specify:

206 CHAPTER 14. STORAGE DAEMON CONFIGURATION

Minimum block size = 64K

Maximum blocksize = 200K

Maximum block size = size-in-bytes On most modern tape drives, you
will not need to specify this directive. If you do so, it will most likely be
to use fixed block sizes (see Minimum block size above). The Storage
daemon will always attempt to write blocks of the specified size-in-
bytes to the archive device. As a consequence, this statement specifies
both the default block size and the maximum block size. The size
written never exceed the given size-in-bytes. If adding data to a
block would cause it to exceed the given maximum size, the block will
be written to the archive device, and the new data will begin a new
block.

If no value is specified or zero is specified, the Storage daemon will use
a default block size of 64,512 bytes (126 * 512).

Hardware End of Medium = Yes—No If No, the archive device is not
required to support end of medium ioctl request, and the storage dae-
mon will use the forward space file function to find the end of the
recorded data. If Yes, the archive device must support the ioctl

MTEOM call, which will position the tape to the end of the recorded
data. In addition, your SCSI driver must keep track of the file num-
ber on the tape and report it back correctly by the MTIOCGET
ioctl. Note, some SCSI drivers will correctly forward space to the end
of the recorded data, but they do not keep track of the file number.
On Linux machines, the SCSI driver has a fast-eod option, which if
set will cause the driver to lose track of the file number. You should
ensure that this option is always turned off using the mt program.

Default setting for Hardware End of Medium is Yes. This function is
used before appending to a tape to ensure that no previously written
data is lost. We recommend if you have a non-standard or unusual
tape drive that you use the btape program to test your drive to see
whether or not it supports this function. All modern (after 1998) tape
drives support this feature.

Fast Forward Space File = Yes—No If No, the archive device is not re-
quired to support keeping track of the file number (MTIOCGET
ioctl) during forward space file. If Yes, the archive device must sup-
port the ioctl MTFSF call, which virtually all drivers support, but in
addition, your SCSI driver must keep track of the file number on the
tape and report it back correctly by the MTIOCGET ioctl. Note,
some SCSI drivers will correctly forward space, but they do not keep

14.3. DEVICE RESOURCE 207

track of the file number or more seriously, they do not report end of
medium.

Default setting for Fast Forward Space File is Yes.

Use MTIOCGET = Yes—No If No, the operating system is not re-
quired to support keeping track of the file number and reporting it
in the (MTIOCGET ioctl). The default is Yes. If you must set
this to No, Bacula will do the proper file position determination, but
it is very unfortunate because it means that tape movement is very
inefficient. Fortunately, this operation system deficiency seems to be
the case only on a few *BSD systems. Operating systems known to
work correctly are Solaris, Linux and FreeBSD.

BSF at EOM = Yes—No If No, the default, no special action is taken
by Bacula with the End of Medium (end of tape) is reached because
the tape will be positioned after the last EOF tape mark, and Bacula
can append to the tape as desired. However, on some systems, such
as FreeBSD, when Bacula reads the End of Medium (end of tape), the
tape will be positioned after the second EOF tape mark (two successive
EOF marks indicated End of Medium). If Bacula appends from that
point, all the appended data will be lost. The solution for such systems
is to specify BSF at EOM which causes Bacula to backspace over
the second EOF mark. Determination of whether or not you need this
directive is done using the test command in the btape program.

TWO EOF = Yes—No If Yes, Bacula will write two end of file marks
when terminating a tape – i.e. after the last job or at the end of the
medium. If No, the default, Bacula will only write one end of file to
terminate the tape.

Backward Space Record = Yes—No If Yes, the archive device supports
the MTBSR ioctl to backspace records. If No, this call is not used
and the device must be rewound and advanced forward to the desired
position. Default is Yes for non random-access devices. This function
if enabled is used at the end of a Volume after writing the end of file
and any ANSI/IBM labels to determine whether or not the last block
was written correctly. If you turn this function off, the test will not
be done. This causes no harm as the re-read process is precautionary
rather than required.

Backward Space File = Yes—No If Yes, the archive device supports the
MTBSF and MTBSF ioctls to backspace over an end of file mark
and to the start of a file. If No, these calls are not used and the
device must be rewound and advanced forward to the desired position.
Default is Yes for non random-access devices.

208 CHAPTER 14. STORAGE DAEMON CONFIGURATION

Forward Space Record = Yes—No If Yes, the archive device must sup-
port the MTFSR ioctl to forward space over records. If No, data
must be read in order to advance the position on the device. Default
is Yes for non random-access devices.

Forward Space File = Yes—No If Yes, the archive device must support
the MTFSF ioctl to forward space by file marks. If No, data must be
read to advance the position on the device. Default is Yes for non
random-access devices.

Offline On Unmount = Yes—No The default for this directive is No. If
Yes the archive device must support the MTOFFL ioctl to rewind and
take the volume offline. In this case, Bacula will issue the offline (eject)
request before closing the device during the unmount command. If
No Bacula will not attempt to offline the device before unmounting it.
After an offline is issued, the cassette will be ejected thus requiring
operator intervention to continue, and on some systems require an
explicit load command to be issued (mt -f /dev/xxx load) before the
system will recognize the tape. If you are using an autochanger, some
devices require an offline to be issued prior to changing the volume.
However, most devices do not and may get very confused.

If you are using a Linux 2.6 kernel or other OSes such as FreeBSD or
Solaris, the Offline On Unmount will leave the drive with no tape,
and Bacula will not be able to properly open the drive and may
fail the job. For more information on this problem, please see the
description of Offline On Unmount in the Tape Testing chapter.

Maximum Volume Size = size No more than size bytes will be writ-
ten onto a given volume on the archive device. This directive is used
mainly in testing Bacula to simulate a small Volume. It can also be
useful if you wish to limit the size of a File Volume to say less than
2GB of data. In some rare cases of really antiquated tape drives that
do not properly indicate when the end of a tape is reached during
writing (though I have read about such drives, I have never person-
ally encountered one). Please note, this directive is deprecated (being
phased out) in favor of the Maximum Volume Bytes defined in the
Director’s configuration file.

Maximum File Size = size No more than size bytes will be written into
a given logical file on the volume. Once this size is reached, an end of
file mark is written on the volume and subsequent data are written into
the next file. Breaking long sequences of data blocks with file marks
permits quicker positioning to the start of a given stream of data and
can improve recovery from read errors on the volume. The default is
one Gigabyte. This directive creates EOF marks only on tape media.

14.3. DEVICE RESOURCE 209

However, regardless of the medium type (tape, disk, DVD, ...) each
time a the Maximum File Size is exceeded, a record is put into the
catalog database that permits seeking to that position on the medium
for restore operations. If you set this to a small value (e.g. 1MB), you
will generate lots of database records (JobMedia) and may significantly
increase CPU/disk overhead.

Note, this directive does not limit the size of Volumes that Bacula
will create regardless of whether they are tape or disk volumes. It
changes only the number of EOF marks on a tape and the number
of block positioning records (see below) that are generated. If you
want to limit the size of all Volumes for a particular device, use the
Maximum Volume Size directive (above), or use the Maximum
Volume Bytes directive in the Director’s Pool resource, which does
the same thing but on a Pool (Volume) basis.

Block Positioning = yes—no This directive tells Bacula not to use block
positioning when doing restores. Turning this directive off can cause
Bacula to be extremely slow when restoring files. You might use this
directive if you wrote your tapes with Bacula in variable block mode
(the default), but your drive was in fixed block mode. The default is
yes.

Maximum Network Buffer Size = bytes where bytes specifies the ini-
tial network buffer size to use with the File daemon. This size will be
adjusted down if it is too large until it is accepted by the OS. Please
use care in setting this value since if it is too large, it will be trimmed
by 512 bytes until the OS is happy, which may require a large number
of system calls. The default value is 32,768 bytes.

The default size was chosen to be relatively large but not too big in the
case that you are transmitting data over Internet. It is clear that on a
high speed local network, you can increase this number and improve
performance. For example, some users have found that if you use a
value of 65,536 bytes they get five to ten times the throughput. Larger
values for most users don’t seem to improve performance. If you are
interested in improving your backup speeds, this is definitely a place
to experiment. You will probably also want to make the corresponding
change in each of your File daemons conf files.

Maximum Spool Size = bytes where the bytes specify the maximum
spool size for all jobs that are running. The default is no limit.

Maximum Job Spool Size = bytes where the bytes specify the maxi-
mum spool size for any one job that is running. The default is no
limit. This directive is implemented only in version 1.37 and later.

210 CHAPTER 14. STORAGE DAEMON CONFIGURATION

Spool Directory = directory specifies the name of the directory to be
used to store the spool files for this device. This directory is also used
to store temporary part files when writing to a device that requires
mount (DVD). The default is to use the working directory.

Maximum Part Size = bytes This is the maximum size of a volume part
file. The default is no limit. This directive is implemented only in
version 1.37 and later.

If the device requires mount, it is transferred to the device when this
size is reached. In this case, you must take care to have enough disk
space left in the spool directory.

Otherwise, it is left on the hard disk.

It is ignored for tape and FIFO devices.

14.4 Edit Codes for Mount and Unmount Direc-
tives

Before submitting the Mount Command, Unmount Command, Write
Part Command, or Free Space Command directives to the operating
system, Bacula performs character substitution of the following characters:

%% = %

%a = Archive device name

%e = erase (set if cannot mount and first part)

%n = part number

%m = mount point

%v = last part name (i.e. filename)

14.5 Devices that require a mount (DVD)

All the directives in this section are implemented only in Bacula version 1.37
and later and hence are available in version 1.38.6.

As of version 1.39.5, the directives ”Requires Mount”, ”Mount Point”,
”Mount Command”, and ”Unmount Command” apply to removable filesys-
tems such as USB in addition to DVD.

Requires Mount = Yes—No You must set this directive to yes for DVD-
writers, and to no for all other devices (tapes/files). This directive

14.5. DEVICES THAT REQUIRE A MOUNT (DVD) 211

indicates if the device requires to be mounted to be read, and if it
must be written in a special way. If it set, Mount Point, Mount
Command, Unmount Command and Write Part Command
directives must also be defined.

Mount Point = directory Directory where the device can be mounted.

Mount Command = name-string Command that must be executed to
mount the device. Before the command is executed, %a is replaced
with the Archive Device, and %m with the Mount Point.

Most frequently, you will define it as follows:

Mount Command = "/bin/mount -t iso9660 -o ro %a %m"

Unmount Command = name-string Command that must be executed
to unmount the device. Before the command is executed, %a is re-
placed with the Archive Device, and %m with the Mount Point.

Most frequently, you will define it as follows:

Unmount Command = "/bin/umount %m"

Write Part Command = name-string Command that must be executed
to write a part to the device. Before the command is executed, %a is
replaced with the Archive Device, %m with the Mount Point, %e is
replaced with 1 if we are writing the first part, and with 0 otherwise,
and %v with the current part filename.

For a DVD, you will most frequently specify the Bacula supplied dvd-
handler script as follows:

Write Part Command = "/path/dvd-handler %a write %e %v"

Where /path is the path to your scripts install directory, and dvd-
handler is the Bacula supplied script file. This command will already
be present, but commented out, in the default bacula-sd.conf file. To
use it, simply remove the comment (#) symbol.

Free Space Command = name-string Command that must be executed
to check how much free space is left on the device. Before the com-
mand is executed,%a is replaced with the Archive Device, %m with
the Mount Point, %e is replaced with 1 if we are writing the first part,
and with 0 otherwise, and %v with the current part filename.

For a DVD, you will most frequently specify the Bacula supplied dvd-
handler script as follows:

212 CHAPTER 14. STORAGE DAEMON CONFIGURATION

Free Space Command = "/path/dvd-handler %a free"

Where /path is the path to your scripts install directory, and dvd-
handler is the Bacula supplied script file. If you want to specify your
own command, please look at the code of dvd-handler to see what out-
put Bacula expects from this command. This command will already
be present, but commented out, in the default bacula-sd.conf file. To
use it, simply remove the comment (#) symbol.

If you do not set it, Bacula will expect there is always free space on
the device.

Chapter 15

Autochanger Resource

The Autochanger resource supports single or multiple drive autochangers by
grouping one or more Device resources into one unit called an autochanger in
Bacula (often referred to as a ”tape library” by autochanger manufacturers).

If you have an Autochanger, and you want it to function correctly, you must
have an Autochanger resource in your Storage conf file, and your Direc-
tor’s Storage directives that want to use an Autochanger must refer to the
Autochanger resource name. In previous versions of Bacula, the Director’s
Storage directives referred directly to Device resources that were autochang-
ers. In version 1.38.0 and later, referring directly to Device resources will
not work for Autochangers.

Name = <Autochanger-Name> Specifies the Name of the Au-
tochanger. This name is used in the Director’s Storage definition to
refer to the autochanger. This directive is required.

Device = <Device-name1, device-name2, ...> Specifies the names of
the Device resource or resources that correspond to the autochanger
drive. If you have a multiple drive autochanger, you must specify
multiple Device names, each one referring to a separate Device resource
that contains a Drive Index specification that corresponds to the drive
number base zero. You may specify multiple device names on a single
line separated by commas, and/or you may specify multiple Device
directives. This directive is required.

Changer Device = name-string The specified name-string gives the
system file name of the autochanger device name. If specified in this
resource, the Changer Device name is not needed in the Device re-
source. If it is specified in the Device resource (see above), it will take

213

214 CHAPTER 15. AUTOCHANGER RESOURCE

precedence over one specified in the Autochanger resource.

Changer Command = name-string The name-string specifies an exter-
nal program to be called that will automatically change volumes as
required by Bacula. Most frequently, you will specify the Bacula sup-
plied mtx-changer script as follows. If it is specified here, it need
not be specified in the Device resource. If it is also specified in the
Device resource, it will take precedence over the one specified in the
Autochanger resource.

The following is an example of a valid Autochanger resource definition:

Autochanger {

Name = "DDS-4-changer"

Device = DDS-4-1, DDS-4-2, DDS-4-3

Changer Device = /dev/sg0

Changer Command = "/etc/bacula/mtx-changer %c %o %S %a %d"

}

Device {

Name = "DDS-4-1"

Drive Index = 0

Autochanger = yes

...

}

Device {

Name = "DDS-4-2"

Drive Index = 1

Autochanger = yes

...

Device {

Name = "DDS-4-3"

Drive Index = 2

Autochanger = yes

Autoselect = no

...

}

Please note that it is important to include the Autochanger = yes di-
rective in each Device definition that belongs to an Autochanger. A device
definition should not belong to more than one Autochanger resource. Also,
your Device directive in the Storage resource of the Director’s conf file should
have the Autochanger’s resource name rather than a name of one of the De-
vices.

If you have a drive that physically belongs to an Autochanger but you don’t
want to have it automatically used when Bacula references the Autochanger
for backups, for example, you want to reserve it for restores, you can add
the directive:

15.1. CAPABILITIES 215

Autoselect = no

to the Device resource for that drive. In that case, Bacula will not auto-
matically select that drive when accessing the Autochanger. You can, still
use the drive by referencing it by the Device name directly rather than the
Autochanger name. An example of such a definition is shown above for the
Device DDS-4-3, which will not be selected when the name DDS-4-changer
is used in a Storage definition, but will be used if DDS-4-3 is used.

15.1 Capabilities

Label media = Yes—No If Yes, permits this device to automatically la-
bel blank media without an explicit operator command. It does so by
using an internal algorithm as defined on the Label Format record in
each Pool resource. If this is No as by default, Bacula will label tapes
only by specific operator command (label in the Console) or when the
tape has been recycled. The automatic labeling feature is most useful
when writing to disk rather than tape volumes.

Automatic mount = Yes—No If Yes (the default), permits the daemon
to examine the device to determine if it contains a Bacula labeled
volume. This is done initially when the daemon is started, and then
at the beginning of each job. This directive is particularly important
if you have set Always Open = no because it permits Bacula to
attempt to read the device before asking the system operator to mount
a tape. However, please note that the tape must be mounted before
the job begins.

15.2 Messages Resource

For a description of the Messages Resource, please see the
Messages Resource Chapter of this manual.

15.3 Sample Storage Daemon Configuration File

A example Storage Daemon configuration file might be the following:

#

216 CHAPTER 15. AUTOCHANGER RESOURCE

Default Bacula Storage Daemon Configuration file

#

For Bacula release 1.37.2 (07 July 2005) -- gentoo 1.4.16

#

You may need to change the name of your tape drive

on the "Archive Device" directive in the Device

resource. If you change the Name and/or the

"Media Type" in the Device resource, please ensure

that bacula-dir.conf has corresponding changes.

#

Storage { # definition of myself

Name = rufus-sd

Address = rufus

WorkingDirectory = "$HOME/bacula/bin/working"

Pid Directory = "$HOME/bacula/bin/working"

Maximum Concurrent Jobs = 20

}

#

List Directors who are permitted to contact Storage daemon

#

Director {

Name = rufus-dir

Password = "ZF9Ctf5PQoWCPkmR3s4atCB0usUPg+vWWyIo2VS5ti6k"

}

#

Restricted Director, used by tray-monitor to get the

status of the storage daemon

#

Director {

Name = rufus-mon

Password = "9usxgc307dMbe7jbD16v0PXlhD64UVasIDD0DH2WAujcDsc6"

Monitor = yes

}

#

Devices supported by this Storage daemon

To connect, the Director’s bacula-dir.conf must have the

same Name and MediaType.

#

Autochanger {

Name = Autochanger

Device = Drive-1

Device = Drive-2

Changer Command = "/home/kern/bacula/bin/mtx-changer %c %o %S %a %d"

Changer Device = /dev/sg0

}

Device {

Name = Drive-1 #

Drive Index = 0

Media Type = DLT-8000

Archive Device = /dev/nst0

AutomaticMount = yes; # when device opened, read it

AlwaysOpen = yes;

RemovableMedia = yes;

15.3. SAMPLE STORAGE DAEMON CONFIGURATION FILE 217

RandomAccess = no;

AutoChanger = yes

Alert Command = "sh -c ’tapeinfo -f %c |grep TapeAlert|cat’"

}

Device {

Name = Drive-2 #

Drive Index = 1

Media Type = DLT-8000

Archive Device = /dev/nst1

AutomaticMount = yes; # when device opened, read it

AlwaysOpen = yes;

RemovableMedia = yes;

RandomAccess = no;

AutoChanger = yes

Alert Command = "sh -c ’tapeinfo -f %c |grep TapeAlert|cat’"

}

Device {

Name = "HP DLT 80"

Media Type = DLT8000

Archive Device = /dev/nst0

AutomaticMount = yes; # when device opened, read it

AlwaysOpen = yes;

RemovableMedia = yes;

}

#Device {

Name = SDT-7000

Media Type = DDS-2

Archive Device = /dev/nst0

AutomaticMount = yes; # when device opened, read it

AlwaysOpen = yes;

RemovableMedia = yes;

#}

#Device {

Name = Floppy

Media Type = Floppy

Archive Device = /mnt/floppy

RemovableMedia = yes;

Random Access = Yes;

AutomaticMount = yes; # when device opened, read it

AlwaysOpen = no;

#}

#Device {

Name = FileStorage

Media Type = File

Archive Device = /tmp

LabelMedia = yes; # lets Bacula label unlabeled media

Random Access = Yes;

AutomaticMount = yes; # when device opened, read it

RemovableMedia = no;

AlwaysOpen = no;

#}

#Device {

218 CHAPTER 15. AUTOCHANGER RESOURCE

Name = "NEC ND-1300A"

Media Type = DVD

Archive Device = /dev/hda

LabelMedia = yes; # lets Bacula label unlabeled media

Random Access = Yes;

AutomaticMount = yes; # when device opened, read it

RemovableMedia = yes;

AlwaysOpen = no;

MaximumPartSize = 800M;

RequiresMount = yes;

MountPoint = /mnt/cdrom;

MountCommand = "/bin/mount -t iso9660 -o ro %a %m";

UnmountCommand = "/bin/umount %m";

SpoolDirectory = /tmp/backup;

WritePartCommand = "/etc/bacula/dvd-handler %a write %e %v"

FreeSpaceCommand = "/etc/bacula/dvd-handler %a free"

#}

#

A very old Exabyte with no end of media detection

#

#Device {

Name = "Exabyte 8mm"

Media Type = "8mm"

Archive Device = /dev/nst0

Hardware end of medium = No;

AutomaticMount = yes; # when device opened, read it

AlwaysOpen = Yes;

RemovableMedia = yes;

#}

#

Send all messages to the Director,

mount messages also are sent to the email address

#

Messages {

Name = Standard

director = rufus-dir = all

operator = root = mount

}

Chapter 16

Messages Resource

The Messages resource defines how messages are to be handled and destina-
tions to which they should be sent.

Even though each daemon has a full message handler, within the File daemon
and the Storage daemon, you will normally choose to send all the appropriate
messages back to the Director. This permits all the messages associated
with a single Job to be combined in the Director and sent as a single email
message to the user, or logged together in a single file.

Each message that Bacula generates (i.e. that each daemon generates) has
an associated type such as INFO, WARNING, ERROR, FATAL, etc. Using
the message resource, you can specify which message types you wish to see
and where they should be sent. In addition, a message may be sent to
multiple destinations. For example, you may want all error messages both
logged as well as sent to you in an email. By defining multiple messages
resources, you can have different message handling for each type of Job (e.g.
Full backups versus Incremental backups).

In general, messages are attached to a Job and are included in the Job report.
There are some rare cases, where this is not possible, e.g. when no job is
running, or if a communications error occurs between a daemon and the
director. In those cases, the message may remain in the system, and should
be flushed at the end of the next Job. However, since such messages are not
attached to a Job, any that are mailed will be sent to /usr/lib/sendmail.
On some systems, such as FreeBSD, if your sendmail is in a different place,
you may want to link it to the the above location.

The records contained in a Messages resource consist of a destination spec-
ification followed by a list of message-types in the format:

219

220 CHAPTER 16. MESSAGES RESOURCE

destination = message-type1, message-type2, message-type3, ...

or for those destinations that need and address specification (e.g. email):

destination = address = message-type1, message-type2, message-type3, ...
Where destination is one of a predefined set of keywords that define
where the message is to be sent (stdout, file, ...), message-type is
one of a predefined set of keywords that define the type of message
generated by Bacula (ERROR, WARNING, FATAL, ...), and
address varies according to the destination keyword, but is typically
an email address or a filename.

The following are the list of the possible record definitions that can be used
in a message resource.

Messages Start of the Messages records.

Name = <name> The name of the Messages resource. The name you
specify here will be used to tie this Messages resource to a Job and/or
to the daemon.

MailCommand = <command> In the absence of this resource, Bacula
will send all mail using the following command:

mail -s ”Bacula Message” <recipients>

In many cases, depending on your machine, this command may not
work. Using the MailCommand, you can specify exactly how to send
the mail. During the processing of the command, normally specified
as a quoted string, the following substitutions will be used:

• %% = %

• %c = Client’s name

• %d = Director’s name

• %e = Job Exit code (OK, Error, ...)

• %i = Job Id

• %j = Unique Job name

• %l = Job level

• %n = Job name

• %r = Recipients

221

• %t = Job type (e.g. Backup, ...)

The following is the command I (Kern) use. Note, the whole command
should appear on a single line in the configuration file rather than split
as is done here for presentation:

mailcommand = ”/home/kern/bacula/bin/bsmtp -h
mail.example.com -f \”\(Bacula\) %r\” -s \”Bacula:
%t %e of %c %l\” %r”

Note, the bsmtp program is provided as part of
Bacula. For additional details, please see the
bsmtp – Customizing Your Email Messages section of the Bac-
ula Utility Programs chapter of this manual. Please test any
mailcommand that you use to ensure that your bsmtp gateway
accepts the addressing form that you use. Certain programs such as
Exim can be very selective as to what forms are permitted particularly
in the from part.

OperatorCommand = <command> This resource specification is sim-
ilar to the MailCommand except that it is used for Operator mes-
sages. The substitutions performed for the MailCommand are also
done for this command. Normally, you will set this command to the
same value as specified for the MailCommand.

<destination> = <message-type1>, <message-type2>, ... Where
destination may be one of the following:

stdout Send the message to standard output.

stderr Send the message to standard error.

console Send the message to the console (Bacula Console). These
messages are held until the console program connects to the Di-
rector.

<destination> = <address> = <message-type1>, <message-
type2>, ...

Where address depends on the destination.

The destination may be one of the following:

director Send the message to the Director whose name is given in the
address field. Note, in the current implementation, the Director
Name is ignored, and the message is sent to the Director that
started the Job.

file Send the message to the filename given in the address field. If
the file already exists, it will be overwritten.

222 CHAPTER 16. MESSAGES RESOURCE

append Append the message to the filename given in the address
field. If the file already exists, it will be appended to. If the file
does not exist, it will be created.

syslog Send the message to the system log (syslog) using the facil-
ity specified in the address field. Note, for the moment, the
address field is ignored and the message is always sent to the
LOG DAEMON facility with level LOG ERR. See man 3 sys-
log for more details. Example:

syslog = all, !skipped, !saved

mail Send the message to the email addresses that are given as a
comma separated list in the address field. Mail messages are
grouped together during a job and then sent as a single email
message when the job terminates. The advantage of this destina-
tion is that you are notified about every Job that runs. However,
if you backup five or ten machines every night, the volume of
email messages can be important. Some users use filter programs
such as procmail to automatically file this email based on the
Job termination code (see mailcommand).

mail on error Send the message to the email addresses that are given
as a comma separated list in the address field if the Job termi-
nates with an error condition. MailOnError messages are grouped
together during a job and then sent as a single email message
when the job terminates. This destination differs from the mail
destination in that if the Job terminates normally, the message
is totally discarded (for this destination). If the Job terminates
in error, it is emailed. By using other destinations such as ap-
pend you can ensure that even if the Job terminates normally,
the output information is saved.

mail on success Send the message to the email addresses that are
given as a comma separated list in the address field if the Job
terminates normally (no error condition). MailOnSuccess mes-
sages are grouped together during a job and then sent as a single
email message when the job terminates. This destination differs
from the mail destination in that if the Job terminates abnor-
mally, the message is totally discarded (for this destination). If
the Job terminates in normally, it is emailed.

operator Send the message to the email addresses that are specified
as a comma separated list in the address field. This is similar to
mail above, except that each message is sent as received. Thus
there is one email per message. This is most useful for mount
messages (see below).

console Send the message to the Bacula console.

223

stdout Send the message to the standard output (normally not used).

stderr Send the message to the standard error output (normally not
used).

catalog Send the message to the Catalog database. The message will
be written to the table named Log and a timestamp field will
also be added. This permits Job Reports and other messages
to be recorded in the Catalog so that they can be accessed by
reporting software. Bacula will prune the Log records associated
with a Job when the Job records are pruned. Otherwise, Bacula
never uses these records internally, so this destination is only used
for special purpose programs (e.g. bweb).

For any destination, the message-type field is a comma separated
list of the following types or classes of messages:

info General information messages.

warning Warning messages. Generally this is some unusual condition
but not expected to be serious.

error Non-fatal error messages. The job continues running. Any error
message should be investigated as it means that something went
wrong.

fatal Fatal error messages. Fatal errors cause the job to terminate.

terminate Message generated when the daemon shuts down.

saved Files saved normally.

notsaved Files not saved because of some error. Usually because the
file cannot be accessed (i.e. it does not exist or is not mounted).

skipped Files that were skipped because of a user supplied option
such as an incremental backup or a file that matches an exclu-
sion pattern. This is not considered an error condition such as
the files listed for the notsaved type because the configuration
file explicitly requests these types of files to be skipped. For ex-
ample, any unchanged file during an incremental backup, or any
subdirectory if the no recursion option is specified.

mount Volume mount or intervention requests from the Storage dae-
mon. These requests require a specific operator intervention for
the job to continue.

restored The ls style listing generated for each file restored is sent
to this message class.

all All message types.

security Security info/warning messages principally from unautho-
rized connection attempts.

224 CHAPTER 16. MESSAGES RESOURCE

alert Alert messages. These are messages generated by tape alerts.

volmgmt Volume management messages. Currently there are no vol-
ume mangement messages generated.

The following is an example of a valid Messages resource definition, where
all messages except files explicitly skipped or daemon termination messages
are sent by email to enforcement@sec.com. In addition all mount messages
are sent to the operator (i.e. emailed to enforcement@sec.com). Finally all
messages other than explicitly skipped files and files saved are sent to the
console:

Messages {

Name = Standard

mail = enforcement@sec.com = all, !skipped, !terminate

operator = enforcement@sec.com = mount

console = all, !skipped, !saved

}

With the exception of the email address (changed to avoid junk mail from
robot’s), an example Director’s Messages resource is as follows. Note, the
mailcommand and operatorcommand are on a single line – they had to
be split for this manual:

Messages {

Name = Standard

mailcommand = "bacula/bin/bsmtp -h mail.example.com \

-f \"\(Bacula\) %r\" -s \"Bacula: %t %e of %c %l\" %r"

operatorcommand = "bacula/bin/bsmtp -h mail.example.com \

-f \"\(Bacula\) %r\" -s \"Bacula: Intervention needed \

for %j\" %r"

MailOnError = security@example.com = all, !skipped, \

!terminate

append = "bacula/bin/log" = all, !skipped, !terminate

operator = security@example.com = mount

console = all, !skipped, !saved

}

Chapter 17

Console Configuration

17.1 General

The Console configuration file is the simplest of all the configuration files,
and in general, you should not need to change it except for the password.
It simply contains the information necessary to contact the Director or Di-
rectors.

For a general discussion of the syntax of configuration files and their re-
sources including the data types recognized by Bacula, please see the
Configuration chapter of this manual.

The following Console Resource definition must be defined:

17.2 The Director Resource

The Director resource defines the attributes of the Director running on the
network. You may have multiple Director resource specifications in a single
Console configuration file. If you have more than one, you will be prompted
to choose one when you start the Console program.

Director Start of the Director directives.

Name = <name> The director name used to select among different Di-
rectors, otherwise, this name is not used.

DIRPort = <port-number> Specify the port to use to connect to the
Director. This value will most likely already be set to the value you

225

226 CHAPTER 17. CONSOLE CONFIGURATION

specified on the --with-base-port option of the ./configure com-
mand. This port must be identical to the DIRport specified in the
Director resource of the Director’s configuration file. The default is
9101 so this directive is not normally specified.

Address = <address> Where the address is a host name, a fully qualified
domain name, or a network address used to connect to the Director.

Password = <password> Where the password is the password needed
for the Director to accept the Console connection. This password
must be identical to the Password specified in the Director resource
of the Director’s configuration file. This directive is required.

An actual example might be:

Director {

Name = HeadMan

address = rufus.cats.com

password = xyz1erploit

}

17.3 The ConsoleFont Resource

The ConsoleFont resource is available only in the GNOME version of the
console. It permits you to define the font that you want used to display in
the main listing window.

ConsoleFont Start of the ConsoleFont directives.

Name = <name> The name of the font.

Font = <Pango Font Name> The string value given here defines the
desired font. It is specified in the Pango format. For example, the
default specification is:

Font = "LucidaTypewriter 9"

Thanks to Phil Stracchino for providing the code for this feature.

An different example might be:

ConsoleFont {

Name = Default

Font = "Monospace 10"

}

17.4. THE CONSOLE RESOURCE 227

17.4 The Console Resource

As of Bacula version 1.33 and higher, there are three different kinds of con-
soles, which the administrator or user can use to interact with the Director.
These three kinds of consoles comprise three different security levels.

• The first console type is an anonymous or default console, which
has full privileges. There is no console resource necessary for this type
since the password is specified in the Director resource. This is the
kind of console that was initially implemented in versions prior to 1.33
and remains valid. Typically you would use it only for administrators.

• The second type of console, and new to version 1.33 and higher is a
”named” or ”restricted” console defined within a Console resource in
both the Director’s configuration file and in the Console’s configuration
file. Both the names and the passwords in these two entries must
match much as is the case for Client programs.

This second type of console begins with absolutely no privileges except
those explicitly specified in the Director’s Console resource. Note, the
definition of what these restricted consoles can do is determined by
the Director’s conf file.

Thus you may define within the Director’s conf file multiple Consoles
with different names and passwords, sort of like multiple users, each
with different privileges. As a default, these consoles can do absolutely
nothing – no commands what so ever. You give them privileges or
rather access to commands and resources by specifying access control
lists in the Director’s Console resource. This gives the administrator
fine grained control over what particular consoles (or users) can do.

• The third type of console is similar to the above mentioned restricted
console in that it requires a Console resource definition in both the
Director and the Console. In addition, if the console name, provided
on the Name = directive, is the same as a Client name, the user of
that console is permitted to use the SetIP command to change the
Address directive in the Director’s client resource to the IP address of
the Console. This permits portables or other machines using DHCP
(non-fixed IP addresses) to ”notify” the Director of their current IP
address.

The Console resource is optional and need not be specified. However, if it is
specified, you can use ACLs (Access Control Lists) in the Director’s configu-
ration file to restrict the particular console (or user) to see only information
pertaining to his jobs or client machine.

228 CHAPTER 17. CONSOLE CONFIGURATION

You may specify as many Console resources in the console’s conf file. If you
do so, generally the first Console resource will be used. However, if you have
multiple Director resources (i.e. you want to connect to different directors),
you can bind one of your Console resources to a particular Director resource,
and thus when you choose a particular Director, the appropriate Console
configuration resource will be used. See the ”Director” directive in the
Console resource described below for more information.

Note, the Console resource is optional, but can be useful for restricted con-
soles as noted above.

Console Start of the Console resource.

Name = <name> The Console name used to allow a restricted console to
change its IP address using the SetIP command. The SetIP command
must also be defined in the Director’s conf CommandACL list.

Password = <password> If this password is supplied, then the password
specified in the Director resource of you Console conf will be ignored.
See below for more details.

Director = <director-resource-name> If this directive is specified,
this Console resource will be used by bconsole when that particular
director is selected when first starting bconsole. I.e. it binds a par-
ticular console resource with its name and password to a particular
director.

The following configuration files were supplied by Phil Stracchino. For ex-
ample, if we define the following in the user’s bconsole.conf file (or perhaps
the wx-console.conf file):

Director {

Name = MyDirector

DIRport = 9101

Address = myserver

Password = "XXXXXXXXXXX" # no, really. this is not obfuscation.

}

Console {

Name = restricted-user

Password = "UntrustedUser"

}

Where the Password in the Director section is deliberately incorrect, and
the Console resource is given a name, in this case restricted-client. Then

17.4. THE CONSOLE RESOURCE 229

in the Director’s bacula-dir.conf file (not directly accessible by the user), we
define:

Console {

Name = restricted-user

Password = "UntrustedUser"

JobACL = "Restricted Client Save"

ClientACL = restricted-client

StorageACL = main-storage

ScheduleACL = *all*

PoolACL = *all*

FileSetACL = "Restricted Client’s FileSet"

CatalogACL = DefaultCatalog

CommandACL = run

}

the user logging into the Director from his Console will get logged in as
restricted-client, and he will only be able to see or access a Job with the
name Restricted Client Save a Client with the name restricted-client,
a Storage device main-storage, any Schedule or Pool, a FileSet named
Restricted Client’s File, a Catalog named DefaultCatalog, and the
only command he can use in the Console is the run command. In other
words, this user is rather limited in what he can see and do with Bacula.

The following is an example of a bconsole conf file that can access several
Directors and has different Consoles depending on the director:

Director {

Name = MyDirector

DIRport = 9101

Address = myserver

Password = "XXXXXXXXXXX" # no, really. this is not obfuscation.

}

Director {

Name = SecondDirector

DIRport = 9101

Address = secondserver

Password = "XXXXXXXXXXX" # no, really. this is not obfuscation.

}

Console {

Name = restricted-user

Password = "UntrustedUser"

Director = MyDirector

}

Console {

Name = restricted-user

230 CHAPTER 17. CONSOLE CONFIGURATION

Password = "A different UntrustedUser"

Director = SecondDirector

}

The second Director referenced at ”secondserver” might look like the follow-
ing:

Console {

Name = restricted-user

Password = "A different UntrustedUser"

JobACL = "Restricted Client Save"

ClientACL = restricted-client

StorageACL = second-storage

ScheduleACL = *all*

PoolACL = *all*

FileSetACL = "Restricted Client’s FileSet"

CatalogACL = RestrictedCatalog

CommandACL = run, restore

WhereACL = "/"

}

17.5 Console Commands

For more details on running the console and its commands, please see the
Bacula Console chapter of this manual.

17.6 Sample Console Configuration File

An example Console configuration file might be the following:

#

Bacula Console Configuration File

#

Director {

Name = HeadMan

address = "my_machine.my_domain.com"

Password = Console_password

}

Chapter 18

Monitor Configuration

The Monitor configuration file is a stripped down version of the Director
configuration file, mixed with a Console configuration file. It simply con-
tains the information necessary to contact Directors, Clients, and Storage
daemons you want to monitor.

For a general discussion of configuration file and resources including the
data types recognized by Bacula, please see the Configuration chapter of
this manual.

The following Monitor Resource definition must be defined:

• Monitor – to define the Monitor’s name used to connect to all the
daemons and the password used to connect to the Directors. Note,
you must not define more than one Monitor resource in the Monitor
configuration file.

• At least one Client, Storage or Director resource, to define the daemons
to monitor.

18.1 The Monitor Resource

The Monitor resource defines the attributes of the Monitor running on the
network. The parameters you define here must be configured as a Director
resource in Clients and Storages configuration files, and as a Console resource
in Directors configuration files.

Monitor Start of the Monitor records.

231

232 CHAPTER 18. MONITOR CONFIGURATION

Name = <name> Specify the Director name used to connect to Client
and Storage, and the Console name used to connect to Director. This
record is required.

Password = <password> Where the password is the password needed
for Directors to accept the Console connection. This password must
be identical to the Password specified in the Console resource of
the Director’s configuration file. This record is required if you wish to
monitor Directors.

Refresh Interval = <time> Specifies the time to wait between status
requests to each daemon. It can’t be set to less than 1 second, or more
than 10 minutes, and the default value is 5 seconds.

18.2 The Director Resource

The Director resource defines the attributes of the Directors that are moni-
tored by this Monitor.

As you are not permitted to define a Password in this resource, to avoid
obtaining full Director privileges, you must create a Console resource in the
Director’s configuration file, using the Console Name and Password defined
in the Monitor resource. To avoid security problems, you should configure
this Console resource to allow access to no other daemons, and permit the
use of only two commands: status and .status (see below for an example).

You may have multiple Director resource specifications in a single Monitor
configuration file.

Director Start of the Director records.

Name = <name> The Director name used to identify the Director in the
list of monitored daemons. It is not required to be the same as the one
defined in the Director’s configuration file. This record is required.

DIRPort = <port-number> Specify the port to use to connect to the
Director. This value will most likely already be set to the value you
specified on the --with-base-port option of the ./configure com-
mand. This port must be identical to the DIRport specified in the
Director resource of the Director’s configuration file. The default is
9101 so this record is not normally specified.

Address = <address> Where the address is a host name, a fully qualified
domain name, or a network address used to connect to the Director.
This record is required.

18.3. THE CLIENT RESOURCE 233

18.3 The Client Resource

The Client resource defines the attributes of the Clients that are monitored
by this Monitor.

You must create a Director resource in the Client’s configuration file, us-
ing the Director Name defined in the Monitor resource. To avoid security
problems, you should set the Monitor directive to Yes in this Director
resource.

You may have multiple Director resource specifications in a single Monitor
configuration file.

Client (or FileDaemon) Start of the Client records.

Name = <name> The Client name used to identify the Director in the
list of monitored daemons. It is not required to be the same as the
one defined in the Client’s configuration file. This record is required.

Address = <address> Where the address is a host name, a fully qualified
domain name, or a network address in dotted quad notation for a
Bacula File daemon. This record is required.

FD Port = <port-number> Where the port is a port number at which
the Bacula File daemon can be contacted. The default is 9102.

Password = <password> This is the password to be used when estab-
lishing a connection with the File services, so the Client configuration
file on the machine to be backed up must have the same password
defined for this Director. This record is required.

18.4 The Storage Resource

The Storage resource defines the attributes of the Storages that are moni-
tored by this Monitor.

You must create a Director resource in the Storage’s configuration file, us-
ing the Director Name defined in the Monitor resource. To avoid security
problems, you should set the Monitor directive to Yes in this Director
resource.

You may have multiple Director resource specifications in a single Monitor
configuration file.

234 CHAPTER 18. MONITOR CONFIGURATION

Storage Start of the Storage records.

Name = <name> The Storage name used to identify the Director in the
list of monitored daemons. It is not required to be the same as the
one defined in the Storage’s configuration file. This record is required.

Address = <address> Where the address is a host name, a fully qualified
domain name, or a network address in dotted quad notation for a
Bacula Storage daemon. This record is required.

SD Port = <port> Where port is the port to use to contact the storage
daemon for information and to start jobs. This same port number must
appear in the Storage resource of the Storage daemon’s configuration
file. The default is 9103.

Password = <password> This is the password to be used when estab-
lishing a connection with the Storage services. This same password
also must appear in the Director resource of the Storage daemon’s
configuration file. This record is required.

18.5 Tray Monitor Security

There is no security problem in relaxing the permissions on tray-
monitor.conf as long as FD, SD and DIR are configured properly, so the
passwords contained in this file only gives access to the status of the dae-
mons. It could be a security problem if you consider the status information
as potentially dangerous (I don’t think it is the case).

Concerning Director’s configuration:
In tray-monitor.conf, the password in the Monitor resource must point to
a restricted console in bacula-dir.conf (see the documentation). So, if you
use this password with bconsole, you’ll only have access to the status of the
director (commands status and .status). It could be a security problem if
there is a bug in the ACL code of the director.

Concerning File and Storage Daemons’ configuration:
In tray-monitor.conf, the Name in the Monitor resource must point to a
Director resource in bacula-fd/sd.conf, with the Monitor directive set to Yes
(once again, see the documentation). It could be a security problem if there
is a bug in the code which check if a command is valid for a Monitor (this
is very unlikely as the code is pretty simple).

18.6. SAMPLE TRAY MONITOR CONFIGURATION 235

18.6 Sample Tray Monitor configuration

An example Tray Monitor configuration file might be the following:

#

Bacula Tray Monitor Configuration File

#

Monitor {

Name = rufus-mon # password for Directors

Password = "GN0uRo7PTUmlMbqrJ2Gr1p0fk0HQJTxwnFyE4WSST3MWZseR"

RefreshInterval = 10 seconds

}

Client {

Name = rufus-fd

Address = rufus

FDPort = 9102 # password for FileDaemon

Password = "FYpq4yyI1y562EMS35bA0J0QC0M2L3t5cZObxT3XQxgxppTn"

}

Storage {

Name = rufus-sd

Address = rufus

SDPort = 9103 # password for StorageDaemon

Password = "9usxgc307dMbe7jbD16v0PXlhD64UVasIDD0DH2WAujcDsc6"

}

Director {

Name = rufus-dir

DIRport = 9101

address = rufus

}

18.6.1 Sample File daemon’s Director record.

Click here to see the full example.

#

Restricted Director, used by tray-monitor to get the

status of the file daemon

#

Director {

Name = rufus-mon

Password = "FYpq4yyI1y562EMS35bA0J0QC0M2L3t5cZObxT3XQxgxppTn"

Monitor = yes

}

236 CHAPTER 18. MONITOR CONFIGURATION

18.6.2 Sample Storage daemon’s Director record.

Click here to see the full example.

#

Restricted Director, used by tray-monitor to get the

status of the storage daemon

#

Director {

Name = rufus-mon

Password = "9usxgc307dMbe7jbD16v0PXlhD64UVasIDD0DH2WAujcDsc6"

Monitor = yes

}

18.6.3 Sample Director’s Console record.

Click here to see the full example.

#

Restricted console used by tray-monitor to get the status of the director

#

Console {

Name = Monitor

Password = "GN0uRo7PTUmlMbqrJ2Gr1p0fk0HQJTxwnFyE4WSST3MWZseR"

CommandACL = status, .status

}

Chapter 19

Bacula Console

The Bacula Console (sometimes called the User Agent) is a program that
allows the user or the System Administrator, to interact with the Bacula
Director daemon while the daemon is running.

The current Bacula Console comes in two versions: a shell interface (TTY
style), and a GNOME GUI interface. Both permit the administrator or
authorized users to interact with Bacula. You can determine the status of
a particular job, examine the contents of the Catalog as well as perform
certain tape manipulations with the Console program.

In addition, there is a wx-console built with wxWidgets that allows a graphic
restore of files. As of version 1.34.1 it is in an early stage of development,
but it already is quite useful. Unfortunately, it has not been enhanced for
some time now.

Since the Console program interacts with the Director through the network,
your Console and Director programs do not necessarily need to run on the
same machine.

In fact, a certain minimal knowledge of the Console program is needed in
order for Bacula to be able to write on more than one tape, because when
Bacula requests a new tape, it waits until the user, via the Console program,
indicates that the new tape is mounted.

237

238 CHAPTER 19. BACULA CONSOLE

19.1 Console Configuration

When the Console starts, it reads a standard Bacula configuration file named
bconsole.conf or gnome-console.conf in the case of the GNOME Con-
sole version. This file allows default configuration of the Console, and
at the current time, the only Resource Record defined is the Director re-
source, which gives the Console the name and address of the Director. For
more information on configuration of the Console program, please see the
Console Configuration File Chapter of this document.

19.2 Running the Console Program

The console program can be run with the following options:

Usage: bconsole [-s] [-c config_file] [-d debug_level]

-c <file> set configuration file to file

-dnn set debug level to nn

-n no conio

-s no signals

-t test - read configuration and exit

-? print this message.

After launching the Console program (bconsole), it will prompt you for the
next command with an asterisk (*). (Note, in the GNOME version, the
prompt is not present; you simply enter the commands you want in the
command text box at the bottom of the screen.) Generally, for all com-
mands, you can simply enter the command name and the Console program
will prompt you for the necessary arguments. Alternatively, in most cases,
you may enter the command followed by arguments. The general format is:

<command> <keyword1>[=<argument1>] <keyword2>[=<argument2>] ...

where command is one of the commands listed below; keyword is one of
the keywords listed below (usually followed by an argument); and argument
is the value. The command may be abbreviated to the shortest unique
form. If two commands have the same starting letters, the one that will be
selected is the one that appears first in the help listing. If you want the
second command, simply spell out the full command. None of the keywords
following the command may be abbreviated.

For example:

19.3. STOPPING THE CONSOLE PROGRAM 239

list files jobid=23

will list all files saved for JobId 23. Or:

show pools

will display all the Pool resource records.

19.3 Stopping the Console Program

Normally, you simply enter quit or exit and the Console program will ter-
minate. However, it waits until the Director acknowledges the command. If
the Director is already doing a lengthy command (e.g. prune), it may take
some time. If you want to immediately terminate the Console program,
enter the .quit command.

There is currently no way to interrupt a Console command once issued (i.e.
Ctrl-C does not work). However, if you are at a prompt that is asking you to
select one of several possibilities and you would like to abort the command,
you can enter a period (.), and in most cases, you will either be returned
to the main command prompt or if appropriate the previous prompt (in the
case of nested prompts). In a few places such as where it is asking for a
Volume name, the period will be taken to be the Volume name. In that
case, you will most likely be able to cancel at the next prompt.

19.4 Alphabetic List of Console Keywords

Unless otherwise specified, each of the following keywords takes an argument,
which is specified after the keyword following an equal sign. For example:

jobid=536

Please note, this list is incomplete as it is currently in the process of being
created and is not currently totally in alphabetic order ...

restart Permitted on the python command, and causes the Python inter-
preter to be restarted. Takes no argument.

240 CHAPTER 19. BACULA CONSOLE

all Permitted on the status and show commands to specify all components
or resources respectively.

allfrompool Permitted on the update command to specify that all Volumes
in the pool (specified on the command line) should be updated.

before Used in the restore command.

bootstrap Used in the restore command.

catalog Allowed in the use command to specify the catalog name to be
used.

catalogs Used in the show command. Takes no arguments.

client — fd

clients Used in the show, list, and llist commands. Takes no arguments.

counters Used in the show command. Takes no arguments.

current Used in the restore command. Takes no argument.

days Used to define the number of days the ”list nextvol” command should
consider when looking for jobs to be run. The days keyword can also be
used on the ”status dir” command so that it will display jobs scheduled
for the number of days you want.

devices Used in the show command. Takes no arguments.

dir — director

directors Used in the show command. Takes no arguments.

directory Used in the restore command. Its argument specifies the direc-
tory to be restored.

enabled This keyword can appear on the update volume as well as the
update slots commands, and can allows one of the following argu-
ments: yes, true, no, false, archived, 0, 1, 2. Where 0 corresponds to
no or false, 1 corresponds to yes or true, and 2 corresponds to archived.
Archived volumes will not be used, nor will the Media record in the
catalog be pruned. Volumes that are not enabled, will not be used for
backup or restore.

done Used in the restore command. Takes no argument.

file Used in the restore command.

files Used in the list and llist commands. Takes no arguments.

19.4. ALPHABETIC LIST OF CONSOLE KEYWORDS 241

fileset

filesets Used in the show command. Takes no arguments.

help Used in the show command. Takes no arguments.

jobs Used in the show, list and llist commands. Takes no arguments.

jobmedia Used in the list and llist commands. Takes no arguments.

jobtotals Used in the list and llist commands. Takes no arguments.

jobid The JobId is the numeric jobid that is printed in the Job Report
output. It is the index of the database record for the given job. While
it is unique for all the existing Job records in the catalog database,
the same JobId can be reused once a Job is removed from the cata-
log. Probably you will refer specific Jobs that ran using their numeric
JobId.

job — jobname The Job or Jobname keyword refers to the name you
specified in the Job resource, and hence it refers to any number of
Jobs that ran. It is typically useful if you want to list all jobs of a
particular name.

level

listing Permitted on the estimate command. Takes no argument.

limit

messages Used in the show command. Takes no arguments.

media Used in the list and llist commands. Takes no arguments.

nextvol — nextvolume Used in the list and llist commands. Takes no
arguments.

on Takes no keyword.

off Takes no keyword.

pool

pools Used in the show, list, and llist commands. Takes no arguments.

select Used in the restore command. Takes no argument.

storages Used in the show command. Takes no arguments.

schedules Used in the show command. Takes no arguments.

242 CHAPTER 19. BACULA CONSOLE

sd — store — storage

ujobid The ujobid is a unique job identification that is printed in the Job
Report output. At the current time, it consists of the Job name (from
the Name directive for the job) appended with the date and time the
job was run. This keyword is useful if you want to completely identify
the Job instance run.

volume

volumes Used in the list and llist commands. Takes no arguments.

where Used in the restore command.

yes Used in the restore command. Takes no argument.

19.5 Alphabetic List of Console Commands

The following commands are currently implemented:

add [pool=<pool-name> storage=<storage> jobid=<JobId>]
This command is used to add Volumes to an existing Pool. That is,
it creates the Volume name in the catalog and inserts into the Pool
in the catalog, but does not attempt to access the physical Volume.
Once added, Bacula expects that Volume to exist and to be labeled.
This command is not normally used since Bacula will automatically
do the equivalent when Volumes are labeled. However, there may be
times when you have removed a Volume from the catalog and want to
later add it back.

Normally, the label command is used rather than this command be-
cause the label command labels the physical media (tape) and does
the equivalent of the add command. The add command affects only
the Catalog and not the physical media (data on Volumes). The phys-
ical media must exist and be labeled before use (usually with the label
command). This command can, however, be useful if you wish to add
a number of Volumes to the Pool that will be physically labeled at
a later time. It can also be useful if you are importing a tape from
another site. Please see the label command below for the list of legal
characters in a Volume name.

autodisplay on/off This command accepts on or off as an argument, and
turns auto-display of messages on or off respectively. The default for

19.5. ALPHABETIC LIST OF CONSOLE COMMANDS 243

the console program is off, which means that you will be notified when
there are console messages pending, but they will not automatically
be displayed. The default for the gnome-console program is on, which
means that messages will be displayed when they are received (usually
within five seconds of them being generated).

When autodisplay is turned off, you must explicitly retrieve the mes-
sages with the messages command. When autodisplay is turned on,
the messages will be displayed on the console as they are received.

automount on/off This command accepts on or off as the argument, and
turns auto-mounting of the tape after a label command on or off
respectively. The default is on. If automount is turned off, you must
explicitly mount the tape after a label command to use it.

cancel [jobid=<number> job=<job-name> ujobid=<unique-jobid>]
This command is used to cancel a job and accepts jobid=nnn or
job=xxx as an argument where nnn is replaced by the JobId and
xxx is replaced by the job name. If you do not specify a keyword,
the Console program will prompt you with the names of all the active
jobs allowing you to choose one.

Once a Job is marked to be canceled, it may take a bit of time (gener-
ally within a minute) before it actually terminates, depending on what
operations it is doing.

create [pool=<pool-name>] This command is not normally used as the
Pool records are automatically created by the Director when it starts
based on what it finds in the conf file. If needed, this command can
be to create a Pool record in the database using the Pool resource
record defined in the Director’s configuration file. So in a sense, this
command simply transfers the information from the Pool resource in
the configuration file into the Catalog. Normally this command is done
automatically for you when the Director starts providing the Pool is
referenced within a Job resource. If you use this command on an
existing Pool, it will automatically update the Catalog to have the
same information as the Pool resource. After creating a Pool, you will
most likely use the label command to label one or more volumes and
add their names to the Media database.

When starting a Job, if Bacula determines that there is no Pool record
in the database, but there is a Pool resource of the appropriate name,
it will create it for you. If you want the Pool record to appear in
the database immediately, simply use this command to force it to be
created.

delete [volume=<vol-name> pool=<pool-name> job jobid=<id>]
The delete command is used to delete a Volume, Pool or Job record

244 CHAPTER 19. BACULA CONSOLE

from the Catalog as well as all associated catalog Volume records that
were created. This command operates only on the Catalog database
and has no effect on the actual data written to a Volume. This
command can be dangerous and we strongly recommend that you do
not use it unless you know what you are doing.

If the keyword Volume appears on the command line, the named
Volume will be deleted from the catalog, if the keyword Pool appears
on the command line, a Pool will be deleted, and if the keyword Job
appears on the command line, a Job and all its associated records (File
and JobMedia) will be deleted from the catalog. The full form of this
command is:

delete pool=\lt{}pool-name\gt{}

or

delete volume=\lt{}volume-name\gt{} pool=\lt{}pool-name\gt{} or

delete JobId=\lt{}job-id\gt{} JobId=\lt{}job-id2\gt{} ... or

delete Job JobId=n,m,o-r,t ...

The first form deletes a Pool record from the catalog database. The
second form deletes a Volume record from the specified pool in the
catalog database. The third form deletes the specified Job record from
the catalog database. The last form deletes JobId records for JobIds
n, m, o, p, q, r, and t. Where each one of the n,m,... is, of course, a
number. That is a ”delete jobid” accepts lists and ranges of jobids.

disable job<job-name> This command permits you to disable a Job for
automatic scheduling. The job may have been previously enabled
with the Job resource Enabled directive or using the console enable
command. The next time the Director is restarted or the conf file is
reloaded, the Enable/Disable state will be set to the value in the Job
resource (default enabled) as defined in the bacula-dir.conf file.

enable job<job-name> This command permits you to enable a Job for
automatic scheduling. The job may have been previously disabled
with the Job resource Enabled directive or using the console disable
command. The next time the Director is restarted or the conf file is
reloaded, the Enable/Disable state will be set to the value in the Job
resource (default enabled) as defined in the bacula-dir.conf file.

19.5. ALPHABETIC LIST OF CONSOLE COMMANDS 245

estimate Using this command, you can get an idea how many files will
be backed up, or if you are unsure about your Include statements in
your FileSet, you can test them without doing an actual backup. The
default is to assume a Full backup. However, you can override this
by specifying a level=Incremental or level=Differential on the
command line. A Job name must be specified or you will be prompted
for one, and optionally a Client and FileSet may be specified on the
command line. It then contacts the client which computes the number
of files and bytes that would be backed up. Please note that this is an
estimate calculated from the number of blocks in the file rather than
by reading the actual bytes. As such, the estimated backup size will
generally be larger than an actual backup.

Optionally you may specify the keyword listing in which case, all the
files to be backed up will be listed. Note, it could take quite some time
to display them if the backup is large. The full form is:

estimate job=\lt{}job-name\gt{} listing client=\lt{}client-name\gt{}

fileset=\lt{}fileset-name\gt{} level=\lt{}level-name\gt{}

Specification of the job is sufficient, but you can also override the
client, fileset and/or level by specifying them on the estimate command
line.

As an example, you might do:

@output /tmp/listing

estimate job=NightlySave listing level=Incremental

@output

which will do a full listing of all files to be backed up for the
Job NightlySave during an Incremental save and put it in the file
/tmp/listing. Note, the byte estimate provided by this command is
based on the file size contained in the directory item. This can give
wildly incorrect estimates of the actual storage used if there are sparse
files on your systems. Sparse files are often found on 64 bit systems
for certain system files. The size that is returned is the size Bacula
will backup if the sparse option is not specified in the FileSet. There
is currently no way to get an estimate of the real file size that would
be found should the sparse option be enabled.

help This command displays the list of commands available.

label This command is used to label physical volumes. The full form of
this command is:

246 CHAPTER 19. BACULA CONSOLE

label storage=\lt{}storage-name\gt{} volume=\lt{}volume-name\gt{}

slot=\lt{}slot\gt{}

If you leave out any part, you will be prompted for it. The media
type is automatically taken from the Storage resource definition that
you supply. Once the necessary information is obtained, the Console
program contacts the specified Storage daemon and requests that the
tape be labeled. If the tape labeling is successful, the Console program
will create a Volume record in the appropriate Pool.

The Volume name is restricted to letters, numbers, and the special
characters hyphen (-), underscore (), colon (:), and period (.). All
other characters including a space are invalid. This restriction is to
ensure good readability of Volume names to reduce operator errors.

Please note, when labeling a blank tape, Bacula will get read I/O
error when it attempts to ensure that the tape is not already labeled.
If you wish to avoid getting these messages, please write an EOF mark
on your tape before attempting to label it:

mt rewind

mt weof

The label command can fail for a number of reasons:

1. The Volume name you specify is already in the Volume database.

2. The Storage daemon has a tape already mounted on the device,
in which case you must unmount the device, insert a blank tape,
then do the label command.

3. The tape in the device is already a Bacula labeled tape. (Bacula
will never relabel a Bacula labeled tape unless it is recycled and
you use the relabel command).

4. There is no tape in the drive.

There are two ways to relabel a volume that already has a Bacula
label. The brute force method is to write an end of file mark on the
tape using the system mt program, something like the following:

mt -f /dev/st0 rewind

mt -f /dev/st0 weof

Then you use the label command to add a new label. However, this
could leave traces of the old volume in the catalog.

19.5. ALPHABETIC LIST OF CONSOLE COMMANDS 247

The preferable method to relabel a tape is to first purge the volume,
either automatically, or explicitly with the purge command, then use
the relabel command described below.

If your autochanger has barcode labels, you can label all the Volumes
in your autochanger one after another by using the label barcodes
command. For each tape in the changer containing a barcode, Bacula
will mount the tape and then label it with the same name as the
barcode. An appropriate Media record will also be created in the
catalog. Any barcode that begins with the same characters as specified
on the ”CleaningPrefix=xxx” directive in the Director’s Pool resource,
will be treated as a cleaning tape, and will not be labeled. However, an
entry for the cleaning tape will be created in the catalog. For example
with:

Pool {

Name ...

Cleaning Prefix = "CLN"

}

Any slot containing a barcode of CLNxxxx will be treated as a cleaning
tape and will not be mounted. Note, the full form of the command is:

update storage=xxx pool=yyy slots=1-5,10 barcodes

list The list command lists the requested contents of the Catalog. The
various fields of each record are listed on a single line. The various
forms of the list command are:

list jobs

list jobid=<id> (list jobid id)

list ujobid<unique job name> (list job with unique name)

list job=<job-name> (list all jobs with "job-name")

list jobname=<job-name> (same as above)

In the above, you can add "limit=nn" to limit the output to

nn jobs.

list jobmedia

list jobmedia jobid=<id>

list jobmedia job=<job-name>

248 CHAPTER 19. BACULA CONSOLE

list files jobid=<id>

list files job=<job-name>

list pools

list clients

list jobtotals

list volumes

list volumes jobid=<id>

list volumes pool=<pool-name>

list volumes job=<job-name>

list volume=<volume-name>

list nextvolume job=<job-name>

list nextvol job=<job-name>

list nextvol job=<job-name> days=nnn

What most of the above commands do should be more or less obvious.
In general if you do not specify all the command line arguments, the
command will prompt you for what is needed.

The list nextvol command will print the Volume name to be used by
the specified job. You should be aware that exactly what Volume will
be used depends on a lot of factors including the time and what a prior
job will do. It may fill a tape that is not full when you issue this com-
mand. As a consequence, this command will give you a good estimate
of what Volume will be used but not a definitive answer. In addition,
this command may have certain side effect because it runs through the
same algorithm as a job, which means it may automatically purge or
recycle a Volume. By default, the job specified must run within the
next two days or no volume will be found. You can, however, use the
days=nnn specification to specify up to 50 days. For example, if on
Friday, you want to see what Volume will be needed on Monday, for
job MyJob, you would use list nextvol job=MyJob days=3.

If you wish to add specialized commands that list the contents of the
catalog, you can do so by adding them to the query.sql file. However,
this takes some knowledge of programming SQL. Please see the query
command below for additional information. See below for listing the
full contents of a catalog record with the llist command.

19.5. ALPHABETIC LIST OF CONSOLE COMMANDS 249

As an example, the command list pools might produce the following
output:

+------+---------+---------+---------+----------+-------------+

| PoId | Name | NumVols | MaxVols | PoolType | LabelFormat |

+------+---------+---------+---------+----------+-------------+

| 1 | Default | 0 | 0 | Backup | * |

| 2 | Recycle | 0 | 8 | Backup | File |

+------+---------+---------+---------+----------+-------------+

As mentioned above, the list command lists what is in the database.
Some things are put into the database immediately when Bacula starts
up, but in general, most things are put in only when they are first used,
which is the case for a Client as with Job records, etc.

Bacula should create a client record in the database the first time you
run a job for that client. Doing a status will not cause a database
record to be created. The client database record will be created
whether or not the job fails, but it must at least start. When the
Client is actually contacted, additional info from the client will be
added to the client record (a ”uname -a” output).

If you want to see what Client resources you have available in your
conf file, you use the Console command show clients.

llist The llist or ”long list” command takes all the same arguments that
the list command described above does. The difference is that the llist
command list the full contents of each database record selected. It
does so by listing the various fields of the record vertically, with one
field per line. It is possible to produce a very large number of output
lines with this command.

If instead of the list pools as in the example above, you enter llist
pools you might get the following output:

PoolId: 1

Name: Default

NumVols: 0

MaxVols: 0

UseOnce: 0

UseCatalog: 1

AcceptAnyVolume: 1

VolRetention: 1,296,000

VolUseDuration: 86,400

MaxVolJobs: 0

MaxVolBytes: 0

AutoPrune: 0

Recycle: 1

PoolType: Backup

LabelFormat: *

250 CHAPTER 19. BACULA CONSOLE

PoolId: 2

Name: Recycle

NumVols: 0

MaxVols: 8

UseOnce: 0

UseCatalog: 1

AcceptAnyVolume: 1

VolRetention: 3,600

VolUseDuration: 3,600

MaxVolJobs: 1

MaxVolBytes: 0

AutoPrune: 0

Recycle: 1

PoolType: Backup

LabelFormat: File

messages This command causes any pending console messages to be im-
mediately displayed.

mount The mount command is used to get Bacula to read a volume on
a physical device. It is a way to tell Bacula that you have mounted
a tape and that Bacula should examine the tape. This command is
normally used only after there was no Volume in a drive and Bacula
requests you to mount a new Volume or when you have specifically
unmounted a Volume with the unmount console command, which
causes Bacula to close the drive. If you have an autoloader, the mount
command will not cause Bacula to operate the autoloader unless you
specify a slot and possibly a drive. The various forms of the mount
command are:

mount storage=<storage-name> [slot=<num>] [drive=<num>]

mount [jobid=<id> — job=<job-name>]

If you have specified Automatic Mount = yes in the Storage dae-
mon’s Device resource, under most circumstances, Bacula will auto-
matically access the Volume unless you have explicitly unmounted it
in the Console program.

python The python command takes a single argument restart:

python restart

This causes the Python interpreter in the Director to be reinitialized.
This can be helpful for testing because once the Director starts and
the Python interpreter is initialized, there is no other way to make it
accept any changes to the startup script DirStartUp.py. For more
details on Python scripting, please see the Python Scripting chapter
of this manual.

19.5. ALPHABETIC LIST OF CONSOLE COMMANDS 251

prune The Prune command allows you to safely remove expired database
records from Jobs and Volumes. This command works only on the
Catalog database and does not affect data written to Volumes. In all
cases, the Prune command applies a retention period to the specified
records. You can Prune expired File entries from Job records; you can
Prune expired Job records from the database, and you can Prune both
expired Job and File records from specified Volumes.

prune files—jobs—volume client=<client-name> volume=<volume-
name>

For a Volume to be pruned, the VolStatus must be Full, Used, or
Append, otherwise the pruning will not take place.

purge The Purge command will delete associated Catalog database records
from Jobs and Volumes without considering the retention period.
Purge works only on the Catalog database and does not affect data
written to Volumes. This command can be dangerous because you can
delete catalog records associated with current backups of files, and we
recommend that you do not use it unless you know what you are doing.
The permitted forms of purge are:

purge files jobid=<jobid>—job=<job-name>—client=<client-
name>

purge jobs client=<client-name> (of all jobs)

purge volume—volume=<vol-name> (of all jobs)

For the purge command to work on Volume Catalog database records
the VolStatus must be Append, Full, Used, or Error.

The actual data written to the Volume will be unaffected by this com-
mand.

relabel This command is used to label physical volumes. The full form of
this command is:

relabel storage=<storage-name> oldvolume=<old-volume-name>
volume=<newvolume-name>

If you leave out any part, you will be prompted for it. In order for the
Volume (old-volume-name) to be relabeled, it must be in the catalog,
and the volume status must be marked Purged or Recycle. This
happens automatically as a result of applying retention periods, or
you may explicitly purge the volume using the purge command.

Once the volume is physically relabeled, the old data previously writ-
ten on the Volume is lost and cannot be recovered.

252 CHAPTER 19. BACULA CONSOLE

release This command is used to cause the Storage daemon to rewind (re-
lease) the current tape in the drive, and to re-read the Volume label
the next time the tape is used.

release storage=<storage-name>

After a release command, the device is still kept open by Bacula (unless
Always Open is set to No in the Storage Daemon’s configuration) so it
cannot be used by another program. However, with some tape drives,
the operator can remove the current tape and to insert a different one,
and when the next Job starts, Bacula will know to re-read the tape
label to find out what tape is mounted. If you want to be able to use
the drive with another program (e.g. mt), you must use the unmount
command to cause Bacula to completely release (close) the device.

reload The reload command causes the Director to re-read its configuration
file and apply the new values. The new values will take effect imme-
diately for all new jobs. However, if you change schedules, be aware
that the scheduler pre-schedules jobs up to two hours in advance, so
any changes that are to take place during the next two hours may be
delayed. Jobs that have already been scheduled to run (i.e. surpassed
their requested start time) will continue with the old values. New jobs
will use the new values. Each time you issue a reload command while
jobs are running, the prior config values will queued until all jobs that
were running before issuing the reload terminate, at which time the
old config values will be released from memory. The Directory per-
mits keeping up to ten prior set of configurations before it will refuse
a reload command. Once at least one old set of config values has been
released it will again accept new reload commands.

While it is possible to reload the Director’s configuration on the fly,
even while jobs are executing, this is a complex operation and not
without side effects. Accordingly, if you have to reload the Director’s
configuration while Bacula is running, it is advisable to restart the
Director at the next convenient opportunity.

restore The restore command allows you to select one or more Jobs (Jo-
bIds) to be restored using various methods. Once the JobIds are se-
lected, the File records for those Jobs are placed in an internal Bacula
directory tree, and the restore enters a file selection mode that allows
you to interactively walk up and down the file tree selecting individual
files to be restored. This mode is somewhat similar to the standard
Unix restore program’s interactive file selection mode.

restore storage=<storage-name> client=<client-name>
where=<path> pool=<pool-name> fileset=<fileset-name> se-
lect current all done

19.5. ALPHABETIC LIST OF CONSOLE COMMANDS 253

Where current, if specified, tells the restore command to automati-
cally select a restore to the most current backup. If not specified, you
will be prompted. The all specification tells the restore command to
restore all files. If it is not specified, you will be prompted for the
files to restore. For details of the restore command, please see the
Restore Chapter of this manual.

run This command allows you to schedule jobs to be run immediately. The
full form of the command is:

run job=<job-name> client=<client-name> fileset=<FileSet-name>
level=<level-keyword> storage=<storage-name> where=<directory-
prefix> when=<universal-time-specification> yes

Any information that is needed but not specified will be listed for
selection, and before starting the job, you will be prompted to accept,
reject, or modify the parameters of the job to be run, unless you have
specified yes, in which case the job will be immediately sent to the
scheduler.

On my system, when I enter a run command, I get the following
prompt:

A job name must be specified.

The defined Job resources are:

1: Matou

2: Polymatou

3: Rufus

4: Minimatou

5: Minou

6: PmatouVerify

7: MatouVerify

8: RufusVerify

9: Watchdog

Select Job resource (1-9):

If I then select number 5, I am prompted with:

Run Backup job

JobName: Minou

FileSet: Minou Full Set

Level: Incremental

Client: Minou

Storage: DLTDrive

Pool: Default

When: 2003-04-23 17:08:18

OK to run? (yes/mod/no):

254 CHAPTER 19. BACULA CONSOLE

If I now enter yes, the Job will be run. If I enter mod, I will be
presented with the following prompt.

Parameters to modify:

1: Level

2: Storage

3: Job

4: FileSet

5: Client

6: When

7: Pool

Select parameter to modify (1-7):

If you wish to start a job at a later time, you can do so by setting the
When time. Use the mod option and select When (no. 6). Then
enter the desired start time in YYYY-MM-DD HH:MM:SS format.

setdebug This command is used to set the debug level in each daemon.
The form of this command is:

setdebug level=nn [trace=0/1 client=<client-name> — dir — director
— storage=<storage-name> — all]

If trace=1 is set, then tracing will be enabled, and the daemon will
be placed in trace mode, which means that all debug output as set
by the debug level will be directed to the file bacula.trace in the
current directory of the daemon. Normally, tracing is needed only for
Win32 clients where the debug output cannot be written to a terminal
or redirected to a file. When tracing, each debug output message is
appended to the trace file. You must explicitly delete the file when
you are done.

show The show command will list the Director’s resource records as de-
fined in the Director’s configuration file (normally bacula-dir.conf).
This command is used mainly for debugging purposes by developers.
The following keywords are accepted on the show command line: cata-
logs, clients, counters, devices, directors, filesets, jobs, messages, pools,
schedules, storages, all, help. Please don’t confuse this command with
the list, which displays the contents of the catalog.

sqlquery The sqlquery command puts the Console program into SQL query
mode where each line you enter is concatenated to the previous line
until a semicolon (;) is seen. The semicolon terminates the command,
which is then passed directly to the SQL database engine. When the
output from the SQL engine is displayed, the formation of a new SQL
command begins. To terminate SQL query mode and return to the
Console command prompt, you enter a period (.) in column 1.

19.5. ALPHABETIC LIST OF CONSOLE COMMANDS 255

Using this command, you can query the SQL catalog database directly.
Note you should really know what you are doing otherwise you could
damage the catalog database. See the query command below for
simpler and safer way of entering SQL queries.

Depending on what database engine you are using (MySQL, Post-
greSQL or SQLite), you will have somewhat different SQL commands
available. For more detailed information, please refer to the MySQL,
PostgreSQL or SQLite documentation.

status This command will display the status of the next jobs that are sched-
uled during the next 24 hours as well as the status of currently running
jobs. The full form of this command is:

status [all — dir=<dir-name> — director — client=<client-name>
— storage=<storage-name> — days=nnn]

If you do a status dir, the console will list any currently running
jobs, a summary of all jobs scheduled to be run in the next 24 hours,
and a listing of the last ten terminated jobs with their statuses. The
scheduled jobs summary will include the Volume name to be used.
You should be aware of two things: 1. to obtain the volume name, the
code goes through the same code that will be used when the job runs,
which means that it may prune or recycle a Volume; 2. The Volume
listed is only a best guess. The Volume actually used may be different
because of the time difference (more durations may expire when the
job runs) and another job could completely fill the Volume requiring
a new one.

In the Running Jobs listing, you may find the following types of infor-
mation:

2507 Catalog MatouVerify.2004-03-13_05.05.02 is waiting execution

5349 Full CatalogBackup.2004-03-13_01.10.00 is waiting for higher

priority jobs to finish

5348 Differe Minou.2004-03-13_01.05.09 is waiting on max Storage jobs

5343 Full Rufus.2004-03-13_01.05.04 is running

Looking at the above listing from bottom to top, obviously JobId 5343
(Rufus) is running. JobId 5348 (Minou) is waiting for JobId 5343 to
finish because it is using the Storage resource, hence the ”waiting on
max Storage jobs”. JobId 5349 has a lower priority than all the other
jobs so it is waiting for higher priority jobs to finish, and finally, JobId
2508 (MatouVerify) is waiting because only one job can run at a time,
hence it is simply ”waiting execution”

If you do a status dir, it will by default list the first occurrence of all
jobs that are scheduled today and tomorrow. If you wish to see the

256 CHAPTER 19. BACULA CONSOLE

jobs that are scheduled in the next three days (e.g. on Friday you want
to see the first occurrence of what tapes are scheduled to be used on
Friday, the weekend, and Monday), you can add the days=3 option.
Note, a days=0 shows the first occurrence of jobs scheduled today
only. If you have multiple run statements, the first occurrence of each
run statement for the job will be displayed for the period specified.

If your job seems to be blocked, you can get a general idea of the prob-
lem by doing a status dir, but you can most often get a much more
specific indication of the problem by doing a status storage=xxx.
For example, on an idle test system, when I do status storage=File,
I get:

status storage=File

Connecting to Storage daemon File at 192.168.68.112:8103

rufus-sd Version: 1.39.6 (24 March 2006) i686-pc-linux-gnu redhat (Stentz)

Daemon started 26-Mar-06 11:06, 0 Jobs run since started.

Running Jobs:

No Jobs running.

====

Jobs waiting to reserve a drive:

====

Terminated Jobs:

JobId Level Files Bytes Status Finished Name

==

59 Full 234 4,417,599 OK 15-Jan-06 11:54 kernsave

====

Device status:

utochanger "DDS-4-changer" with devices:

"DDS-4" (/dev/nst0)

Device "DDS-4" (/dev/nst0) is mounted with Volume="TestVolume002"

Pool="*unknown*"

Slot 2 is loaded in drive 0.

Total Bytes Read=0 Blocks Read=0 Bytes/block=0

Positioned at File=0 Block=0

Device "Dummy" is not open or does not exist.

No DEVICE structure.

Device "DVD-Writer" (/dev/hdc) is not open.

Device "File" (/tmp) is not open.

====

In Use Volume status:

====

Now, what this tells me is that no jobs are running and that none of
the devices are in use. Now, if I unmount the autochanger, which
will not be used in this example, and then start a Job that uses the

19.5. ALPHABETIC LIST OF CONSOLE COMMANDS 257

File device, the job will block. When I re-issue the status storage
command, I get for the Device status:

status storage=File

...

Device status:

Autochanger "DDS-4-changer" with devices:

"DDS-4" (/dev/nst0)

Device "DDS-4" (/dev/nst0) is not open.

Device is BLOCKED. User unmounted.

Drive 0 is not loaded.

Device "Dummy" is not open or does not exist.

No DEVICE structure.

Device "DVD-Writer" (/dev/hdc) is not open.

Device "File" (/tmp) is not open.

Device is BLOCKED waiting for media.

====

...

Now, here it should be clear that if a job were running that wanted to
use the Autochanger (with two devices), it would block because the
user unmounted the device. The real problem for the Job I started
using the ”File” device is that the device is blocked waiting for media
– that is Bacula needs you to label a Volume.

unmount This command causes the indicated Bacula Storage daemon to
unmount the specified device. The forms of the command are the same
as the mount command:

unmount storage=<storage-name> [drive=\lt{}num\gt{}]

unmount [jobid=<id> | job=<job-name>]

Once you unmount a storage device, Bacula will no longer be able to
use it until you issue a mount command for that device. If Bacula
needs to access that device, it will block and issue mount requests
periodically to the operator.

If the device you are unmounting is an autochanger, it will unload the
drive you have specified on the command line. If no drive is specified,
it will assume drive 1.

update This command will update the catalog for either a specific Pool
record, a Volume record, or the Slots in an autochanger with barcode
capability. In the case of updating a Pool record, the new information
will be automatically taken from the corresponding Director’s con-
figuration resource record. It can be used to increase the maximum
number of volumes permitted or to set a maximum number of volumes.
The following main keywords may be specified:

258 CHAPTER 19. BACULA CONSOLE

media, volume, pool, slots

In the case of updating a Volume, you will be prompted for which
value you wish to change. The following Volume parameters may be
changed:

Volume Status

Volume Retention Period

Volume Use Duration

Maximum Volume Jobs

Maximum Volume Files

Maximum Volume Bytes

Recycle Flag

Recycle Pool

Slot

InChanger Flag

Pool

Volume Files

Volume from Pool

All Volumes from Pool

For slots update slots, Bacula will obtain a list of slots and their
barcodes from the Storage daemon, and for each barcode found, it will
automatically update the slot in the catalog Media record to corre-
spond to the new value. This is very useful if you have moved cassettes
in the magazine, or if you have removed the magazine and inserted a
different one. As the slot of each Volume is updated, the InChanger
flag for that Volume will also be set, and any other Volumes in the
Pool that were last mounted on the same Storage device will have
their InChanger flag turned off. This permits Bacula to know what
magazine (tape holder) is currently in the autochanger.

If you do not have barcodes, you can accomplish the same thing in
version 1.33 and later by using the update slots scan command.
The scan keyword tells Bacula to physically mount each tape and to
read its VolumeName.

For Pool update pool, Bacula will move the Volume record from its
existing pool to the pool specified.

For Volume from Pool and All Volumes from Pool, the following
values are updated from the Pool record: Recycle, RecyclePool, Vol-
Retention, VolUseDuration, MaxVolJobs, MaxVolFiles, and MaxVol-
Bytes. (RecyclePool feature is available with bacula 2.1.4 or higher.)

The full form of the update command with all command line arguments
is:

19.5. ALPHABETIC LIST OF CONSOLE COMMANDS 259

update volume=xxx pool=yyy slots volstatus=xxx VolRetention=ddd

VolUse=ddd MaxVolJobs=nnn MaxVolBytes=nnn Recycle=yes|no

slot=nnn enabled=n recyclepool=zzz

use This command allows you to specify which Catalog database to use.
Normally, you will be using only one database so this will be done
automatically. In the case that you are using more than one database,
you can use this command to switch from one to another.

use <database-name>

var This command takes a string or quoted string and does variable expan-
sion on it the same way variable expansion is done on the LabelFor-
mat string. Thus, for the most part, you can test your LabelFormat
strings. The difference between the var command and the actual La-
belFormat process is that during the var command, no job is running
so ”dummy” values are used in place of Job specific variables. Gener-
ally, however, you will get a good idea of what is going to happen in
the real case.

version The command prints the Director’s version.

quit This command terminates the console program. The console program
sends the quit request to the Director and waits for acknowledgment.
If the Director is busy doing a previous command for you that has
not terminated, it may take some time. You may quit immediately by
issuing the .quit command (i.e. quit preceded by a period).

query This command reads a predefined SQL query from the query file
(the name and location of the query file is defined with the QueryFile
resource record in the Director’s configuration file). You are prompted
to select a query from the file, and possibly enter one or more param-
eters, then the command is submitted to the Catalog database SQL
engine.

The following queries are currently available (version 1.24):

Available queries:

1: List Job totals:

2: List where a file is saved:

3: List where the most recent copies of a file are saved:

4: List total files/bytes by Job:

5: List total files/bytes by Volume:

6: List last 20 Full Backups for a Client:

7: List Volumes used by selected JobId:

8: List Volumes to Restore All Files:

9: List where a File is saved:

Choose a query (1-9):

260 CHAPTER 19. BACULA CONSOLE

exit This command terminates the console program.

wait The wait command causes the Director to pause until there are no
jobs running. This command is useful in a batch situation such as
regression testing where you wish to start a job and wait until that
job completes before continuing. This command now has the following
options:

wait [jobid=nn] [jobuid=unique id] [job=job name]

If specified with a specific JobId, ... the wait command will wait for
that particular job to terminate before continuing.

19.6 Special dot Commands

There is a list of commands that are prefixed with a period (.). These
commands are intended to be used either by batch programs or graphical
user interface front-ends. They are not normally used by interactive users.
Once GUI development begins, this list will be considerably expanded. The
following is the list of dot commands:

.backups job=xxx list backups for specified job

.clients list all client names

.defaults client=xxx fileset=yyy list defaults for specified client

.die cause the Director to segment fault (for debugging)

.dir when in tree mode prints the equivalent to the dir command,

but with fields separated by commas rather than spaces.

.exit quit

.filesets list all fileset names

.help help command output

.jobs list all job names

.levels list all levels

.messages get quick messages

.msgs return any queued messages

.pools list all pool names

.quit quit

.status get status output

.storage return storage resource names

.types list job types

19.7 Special At (@) Commands

Normally, all commands entered to the Console program are immediately
forwarded to the Director, which may be on another machine, to be executed.

19.8. RUNNING THE CONSOLE FROM A SHELL SCRIPT 261

However, there is a small list of at commands, all beginning with an at
character (@), that will not be sent to the Director, but rather interpreted
by the Console program directly. Note, these commands are implemented
only in the tty console program and not in the GNOME Console. These
commands are:

@input <filename> Read and execute the commands contained in the
file specified.

@output <filename> w/a Send all following output to the filename
specified either overwriting the file (w) or appending to the file (a). To
redirect the output to the terminal, simply enter @output without a
filename specification. WARNING: be careful not to overwrite a valid
file. A typical example during a regression test might be:

@output /dev/null

commands ...

@output

@tee <filename> w/a Send all subsequent output to both the specified
file and the terminal. It is turned off by specifying @tee or @output
without a filename.

@sleep <seconds> Sleep the specified number of seconds.

@time Print the current time and date.

@version Print the console’s version.

@quit quit

@exit quit

@# anything Comment

19.8 Running the Console from a Shell Script

You can automate many Console tasks by running the console program from
a shell script. For example, if you have created a file containing the following
commands:

262 CHAPTER 19. BACULA CONSOLE

./bconsole -c ./bconsole.conf <<END_OF_DATA

unmount storage=DDS-4

quit

END_OF_DATA

when that file is executed, it will unmount the current DDS-4 storage de-
vice. You might want to run this command during a Job by using the
RunBeforeJob or RunAfterJob records.

It is also possible to run the Console program from file input where the file
contains the commands as follows:

./bconsole -c ./bconsole.conf <filename

where the file named filename contains any set of console commands.

As a real example, the following script is part of the Bacula regression tests.
It labels a volume (a disk volume), runs a backup, then does a restore of the
files saved.

bin/bconsole -c bin/bconsole.conf <<END_OF_DATA

@output /dev/null

messages

@output /tmp/log1.out

label volume=TestVolume001

run job=Client1 yes

wait

messages

@#

@# now do a restore

@#

@output /tmp/log2.out

restore current all

yes

wait

messages

@output

quit

END_OF_DATA

The output from the backup is directed to /tmp/log1.out and the output
from the restore is directed to /tmp/log2.out. To ensure that the backup
and restore ran correctly, the output files are checked with:

grep "^Termination: *Backup OK" /tmp/log1.out

backupstat=$?

grep "^Termination: *Restore OK" /tmp/log2.out

restorestat=$?

19.9. ADDING VOLUMES TO A POOL 263

19.9 Adding Volumes to a Pool

If you have used the label command to label a Volume, it will be automat-
ically added to the Pool, and you will not need to add any media to the
pool.

Alternatively, you may choose to add a number of Volumes to the pool
without labeling them. At a later time when the Volume is requested by
Bacula you will need to label it.

Before adding a volume, you must know the following information:

1. The name of the Pool (normally ”Default”)

2. The Media Type as specified in the Storage Resource in the Director’s
configuration file (e.g. ”DLT8000”)

3. The number and names of the Volumes you wish to create.

For example, to add media to a Pool, you would issue the following com-
mands to the console program:

*add

Enter name of Pool to add Volumes to: Default

Enter the Media Type: DLT8000

Enter number of Media volumes to create. Max=1000: 10

Enter base volume name: Save

Enter the starting number: 1

10 Volumes created in pool Default

*

To see what you have added, enter:

*list media pool=Default

+-------+----------+---------+---------+-------+------------------+

| MedId | VolumeNa | MediaTyp| VolStat | Bytes | LastWritten |

+-------+----------+---------+---------+-------+------------------+

| 11 | Save0001 | DLT8000 | Append | 0 | 0000-00-00 00:00 |

| 12 | Save0002 | DLT8000 | Append | 0 | 0000-00-00 00:00 |

| 13 | Save0003 | DLT8000 | Append | 0 | 0000-00-00 00:00 |

| 14 | Save0004 | DLT8000 | Append | 0 | 0000-00-00 00:00 |

| 15 | Save0005 | DLT8000 | Append | 0 | 0000-00-00 00:00 |

| 16 | Save0006 | DLT8000 | Append | 0 | 0000-00-00 00:00 |

| 17 | Save0007 | DLT8000 | Append | 0 | 0000-00-00 00:00 |

| 18 | Save0008 | DLT8000 | Append | 0 | 0000-00-00 00:00 |

| 19 | Save0009 | DLT8000 | Append | 0 | 0000-00-00 00:00 |

264 CHAPTER 19. BACULA CONSOLE

| 20 | Save0010 | DLT8000 | Append | 0 | 0000-00-00 00:00 |

+-------+----------+---------+---------+-------+------------------+

*

Notice that the console program automatically appended a number to the
base Volume name that you specify (Save in this case). If you don’t want it
to append a number, you can simply answer 0 (zero) to the question ”Enter
number of Media volumes to create. Max=1000:”, and in this case, it will
create a single Volume with the exact name you specify.

19.10. GENERAL 265

The Bacula Console Restore Command

19.10 General

Below, we will discuss restoring files with the Console restore command,
which is the recommended way of doing it. However, there is a standalone
program named bextract, which also permits restoring files. For more
information on this program, please see the Bacula Utility Programs chapter
of this manual. You will also want to look at the bls program in the same
chapter, which allows you to list the contents of your Volumes. Finally, if
you have an old Volume that is no longer in the catalog, you can restore the
catalog entries using the program named bscan, documented in the same
Bacula Utility Programs chapter.

In general, to restore a file or a set of files, you must run a restore job.
That is a job with Type = Restore. As a consequence, you will need a
predefined restore job in your bacula-dir.conf (Director’s config) file. The
exact parameters (Client, FileSet, ...) that you define are not important as
you can either modify them manually before running the job or if you use
the restore command, explained below, Bacula will automatically set them
for you. In fact, you can no longer simply run a restore job. You must use
the restore command.

Since Bacula is a network backup program, you must be aware that when
you restore files, it is up to you to ensure that you or Bacula have selected
the correct Client and the correct hard disk location for restoring those files.
Bacula will quite willingly backup client A, and restore it by sending the
files to a different directory on client B. Normally, you will want to avoid
this, but assuming the operating systems are not too different in their file
structures, this should work perfectly well, if so desired. By default, Bacula
will restore data to the same Client that was backed up, and those data will
be restored not to the original places but to /tmp/bacula-restores. You
may modify any of these defaults when the restore command prompts you
to run the job by selecting the mod option.

19.11 The Restore Command

Since Bacula maintains a catalog of your files and on which Volumes (disk or
tape), they are stored, it can do most of the bookkeeping work, allowing you
simply to specify what kind of restore you want (current, before a particular
date), and what files to restore. Bacula will then do the rest.

266 CHAPTER 19. BACULA CONSOLE

This is accomplished using the restore command in the Console. First you
select the kind of restore you want, then the JobIds are selected, the File
records for those Jobs are placed in an internal Bacula directory tree, and
the restore enters a file selection mode that allows you to interactively walk
up and down the file tree selecting individual files to be restored. This mode
is somewhat similar to the standard Unix restore program’s interactive file
selection mode.

If a Job’s file records have been pruned from the catalog, the restore com-
mand will be unable to find any files to restore. See below for more details
on this.

Within the Console program, after entering the restore command, you are
presented with the following selection prompt:

First you select one or more JobIds that contain files

to be restored. You will be presented several methods

of specifying the JobIds. Then you will be allowed to

select which files from those JobIds are to be restored.

To select the JobIds, you have the following choices:

1: List last 20 Jobs run

2: List Jobs where a given File is saved

3: Enter list of comma separated JobIds to select

4: Enter SQL list command

5: Select the most recent backup for a client

6: Select backup for a client before a specified time

7: Enter a list of files to restore

8: Enter a list of files to restore before a specified time

9: Find the JobIds of the most recent backup for a client

10: Find the JobIds for a backup for a client before a specified time

11: Enter a list of directories to restore for found JobIds

12: Cancel

Select item: (1-12):

There are a lot of options, and as a point of reference, most people will want
to slect item 5 (the most recent backup for a client). The details of the
above options are:

• Item 1 will list the last 20 jobs run. If you find the Job you want, you
can then select item 3 and enter its JobId(s).

• Item 2 will list all the Jobs where a specified file is saved. If you find
the Job you want, you can then select item 3 and enter the JobId.

• Item 3 allows you the enter a list of comma separated JobIds whose
files will be put into the directory tree. You may then select which files
from those JobIds to restore. Normally, you would use this option if

19.11. THE RESTORE COMMAND 267

you have a particular version of a file that you want to restore and you
know its JobId. The most common options (5 and 6) will not select
a job that did not terminate normally, so if you know a file is backed
up by a Job that failed (possibly because of a system crash), you can
access it through this option by specifying the JobId.

• Item 4 allows you to enter any arbitrary SQL command. This is prob-
ably the most primitive way of finding the desired JobIds, but at the
same time, the most flexible. Once you have found the JobId(s), you
can select item 3 and enter them.

• Item 5 will automatically select the most recent Full backup and all
subsequent incremental and differential backups for a specified Client.
These are the Jobs and Files which, if reloaded, will restore your sys-
tem to the most current saved state. It automatically enters the JobIds
found into the directory tree in an optimal way such that only the most
recent copy of any particular file found in the set of Jobs will be re-
stored. This is probably the most convenient of all the above options
to use if you wish to restore a selected Client to its most recent state.

There are two important things to note. First, this automatic selection
will never select a job that failed (terminated with an error status). If
you have such a job and want to recover one or more files from it, you
will need to explicitly enter the JobId in item 3, then choose the files
to restore.

If some of the Jobs that are needed to do the restore have had their
File records pruned, the restore will be incomplete. Bacula currently
does not correctly detect this condition. You can however, check for
this by looking carefully at the list of Jobs that Bacula selects and
prints. If you find Jobs with the JobFiles column set to zero, when
files should have been backed up, then you should expect problems.

If all the File records have been pruned, Bacula will realize that there
are no file records in any of the JobIds chosen and will inform you. It
will then propose doing a full restore (non-selective) of those JobIds.
This is possible because Bacula still knows where the beginning of the
Job data is on the Volumes, even if it does not know where particular
files are located or what their names are.

• Item 6 allows you to specify a date and time, after which Bacula will
automatically select the most recent Full backup and all subsequent
incremental and differential backups that started before the specified
date and time.

• Item 7 allows you to specify one or more filenames (complete path
required) to be restored. Each filename is entered one at a time or if

268 CHAPTER 19. BACULA CONSOLE

you prefix a filename with the less-than symbol (<) Bacula will read
that file and assume it is a list of filenames to be restored. If you
prefix the filename with a question mark (?), then the filename will be
interpreted as an SQL table name, and Bacula will include the rows of
that table in the list to be restored. The table must contain the JobId
in the first column and the FileIndex in the second column. This table
feature is intended for external programs that want to build their own
list of files to be restored. The filename entry mode is terminated by
entering a blank line.

• Item 8 allows you to specify a date and time before entering the file-
names. See Item 7 above for more details.

• Item 9 allows you find the JobIds of the most recent backup for a client.
This is much like option 5 (it uses the same code), but those JobIds
are retained internally as if you had entered them manually. You may
then select item 11 (see below) to restore one or more directories.

• Item 10 is the same as item 9, except that it allows you to enter a before
date (as with item 6). These JobIds will then be retained internally.

• Item 11 allows you to enter a list of JobIds from which you can select
directories to be restored. The list of JobIds can have been previously
created by using either item 9 or 10 on the menu. You may then
enter a full path to a directory name or a filename preceded by a
less than sign (<). The filename should contain a list of directories
to be restored. All files in those directories will be restored, but if
the directory contains subdirectories, nothing will be restored in the
subdirectory unless you explicitly enter its name.

• Item 12 allows you to cancel the restore command.

As an example, suppose that we select item 5 (restore to most recent state).
If you have not specified a client=xxx on the command line, it it will then
ask for the desired Client, which on my system, will print all the Clients
found in the database as follows:

Defined clients:

1: Rufus

2: Matou

3: Polymatou

4: Minimatou

5: Minou

6: MatouVerify

7: PmatouVerify

8: RufusVerify

19.11. THE RESTORE COMMAND 269

9: Watchdog

Select Client (File daemon) resource (1-9):

You will probably have far fewer Clients than this example, and if you
have only one Client, it will be automatically selected. In this case, I enter
Rufus to select the Client. Then Bacula needs to know what FileSet is to
be restored, so it prompts with:

The defined FileSet resources are:

1: Full Set

2: Other Files

Select FileSet resource (1-2):

If you have only one FileSet defined for the Client, it will be selected au-
tomatically. I choose item 1, which is my full backup. Normally, you will
only have a single FileSet for each Job, and if your machines are similar (all
Linux) you may only have one FileSet for all your Clients.

At this point, Bacula has all the information it needs to find the most
recent set of backups. It will then query the database, which may take a bit
of time, and it will come up with something like the following. Note, some
of the columns are truncated here for presentation:

+-------+------+----------+-------------+-------------+------+-------+----------

--+

| JobId | Levl | JobFiles | StartTime | VolumeName | File | SesId |

VolSesTime |

+-------+------+----------+-------------+-------------+------+-------+----------

--+

| 1,792 | F | 128,374 | 08-03 01:58 | DLT-19Jul02 | 67 | 18 |

1028042998 |

| 1,792 | F | 128,374 | 08-03 01:58 | DLT-04Aug02 | 0 | 18 |

1028042998 |

| 1,797 | I | 254 | 08-04 13:53 | DLT-04Aug02 | 5 | 23 |

1028042998 |

| 1,798 | I | 15 | 08-05 01:05 | DLT-04Aug02 | 6 | 24 |

1028042998 |

+-------+------+----------+-------------+-------------+------+-------+----------

--+

You have selected the following JobId: 1792,1792,1797

Building directory tree for JobId 1792 ...

Building directory tree for JobId 1797 ...

Building directory tree for JobId 1798 ...

cwd is: /

$

Depending on the number of JobFiles for each JobId, the Building di-
rectory tree ...” can take a bit of time. If you notice ath all the JobFiles

270 CHAPTER 19. BACULA CONSOLE

are zero, your Files have probably been pruned and you will not be able to
select any individual files – it will be restore everything or nothing.

In our example, Bacula found four Jobs that comprise the most recent
backup of the specified Client and FileSet. Two of the Jobs have the same
JobId because that Job wrote on two different Volumes. The third Job was
an incremental backup to the previous Full backup, and it only saved 254
Files compared to 128,374 for the Full backup. The fourth Job was also an
incremental backup that saved 15 files.

Next Bacula entered those Jobs into the directory tree, with no files marked
to be restored as a default, tells you how many files are in the tree, and tells
you that the current working directory (cwd) is /. Finally, Bacula prompts
with the dollar sign ($) to indicate that you may enter commands to move
around the directory tree and to select files.

If you want all the files to automatically be marked when the directory tree is
built, you could have entered the command restore all, or at the $ prompt,
you can simply enter mark *.

Instead of choosing item 5 on the first menu (Select the most recent backup
for a client), if we had chosen item 3 (Enter list of JobIds to select) and we
had entered the JobIds 1792,1797,1798 we would have arrived at the same
point.

One point to note, if you are manually entering JobIds, is that you must
enter them in the order they were run (generally in increasing JobId order).
If you enter them out of order and the same file was saved in two or more of
the Jobs, you may end up with an old version of that file (i.e. not the most
recent).

Directly entering the JobIds can also permit you to recover data from a Job
that wrote files to tape but that terminated with an error status.

While in file selection mode, you can enter help or a question mark (?) to
produce a summary of the available commands:

Command Description

======= ===========

cd change current directory

count count marked files in and below the cd

dir long list current directory, wildcards allowed

done leave file selection mode

estimate estimate restore size

exit same as done command

find find files, wildcards allowed

help print help

19.11. THE RESTORE COMMAND 271

ls list current directory, wildcards allowed

lsmark list the marked files in and below the cd

mark mark dir/file to be restored recursively in dirs

markdir mark directory name to be restored (no files)

pwd print current working directory

unmark unmark dir/file to be restored recursively in dir

unmarkdir unmark directory name only no recursion

quit quit and do not do restore

? print help

As a default no files have been selected for restore (unless you added all
to the command line. If you want to restore everything, at this point, you
should enter mark *, and then done and Bacula will write the bootstrap
records to a file and request your approval to start a restore job.

If you do not enter the above mentioned mark * command, you will start
with an empty slate. Now you can simply start looking at the tree and
mark particular files or directories you want restored. It is easy to make a
mistake in specifying a file to mark or unmark, and Bacula’s error handling
is not perfect, so please check your work by using the ls or dir commands to
see what files are actually selected. Any selected file has its name preceded
by an asterisk.

To check what is marked or not marked, enter the count command, which
displays:

128401 total files. 128401 marked to be restored.

Each of the above commands will be described in more detail in the next
section. We continue with the above example, having accepted to restore
all files as Bacula set by default. On entering the done command, Bacula
prints:

Bootstrap records written to /home/kern/bacula/working/restore.bsr

The job will require the following

Volume(s) Storage(s) SD Device(s)

===

DLT-19Jul02 Tape DLT8000

DLT-04Aug02 Tape DLT8000

128401 files selected to restore.

Run Restore job

JobName: kernsrestore

Bootstrap: /home/kern/bacula/working/restore.bsr

272 CHAPTER 19. BACULA CONSOLE

Where: /tmp/bacula-restores

Replace: always

FileSet: Other Files

Client: Rufus

Storage: Tape

When: 2006-12-11 18:20:33

Catalog: MyCatalog

Priority: 10

OK to run? (yes/mod/no):

Please examine each of the items very carefully to make sure that they are
correct. In particular, look at Where, which tells you where in the directory
structure the files will be restored, and Client, which tells you which client
will receive the files. Note that by default the Client which will receive
the files is the Client that was backed up. These items will not always be
completed with the correct values depending on which of the restore options
you chose. You can change any of these default items by entering mod and
responding to the prompts.

The above assumes that you have defined a Restore Job resource in your
Director’s configuration file. Normally, you will only need one Restore Job
resource definition because by its nature, restoring is a manual operation,
and using the Console interface, you will be able to modify the Restore Job
to do what you want.

An example Restore Job resource definition is given below.

Returning to the above example, you should verify that the Client name is
correct before running the Job. However, you may want to modify some of
the parameters of the restore job. For example, in addition to checking the
Client it is wise to check that the Storage device chosen by Bacula is indeed
correct. Although the FileSet is shown, it will be ignored in restore. The
restore will choose the files to be restored either by reading the Bootstrap
file, or if not specified, it will restore all files associated with the specified
backup JobId (i.e. the JobId of the Job that originally backed up the files).

Finally before running the job, please note that the default location for
restoring files is not their original locations, but rather the directory
/tmp/bacula-restores. You can change this default by modifying your
bacula-dir.conf file, or you can modify it using the mod option. If you
want to restore the files to their original location, you must have Where
set to nothing or to the root, i.e. /.

If you now enter yes, Bacula will run the restore Job. The Storage daemon
will first request Volume DLT-19Jul02 and after the appropriate files have

19.12. SELECTING FILES BY FILENAME 273

been restored from that volume, it will request Volume DLT-04Aug02.

19.12 Selecting Files by Filename

If you have a small number of files to restore, and you know the filenames,
you can either put the list of filenames in a file to be read by Bacula, or you
can enter the names one at a time. The filenames must include the full path
and filename. No wild cards are used.

To enter the files, after the restore, you select item number 7 from the
prompt list:

To select the JobIds, you have the following choices:

1: List last 20 Jobs run

2: List Jobs where a given File is saved

3: Enter list of comma separated JobIds to select

4: Enter SQL list command

5: Select the most recent backup for a client

6: Select backup for a client before a specified time

7: Enter a list of files to restore

8: Enter a list of files to restore before a specified time

9: Find the JobIds of the most recent backup for a client

10: Find the JobIds for a backup for a client before a specified time

11: Enter a list of directories to restore for found JobIds

12: Cancel

Select item: (1-12):

which then prompts you for the client name:

Defined Clients:

1: Timmy

2: Tibs

3: Rufus

Select the Client (1-3): 3

Of course, your client list will be different, and if you have only one client,
it will be automatically selected. And finally, Bacula requests you to enter
a filename:

Enter filename:

At this point, you can enter the full path and filename

274 CHAPTER 19. BACULA CONSOLE

Enter filename: /home/kern/bacula/k/Makefile.in

Enter filename:

as you can see, it took the filename. If Bacula cannot find a copy of the file,
it prints the following:

Enter filename: junk filename

No database record found for: junk filename

Enter filename:

If you want Bacula to read the filenames from a file, you simply precede
the filename with a less-than symbol (<). When you have entered all the
filenames, you enter a blank line, and Bacula will write the bootstrap file,
tells you what tapes will be used, and proposes a Restore job to be run:

Enter filename:

Automatically selected Storage: DDS-4

Bootstrap records written to /home/kern/bacula/working/restore.bsr

The restore job will require the following Volumes:

test1

1 file selected to restore.

Run Restore job

JobName: kernsrestore

Bootstrap: /home/kern/bacula/working/restore.bsr

Where: /tmp/bacula-restores

Replace: always

FileSet: Other Files

Client: Rufus

Storage: DDS-4

When: 2003-09-11 10:20:53

Priority: 10

OK to run? (yes/mod/no):

It is possible to automate the selection by file by putting your list of files in
say /tmp/file-list, then using the following command:

restore client=Rufus file=</tmp/file-list

If in modifying the parameters for the Run Restore job, you find that Bacula
asks you to enter a Job number, this is because you have not yet specified
either a Job number or a Bootstrap file. Simply entering zero will allow you
to continue and to select another option to be modified.

19.13. COMMAND LINE ARGUMENTS 275

19.13 Command Line Arguments

If all the above sounds complicated, you will probably agree that it really
isn’t after trying it a few times. It is possible to do everything that was
shown above, with the exception of selecting the FileSet, by using command
line arguments with a single command by entering:

restore client=Rufus select current all done yes

The client=Rufus specification will automatically select Rufus as the
client, the current tells Bacula that you want to restore the system to the
most current state possible, and the yes suppresses the final yes/mod/no
prompt and simply runs the restore.

The full list of possible command line arguments are:

• all – select all Files to be restored.

• select – use the tree selection method.

• done – do not prompt the user in tree mode.

• current – automatically select the most current set of backups for the
specified client.

• client=xxxx – select the specified client.

• jobid=nnn – specify a JobId or comma separated list of JobIds to be
restored.

• before=YYYY-MM-DD HH:MM:SS – specify a date and time
to which the system should be restored. Only Jobs started before the
specified date/time will be selected, and as is the case for current
Bacula will automatically find the most recent prior Full save and all
Differential and Incremental saves run before the date you specify.
Note, this command is not too user friendly in that you must specify
the date/time exactly as shown.

• file=filename – specify a filename to be restored. You must specify
the full path and filename. Prefixing the entry with a less-than sign
(<) will cause Bacula to assume that the filename is on your system
and contains a list of files to be restored. Bacula will thus read the
list from that file. Multiple file=xxx specifications may be specified
on the command line.

276 CHAPTER 19. BACULA CONSOLE

• jobid=nnn – specify a JobId to be restored.

• pool=pool-name – specify a Pool name to be used for selection of
Volumes when specifying options 5 and 6 (restore current system, and
restore current system before given date). This permits you to have
several Pools, possibly one offsite, and to select the Pool to be used
for restoring.

• yes – automatically run the restore without prompting for modifica-
tions (most useful in batch scripts).

19.14 Restoring Directory Attributes

Depending how you do the restore, you may or may not get the directory
entries back to their original state. Here are a few of the problems you can
encounter, and for same machine restores, how to avoid them.

• You backed up on one machine and are restoring to another that is
either a different OS or doesn’t have the same users/groups defined.
Bacula does the best it can in these situations. Note, Bacula has saved
the user/groups in numeric form, which means on a different machine,
they may map to different user/group names.

• You are restoring into a directory that is already created and has
file creation restrictions. Bacula tries to reset everything but without
walking up the full chain of directories and modifying them all during
the restore, which Bacula does and will not do, getting permissions
back correctly in this situation depends to a large extent on your OS.

• You are doing a recursive restore of a directory tree. In this case Bac-
ula will restore a file before restoring the file’s parent directory entry.
In the process of restoring the file Bacula will create the parent direc-
tory with open permissions and ownership of the file being restored.
Then when Bacula tries to restore the parent directory Bacula sees
that it already exists (Similar to the previous situation). If you had
set the Restore job’s ”Replace” property to ”never” then Bacula will
not change the directory’s permissions and ownerships to match what
it backed up, you should also notice that the actual number of files
restored is less then the expected number. If you had set the Restore
job’s ”Replace” property to ”always” then Bacula will change the Di-
rectory’s ownership and permissions to match what it backed up, also
the actual number of files restored should be equal to the expected
number.

19.15. RESTORING ON WINDOWS 277

• You selected one or more files in a directory, but did not select the
directory entry to be restored. In that case, if the directory is not on
disk Bacula simply creates the directory with some default attributes
which may not be the same as the original. If you do not select a
directory and all its contents to be restored, you can still select items
within the directory to be restored by individually marking those files,
but in that case, you should individually use the ”markdir” command
to select all higher level directory entries (one at a time) to be restored
if you want the directory entries properly restored.

19.15 Restoring on Windows

If you are restoring on WinNT/2K/XP systems, Bacula will restore the files
with the original ownerships and permissions as would be expected. This
is also true if you are restoring those files to an alternate directory (using
the Where option in restore). However, if the alternate directory does not
already exist, the Bacula File daemon (Client) will try to create it. In
some cases, it may not create the directories, and if it does since the File
daemon runs under the SYSTEM account, the directory will be created with
SYSTEM ownership and permissions. In this case, you may have problems
accessing the newly restored files.

To avoid this problem, you should create any alternate directory before
doing the restore. Bacula will not change the ownership and permissions of
the directory if it is already created as long as it is not one of the directories
being restored (i.e. written to tape).

The default restore location is /tmp/bacula-restores/ and if you are
restoring from drive E:, the default will be /tmp/bacula-restores/e/,
so you should ensure that this directory exists before doing the restore, or
use the mod option to select a different where directory that does exist.

Some users have experienced problems restoring files that participate in the
Active Directory. They also report that changing the userid under which
Bacula (bacula-fd.exe) runs, from SYSTEM to a Domain Admin userid,
resolves the problem.

278 CHAPTER 19. BACULA CONSOLE

19.16 Restoring Files Can Be Slow

Restoring files is generally much slower than backing them up for several
reasons. The first is that during a backup the tape is normally already
positioned and Bacula only needs to write. On the other hand, because
restoring files is done so rarely, Bacula keeps only the start file and block
on the tape for the whole job rather than on a file by file basis which would
use quite a lot of space in the catalog.

Bacula will forward space to the correct file mark on the tape for the Job,
then forward space to the correct block, and finally sequentially read each
record until it gets to the correct one(s) for the file or files you want to
restore. Once the desired files are restored, Bacula will stop reading the
tape.

Finally, instead of just reading a file for backup, during the restore, Bacula
must create the file, and the operating system must allocate disk space for
the file as Bacula is restoring it.

For all the above reasons the restore process is generally much slower than
backing up (sometimes it takes three times as long).

19.17 Problems Restoring Files

The most frequent problems users have restoring files are error messages
such as:

04-Jan 00:33 z217-sd: RestoreFiles.2005-01-04_00.31.04 Error:

block.c:868 Volume data error at 20:0! Short block of 512 bytes on

device /dev/tape discarded.

or

04-Jan 00:33 z217-sd: RestoreFiles.2005-01-04_00.31.04 Error:

block.c:264 Volume data error at 20:0! Wanted ID: "BB02", got ".".

Buffer discarded.

Both these kinds of messages indicate that you were probably running your
tape drive in fixed block mode rather than variable block mode. Fixed block
mode will work with any program that reads tapes sequentially such as tar,
but Bacula repositions the tape on a block basis when restoring files because

19.18. RESTORE ERRORS 279

this will speed up the restore by orders of magnitude when only a few files
are being restored. There are several ways that you can attempt to recover
from this unfortunate situation.

Try the following things, each separately, and reset your Device resource to
what it is now after each individual test:

1. Set ”Block Positioning = no” in your Device resource and try the
restore. This is a new directive and untested.

2. Set ”Minimum Block Size = 512” and ”Maximum Block Size = 512”
and try the restore. If you are able to determine the block size your
drive was previously using, you should try that size if 512 does not
work. This is a really horrible solution, and it is not at all recom-
mended to continue backing up your data without correcting this con-
dition. Please see the Tape Testing chapter for more on this.

3. Try editing the restore.bsr file at the Run xxx yes/mod/no prompt be-
fore starting the restore job and remove all the VolBlock statements.
These are what causes Bacula to reposition the tape, and where prob-
lems occur if you have a fixed block size set for your drive. The VolFile
commands also cause repositioning, but this will work regardless of the
block size.

4. Use bextract to extract the files you want – it reads the Volume se-
quentially if you use the include list feature, or if you use a .bsr file,
but remove all the VolBlock statements after the .bsr file is created
(at the Run yes/mod/no) prompt but before you start the restore.

19.18 Restore Errors

There are a number of reasons why there may be restore errors or warning
messages. Some of the more common ones are:

file count mismatch This can occur for the following reasons:

• You requested Bacula not to overwrite existing or newer files.

• A Bacula miscount of files/directories. This is an on-going prob-
lem due to the complications of directories, soft/hard link, and
such. Simply check that all the files you wanted were actually
restored.

280 CHAPTER 19. BACULA CONSOLE

file size error When Bacula restores files, it checks that the size of the
restored file is the same as the file status data it saved when starting
the backup of the file. If the sizes do not agree, Bacula will print an
error message. This size mismatch most often occurs because the file
was being written as Bacula backed up the file. In this case, the size
that Bacula restored will be greater than the status size. This often
happens with log files.

If the restored size is smaller, then you should be concerned about a
possible tape error and check the Bacula output as well as your system
logs.

19.19 Example Restore Job Resource

Job {

Name = "RestoreFiles"

Type = Restore

Client = Any-client

FileSet = "Any-FileSet"

Storage = Any-storage

Where = /tmp/bacula-restores

Messages = Standard

Pool = Default

}

If Where is not specified, the default location for restoring files will be their
original locations.

19.20 File Selection Commands

After you have selected the Jobs to be restored and Bacula has created the
in-memory directory tree, you will enter file selection mode as indicated by
the dollar sign ($) prompt. While in this mode, you may use the commands
listed above. The basic idea is to move up and down the in memory directory
structure with the cd command much as you normally do on the system.
Once you are in a directory, you may select the files that you want restored.
As a default no files are marked to be restored. If you wish to start with
all files, simply enter: cd / and mark *. Otherwise proceed to select the
files you wish to restore by marking them with the mark command. The
available commands are:

cd The cd command changes the current directory to the argument speci-

19.20. FILE SELECTION COMMANDS 281

fied. It operates much like the Unix cd command. Wildcard specifi-
cations are not permitted.

Note, on Windows systems, the various drives (c:, d:, ...) are treated
like a directory within the file tree while in the file selection mode. As
a consequence, you must do a cd c: or possibly in some cases a cd C:
(note upper case) to get down to the first directory.

dir The dir command is similar to the ls command, except that it prints
it in long format (all details). This command can be a bit slower than
the ls command because it must access the catalog database for the
detailed information for each file.

estimate The estimate command prints a summary of the total files in
the tree, how many are marked to be restored, and an estimate of the
number of bytes to be restored. This can be useful if you are short on
disk space on the machine where the files will be restored.

find The find command accepts one or more arguments and displays all
files in the tree that match that argument. The argument may have
wildcards. It is somewhat similar to the Unix command find / -name
arg.

ls The ls command produces a listing of all the files contained in the current
directory much like the Unix ls command. You may specify an argu-
ment containing wildcards, in which case only those files will be listed.
Any file that is marked to be restored will have its name preceded by
an asterisk (*). Directory names will be terminated with a forward
slash (/) to distinguish them from filenames.

lsmark The lsmark command is the same as the ls except that it will print
only those files marked for extraction. The other distinction is that it
will recursively descend into any directory selected.

mark The mark command allows you to mark files to be restored. It takes
a single argument which is the filename or directory name in the cur-
rent directory to be marked for extraction. The argument may be a
wildcard specification, in which case all files that match in the cur-
rent directory are marked to be restored. If the argument matches a
directory rather than a file, then the directory and all the files con-
tained in that directory (recursively) are marked to be restored. Any
marked file will have its name preceded with an asterisk (*) in the
output produced by the ls or dir commands. Note, supplying a full
path on the mark command does not work as expected to select a file
or directory in the current directory. Also, the mark command works
on the current and lower directories but does not touch higher level
directories.

282 CHAPTER 19. BACULA CONSOLE

After executing the mark command, it will print a brief summary:

No files marked.

If no files were marked, or:

nn files marked.

if some files are marked.

unmark The unmark is identical to the mark command, except that it
unmarks the specified file or files so that they will not be restored.
Note: the unmark command works from the current directory, so it
does not unmark any files at a higher level. First do a cd / before the
unmark * command if you want to unmark everything.

pwd The pwd command prints the current working directory. It accepts
no arguments.

count The count command prints the total files in the directory tree and
the number of files marked to be restored.

done This command terminates file selection mode.

exit This command terminates file selection mode (the same as done).

quit This command terminates the file selection and does not run the re-
store job.

help This command prints a summary of the commands available.

? This command is the same as the help command.

19.21 Restoring When Things Go Wrong

This and the following sections will try to present a few of the kinds of prob-
lems that can come up making restoring more difficult. I’ll try to provide a
few ideas how to get out of these problem situations. In addition to what is
presented here, there is more specific information on restoring a Client and
your Server in the Disaster Recovery Using Bacula chapter of this manual.

Problem My database is broken.

19.21. RESTORING WHEN THINGS GO WRONG 283

Solution For SQLite, use the vacuum command to try to fix the database.
For either MySQL or PostgreSQL, see the vendor’s documentation.
They have specific tools that check and repair databases, see the
database repair sections of this manual for links to vendor informa-
tion.

Assuming the above does not resolve the problem, you will need to re-
store or rebuild your catalog. Note, if it is a matter of some inconsisten-
cies in the Bacula tables rather than a broken database, then running
dbcheck might help, but you will need to ensure that your database in-
dexes are properly setup. Please see the Database Performance Issues
sections of this manual for more details.

Problem How do I restore my catalog?

Solution with a Catalog backup If you have backed up your database
nightly (as you should) and you have made a bootstrap file, you can
immediately load back your database (or the ASCII SQL output).
Make a copy of your current database, then re-initialize it, by running
the following scripts:

./drop_bacula_tables

./make_bacula_tables

After re-initializing the database, you should be able to run Bacula.
If you now try to use the restore command, it will not work because
the database will be empty. However, you can manually run a restore
job and specify your bootstrap file. You do so by entering the bf run
command in the console and selecting the restore job. If you are us-
ing the default bacula-dir.conf, this Job will be named RestoreFiles.
Most likely it will prompt you with something such as:

Run Restore job

JobName: RestoreFiles

Bootstrap: /home/kern/bacula/working/restore.bsr

Where: /tmp/bacula-restores

Replace: always

FileSet: Full Set

Client: rufus-fd

Storage: File

When: 2005-07-10 17:33:40

Catalog: MyCatalog

Priority: 10

OK to run? (yes/mod/no):

A number of the items will be different in your case. What you want
to do is: to use the mod option to change the Bootstrap to point to
your saved bootstrap file; and to make sure all the other items such
as Client, Storage, Catalog, and Where are correct. The FileSet is

284 CHAPTER 19. BACULA CONSOLE

not used when you specify a bootstrap file. Once you have set all
the correct values, run the Job and it will restore the backup of your
database, which is most likely an ASCII dump.

You will then need to follow the instructions for your database
type to recreate the database from the ASCII backup file. See the
Catalog Maintenance chapter of this manual for examples of the com-
mand needed to restore a database from an ASCII dump (they are
shown in the Compacting Your XXX Database sections).

Also, please note that after you restore your database from an ASCII
backup, you do NOT want to do a make bacula tables command,
or you will probably erase your newly restored database tables.

Solution with a Job listing If you did save your database but did not
make a bootstrap file, then recovering the database is more difficult.
You will probably need to use bextract to extract the backup copy.
First you should locate the listing of the job report from the last
catalog backup. It has important information that will allow you to
quickly find your database file. For example, in the job report for
the CatalogBackup shown below, the critical items are the Volume
name(s), the Volume Session Id and the Volume Session Time. If you
know those, you can easily restore your Catalog.

22-Apr 10:22 HeadMan: Start Backup JobId 7510,

Job=CatalogBackup.2005-04-22_01.10.0

22-Apr 10:23 HeadMan: Bacula 1.37.14 (21Apr05): 22-Apr-2005 10:23:06

JobId: 7510

Job: CatalogBackup.2005-04-22_01.10.00

Backup Level: Full

Client: Polymatou

FileSet: "CatalogFile" 2003-04-10 01:24:01

Pool: "Default"

Storage: "DLTDrive"

Start time: 22-Apr-2005 10:21:00

End time: 22-Apr-2005 10:23:06

FD Files Written: 1

SD Files Written: 1

FD Bytes Written: 210,739,395

SD Bytes Written: 210,739,521

Rate: 1672.5 KB/s

Software Compression: None

Volume name(s): DLT-22Apr05

Volume Session Id: 11

Volume Session Time: 1114075126

Last Volume Bytes: 1,428,240,465

Non-fatal FD errors: 0

SD Errors: 0

FD termination status: OK

SD termination status: OK

Termination: Backup OK

19.21. RESTORING WHEN THINGS GO WRONG 285

From the above information, you can manually create a bootstrap
file, and then follow the instructions given above for restoring your
database. A reconstructed bootstrap file for the above backup Job
would look like the following:

Volume="DLT-22Apr05"

VolSessionId=11

VolSessionTime=1114075126

FileIndex=1-1

Where we have inserted the Volume name, Volume Session Id, and
Volume Session Time that correspond to the values in the job report.
We’ve also used a FileIndex of one, which will always be the case
providing that there was only one file backed up in the job.

The disadvantage of this bootstrap file compared to what is created
when you ask for one to be written, is that there is no File and Block
specified, so the restore code must search all data in the Volume to
find the requested file. A fully specified bootstrap file would have the
File and Blocks specified as follows:

Volume="DLT-22Apr05"

VolSessionId=11

VolSessionTime=1114075126

VolFile=118-118

VolBlock=0-4053

FileIndex=1-1

Once you have restored the ASCII dump of the database, you will
then to follow the instructions for your database type to recreate the
database from the ASCII backup file. See the Catalog Maintenance
chapter of this manual for examples of the command needed to restore
a database from an ASCII dump (they are shown in the Compacting
Your XXX Database sections).

Also, please note that after you restore your database from an ASCII
backup, you do NOT want to do a make bacula tables command,
or you will probably erase your newly restored database tables.

Solution without a Job Listing If you do not have a job listing, then
it is a bit more difficult. Either you use the bscan program to scan
the contents of your tape into a database, which can be very time
consuming depending on the size of the tape, or you can use the bls
program to list everything on the tape, and reconstruct a bootstrap
file from the bls listing for the file or files you want following the
instructions given above.

There is a specific example of how to use bls below.

286 CHAPTER 19. BACULA CONSOLE

Problem I try to restore the last known good full backup by specifying
item 3 on the restore menu then the JobId to restore. Bacula then
reports:

1 Job 0 Files

and restores nothing.

Solution Most likely the File records were pruned from the database either
due to the File Retention period expiring or by explicitly purging the
Job. By using the ”llist jobid=nn” command, you can obtain all the
important information about the job:

llist jobid=120

JobId: 120

Job: save.2005-12-05_18.27.33

Job.Name: save

PurgedFiles: 0

Type: B

Level: F

Job.ClientId: 1

Client.Name: Rufus

JobStatus: T

SchedTime: 2005-12-05 18:27:32

StartTime: 2005-12-05 18:27:35

EndTime: 2005-12-05 18:27:37

JobTDate: 1133803657

VolSessionId: 1

VolSessionTime: 1133803624

JobFiles: 236

JobErrors: 0

JobMissingFiles: 0

Job.PoolId: 4

Pool.Name: Full

Job.FileSetId: 1

FileSet.FileSet: BackupSet

Then you can find the Volume(s) used by doing:

sql

select VolumeName from JobMedia,Media where JobId=1 and JobMedia.MediaId=Media.MediaId;

Finally, you can create a bootstrap file as described in the previous
problem above using this information.

If you are using Bacula version 1.38.0 or greater, when you select item
3 from the menu and enter the JobId, it will ask you if you would
like to restore all the files in the job, and it will collect the above
information and write the bootstrap file for you.

19.21. RESTORING WHEN THINGS GO WRONG 287

Problem You don’t have a bootstrap file, and you don’t have the Job report
for the backup of your database, but you did backup the database, and
you know the Volume to which it was backed up.

Solution Either bscan the tape, or use bls to indicate where it is on the
tape. For example:

./bls -j -V DLT-22Apr05 /dev/nst0

Might produce the following output:

bls: butil.c:258 Using device: "/dev/nst0" for reading.

21-Jul 18:34 bls: Ready to read from volume "DLT-22Apr05" on device "DLTDrive"

(/dev/nst0).

Volume Record: File:blk=0:0 SessId=11 SessTime=1114075126 JobId=0 DataLen=164

...

Begin Job Session Record: File:blk=118:0 SessId=11 SessTime=1114075126

JobId=7510

Job=CatalogBackup.2005-04-22_01.10.0 Date=22-Apr-2005 10:21:00 Level=F Type=B

End Job Session Record: File:blk=118:4053 SessId=11 SessTime=1114075126

JobId=7510

Date=22-Apr-2005 10:23:06 Level=F Type=B Files=1 Bytes=210,739,395 Errors=0

Status=T

...

21-Jul 18:34 bls: End of Volume at file 201 on device "DLTDrive" (/dev/nst0),

Volume "DLT-22Apr05"

21-Jul 18:34 bls: End of all volumes.

Of course, there will be many more records printed, but we have indi-
cated the essential lines of output. From the information on the Begin
Job and End Job Session Records, you can reconstruct a bootstrap file
such as the one shown above.

Problem How can I find where a file is stored.

Solution Normally, it is not necessary, you just use the restore command
to restore the most recently saved version (menu option 5), or a version
saved before a given date (menu option 8). If you know the JobId of
the job in which it was saved, you can use menu option 3 to enter that
JobId.

If you would like to know the JobId where a file was saved, select
restore menu option 2.

You can also use the query command to find information such as:

*query

Available queries:

1: List up to 20 places where a File is saved regardless of the

directory

2: List where the most recent copies of a file are saved

288 CHAPTER 19. BACULA CONSOLE

3: List last 20 Full Backups for a Client

4: List all backups for a Client after a specified time

5: List all backups for a Client

6: List Volume Attributes for a selected Volume

7: List Volumes used by selected JobId

8: List Volumes to Restore All Files

9: List Pool Attributes for a selected Pool

10: List total files/bytes by Job

11: List total files/bytes by Volume

12: List Files for a selected JobId

13: List Jobs stored on a selected MediaId

14: List Jobs stored for a given Volume name

15: List Volumes Bacula thinks are in changer

16: List Volumes likely to need replacement from age or errors

Choose a query (1-16):

Chapter 20

GUI Programs

20.1 List of GUI Programs

This document briefly describes the GUI programs that work with Bacula.
The GUI programs that are currently available are:

bimagemgr Bimagemgr is a web based interface written in Perl that mon-
itors disk Volumes intended to be written to CDROM.

For more information on bimagemgr, please see below.

wx-console wx-console is a graphical console interface written in wxWid-
gets and available on all client platforms. wx-console allows you to do
anything you can do in the standard tty console and in addition has
a graphic tree based point and click restore feature.

gnome-console The gnome-console is a graphical console interface avail-
able on systems that support Gnome 2.x. Although it runs in its own
graphical window and permits all the standard console commands, it
has almost no additional graphical features implemented.

For more information on gnome-console, please consult the
Console Chapter of this manual.

tray-monitor The tray-monitor is a daemon monitoring program that re-
sides in the system tray on Gnome and KDE systems. It is a monitor
program that will show you the status of any daemon. It is not a
program for interfacing to the console.

For more information, please see Configuring the Monitor Program
chapter this manual.

289

290 CHAPTER 20. GUI PROGRAMS

bweb Bweb is a perl based web program that provides a tool to do basic
operations and get statistics. (it requires Bacula ¿= 1.39) It obtains
its information from your catalog database and the bconsole program.

Some of its major features are the following:

1. Follow, in real time, job progression (with client status and job
log)

2. See Pool/Media occupation

3. Update volume parameters

4. Manage locations (with a workflow to move in/out media)

5. Get statistics about jobs (file number, job size, job duration)

6. Run a new job

7. Manage your autochanger (put cartridge on I/O, empty I/O slots
with free slots, etc.)

8. Works with both PostgreSQL and MySQL

9. Works correctly under Mozilla and Firefox

Please, read the INSTALL file in the bweb source directory for detailed
instructions on getting it to work.

brestore Brestore is a graphical restoration interface available on systems
that support Perl/GTK/Glade. (it requires Bacula ¿= 1.38) It has
the following features:

1. Direct SQL access to the database for good performance

2. Fast Time Navigation (switch almost instantaneously between
the different versions of a directory, by changing the date from a
list)

3. Possibility to choose a selected file, then browse all its available
versions, and directly see if these versions are online in a library
or not

4. Simple restoration by generation of a BSR file

5. Works with both PostgreSQL and MySQL

6. Works with bweb to follow job

Please, read README file in the bweb source directory for detailed
instructions on getting it to work.

bacula-web Bacula-web is a php based web program that provides a sum-
marized output of jobs that have already run. It obtains its informa-
tion from your catalog database. Aside from a nice graphical display,

20.1. LIST OF GUI PROGRAMS 291

it provides summaries of your jobs, as well as graphs of job usage. This
is a fairly high level bacula management tool.

Here are a few points that one user made concerning this tool:

1. It is web-based so can be accessed from anywhere.

2. It is ”read only”. Users can examine the state of the backups but
cannot write to anything and therefore can do no damage.

3. It packs a phenomenal amount of information into a single web-
page - that I credit as being very good design!

The documentation for bacula-web can be found in a separate bacula-
web document that in the bacula-docs release.

292 CHAPTER 20. GUI PROGRAMS

20.2 bimagemgr

bimagemgr is a utility for those who backup to disk volumes in order to
commit them to CDR disk, rather than tapes. It is a web based interface
written in Perl and is used to monitor when a volume file needs to be burned
to disk. It requires:

• A web server running on the bacula server

• A CD recorder installed and configured on the bacula server

• The cdrtools package installed on the bacula server.

• perl, perl-DBI module, and either DBD-MySQL DBD-SQLite or DBD-
PostgreSQL modules

DVD burning is not supported by bimagemgr at this time, but both are
planned for future releases.

20.2.1 bimagemgr installation

Installation from tarball: 1. Examine the Makefile and adjust it to your
configuration if needed. 2. Edit config.pm to fit your configuration. 3. Do
’make install’ as root. 4. Edit httpd.conf and change the Timeout value.
The web server must not time out and close the connection before the burn
process is finished. The exact value needed may vary depending upon your
cd recorder speed and whether you are burning on the bacula server on on
another machine across your network. In my case I set it to 1000 seconds.
Restart httpd. 5. Make sure that cdrecord is setuid root.

Installation from rpm package: 1. Install the rpm package for your platform.
2. Edit /cgi-bin/config.pm to fit your configuration. 3. Edit httpd.conf and
change the Timeout value. The web server must not time out and close the
connection before the burn process is finished. The exact value needed may
vary depending upon your cd recorder speed and whether you are burning
on the bacula server on on another machine across your network. In my
case I set it to 1000 seconds. Restart httpd. 4. Make sure that cdrecord is
setuid root.

For bacula systems less than 1.36: 1. Edit the configuration section of con-
fig.pm to fit your configuration. 2. Run /etc/bacula/create cdimage table.pl
from a console on your bacula server (as root) to add the CDImage table to
your bacula database.

20.2. BIMAGEMGR 293

Accessing the Volume files: The Volume files by default have permissions
640 and can only be read by root. The recommended approach to this is as
follows (and only works if bimagemgr and apache are running on the same
host as bacula.

For bacula-1.34 or 1.36 installed from tarball - 1. Create a new user
group bacula and add the user apache to the group for Red Hat or Man-
drake systems. For SuSE systems add the user wwwrun to the bacula
group. 2. Change ownership of all of your Volume files to root.bacula
3. Edit the /etc/bacula/bacula startup script and set SD USER=root and
SD GROUP=bacula. Restart bacula.

Note: step 3 should also be done in /etc/init.d/bacula-sd but released ver-
sions of this file prior to 1.36 do not support it. In that case it would be
necessary after a reboot of the server to execute ’/etc/bacula/bacula restart’.

For bacula-1.38 installed from tarball - 1. Your configure state-
ment should include: –with-dir-user=bacula –with-dir-group=bacula –
with-sd-user=bacula –with-sd-group=disk –with-fd-user=root –with-fd-
group=bacula 2. Add the user apache to the bacula group for Red Hat or
Mandrake systems. For SuSE systems add the user wwwrun to the bacula
group. 3. Check/change ownership of all of your Volume files to root.bacula

For bacula-1.36 or bacula-1.38 installed from rpm - 1. Add the user apache
to the group bacula for Red Hat or Mandrake systems. For SuSE systems
add the user wwwrun to the bacula group. 2. Check/change ownership of
all of your Volume files to root.bacula

bimagemgr installed from rpm ¿ 1.38.9 will add the web server user to the
bacula group in a post install script. Be sure to edit the configuration
information in config.pm after installation of rpm package.

bimagemgr will now be able to read the Volume files but they are still not
world readable.

If you are running bimagemgr on another host (not recommended) then you
will need to change the permissions on all of your backup volume files to
644 in order to access them via nfs share or other means. This approach
should only be taken if you are sure of the security of your environment as
it exposes the backup Volume files to world read.

294 CHAPTER 20. GUI PROGRAMS

20.2.2 bimagemgr usage

Calling the program in your web browser, e.g.
http://localhost/cgi-bin/bimagemgr.pl will produce a display as
shown below in Figure 1. The program will query the bacula database and
display all volume files with the date last written and the date last burned
to disk. If a volume needs to be burned (last written is newer than last
burn date) a ”Burn” button will be displayed in the rightmost column.

Figure 1

Place a blank CDR disk in your recorder and click the ”Burn” button. This
will cause a pop up window as shown in Figure 2 to display the burn progress.

20.2. BIMAGEMGR 295

Figure 2

When the burn finishes the pop up window will display the results of
cdrecord as shown in Figure 3. Close the pop up window and refresh the
main window. The last burn date will be updated and the ”Burn” button
for that volume will disappear. Should you have a failed burn you can reset
the last burn date of that volume by clicking its ”Reset” link.

296 CHAPTER 20. GUI PROGRAMS

Figure 3

In the bottom row of the main display window are two more buttons la-
beled ”Burn Catalog” and ”Blank CDRW”. ”Burn Catalog” will place a
copy of your bacula catalog on a disk. If you use CDRW disks rather than
CDR then ”Blank CDRW” allows you to erase the disk before re-burning
it. Regularly committing your backup volume files and your catalog to disk
with bimagemgr ensures that you can rebuild easily in the event of some
disaster on the bacula server itself.

Chapter 21

Catalog Maintenance

Without proper setup and maintenance, your Catalog may continue to grow
indefinitely as you run Jobs and backup Files, and/or it may become very
inefficient and slow. How fast the size of your Catalog grows depends on the
number of Jobs you run and how many files they backup. By deleting records
within the database, you can make space available for the new records that
will be added during the next Job. By constantly deleting old expired records
(dates older than the Retention period), your database size will remain
constant.

If you started with the default configuration files, they already contain rea-
sonable defaults for a small number of machines (less than 5), so if you fall
into that case, catalog maintenance will not be urgent if you have a few
hundred megabytes of disk space free. Whatever the case may be, some
knowledge of retention periods will be useful.

21.1 Setting Retention Periods

Bacula uses three Retention periods: the File Retention period, the Job
Retention period, and the Volume Retention period. Of these three,
the File Retention period is by far the most important in determining how
large your database will become.

The File Retention and the Job Retention are specified in each Client
resource as is shown below. The Volume Retention period is specified
in the Pool resource, and the details are given in the next chapter of this
manual.

297

298 CHAPTER 21. CATALOG MAINTENANCE

File Retention = <time-period-specification> The File Retention
record defines the length of time that Bacula will keep File records
in the Catalog database. When this time period expires, and if Au-
toPrune is set to yes, Bacula will prune (remove) File records that
are older than the specified File Retention period. The pruning will
occur at the end of a backup Job for the given Client. Note that the
Client database record contains a copy of the File and Job retention
periods, but Bacula uses the current values found in the Director’s
Client resource to do the pruning.

Since File records in the database account for probably 80 percent
of the size of the database, you should carefully determine exactly
what File Retention period you need. Once the File records have
been removed from the database, you will no longer be able to restore
individual files in a Job. However, with Bacula version 1.37 and later,
as long as the Job record still exists, you will be able to restore all files
in the job.

Retention periods are specified in seconds, but as a convenience, there
are a number of modifiers that permit easy specification in terms of
minutes, hours, days, weeks, months, quarters, or years on the record.
See the Configuration chapter of this manual for additional details of
modifier specification.

The default File retention period is 60 days.

Job Retention = <time-period-specification> The Job Retention
record defines the length of time that Bacula will keep Job records in
the Catalog database. When this time period expires, and if Auto-
Prune is set to yes Bacula will prune (remove) Job records that are
older than the specified Job Retention period. Note, if a Job record
is selected for pruning, all associated File and JobMedia records will
also be pruned regardless of the File Retention period set. As a conse-
quence, you normally will set the File retention period to be less than
the Job retention period.

As mentioned above, once the File records are removed from the
database, you will no longer be able to restore individual files from
the Job. However, as long as the Job record remains in the database,
you will be able to restore all the files backuped for the Job (on version
1.37 and later). As a consequence, it is generally a good idea to retain
the Job records much longer than the File records.

The retention period is specified in seconds, but as a convenience,
there are a number of modifiers that permit easy specification in terms
of minutes, hours, days, weeks, months, quarters, or years. See the
Configuration chapter of this manual for additional details of modifier

specification.

21.2. COMPACTING YOUR MYSQL DATABASE 299

The default Job Retention period is 180 days.

AutoPrune = <yes/no> If AutoPrune is set to yes (default), Bacula
will automatically apply the File retention period and the Job reten-
tion period for the Client at the end of the Job.

If you turn this off by setting it to no, your Catalog will grow each
time you run a Job.

21.2 Compacting Your MySQL Database

Over time, as noted above, your database will tend to grow. I’ve noticed that
even though Bacula regularly prunes files, MySQL does not effectively use
the space, and instead continues growing. To avoid this, from time to time,
you must compact your database. Normally, large commercial database such
as Oracle have commands that will compact a database to reclaim wasted file
space. MySQL has the OPTIMIZE TABLE command that you can use,
and SQLite version 2.8.4 and greater has the VACUUM command. We
leave it to you to explore the utility of the OPTIMIZE TABLE command
in MySQL.

All database programs have some means of writing the database out in
ASCII format and then reloading it. Doing so will re-create the database
from scratch producing a compacted result, so below, we show you how you
can do this for MySQL, PostgreSQL and SQLite.

For a MySQL database, you could write the Bacula database as an ASCII
file (bacula.sql) then reload it by doing the following:

mysqldump -f --opt bacula > bacula.sql

mysql bacula < bacula.sql

rm -f bacula.sql

Depending on the size of your database, this will take more or less time
and a fair amount of disk space. For example, if I cd to the location of the
MySQL Bacula database (typically /opt/mysql/var or something similar)
and enter:

du bacula

I get 620,644 which means there are that many blocks containing 1024
bytes each or approximately 635 MB of data. After doing the mysqldump,

300 CHAPTER 21. CATALOG MAINTENANCE

I had a bacula.sql file that had 174,356 blocks, and after doing the mysql
command to recreate the database, I ended up with a total of 210,464
blocks rather than the original 629,644. In other words, the compressed
version of the database took approximately one third of the space of the
database that had been in use for about a year.

As a consequence, I suggest you monitor the size of your database and from
time to time (once every six months or year), compress it.

21.3 Repairing Your MySQL Database

If you find that you are getting errors writing to your MySQL database, or
Bacula hangs each time it tries to access the database, you should consider
running MySQL’s database check and repair routines. The program you
need to run depends on the type of database indexing you are using. If
you are using the default, you will probably want to use myisamchk. For
more details on how to do this, please consult the MySQL document at:
http://www.mysql.com/doc/en/Repair.html.

If the errors you are getting are simply SQL warnings, then you might try
running dbcheck before (or possibly after) using the MySQL database repair
program. It can clean up many of the orphaned record problems, and certain
other inconsistencies in the Bacula database.

21.4 MySQL Table is Full

If you are running into the error The table ’File’ is full ..., it is probably
because on version 4.x MySQL, the table is limited by default to a maximum
size of 4 GB and you have probably run into the limit. The solution can be
found at: http://dev.mysql.com/doc/refman/5.0/en/full-table.html

You can display the maximum length of your table with:

mysql bacula

SHOW TABLE STATUS FROM bacula like "File";

If the column labeled ”Max data length” is around 4Gb, this is likely to be
the source of your problem, and you can modify it with:

mysql bacula

ALTER TABLE File MAX_ROWS=281474976710656;

http://www.mysql.com/doc/en/Repair.html
http://dev.mysql.com/doc/refman/5.0/en/full-table.html

21.5. MYSQL SERVER HAS GONE AWAY 301

Alternatively you can modify your /etc/my.conf file before creating the Bac-
ula tables, and in the [mysqld] section set:

set-variable = myisam_data_pointer_size=6

The above myisam data pointer size must be made before you create your
Bacula tables or it will have no effect.

The row and pointer size changes should already be the default on MySQL
version 5.x, so making these changes should only be necessary on MySQL
4.x depending on the size of your catalog database.

21.5 MySQL Server Has Gone Away

If you are having problems with the MySQL server disconnecting or with
messages saying that your MySQL server has gone away, then please read
the MySQL documentation, which can be found at:

http://dev.mysql.com/doc/refman/5.0/en/gone-away.html

21.6 Repairing Your PostgreSQL Database

The same considerations apply that are indicated above for MySQL. That is,
consult the PostgreSQL documents for how to repair the database, and also
consider using Bacula’s dbcheck program if the conditions are reasonable for
using (see above).

21.7 Database Performance Issues

There are a considerable number of ways each of the databases can be tuned
to improve the performance. Going from an untuned database to one that
is properly tuned can make a difference of a factor of 100 or more in the
time to insert or search for records.

For each of the databases, you may get significant improvements by adding
additional indexes. The comments in the Bacula make xxx tables give some
indications as to what indexes may be appropriate. Please see below for
specific instructions on checking indexes.

http://dev.mysql.com/doc/refman/5.0/en/gone-away.html

302 CHAPTER 21. CATALOG MAINTENANCE

For MySQL, what is very important is to use the examine the my.cnf
file (usually in /etc/my.cnf). You may obtain significant performances by
switching to the my-large.cnf or my-huge.cnf files that come with the MySQL
source code.

For SQLite3, one significant factor in improving the performance is to ensure
that there is a ”PRAGMA synchronous = NORMAL;” statement. This
reduces the number of times that the database flushes the in memory cache
to disk. There are other settings for this PRAGMA that can give even
further performance improvements at the risk of a database corruption if
your system crashes.

For PostgreSQL, you might want to consider turning fsync off. Of
course doing so can cause corrupted databases in the event of
a machine crash. There are many different ways that you can
tune PostgreSQL, the following document discusses a few of them:
http://www.varlena.com/varlena/GeneralBits/Tidbits/perf.html.

There is also a PostgreSQL FAQ question number 3.3 that may answer some
of your questions about how to improve performance of the PostgreSQL
engine: http://www.postgresql.org/docs/faqs.FAQ.html#3.3.

Also for PostgreSQL, look at what ”effective cache size”. For a 2GB mem-
ory machine, you probably want to set it at 131072, but don’t set it too
high. In addition, for a 2GB system, work mem = 256000 and mainte-
nance work mem = 256000 seem to be reasonable values. Make sure your
checkpoint segments is set to at least 8.

21.8 Performance Issues Indexes

One of the most important considerations for improving performance on the
Bacula database is to ensure that it has all the appropriate indexes. Several
users have reported finding that their database did not have all the indexes
in the default configuration. In addition, you may find that because of your
own usage patterns, you need additional indexes.

The most important indexes for performance are the three indexes on the
File table. The first index is on FileId and is automatically made because
it is the unique key used to access the table. The other two are the JobId
index and the (Filename, PathId) index. If these Indexes are not present,
your performance may suffer a lot.

http://www.varlena.com/varlena/GeneralBits/Tidbits/perf.html
http://www.postgresql.org/docs/faqs.FAQ.html#3.3

21.8. PERFORMANCE ISSUES INDEXES 303

21.8.1 PostgreSQL Indexes

On PostgreSQL, you can check to see if you have the proper indexes using
the following commands:

psql bacula

select * from pg_indexes where tablename=’file’;

If you do not see output that indicates that all three indexes are created,
you can create the two additional indexes using:

psql bacula

CREATE INDEX file_jobid_idx on file (jobid);

CREATE INDEX file_fp_idx on file (filenameid, pathid);

21.8.2 MySQL Indexes

On MySQL, you can check if you have the proper indexes by:

mysql bacula

show index from File;

If the indexes are not present, especially the JobId index, you can create
them with the following commands:

mysql bacula

CREATE INDEX file_jobid_idx on File (JobId);

CREATE INDEX file_jpf_idx on File (Job, FilenameId, PathId);

Though normally not a problem, you should ensure that the indexes defined
for Filename and Path are both set to 255 characters. Some users reported
performance problems when their indexes were set to 50 characters. To
check, do:

mysql bacula

show index from Filename;

show index from Path;

and what is important is that for Filename, you have an index with
Key name ”Name” and Sub part ”255”. For Pth, you should have a

304 CHAPTER 21. CATALOG MAINTENANCE

Key name ”Path” and Sub part ”255”. If one or the other does not exist
or the Sub part is less that 255, you can drop and recreate the appropriate
index with:

mysql bacula

DROP INDEX Path on Path;

CREATE INDEX Path on Path (Path(255);

DROP INDEX Name on Filename;

CREATE INDEX Name on Filename (Name(255));

21.8.3 SQLite Indexes

On SQLite, you can check if you have the proper indexes by:

sqlite <path>bacula.db

select * from sqlite_master where type=’index’ and tbl_name=’File’;

If the indexes are not present, especially the JobId index, you can create
them with the following commands:

mysql bacula

CREATE INDEX file_jobid_idx on File (JobId);

CREATE INDEX file_jfp_idx on File (Job, FilenameId, PathId);

21.9 Compacting Your PostgreSQL Database

Over time, as noted above, your database will tend to grow. I’ve noticed that
even though Bacula regularly prunes files, PostgreSQL has a VACUUM
command that will compact your database for you. Alternatively you may
want to use the vacuumdb command, which can be run from a cron job.

All database programs have some means of writing the database out in
ASCII format and then reloading it. Doing so will re-create the database
from scratch producing a compacted result, so below, we show you how you
can do this for PostgreSQL.

For a PostgreSQL database, you could write the Bacula database as an
ASCII file (bacula.sql) then reload it by doing the following:

21.10. COMPACTING YOUR SQLITE DATABASE 305

pg_dump -c bacula > bacula.sql

cat bacula.sql | psql bacula

rm -f bacula.sql

Depending on the size of your database, this will take more or less time
and a fair amount of disk space. For example, you can cd to the loca-
tion of the Bacula database (typically /usr/local/pgsql/data or possible
/var/lib/pgsql/data) and check the size.

There are certain PostgreSQL users who do not recommend the above pro-
cedure. They have the following to say: PostgreSQL does not need to be
dumped/restored to keep the database efficient. A normal process of vacu-
uming will prevent the database from every getting too large. If you want
to fine-tweak the database storage, commands such as VACUUM FULL,
REINDEX, and CLUSTER exist specifically to keep you from having to do
a dump/restore.

Finally, you might want to look at the Post-
greSQL documentation on this subject at
http://www.postgresql.org/docs/8.1/interactive/maintenance.html.

21.10 Compacting Your SQLite Database

First please read the previous section that explains why it is necessary to
compress a database. SQLite version 2.8.4 and greater have the Vacuum
command for compacting the database.

cd {\bf working-directory}

echo ’vacuum;’ | sqlite bacula.db

As an alternative, you can use the following commands, adapted to your
system:

cd {\bf working-directory}

echo ’.dump’ | sqlite bacula.db > bacula.sql

rm -f bacula.db

sqlite bacula.db < bacula.sql

rm -f bacula.sql

Where working-directory is the directory that you specified in the Di-
rector’s configuration file. Note, in the case of SQLite, it is necessary to
completely delete (rm) the old database before creating a new compressed
version.

http://www.postgresql.org/docs/8.1/interactive/maintenance.html

306 CHAPTER 21. CATALOG MAINTENANCE

21.11 Migrating from SQLite to MySQL

You may begin using Bacula with SQLite then later find that you want
to switch to MySQL for any of a number of reasons: SQLite tends to use
more disk than MySQL; when the database is corrupted it is often more
catastrophic than with MySQL or PostgreSQL. Several users have succeeded
in converting from SQLite to MySQL by exporting the MySQL data and
then processing it with Perl scripts prior to putting it into MySQL. This is,
however, not a simple process.

21.12 Backing Up Your Bacula Database

If ever the machine on which your Bacula database crashes, and you need
to restore from backup tapes, one of your first priorities will probably be
to recover the database. Although Bacula will happily backup your catalog
database if it is specified in the FileSet, this is not a very good way to do
it, because the database will be saved while Bacula is modifying it. Thus
the database may be in an instable state. Worse yet, you will backup the
database before all the Bacula updates have been applied.

To resolve these problems, you need to backup the database after all the
backup jobs have been run. In addition, you will want to make a copy while
Bacula is not modifying it. To do so, you can use two scripts provided in the
release make catalog backup and delete catalog backup. These files
will be automatically generated along with all the other Bacula scripts. The
first script will make an ASCII copy of your Bacula database into bacula.sql
in the working directory you specified in your configuration, and the second
will delete the bacula.sql file.

The basic sequence of events to make this work correctly is as follows:

• Run all your nightly backups

• After running your nightly backups, run a Catalog backup Job

• The Catalog backup job must be scheduled after your last nightly
backup

• You use RunBeforeJob to create the ASCII backup file and
RunAfterJob to clean up

Assuming that you start all your nightly backup jobs at 1:05 am (and that

21.13. BACKING UP THIRD PARTY DATABASES 307

they run one after another), you can do the catalog backup with the following
additional Director configuration statements:

Backup the catalog database (after the nightly save)

Job {

Name = "BackupCatalog"

Type = Backup

Client=rufus-fd

FileSet="Catalog"

Schedule = "WeeklyCycleAfterBackup"

Storage = DLTDrive

Messages = Standard

Pool = Default

RunBeforeJob = "/home/kern/bacula/bin/make_catalog_backup"

RunAfterJob = "/home/kern/bacula/bin/delete_catalog_backup"

Write Bootstrap = "/home/kern/bacula/working/BackupCatalog.bsr"

}

This schedule does the catalog. It starts after the WeeklyCycle

Schedule {

Name = "WeeklyCycleAfterBackup

Run = Level=Full sun-sat at 1:10

}

This is the backup of the catalog

FileSet {

Name = "Catalog"

Include {

Options {

signature=MD5

}

File = \lt{}working_directory\gt{}/bacula.sql

}

}

Be sure to write a bootstrap file as in the above example. However, it is
preferable to write or copy the bootstrap file to another computer. It will
allow you to quickly recover the database backup should that be necessary.
If you do not have a bootstrap file, it is still possible to recover your database
backup, but it will be more work and take longer.

21.13 Backing Up Third Party Databases

If you are running a database in production mode on your machine, Bacula
will happily backup the files, but if the database is in use while Bacula is
reading it, you may back it up in an unstable state.

The best solution is to shutdown your database before backing it up, or use
some tool specific to your database to make a valid live copy perhaps by

308 CHAPTER 21. CATALOG MAINTENANCE

dumping the database in ASCII format. I am not a database expert, so I
cannot provide you advice on how to do this, but if you are unsure about
how to backup your database, you might try visiting the Backup Central
site, which has been renamed Storage Mountain (www.backupcentral.com).
In particular, their Free Backup and Recovery Software page has links to
scripts that show you how to shutdown and backup most major databases.

21.14 Database Size

As mentioned above, if you do not do automatic pruning, your Catalog
will grow each time you run a Job. Normally, you should decide how long
you want File records to be maintained in the Catalog and set the File
Retention period to that time. Then you can either wait and see how big
your Catalog gets or make a calculation assuming approximately 154 bytes
for each File saved and knowing the number of Files that are saved during
each backup and the number of Clients you backup.

For example, suppose you do a backup of two systems, each with 100,000
files. Suppose further that you do a Full backup weekly and an Incremental
every day, and that the Incremental backup typically saves 4,000 files. The
size of your database after a month can roughly be calculated as:

Size = 154 * No. Systems * (100,000 * 4 + 10,000 * 26)

where we have assumed four weeks in a month and 26 incremental backups
per month. This would give the following:

Size = 154 * 2 * (100,000 * 4 + 10,000 * 26)

or

Size = 308 * (400,000 + 260,000)

or

Size = 203,280,000 bytes

So for the above two systems, we should expect to have a database size of
approximately 200 Megabytes. Of course, this will vary according to how
many files are actually backed up.

Below are some statistics for a MySQL database containing Job records for
five Clients beginning September 2001 through May 2002 (8.5 months) and
File records for the last 80 days. (Older File records have been pruned). For
these systems, only the user files and system files that change are backed

http://www.backupcentral.com/toc-free-backup-software.html

21.14. DATABASE SIZE 309

up. The core part of the system is assumed to be easily reloaded from the
Red Hat rpms.

In the list below, the files (corresponding to Bacula Tables) with the exten-
sion .MYD contain the data records whereas files with the extension .MYI
contain indexes.

You will note that the File records (containing the file attributes) make
up the large bulk of the number of records as well as the space used (459
Mega Bytes including the indexes). As a consequence, the most important
Retention period will be the File Retention period. A quick calculation
shows that for each File that is saved, the database grows by approximately
150 bytes.

Size in

Bytes Records File

============ ========= ===========

168 5 Client.MYD

3,072 Client.MYI

344,394,684 3,080,191 File.MYD

115,280,896 File.MYI

2,590,316 106,902 Filename.MYD

3,026,944 Filename.MYI

184 4 FileSet.MYD

2,048 FileSet.MYI

49,062 1,326 JobMedia.MYD

30,720 JobMedia.MYI

141,752 1,378 Job.MYD

13,312 Job.MYI

1,004 11 Media.MYD

3,072 Media.MYI

1,299,512 22,233 Path.MYD

581,632 Path.MYI

36 1 Pool.MYD

3,072 Pool.MYI

5 1 Version.MYD

1,024 Version.MYI

This database has a total size of approximately 450 Megabytes.

If we were using SQLite, the determination of the total database size would
be much easier since it is a single file, but we would have less insight to the
size of the individual tables as we have in this case.

Note, SQLite databases may be as much as 50% larger than MySQL
databases due to the fact that all data is stored as ASCII strings. That
is even binary integers are stored as ASCII strings, and this seems to in-
crease the space needed.

310 CHAPTER 21. CATALOG MAINTENANCE

Chapter 22

Automatic Volume Recycling

By default, once Bacula starts writing a Volume, it can append to the vol-
ume, but it will not overwrite the existing data thus destroying it. However
when Bacula recycles a Volume, the Volume becomes available for being
reused, and Bacula can at some later time overwrite the previous contents
of that Volume. Thus all previous data will be lost. If the Volume is a tape,
the tape will be rewritten from the beginning. If the Volume is a disk file,
the file will be truncated before being rewritten.

You may not want Bacula to automatically recycle (reuse) tapes. This would
require a large number of tapes though, and in such a case, it is possible
to manually recycle tapes. For more on manual recycling, see the section
entitled Manually Recycling Volumes below in this chapter.

Most people prefer to have a Pool of tapes that are used for daily backups
and recycled once a week, another Pool of tapes that are used for Full
backups once a week and recycled monthly, and finally a Pool of tapes that
are used once a month and recycled after a year or two. With a scheme like
this, the number of tapes in your pool or pools remains constant.

By properly defining your Volume Pools with appropriate Retention periods,
Bacula can manage the recycling (such as defined above) automatically.

Automatic recycling of Volumes is controlled by four records in the Pool
resource definition in the Director’s configuration file. These four records
are:

• AutoPrune = yes

• VolumeRetention = <time>

311

312 CHAPTER 22. AUTOMATIC VOLUME RECYCLING

• Recycle = yes

• RecyclePool = <APool> (This require bacula 2.1.4 or greater)

The above three directives are all you need assuming that you fill each of
your Volumes then wait the Volume Retention period before reusing them.
If you want Bacula to stop using a Volume and recycle it before it is full,
you will need to use one or more additional directives such as:

• Use Volume Once = yes

• Volume Use Duration = ttt

• Maximum Volume Jobs = nnn

• Maximum Volume Bytes = mmm

Please see below and the Basic Volume Management chapter of this manual
for more complete examples.

Automatic recycling of Volumes is performed by Bacula only when it wants
a new Volume and no appendable Volumes are available in the Pool. It will
then search the Pool for any Volumes with the Recycle flag set and whose
Volume Status is Full. At that point, the recycling occurs in two steps.
The first is that the Catalog for a Volume must be purged of all Jobs and
Files contained on that Volume, and the second step is the actual recycling
of the Volume. The Volume will be purged if the VolumeRetention period
has expired. When a Volume is marked as Purged, it means that no Cata-
log records reference that Volume, and the Volume can be recycled. Until
recycling actually occurs, the Volume data remains intact. If no Volumes
can be found for recycling for any of the reasons stated above, Bacula will
request operator intervention (i.e. it will ask you to label a new volume).

A key point mentioned above, that can be a source of frustration, is that
Bacula will only recycle purged Volumes if there is no other appendable
Volume available, otherwise, it will always write to an appendable Volume
before recycling even if there are Volume marked as Purged. This preserves
your data as long as possible. So, if you wish to ”force” Bacula to use a
purged Volume, you must first ensure that no other Volume in the Pool
is marked Append. If necessary, you can manually set a volume to Full.
The reason for this is that Bacula wants to preserve the data on your old
tapes (even though purged from the catalog) as long as absolutely possible
before overwriting it. There are also a number of directives such as Volume
Use Duration that will automatically mark a volume as Used and thus
no longer appendable.

22.1. AUTOMATIC PRUNING 313

22.1 Automatic Pruning

As Bacula writes files to tape, it keeps a list of files, jobs, and volumes
in a database called the catalog. Among other things, the database helps
Bacula to decide which files to back up in an incremental or differential
backup, and helps you locate files on past backups when you want to restore
something. However, the catalog will grow larger and larger as time goes
on, and eventually it can become unacceptably large.

Bacula’s process for removing entries from the catalog is called Pruning.
The default is Automatic Pruning, which means that once an entry reaches
a certain age (e.g. 30 days old) it is removed from the catalog. Once a
job has been pruned, you can still restore it from the backup tape, but one
additional step is required: scanning the volume with bscan. The alternative
to Automatic Pruning is Manual Pruning, in which you explicitly tell Bacula
to erase the catalog entries for a volume. You’d usually do this when you
want to reuse a Bacula volume, because there’s no point in keeping a list of
files that USED TO BE on a tape. Or, if the catalog is starting to get too
big, you could prune the oldest jobs to save space. Manual pruning is done
with the prune command in the console. (thanks to Bryce Denney for the
above explanation).

22.2 Pruning Directives

There are three pruning durations. All apply to catalog database records and
not to the actual data in a Volume. The pruning (or retention) durations are
for: Volumes (Media records), Jobs (Job records), and Files (File records).
The durations inter-depend a bit because if Bacula prunes a Volume, it
automatically removes all the Job records, and all the File records. Also
when a Job record is pruned, all the File records for that Job are also
pruned (deleted) from the catalog.

Having the File records in the database means that you can examine all the
files backed up for a particular Job. They take the most space in the catalog
(probably 90-95% of the total). When the File records are pruned, the Job
records can remain, and you can still examine what Jobs ran, but not the
details of the Files backed up. In addition, without the File records, you
cannot use the Console restore command to restore the files.

When a Job record is pruned, the Volume (Media record) for that Job can
still remain in the database, and if you do a ”list volumes”, you will see the
volume information, but the Job records (and its File records) will no longer

314 CHAPTER 22. AUTOMATIC VOLUME RECYCLING

be available.

In each case, pruning removes information about where older files are, but
it also prevents the catalog from growing to be too large. You choose the
retention periods in function of how many files you are backing up and the
time periods you want to keep those records online, and the size of the
database. You can always re-insert the records (with 98% of the original
data) by using ”bscan” to scan in a whole Volume or any part of the volume
that you want.

By setting AutoPrune to yes you will permit Bacula to automatically
prune all Volumes in the Pool when a Job needs another Volume. Volume
pruning means removing records from the catalog. It does not shrink the size
of the Volume or affect the Volume data until the Volume gets overwritten.
When a Job requests another volume and there are no Volumes with Volume
Status Append available, Bacula will begin volume pruning. This means
that all Jobs that are older than the VolumeRetention period will be
pruned from every Volume that has Volume Status Full or Used and has
Recycle set to yes. Pruning consists of deleting the corresponding Job, File,
and JobMedia records from the catalog database. No change to the physical
data on the Volume occurs during the pruning process. When all files are
pruned from a Volume (i.e. no records in the catalog), the Volume will be
marked as Purged implying that no Jobs remain on the volume. The Pool
records that control the pruning are described below.

AutoPrune = <yes—no> If AutoPrune is set to yes (default), Bacula
will automatically apply the Volume retention period when running
a Job and it needs a new Volume but no appendable volumes are
available. At that point, Bacula will prune all Volumes that can be
pruned (i.e. AutoPrune set) in an attempt to find a usable volume.
If during the autoprune, all files are pruned from the Volume, it will
be marked with VolStatus Purged. The default is yes. Note, that
although the File and Job records may be pruned from the catalog,
a Volume will be marked Purged (and hence ready for recycling) if
the Volume status is Append, Full, Used, or Error. If the Volume
has another status, such as Archive, Read-Only, Disabled, Busy, or
Cleaning, the Volume status will not be changed to Purged.

Volume Retention = <time-period-specification> The Volume Re-
tention record defines the length of time that Bacula will guarantee
that the Volume is not reused counting from the time the last job
stored on the Volume terminated. A key point is that this time period
is not even considered as long at the Volume remains appendable. The
Volume Retention period count down begins only when the Append

22.2. PRUNING DIRECTIVES 315

status has been changed to some othe status (Full, Used, Purged, ...).

When this time period expires, and if AutoPrune is set to yes, and
a new Volume is needed, but no appendable Volume is available, Bac-
ula will prune (remove) Job records that are older than the specified
Volume Retention period.

The Volume Retention period takes precedence over any Job Reten-
tion period you have specified in the Client resource. It should also be
noted, that the Volume Retention period is obtained by reading the
Catalog Database Media record rather than the Pool resource record.
This means that if you change the VolumeRetention in the Pool re-
source record, you must ensure that the corresponding change is made
in the catalog by using the update pool command. Doing so will
insure that any new Volumes will be created with the changed Volume
Retention period. Any existing Volumes will have their own copy of
the Volume Retention period that can only be changed on a Volume
by Volume basis using the update volume command.

When all file catalog entries are removed from the volume, its VolSta-
tus is set to Purged. The files remain physically on the Volume until
the volume is overwritten.

Retention periods are specified in seconds, minutes, hours, days,
weeks, months, quarters, or years on the record. See the
Configuration chapter of this manual for additional details of time
specification.

The default is 1 year.

Recycle = <yes—no> This statement tells Bacula whether or not the
particular Volume can be recycled (i.e. rewritten). If Recycle is set
to no (the default), then even if Bacula prunes all the Jobs on the
volume and it is marked Purged, it will not consider the tape for
recycling. If Recycle is set to yes and all Jobs have been pruned, the
volume status will be set to Purged and the volume may then be
reused when another volume is needed. If the volume is reused, it is
relabeled with the same Volume Name, however all previous data will
be lost.

It is also possible to ”force” pruning of all Volumes in the Pool associated
with a Job by adding Prune Files = yes to the Job resource.

316 CHAPTER 22. AUTOMATIC VOLUME RECYCLING

22.3 Recycling Algorithm

After all Volumes of a Pool have been pruned (as mentioned above, this
happens when a Job needs a new Volume and no appendable Volumes are
available), Bacula will look for the oldest Volume that is Purged (all Jobs
and Files expired), and if the Recycle flag is on (Recycle=yes) for that
Volume, Bacula will relabel it and write new data on it.

As mentioned above, there are two key points for getting a Volume to be
recycled. First, the Volume must no longer be marked Append (there are a
number of directives to automatically make this change), and second since
the last write on the Volume, one or more of the Retention periods must have
expired so that there are no more catalog backup job records that reference
that Volume. Once both those conditions are satisfied, the volume can be
marked Purged and hence recycled.

The full algorithm that Bacula uses when it needs a new Volume is:

The algorithm described below assumes that AutoPrune is enabled, that
Recycling is turned on, and that you have defined appropriate Retention
periods, or used the defaults for all these items.

• If the request is for an Autochanger device, look only for Volumes in
the Autochanger (i.e. with InChanger set and that have the correct
Storage device).

• Search the Pool for a Volume with VolStatus=Append (if there is more
than one, the Volume with the oldest date last written is chosen. If two
have the same date then the one with the lowest MediaId is chosen).

• Search the Pool for a Volume with VolStatus=Recycle and the In-
Changer flag is set true (if there is more than one, the Volume with
the oldest date last written is chosen. If two have the same date then
the one with the lowest MediaId is chosen).

• Try recycling any purged Volumes.

• Prune volumes applying Volume retention period (Volumes with Vol-
Status Full, Used, or Append are pruned). Note, even if all the File
and Job records are pruned from a Volume, the Volume will not be
marked Purged until the Volume retention period expires.

• Search the Pool for a Volume with VolStatus=Purged

• If a Pool named ”Scratch” exists, search for a Volume and if found
move it to the current Pool for the Job and use it. Note, when the

22.3. RECYCLING ALGORITHM 317

Scratch Volume is moved into the current Pool, the basic Pool defaults
are applied as if it is a newly labeled Volume (equivalent to an update
volume from pool command).

• If we were looking for Volumes in the Autochanger, go back to step 2
above, but this time, look for any Volume whether or not it is in the
Autochanger.

• Attempt to create a new Volume if automatic labeling enabled If
Python is enabled, a Python NewVolume event is generated before the
Label Format directve is used. If the maximum number of Volumes
specified for the pool is reached, a new Volume will not be created.

• Prune the oldest Volume if RecycleOldestVolume=yes (the Volume
with the oldest LastWritten date and VolStatus equal to Full, Recycle,
Purged, Used, or Append is chosen). This record ensures that all
retention periods are properly respected.

• Purge the oldest Volume if PurgeOldestVolume=yes (the Volume with
the oldest LastWritten date and VolStatus equal to Full, Recycle,
Purged, Used, or Append is chosen). We strongly recommend against
the use of PurgeOldestVolume as it can quite easily lead to loss of
current backup data.

• Give up and ask operator.

The above occurs when Bacula has finished writing a Volume or when no
Volume is present in the drive.

On the other hand, if you have inserted a different Volume after the last
job, and Bacula recognizes the Volume as valid, it will request authorization
from the Director to use this Volume. In this case, if you have set Recycle
Current Volume = yes and the Volume is marked as Used or Full, Bac-
ula will prune the volume and if all jobs were removed during the pruning
(respecting the retention periods), the Volume will be recycled and used.

The recycling algorithm in this case is:

• If the VolStatus is Append or Recycle is set, the volume will be
used.

• If Recycle Current Volume is set and the volume is marked Full or
Used, Bacula will prune the volume (applying the retention period).
If all Jobs are pruned from the volume, it will be recycled.

318 CHAPTER 22. AUTOMATIC VOLUME RECYCLING

This permits users to manually change the Volume every day and load tapes
in an order different from what is in the catalog, and if the volume does not
contain a current copy of your backup data, it will be used.

A few points from Alan Brown to keep in mind:

1. If a pool doesn’t have maximum volumes defined then Bacula will
prefer to demand new volumes over forcibly purging older volumes.

2. If volumes become free through pruning and the Volume retention
period has expired, then they get marked as ”purged” and are im-
mediately available for recycling - these will be used in preference to
creating new volumes.

3. If the Job, File, and Volume retention periods are different, then it’s
common to see a tape with no files or jobs listed in the database, but
which is still not marked as ”purged”.

22.4 Recycle Status

Each Volume inherits the Recycle status (yes or no) from the Pool resource
record when the Media record is created (normally when the Volume is
labeled). This Recycle status is stored in the Media record of the Catalog.
Using the Console program, you may subsequently change the Recycle status
for each Volume. For example in the following output from list volumes:

+----------+-------+--------+---------+------------+--------+-----+

| VolumeNa | Media | VolSta | VolByte | LastWritte | VolRet | Rec |

+----------+-------+--------+---------+------------+--------+-----+

| File0001 | File | Full | 4190055 | 2002-05-25 | 14400 | 1 |

| File0002 | File | Full | 1896460 | 2002-05-26 | 14400 | 1 |

| File0003 | File | Full | 1896460 | 2002-05-26 | 14400 | 1 |

| File0004 | File | Full | 1896460 | 2002-05-26 | 14400 | 1 |

| File0005 | File | Full | 1896460 | 2002-05-26 | 14400 | 1 |

| File0006 | File | Full | 1896460 | 2002-05-26 | 14400 | 1 |

| File0007 | File | Purged | 1896466 | 2002-05-26 | 14400 | 1 |

+----------+-------+--------+---------+------------+--------+-----+

all the volumes are marked as recyclable, and the last Volume, File0007
has been purged, so it may be immediately recycled. The other volumes
are all marked recyclable and when their Volume Retention period (14400
seconds or four hours) expires, they will be eligible for pruning, and possibly
recycling. Even though Volume File0007 has been purged, all the data on

22.4. RECYCLE STATUS 319

the Volume is still recoverable. A purged Volume simply means that there
are no entries in the Catalog. Even if the Volume Status is changed to
Recycle, the data on the Volume will be recoverable. The data is lost only
when the Volume is re-labeled and re-written.

To modify Volume File0001 so that it cannot be recycled, you use the
update volume pool=File command in the console program, or simply
update and Bacula will prompt you for the information.

+----------+------+-------+---------+-------------+-------+-----+

| VolumeNa | Media| VolSta| VolByte | LastWritten | VolRet| Rec |

+----------+------+-------+---------+-------------+-------+-----+

| File0001 | File | Full | 4190055 | 2002-05-25 | 14400 | 0 |

| File0002 | File | Full | 1897236 | 2002-05-26 | 14400 | 1 |

| File0003 | File | Full | 1896460 | 2002-05-26 | 14400 | 1 |

| File0004 | File | Full | 1896460 | 2002-05-26 | 14400 | 1 |

| File0005 | File | Full | 1896460 | 2002-05-26 | 14400 | 1 |

| File0006 | File | Full | 1896460 | 2002-05-26 | 14400 | 1 |

| File0007 | File | Purged| 1896466 | 2002-05-26 | 14400 | 1 |

+----------+------+-------+---------+-------------+-------+-----+

In this case, File0001 will never be automatically recycled. The same effect
can be achieved by setting the Volume Status to Read-Only.

As you have noted, the Volume Status (VolStatus) column in the catalog
database contains the current status of the Volume, which is normally main-
tained automatically by Bacula. To give you an idea of some of the values
it can take during the life cycle of a Volume, here is a picture created by
Arno Lehmann:

A typical volume life cycle is like this:

because job count or size limit exceeded

Append --> Used

^ |

| First Job writes to Retention time passed |

| the volume and recycling takes |

| place |

| v

Recycled <-------------------------------------- Purged

Volume is selected for reuse

320 CHAPTER 22. AUTOMATIC VOLUME RECYCLING

22.5 Making Bacula Use a Single Tape

Most people will want Bacula to fill a tape and when it is full, a new tape
will be mounted, and so on. However, as an extreme example, it is possible
for Bacula to write on a single tape, and every night to rewrite it. To get this
to work, you must do two things: first, set the VolumeRetention to less than
your save period (one day), and the second item is to make Bacula mark
the tape as full after using it once. This is done using UseVolumeOnce =
yes. If this latter record is not used and the tape is not full after the first
time it is written, Bacula will simply append to the tape and eventually
request another volume. Using the tape only once, forces the tape to be
marked Full after each use, and the next time Bacula runs, it will recycle
the tape.

An example Pool resource that does this is:

Pool {

Name = DDS-4

Use Volume Once = yes

Pool Type = Backup

AutoPrune = yes

VolumeRetention = 12h # expire after 12 hours

Recycle = yes

}

22.6 Daily, Weekly, Monthly Tape Usage Example

This example is meant to show you how one could define a fixed set of
volumes that Bacula will rotate through on a regular schedule. There are
an infinite number of such schemes, all of which have various advantages
and disadvantages.

We start with the following assumptions:

• A single tape has more than enough capacity to do a full save.

• There are ten tapes that are used on a daily basis for incremental
backups. They are prelabeled Daily1 ... Daily10.

• There are four tapes that are used on a weekly basis for full backups.
They are labeled Week1 ... Week4.

• There are 12 tapes that are used on a monthly basis for full backups.
They are numbered Month1 ... Month12

22.6. DAILY, WEEKLY, MONTHLY TAPE USAGE EXAMPLE 321

• A full backup is done every Saturday evening (tape inserted Friday
evening before leaving work).

• No backups are done over the weekend (this is easy to change).

• The first Friday of each month, a Monthly tape is used for the Full
backup.

• Incremental backups are done Monday - Friday (actually Tue-Fri
mornings).

We start the system by doing a Full save to one of the weekly volumes or
one of the monthly volumes. The next morning, we remove the tape and
insert a Daily tape. Friday evening, we remove the Daily tape and insert the
next tape in the Weekly series. Monday, we remove the Weekly tape and
re-insert the Daily tape. On the first Friday of the next month, we insert the
next Monthly tape in the series rather than a Weekly tape, then continue.
When a Daily tape finally fills up, Bacula will request the next one in the
series, and the next day when you notice the email message, you will mount
it and Bacula will finish the unfinished incremental backup.

What does this give? Well, at any point, you will have the last complete Full
save plus several Incremental saves. For any given file you want to recover
(or your whole system), you will have a copy of that file every day for at
least the last 14 days. For older versions, you will have at least three and
probably four Friday full saves of that file, and going back further, you will
have a copy of that file made on the beginning of the month for at least a
year.

So you have copies of any file (or your whole system) for at least a year,
but as you go back in time, the time between copies increases from daily to
weekly to monthly.

What would the Bacula configuration look like to implement such a scheme?

Schedule {

Name = "NightlySave"

Run = Level=Full Pool=Monthly 1st sat at 03:05

Run = Level=Full Pool=Weekly 2nd-5th sat at 03:05

Run = Level=Incremental Pool=Daily tue-fri at 03:05

}

Job {

Name = "NightlySave"

Type = Backup

Level = Full

Client = LocalMachine

FileSet = "File Set"

322 CHAPTER 22. AUTOMATIC VOLUME RECYCLING

Messages = Standard

Storage = DDS-4

Pool = Daily

Schedule = "NightlySave"

}

Definition of file storage device

Storage {

Name = DDS-4

Address = localhost

SDPort = 9103

Password = XXXXXXXXXXXXX

Device = FileStorage

Media Type = 8mm

}

FileSet {

Name = "File Set"

Include = signature=MD5 {

fffffffffffffffff

}

Exclude = { *.o }

}

Pool {

Name = Daily

Pool Type = Backup

AutoPrune = yes

VolumeRetention = 10d # recycle in 10 days

Maximum Volumes = 10

Recycle = yes

}

Pool {

Name = Weekly

Use Volume Once = yes

Pool Type = Backup

AutoPrune = yes

VolumeRetention = 30d # recycle in 30 days (default)

Recycle = yes

}

Pool {

Name = Monthly

Use Volume Once = yes

Pool Type = Backup

AutoPrune = yes

VolumeRetention = 365d # recycle in 1 year

Recycle = yes

}

22.7 Automatic Pruning and Recycling Example

Perhaps the best way to understand the various resource records that come
into play during automatic pruning and recycling is to run a Job that goes

22.7. AUTOMATIC PRUNING AND RECYCLING EXAMPLE 323

through the whole cycle. If you add the following resources to your Director’s
configuration file:

Schedule {

Name = "30 minute cycle"

Run = Level=Full Pool=File Messages=Standard Storage=File

hourly at 0:05

Run = Level=Full Pool=File Messages=Standard Storage=File

hourly at 0:35

}

Job {

Name = "Filetest"

Type = Backup

Level = Full

Client=XXXXXXXXXX

FileSet="Test Files"

Messages = Standard

Storage = File

Pool = File

Schedule = "30 minute cycle"

}

Definition of file storage device

Storage {

Name = File

Address = XXXXXXXXXXX

SDPort = 9103

Password = XXXXXXXXXXXXX

Device = FileStorage

Media Type = File

}

FileSet {

Name = "Test Files"

Include = signature=MD5 {

fffffffffffffffff

}

Exclude = { *.o }

}

Pool {

Name = File

Use Volume Once = yes

Pool Type = Backup

LabelFormat = "File"

AutoPrune = yes

VolumeRetention = 4h

Maximum Volumes = 12

Recycle = yes

}

Where you will need to replace the ffffffffff’s by the appropriate files to
be saved for your configuration. For the FileSet Include, choose a direc-
tory that has one or two megabytes maximum since there will probably be
approximately eight copies of the directory that Bacula will cycle through.

324 CHAPTER 22. AUTOMATIC VOLUME RECYCLING

In addition, you will need to add the following to your Storage daemon’s
configuration file:

Device {

Name = FileStorage

Media Type = File

Archive Device = /tmp

LabelMedia = yes;

Random Access = Yes;

AutomaticMount = yes;

RemovableMedia = no;

AlwaysOpen = no;

}

With the above resources, Bacula will start a Job every half hour that saves a
copy of the directory you chose to /tmp/File0001 ... /tmp/File0012. After
4 hours, Bacula will start recycling the backup Volumes (/tmp/File0001
...). You should see this happening in the output produced. Bacula will
automatically create the Volumes (Files) the first time it uses them.

To turn it off, either delete all the resources you’ve added, or simply comment
out the Schedule record in the Job resource.

22.8 Manually Recycling Volumes

Although automatic recycling of Volumes is implemented in version 1.20 and
later (see the Automatic Recycling of Volumes chapter of this manual), you
may want to manually force reuse (recycling) of a Volume.

Assuming that you want to keep the Volume name, but you simply want to
write new data on the tape, the steps to take are:

• Use the update volume command in the Console to ensure that the
Recycle field is set to 1

• Use the purge jobs volume command in the Console to mark the
Volume as Purged. Check by using list volumes.

Once the Volume is marked Purged, it will be recycled the next time a
Volume is needed.

If you wish to reuse the tape by giving it a new name, follow the following
steps:

22.8. MANUALLY RECYCLING VOLUMES 325

• Use the purge jobs volume command in the Console to mark the
Volume as Purged. Check by using list volumes.

• In Bacula version 1.30 or greater, use the Console relabel command
to relabel the Volume.

Please note that the relabel command applies only to tape Volumes.

For Bacula versions prior to 1.30 or to manually relabel the Volume, use the
instructions below:

• Use the delete volume command in the Console to delete the Volume
from the Catalog.

• If a different tape is mounted, use the unmount command, remove
the tape, and insert the tape to be renamed.

• Write an EOF mark in the tape using the following commands:

mt -f /dev/nst0 rewind

mt -f /dev/nst0 weof

where you replace /dev/nst0 with the appropriate device name on
your system.

• Use the label command to write a new label to the tape and to enter
it in the catalog.

Please be aware that the delete command can be dangerous. Once it is
done, to recover the File records, you must either restore your database as
it was before the delete command, or use the bscan utility program to scan
the tape and recreate the database entries.

326 CHAPTER 22. AUTOMATIC VOLUME RECYCLING

Chapter 23

Basic Volume Management

This chapter presents most all the features needed to do Volume manage-
ment. Most of the concepts apply equally well to both tape and disk Vol-
umes. However, the chapter was originally written to explain backing up
to disk, so you will see it is slanted in that direction, but all the directives
presented here apply equally well whether your volume is disk or tape.

If you have a lot of hard disk storage or you absolutely must have your
backups run within a small time window, you may want to direct Bacula to
backup to disk Volumes rather than tape Volumes. This chapter is intended
to give you some of the options that are available to you so that you can
manage either disk or tape volumes.

23.1 Key Concepts and Resource Records

Getting Bacula to write to disk rather than tape in the simplest case is
rather easy. In the Storage daemon’s configuration file, you simply define
an Archive Device to be a directory. For example, if you want your disk
backups to go into the directory /home/bacula/backups, you could use
the following:

Device {

Name = FileBackup

Media Type = File

Archive Device = /home/bacula/backups

Random Access = Yes;

AutomaticMount = yes;

RemovableMedia = no;

AlwaysOpen = no;

327

328 CHAPTER 23. BASIC VOLUME MANAGEMENT

}

Assuming you have the appropriate Storage resource in your Director’s
configuration file that references the above Device resource,

Storage {

Name = FileStorage

Address = ...

Password = ...

Device = FileBackup

Media Type = File

}

Bacula will then write the archive to the file
/home/bacula/backups/<volume-name> where <volume-name>
is the volume name of a Volume defined in the Pool. For example, if
you have labeled a Volume named Vol001, Bacula will write to the file
/home/bacula/backups/Vol001. Although you can later move the
archive file to another directory, you should not rename it or it will become
unreadable by Bacula. This is because each archive has the filename as
part of the internal label, and the internal label must agree with the system
filename before Bacula will use it.

Although this is quite simple, there are a number of problems. The first
is that unless you specify otherwise, Bacula will always write to the same
volume until you run out of disk space. This problem is addressed below.

In addition, if you want to use concurrent jobs that write to several different
volumes at the same time, you will need to understand a number of other
details. An example of such a configuration is given at the end of this chapter
under Concurrent Disk Jobs.

23.1.1 Pool Options to Limit the Volume Usage

Some of the options you have, all of which are specified in the Pool record,
are:

• To write each Volume only once (i.e. one Job per Volume or file in
this case), use:

UseVolumeOnce = yes.

• To write nnn Jobs to each Volume, use:

Maximum Volume Jobs = nnn.

23.1. KEY CONCEPTS AND RESOURCE RECORDS 329

• To limit the maximum size of each Volume, use:

Maximum Volume Bytes = mmmm.

Note, if you use disk volumes, with all versions up to and including
1.39.28, you should probably limit the Volume size to some reasonable
value such as say 5GB. This is because during a restore, Bacula is
currently unable to seek to the proper place in a disk volume to restore
a file, which means that it must read all records up to where the restore
begins. If your Volumes are 50GB, reading half or more of the volume
could take quite a bit of time. Also, if you ever have a partial hard
disk failure, you are more likely to be able to recover more data if they
are in smaller Volumes.

• To limit the use time (i.e. write the Volume for a maximum of five
days), use:

Volume Use Duration = ttt.

Note that although you probably would not want to limit the number of
bytes on a tape as you would on a disk Volume, the other options can be
very useful in limiting the time Bacula will use a particular Volume (be it
tape or disk). For example, the above directives can allow you to ensure
that you rotate through a set of daily Volumes if you wish.

As mentioned above, each of those directives is specified in the Pool or
Pools that you use for your Volumes. In the case of Maximum Volume
Job, Maximum Volume Bytes, and Volume Use Duration, you can
actually specify the desired value on a Volume by Volume basis. The value
specified in the Pool record becomes the default when labeling new Volumes.
Once a Volume has been created, it gets its own copy of the Pool defaults,
and subsequently changing the Pool will have no effect on existing Volumes.
You can either manually change the Volume values, or refresh them from the
Pool defaults using the update volume command in the Console. As an
example of the use of one of the above, suppose your Pool resource contains:

Pool {

Name = File

Pool Type = Backup

Volume Use Duration = 23h

}

then if you run a backup once a day (every 24 hours), Bacula will use a
new Volume for each backup, because each Volume it writes can only be
used for 23 hours after the first write. Note, setting the use duration to

330 CHAPTER 23. BASIC VOLUME MANAGEMENT

23 hours is not a very good solution for tapes unless you have someone on-
site during the weekends, because Bacula will want a new Volume and no
one will be present to mount it, so no weekend backups will be done until
Monday morning.

23.1.2 Automatic Volume Labeling

Use of the above records brings up another problem – that of labeling your
Volumes. For automated disk backup, you can either manually label each
of your Volumes, or you can have Bacula automatically label new Volumes
when they are needed. While, the automatic Volume labeling in version
1.30 and prior is a bit simplistic, but it does allow for automation, the
features added in version 1.31 permit automatic creation of a wide variety of
labels including information from environment variables and special Bacula
Counter variables. In version 1.37 and later, it is probably much better to
use Python scripting and the NewVolume event since generating Volume
labels in a Python script is much easier than trying to figure out Counter
variables. See the Python Scripting chapter of this manual for more details.

Please note that automatic Volume labeling can also be used with tapes, but
it is not nearly so practical since the tapes must be pre-mounted. This re-
quires some user interaction. Automatic labeling from templates does NOT
work with autochangers since Bacula will not access unknown slots. There
are several methods of labeling all volumes in an autochanger magazine.
For more information on this, please see the Autochanger chapter of this
manual.

Automatic Volume labeling is enabled by making a change to both the Pool
resource (Director) and to the Device resource (Storage daemon) shown
above. In the case of the Pool resource, you must provide Bacula with a
label format that it will use to create new names. In the simplest form,
the label format is simply the Volume name, to which Bacula will append a
four digit number. This number starts at 0001 and is incremented for each
Volume the pool contains. Thus if you modify your Pool resource to be:

Pool {

Name = File

Pool Type = Backup

Volume Use Duration = 23h

LabelFormat = "Vol"

}

Bacula will create Volume names Vol0001, Vol0002, and so on when new
Volumes are needed. Much more complex and elaborate labels can be cre-

23.1. KEY CONCEPTS AND RESOURCE RECORDS 331

ated using variable expansion defined in the Variable Expansion chapter of
this manual.

The second change that is necessary to make automatic labeling work is to
give the Storage daemon permission to automatically label Volumes. Do so
by adding LabelMedia = yes to the Device resource as follows:

Device {

Name = File

Media Type = File

Archive Device = /home/bacula/backups

Random Access = Yes;

AutomaticMount = yes;

RemovableMedia = no;

AlwaysOpen = no;

LabelMedia = yes

}

You can find more details of the Label Format Pool record in Label Format
description of the Pool resource records.

23.1.3 Restricting the Number of Volumes and Recycling

Automatic labeling discussed above brings up the problem of Volume man-
agement. With the above scheme, a new Volume will be created every day.
If you have not specified Retention periods, your Catalog will continue to
fill keeping track of all the files Bacula has backed up, and this procedure
will create one new archive file (Volume) every day.

The tools Bacula gives you to help automatically manage these problems
are the following:

1. Catalog file record retention periods, the File Retention = ttt record
in the Client resource.

2. Catalog job record retention periods, the Job Retention = ttt record
in the Client resource.

3. The AutoPrune = yes record in the Client resource to permit appli-
cation of the above two retention periods.

4. The Volume Retention = ttt record in the Pool resource.

5. The AutoPrune = yes record in the Pool resource to permit applica-
tion of the Volume retention period.

332 CHAPTER 23. BASIC VOLUME MANAGEMENT

6. The Recycle = yes record in the Pool resource to permit automatic
recycling of Volumes whose Volume retention period has expired.

7. The Recycle Oldest Volume = yes record in the Pool resource tells
Bacula to Prune the oldest volume in the Pool, and if all files were
pruned to recycle this volume and use it.

8. The Recycle Current Volume = yes record in the Pool resource tells
Bacula to Prune the currently mounted volume in the Pool, and if all
files were pruned to recycle this volume and use it.

9. The Purge Oldest Volume = yes record in the Pool resource permits a
forced recycling of the oldest Volume when a new one is needed. N.B.
This record ignores retention periods! We highly recommend
not to use this record, but instead use Recycle Oldest Volume

10. The Maximum Volumes = nnn record in the Pool resource to limit
the number of Volumes that can be created.

The first three records (File Retention, Job Retention, and AutoPrune)
determine the amount of time that Job and File records will remain in your
Catalog, and they are discussed in detail in the Automatic Volume Recycling
chapter of this manual.

Volume Retention, AutoPrune, and Recycle determine how long Bacula will
keep your Volumes before reusing them, and they are also discussed in detail
in the Automatic Volume Recycling chapter of this manual.

The Maximum Volumes record can also be used in conjunction with the
Volume Retention period to limit the total number of archive Volumes (files)
that Bacula will create. By setting an appropriate Volume Retention period,
a Volume will be purged just before it is needed and thus Bacula can cycle
through a fixed set of Volumes. Cycling through a fixed set of Volumes
can also be done by setting Recycle Oldest Volume = yes or Recycle
Current Volume = yes. In this case, when Bacula needs a new Volume,
it will prune the specified volume.

23.2 Concurrent Disk Jobs

Above, we discussed how you could have a single device named FileBackup
that writes to volumes in /home/bacula/backups. You can, in fact, run
multiple concurrent jobs using the Storage definition given with this exam-
ple, and all the jobs will simultaneously write into the Volume that is being
written.

23.3. AN EXAMPLE 333

Now suppose you want to use multiple Pools, which means multiple Volumes,
or suppose you want each client to have its own Volume and perhaps its own
directory such as /home/bacula/client1 and /home/bacula/client2 ...
With the single Storage and Device definition above, neither of these two
is possible. Why? Because Bacula disk storage follows the same rules as
tape devices. Only one Volume can be mounted on any Device at any time.
If you want to simultaneously write multiple Volumes, you will need multi-
ple Device resources in your bacula-sd.conf file, and thus multiple Storage
resources in your bacula-dir.conf.

OK, so now you should understand that you need multiple Device defi-
nitions in the case of different directories or different Pools, but you also
need to know that the catalog data that Bacula keeps contains only the
Media Type and not the specific storage device. This permits a tape
for example to be re-read on any compatible tape drive. The compat-
ibility being determined by the Media Type. The same applies to disk
storage. Since a volume that is written by a Device in say directory
/home/bacula/backups cannot be read by a Device with an Archive De-
vice definition of /home/bacula/client1, you will not be able to restore
all your files if you give both those devices Media Type = File. During
the restore, Bacula will simply choose the first available device, which may
not be the correct one. If this is confusing, just remember that the Direc-
tory has only the Media Type and the Volume name. It does not know the
Archive Device (or the full path) that is specified in the Storage daemon.
Thus you must explicitly tie your Volumes to the correct Device by using
the Media Type.

The example shown below shows a case where there are two clients, each
using its own Pool and storing their Volumes in different directories.

23.3 An Example

The following example is not very practical, but can be used to demonstrate
the proof of concept in a relatively short period of time. The example
consists of a two clients that are backed up to a set of 12 archive files
(Volumes) for each client into different directories on the Storage machine.
Each Volume is used (written) only once, and there are four Full saves done
every hour (so the whole thing cycles around after three hours).

What is key here is that each physical device on the Storage daemon has a
different Media Type. This allows the Director to choose the correct device
for restores ...

334 CHAPTER 23. BASIC VOLUME MANAGEMENT

The Director’s configuration file is as follows:

Director {

Name = my-dir

QueryFile = "~/bacula/bin/query.sql"

PidDirectory = "~/bacula/working"

WorkingDirectory = "~/bacula/working"

Password = dir_password

}

Schedule {

Name = "FourPerHour"

Run = Level=Full hourly at 0:05

Run = Level=Full hourly at 0:20

Run = Level=Full hourly at 0:35

Run = Level=Full hourly at 0:50

}

Job {

Name = "RecycleExample"

Type = Backup

Level = Full

Client = Rufus

FileSet= "Example FileSet"

Messages = Standard

Storage = FileStorage

Pool = Recycle

Schedule = FourPerHour

}

Job {

Name = "RecycleExample2"

Type = Backup

Level = Full

Client = Roxie

FileSet= "Example FileSet"

Messages = Standard

Storage = FileStorage1

Pool = Recycle1

Schedule = FourPerHour

}

FileSet {

Name = "Example FileSet"

Include = compression=GZIP signature=SHA1 {

/home/kern/bacula/bin

}

}

Client {

Name = Rufus

Address = rufus

Catalog = BackupDB

Password = client_password

}

23.3. AN EXAMPLE 335

Client {

Name = Roxie

Address = roxie

Catalog = BackupDB

Password = client1_password

}

Storage {

Name = FileStorage

Address = rufus

Password = local_storage_password

Device = RecycleDir

Media Type = File

}

Storage {

Name = FileStorage1

Address = rufus

Password = local_storage_password

Device = RecycleDir1

Media Type = File1

}

Catalog {

Name = BackupDB

dbname = bacula; user = bacula; password = ""

}

Messages {

Name = Standard

...

}

Pool {

Name = Recycle

Use Volume Once = yes

Pool Type = Backup

LabelFormat = "Recycle-"

AutoPrune = yes

VolumeRetention = 2h

Maximum Volumes = 12

Recycle = yes

}

Pool {

Name = Recycle1

Use Volume Once = yes

Pool Type = Backup

LabelFormat = "Recycle1-"

AutoPrune = yes

VolumeRetention = 2h

Maximum Volumes = 12

Recycle = yes

}

336 CHAPTER 23. BASIC VOLUME MANAGEMENT

and the Storage daemon’s configuration file is:

Storage {

Name = my-sd

WorkingDirectory = "~/bacula/working"

Pid Directory = "~/bacula/working"

MaximumConcurrentJobs = 10

}

Director {

Name = my-dir

Password = local_storage_password

}

Device {

Name = RecycleDir

Media Type = File

Archive Device = /home/bacula/backups

LabelMedia = yes;

Random Access = Yes;

AutomaticMount = yes;

RemovableMedia = no;

AlwaysOpen = no;

}

Device {

Name = RecycleDir1

Media Type = File1

Archive Device = /home/bacula/backups1

LabelMedia = yes;

Random Access = Yes;

AutomaticMount = yes;

RemovableMedia = no;

AlwaysOpen = no;

}

Messages {

Name = Standard

director = my-dir = all

}

With a little bit of work, you can change the above example into a weekly
or monthly cycle (take care about the amount of archive disk space used).

23.4 Backing up to Multiple Disks

Bacula can, of course, use multiple disks, but in general, each disk must be
a separate Device specification in the Storage daemon’s conf file, and you
must then select what clients to backup to each disk. You will also want

23.4. BACKING UP TO MULTIPLE DISKS 337

to give each Device specification a different Media Type so that during a
restore, Bacula will be able to find the appropriate drive.

The situation is a bit more complicated if you want to treat two different
physical disk drives (or partitions) logically as a single drive, which Bacula
does not directly support. However, it is possible to back up your data to
multiple disks as if they were a single drive by linking the Volumes from the
first disk to the second disk.

For example, assume that you have two disks named /disk1 and /disk2.
If you then create a standard Storage daemon Device resource for backing
up to the first disk, it will look like the following:

Device {

Name = client1

Media Type = File

Archive Device = /disk1

LabelMedia = yes;

Random Access = Yes;

AutomaticMount = yes;

RemovableMedia = no;

AlwaysOpen = no;

}

Since there is no way to get the above Device resource to reference both
/disk1 and /disk2 we do it by pre-creating Volumes on /disk2 with the
following:

ln -s /disk2/Disk2-vol001 /disk1/Disk2-vol001

ln -s /disk2/Disk2-vol002 /disk1/Disk2-vol002

ln -s /disk2/Disk2-vol003 /disk1/Disk2-vol003

...

At this point, you can label the Volumes as Volume Disk2-vol001, Disk2-
vol002, ... and Bacula will use them as if they were on /disk1 but actually
write the data to /disk2. The only minor inconvenience with this method is
that you must explicitly name the disks and cannot use automatic labeling
unless you arrange to have the labels exactly match the links you have
created.

An important thing to know is that Bacula treats disks like tape drives as
much as it can. This means that you can only have a single Volume mounted
at one time on a disk as defined in your Device resource in the Storage
daemon’s conf file. You can have multiple concurrent jobs running that all
write to the one Volume that is being used, but if you want to have multiple

338 CHAPTER 23. BASIC VOLUME MANAGEMENT

concurrent jobs that are writing to separate disks drives (or partitions), you
will need to define separate Device resources for each one, exactly as you
would do for two different tape drives. There is one fundamental difference,
however. The Volumes that you create on the two drives cannot be easily
exchanged as they can for a tape drive, because they are physically resident
(already mounted in a sense) on the particular drive. As a consequence, you
will probably want to give them different Media Types so that Bacula can
distinguish what Device resource to use during a restore. An example would
be the following:

Device {

Name = Disk1

Media Type = File1

Archive Device = /disk1

LabelMedia = yes;

Random Access = Yes;

AutomaticMount = yes;

RemovableMedia = no;

AlwaysOpen = no;

}

Device {

Name = Disk2

Media Type = File2

Archive Device = /disk2

LabelMedia = yes;

Random Access = Yes;

AutomaticMount = yes;

RemovableMedia = no;

AlwaysOpen = no;

}

With the above device definitions, you can run two concurrent jobs each
writing at the same time, one to /disk2 and the other to /disk2. The fact
that you have given them different Media Types will allow Bacula to quickly
choose the correct Storage resource in the Director when doing a restore.

23.5 Considerations for Multiple Clients

If we take the above example and add a second Client, here are a few con-
siderations:

• Although the second client can write to the same set of Volumes, you
will probably want to write to a different set.

23.5. CONSIDERATIONS FOR MULTIPLE CLIENTS 339

• You can write to a different set of Volumes by defining a second Pool,
which has a different name and a different LabelFormat.

• If you wish the Volumes for the second client to go into a different
directory (perhaps even on a different filesystem to spread the load),
you would do so by defining a second Device resource in the Storage
daemon. The Name must be different, and the Archive Device
could be different. To ensure that Volumes are never mixed from one
pool to another, you might also define a different MediaType (e.g.
File1).

In this example, we have two clients, each with a different Pool and a differ-
ent number of archive files retained. They also write to different directories
with different Volume labeling.

The Director’s configuration file is as follows:

Director {

Name = my-dir

QueryFile = "~/bacula/bin/query.sql"

PidDirectory = "~/bacula/working"

WorkingDirectory = "~/bacula/working"

Password = dir_password

}

Basic weekly schedule

Schedule {

Name = "WeeklySchedule"

Run = Level=Full fri at 1:30

Run = Level=Incremental sat-thu at 1:30

}

FileSet {

Name = "Example FileSet"

Include = compression=GZIP signature=SHA1 {

/home/kern/bacula/bin

}

}

Job {

Name = "Backup-client1"

Type = Backup

Level = Full

Client = client1

FileSet= "Example FileSet"

Messages = Standard

Storage = File1

Pool = client1

Schedule = "WeeklySchedule"

}

Job {

Name = "Backup-client2"

Type = Backup

340 CHAPTER 23. BASIC VOLUME MANAGEMENT

Level = Full

Client = client2

FileSet= "Example FileSet"

Messages = Standard

Storage = File2

Pool = client2

Schedule = "WeeklySchedule"

}

Client {

Name = client1

Address = client1

Catalog = BackupDB

Password = client1_password

File Retention = 7d

}

Client {

Name = client2

Address = client2

Catalog = BackupDB

Password = client2_password

}

Two Storage definitions with different Media Types

permits different directories

Storage {

Name = File1

Address = rufus

Password = local_storage_password

Device = client1

Media Type = File1

}

Storage {

Name = File2

Address = rufus

Password = local_storage_password

Device = client2

Media Type = File2

}

Catalog {

Name = BackupDB

dbname = bacula; user = bacula; password = ""

}

Messages {

Name = Standard

...

}

Two pools permits different cycling periods and Volume names

Cycle through 15 Volumes (two weeks)

Pool {

Name = client1

Use Volume Once = yes

Pool Type = Backup

LabelFormat = "Client1-"

AutoPrune = yes

VolumeRetention = 13d

23.5. CONSIDERATIONS FOR MULTIPLE CLIENTS 341

Maximum Volumes = 15

Recycle = yes

}

Cycle through 8 Volumes (1 week)

Pool {

Name = client2

Use Volume Once = yes

Pool Type = Backup

LabelFormat = "Client2-"

AutoPrune = yes

VolumeRetention = 6d

Maximum Volumes = 8

Recycle = yes

}

and the Storage daemon’s configuration file is:

Storage {

Name = my-sd

WorkingDirectory = "~/bacula/working"

Pid Directory = "~/bacula/working"

MaximumConcurrentJobs = 10

}

Director {

Name = my-dir

Password = local_storage_password

}

Archive directory for Client1

Device {

Name = client1

Media Type = File1

Archive Device = /home/bacula/client1

LabelMedia = yes;

Random Access = Yes;

AutomaticMount = yes;

RemovableMedia = no;

AlwaysOpen = no;

}

Archive directory for Client2

Device {

Name = client2

Media Type = File2

Archive Device = /home/bacula/client2

LabelMedia = yes;

Random Access = Yes;

AutomaticMount = yes;

RemovableMedia = no;

AlwaysOpen = no;

}

Messages {

Name = Standard

director = my-dir = all

342 CHAPTER 23. BASIC VOLUME MANAGEMENT

}

Chapter 24

DVD Volumes

Bacula allows you to specify that you want to write to DVD. However, this
feature is implemented only in version 1.37 or later. You may in fact write
to DVD+RW, DVD+R, DVD-R, or DVD-RW media. The actual process
used by Bacula is to first write the image to a spool directory, then when
the Volume reaches a certain size or, at your option, at the end of a Job,
Bacula will transfer the image from the spool directory to the DVD. The
actual work of transferring the image is done by a script dvd-handler, and
the heart of that script is a program called growisofs which allows creating
or adding to a DVD ISO filesystem.

You must have dvd+rw-tools loaded on your system for DVD writ-
ing to work. Please note that the original dvd+rw-tools package does
NOT work with Bacula. You must apply a patch which can be found
in the patches directory of Bacula sources with the name dvd+rw-tools-
5.21.4.10.8.bacula.patch for version 5.21 of the tools, or patch bf dvd+rw-
tools-6.1.bacula.patch if you have version 6.1 on your system. Unfortunately,
this requires you to build the dvd rw-tools from source.

The fact that Bacula cannot use the OS to write directly to the DVD makes
the whole process a bit more error prone than writing to a disk or a tape,
but nevertheless, it does work if you use some care to set it up properly.
However, at the current time (version 1.39.30 – 12 December 2006) we still
consider this code to be BETA quality. As a consequence, please do careful
testing before relying on DVD backups in production.

The remainder of this chapter explains the various directives that you can
use to control the DVD writing.

343

344 CHAPTER 24. DVD VOLUMES

24.1 DVD Specific SD Directives

The following directives are added to the Storage daemon’s Device resource.

Requires Mount = Yes—No You must set this directive to yes for DVD-
writers, and to no for all other devices (tapes/files). This directive
indicates if the device requires to be mounted using the Mount Com-
mand. To be able to write a DVD, the following directives must also
be defined: Mount Point, Mount Command, Unmount Com-
mand and Write Part Command.

Mount Point = directory Directory where the device can be mounted.

Mount Command = name-string Command that must be executed to
mount the device. Although the device is written directly, the mount
command is necessary in order to determine the free space left on
the DVD. Before the command is executed, %a is replaced with the
Archive Device, and %m with the Mount Point.

Most frequently, you will define it as follows:

Mount Command = "/bin/mount -t iso9660 -o ro %a %m"

However, if you have defined a mount point in /etc/fstab, you might
be able to use a mount command such as:

Mount Command = "/bin/mount /media/dvd"

Unmount Command = name-string Command that must be executed
to unmount the device. Before the command is executed, %a is re-
placed with the Archive Device, and %m with the Mount Point.

Most frequently, you will define it as follows:

Unmount Command = "/bin/umount %m"

Write Part Command = name-string Command that must be executed
to write a part to the device. Before the command is executed, %a is
replaced with the Archive Device, %m with the Mount Point, %e is
replaced with 1 if we are writing the first part, and with 0 otherwise,
and %v with the current part filename.

For a DVD, you will most frequently specify the Bacula supplied dvd-
handler script as follows:

24.2. EDIT CODES FOR DVD DIRECTIVES 345

Write Part Command = "/path/dvd-handler %a write %e %v"

Where /path is the path to your scripts install directory, and dvd-
handler is the Bacula supplied script file. This command will already
be present, but commented out, in the default bacula-sd.conf file. To
use it, simply remove the comment (#) symbol.

Free Space Command = name-string Command that must be executed
to check how much free space is left on the device. Before the command
is executed,%a is replaced with the Archive Device.

For a DVD, you will most frequently specify the Bacula supplied dvd-
handler script as follows:

Free Space Command = "/path/dvd-handler %a free"

Where /path is the path to your scripts install directory, and dvd-
freespace is the Bacula supplied script file. If you want to specify
your own command, please look at the code in dvd-handler to see
what output Bacula expects from this command. This command will
already be present, but commented out, in the default bacula-sd.conf
file. To use it, simply remove the comment (#) symbol.

If you do not set it, Bacula will expect there is always free space on
the device.

In addition to the directives specified above, you must also specify the other
standard Device resource directives. Please see the sample DVD Device
resource in the default bacula-sd.conf file. Be sure to specify the raw device
name for Archive Device. It should be a name such as /dev/cdrom or
/media/cdrecorder or /dev/dvd depending on your system. It will not
be a name such as /mnt/cdrom.

Finally, for growisofs to work, it must be able to lock a certain amount of
memory in RAM. If you have restrictions on this function, you may have
failures. Under bash, you can set this with the following command:

ulimit -l unlimited

24.2 Edit Codes for DVD Directives

Before submitting the Mount Command, Unmount Command, Write
Part Command, or Free Space Command directives to the operating
system, Bacula performs character substitution of the following characters:

346 CHAPTER 24. DVD VOLUMES

%% = %

%a = Archive device name

%e = erase (set if cannot mount and first part)

%n = part number

%m = mount point

%v = last part name (i.e. filename)

24.3 DVD Specific Director Directives

The following directives are added to the Director’s Job resource.

Write Part After Job = <yes—no> If this directive is set to yes (de-
fault no), the Volume written to a temporary spool file for the current
Job will be written to the DVD as a new part file will be created after
the job is finished.

It should be set to yes when writing to devices that require a mount
(for example DVD), so you are sure that the current part, containing
this job’s data, is written to the device, and that no data is left in
the temporary file on the hard disk. However, on some media, like
DVD+R and DVD-R, a lot of space (about 10Mb) is lost everytime
a part is written. So, if you run several jobs each after another, you
could set this directive to no for all jobs, except the last one, to avoid
wasting too much space, but to ensure that the data is written to the
medium when all jobs are finished.

This directive is ignored for devices other than DVDs.

24.4 Other Points

• Please be sure that you have any automatic DVD mounting disabled
before running Bacula – this includes auto mounting in /etc/fstab,
hotplug, ... If the DVD is automatically mounted by the OS, it will
cause problems when Bacula tries to mount/unmount the DVD.

• Please be sure that you the directive Write Part After Job set to
yes, otherwise the last part of the data to be written will be left in
the DVD spool file and not written to the DVD. The DVD will then
be unreadable until this last part is written. If you have a series of
jobs that are run one at a time, you can turn this off until the last job
is run.

24.4. OTHER POINTS 347

• The current code is not designed to have multiple simultaneous jobs
writing to the DVD. As a consequence, please ensure that only one
DVD backup job runs at any time.

• Writing and reading of DVD+RW seems to work quite reliably pro-
vided you are using the patched dvd+rw-mediainfo programs. On the
other hand, we do not have enough information to ensure that DVD-
RW or other forms of DVDs work correctly.

• DVD+RW supports only about 1000 overwrites. Every time you
mount the filesystem read/write will count as one write. This can
add up quickly, so it is best to mount your DVD+RW filesystem read-
only. Bacula does not need the DVD to be mounted read-write, since
it uses the raw device for writing.

• Reformatting DVD+RW 10-20 times can apparently make the medium
unusable. Normally you should not have to format or reformat
DVD+RW media. If it is necessary, current versions of growisofs will
do so automatically.

• We have had several problems writing to DVD-RWs (this does NOT
concern DVD+RW), because these media have two writing-modes:
Incremental Sequential and Restricted Overwrite. Depending
on your device and the media you use, one of these modes may not
work correctly (e.g. Incremental Sequential does not work with my
NEC DVD-writer and Verbatim DVD-RW).

To retrieve the current mode of a DVD-RW, run:

dvd+rw-mediainfo /dev/xxx

where you replace xxx with your DVD device name.

Mounted Media line should give you the information.

To set the device to Restricted Overwrite mode, run:

dvd+rw-format /dev/xxx

If you want to set it back to the default Incremental Sequential
mode, run:

dvd+rw-format -blank /dev/xxx

• Bacula only accepts to write to blank DVDs. To quickly blank a
DVD+/-RW, run this command:

dd if=/dev/zero bs=1024 count=512 | growisofs -Z /dev/xxx=/dev/fd/0

348 CHAPTER 24. DVD VOLUMES

Then, try to mount the device, if it cannot be mounted, it will be
considered as blank by Bacula, if it can be mounted, try a full blank
(see below).

• If you wish to blank completely a DVD+/-RW, use the following:

growisofs -Z /dev/xxx=/dev/zero

where you replace xxx with your DVD device name. However, note
that this blanks the whole DVD, which takes quite a long time (16
minutes on mine).

• DVD+RW and DVD-RW support only about 1000 overwrites (i.e.
don’t use the same medium for years if you don’t want to have prob-
lems...).

To write to the DVD the first time use:

growisofs -Z /dev/xxx filename

To add additional files (more parts use):

growisofs -M /dev/xxx filename

The option -use-the-force-luke=4gms was added in growisofs 5.20
to override growisofs’ behavior of always checking for the 4GB limit.
Normally, this option is recommended for all Linux 2.6.8 kernels or
greater, since these newer kernels can handle writing more than 4GB.
See below for more details on this subject.

• For more information about DVD writing, please look at the
dvd+rw-tools homepage.

http://fy.chalmers.se/~appro/linux/DVD+RW/

Chapter 25

Automated Disk Backup

If you manage five or ten machines and have a nice tape backup, you don’t
need Pools, and you may wonder what they are good for. In this chapter,
you will see that Pools can help you optimize disk storage space. The same
techniques can be applied to a shop that has multiple tape drives, or that
wants to mount various different Volumes to meet their needs.

The rest of this chapter will give an example involving backup to disk Vol-
umes, but most of the information applies equally well to tape Volumes.

25.1 The Problem

A site that I administer (a charitable organization) had a tape DDS-3 tape
drive that was failing. The exact reason for the failure is still unknown.
Worse yet, their full backup size is about 15GB whereas the capacity of
their broken DDS-3 was at best 8GB (rated 6/12). A new DDS-4 tape drive
and the necessary cassettes was more expensive than their budget could
handle.

25.2 The Solution

They want to maintain six months of backup data, and be able to access
the old files on a daily basis for a week, a weekly basis for a month, then
monthly for six months. In addition, offsite capability was not needed (well
perhaps it really is, but it was never used). Their daily changes amount to
about 300MB on the average, or about 2GB per week.

349

350 CHAPTER 25. AUTOMATED DISK BACKUP

As a consequence, the total volume of data they need to keep to meet their
needs is about 100GB (15GB x 6 + 2GB x 5 + 0.3 x 7) = 102.1GB.

The chosen solution was to buy a 120GB hard disk for next to nothing – far
less than 1/10th the price of a tape drive and the cassettes to handle the
same amount of data, and to have Bacula write to disk files.

The rest of this chapter will explain how to setup Bacula so that it would
automatically manage a set of disk files with the minimum intervention on
my part. The system has been running since 22 January 2004 until today
(17 September 2006) with no intervention, with the exception that I had to
add a second 120GB hard disk after a year because their needs grew over
that time to more than the 120GB (168GB to be exact). The only other
intervention I have made is a periodic (about once a year) Bacula upgrade.

25.3 Overall Design

Getting Bacula to write to disk rather than tape in the simplest case is
rather easy, and is documented in the previous chapter. In addition, all the
directives discussed here are explained in that chapter. We’ll leave it to you
to look at the details there. If you haven’t read it and are not familiar with
Pools, you probably should at least read it once quickly for the ideas before
continuing here.

One needs to consider about what happens if we have only a single large
Bacula Volume defined on our hard disk. Everything works fine until the
Volume fills, then Bacula will ask you to mount a new Volume. This same
problem applies to the use of tape Volumes if your tape fills. Being a hard
disk and the only one you have, this will be a bit of a problem. It should be
obvious that it is better to use a number of smaller Volumes and arrange for
Bacula to automatically recycle them so that the disk storage space can be
reused. The other problem with a single Volume, is that at the current time
(1.34.0) Bacula does not seek within a disk Volume, so restoring a single file
can take more time than one would expect.

As mentioned, the solution is to have multiple Volumes, or files on the disk.
To do so, we need to limit the use and thus the size of a single Volume, by
time, by number of jobs, or by size. Any of these would work, but we chose
to limit the use of a single Volume by putting a single job in each Volume
with the exception of Volumes containing Incremental backup where there
will be 6 jobs (a week’s worth of data) per volume. The details of this will
be discussed shortly.

25.3. OVERALL DESIGN 351

The next problem to resolve is recycling of Volumes. As you noted from
above, the requirements are to be able to restore monthly for 6 months,
weekly for a month, and daily for a week. So to simplify things, why not do
a Full save once a month, a Differential save once a week, and Incremental
saves daily. Now since each of these different kinds of saves needs to remain
valid for differing periods, the simplest way to do this (and possibly the
only) is to have a separate Pool for each backup type.

The decision was to use three Pools: one for Full saves, one for Differential
saves, and one for Incremental saves, and each would have a different number
of volumes and a different Retention period to accomplish the requirements.

25.3.1 Full Pool

Putting a single Full backup on each Volume, will require six Full save
Volumes, and a retention period of six months. The Pool needed to do that
is:

Pool {

Name = Full-Pool

Pool Type = Backup

Recycle = yes

AutoPrune = yes

Volume Retention = 6 months

Maximum Volume Jobs = 1

Label Format = Full-

Maximum Volumes = 6

}

Since these are disk Volumes, no space is lost by having separate Volumes
for each backup (done once a month in this case). The items to note are the
retention period of six months (i.e. they are recycled after six months), that
there is one job per volume (Maximum Volume Jobs = 1), the volumes will
be labeled Full-0001, ... Full-0006 automatically. One could have labeled
these manual from the start, but why not use the features of Bacula.

25.3.2 Differential Pool

For the Differential backup Pool, we choose a retention period of a bit longer
than a month and ensure that there is at least one Volume for each of the
maximum of five weeks in a month. So the following works:

352 CHAPTER 25. AUTOMATED DISK BACKUP

Pool {

Name = Diff-Pool

Pool Type = Backup

Recycle = yes

AutoPrune = yes

Volume Retention = 40 days

Maximum Volume Jobs = 1

Label Format = Diff-

Maximum Volumes = 6

}

As you can see, the Differential Pool can grow to a maximum of six volumes,
and the Volumes are retained 40 days and thereafter they can be recycled.
Finally there is one job per volume. This, of course, could be tightened up
a lot, but the expense here is a few GB which is not too serious.

25.3.3 Incremental Pool

Finally, here is the resource for the Incremental Pool:

Pool {

Name = Inc-Pool

Pool Type = Backup

Recycle = yes

AutoPrune = yes

Volume Retention = 20 days

Maximum Volume Jobs = 6

Label Format = Inc-

Maximum Volumes = 5

}

We keep the data for 20 days rather than just a week as the needs require.
To reduce the proliferation of volume names, we keep a week’s worth of data
(6 incremental backups) in each Volume. In practice, the retention period
should be set to just a bit more than a week and keep only two or three
volumes instead of five. Again, the lost is very little and as the system
reaches the full steady state, we can adjust these values so that the total
disk usage doesn’t exceed the disk capacity.

25.4 The Actual Conf Files

The following example shows you the actual files used, with only a few minor
modifications to simplify things.

25.4. THE ACTUAL CONF FILES 353

The Director’s configuration file is as follows:

Director { # define myself

Name = bacula-dir

DIRport = 9101

QueryFile = "/home/bacula/bin/query.sql"

WorkingDirectory = "/home/bacula/working"

PidDirectory = "/home/bacula/working"

Maximum Concurrent Jobs = 1

Password = " *** CHANGE ME ***"

Messages = Standard

}

By default, this job will back up to disk in /tmp

Job {

Name = client

Type = Backup

Client = client-fd

FileSet = "Full Set"

Schedule = "WeeklyCycle"

Storage = File

Messages = Standard

Pool = Default

Full Backup Pool = Full-Pool

Incremental Backup Pool = Inc-Pool

Differential Backup Pool = Diff-Pool

Write Bootstrap = "/home/bacula/working/client.bsr"

Priority = 10

}

Backup the catalog database (after the nightly save)

Job {

Name = "BackupCatalog"

Type = Backup

Client = client-fd

FileSet="Catalog"

Schedule = "WeeklyCycleAfterBackup"

Storage = File

Messages = Standard

Pool = Default

This creates an ASCII copy of the catalog

RunBeforeJob = "/home/bacula/bin/make_catalog_backup bacula bacula"

This deletes the copy of the catalog

RunAfterJob = "/home/bacula/bin/delete_catalog_backup"

Write Bootstrap = "/home/bacula/working/BackupCatalog.bsr"

Priority = 11 # run after main backup

}

Standard Restore template, to be changed by Console program

Job {

Name = "RestoreFiles"

Type = Restore

Client = havana-fd

FileSet="Full Set"

354 CHAPTER 25. AUTOMATED DISK BACKUP

Storage = File

Messages = Standard

Pool = Default

Where = /tmp/bacula-restores

}

List of files to be backed up

FileSet {

Name = "Full Set"

Include = { Options { signature=SHA1; compression=GZIP9 }

File = /

File = /usr

File = /home

File = /boot

File = /var

File = /opt

}

Exclude = {

File = /proc

File = /tmp

File = /.journal

File = /.fsck

...

}

}

Schedule {

Name = "WeeklyCycle"

Run = Level=Full 1st sun at 2:05

Run = Level=Differential 2nd-5th sun at 2:05

Run = Level=Incremental mon-sat at 2:05

}

This schedule does the catalog. It starts after the WeeklyCycle

Schedule {

Name = "WeeklyCycleAfterBackup"

Run = Level=Full sun-sat at 2:10

}

This is the backup of the catalog

FileSet {

Name = "Catalog"

Include { Options { signature=MD5 }

File = /home/bacula/working/bacula.sql

}

}

Client {

Name = client-fd

Address = client

FDPort = 9102

Catalog = MyCatalog

Password = " *** CHANGE ME ***"

25.4. THE ACTUAL CONF FILES 355

AutoPrune = yes # Prune expired Jobs/Files

Job Retention = 6 months

File Retention = 60 days

}

Storage {

Name = File

Address = localhost

SDPort = 9103

Password = " *** CHANGE ME ***"

Device = FileStorage

Media Type = File

}

Catalog {

Name = MyCatalog

dbname = bacula; user = bacula; password = ""

}

Pool {

Name = Full-Pool

Pool Type = Backup

Recycle = yes # automatically recycle Volumes

AutoPrune = yes # Prune expired volumes

Volume Retention = 6 months

Maximum Volume Jobs = 1

Label Format = Full-

Maximum Volumes = 8

}

Pool {

Name = Inc-Pool

Pool Type = Backup

Recycle = yes # automatically recycle Volumes

AutoPrune = yes # Prune expired volumes

Volume Retention = 14 days

Maximum Volume Jobs = 6

Label Format = Inc-

Maximum Volumes = 6

}

Pool {

Name = Diff-Pool

Pool Type = Backup

Recycle = yes

AutoPrune = yes

Volume Retention = 35 days

Maximum Volume Jobs = 1

Label Format = Diff-

Maximum Volumes = 10

}

Messages {

Name = Standard

356 CHAPTER 25. AUTOMATED DISK BACKUP

mailcommand = "bsmtp -h mail.domain.com -f \"\(Bacula\) %r\"

-s \"Bacula: %t %e of %c %l\" %r"

operatorcommand = "bsmtp -h mail.domain.com -f \"\(Bacula\) %r\"

-s \"Bacula: Intervention needed for %j\" %r"

mail = root@domain.com = all, !skipped

operator = root@domain.com = mount

console = all, !skipped, !saved

append = "/home/bacula/bin/log" = all, !skipped

}

and the Storage daemon’s configuration file is:

Storage { # definition of myself

Name = bacula-sd

SDPort = 9103 # Director’s port

WorkingDirectory = "/home/bacula/working"

Pid Directory = "/home/bacula/working"

}

Director {

Name = bacula-dir

Password = " *** CHANGE ME ***"

}

Device {

Name = FileStorage

Media Type = File

Archive Device = /files/bacula

LabelMedia = yes; # lets Bacula label unlabeled media

Random Access = Yes;

AutomaticMount = yes; # when device opened, read it

RemovableMedia = no;

AlwaysOpen = no;

}

Messages {

Name = Standard

director = bacula-dir = all

}

Chapter 26

Migration

The term Migration, as used in the context of Bacula, means moving data
from one Volume to another. In particular it refers to a Job (similar to a
backup job) that reads data that was previously backed up to a Volume and
writes it to another Volume. As part of this process, the File catalog records
associated with the first backup job are purged. In other words, Migration
moves Bacula Job data from one Volume to another by reading the Job
data from the Volume it is stored on, writing it to a different Volume in a
different Pool, and then purging the database records for the first Job.

The section process for which Job or Jobs are migrated can be based on
quite a number of different criteria such as:

• a single previous Job

• a Volume

• a Client

• a regular expression matching a Job, Volume, or Client name

• the time a Job has been on a Volume

• high and low water marks (usage or occupation) of a Pool

• Volume size

The details of these selection criteria will be defined below.

To run a Migration job, you must first define a Job resource very similar
to a Backup Job but with Type = Migrate instead of Type = Backup.

357

358 CHAPTER 26. MIGRATION

One of the key points to remember is that the Pool that is specified for
the migration job is the only pool from which jobs will be migrated, with
one exception noted below. In addition, the Pool to which the selected Job
or Jobs will be migrated is defined by the Next Pool = ... in the Pool
resource specified for the Migration Job.

Bacula permits pools to contain Volumes with different Media Types. How-
ever, when doing migration, this is a very undesirable condition. For migra-
tion to work properly, you should use pools containing only Volumes of the
same Media Type for all migration jobs.

The migration job normally is either manually started or starts from a Sched-
ule much like a backup job. It searches for a previous backup Job or Jobs
that match the parameters you have specified in the migration Job resource,
primarily a Selection Type (detailed a bit later). Then for each previous
backup JobId found, the Migration Job will run a new Job which copies the
old Job data from the previous Volume to a new Volume in the Migration
Pool. It is possible that no prior Jobs are found for migration, in which case,
the Migration job will simply terminate having done nothing, but normally
at a minimum, three jobs are involved during a migration:

• The currently running Migration control Job. This is only a control
job for starting the migration child jobs.

• The previous Backup Job (already run). The File records for this Job
are purged if the Migration job successfully terminates. The original
data remains on the Volume until it is recycled and rewritten.

• A new Migration Backup Job that moves the data from the previous
Backup job to the new Volume. If you subsequently do a restore, the
data will be read from this Job.

If the Migration control job finds a number of JobIds to migrate (e.g. it
is asked to migrate one or more Volumes), it will start one new migration
backup job for each JobId found on the specified Volumes. Please note that
Migration doesn’t scale too well since Migrations are done on a Job by Job
basis. This if you select a very large volume or a number of volumes for
migration, you may have a large number of Jobs that start. Because each
job must read the same Volume, they will run consecutively (not simulta-
neously).

26.1. MIGRATION JOB RESOURCE DIRECTIVES 359

26.1 Migration Job Resource Directives

The following directives can appear in a Director’s Job resource, and they
are used to define a Migration job.

Pool = <Pool-name> The Pool specified in the Migration control Job
is not a new directive for the Job resource, but it is particularly im-
portant because it determines what Pool will be examined for finding
JobIds to migrate. The exception to this is when Selection Type
= SQLQuery, in which case no Pool is used, unless you specifically
include it in the SQL query. Note, the Pool resource referenced must
contain a Next Pool = ... directive to define the Pool to which the
data will be migrated.

Type = Migrate Migrate is a new type that defines the job that is run
as being a Migration Job. A Migration Job is a sort of control job
and does not have any Files associated with it, and in that sense they
are more or less like an Admin job. Migration jobs simply check to
see if there is anything to Migrate then possibly start and control new
Backup jobs to migrate the data from the specified Pool to another
Pool.

Selection Type = <Selection-type-keyword> The <Selection-type-
keyword> determines how the migration job will go about selecting
what JobIds to migrate. In most cases, it is used in conjunction with a
Selection Pattern to give you fine control over exactly what JobIds
are selected. The possible values for <Selection-type-keyword> are:

SmallestVolume This selection keyword selects the volume with the
fewest bytes from the Pool to be migrated. The Pool to be mi-
grated is the Pool defined in the Migration Job resource. The mi-
gration control job will then start and run one migration backup
job for each of the Jobs found on this Volume. The Selection
Pattern, if specified, is not used.

OldestVolume This selection keyword selects the volume with the
oldest last write time in the Pool to be migrated. The Pool to
be migrated is the Pool defined in the Migration Job resource.
The migration control job will then start and run one migration
backup job for each of the Jobs found on this Volume. The Se-
lection Pattern, if specified, is not used.

Client The Client selection type, first selects all the Clients that have
been backed up in the Pool specified by the Migration Job re-
source, then it applies the Selection Pattern (defined below)

360 CHAPTER 26. MIGRATION

as a regular expression to the list of Client names, giving a fil-
tered Client name list. All jobs that were backed up for those
filtered (regexed) Clients will be migrated. The migration con-
trol job will then start and run one migration backup job for each
of the JobIds found for those filtered Clients.

Volume The Volume selection type, first selects all the Volumes that
have been backed up in the Pool specified by the Migration Job
resource, then it applies the Selection Pattern (defined below)
as a regular expression to the list of Volume names, giving a
filtered Volume list. All JobIds that were backed up for those fil-
tered (regexed) Volumes will be migrated. The migration control
job will then start and run one migration backup job for each of
the JobIds found on those filtered Volumes.

Job The Job selection type, first selects all the Jobs (as defined on the
Name directive in a Job resource) that have been backed up in
the Pool specified by the Migration Job resource, then it applies
the Selection Pattern (defined below) as a regular expression
to the list of Job names, giving a filtered Job name list. All
JobIds that were run for those filtered (regexed) Job names will
be migrated. Note, for a given Job named, they can be many
jobs (JobIds) that ran. The migration control job will then start
and run one migration backup job for each of the Jobs found.

SQLQuery The SQLQuery selection type, used the Selection Pat-
tern as an SQL query to obtain the JobIds to be migrated. The
Selection Pattern must be a valid SELECT SQL statement for
your SQL engine, and it must return the JobId as the first field
of the SELECT.

PoolOccupancy This selection type will cause the Migration job to
compute the total size of the specified pool for all Media Types
combined. If it exceeds the Migration High Bytes defined in
the Pool, the Migration job will migrate all JobIds beginning with
the oldest Volume in the pool (determined by Last Write time)
until the Pool bytes drop below the Migration Low Bytes de-
fined in the Pool. This calculation should be consider rather
approximative because it is made once by the Migration job be-
fore migration is begun, and thus does not take into account
additional data written into the Pool during the migration. In
addition, the calculation of the total Pool byte size is based on
the Volume bytes saved in the Volume (Media) database entries.
The bytes calculate for Migration is based on the value stored in
the Job records of the Jobs to be migrated. These do not include
the Storage daemon overhead as is in the total Pool size. As
a consequence, normally, the migration will migrate more bytes

26.2. MIGRATION POOL RESOURCE DIRECTIVES 361

than strictly necessary.

PoolTime The PoolTime selection type will cause the Migration job
to look at the time each JobId has been in the Pool since the
job ended. All Jobs in the Pool longer than the time specified on
Migration Time directive in the Pool resource will be migrated.

Selection Pattern = <Quoted-string> The Selection Patterns permit-
ted for each Selection-type-keyword are described above.

For the OldestVolume and SmallestVolume, this Selection pattern is
not used (ignored).

For the Client, Volume, and Job keywords, this pattern must be a valid
regular expression that will filter the appropriate item names found in
the Pool.

For the SQLQuery keyword, this pattern must be a valid SELECT
SQL statement that returns JobIds.

26.2 Migration Pool Resource Directives

The following directives can appear in a Director’s Pool resource, and they
are used to define a Migration job.

Migration Time = <time-specification> If a PoolTime migration is
done, the time specified here in seconds (time modifiers are permitted
– e.g. hours, ...) will be used. If the previous Backup Job or Jobs se-
lected have been in the Pool longer than the specified PoolTime, then
they will be migrated.

Migration High Bytes = <byte-specification> This directive speci-
fies the number of bytes in the Pool which will trigger a migration if
a PoolOccupancy migration selection type has been specified. The
fact that the Pool usage goes above this level does not automatically
trigger a migration job. However, if a migration job runs and has the
PoolOccupancy selection type set, the Migration High Bytes will be
applied. Bacula does not currently restrict a pool to have only a single
Media Type, so you must keep in mind that if you mix Media Types
in a Pool, the results may not be what you want, as the Pool count of
all bytes will be for all Media Types combined.

Migration Low Bytes = <byte-specification> This directive specifies
the number of bytes in the Pool which will stop a migration if a
PoolOccupancy migration selection type has been specified and trig-
gered by more than Migration High Bytes being in the pool. In other

362 CHAPTER 26. MIGRATION

words, once a migration job is started with PoolOccupancy migra-
tion selection and it determines that there are more than Migration
High Bytes, the migration job will continue to run jobs until the num-
ber of bytes in the Pool drop to or below Migration Low Bytes.

Next Pool = <pool-specification> The Next Pool directive specifies
the pool to which Jobs will be migrated. This directive is required
to define the Pool into which the data will be migrated. Without this
directive, the migration job will terminate in error.

Storage = <storage-specification> The Storage directive specifies
what Storage resource will be used for all Jobs that use this Pool.
It takes precedence over any other Storage specifications that may
have been given such as in the Schedule Run directive, or in the Job
resource. We highly recommend that you define the Storage resource
to be used in the Pool rather than elsewhere (job, schedule run, ...).

26.3 Important Migration Considerations

• Each Pool into which you migrate Jobs or Volumes must contain
Volumes of only one Media Type.

• Migration takes place on a JobId by JobId basis. That is each JobId is
migrated in its entirety and independently of other JobIds. Once the
Job is migrated, it will be on the new medium in the new Pool, but for
the most part, aside from having a new JobId, it will appear with all
the same characteristics of the original job (start, end time, ...). The
column RealEndTime in the catalog Job table will contain the time
and date that the Migration terminated, and by comparing it with the
EndTime column you can tell whether or not the job was migrated.
The original job is purged of its File records, and its Type field is
changed from ”B” to ”M” to indicate that the job was migrated.

• Jobs on Volumes will be Migration only if the Volume is marked, Full,
Used, or Error. Volumes that are still marked Append will not be
considered for migration. This prevents Bacula from attempting to
read the Volume at the same time it is writing it. It also reduces other
deadlock situations, as well as avoids the problem that you migrate a
Volume and later find new files appended to that Volume.

• As noted above, for the Migration High Bytes, the calculation of the
bytes to migrate is somewhat approximate.

26.3. IMPORTANT MIGRATION CONSIDERATIONS 363

• If you keep Volumes of different Media Types in the same Pool, it
is not clear how well migration will work. We recommend only one
Media Type per pool.

• It is possible to get into a resource deadlock where Bacula does not
find enough drives to simultaneously read and write all the Volumes
needed to do Migrations. For the moment, you must take care as all
the resource deadlock algorithms are not yet implemented.

• Migration is done only when you run a Migration job. If you set a
Migration High Bytes and that number of bytes is exceeded in the
Pool no migration job will automatically start. You must schedule the
migration jobs, and they must run for any migration to take place.

• If you migrate a number of Volumes, a very large number of Migration
jobs may start.

• Figuring out what jobs will actually be migrated can be a bit com-
plicated due to the flexibility provided by the regex patterns and the
number of different options. Turning on a debug level of 100 or more
will provide a limited amount of debug information about the migra-
tion selection process.

• Bacula currently does only minimal Storage conflict resolution, so you
must take care to ensure that you don’t try to read and write to the
same device or Bacula may block waiting to reserve a drive that it will
never find. In general, ensure that all your migration pools contain
only one Media Type, and that you always migrate to pools with
different Media Types.

• The Next Pool = ... directive must be defined in the Pool referenced
in the Migration Job to define the Pool into which the data will be
migrated.

• Pay particular attention to the fact that data is migrated on a Job
by Job basis, and for any particular Volume, only one Job can read
that Volume at a time (no simultaneous read), so migration jobs that
all reference the same Volume will run sequentially. This can be a
potential bottle neck and does not scale very well to large numbers of
jobs.

• Only migration of Selection Types of Job and Volume have been care-
fully tested. All the other migration methods (time, occupancy, small-
est, oldest, ...) need additional testing.

364 CHAPTER 26. MIGRATION

26.4 Example Migration Jobs

When you specify a Migration Job, you must specify all the standard direc-
tives as for a Job. However, certain such as the Level, Client, and FileSet,
though they must be defined, are ignored by the Migration job because the
values from the original job used instead.

As an example, suppose you have the following Job that you run every
night. To note: there is no Storage directive in the Job resource; there is
a Storage directive in each of the Pool resources; the Pool to be migrated
(File) contains a Next Pool directive that defines the output Pool (where
the data is written by the migration job).

Define the backup Job

Job {

Name = "NightlySave"

Type = Backup

Level = Incremental # default

Client=rufus-fd

FileSet="Full Set"

Schedule = "WeeklyCycle"

Messages = Standard

Pool = Default

}

Default pool definition

Pool {

Name = Default

Pool Type = Backup

AutoPrune = yes

Recycle = yes

Next Pool = Tape

Storage = File

LabelFormat = "File"

}

Tape pool definition

Pool {

Name = Tape

Pool Type = Backup

AutoPrune = yes

Recycle = yes

Storage = DLTDrive

}

Definition of File storage device

Storage {

Name = File

Address = rufus

Password = "ccV3lVTsQRsdIUGyab0N4sMDavui2hOBkmpBU0aQKOr9"

26.4. EXAMPLE MIGRATION JOBS 365

Device = "File" # same as Device in Storage daemon

Media Type = File # same as MediaType in Storage daemon

}

Definition of DLT tape storage device

Storage {

Name = DLTDrive

Address = rufus

Password = "ccV3lVTsQRsdIUGyab0N4sMDavui2hOBkmpBU0aQKOr9"

Device = "HP DLT 80" # same as Device in Storage daemon

Media Type = DLT8000 # same as MediaType in Storage daemon

}

Where we have included only the essential information – i.e. the Director,
FileSet, Catalog, Client, Schedule, and Messages resources are omitted.

As you can see, by running the NightlySave Job, the data will be backed up
to File storage using the Default pool to specify the Storage as File.

Now, if we add the following Job resource to this conf file.

Job {

Name = "migrate-volume"

Type = Migrate

Level = Full

Client = rufus-fd

FileSet = "Full Set"

Messages = Standard

Pool = Default

Maximum Concurrent Jobs = 4

Selection Type = Volume

Selection Pattern = "File"

}

and then run the job named migrate-volume, all volumes in the Pool
named Default (as specified in the migrate-volume Job that match the reg-
ular expression pattern File will be migrated to tape storage DLTDrive be-
cause the Next Pool in the Default Pool specifies that Migrations should
go to the pool named Tape, which uses Storage DLTDrive.

If instead, we use a Job resource as follows:

Job {

Name = "migrate"

Type = Migrate

Level = Full

Client = rufus-fd

366 CHAPTER 26. MIGRATION

FileSet="Full Set"

Messages = Standard

Pool = Default

Maximum Concurrent Jobs = 4

Selection Type = Job

Selection Pattern = ".*Save"

}

All jobs ending with the name Save will be migrated from the File Default
to the Tape Pool, or from File storage to Tape storage.

Chapter 27

Backup Strategies

Although Recycling and Backing Up to Disk Volume have been discussed in
previous chapters, this chapter is meant to give you an overall view of pos-
sible backup strategies and to explain their advantages and disadvantages.

27.1 Simple One Tape Backup

Probably the simplest strategy is to back everything up to a single tape and
insert a new (or recycled) tape when it fills and Bacula requests a new one.

27.1.1 Advantages

• The operator intervenes only when a tape change is needed. (once a
month at my site).

• There is little chance of operator error because the tape is not changed
daily.

• A minimum number of tapes will be needed for a full restore. Typically
the best case will be one tape and worst two.

• You can easily arrange for the Full backup to occur a different night
of the month for each system, thus load balancing and shortening the
backup time.

367

368 CHAPTER 27. BACKUP STRATEGIES

27.1.2 Disadvantages

• If your site burns down, you will lose your current backups, and in my
case about a month of data.

• After a tape fills and you have put in a blank tape, the backup will
continue, and this will generally happen during working hours.

27.1.3 Practical Details

This system is very simple. When the tape fills and Bacula requests a new
tape, you unmount the tape from the Console program, insert a new tape
and label it. In most cases after the label, Bacula will automatically mount
the tape and resume the backup. Otherwise, you simply mount the tape.

Using this strategy, one typically does a Full backup once a week followed
by daily Incremental backups. To minimize the amount of data written to
the tape, one can do a Full backup once a month on the first Sunday of
the month, a Differential backup on the 2nd-5th Sunday of the month, and
incremental backups the rest of the week.

27.2 Manually Changing Tapes

If you use the strategy presented above, Bacula will ask you to change the
tape, and you will unmount it and then remount it when you have inserted
the new tape.

If you do not wish to interact with Bacula to change each tape, there are
several ways to get Bacula to release the tape:

• In your Storage daemon’s Device resource, set AlwaysOpen = no
In this case, Bacula will release the tape after every job. If you run
several jobs, the tape will be rewound and repositioned to the end at
the beginning of every job. This is not very efficient, but does let you
change the tape whenever you want.

• Use a RunAfterJob statement to run a script after your last job.
This could also be an Admin job that runs after all your backup jobs.
The script could be something like:

#!/bin/sh

27.3. DAILY TAPE ROTATION 369

/full-path/bconsole -c /full-path/bconsole.conf <<END_OF_DATA

release storage=your-storage-name

END_OF_DATA

In this example, you would have AlwaysOpen=yes, but the release
command would tell Bacula to rewind the tape and on the next job
assume the tape has changed. This strategy may not work on some
systems, or on autochangers because Bacula will still keep the drive
open.

• The final strategy is similar to the previous case except that you would
use the unmount command to force Bacula to release the drive. Then
you would eject the tape, and remount it as follows:

#!/bin/sh

/full-path/bconsole -c /full-path/bconsole.conf <\<END_OF_DATA

unmount storage=your-storage-name

END_OF_DATA

the following is a shell command

mt eject

/full-path/bconsole -c /full-path/bconsole.conf <<END_OF_DATA

mount storage=your-storage-name

END_OF_DATA

27.3 Daily Tape Rotation

This scheme is quite different from the one mentioned above in that a Full
backup is done to a different tape every day of the week. Generally, the
backup will cycle continuously through five or six tapes each week. Varia-
tions are to use a different tape each Friday, and possibly at the beginning
of the month. Thus if backups are done Monday through Friday only, you
need only five tapes, and by having two Friday tapes, you need a total of
six tapes. Many sites run this way, or using modifications of it based on two
week cycles or longer.

27.3.1 Advantages

• All the data is stored on a single tape, so recoveries are simple and
faster.

• Assuming the previous day’s tape is taken offsite each day, a maximum
of one days data will be lost if the site burns down.

370 CHAPTER 27. BACKUP STRATEGIES

27.3.2 Disadvantages

• The tape must be changed every day requiring a lot of operator inter-
vention.

• More errors will occur because of human mistakes.

• If the wrong tape is inadvertently mounted, the Backup for that day
will not occur exposing the system to data loss.

• There is much more movement of the tape each day (rewinds) leading
to shorter tape drive life time.

• Initial setup of Bacula to run in this mode is more complicated than
the Single tape system described above.

• Depending on the number of systems you have and their data capacity,
it may not be possible to do a Full backup every night for time reasons
or reasons of tape capacity.

27.3.3 Practical Details

The simplest way to ”force” Bacula to use a different tape each day is to
define a different Pool for each day of the the week a backup is done. In
addition, you will need to specify appropriate Job and File retention periods
so that Bacula will relabel and overwrite the tape each week rather than
appending to it. Nic Bellamy has supplied an actual working model of this
which we include here.

What is important is to create a different Pool for each day of the week,
and on the run statement in the Schedule, to specify which Pool is to be
used. He has one Schedule that accomplishes this, and a second Schedule
that does the same thing for the Catalog backup run each day after the
main backup (Priorities were not available when this script was written). In
addition, he uses a Max Start Delay of 22 hours so that if the wrong tape
is premounted by the operator, the job will be automatically canceled, and
the backup cycle will re-synchronize the next day. He has named his Friday
Pool WeeklyPool because in that Pool, he wishes to have several tapes to
be able to restore to a time older than one week.

And finally, in his Storage daemon’s Device resource, he has Automatic
Mount = yes and Always Open = No. This is necessary for the tape
ejection to work in his end of backup.sh script below.

For example, his bacula-dir.conf file looks like the following:

27.3. DAILY TAPE ROTATION 371

/etc/bacula/bacula-dir.conf

#

Bacula Director Configuration file

#

Director {

Name = ServerName

DIRport = 9101

QueryFile = "/etc/bacula/query.sql"

WorkingDirectory = "/var/lib/bacula"

PidDirectory = "/var/run"

SubSysDirectory = "/var/lock/subsys"

Maximum Concurrent Jobs = 1

Password = "console-pass"

Messages = Standard

}

#

Define the main nightly save backup job

#

Job {

Name = "NightlySave"

Type = Backup

Client = ServerName

FileSet = "Full Set"

Schedule = "WeeklyCycle"

Storage = Tape

Messages = Standard

Pool = Default

Write Bootstrap = "/var/lib/bacula/NightlySave.bsr"

Max Start Delay = 22h

}

Backup the catalog database (after the nightly save)

Job {

Name = "BackupCatalog"

Type = Backup

Client = ServerName

FileSet = "Catalog"

Schedule = "WeeklyCycleAfterBackup"

Storage = Tape

Messages = Standard

Pool = Default

This creates an ASCII copy of the catalog

RunBeforeJob = "/usr/lib/bacula/make_catalog_backup -u bacula"

This deletes the copy of the catalog, and ejects the tape

RunAfterJob = "/etc/bacula/end_of_backup.sh"

Write Bootstrap = "/var/lib/bacula/BackupCatalog.bsr"

Max Start Delay = 22h

}

Standard Restore template, changed by Console program

Job {

Name = "RestoreFiles"

Type = Restore

Client = ServerName

FileSet = "Full Set"

372 CHAPTER 27. BACKUP STRATEGIES

Storage = Tape

Messages = Standard

Pool = Default

Where = /tmp/bacula-restores

}

List of files to be backed up

FileSet {

Name = "Full Set"

Include = signature=MD5 {

/

/data

}

Exclude = { /proc /tmp /.journal }

}

#

When to do the backups

#

Schedule {

Name = "WeeklyCycle"

Run = Level=Full Pool=MondayPool Monday at 8:00pm

Run = Level=Full Pool=TuesdayPool Tuesday at 8:00pm

Run = Level=Full Pool=WednesdayPool Wednesday at 8:00pm

Run = Level=Full Pool=ThursdayPool Thursday at 8:00pm

Run = Level=Full Pool=WeeklyPool Friday at 8:00pm

}

This does the catalog. It starts after the WeeklyCycle

Schedule {

Name = "WeeklyCycleAfterBackup"

Run = Level=Full Pool=MondayPool Monday at 8:15pm

Run = Level=Full Pool=TuesdayPool Tuesday at 8:15pm

Run = Level=Full Pool=WednesdayPool Wednesday at 8:15pm

Run = Level=Full Pool=ThursdayPool Thursday at 8:15pm

Run = Level=Full Pool=WeeklyPool Friday at 8:15pm

}

This is the backup of the catalog

FileSet {

Name = "Catalog"

Include = signature=MD5 {

/var/lib/bacula/bacula.sql

}

}

Client (File Services) to backup

Client {

Name = ServerName

Address = dionysus

FDPort = 9102

Catalog = MyCatalog

Password = "client-pass"

File Retention = 30d

Job Retention = 30d

AutoPrune = yes

}

Definition of file storage device

Storage {

27.3. DAILY TAPE ROTATION 373

Name = Tape

Address = dionysus

SDPort = 9103

Password = "storage-pass"

Device = Tandberg

Media Type = MLR1

}

Generic catalog service

Catalog {

Name = MyCatalog

dbname = bacula; user = bacula; password = ""

}

Reasonable message delivery -- send almost all to email address

and to the console

Messages {

Name = Standard

mailcommand = "/usr/sbin/bsmtp -h localhost -f \"\(Bacula\) %r\"

-s \"Bacula: %t %e of %c %l\" %r"

operatorcommand = "/usr/sbin/bsmtp -h localhost -f \"\(Bacula\) %r\"

-s \"Bacula: Intervention needed for %j\" %r"

mail = root@localhost = all, !skipped

operator = root@localhost = mount

console = all, !skipped, !saved

append = "/var/lib/bacula/log" = all, !skipped

}

Pool definitions

#

Default Pool for jobs, but will hold no actual volumes

Pool {

Name = Default

Pool Type = Backup

}

Pool {

Name = MondayPool

Pool Type = Backup

Recycle = yes

AutoPrune = yes

Volume Retention = 6d

Maximum Volume Jobs = 2

}

Pool {

Name = TuesdayPool

Pool Type = Backup

Recycle = yes

AutoPrune = yes

Volume Retention = 6d

Maximum Volume Jobs = 2

}

Pool {

Name = WednesdayPool

Pool Type = Backup

Recycle = yes

AutoPrune = yes

374 CHAPTER 27. BACKUP STRATEGIES

Volume Retention = 6d

Maximum Volume Jobs = 2

}

Pool {

Name = ThursdayPool

Pool Type = Backup

Recycle = yes

AutoPrune = yes

Volume Retention = 6d

Maximum Volume Jobs = 2

}

Pool {

Name = WeeklyPool

Pool Type = Backup

Recycle = yes

AutoPrune = yes

Volume Retention = 12d

Maximum Volume Jobs = 2

}

EOF

Note, the mailcommand and operatorcommand should be on a single line
each. They were split to preserve the proper page width. In order to get
Bacula to release the tape after the nightly backup, he uses a RunAfterJob
script that deletes the ASCII copy of the database back and then rewinds
and ejects the tape. The following is a copy of end of backup.sh

#! /bin/sh

/usr/lib/bacula/delete_catalog_backup

mt rewind

mt eject

exit 0

Finally, if you list his Volumes, you get something like the following:

*list media

Using default Catalog name=MyCatalog DB=bacula

Pool: WeeklyPool

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

| MeId| VolumeName| MedTyp| VolStat| VolBytes | LastWritten | VolRet| Recyc|

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

| 5 | Friday_1 | MLR1 | Used | 2157171998| 2003-07-11 20:20| 103680| 1 |

| 6 | Friday_2 | MLR1 | Append | 0 | 0 | 103680| 1 |

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

Pool: MondayPool

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

| MeId| VolumeName| MedTyp| VolStat| VolBytes | LastWritten | VolRet| Recyc|

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

| 2 | Monday | MLR1 | Used | 2260942092| 2003-07-14 20:20| 518400| 1 |

27.3. DAILY TAPE ROTATION 375

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

Pool: TuesdayPool

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

| MeId| VolumeName| MedTyp| VolStat| VolBytes | LastWritten | VolRet| Recyc|

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

| 3 | Tuesday | MLR1 | Used | 2268180300| 2003-07-15 20:20| 518400| 1 |

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

Pool: WednesdayPool

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

| MeId| VolumeName| MedTyp| VolStat| VolBytes | LastWritten | VolRet| Recyc|

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

| 4 | Wednesday | MLR1 | Used | 2138871127| 2003-07-09 20:2 | 518400| 1 |

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

Pool: ThursdayPool

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

| MeId| VolumeName| MedTyp| VolStat| VolBytes | LastWritten | VolRet| Recyc|

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

| 1 | Thursday | MLR1 | Used | 2146276461| 2003-07-10 20:50| 518400| 1 |

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

Pool: Default

No results to list.

Note, I have truncated a number of the columns so that the information fits
on the width of a page.

376 CHAPTER 27. BACKUP STRATEGIES

Chapter 28

Autochanger Support

Bacula provides autochanger support for reading and writing tapes. In order
to work with an autochanger, Bacula requires a number of things, each of
which is explained in more detail after this list:

• A script that actually controls the autochanger according to commands
sent by Bacula. We furnish such a script that works with mtx found
in the depkgs distribution. This script works only with single drive
autochangers.

• That each Volume (tape) to be used must be defined in the Catalog
and have a Slot number assigned to it so that Bacula knows where the
Volume is in the autochanger. This is generally done with the label
command. See below for more details. You must pre-label the tapes
manually before using them.

• Modifications to your Storage daemon’s Device configuration resource
to identify that the device is a changer, as well as a few other param-
eters.

• You should also modify your Storage resource definition in the Direc-
tor’s configuration file so that you are automatically prompted for the
Slot when labeling a Volume.

• You need to ensure that your Storage daemon (if not running as root)
has access permissions to both the tape drive and the control device.

• You need to have Autochanger = yes in your Storage resource in
your bacula-dir.conf file so that you will be prompted for the slot
number when you label Volumes.

377

378 CHAPTER 28. AUTOCHANGER SUPPORT

In version 1.37 and later, there is a new Autochanger resource that permits
you to group Device resources thus creating a multi-drive autochanger. If
you have an autochanger, you must use this new resource.

Bacula uses its own mtx-changer script to interface with a program that
actually does the tape changing. Thus in principle, mtx-changer can be
adapted to function with any autochanger program. The current version of
mtx-changer works with the mtx program. However, FreeBSD users have
provided a script in the examples/autochangers directory that allows
Bacula to use the chio program.

Bacula also supports autochangers with barcode readers. This support in-
cludes two Console commands: label barcodes and update slots. For
more details on these commands, see the ”Barcode Support” section below.

Current Bacula autochanger support does not include cleaning, stackers, or
silos. However, under certain conditions, you may be able to make Bac-
ula work with stackers (gravity feed and such). Support for multi-drive
autochangers requires the Autochanger resource introduced in version 1.37.
This resource is also recommended for single drive autochangers.

In principle, if mtx will operate your changer correctly, then it
is just a question of adapting the mtx-changer script (or select-
ing one already adapted) for proper interfacing. You can find
a list of autochangers supported by mtx at the following link:
http://mtx.opensource-sw.net/compatibility.php. The home page for the
mtx project can be found at: http://mtx.opensource-sw.net/.

If you are having troubles, please use the auto command in the btape pro-
gram to test the functioning of your autochanger with Bacula. When Bacula
is running, please remember that for many distributions (e.g. FreeBSD, De-
bian, ...) the Storage daemon runs as bacula.tape rather than root.root,
so you will need to ensure that the Storage daemon has sufficient permissions
to access the autochanger.

28.1 Knowing What SCSI Devices You Have

Under Linux, you can

cat /proc/scsi/scsi

to see what SCSI devices you have available. You can also:

http://mtx.opensource-sw.net/compatibility.php
http://mtx.opensource-sw.net/

28.2. EXAMPLE SCRIPTS 379

cat /proc/scsi/sg/device_hdr /proc/scsi/sg/devices

to find out how to specify their control address (/dev/sg0 for the first,
/dev/sg1 for the second, ...) on the Changer Device = Bacula directive.

Under FreeBSD, you can use:

camcontrol devlist

To list the SCSI devices as well as the /dev/passn that you will use on the
Bacula Changer Device = directive.

Please check that your Storage daemon has permission to access this device.

The following tip for FreeBSD users comes from Danny Butroyd: n re-
boot bacula will NOT have permissions to control the device /dev/pass0
(assuming this is your changer device). To get around this just edit the
/etc/devfs.conf file and add the following to the bottom of the config file:

own pass0 root:bacula

perm pass0 0666

own nsa0.0 root:bacula

perm nsa0.0 0666

I have given the bacula group permission to write to the nsa0.0 device too
just to be on the safe side. To bring these changes into effect just run:-

/etc/rc.d/devfs restart

Basically this will stop you having to change permissions on these devices
to make bacula work when operating the AutoChanger after a reboot.

28.2 Example Scripts

Please read the sections below so that you understand how autochangers
work with Bacula. Although we supply a default mtx-changer script,
your autochanger may require some additional changes. If you want to
see examples of configuration files and scripts, please look in the <bacula-
src>/examples/devices directory where you will find an example HP-
autoloader.conf Bacula Device resource, and several mtx-changer scripts
that have been modified to work with different autochangers.

380 CHAPTER 28. AUTOCHANGER SUPPORT

28.3 Slots

To properly address autochangers, Bacula must know which Volume is in
each slot of the autochanger. Slots are where the changer cartridges reside
when not loaded into the drive. Bacula numbers these slots from one to the
number of cartridges contained in the autochanger.

Bacula will not automatically use a Volume in your autochanger unless it
is labeled and the slot number is stored in the catalog and the Volume is
marked as InChanger. For each Volume in your changer, you will, using the
Console program, assign a slot. This information is kept in Bacula’s catalog
database along with the other data for the volume. If no slot is given, or the
slot is set to zero, Bacula will not attempt to use the autochanger even if
all the necessary configuration records are present. In addition, the console
mount command does not cause Bacula to operate the autochanger, it only
tells Bacula to read any tape that may be in the drive.

You can check if the Slot number and InChanger flag are set by doing a:

list Volumes

in the Console program.

28.4 Multiple Devices

Some autochangers have more than one read/write device (drive). The
new Autochanger resource introduced in version 1.37 permits you to group
Device resources, where each device represents a drive. The Director may
still reference the Devices (drives) directly, but doing so, bypasses the proper
functioning of the drives together. Instead, the Director (in the Storage
resource) should reference the Autochanger resource name. Doing so permits
the Storage daemon to ensure that only one drive uses the mtx-changer script
at a time, and also that two drives don’t reference the same Volume.

Multi-drive requires the use of the Drive Index directive in the Device
resource of the Storage daemon’s configuration file. Drive numbers or the
Device Index are numbered beginning at zero, which is the default. To use
the second Drive in an autochanger, you need to define a second Device
resource and set the Drive Index to 1 for that device. In general, the second
device will have the same Changer Device (control channel) as the first
drive, but a different Archive Device.

28.5. DEVICE CONFIGURATION RECORDS 381

28.5 Device Configuration Records

Configuration of autochangers within Bacula is done in the Device resource
of the Storage daemon. Four records: Autochanger, Changer Device,
Changer Command, and Maximum Changer Wait control how Bacula
uses the autochanger.

These four records, permitted in Device resources, are described in detail
below. Note, however, that the Changer Device and the Changer Com-
mand directives are not needed in the Device resource if they are present
in the Autochanger resource.

Autochanger = Yes—No The Autochanger record specifies that the
current device is or is not an autochanger. The default is no.

Changer Device = <device-name> In addition to the Archive Device
name, you must specify a Changer Device name. This is because
most autochangers are controlled through a different device than is
used for reading and writing the cartridges. For example, on Linux,
one normally uses the generic SCSI interface for controlling the au-
tochanger, but the standard SCSI interface for reading and writing
the tapes. On Linux, for the Archive Device = /dev/nst0, you
would typically have Changer Device = /dev/sg0. Note, some
of the more advanced autochangers will locate the changer device on
/dev/sg1. Such devices typically have several drives and a large num-
ber of tapes.

On FreeBSD systems, the changer device will typically be on
/dev/pass0 through /dev/passn.

On Solaris, the changer device will typically be some file under
/dev/rdsk.

Please ensure that your Storage daemon has permission to access this
device.

Changer Command = <command> This record is used to specify the
external program to call and what arguments to pass to it. The com-
mand is assumed to be a standard program or shell script that can
be executed by the operating system. This command is invoked each
time that Bacula wishes to manipulate the autochanger. The follow-
ing substitutions are made in the command before it is sent to the
operating system for execution:

%% = %

%a = archive device name

382 CHAPTER 28. AUTOCHANGER SUPPORT

%c = changer device name

%d = changer drive index base 0

%f = Client’s name

%j = Job name

%o = command (loaded, load, or unload)

%s = Slot base 0

%S = Slot base 1

%v = Volume name

An actual example for using mtx with the mtx-changer script (part
of the Bacula distribution) is:

Changer Command = "/etc/bacula/mtx-changer %c %o %S %a %d"

Where you will need to adapt the /etc/bacula to be the actual path
on your system where the mtx-changer script resides. Details of the
three commands currently used by Bacula (loaded, load, unload) as
well as the output expected by Bacula are give in the Bacula Au-
tochanger Interface section below.

Maximum Changer Wait = <time> This record is used to define the
maximum amount of time that Bacula will wait for an autoloader to
respond to a command (e.g. load). The default is set to 120 seconds.
If you have a slow autoloader you may want to set it longer.

If the autoloader program fails to respond in this time, it will be killed
and Bacula will request operator intervention.

Drive Index = <number> This record allows you to tell Bacula to use
the second or subsequent drive in an autochanger with multiple drives.
Since the drives are numbered from zero, the second drive is defined
by

Device Index = 1

To use the second drive, you need a second Device resource definition
in the Bacula configuration file. See the Multiple Drive section above
in this chapter for more information.

In addition, for proper functioning of the Autochanger, you must define an
Autochanger resource.

Chapter 29

Autochanger Resource

The Autochanger resource supports single or multiple drive autochangers by
grouping one or more Device resources into one unit called an autochanger in
Bacula (often referred to as a ”tape library” by autochanger manufacturers).

If you have an Autochanger, and you want it to function correctly, you must
have an Autochanger resource in your Storage conf file, and your Direc-
tor’s Storage directives that want to use an Autochanger must refer to the
Autochanger resource name. In previous versions of Bacula, the Director’s
Storage directives referred directly to Device resources that were autochang-
ers. In version 1.38.0 and later, referring directly to Device resources will
not work for Autochangers.

Name = <Autochanger-Name> Specifies the Name of the Au-
tochanger. This name is used in the Director’s Storage definition to
refer to the autochanger. This directive is required.

Device = <Device-name1, device-name2, ...> Specifies the names of
the Device resource or resources that correspond to the autochanger
drive. If you have a multiple drive autochanger, you must specify
multiple Device names, each one referring to a separate Device resource
that contains a Drive Index specification that corresponds to the drive
number base zero. You may specify multiple device names on a single
line separated by commas, and/or you may specify multiple Device
directives. This directive is required.

Changer Device = name-string The specified name-string gives the
system file name of the autochanger device name. If specified in this
resource, the Changer Device name is not needed in the Device re-
source. If it is specified in the Device resource (see above), it will take

383

384 CHAPTER 29. AUTOCHANGER RESOURCE

precedence over one specified in the Autochanger resource.

Changer Command = name-string The name-string specifies an exter-
nal program to be called that will automatically change volumes as
required by Bacula. Most frequently, you will specify the Bacula sup-
plied mtx-changer script as follows. If it is specified here, it need
not be specified in the Device resource. If it is also specified in the
Device resource, it will take precedence over the one specified in the
Autochanger resource.

The following is an example of a valid Autochanger resource definition:

Autochanger {

Name = "DDS-4-changer"

Device = DDS-4-1, DDS-4-2, DDS-4-3

Changer Device = /dev/sg0

Changer Command = "/etc/bacula/mtx-changer %c %o %S %a %d"

}

Device {

Name = "DDS-4-1"

Drive Index = 0

Autochanger = yes

...

}

Device {

Name = "DDS-4-2"

Drive Index = 1

Autochanger = yes

...

Device {

Name = "DDS-4-3"

Drive Index = 2

Autochanger = yes

Autoselect = no

...

}

Please note that it is important to include the Autochanger = yes di-
rective in each Device definition that belongs to an Autochanger. A device
definition should not belong to more than one Autochanger resource. Also,
your Device directive in the Storage resource of the Director’s conf file should
have the Autochanger’s resource name rather than a name of one of the De-
vices.

If you have a drive that physically belongs to an Autochanger but you don’t
want to have it automatically used when Bacula references the Autochanger
for backups, for example, you want to reserve it for restores, you can add
the directive:

29.1. AN EXAMPLE CONFIGURATION FILE 385

Autoselect = no

to the Device resource for that drive. In that case, Bacula will not auto-
matically select that drive when accessing the Autochanger. You can, still
use the drive by referencing it by the Device name directly rather than the
Autochanger name. An example of such a definition is shown above for the
Device DDS-4-3, which will not be selected when the name DDS-4-changer
is used in a Storage definition, but will be used if DDS-4-3 is used.

29.1 An Example Configuration File

The following two resources implement an autochanger:

Autochanger {

Name = "Autochanger"

Device = DDS-4

Changer Device = /dev/sg0

Changer Command = "/etc/bacula/mtx-changer %c %o %S %a %d"

}

Device {

Name = DDS-4

Media Type = DDS-4

Archive Device = /dev/nst0 # Normal archive device

Autochanger = yes

LabelMedia = no;

AutomaticMount = yes;

AlwaysOpen = yes;

}

where you will adapt the Archive Device, the Changer Device, and the
path to the Changer Command to correspond to the values used on your
system.

29.2 A Multi-drive Example Configuration File

The following resources implement a multi-drive autochanger:

Autochanger {

Name = "Autochanger"

Device = Drive-1, Drive-2

Changer Device = /dev/sg0

386 CHAPTER 29. AUTOCHANGER RESOURCE

Changer Command = "/etc/bacula/mtx-changer %c %o %S %a %d"

}

Device {

Name = Drive-1

Drive Index = 0

Media Type = DDS-4

Archive Device = /dev/nst0 # Normal archive device

Autochanger = yes

LabelMedia = no;

AutomaticMount = yes;

AlwaysOpen = yes;

}

Device {

Name = Drive-2

Drive Index = 1

Media Type = DDS-4

Archive Device = /dev/nst1 # Normal archive device

Autochanger = yes

LabelMedia = no;

AutomaticMount = yes;

AlwaysOpen = yes;

}

where you will adapt the Archive Device, the Changer Device, and the
path to the Changer Command to correspond to the values used on your
system.

29.3 Specifying Slots When Labeling

If you add an Autochanger = yes record to the Storage resource in your
Director’s configuration file, the Bacula Console will automatically prompt
you for the slot number when the Volume is in the changer when you add or
label tapes for that Storage device. If your mtx-changer script is properly
installed, Bacula will automatically load the correct tape during the label
command.

You must also set Autochanger = yes in the Storage daemon’s Device
resource as we have described above in order for the autochanger to be
used. Please see the Storage Resource in the Director’s chapter and the
Device Resource in the Storage daemon chapter for more details on these
records.

Thus all stages of dealing with tapes can be totally automated. It is also
possible to set or change the Slot using the update command in the Console

29.4. CHANGING CARTRIDGES 387

and selecting Volume Parameters to update.

Even though all the above configuration statements are specified and correct,
Bacula will attempt to access the autochanger only if a slot is non-zero in
the catalog Volume record (with the Volume name).

If your autochanger has barcode labels, you can label all the Volumes in your
autochanger one after another by using the label barcodes command. For
each tape in the changer containing a barcode, Bacula will mount the tape
and then label it with the same name as the barcode. An appropriate Media
record will also be created in the catalog. Any barcode that begins with the
same characters as specified on the ”CleaningPrefix=xxx” command, will
be treated as a cleaning tape, and will not be labeled. For example with:

Please note that Volumes must be pre-labeled to be automatically used in
the autochanger during a backup. If you do not have a barcode reader, this
is done manually (or via a script).

Pool {

Name ...

Cleaning Prefix = "CLN"

}

Any slot containing a barcode of CLNxxxx will be treated as a cleaning tape
and will not be mounted.

29.4 Changing Cartridges

If you wish to insert or remove cartridges in your autochanger or you man-
ually run the mtx program, you must first tell Bacula to release the au-
tochanger by doing:

unmount

(change cartridges and/or run mtx)

mount

If you do not do the unmount before making such a change, Bacula will
become completely confused about what is in the autochanger and may
stop function because it expects to have exclusive use of the autochanger
while it has the drive mounted.

388 CHAPTER 29. AUTOCHANGER RESOURCE

29.5 Dealing with Multiple Magazines

If you have several magazines or if you insert or remove cartridges from a
magazine, you should notify Bacula of this. By doing so, Bacula will as
a preference, use Volumes that it knows to be in the autochanger before
accessing Volumes that are not in the autochanger. This prevents unneeded
operator intervention.

If your autochanger has barcodes (machine readable tape labels), the task
of informing Bacula is simple. Every time, you change a magazine, or add
or remove a cartridge from the magazine, simply do

unmount

(remove magazine)

(insert new magazine)

update slots

mount

in the Console program. This will cause Bacula to request the autochanger
to return the current Volume names in the magazine. This will be done with-
out actually accessing or reading the Volumes because the barcode reader
does this during inventory when the autochanger is first turned on. Bacula
will ensure that any Volumes that are currently marked as being in the mag-
azine are marked as no longer in the magazine, and the new list of Volumes
will be marked as being in the magazine. In addition, the Slot numbers
of the Volumes will be corrected in Bacula’s catalog if they are incorrect
(added or moved).

If you do not have a barcode reader on your autochanger, you have several
alternatives.

1. You can manually set the Slot and InChanger flag using the update
volume command in the Console (quite painful).

2. You can issue a

update slots scan

command that will cause Bacula to read the label on each of the car-
tridges in the magazine in turn and update the information (Slot,
InChanger flag) in the catalog. This is quite effective but does take
time to load each cartridge into the drive in turn and read the Volume
label.

29.6. SIMULATING BARCODES IN YOUR AUTOCHANGER 389

3. You can modify the mtx-changer script so that it simulates an au-
tochanger with barcodes. See below for more details.

29.6 Simulating Barcodes in your Autochanger

You can simulate barcodes in your autochanger by making the mtx-
changer script return the same information that an autochanger with bar-
codes would do. This is done by commenting out the one and only line in
the list) case, which is:

${MTX} -f $ctl status | grep " *Storage Element [0-9]*:.*Full" | awk "{print \$3 \$4}" | sed "s/Full *\(:VolumeTag=\)*//"

at approximately line 99 by putting a # in column one of that line, or by
simply deleting it. Then in its place add a new line that prints the contents
of a file. For example:

cat /etc/bacula/changer.volumes

Be sure to include a full path to the file, which can have any name. The
contents of the file must be of the following format:

1:Volume1

2:Volume2

3:Volume3

...

Where the 1, 2, 3 are the slot numbers and Volume1, Volume2,
... are the Volume names in those slots. You can have multiple
files that represent the Volumes in different magazines, and when you
change magazines, simply copy the contents of the correct file into your
/etc/bacula/changer.volumes file. There is no need to stop and start
Bacula when you change magazines, simply put the correct data in the file,
then run the update slots command, and your autochanger will appear to
Bacula to be an autochanger with barcodes.

29.7 The Full Form of the Update Slots Command

If you change only one cartridge in the magazine, you may not want to scan
all Volumes, so the update slots command (as well as the update slots
scan command) has the additional form:

390 CHAPTER 29. AUTOCHANGER RESOURCE

update slots=n1,n2,n3-n4, ...

where the keyword scan can be appended or not. The n1,n2, ... represent
Slot numbers to be updated and the form n3-n4 represents a range of Slot
numbers to be updated (e.g. 4-7 will update Slots 4,5,6, and 7).

This form is particularly useful if you want to do a scan (time expensive)
and restrict the update to one or two slots.

For example, the command:

update slots=1,6 scan

will cause Bacula to load the Volume in Slot 1, read its Volume label and
update the Catalog. It will do the same for the Volume in Slot 6. The
command:

update slots=1-3,6

will read the barcoded Volume names for slots 1,2,3 and 6 and make the
appropriate updates in the Catalog. If you don’t have a barcode reader
or have not modified the mtx-changer script as described above, the above
command will not find any Volume names so will do nothing.

29.8 FreeBSD Issues

If you are having problems on FreeBSD when Bacula tries to select a tape,
and the message is Device not configured, this is because FreeBSD has
made the tape device /dev/nsa1 disappear when there is no tape mounted
in the autochanger slot. As a consequence, Bacula is unable to open the
device. The solution to the problem is to make sure that some tape is
loaded into the tape drive before starting Bacula. This problem is corrected
in Bacula versions 1.32f-5 and later.

Please see the Tape Testing chapter of this manual for important infor-
mation concerning your tape drive before doing the autochanger testing.

29.9. TESTING AUTOCHANGER AND ADAPTING MTX-CHANGER SCRIPT391

29.9 Testing Autochanger and Adapting mtx-
changer script

Before attempting to use the autochanger with Bacula, it is preferable to
”hand-test” that the changer works. To do so, we suggest you do the fol-
lowing commands (assuming that the mtx-changer script is installed in
/etc/bacula/mtx-changer):

Make sure Bacula is not running.

/etc/bacula/mtx-changer /dev/sg0 list 0 /dev/nst0 0 This
command should print:

1:

2:

3:

...

or one number per line for each slot that is occupied in your changer,
and the number should be terminated by a colon (:). If your changer
has barcodes, the barcode will follow the colon. If an error message is
printed, you must resolve the problem (e.g. try a different SCSI control
device name if /dev/sg0 is incorrect. For example, on FreeBSD sys-
tems, the autochanger SCSI control device is generally /dev/pass2.

/etc/bacula/mtx-changer /dev/sg0 slots 0 /dev/nst0 0 This
command should return the number of slots in your autochanger.

/etc/bacula/mtx-changer /dev/sg0 unload If a tape is loaded,
this should cause it to be unloaded.

/etc/bacula/mtx-changer /dev/sg0 load 3 /dev/nst0 0
Assuming you have a tape in slot 3, it will be loaded into the read
slot (0).

/etc/bacula/mtx-changer /dev/sg0 loaded 0 /dev/nst0 0 It
should print ”3”

/etc/bacula/mtx-changer /dev/sg0 unload

Once all the above commands work correctly, assuming that you have the
right Changer Command in your configuration, Bacula should be able
to operate the changer. The only remaining area of problems will be if

392 CHAPTER 29. AUTOCHANGER RESOURCE

your autoloader needs some time to get the tape loaded after issuing the
command. After the mtx-changer script returns, Bacula will immediately
rewind and read the tape. If Bacula gets rewind I/O errors after a tape
change, you will probably need to insert a sleep 20 after the mtx command,
but be careful to exit the script with a zero status by adding exit 0 after
any additional commands you add to the script. This is because Bacula
checks the return status of the script, which should be zero if all went well.

You can test whether or not you need a sleep by putting the following
commands into a file and running it as a script:

#!/bin/sh

/etc/bacula/mtx-changer /dev/sg0 unload

/etc/bacula/mtx-changer /dev/sg0 load 3

mt -f /dev/st0 rewind

mt -f /dev/st0 weof

If the above script runs, you probably have no timing problems. If it does
not run, start by putting a sleep 30 or possibly a sleep 60 in the script just
after the mtx-changer load command. If that works, then you should move
the sleep into the actual mtx-changer script so that it will be effective
when Bacula runs.

A second problem that comes up with a small number of autochangers is
that they need to have the cartridge ejected before it can be removed. If
this is the case, the load 3 will never succeed regardless of how long you
wait. If this seems to be your problem, you can insert an eject just after the
unload so that the script looks like:

#!/bin/sh

/etc/bacula/mtx-changer /dev/sg0 unload

mt -f /dev/st0 offline

/etc/bacula/mtx-changer /dev/sg0 load 3

mt -f /dev/st0 rewind

mt -f /dev/st0 weof

Obviously, if you need the offline command, you should move it into the
mtx-changer script ensuring that you save the status of the mtx command
or always force an exit 0 from the script, because Bacula checks the return
status of the script.

As noted earlier, there are several scripts in <bacula-
source>/examples/devices that implement the above features, so
they may be a help to you in getting your script to work.

29.10. USING THE AUTOCHANGER 393

If Bacula complains ”Rewind error on /dev/nst0. ERR=Input/output er-
ror.” you most likely need more sleep time in your mtx-changer before
returning to Bacula after a load command has been completed.

29.10 Using the Autochanger

Let’s assume that you have properly defined the necessary Storage daemon
Device records, and you have added the Autochanger = yes record to the
Storage resource in your Director’s configuration file.

Now you fill your autochanger with say six blank tapes.

What do you do to make Bacula access those tapes?

One strategy is to prelabel each of the tapes. Do so by starting Bacula, then
with the Console program, enter the label command:

./console

Connecting to Director rufus:8101

1000 OK: rufus-dir Version: 1.26 (4 October 2002)

*label

it will then print something like:

Using default Catalog name=BackupDB DB=bacula

The defined Storage resources are:

1: Autochanger

2: File

Select Storage resource (1-2): 1

I select the autochanger (1), and it prints:

Enter new Volume name: TestVolume1

Enter slot (0 for none): 1

where I entered TestVolume1 for the tape name, and slot 1 for the slot.
It then asks:

Defined Pools:

1: Default

2: File

Select the Pool (1-2): 1

394 CHAPTER 29. AUTOCHANGER RESOURCE

I select the Default pool. This will be automatically done if you only have
a single pool, then Bacula will proceed to unload any loaded volume, load
the volume in slot 1 and label it. In this example, nothing was in the drive,
so it printed:

Connecting to Storage daemon Autochanger at localhost:9103 ...

Sending label command ...

3903 Issuing autochanger "load slot 1" command.

3000 OK label. Volume=TestVolume1 Device=/dev/nst0

Media record for Volume=TestVolume1 successfully created.

Requesting mount Autochanger ...

3001 Device /dev/nst0 is mounted with Volume TestVolume1

You have messages.

*

You may then proceed to label the other volumes. The messages will change
slightly because Bacula will unload the volume (just labeled TestVolume1)
before loading the next volume to be labeled.

Once all your Volumes are labeled, Bacula will automatically load them as
they are needed.

To ”see” how you have labeled your Volumes, simply enter the list volumes
command from the Console program, which should print something like the
following:

*{\bf list volumes}

Using default Catalog name=BackupDB DB=bacula

Defined Pools:

1: Default

2: File

Select the Pool (1-2): 1

+-------+----------+--------+---------+-------+--------+----------+-------+------+

| MedId | VolName | MedTyp | VolStat | Bites | LstWrt | VolReten | Recyc | Slot |

+-------+----------+--------+---------+-------+--------+----------+-------+------+

| 1 | TestVol1 | DDS-4 | Append | 0 | 0 | 30672000 | 0 | 1 |

| 2 | TestVol2 | DDS-4 | Append | 0 | 0 | 30672000 | 0 | 2 |

| 3 | TestVol3 | DDS-4 | Append | 0 | 0 | 30672000 | 0 | 3 |

| ... |

+-------+----------+--------+---------+-------+--------+----------+-------+------+

29.11 Barcode Support

Bacula provides barcode support with two Console commands, label bar-
codes and update slots.

29.12. BACULA AUTOCHANGER INTERFACE 395

The label barcodes will cause Bacula to read the barcodes of all the cas-
settes that are currently installed in the magazine (cassette holder) using
the mtx-changer list command. Each cassette is mounted in turn and
labeled with the same Volume name as the barcode.

The update slots command will first obtain the list of cassettes and their
barcodes from mtx-changer. Then it will find each volume in turn in the
catalog database corresponding to the barcodes and set its Slot to correspond
to the value just read. If the Volume is not in the catalog, then nothing will
be done. This command is useful for synchronizing Bacula with the current
magazine in case you have changed magazines or in case you have moved
cassettes from one slot to another.

The Cleaning Prefix statement can be used in the Pool resource to define
a Volume name prefix, which if it matches that of the Volume (barcode) will
cause that Volume to be marked with a VolStatus of Cleaning. This will
prevent Bacula from attempting to write on the Volume.

29.12 Bacula Autochanger Interface

Bacula calls the autochanger script that you specify on the Changer De-
vice statement. Normally this script will be the mtx-changer script that
we can provide, but it can in fact be any program. The only requirements
are that the ”commands” that Bacula uses are loaded, load, unload, list,
and slots. In addition, each of those commands must return the information
in the precise format as specified below:

- Currently the changer commands used are:

loaded -- returns number of the slot that is loaded, base 1,

in the drive or 0 if the drive is empty.

load -- loads a specified slot (note, some autochangers

require a 30 second pause after this command) into

the drive.

unload -- unloads the device (returns cassette to its slot).

list -- returns one line for each cassette in the autochanger

in the format <slot>:<barcode>. Where

the {\bf slot} is the non-zero integer representing

the slot number, and {\bf barcode} is the barcode

associated with the cassette if it exists and if you

autoloader supports barcodes. Otherwise the barcode

field is blank.

slots -- returns total number of slots in the autochanger.

Bacula checks the exit status of the program called, and if it is zero, the data
is accepted. If the exit status is non-zero, Bacula ignores any information

396 CHAPTER 29. AUTOCHANGER RESOURCE

returned and treats the drive as if it is not an autochanger.

Chapter 30

Supported Autochangers

I hesitate to call these ”supported” autochangers because the only au-
tochangers that I have in my possession and am able to test are the HP
SureStore DAT40X6 and the Overland PowerLoader LTO-2. All the other
autochangers have been reported to work by Bacula users. Note, in the
Capacity/Slot column below, I quote the Compressed capacity per tape (or
Slot).

Since on most systems (other than FreeBSD), Bacula uses mtx through
the mtx-changer script, in principle, if mtx will operate your changer
correctly, then it is just a question of adapting the mtx-changer script
(or selecting one already adapted) for proper interfacing. You can
find a list of autochangers supported by mtx at the following link:
http://mtx.opensource-sw.net/compatibility.php. The home page for the
mtx project can be found at: http://mtx.opensource-sw.net/.

OS Man. Media Model Slots Cap/Slot

Linux Adic DDS-3 Adic 1200G 12 -

Linux Adic DLT FastStore
4000

7 20GB

Linux Adic LTO-1/2, SDLT 320 Adic Scalar
24

24 100GB

Linux Adic LTO-2 Adic Fast-
Stor 2, Sun
Storedge L8

8 200GB

Linux BDT AIT BDT Thin-
Stor

? 200GB

397

http://mtx.opensource-sw.net/compatibility.php
http://mtx.opensource-sw.net/

398 CHAPTER 30. SUPPORTED AUTOCHANGERS

- CA-VM ?? Tape ?? ??

Linux Dell DLT VI,LTO-2,LTO3 PowerVault
122T/132T/136T

- 100GB

Linux Dell LTO-2 PowerVault
124T

- 200GB

- DFSMS ?? VM RMM - ??

Linux Exabyte VXA2 VXA Pack-
etLoader
1x10 2U

10 80/160GB

- Exabyte LTO Magnum
1x7 LTO
Tape Auot-
loader

7 200/400GB

Linux Exabyte AIT-2 215A 15 (2
drives)

50GB

Linux HP DDS-4 SureStore
DAT-40X6

6 40GB

Linux HP Ultrium-2/LTO MSL 6000/
60030/ 5052

28 200/400GB

- HP DLT A4853 DLT 30 40/70GB

Linux HP (Com-
paq)

DLT VI Compaq
TL-895

96+4
import
export

35/70GB

z/VM IBM ?? IBM Tape
Manager

- ??

z/VM IBM ?? native tape - ??

Linux IBM LTO IBM 3581
Ultrium
Tape
Loader

7 200/400GB

FreeBSD
5.4

IBM DLT IBM 3502-
R14 –
rebranded
ATL L-500

14 35/70GB

Linux IBM ??? IBM To-
talStorage
3582L23

?? ??

399

Debian Overland LTO Overland
Load-
erXpress
LTO/DLT8000

10-19 40-100GB

Fedora Overland LTO Overland
Power-
Loader
LTO-2

10-19 200/400GB

FreeBSD
5.4-
Stable

Overland LTO-2 Overland
Power-
loader tape

17 100GB

- Overland LTO Overland
Neo2000
LTO

26-30 100GB

Linux Quantum DLT-S4 Superloader
3

16 800/1600GB

Linux Quantum LTO-2 Superloader
3

16 200/400GB

Linux Quantum LTO-3 PX502 ?? ??

FreeBSD
4.9

QUALSTAR
TLS-4210
(Qualstar)

AIT1: 36GB, AIT2: 50GB
all uncomp

QUALSTAR
TLS-4210

12 AIT1:
36GB,
AIT2:
50GB all
uncomp

Linux Skydata DLT ATL-L200 8 40/80

- Sony DDS-4 TSL-11000 8 40GB

Linux Sony AIT-2 LIB-
304(SDX-
500C)

? 200GB

Linux Sony AIT-3 LIB-D81) ? 200GB

FreeBSD
4.9-
STABLE

Sony AIT-1 TSL-
SA300C

4 45/70GB

- Storagetek DLT Timberwolf
DLT

6 40/70

- Storagetek ?? ACSLS ?? ??

Solaris Sun 4mm DLT Sun Desk-
top Archive
Python
29279

4 20GB

400 CHAPTER 30. SUPPORTED AUTOCHANGERS

Linux Tandberg DLT VI VS 640 8? 35/70GB

Linux
2.6.x

Tandberg
Data

SLR100 SLR100 Au-
toloader

8 50/100GB

Chapter 31

Data Spooling

Bacula allows you to specify that you want the Storage daemon to initially
write your data to disk and then subsequently to tape. This serves several
important purposes.

• It takes a long time for data to come in from the File daemon during
an Incremental backup. If it is directly written to tape, the tape will
start and stop or shoe-shine as it is often called causing tape wear. By
first writing the data to disk, then writing it to tape, the tape can be
kept in continual motion.

• While the spooled data is being written to the tape, the despooling
process has exclusive use of the tape. This means that you can spool
multiple simultaneous jobs to disk, then have them very efficiently
despooled one at a time without having the data blocks from several
jobs intermingled, thus substantially improving the time needed to
restore files. While despooling, all jobs spooling continue running.

• Writing to a tape can be slow. By first spooling your data to disk,
you can often reduce the time the File daemon is running on a system,
thus reducing downtime, and/or interference with users. Of course, if
your spool device is not large enough to hold all the data from your
File daemon, you may actually slow down the overall backup.

Data spooling is exactly that ”spooling”. It is not a way to first write a
”backup” to a disk file and then to a tape. When the backup has only been
spooled to disk, it is not complete yet and cannot be restored until it is
written to tape.

401

402 CHAPTER 31. DATA SPOOLING

Bacula version 1.39.x and later supports writing a backup to disk then later
Migrating or moving it to a tape (or any other medium). For details on
this, please see the Migration chapter of this manual for more details.

The remainder of this chapter explains the various directives that you can
use in the spooling process.

31.1 Data Spooling Directives

The following directives can be used to control data spooling.

• To turn data spooling on/off at the Job level in the Job resource in
the Director’s conf file (default no).

SpoolData = yes—no

• To override the Job specification in a Schedule Run directive in the
Director’s conf file.

SpoolData = yes—no

• To limit the maximum total size of the spooled data for a particular
device. Specified in the Device resource of the Storage daemon’s conf
file (default unlimited).

Maximum Spool Size = size Where size is a the maximum spool
size for all jobs specified in bytes.

• To limit the maximum total size of the spooled data for a particular
device for a single job. Specified in the Device Resource of the Storage
daemon’s conf file (default unlimited).

Maximum Job Spool Size = size Where size is the maximum spool
file size for a single job specified in bytes.

• To specify the spool directory for a particular device. Specified in
the Device Resource of the Storage daemon’s conf file (default, the
working directory).

Spool Directory = directory

31.2 !!! MAJOR WARNING !!!

Please be very careful to exclude the spool directory from any backup, oth-
erwise, your job will write enormous amounts of data to the Volume, and

31.3. OTHER POINTS 403

most probably terminate in error. This is because in attempting to backup
the spool file, the backup data will be written a second time to the spool
file, and so on ad infinitum.

Another advice is to always specify the maximum spool size so that your
disk doesn’t completely fill up. In principle, data spooling will properly
detect a full disk, and despool data allowing the job to continue. However,
attribute spooling is not so kind to the user. If the disk on which attributes
are being spooled fills, the job will be canceled. In addition, if your working
directory is on the same partition as the spool directory, then Bacula jobs
will fail possibly in bizarre ways when the spool fills.

31.3 Other Points

• When data spooling is enabled, Bacula automatically turns on at-
tribute spooling. In other words, it also spools the catalog entries to
disk. This is done so that in case the job fails, there will be no catalog
entries pointing to non-existent tape backups.

• Attribute despooling is done at the end of the job, as a consequence,
after Bacula stops writing the data to the tape, there may be a pause
while the attributes are sent to the Directory and entered into the
catalog before the job terminates.

• Attribute spool files are always placed in the working directory.

• When Bacula begins despooling data spooled to disk, it takes exclusive
use of the tape. This has the major advantage that in running multiple
simultaneous jobs at the same time, the blocks of several jobs will not
be intermingled.

• It probably does not make a lot of sense to enable data spooling if you
are writing to disk files.

• It is probably best to provide as large a spool file as possible to avoid
repeatedly spooling/despooling. Also, while a job is despooling to
tape, the File daemon must wait (i.e. spooling stops for the job while
it is despooling).

• If you are running multiple simultaneous jobs, Bacula will continue
spooling other jobs while one is despooling to tape, provided there is
sufficient spool file space.

404 CHAPTER 31. DATA SPOOLING

Chapter 32

Python Scripting

You may be asking what Python is and why a scripting language is needed
in Bacula. The answer to the first question is that Python is an Object
Oriented scripting language with features similar to those found in Perl, but
the syntax of the language is much cleaner and simpler. The answer to why
have scripting in Bacula is to give the user more control over the whole
backup process. Probably the simplest example is when Bacula needs a new
Volume name, with a scripting language such as Python, you can generate
any name you want, based on the current state of Bacula.

32.1 Python Configuration

Python must be enabled during the configuration process by adding a
--with-python, and possibly specifying an alternate directory if your Python
is not installed in a standard system location. If you are using RPMs you
will need the python-devel package installed.

When Python is configured, it becomes an integral part of Bacula and runs
in Bacula’s address space, so even though it is an interpreted language, it is
very efficient.

When the Director starts, it looks to see if you have a Scripts Directory
Directive defined (normal default /etc/bacula/scripts, if so, it looks in
that directory for a file named DirStartUp.py. If it is found, Bacula will
pass this file to Python for execution. The Scripts Directory is a new
directive that you add to the Director resource of your bacula-dir.conf file.

Note: Bacula does not install Python scripts by default because these scripts

405

406 CHAPTER 32. PYTHON SCRIPTING

are for you to program. This means that with a default installation with
Python enabled, Bacula will print the following error message:

09-Jun 15:14 bacula-dir: ERROR in pythonlib.c:131 Could not import

Python script /etc/bacula/scripts/DirStartUp. Python disabled.

The source code directory examples/python contains sample scripts for
DirStartUp.py, SDStartUp.py, and FDStartUp.py that you might want to
use as a starting point. Normally, your scripts directory (at least where you
store the Python scripts) should be writable by Bacula, because Python will
attempt to write a compiled version of the scripts (e.g. DirStartUp.pyc) back
to that directory.

When starting with the sample scripts, you can delete any part that you
will not need, but you should keep all the Bacula Event and Job Event
definitions. If you do not want a particular event, simply replace the existing
code with a noop = 1.

32.2 Bacula Events

A Bacula event is a point in the Bacula code where Bacula will call a sub-
routine (actually a method) that you have defined in the Python StartUp
script. Events correspond to some significant event such as a Job Start, a
Job End, Bacula needs a new Volume Name, ... When your script is called,
it will have access to all the Bacula variables specific to the Job (attributes
of the Job Object), and it can even call some of the Job methods (subrou-
tines) or set new values in the Job attributes, such as the Priority. You will
see below how the events are used.

32.3 Python Objects

There are four Python objects that you will need to work with:

The Bacula Object The Bacula object is created by the Bacula daemon
(the Director in the present case) when the daemon starts. It is avail-
able to the Python startup script, DirStartup.py, by importing the
Bacula definitions with import bacula. The methods available with
this object are described below.

32.3. PYTHON OBJECTS 407

The Bacula Events Class You create this class in the startup script, and
you pass it to the Bacula Object’s set events method. The purpose
of the Bacula Events Class is to define what global or daemon events
you want to monitor. When one of those events occurs, your Bacula
Events Class will be called at the method corresponding to the event.
There are currently three events, JobStart, JobEnd, and Exit, which
are described in detail below.

The Job Object When a Job starts, and assuming you have defined a
JobStart method in your Bacula Events Class, Bacula will create a
Job Object. This object will be passed to the JobStart event. The
Job Object has a has good number of read-only members or attributes
providing many details of the Job, and it also has a number of writable
attributes that allow you to pass information into the Job. These
attributes are described below.

The Job Events Class You create this class in the JobStart method of
your Bacula Events class, and it allows you to define which of the pos-
sible Job Object events you want to see. You must pass an instance
of your Job Events class to the Job Object set events() method. Nor-
mally, you will probably only have one Job Events Class, which will be
instantiated for each Job. However, if you wish to see different events
in different Jobs, you may have as many Job Events classes as you
wish.

The first thing the startup script must do is to define what global Bacula
events (daemon events), it wants to see. This is done by creating a Bacula
Events class, instantiating it, then passing it to the set events method.
There are three possible events.

JobStart This Python method, if defined, will be called each time a Job is
started. The method is passed the class instantiation object as the first
argument, and the Bacula Job object as the second argument. The
Bacula Job object has several built-in methods, and you can define
which ones you want called. If you do not define this method, you will
not be able to interact with Bacula jobs.

JobEnd This Python method, if defined, will be called each time a Job
terminates. The method is passed the class instantiation object as the
first argument, and the Bacula Job object as the second argument.

Exit This Python method, if defined, will be called when the Director ter-
minates. The method is passed the class instantiation object as the
first argument.

408 CHAPTER 32. PYTHON SCRIPTING

Access to the Bacula variables and methods is done with:

import bacula

The following are the read-only attributes provided by the bacula object.

Name

ConfigFile

WorkingDir

Version string consisting of ”Version Build-date”

A simple definition of the Bacula Events Class might be the following:

import sys, bacula

class BaculaEvents:

def JobStart(self, job):

...

Then to instantiate the class and pass it to Bacula, you would do:

bacula.set_events(BaculaEvents()) # register Bacula Events wanted

And at that point, each time a Job is started, your BaculaEvents JobStart
method will be called.

Now to actually do anything with a Job, you must define which Job events
you want to see, and this is done by defining a JobEvents class containing
the methods you want called. Each method name corresponds to one of the
Job Events that Bacula will generate.

A simple Job Events class might look like the following:

class JobEvents:

def NewVolume(self, job):

...

Here, your JobEvents class method NewVolume will be called each time the
Job needs a new Volume name. To actually register the events defined in
your class with the Job, you must instantiate the JobEvents class and set it
in the Job set events variable. Note, this is a bit different from how you
registered the Bacula events. The registration process must be done in the
Bacula JobStart event (your method). So, you would modify Bacula Events
(not the Job events) as follows:

32.3. PYTHON OBJECTS 409

import sys, bacula

class BaculaEvents:

def JobStart(self, job):

events = JobEvents() # create instance of Job class

job.set_events(events) # register Job events desired

...

When a job event is triggered, the appropriate event definition is called in
the JobEvents class. This is the means by which your Python script or code
gets control. Once it has control, it may read job attributes, or set them.
See below for a list of read-only attributes, and those that are writable.

In addition, the Bacula job object in the Director has a number of methods
(subroutines) that can be called. They are:

set events The set events method takes a single argument, which is the in-
stantiation of the Job Events class that contains the methods that you
want called. The method names that will be called must correspond
to the Bacula defined events. You may define additional methods but
Bacula will not use them.

run The run method takes a single string argument, which is the run com-
mand (same as in the Console) that you want to submit to start a new
Job. The value returned by the run method is the JobId of the job
that started, or -1 if there was an error.

write The write method is used to be able to send print output to the Job
Report. This will be described later.

cancel The cancel method takes a single integer argument, which is a JobId.
If JobId is found, it will be canceled.

DoesVolumeExist The DoesVolumeExist method takes a single string ar-
gument, which is the Volume name, and returns 1 if the volume exists
in the Catalog and 0 if the volume does not exist.

The following attributes are read/write within the Director for the job ob-
ject.

Priority Read or set the Job priority. Note, that setting a Job Priority is
effective only before the Job actually starts.

Level This attribute contains a string representing the Job level, e.g. Full,
Differential, Incremental, ... if read. The level can also be set.

410 CHAPTER 32. PYTHON SCRIPTING

The following read-only attributes are available within the Director for the
job object.

Type This attribute contains a string representing the Job type, e.g.
Backup, Restore, Verify, ...

JobId This attribute contains an integer representing the JobId.

Client This attribute contains a string with the name of the Client for this
job.

NumVols This attribute contains an integer with the number of Volumes
in the Pool being used by the Job.

Pool This attribute contains a string with the name of the Pool being used
by the Job.

Storage This attribute contains a string with the name of the Storage
resource being used by the Job.

Catalog This attribute contains a string with the name of the Catalog
resource being used by the Job.

MediaType This attribute contains a string with the name of the Media
Type associated with the Storage resource being used by the Job.

Job This attribute contains a string containing the name of the Job resource
used by this job (not unique).

JobName This attribute contains a string representing the full unique Job
name.

JobStatus This attribute contains a single character string representing
the current Job status. The status may change during execution of
the job. It may take on the following values:

C Created, not yet running

R Running

B Blocked

T Completed successfully

E Terminated with errors

e Non-fatal error

f Fatal error

D Verify found differences

A Canceled by user

32.4. PYTHON CONSOLE COMMAND 411

F Waiting for Client

S Waiting for Storage daemon

m Waiting for new media

M Waiting for media mount

s Waiting for storage resource

j Waiting for job resource

c Waiting for client resource

d Waiting on maximum jobs

t Waiting on start time

p Waiting on higher priority jobs

Priority This attribute contains an integer with the priority assigned to
the job.

CatalogRes tuple consisting of (DBName, Address, User, Password,
Socket, Port, Database Vendor) taken from the Catalog resource for
the Job with the exception of Database Vendor, which is one of the
following: MySQL, PostgreSQL, SQLite, Internal, depending on what
database you configured.

VolumeName After a Volume has been purged, this attribute will contain
the name of that Volume. At other times, this value may have no
meaning.

The following write-only attributes are available within the Director:

JobReport Send line to the Job Report.

VolumeName Set a new Volume name. Valid only during the NewVolume
event.

32.4 Python Console Command

There is a new Console command named python. It takes a single argument
restart. Example:

python restart

This command restarts the Python interpreter in the Director. This can
be useful when you are modifying the DirStartUp script, because normally
Python will cache it, and thus the script will be read one time.

412 CHAPTER 32. PYTHON SCRIPTING

32.5 Debugging Python Scripts

In general, you debug your Python scripts by using print statements. You
can also develop your script or important parts of it as a separate file using
the Python interpreter to run it. Once you have it working correctly, you can
then call the script from within the Bacula Python script (DirStartUp.py).

If you are having problems loading DirStartUp.py, you will probably not get
any error messages because Bacula can only print Python error messages
after the Python interpreter is started. However, you may be able to see
the error messages by starting Bacula in a shell window with the -d1 option
on the command line. That should cause the Python error messages to be
printed in the shell window.

If you are getting error messages such as the following when loading
DirStartUp.py:

Traceback (most recent call last):

File "/etc/bacula/scripts/DirStartUp.py", line 6, in ?

import time, sys, bacula

ImportError: /usr/lib/python2.3/lib-dynload/timemodule.so: undefined

symbol: PyInt_FromLong

bacula-dir: pythonlib.c:134 Python Import error.

It is because the DirStartUp script is calling a dynamically loaded module
(timemodule.so in the above case) that then tries to use Python functions
exported from the Python interpreter (in this case PyInt FromLong). The
way Bacula is currently linked with Python does not permit this. The
solution to the problem is to put such functions (in this case the import
of time into a separate Python script, which will do your calculations and
return the values you want. Then call (not import) this script from the
Bacula DirStartUp.py script, and it all should work as you expect.

32.6 Python Example

An example script for the Director startup file is provided in exam-
ples/python/DirStartup.py as follows:

#

Bacula Python interface script for the Director

#

32.6. PYTHON EXAMPLE 413

You must import both sys and bacula

import sys, bacula

This is the list of Bacula daemon events that you

can receive.

class BaculaEvents(object):

def __init__(self):

Called here when a new Bacula Events class is

is created. Normally not used

noop = 1

def JobStart(self, job):

"""

Called here when a new job is started. If you want

to do anything with the Job, you must register

events you want to receive.

"""

events = JobEvents() # create instance of Job class

events.job = job # save Bacula’s job pointer

job.set_events(events) # register events desired

sys.stderr = events # send error output to Bacula

sys.stdout = events # send stdout to Bacula

jobid = job.JobId; client = job.Client

numvols = job.NumVols

job.JobReport="Python Dir JobStart: JobId=%d Client=%s NumVols=%d\n" % (jobid,client,numvols)

Bacula Job is going to terminate

def JobEnd(self, job):

jobid = job.JobId

client = job.Client

job.JobReport="Python Dir JobEnd output: JobId=%d Client=%s.\n" % (jobid, client)

Called here when the Bacula daemon is going to exit

def Exit(self, job):

print "Daemon exiting."

bacula.set_events(BaculaEvents()) # register daemon events desired

"""

These are the Job events that you can receive.

"""

class JobEvents(object):

def __init__(self):

Called here when you instantiate the Job. Not

normally used

noop = 1

def JobInit(self, job):

Called when the job is first scheduled

noop = 1

def JobRun(self, job):

Called just before running the job after initializing

414 CHAPTER 32. PYTHON SCRIPTING

This is the point to change most Job parameters.

It is equivalent to the JobRunBefore point.

noop = 1

def NewVolume(self, job):

Called when Bacula wants a new Volume name. The Volume

name returned, if any, must be stored in job.VolumeName

jobid = job.JobId

client = job.Client

numvol = job.NumVols;

print job.CatalogRes

job.JobReport = "JobId=%d Client=%s NumVols=%d" % (jobid, client, numvol)

job.JobReport="Python before New Volume set for Job.\n"

Vol = "TestA-%d" % numvol

job.JobReport = "Exists=%d TestA-%d" % (job.DoesVolumeExist(Vol), numvol)

job.VolumeName="TestA-%d" % numvol

job.JobReport="Python after New Volume set for Job.\n"

return 1

def VolumePurged(self, job):

Called when a Volume is purged. The Volume name can be referenced

with job.VolumeName

noop = 1

Chapter 33

ANSI and IBM Tape Labels

Bacula supports ANSI or IBM tape labels as long as you enable it. In fact,
with the proper configuration, you can force Bacula to require ANSI or IBM
labels.

Bacula can create an ANSI or IBM label, but if Check Labels is enabled
(see below), Bacula will look for an existing label, and if it is found, it will
keep the label. Consequently, you can label the tapes with programs other
than Bacula, and Bacula will recognize and support them.

Even though Bacula will recognize and write ANSI and IBM labels, it always
writes its own tape labels as well.

When using ANSI or IBM tape labeling, you must restrict your Volume
names to a maximum of six characters.

If you have labeled your Volumes outside of Bacula, then the ANSI/IBM
label will be recognized by Bacula only if you have created the HDR1 label
with BACULA.DATA in the Filename field (starting with character 5).
If Bacula writes the labels, it will use this information to recognize the tape
as a Bacula tape. This allows ANSI/IBM labeled tapes to be used at sites
with multiple machines and multiple backup programs.

33.1 Director Pool Directive

Label Type = ANSI — IBM — Bacula This directive is imple-
mented in the Director Pool resource and in the SD Device resource.
If it is specified in the SD Device resource, it will take precedence over
the value passed from the Director to the SD. The default is Label

415

416 CHAPTER 33. ANSI AND IBM TAPE LABELS

Type = Bacula.

33.2 Storage Daemon Device Directives

Label Type = ANSI — IBM — Bacula This directive is imple-
mented in the Director Pool resource and in the SD Device resource.
If it is specified in the the SD Device resource, it will take precedence
over the value passed from the Director to the SD.

Check Labels = yes — no This directive is implemented in the the SD
Device resource. If you intend to read ANSI or IBM labels, this *must*
be set. Even if the volume is not ANSI labeled, you can set this to
yes, and Bacula will check the label type. Without this directive set
to yes, Bacula will assume that labels are of Bacula type and will not
check for ANSI or IBM labels. In other words, if there is a possibility
of Bacula encountering an ANSI/IBM label, you must set this to yes.

Chapter 34

Bacula Frequently Asked
Questions

These are questions that have been submitted over time by the Bacula users.
The following FAQ is very useful, but it is not always up to date with newer
information, so after reading it, if you don’t find what you want, you might
try the following wiki maintained by Frank Sweetser, which contains more
than just a FAQ: http://paramount.ind.wpi.edu/wiki/ or go directly to his
FAQ at: http://paramount.ind.wpi.edu/wiki/doku.php?id=faq.

Please also see the bugs section of this document for a list of known bugs
and solutions.

34.1 What is Bacula?

What is Bacula? Bacula is a network backup and restore program.

34.2 Does Bacula support Windows?

Does Bacula support Windows? Yes, Bacula compiles and runs on
Windows machines (Win98, WinMe, WinXP, WinNT, Win2003, and
Win2000). We provide a binary version of the Client (bacula-fd), but
have not tested the Director nor the Storage daemon. Note, Win95 is
no longer supported because it doesn’t have the GetFileAttributesExA
API call.

417

http://paramount.ind.wpi.edu/wiki/
http://paramount.ind.wpi.edu/wiki/doku.php?id=faq

418 CHAPTER 34. BACULA FREQUENTLY ASKED QUESTIONS

34.3 What language is Bacula written in?

What language is Bacula written in? It is written in C++, but it is
mostly C code using only a limited set of the C++ extensions over C.
Thus Bacula is completely compiled using the C++ compiler. There
are several modules, including the Win32 interface, that are written
using the object oriented C++ features. Over time, we are slowly
adding a larger subset of C++.

34.4 On what machines does Bacula run?

On what machines does Bacula run? Bacula builds and executes on
Red Hat Linux (versions RH7.1-RHEL 4.0, Fedora, SuSE, Gentoo, De-
bian, Mandriva, ...), FreeBSD, Solaris, Alpha, SGI (client), NetBSD,
OpenBSD, Mac OS X (client), and Win32.

Bacula has been my only backup tool for over seven years backing up
8 machines nightly (6 Linux boxes running SuSE, previously Red Hat
and Fedora, a WinXP machine, and a WinNT machine).

34.5 Is Bacula Stable?

Is Bacula Stable? Yes, it is remarkably stable, but remember, there are
still a lot of unimplemented or partially implemented features. With
a program of this size (150,000+ lines of C++ code not including the
SQL programs) there are bound to be bugs. The current test envi-
ronment (a twisted pair local network and a HP DLT backup tape)
is not exactly ideal, so additional testing on other sites is necessary.
The File daemon has never crashed – running months at a time with
no intervention. The Storage daemon is remarkably stable with most
of the problems arising during labeling or switching tapes. Storage
daemon crashes are rare but running multiple drives and simultaneous
jobs sometimes (rarely) problems. The Director, given the multitude
of functions it fulfills is also relatively stable. In a production envi-
ronment, it rarely if ever crashes. Of the three daemons, the Director
is the most prone to having problems. Still, it frequently runs several
months with no problems.

There are a number of reasons for this stability.

1. The program is constantly checking the chain of allocated
memory buffers to ensure that no overruns have occurred.

34.6. I’M GETTING AUTHORIZATION ERRORS. WHAT IS GOING ON? 419

2. All memory leaks (orphaned buffers) are reported each time the
program terminates.

3. Any signal (segmentation fault, ...) generates a traceback that is
emailed to the developer. This permits quick resolution of bugs
even if they only show up rarely in a production system.

4. There is a reasonably comprehensive set of regression tests that
avoids re-creating the most common errors in new versions of
Bacula.

34.6 I’m Getting Authorization Errors. What
is Going On?

I’m Getting Authorization Errors. What is Going On? For secu-
rity reasons, Bacula requires that both the File daemon and the Stor-
age daemon know the name of the Director as well as its password.
As a consequence, if you change the Director’s name or password, you
must make the corresponding change in the Storage daemon’s and in
the File daemon’s configuration files.

During the authorization process, the Storage daemon and File dae-
mon also require that the Director authenticates itself, so both ends
require the other to have the correct name and password.

If you have edited the conf files and modified any name or any pass-
word, and you are getting authentication errors, then your best bet
is to go back to the original conf files generated by the Bacula in-
stallation process. Make only the absolutely necessary modifications
to these files – e.g. add the correct email address. Then follow the
instructions in the Running Bacula chapter of this manual. You will
run a backup to disk and a restore. Only when that works, should you
begin customization of the conf files.

Another reason that you can get authentication errors is if you are
running Multiple Concurrent Jobs in the Director, but you have not
set them in the File daemon or the Storage daemon. Once you reach
their limit, they will reject the connection producing authentication
(or connection) errors.

If you are having problems connecting to a Windows machine that
previously worked, you might try restarting the Bacula service since
Windows frequently encounters networking connection problems.

420 CHAPTER 34. BACULA FREQUENTLY ASKED QUESTIONS

Some users report that authentication fails if there is not a proper
reverse DNS lookup entry for the machine. This seems to be a re-
quirement of gethostbyname(), which is what Bacula uses to translate
names into IP addresses. If you cannot add a reverse DNS entry, or
you don’t know how to do so, you can avoid the problem by specifying
an IP address rather than a machine name in the appropriate Bacula
conf file.

Here is a picture that indicates what names/passwords in which
files/Resources must match up:

In the left column, you will find the Director, Storage, and Client
resources, with their names and passwords – these are all in bacula-
dir.conf. The right column is where the corresponding values should
be found in the Console, Storage daemon (SD), and File daemon (FD)
configuration files.

Another thing to check is to ensure that the Bacula component you are
trying to access has Maximum Concurrent Jobs set large enough
to handle each of the Jobs and the Console that want to connect
simultaneously. Once the maximum connections has been reached,

34.7. BACULA RUNS FINE BUT CANNOT ACCESS A CLIENT ON A DIFFERENT MACHINE. WHY? 421

each Bacula component will reject all new connections.

Finally, make sure you have no hosts.allow or hosts.deny file that
is not permitting access to the site trying to connect.

34.7 Bacula Runs Fine but Cannot Access a

Client on a Different Machine. Why?

Bacula Runs Fine but Cannot Access a Client on a Different Machine. Why?
There are several reasons why Bacula could not contact a client on a
different machine. They are:

• It is a Windows Client, and the client died because of an improper
configuration file. Check that the Bacula icon is in the system
tray and the the menu items work. If the client has died, the icon
will disappear only when you move the mouse over the icon.

• The Client address or port is incorrect or not resolved by DNS.
See if you can ping the client machine using the same address as
in the Client record.

• You have a firewall, and it is blocking traffic on port 9102 between
the Director’s machine and the Client’s machine (or on port 9103
between the Client and the Storage daemon machines).

• Your password or names are not correct in both the Director and
the Client machine. Try configuring everything identical to how
you run the client on the same machine as the Director, but just
change the Address. If that works, make the other changes one
step at a time until it works.

• You may also be having problems between your File daemon and
your Storage daemon. The name you use in the Storage resource
of your Director’s conf file must be known (resolvable) by the File
daemon, because it is passed symbolically to the File daemon,
which then resolves it to get an IP address used to contact the
Storage daemon.

• You may have a hosts.allow or hosts.deny file that is not per-
mitting access.

34.8 My Catalog is Full of Test Runs, How
Can I Start Over?

My Catalog is Full of Test Runs, How Can I Start Over? If you
are using MySQL do the following:

422 CHAPTER 34. BACULA FREQUENTLY ASKED QUESTIONS

cd <bacula-source>/src/cats

./drop_mysql_tables

./make_mysql_tables

If you are using SQLite, do the following:

Delete bacula.db from your working directory.

cd <bacula-source>/src/cats

./drop_sqlite_tables

./make_sqlite_tables

Then write an EOF on each tape you used with Bacula using:

mt -f /dev/st0 rewind

mt -f /dev/st0 weof

where you need to adjust the device name for your system.

34.9 I Run a Restore Job and Bacula Hangs.
What do I do?

I Run a Restore Job and Bacula Hangs. What do I do? On Bac-
ula version 1.25 and prior, it expects you to have the correct tape
mounted prior to a restore. On Bacula version 1.26 and higher, it will
ask you for the tape, and if the wrong one is mounted, it will inform
you.

If you have previously done an unmount command, all Storage dae-
mon sessions (jobs) will be completely blocked from using the drive
unmounted, so be sure to do a mount after your unmount. If in
doubt, do a second mount, it won’t cause any harm.

34.10 I Cannot Get My Windows Client to
Start Automatically?

I Cannot Get My Windows Client to Start Automatically? You
are probably having one of two problems: either the Client is dying
due to an incorrect configuration file, or you didn’t do the Installation
commands necessary to install it as a Windows Service.

For the first problem, see the next FAQ question. For the second
problem, please review the Windows Installation instructions in this
manual.

34.11. MY WINDOWS CLIENT IMMEDIATELY DIES WHEN I START IT423

34.11 My Windows Client Immediately Dies
When I Start It

My Windows Client Immediately Dies When I Start It The most
common problem is either that the configuration file is not where it
expects it to be, or that there is an error in the configuration file. You
must have the configuration file in c:\bacula\bin\bacula-fd.conf.

To see what is going on when the File daemon starts on Windows, do
the following:

Start a DOS shell Window.

cd c:\bacula\bin

bacula-fd -d100 -c c:\bacula\bin\bacula-fd.conf

This will cause the FD to write a file bacula.trace in the current
directory, which you can examine and thereby determine the problem.

When I Start the Console, the Error Messages Fly By. How can I see them?
Either use a shell window with a scroll bar, or use the gnome-console.
In any case, you probably should be logging all output to a file, and
then you can simply view the file using an editor or the less program.
To log all output, I have the following in my Director’s Message
resource definition:

append = "/home/kern/bacula/bin/log" = all, !skipped

Obviously you will want to change the filename to be appropriate for
your system.

34.12 My backups are not working on my

Windows Client. What should I do?

I didn’t realize that the backups were not working on my Windows Client. What should I do?
You should be sending yourself an email message for each job. This
will avoid the possibility of not knowing about a failed backup. To do
so put something like:

Mail = yourname@yourdomain = all, !skipped

424 CHAPTER 34. BACULA FREQUENTLY ASKED QUESTIONS

in your Director’s message resource. You should then receive one email
for each Job that ran. When you are comfortable with what is going
on (it took me 9 months), you might change that to:

MailOnError = yourname@yourdomain = all, !skipped

then you only get email messages when a Job errors as is the case for
your Windows machine.

You should also be logging the Director’s messages, please see the
previous FAQ for how to do so.

34.13 All my Jobs are scheduled for the same

time. Will this cause problems?

All my Jobs are scheduled for the same time. Will this cause problems?
No, not at all. Bacula will schedule all the Jobs at the same time, but
will run them one after another unless you have increased the number
of simultaneous jobs in the configuration files for the Director, the
File daemon, and the Storage daemon. The appropriate configuration
record is Maximum Concurrent Jobs = nn. At the current time,
we recommend that you leave this set to 1 for the Director.

34.14 Can Bacula Backup My System To Files

instead of Tape?

Can Bacula Backup My System To Files instead of Tape? Yes,
in principle, Bacula can backup to any storage medium as long as
you have correctly defined that medium in the Storage daemon’s
Device resource. For an example of how to backup to files, please see
the Pruning Example in the Recycling chapter of this manual. Also,
there is a whole chapter devoted to Basic Volume Management. This
chapter was originally written to explain how to write to disk, but
was expanded to include volume management. It is, however, still
quite a good chapter to read.

34.15 Can I use a dummy device to test the
backup?

Yes, to have a Virtual device which just consumes data, you can use a
FIFO device (see Stored configuration). It’s useful to test a backup.

34.16. CAN BACULA BACKUP AND RESTORE FILES BIGGER THAN 2 GIGABYTES?425

Device {

Name = NULL

Media Type = NULL

Device Type = Fifo

Archive Device = /dev/null

LabelMedia = yes

Random Access = no

AutomaticMount = no

RemovableMedia = no

MaximumOpenWait = 60

AlwaysOpen = no

}

34.16 Can Bacula Backup and Restore Files
Bigger than 2 Gigabytes?

Can Bacula Backup and Restore Files Bigger than 2 Gigabytes?
If your operating system permits it, and you are running Bacula
version 1.26 or later, the answer is yes. To the best of our knowledge
all client system supported by Bacula can handle files bigger 2
Gigabytes.

34.17 I want to stop a job.

I Started A Job then Decided I Really Did Not Want to Run It. Is there a better way than ./bacula
Yes, you normally should use the Console command cancel to cancel
a Job that is either scheduled or running. If the Job is scheduled,
it will be marked for cancellation and will be canceled when it is
scheduled to start. If it is running, it will normally terminate after a
few minutes. If the Job is waiting on a tape mount, you may need to
do a mount command before it will be canceled.

34.18 Why have You Trademarked the Name
Bacula?

Why have You Trademarked the Name Bacula
R©
? We have trade-

marked the name Bacula to ensure that all media written by any
program named Bacula will always be compatible. Anyone may use
the name Bacula, even in a derivative product as long as it remains
totally compatible in all respects with the program defined here.

426 CHAPTER 34. BACULA FREQUENTLY ASKED QUESTIONS

34.19 Why is the Online Document for Ver-
sion 1.39 but the Released Version is 1.38?

Why is the Online Document for Version 1.39 of Bacula when the Current Version is 1.38?
As Bacula is being developed, the document is also being enhanced,
more often than not it has clarifications of existing features that can
be very useful to our users, so we publish the very latest document.
Fortunately it is rare that there are confusions with new features.

If you want to read a document that pertains only to a specific ver-
sion, please use the one distributed in the source code. The web site
also has online versions of both the released manual and the current
development manual.

34.20 Does Bacula really save and restore all

files?

How Can I Be Sure that Bacula Really Saves and Restores All Files?
It is really quite simple, but took me a while to figure out
how to ”prove” it. First make a Bacula Rescue disk, see the
Disaster Recovery Using Bacula chapter of this manual. Second, you
run a full backup of all your files on all partitions. Third, you run an
Verify InitCatalog Job on the same FileSet, which effectively makes a
record of all the files on your system. Fourth, you run a Verify Catalog
job and assure yourself that nothing has changed (well, between an
InitCatalog and Catalog one doesn’t expect anything). Then do the
unthinkable, write zeros on your MBR (master boot record) wiping
out your hard disk. Now, restore your whole system using your
Bacula Rescue disk and the Full backup you made, and finally re-run
the Verify Catalog job. You will see that with the exception of the
directory modification and access dates and the files changed during
the boot, your system is identical to what it was before you wiped
your hard disk. Alternatively you could do the wiping and restoring
to another computer of the same type.

34.21 I want an Incremental but Bacula runs

it as a Full backup. Why?

I did a Full backup last week, but now in running an Incremental, Bacula says it did not
Before doing an Incremental or a Differential backup, Bacula checks
to see if there was a prior Full backup of the same Job that terminated

34.22. DO YOU REALLY HANDLE UNLIMITED PATH LENGTHS?427

successfully. If so, it uses the date that full backup started as the
time for comparing if files have changed. If Bacula does not find a
successful full backup, it proceeds to do one. Perhaps you canceled
the full backup, or it terminated in error. In such cases, the full
backup will not be successful. You can check by entering list jobs
and look to see if there is a prior Job with the same Name that has
Level F and JobStatus T (normal termination).

Another reason why Bacula may not find a suitable Full backup is
that every time you change the FileSet, Bacula will require a new
Full backup. This is necessary to ensure that all files are properly
backed up in the case where you have added more files to the FileSet.
Beginning with version 1.31, the FileSets are also dated when they are
created, and this date is displayed with the name when you are listing
or selecting a FileSet. For more on backup levels see below.

34.22 Do you really handle unlimited path

lengths?

How Can You Claim to Handle Unlimited Path and Filename Lengths when All Other Programs
Most of those other programs have been around for a long time, in
fact since the beginning of Unix, which means that they were designed
for rather small fixed length path and filename lengths. Over the
years, these restrictions have been relaxed allowing longer names.
Bacula on the other hand was designed in 2000, and so from the start,
Path and Filenames have been kept in buffers that start at 256 bytes
in length, but can grow as needed to handle any length. Most of the
work is carried out by lower level routines making the coding rather
easy.

Note that due to limitations Win32 path and filenames cannot exceed
260 characters. By using Win32 Unicode functions, we will remove
this restriction in later versions of Bacula.

34.23 What Is the Really Unique Feature of

Bacula?

What Is the Really Unique Feature of Bacula? Well, it is hard to
come up with unique features when backup programs for Unix ma-
chines have been around since the 1960s. That said, I believe that
Bacula is the first and only program to use a standard SQL interface
to catalog its database. Although this adds a bit of complexity and

428 CHAPTER 34. BACULA FREQUENTLY ASKED QUESTIONS

possibly overhead, it provides an amazingly rich set of features that are
easy to program and enhance. The current code has barely scratched
the surface in this regard (version 1.38).

The second feature, which gives a lot of power and flexibility to Bacula
is the Bootstrap record definition.

The third unique feature, which is currently (1.30) unimplemented,
and thus can be called vaporware :-), is Base level saves. When im-
plemented, this will enormously reduce tape usage.

34.24 How can I force one job to run after

another?

If I Run Multiple Simultaneous Jobs, How Can I Force One Particular Job to Run After
Yes, you can set Priorities on your jobs so that they run in the order
you specify. Please see: the Priority record in the Job resource.

34.25 I Am Not Getting Email Notification,
What Can I Do?

I Am Not Getting Email Notification, What Can I Do? The
most common problem is that you have not specified a fully
qualified email address and your bsmtp server is rejecting the
mail. The next most common problem is that your bsmtp
server doesn’t like the syntax on the From part of the message.
For more details on this and other problems, please see the
Getting Email Notification to Work section of the Tips chapter of

this manual. The section Getting Notified of Job Completion of the
Tips chapter may also be useful. For more information on the bsmtp
mail program, please see bsmtp in the Volume Utility Tools chapter
of this manual.

34.26 My retention periods don’t work

I Change Recycling, Retention Periods, or File Sizes in my Pool Resource and they Still
The different variables associated with a Pool are defined in the Pool
Resource, but are actually read by Bacula from the Catalog database.
On Bacula versions prior to 1.30, after changing your Pool Resource,
you must manually update the corresponding values in the Catalog
by using the update pool command in the Console program. In

34.27. WHY AREN’T MY FILES COMPRESSED? 429

Bacula version 1.30, Bacula does this for you automatically every
time it starts.

When Bacula creates a Media record (Volume), it uses many default
values from the Pool record. If you subsequently change the Pool
record, the new values will be used as a default for the next Volume
that is created, but if you want the new values to apply to existing
Volumes, you must manually update the Volume Catalog entry using
the update volume command in the Console program.

34.27 Why aren’t my files compressed?

I Have Configured Compression On, But None of My Files Are Compressed. Why?
There are two kinds of compression. One is tape compression. This is
done by the tape drive hardware, and you either enable or disable it
with system tools such as mt. This compression works independently
of Bacula, and when it is enabled, you should not use the Bacula
software compression.

Bacula also has software compression code in the File daemons, which
you normally need to enable only when backing up to file Volumes.
There are two conditions necessary to enable the Bacula software com-
pression.

1. You must have the zip development libraries loaded on your sys-
tem when building Bacula and Bacula must find this library, nor-
mally /usr/lib/libz.a. On Red Hat systems, this library is pro-
vided by the zlib-devel rpm.

If the library is found by Bacula during the ./configure it will
be mentioned in the config.out line by:

ZLIB support: yes

2. You must add the compression=gzip option on your Include
statement in the Director’s configuration file.

Bacula is Asking for a New Tape After 2 GB of Data but My Tape holds 33 GB. Why?
There are several reasons why Bacula will request a new tape.

• There is an I/O error on the tape. Bacula prints an error message
and requests a new tape. Bacula does not attempt to continue
writing after an I/O error.

• Bacula encounters and end of medium on the tape. This is not
always distinguishable from an I/O error.

430 CHAPTER 34. BACULA FREQUENTLY ASKED QUESTIONS

• You have specifically set some size limitation on the tape. For
example the Maximum Volume Bytes or Maximum Volume
Files in the Director’s Pool resource, or Maximum Volume
Size in the Storage daemon’s Device resource.

34.28 Incremental backups are not working

Bacula is Not Doing the Right Thing When I Request an Incremental Backup. Why?
As explained in one of the previous questions, Bacula will automat-
ically upgrade an Incremental or Differential job to a Full backup if
it cannot find a prior Full backup or a suitable Full backup. For the
gory details on how/when Bacula decides to upgrade levels please
see the Level record in the Director’s configuration chapter of this
manual.

If after reading the above mentioned section, you believe that Bacula
is not correctly handling the level (Differential/Incremental), please
send us the following information for analysis:

• Your Director’s configuration file.

• The output from list jobs covering the period where you are
having the problem.

• The Job report output from the prior Full save (not critical).

• An llist jobid=nnn where nnn is the JobId of the prior Full
save.

• The Job report output from the save that is doing the wrong
thing (not critical).

• An llist jobid=nnn where nnn is the JobId of the job that was
not correct.

• An explanation of what job went wrong and why you think it
did.

The above information can allow us to analyze what happened, with-
out it, there is not much we can do.

34.29 I am waiting forever for a backup of an

offsite machine

I am Backing Up an Offsite Machine with an Unreliable Connection. The Director Waits
Bacula was written on the assumption that it will have a good TCP/IP

34.30. SSH HANGS FOREVER AFTER STARTING BACULA 431

connection between all the daemons. As a consequence, the current
Bacula doesn’t deal with faulty connections very well. This situation
is slowly being corrected over time.

There are several things you can do to improve the situation.

• Upgrade to version 1.32 and use the new SDConnectTimeout
record. For example, set:

SD Connect Timeout = 5 min

in the FileDaemon resource.

• Run these kinds of jobs after all other jobs.

34.30 SSH hangs forever after starting Bacula

When I ssh into a machine and start Bacula then attempt to exit, ssh hangs forever.
This happens because Bacula leaves stdin, stdout, and stderr open for
debug purposes. To avoid it, the simplest thing to do is to redirect
the output of those files to /dev/null or another file in your startup
script (the Red Hat autostart scripts do this automatically). For
example, you start the Director with:

bacula-dir -c bacula-dir.conf ... 0>\&1 2>\&1 >/dev/null

and likewise for the other daemons.

34.31 I’m confused by retention periods

I’m confused by the different Retention periods: File Retention, Job Retention, Volume Retention.
Yes, this certainly can be confusing. The basic reason for so many
is to allow flexibility. The File records take quite a lot of space in
the catalog, so they are typically records you want to remove rather
quickly. The Job records, take very little space, and they can be
useful even without the File records to see what Jobs actually ran
and when. One must understand that if the File records are removed
from the catalog, you cannot use the restore command to restore an
individual file since Bacula no longer knows where it is. However, as
long as the Volume Retention period has not expired, the data will
still be on the tape, and can be recovered from the tape.

For example, I keep a 30 day retention period for my Files to keep my
catalog from getting too big, but I keep my tapes for a minimum of
one year, just in case.

432 CHAPTER 34. BACULA FREQUENTLY ASKED QUESTIONS

34.32 MaxVolumeSize is ignored

Why Does Bacula Ignore the MaxVolumeSize Set in my Pool?
The MaxVolumeSize that Bacula uses comes from the Media record,
so most likely you changed your Pool, which is used as the default for
creating Media records, after you created your Volume. Check what
is in the Media record by doing:

llist Volume=xxx

If it doesn’t have the right value, you can use:

update Volume=xxx

to change it.

34.33 I get a Connection refused when con-

necting to my Client

In connecting to my Client, I get ”ERR:Connection Refused. Packet Size too big from
This is typically a communications error resulting from one of the
following:

• Old versions of Bacula, usually a Win32 client, where two threads
were using the same I/O packet. Fixed in more recent versions.
Please upgrade.

• Some other program such as an HP Printer using the same port
(9102 in this case).

If it is neither of the above, please submit a bug report at
bugs.bacula.org.

Another solution might be to run the daemon with the debug option
by:

Start a DOS shell Window.

cd c:\bacula\bin

bacula-fd -d100 -c c:\bacula\bin\bacula-fd.conf

This will cause the FD to write a file bacula.trace in the current
directory, which you can examine to determine the problem.

http://bugs.bacula.org

34.34. LONG RUNNING JOBS DIE WITH PIPE ERROR 433

34.34 Long running jobs die with Pipe Error

During long running jobs my File daemon dies with Pipe Error, or some other communications
There are a number of reasons why a connection might break. Most
often, it is a router between your two computers that times out
inactive lines (not respecting the keepalive feature that Bacula uses).
In that case, you can use the Heartbeat Interval directive in both
the Storage daemon and the File daemon.

In at least one case, the problem has been a bad driver for a Win32
NVidia NForce 3 ethernet card with driver (4.4.2 17/05/2004). In this
case, a good driver is (4.8.2.0 06/04/2005). Moral of the story, make
sure you have the latest ethernet drivers loaded, or use the following
workaround as suggested by Thomas Simmons for Win32 machines:

Browse to: Start > Control Panel > Network Connections

Right click the connection for the nvidia adapter and select properties.
Under the General tab, click ”Configure...”. Under the Advanced tab
set ”Checksum Offload” to disabled and click OK to save the change.

Lack of communications, or communications that get interrupted can
also be caused by Linux firewalls where you have a rule that throttles
connections or traffic. For example, if you have:

iptables -t filter -A INPUT -m limit --limit 3/second --limit-burst 3 -j DROP

you will want to add the following rules before the above rule:

iptables -t filter -A INPUT --dport 9101 -j ACCEPT

iptables -t filter -A INPUT --dport 9102 -j ACCEPT

iptables -t filter -A INPUT --dport 9103 -j ACCEPT

This will ensure that any Bacula traffic will not get terminated because
of high usage rates.

34.35 How to I tell the Job which Volume to
use?

I can’t figure out how to tell the job which volume to use This is
an interesting statement. I now see that a number of people new to
Bacula have the same problem as you, probably from using programs
like tar.

In fact, you do not tell Bacula what tapes to use. It is the inverse.
Bacula tells you want tapes it wants. You put tapes at its disposition
and it chooses.

434 CHAPTER 34. BACULA FREQUENTLY ASKED QUESTIONS

Now, if you *really* want to be tricky and try to tell Bacula what to
do, it will be reasonable if for example you mount a valid tape that it
can use on a drive, it will most likely go ahead and use it. It also has
a documented algorithm for choosing tapes – but you are asking for
problems ...

So, the trick is to invert your concept of things and put Bacula in
charge of handling the tapes. Once you do that, you will be fine. If
you want to anticipate what it is going to do, you can generally figure
it out correctly and get what you want.

If you start with the idea that you are going to force or tell Bacula
to use particular tapes or you insist on trying to run in that kind of
mode, you will probably not be too happy.

I don’t want to worry about what tape has what data. That is what
Bacula is designed for.

If you have an application where you *really* need to remove a tape
each day and insert a new one, it can be done the directives exist to
accomplish that. In such a case, one little ”trick” to knowing what
tape Bacula will want at 2am while you are asleep is to run a tiny job
at 4pm while you are still at work that backs up say one directory, or
even one file. You will quickly find out what tape it wants, and you
can mount it before you go home ...

Chapter 35

Tips and Suggestions

There are a number of example scripts for various things that can be found
in the example subdirectory and its subdirectories of the Bacula source
distribution.

35.1 Upgrading Bacula Versions

The first thing to do before upgrading from one version to another is to
ensure that you don’t overwrite or delete your production (current) version
of Bacula until you have tested that the new version works.

If you have installed Bacula into a single directory, this is simple: simply
make a copy of your Bacula directory.

If you have done a more typical Unix installation where the binaries are
placed in one directory and the configuration files are placed in another,
then the simplest way is to configure your new Bacula to go into a single
file. Alternatively, make copies of all your binaries and especially your conf
files.

Whatever your situation may be (one of the two just described), you should
probably start with the defaultconf script that can be found in the exam-
ples subdirectory. Copy this script to the main Bacula directory, modify
it as necessary (there should not need to be many modifications), configure
Bacula, build it, install it, then stop your production Bacula, copy all the
*.conf files from your production Bacula directory to the test Bacula direc-
tory, start the test version, and run a few test backups. If all seems good,
then you can proceed to install the new Bacula in place of or possibly over

435

436 CHAPTER 35. TIPS AND SUGGESTIONS

the old Bacula.

When installing a new Bacula you need not worry about losing the changes
you made to your configuration files as the installation process will not
overwrite them providing that you do not do a make uninstall.

If the new version of Bacula requires an upgrade to the database, you can
upgrade it with the script update bacula tables, which will be installed
in your scripts directory (default /etc/bacula), or alternatively, you can
find it in the <bacula-source>/src/cats directory.

35.2 Getting Notified of Job Completion

One of the first things you should do is to ensure that you are being properly
notified of the status of each Job run by Bacula, or at a minimum of each
Job that terminates with an error.

Until you are completely comfortable with Bacula, we recommend that you
send an email to yourself for each Job that is run. This is most easily accom-
plished by adding an email notification address in the Messages resource
of your Director’s configuration file. An email is automatically configured
in the default configuration files, but you must ensure that the default root
address is replaced by your email address.

For additional examples of how to configure a Bacula, please take a look at
the .conf files found in the examples sub-directory. We recommend the
following configuration (where you change the paths and email address to
correspond to your setup). Note, the mailcommand and operatorcom-
mand should be on a single line. They were split here for presentation:

Messages {

Name = Standard

mailcommand = "/home/bacula/bin/bsmtp -h localhost

-f \"\(Bacula\) %r\"

-s \"Bacula: %t %e of %c %l\" %r"

operatorcommand = "/home/bacula/bin/bsmtp -h localhost

-f \"\(Bacula\) %r\"

-s \"Bacula: Intervention needed for %j\" %r"

Mail = your-email-address = all, !skipped, !terminate

append = "/home/bacula/bin/log" = all, !skipped, !terminate

operator = your-email-address = mount

console = all, !skipped, !saved

}

You will need to ensure that the /home/bacula/bin path on the mail-

35.3. GETTING EMAIL NOTIFICATION TO WORK 437

command and the operatorcommand lines point to your Bacula binary
directory where the bsmtp program will be installed. You will also want
to ensure that the your-email-address is replaced by your email address,
and finally, you will also need to ensure that the /home/bacula/bin/log
points to the file where you want to log all messages.

With the above Messages resource, you will be notified by email of every
Job that ran, all the output will be appended to the log file you specify, all
output will be directed to the console program, and all mount messages will
be emailed to you. Note, some messages will be sent to multiple destinations.

The form of the mailcommand is a bit complicated, but it allows you to
distinguish whether the Job terminated in error or terminated normally.
Please see the Mail Command section of the Messages Resource chapter of
this manual for the details of the substitution characters used above.

Once you are totally comfortable with Bacula as I am, or if you have a large
number of nightly Jobs as I do (eight), you will probably want to change the
Mail command to Mail On Error which will generate an email message
only if the Job terminates in error. If the Job terminates normally, no email
message will be sent, but the output will still be appended to the log file as
well as sent to the Console program.

35.3 Getting Email Notification to Work

The section above describes how to get email notification of job status.
Occasionally, however, users have problems receiving any email at all. In
that case, the things to check are the following:

• Ensure that you have a valid email address specified on your Mail
record in the Director’s Messages resource. The email address should
be fully qualified. Simply using root generally will not work, rather
you should use root@localhost or better yet your full domain.

• Ensure that you do not have a Mail record in the Storage daemon’s
or File daemon’s configuration files. The only record you should have
is director:

director = director-name = all

• If all else fails, try replacing the mailcommand with

438 CHAPTER 35. TIPS AND SUGGESTIONS

mailcommand = "mail -s test your@domain.com"

• Once the above is working, assuming you want to use bsmtp, submit
the desired bsmtp command by hand and ensure that the email is
delivered, then put that command into Bacula. Small differences in
things such as the parenthesis around the word Bacula can make a
big difference to some bsmtp programs. For example, you might start
simply by using:

mailcommand = "/home/bacula/bin/bsmtp -f \"root@localhost\" %r"

35.4 Getting Notified that Bacula is Running

If like me, you have setup Bacula so that email is sent only when a Job has
errors, as described in the previous section of this chapter, inevitably, one
day, something will go wrong and Bacula can stall. This could be because
Bacula crashes, which is vary rare, or more likely the network has caused
Bacula to hang for some unknown reason.

To avoid this, you can use the RunAfterJob command in the Job resource
to schedule a Job nightly, or weekly that simply emails you a message saying
that Bacula is still running. For example, I have setup the following Job in
my Director’s configuration file:

Schedule {

Name = "Watchdog"

Run = Level=Full sun-sat at 6:05

}

Job {

Name = "Watchdog"

Type = Admin

Client=Watchdog

FileSet="Verify Set"

Messages = Standard

Storage = DLTDrive

Pool = Default

Schedule = "Watchdog"

RunAfterJob = "/home/kern/bacula/bin/watchdog %c %d"

}

Client {

Name = Watchdog

Address = rufus

FDPort = 9102

Catalog = Verify

Password = ""

File Retention = 1day

35.4. GETTING NOTIFIED THAT BACULA IS RUNNING 439

Job Retention = 1 month

AutoPrune = yes

}

Where I established a schedule to run the Job nightly. The Job itself is
type Admin which means that it doesn’t actually do anything, and I’ve
defined a FileSet, Pool, Storage, and Client, all of which are not really used
(and probably don’t need to be specified). The key aspect of this Job is the
command:

RunAfterJob = "/home/kern/bacula/bin/watchdog %c %d"

which runs my ”watchdog” script. As an example, I have added the Job
codes %c and %d which will cause the Client name and the Director’s name
to be passed to the script. For example, if the Client’s name is Watchdog
and the Director’s name is main-dir then referencing $1 in the script would
get Watchdog and referencing $2 would get main-dir. In this case, having
the script know the Client and Director’s name is not really useful, but in
other situations it may be.

You can put anything in the watchdog script. In my case, I like to monitor
the size of my catalog to be sure that Bacula is really pruning it. The
following is my watchdog script:

#!/bin/sh

cd /home/kern/mysql/var/bacula

du . * |

/home/kern/bacula/bin/bsmtp \

-f "\(Bacula\) abuse@whitehouse.com" -h mail.yyyy.com \

-s "Bacula running" abuse@whitehouse.com

If you just wish to send yourself a message, you can do it with:

#!/bin/sh

cd /home/kern/mysql/var/bacula

/home/kern/bacula/bin/bsmtp \

-f "\(Bacula\) abuse@whitehouse.com" -h mail.yyyy.com \

-s "Bacula running" abuse@whitehouse.com <<END-OF-DATA

Bacula is still running!!!

END-OF-DATA

440 CHAPTER 35. TIPS AND SUGGESTIONS

35.5 Maintaining a Valid Bootstrap File

By using a WriteBootstrap record in each of your Director’s Job resources,
you can constantly maintain a bootstrap file that will enable you to recover
the state of your system as of the last backup without having the Bacula cat-
alog. This permits you to more easily recover from a disaster that destroys
your Bacula catalog.

When a Job resource has a WriteBootstrap record, Bacula will maintain
the designated file (normally on another system but mounted by NSF) with
up to date information necessary to restore your system. For example, in
my Director’s configuration file, I have the following record:

Write Bootstrap = "/mnt/deuter/files/backup/client-name.bsr"

where I replace client-name by the actual name of the client that is being
backed up. Thus, Bacula automatically maintains one file for each of my
clients. The necessary bootstrap information is appended to this file during
each Incremental backup, and the file is totally rewritten during each Full
backup.

Note, one disadvantage of writing to an NFS mounted volume as I do is that
if the other machine goes down, the OS will wait forever on the fopen() call
that Bacula makes. As a consequence, Bacula will completely stall until the
machine exporting the NFS mounts comes back up. A possible solution to
this problem was provided by Andrew Hilborne, and consists of using the
soft option instead of the hard option when mounting the NFS volume,
which is typically done in /etc/fstab/. The NFS documentation explains
these options in detail. However, I found that with the soft option NFS
disconnected frequently causing even more problems.

If you are starting off in the middle of a cycle (i.e. with Incremental backups)
rather than at the beginning (with a Full backup), the bootstrap file will
not be immediately valid as it must always have the information from a Full
backup as the first record. If you wish to synchronize your bootstrap file
immediately, you can do so by running a restore command for the client and
selecting a full restore, but when the restore command asks for confirmation
to run the restore Job, you simply reply no, then copy the bootstrap file that
was written to the location specified on the Write Bootstrap record. The
restore bootstrap file can be found in restore.bsr in the working directory
that you defined. In the example given below for the client rufus, my input
is shown in bold. Note, the JobId output has been partially truncated to fit
on the page here:

35.5. MAINTAINING A VALID BOOTSTRAP FILE 441

(in the Console program)

*restore

First you select one or more JobIds that contain files

to be restored. You will then be presented several methods

of specifying the JobIds. Then you will be allowed to

select which files from those JobIds are to be restored.

To select the JobIds, you have the following choices:

1: List last 20 Jobs run

2: List Jobs where a given File is saved

3: Enter list of JobIds to select

4: Enter SQL list command

5: Select the most recent backup for a client

6: Cancel

Select item: (1-6): 5

The defined Client resources are:

1: Minimatou

2: Rufus

3: Timmy

Select Client (File daemon) resource (1-3): 2

The defined FileSet resources are:

1: Other Files

Item 1 selected automatically.

+-------+------+-------+---------+---------+------+-------+------------+

| JobId | Levl | Files | StrtTim | VolName | File | SesId | VolSesTime |

+-------+------+-------+---------+---------+------+-------+------------+

| 2 | F | 84 | ... | test1 | 0 | 1 | 1035645259 |

+-------+------+-------+---------+---------+------+-------+------------+

You have selected the following JobId: 2

Building directory tree for JobId 2 ...

The defined Storage resources are:

1: File

Item 1 selected automatically.

You are now entering file selection mode where you add and

remove files to be restored. All files are initially added.

Enter "done" to leave this mode.

cwd is: /

$ done

84 files selected to restore.

Run Restore job

JobName: kernsrestore

Bootstrap: /home/kern/bacula/working/restore.bsr

Where: /tmp/bacula-restores

FileSet: Other Files

Client: Rufus

Storage: File

JobId: *None*

OK to run? (yes/mod/no): no

quit

(in a shell window)

cp ../working/restore.bsr /mnt/deuter/files/backup/rufus.bsr

442 CHAPTER 35. TIPS AND SUGGESTIONS

35.6 Rejected Volumes After a Crash

Bacula keeps a count of the number of files on each Volume in its Catalog
database so that before appending to a tape, it can verify that the number
of files are correct, and thus prevent overwriting valid data. If the Director
or the Storage daemon crashes before the job has completed, the tape will
contain one more file than is noted in the Catalog, and the next time you
attempt to use the same Volume, Bacula will reject it due to a mismatch
between the physical tape (Volume) and the catalog.

The easiest solution to this problem is to label a new tape and start fresh.
If you wish to continue appending to the current tape, you can do so by
using the update command in the console program to change the Volume
Files entry in the catalog. A typical sequence of events would go like the
following:

- Bacula crashes

- You restart Bacula

Bacula then prints:

17-Jan-2003 16:45 rufus-dir: Start Backup JobId 13,

Job=kernsave.2003-01-17_16.45.46

17-Jan-2003 16:45 rufus-sd: Volume test01 previously written,

moving to end of data.

17-Jan-2003 16:46 rufus-sd: kernsave.2003-01-17_16.45.46 Error:

I cannot write on this volume because:

The number of files mismatch! Volume=11 Catalog=10

17-Jan-2003 16:46 rufus-sd: Job kernsave.2003-01-17_16.45.46 waiting.

Cannot find any appendable volumes.

Please use the "label" command to create a new Volume for:

Storage: SDT-10000

Media type: DDS-4

Pool: Default

(note, lines wrapped for presentation) The key here is the line that reads:

The number of files mismatch! Volume=11 Catalog=10

It says that Bacula found eleven files on the volume, but that the catalog
says there should be ten. When you see this, you can be reasonably sure
that the SD was interrupted while writing before it had a chance to update
the catalog. As a consequence, you can just modify the catalog count to

35.6. REJECTED VOLUMES AFTER A CRASH 443

eleven, and even if the catalog contains references to files saved in file 11,
everything will be OK and nothing will be lost. Note that if the SD had
written several file marks to the volume, the difference between the Volume
count and the Catalog count could be larger than one, but this is unusual.

If on the other hand the catalog is marked as having more files than Bacula
found on the tape, you need to consider the possible negative consequences
of modifying the catalog. Please see below for a more complete discussion
of this.

Continuing with the example of Volume = 11 Catalog = 10, to enable
to Bacula to append to the tape, you do the following:

update

Update choice:

1: Volume parameters

2: Pool from resource

3: Slots from autochanger

Choose catalog item to update (1-3): 1

Defined Pools:

1: Default

2: File

Select the Pool (1-2):

+-------+---------+--------+---------+-----------+------+----------+------+-----+

| MedId | VolName | MedTyp | VolStat | VolBytes | Last | VolReten | Recy | Slt |

+-------+---------+--------+---------+-----------+------+----------+------+-----+

| 1 | test01 | DDS-4 | Error | 352427156 | ... | 31536000 | 1 | 0 |

+-------+---------+--------+---------+-----------+------+----------+------+-----+

Enter MediaId or Volume name: 1

(note table output truncated for presentation) First, you chose to update
the Volume parameters by entering a 1. In the volume listing that follows,
notice how the VolStatus is Error. We will correct that after changing the
Volume Files. Continuing, you respond 1,

Updating Volume "test01"

Parameters to modify:

1: Volume Status

2: Volume Retention Period

3: Volume Use Duration

4: Maximum Volume Jobs

5: Maximum Volume Files

6: Maximum Volume Bytes

7: Recycle Flag

8: Slot

9: Volume Files

10: Pool

11: Done

444 CHAPTER 35. TIPS AND SUGGESTIONS

Select parameter to modify (1-11): 9

Warning changing Volume Files can result

in loss of data on your Volume

Current Volume Files is: 10

Enter new number of Files for Volume: 11

New Volume Files is: 11

Updating Volume "test01"

Parameters to modify:

1: Volume Status

2: Volume Retention Period

3: Volume Use Duration

4: Maximum Volume Jobs

5: Maximum Volume Files

6: Maximum Volume Bytes

7: Recycle Flag

8: Slot

9: Volume Files

10: Pool

11: Done

Select parameter to modify (1-10): 1

Here, you have selected 9 in order to update the Volume Files, then you
changed it from 10 to 11, and you now answer 1 to change the Volume
Status.

Current Volume status is: Error

Possible Values are:

1: Append

2: Archive

3: Disabled

4: Full

5: Used

6: Read-Only

Choose new Volume Status (1-6): 1

New Volume status is: Append

Updating Volume "test01"

Parameters to modify:

1: Volume Status

2: Volume Retention Period

3: Volume Use Duration

4: Maximum Volume Jobs

5: Maximum Volume Files

6: Maximum Volume Bytes

7: Recycle Flag

8: Slot

9: Volume Files

10: Pool

11: Done

Select parameter to modify (1-11): 11

Selection done.

35.7. SECURITY CONSIDERATIONS 445

At this point, you have changed the Volume Files from 10 to 11 to account
for the last file that was written but not updated in the database, and you
changed the Volume Status back to Append.

This was a lot of words to describe something quite simple.

The Volume Files option exists only in version 1.29 and later, and you
should be careful using it. Generally, if you set the value to that which
Bacula said is on the tape, you will be OK, especially if the value is one
more than what is in the catalog.

Now lets consider the case:

The number of files mismatch! Volume=10 Catalog=12

Here the Bacula found fewer files on the volume than what is marked in
the catalog. Now, in this case, you should hesitate a lot before modifying
the count in the catalog, because if you force the catalog from 12 to 10,
Bacula will start writing after the file 10 on the tape, possibly overwriting
valid data, and if you ever try to restore any of the files that the catalog has
marked as saved on Files 11 and 12, all chaos will break out. In this case,
you will probably be better off using a new tape. In fact, you might want
to see what files the catalog claims are actually stored on that Volume, and
back them up to another tape and recycle this tape.

35.7 Security Considerations

Only the File daemon needs to run with root permission (so that it can
access all files). As a consequence, you may run your Director, Storage
daemon, and MySQL or PostgreSQL database server as non-root processes.
Version 1.30 has the -u and the -g options that allow you to specify a userid
and groupid on the command line to be used after Bacula starts.

As of version 1.33, thanks to Dan Langille, it is easier to configure the Bacula
Director and Storage daemon to run as non-root.

You should protect the Bacula port addresses (normally 9101, 9102, and
9103) from outside access by a firewall or other means of protection to
prevent unauthorized use of your daemons.

You should ensure that the configuration files are not world readable since
they contain passwords that allow access to the daemons. Anyone who

446 CHAPTER 35. TIPS AND SUGGESTIONS

can access the Director using a console program can restore any file from a
backup Volume.

You should protect your Catalog database. If you are using SQLite, make
sure that the working directory is readable only by root (or your Bacula
userid), and ensure that bacula.db has permissions -rw-r--r-- (i.e. 640)
or more strict. If you are using MySQL or PostgreSQL, please note that the
Bacula setup procedure leaves the database open to anyone. At a minimum,
you should assign the user bacula a userid and add it to your Director’s
configuration file in the appropriate Catalog resource.

35.8 Creating Holiday Schedules

If you normally change tapes every day or at least every Friday, but Thursday
is a holiday, you can use a trick proposed by Lutz Kittler to ensure that no
job runs on Thursday so that you can insert Friday’s tape and be sure it will
be used on Friday. To do so, define a RunJobBefore script that normally
returns zero, so that the Bacula job will normally continue. You can then
modify the script to return non-zero on any day when you do not want
Bacula to run the job.

35.9 Automatic Labeling Using Your Au-

tochanger

If you have an autochanger but it does not support barcodes, using a
”trick” you can make Bacula automatically label all the volumes in your
autochanger’s magazine.

First create a file containing one line for each slot in your autochanger that
has a tape to be labeled. The line will contain the slot number a colon (:)
then the Volume name you want to use. For example, create a file named
volume-list, which contains:

1:Volume001

2:TestVolume02

5:LastVolume

The records do not need to be in any order and you don’t need to mention
all the slots. Normally, you will have a consistent set of Volume names and
a sequential set of numbers for each slot you want labeled. In the example

35.10. BACKING UP PORTABLES USING DHCP 447

above, I’ve left out slots 3 and 4 just as an example. Now, modify your mtx-
changer script and comment out all the lines in the list) case by putting a
in column 1. Then add the following two lines:

cat <absolute-path>/volume-list

exit 0

so that the whole case looks like:

list)

#

commented out lines

cat <absolute-path>/volume-list

exit 0

;;

where you replace <absolute-path> with the full path to the volume-list
file. Then using the console, you enter the following command:

label barcodes

and Bacula will proceed to mount the autochanger Volumes in the list and
label them with the Volume names you have supplied. Bacula will think
that the list was provided by the autochanger barcodes, but in reality, it
was you who supplied the <barcodes>.

If it seems to work, when it finishes, enter:

list volumes

and you should see all the volumes nicely created.

35.10 Backing Up Portables Using DHCP

You may want to backup laptops or portables that are not always connected
to the network. If you are using DHCP to assign an IP address to those
machines when they connect, you will need to use the Dynamic Update
capability of DNS to assign a name to those machines that can be used in
the Address field of the Client resource in the Director’s conf file.

448 CHAPTER 35. TIPS AND SUGGESTIONS

35.11 Going on Vacation

At some point, you may want to be absent for a week or two and you want
to make sure Bacula has enough tape left so that the backups will complete.
You start by doing a list volumes in the Console program:

list volumes

Using default Catalog name=BackupDB DB=bacula

Pool: Default

+---------+---------------+-----------+-----------+----------------+-

| MediaId | VolumeName | MediaType | VolStatus | VolBytes |

+---------+---------------+-----------+-----------+----------------+-

| 23 | DLT-30Nov02 | DLT8000 | Full | 54,739,278,128 |

| 24 | DLT-21Dec02 | DLT8000 | Full | 56,331,524,629 |

| 25 | DLT-11Jan03 | DLT8000 | Full | 67,863,514,895 |

| 26 | DLT-02Feb03 | DLT8000 | Full | 63,439,314,216 |

| 27 | DLT-03Mar03 | DLT8000 | Full | 66,022,754,598 |

| 28 | DLT-04Apr03 | DLT8000 | Full | 60,792,559,924 |

| 29 | DLT-28Apr03 | DLT8000 | Full | 62,072,494,063 |

| 30 | DLT-17May03 | DLT8000 | Full | 65,901,767,839 |

| 31 | DLT-07Jun03 | DLT8000 | Used | 56,558,490,015 |

| 32 | DLT-28Jun03 | DLT8000 | Full | 64,274,871,265 |

| 33 | DLT-19Jul03 | DLT8000 | Full | 64,648,749,480 |

| 34 | DLT-08Aug03 | DLT8000 | Full | 64,293,941,255 |

| 35 | DLT-24Aug03 | DLT8000 | Append | 9,999,216,782 |

+---------+---------------+-----------+-----------+----------------+

Note, I have truncated the output for presentation purposes. What is signif-
icant, is that I can see that my current tape has almost 10 Gbytes of data,
and that the average amount of data I get on my tapes is about 60 Gbytes.
So if I go on vacation now, I don’t need to worry about tape capacity (at
least not for short absences).

Equally significant is the fact that I did go on vacation the 28th of June
2003, and when I did the list volumes command, my current tape at that
time, DLT-07Jun03 MediaId 31, had 56.5 Gbytes written. I could see that
the tape would fill shortly. Consequently, I manually marked it as Used and
replaced it with a fresh tape that I labeled as DLT-28Jun03, thus assuring
myself that the backups would all complete without my intervention.

35.12. EXCLUDE FILES ON WINDOWS REGARDLESS OF CASE 449

35.12 Exclude Files on Windows Regardless of
Case

This tip was submitted by Marc Brueckner who wasn’t sure of the case of
some of his files on Win32, which is case insensitive. The problem is that
Bacula thinks that /UNIMPORTANT FILES is different from /Unim-
portant Files. Marc was aware that the file exclusion permits wild-cards.
So, he specified:

"/[Uu][Nn][Ii][Mm][Pp][Oo][Rr][Tt][Aa][Nn][Tt] [Ff][Ii][Ll][Ee][Ss]"

As a consequence, the above exclude works for files of any case.

Please note that this works only in Bacula Exclude statement and not in
Include.

35.13 Executing Scripts on a Remote Machine

This tip also comes from Marc Brueckner. (Note, this tip is probably out-
dated by the addition of ClientRunBeforJob and ClientRunAfterJob
Job records, but the technique still could be useful.) First I thought the
”Run Before Job” statement in the Job-resource is for executing a script on
the remote machine(the machine to be backed up). It could be useful to
execute scripts on the remote machine e.g. for stopping databases or other
services while doing the backup. (Of course I have to start the services again
when the backup has finished) I found the following solution: Bacula could
execute scripts on the remote machine by using ssh. The authentication is
done automatically using a private key. First you have to generate a keypair.
I’ve done this by:

ssh-keygen -b 4096 -t dsa -f Bacula_key

This statement may take a little time to run. It creates a public/private
key pair with no passphrase. You could save the keys in /etc/bacula. Now
you have two new files : Bacula key which contains the private key and
Bacula key.pub which contains the public key.

Now you have to append the Bacula key.pub file to the file authorized keys
in the \root\.ssh directory of the remote machine. Then you have to add
(or uncomment) the line

450 CHAPTER 35. TIPS AND SUGGESTIONS

AuthorizedKeysFile %h/.ssh/authorized_keys

to the sshd config file on the remote machine. Where the %h stands for the
home-directory of the user (root in this case).

Assuming that your sshd is already running on the remote machine, you can
now enter the following on the machine where Bacula runs:

ssh -i Bacula_key -l root "ls -la"

This should execute the ”ls -la” command on the remote machine.

Now you could add lines like the following to your Director’s conf file:

...

Run Before Job = ssh -i /etc/bacula/Bacula_key 192.168.1.1 \

"/etc/init.d/database stop"

Run After Job = ssh -i /etc/bacula/Bacula_key 192.168.1.1 \

"/etc/init.d/database start"

...

Even though Bacula version 1.32 has a ClientRunBeforeJob, the ssh method
still could be useful for updating all the Bacula clients on several remote
machines in a single script.

35.14 Recycling All Your Volumes

This tip comes from Phil Stracchino.

If you decide to blow away your catalog and start over, the simplest way to
re-add all your prelabeled tapes with a minimum of fuss (provided you don’t
care about the data on the tapes) is to add the tape labels using the console
add command, then go into the catalog and manually set the VolStatus of
every tape to Recycle.

The SQL command to do this is very simple:

update Media set VolStatus = "Recycle";

Bacula will then ignore the data already stored on the tapes and just re-use
each tape without further objection.

35.15. BACKING UP ACLS ON EXT3 OR XFS FILESYSTEMS 451

35.15 Backing up ACLs on ext3 or XFS filesys-
tems

This tip comes from Volker Sauer.

Note, this tip was given prior to implementation of ACLs in Bacula (version
1.34.5). It is left here because dumping/displaying ACLs can still be useful
in testing/verifying that Bacula is backing up and restoring your ACLs prop-
erly. Please see the aclsupport FileSet option in the configuration chapter
of this manual.

For example, you could dump the ACLs to a file with a script similar to the
following:

#!/bin/sh

BACKUP_DIRS="/foo /bar"

STORE_ACL=/root/acl-backup

umask 077

for i in $BACKUP_DIRS; do

cd $i /usr/bin/getfacl -R --skip-base .>$STORE_ACL/${i//\//_}

done

Then use Bacula to backup /root/acl-backup.

The ACLs could be restored using Bacula to the /root/acl-backup file,
then restored to your system using:

setfacl --restore/root/acl-backup

35.16 Total Automation of Bacula Tape Handling

This tip was provided by Alexander Kuehn.

Bacula is a really nice backup program except that the manual tape changing
requires user interaction with the bacula console.

Fortunately I can fix this. NOTE!!! This suggestion applies for people who
do *NOT* have tape autochangers and must change tapes manually.!!!!!

Bacula supports a variety of tape changers through the use of mtx-changer
scripts/programs. This highly flexible approach allowed me to create
this shell script which does the following: Whenever a new tape is required
it sends a mail to the operator to insert the new tape. Then it waits until a

http://www.bacula.org/
http://www.bacula.org/rel-manual/mtx-changer.txt

452 CHAPTER 35. TIPS AND SUGGESTIONS

tape has been inserted, sends a mail again to say thank you and let’s bacula
continue its backup. So you can schedule and run backups without ever
having to log on or see the console. To make the whole thing work you need
to create a Device resource which looks something like this (”Archive De-
vice”, ”Maximum Changer Wait”, ”Media Type” and ”Label media” may
have different values):

Device {

Name=DDS3

Archive Device = # use yours not mine! ;)/dev/nsa0

Changer Device = # not really required/dev/nsa0

Changer Command = "# use this (maybe change the path)!

/usr/local/bin/mtx-changer %o %a %S"

Maximum Changer Wait = 3d # 3 days in seconds

AutomaticMount = yes; # mount on start

AlwaysOpen = yes; # keep device locked

Media Type = DDS3 # it’s just a name

RemovableMedia = yes; #

Offline On Unmount = Yes; # keep this too

Label media = Yes; #

}

As the script has to emulate the complete wisdom of a mtx-changer it has
an internal ”database” containing where which tape is stored, you can see
this on the following line:

labels="VOL-0001 VOL-0002 VOL-0003 VOL-0004 VOL-0005 VOL-0006

VOL-0007 VOL-0008 VOL-0009 VOL-0010 VOL-0011 VOL-0012"

The above should be all on one line, and it effectively tells Bacula that
volume ”VOL-0001” is located in slot 1 (which is our lowest slot), that
volume ”VOL-0002” is located in slot 2 and so on.. The script also maintains
a logfile (/var/log/mtx.log) where you can monitor its operation.

35.17 Running Concurrent Jobs

Bacula can run multiple concurrent jobs, but the default configuration files
are not set to do so. Using the Maximum Concurrent Jobs directive,
you have a lot of control over how many jobs can run at the same time, and
which jobs can run simultaneously. The downside is that it can be a bit
tricky to set it up for the first time as you need to set the concurrency in at
least five different places.

35.17. RUNNING CONCURRENT JOBS 453

The Director, the File daemon, and the Storage daemon each have a Max-
imum Concurrent Jobs directive that determines overall number of con-
current jobs the daemon will run. The default is one for the Director and
ten for both the File daemon and the Storage daemon, so assuming you will
not be running more than ten concurrent jobs, the only changes that are
needed are in the Director’s conf file (bacula-dir.conf).

Within the Director’s configuration file, Maximum Concurrent Jobs can
be set in the Direct, Job, Client, and Storage resources. Each one must be
set properly, according to your needs, otherwise your jobs may be run one
at a time.

For example, if you want two different jobs to run simultaneously backing
up the same Client to the same Storage device, they will run concurrently
only if you have set Maximum Concurrent Jobs greater than one in the
Director resource, the Client resource, and the Storage resource in bacula-
dir.conf.

We recommend that you carefully read the Data Spooling of this manual
first, then carefully test your multiple concurrent backup including restore
testing before you put it into production.

Below is a super stripped down bacula-dir.conf file showing you the
four places where the the file has been modified to allow the same job
NightlySave to run up to four times concurrently. The change to the
Job resource is not necessary if you want different Jobs to run at the same
time, which is the normal case.

#

Bacula Director Configuration file -- bacula-dir.conf

#

Director {

Name = rufus-dir

Maximum Concurrent Jobs = 4

...

}

Job {

Name = "NightlySave"

Maximum Concurrent Jobs = 4

Client = rufus-fd

Storage = File

...

}

Client {

Name = rufus-fd

Maximum Concurrent Jobs = 4

...

}

454 CHAPTER 35. TIPS AND SUGGESTIONS

Storage {

Name = File

Maximum Concurrent Jobs = 4

...

}

Chapter 36

Volume Utility Tools

This document describes the utility programs written to aid Bacula users
and developers in dealing with Volumes external to Bacula.

36.1 Specifying the Configuration File

Starting with version 1.27, each of the following programs requires a valid
Storage daemon configuration file (actually, the only part of the configura-
tion file that these programs need is the Device resource definitions). This
permits the programs to find the configuration parameters for your archive
device (generally a tape drive). By default, they read bacula-sd.conf in
the current directory, but you may specify a different configuration file using
the -c option.

36.2 Specifying a Device Name For a Tape

Each of these programs require a device-name where the Volume can be
found. In the case of a tape, this is the physical device name such as
/dev/nst0 or /dev/rmt/0ubn depending on your system. For the pro-
gram to work, it must find the identical name in the Device resource of the
configuration file. See below for specifying Volume names.

Please note that if you have Bacula running and you ant to use one of these
programs, you will either need to stop the Storage daemon, or unmount any
tape drive you want to use, otherwise the drive will busy because Bacula is
using it.

455

456 CHAPTER 36. VOLUME UTILITY TOOLS

36.3 Specifying a Device Name For a File

If you are attempting to read or write an archive file rather than a tape, the
device-name should be the full path to the archive location including the
filename. The filename (last part of the specification) will be stripped and
used as the Volume name, and the path (first part before the filename) must
have the same entry in the configuration file. So, the path is equivalent to
the archive device name, and the filename is equivalent to the volume name.

36.4 Specifying Volumes

In general, you must specify the Volume name to each of the programs below
(with the exception of btape). The best method to do so is to specify a
bootstrap file on the command line with the -b option. As part of the
bootstrap file, you will then specify the Volume name or Volume names
if more than one volume is needed. For example, suppose you want to
read tapes tape1 and tape2. First construct a bootstrap file named say,
list.bsr which contains:

Volume=test1|test2

where each Volume is separated by a vertical bar. Then simply use:

./bls -b list.bsr /dev/nst0

In the case of Bacula Volumes that are on files, you may simply append
volumes as follows:

./bls /tmp/test1\|test2

where the backslash (\) was necessary as a shell escape to permit entering
the vertical bar (—).

And finally, if you feel that specifying a Volume name is a bit complicated
with a bootstrap file, you can use the -V option (on all programs except
bcopy) to specify one or more Volume names separated by the vertical bar
(—). For example,

./bls -V Vol001 /dev/nst0

36.5. BLS 457

You may also specify an asterisk (*) to indicate that the program should
accept any volume. For example:

./bls -V* /dev/nst0

36.5 bls

bls can be used to do an ls type listing of a Bacula tape or file. It is called:

Usage: bls [options] <device-name>

-b <file> specify a bootstrap file

-c <file> specify a config file

-d <level> specify debug level

-e <file> exclude list

-i <file> include list

-j list jobs

-k list blocks

(no j or k option) list saved files

-L dump label

-p proceed inspite of errors

-v be verbose

-V specify Volume names (separated by |)

-? print this message

For example, to list the contents of a tape:

./bls -V Volume-name /dev/nst0

Or to list the contents of a file:

./bls /tmp/Volume-name

or

./bls -V Volume-name /tmp

Note that, in the case of a file, the Volume name becomes the filename, so
in the above example, you will replace the xxx with the name of the volume
(file) you wrote.

Normally if no options are specified, bls will produce the equivalent output
to the ls -l command for each file on the tape. Using other options listed
above, it is possible to display only the Job records, only the tape blocks,
etc. For example:

458 CHAPTER 36. VOLUME UTILITY TOOLS

./bls /tmp/File002

bls: butil.c:148 Using device: /tmp

drwxrwxr-x 3 k k 4096 02-10-19 21:08 /home/kern/bacula/k/src/dird/

drwxrwxr-x 2 k k 4096 02-10-10 18:59 /home/kern/bacula/k/src/dird/CVS/

-rw-rw-r-- 1 k k 54 02-07-06 18:02 /home/kern/bacula/k/src/dird/CVS/Root

-rw-rw-r-- 1 k k 16 02-07-06 18:02 /home/kern/bacula/k/src/dird/CVS/Repository

-rw-rw-r-- 1 k k 1783 02-10-10 18:59 /home/kern/bacula/k/src/dird/CVS/Entries

-rw-rw-r-- 1 k k 97506 02-10-18 21:07 /home/kern/bacula/k/src/dird/Makefile

-rw-r--r-- 1 k k 3513 02-10-18 21:02 /home/kern/bacula/k/src/dird/Makefile.in

-rw-rw-r-- 1 k k 4669 02-07-06 18:02 /home/kern/bacula/k/src/dird/README-config

-rw-r--r-- 1 k k 4391 02-09-14 16:51 /home/kern/bacula/k/src/dird/authenticate.c

-rw-r--r-- 1 k k 3609 02-07-07 16:41 /home/kern/bacula/k/src/dird/autoprune.c

-rw-rw-r-- 1 k k 4418 02-10-18 21:03 /home/kern/bacula/k/src/dird/bacula-dir.conf

...

-rw-rw-r-- 1 k k 83 02-08-31 19:19 /home/kern/bacula/k/src/dird/.cvsignore

bls: Got EOF on device /tmp

84 files found.

36.5.1 Listing Jobs

If you are listing a Volume to determine what Jobs to restore, normally the
-j option provides you with most of what you will need as long as you don’t
have multiple clients. For example,

./bls -j -V Test1 -c stored.conf DDS-4

bls: butil.c:258 Using device: "DDS-4" for reading.

11-Jul 11:54 bls: Ready to read from volume "Test1" on device "DDS-4" (/dev/nst0).

Volume Record: File:blk=0:1 SessId=4 SessTime=1121074625 JobId=0 DataLen=165

Begin Job Session Record: File:blk=0:2 SessId=4 SessTime=1121074625 JobId=1 Level=F Type=B

Begin Job Session Record: File:blk=0:3 SessId=5 SessTime=1121074625 JobId=5 Level=F Type=B

Begin Job Session Record: File:blk=0:6 SessId=3 SessTime=1121074625 JobId=2 Level=F Type=B

Begin Job Session Record: File:blk=0:13 SessId=2 SessTime=1121074625 JobId=4 Level=F Type=B

End Job Session Record: File:blk=0:99 SessId=3 SessTime=1121074625 JobId=2 Level=F Type=B

Files=168 Bytes=1,732,978 Errors=0 Status=T

End Job Session Record: File:blk=0:101 SessId=2 SessTime=1121074625 JobId=4 Level=F Type=B

Files=168 Bytes=1,732,978 Errors=0 Status=T

End Job Session Record: File:blk=0:108 SessId=5 SessTime=1121074625 JobId=5 Level=F Type=B

Files=168 Bytes=1,732,978 Errors=0 Status=T

End Job Session Record: File:blk=0:109 SessId=4 SessTime=1121074625 JobId=1 Level=F Type=B

Files=168 Bytes=1,732,978 Errors=0 Status=T

11-Jul 11:54 bls: End of Volume at file 1 on device "DDS-4" (/dev/nst0), Volume "Test1"

11-Jul 11:54 bls: End of all volumes.

shows a full save followed by two incremental saves.

Adding the -v option will display virtually all information that is available
for each record:

36.5. BLS 459

36.5.2 Listing Blocks

Normally, except for debugging purposes, you will not need to list Bacula
blocks (the ”primitive” unit of Bacula data on the Volume). However, you
can do so with:

./bls -k /tmp/File002

bls: butil.c:148 Using device: /tmp

Block: 1 size=64512

Block: 2 size=64512

...

Block: 65 size=64512

Block: 66 size=19195

bls: Got EOF on device /tmp

End of File on device

By adding the -v option, you can get more information, which can be useful
in knowing what sessions were written to the volume:

./bls -k -v /tmp/File002

Volume Label:

Id : Bacula 0.9 mortal

VerNo : 10

VolName : File002

PrevVolName :

VolFile : 0

LabelType : VOL_LABEL

LabelSize : 147

PoolName : Default

MediaType : File

PoolType : Backup

HostName :

Date label written: 2002-10-19 at 21:16

Block: 1 blen=64512 First rec FI=VOL_LABEL SessId=1 SessTim=1035062102 Strm=0 rlen=147

Block: 2 blen=64512 First rec FI=6 SessId=1 SessTim=1035062102 Strm=DATA rlen=4087

Block: 3 blen=64512 First rec FI=12 SessId=1 SessTim=1035062102 Strm=DATA rlen=5902

Block: 4 blen=64512 First rec FI=19 SessId=1 SessTim=1035062102 Strm=DATA rlen=28382

...

Block: 65 blen=64512 First rec FI=83 SessId=1 SessTim=1035062102 Strm=DATA rlen=1873

Block: 66 blen=19195 First rec FI=83 SessId=1 SessTim=1035062102 Strm=DATA rlen=2973

bls: Got EOF on device /tmp

End of File on device

Armed with the SessionId and the SessionTime, you can extract just about
anything.

If you want to know even more, add a second -v to the command line to get
a dump of every record in every block.

460 CHAPTER 36. VOLUME UTILITY TOOLS

./bls -k -v -v /tmp/File002

bls: block.c:79 Dump block 80f8ad0: size=64512 BlkNum=1

Hdrcksum=b1bdfd6d cksum=b1bdfd6d

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=VOL_LABEL Strm=0 len=147 p=80f8b40

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=SOS_LABEL Strm=-7 len=122 p=80f8be7

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=1 Strm=UATTR len=86 p=80f8c75

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=2 Strm=UATTR len=90 p=80f8cdf

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=3 Strm=UATTR len=92 p=80f8d4d

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=3 Strm=DATA len=54 p=80f8dbd

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=3 Strm=MD5 len=16 p=80f8e07

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=4 Strm=UATTR len=98 p=80f8e2b

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=4 Strm=DATA len=16 p=80f8ea1

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=4 Strm=MD5 len=16 p=80f8ec5

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=5 Strm=UATTR len=96 p=80f8ee9

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=5 Strm=DATA len=1783 p=80f8f5d

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=5 Strm=MD5 len=16 p=80f9668

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=6 Strm=UATTR len=95 p=80f968c

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=6 Strm=DATA len=32768 p=80f96ff

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=6 Strm=DATA len=32768 p=8101713

bls: block.c:79 Dump block 80f8ad0: size=64512 BlkNum=2

Hdrcksum=9acc1e7f cksum=9acc1e7f

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=6 Strm=contDATA len=4087 p=80f8b40

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=6 Strm=DATA len=31970 p=80f9b4b

bls: block.c:92 Rec: VId=1 VT=1035062102 FI=6 Strm=MD5 len=16 p=8101841

...

36.6 bextract

If you find yourself using bextract, you probably have done something
wrong. For example, if you are trying to recover a file but are having prob-
lems, please see the Restoring When Things Go Wrong section of the Re-
store chapter of this manual.

Normally, you will restore files by running a Restore Job from the Console
program. However, bextract can be used to extract a single file or a list
of files from a Bacula tape or file. In fact, bextract can be a useful tool
to restore files to an empty system assuming you are able to boot, you have
statically linked bextract and you have an appropriate bootstrap file.

Please note that one of the current limitations of bextract is that it will not
restore access control lists (ACL) that have been backed up along with the
file data.

It is called:

Usage: bextract [-d debug_level] <device-name> <directory-to-store-files>

36.6. BEXTRACT 461

-b <file> specify a bootstrap file

-dnn set debug level to nn

-e <file> exclude list

-i <file> include list

-p proceed inspite of I/O errors

-V specify Volume names (separated by |)

-? print this message

where device-name is the Archive Device (raw device name or full filename)
of the device to be read, and directory-to-store-files is a path prefix to
prepend to all the files restored.

NOTE: On Windows systems, if you specify a prefix of say d:/tmp, any file
that would have been restored to c:/My Documents will be restored to
d:/tmp/My Documents. That is, the original drive specification will be
stripped. If no prefix is specified, the file will be restored to the original
drive.

36.6.1 Extracting with Include or Exclude Lists

Using the -e option, you can specify a file containing a list of files to be
excluded. Wildcards can be used in the exclusion list. This option will
normally be used in conjunction with the -i option (see below). Both the -e
and the -i options may be specified at the same time as the -b option. The
bootstrap filters will be applied first, then the include list, then the exclude
list.

Likewise, and probably more importantly, with the -i option, you can specify
a file that contains a list (one file per line) of files and directories to include
to be restored. The list must contain the full filename with the path. If
you specify a path name only, all files and subdirectories of that path will
be restored. If you specify a line containing only the filename (e.g. my-
file.txt) it probably will not be extracted because you have not specified
the full path.

For example, if the file include-list contains:

/home/kern/bacula

/usr/local/bin

Then the command:

./bextract -i include-list -V Volume /dev/nst0 /tmp

462 CHAPTER 36. VOLUME UTILITY TOOLS

will restore from the Bacula archive /dev/nst0 all files and directories in
the backup from /home/kern/bacula and from /usr/local/bin. The
restored files will be placed in a file of the original name under the directory
/tmp (i.e. /tmp/home/kern/bacula/... and /tmp/usr/local/bin/...).

36.6.2 Extracting With a Bootstrap File

The -b option is used to specify a bootstrap file containing the information
needed to restore precisely the files you want. Specifying a bootstrap file
is optional but recommended because it gives you the most control over
which files will be restored. For more details on the bootstrap file, please
see Restoring Files with the Bootstrap File chapter of this document. Note,
you may also use a bootstrap file produced by the restore command. For
example:

./bextract -b bootstrap-file /dev/nst0 /tmp

The bootstrap file allows detailed specification of what files you want re-
stored (extracted). You may specify a bootstrap file and include and/or
exclude files at the same time. The bootstrap conditions will first be ap-
plied, and then each file record seen will be compared to the include and
exclude lists.

36.6.3 Extracting From Multiple Volumes

If you wish to extract files that span several Volumes, you can specify the
Volume names in the bootstrap file or you may specify the Volume names
on the command line by separating them with a vertical bar. See the sec-
tion above under the bls program entitled Listing Multiple Volumes for
more information. The same techniques apply equally well to the bextract
program.

36.7 bscan

If you find yourself using this program, you have probably done something
wrong. For example, the best way to recover a lost or damaged Bacula
database is to reload the database from using the bootstrap file that was
written when you saved it.

36.7. BSCAN 463

The bscan program can be used to re-create a database (catalog) from
the backup information written to one or more Volumes. This is normally
needed only if one or more Volumes have been pruned or purged from your
catalog so that the records on the Volume are no longer in the catalog, or
for Volumes that you have archived.

With some care, it can also be used to synchronize your existing catalog
with a Volume. Although we have never seen a case of bscan damaging
a catalog, since bscan modifies your catalog, we recommend that you do a
simple ASCII backup of your database before running bscan just to be sure.
See Compacting Your Database.

bscan can also be useful in a disaster recovery situation, after the loss of
a hard disk, if you do not have a valid bootstrap file for reloading your
system, or if a Volume has been recycled but not overwritten, you can use
bscan to re-create your database, which can then be used to restore your
system or a file to its previous state.

It is called:

Usage: bscan [options] <bacula-archive>

-b bootstrap specify a bootstrap file

-c <file> specify configuration file

-d <nn> set debug level to nn

-m update media info in database

-n <name> specify the database name (default bacula)

-u <user> specify database user name (default bacula)

-P <password> specify database password (default none)

-h <host> specify database host (default NULL)

-p proceed inspite of I/O errors

-r list records

-s synchronize or store in database

-v verbose

-V <Volumes> specify Volume names (separated by |)

-w <dir> specify working directory (default from conf file)

-? print this message

If you are using MySQL or PostgreSQL, there is no need to supply a working
directory since in that case, bscan knows where the databases are. However,
if you have provided security on your database, you may need to supply
either the database name (-b option), the user name (-u option), and/or
the password (-p) options.

As an example, let’s suppose that you did a backup to Volumes ”Vol001”
and ”Vol002”, then sometime later all records of one or both those Volumes
were pruned or purged from the database. By using bscan you can recreate

464 CHAPTER 36. VOLUME UTILITY TOOLS

the catalog entries for those Volumes and then use the restore command
in the Console to restore whatever you want. A command something like:

bscan -c bacula-sd.conf -v -V Vol001\|Vol002 /dev/nst0

will give you an idea of what is going to happen without changing your
catalog. Of course, you may need to change the path to the Storage daemon’s
conf file, the Volume name, and your tape (or disk) device name. This
command must read the entire tape, so if it has a lot of data, it may take a
long time, and thus you might want to immediately use the command listed
below. Note, if you are writing to a disk file, replace the device name with
the path to the directory that contains the Volumes. This must correspond
to the Archive Device in the conf file.

Then to actually write or store the records in the catalog, add the -s option
as follows:

bscan -s -m -c bacula-sd.conf -v -V Vol001\|Vol002 /dev/nst0

When writing to the database, if bscan finds existing records, it will generally
either update them if something is wrong or leave them alone. Thus if the
Volumes you are scanning are all or partially in the catalog already, no harm
will be done to that existing data. Any missing data will simply be added.

If you have multiple tapes, you should scan them with:

bscan -s -m -c bacula-sd.conf -v -V Vol001\|Vol002\|Vol003 /dev/nst0

You should, always try to specify the tapes in the order they are written.
However, bscan can handle scanning tapes that are not sequential. Any
incomplete records at the end of the tape will simply be ignored in that
case. If you are simply repairing an existing catalog, this may be OK, but
if you are creating a new catalog from scratch, it will leave your database in
an incorrect state. If you do not specify all necessary Volumes on a single
bscan command, bscan will not be able to correctly restore the records that
span two volumes. In other words, it is much better to specify two or three
volumes on a single bscan command rather than run bscan two or three
times, each with a single volume.

Note, the restoration process using bscan is not identical to the original
creation of the catalog data. This is because certain non-essential data such
as volume reads, volume mounts, etc is not stored on the Volume, and thus

36.7. BSCAN 465

is not restored by bscan. The results of bscanning are, however, perfectly
valid, and will permit restoration of any or all the files in the catalog using
the normal Bacula console commands.

36.7.1 Using bscan to Compare a Volume to an existing Cat-
alog

If you wish to compare the contents of a Volume to an existing catalog
without changing the catalog, you can safely do so if and only if you do
not specify either the -m or the -s options. However, at this time (Bacula
version 1.26), the comparison routines are not as good or as thorough as
they should be, so we don’t particularly recommend this mode other than
for testing.

36.7.2 Using bscan to Recreate a Catalog from a Volume

This is the mode for which bscan is most useful. You can either bscan into
a freshly created catalog, or directly into your existing catalog (after having
made an ASCII copy as described above). Normally, you should start with
a freshly created catalog that contains no data.

Starting with a single Volume named TestVolume1, you run a command
such as:

./bscan -V TestVolume1 -v -s -m -c bacula-sd.conf /dev/nst0

If there is more than one volume, simply append it to the first one separating
it with a vertical bar. You may need to precede the vertical bar with a
forward slash escape the shell – e.g. TestVolume1\—TestVolume2. The
-v option was added for verbose output (this can be omitted if desired).
The -s option that tells bscan to store information in the database. The
physical device name /dev/nst0 is specified after all the options.

For example, after having done a full backup of a directory, then two incre-
mentals, I reinitialized the SQLite database as described above, and using
the bootstrap.bsr file noted above, I entered the following command:

./bscan -b bootstrap.bsr -v -s -c bacula-sd.conf /dev/nst0

which produced the following output:

466 CHAPTER 36. VOLUME UTILITY TOOLS

bscan: bscan.c:182 Using Database: bacula, User: bacula

bscan: bscan.c:673 Created Pool record for Pool: Default

bscan: bscan.c:271 Pool type "Backup" is OK.

bscan: bscan.c:632 Created Media record for Volume: TestVolume1

bscan: bscan.c:298 Media type "DDS-4" is OK.

bscan: bscan.c:307 VOL_LABEL: OK for Volume: TestVolume1

bscan: bscan.c:693 Created Client record for Client: Rufus

bscan: bscan.c:769 Created new JobId=1 record for original JobId=2

bscan: bscan.c:717 Created FileSet record "Kerns Files"

bscan: bscan.c:819 Updated Job termination record for new JobId=1

bscan: bscan.c:905 Created JobMedia record JobId 1, MediaId 1

bscan: Got EOF on device /dev/nst0

bscan: bscan.c:693 Created Client record for Client: Rufus

bscan: bscan.c:769 Created new JobId=2 record for original JobId=3

bscan: bscan.c:708 Fileset "Kerns Files" already exists.

bscan: bscan.c:819 Updated Job termination record for new JobId=2

bscan: bscan.c:905 Created JobMedia record JobId 2, MediaId 1

bscan: Got EOF on device /dev/nst0

bscan: bscan.c:693 Created Client record for Client: Rufus

bscan: bscan.c:769 Created new JobId=3 record for original JobId=4

bscan: bscan.c:708 Fileset "Kerns Files" already exists.

bscan: bscan.c:819 Updated Job termination record for new JobId=3

bscan: bscan.c:905 Created JobMedia record JobId 3, MediaId 1

bscan: Got EOF on device /dev/nst0

bscan: bscan.c:652 Updated Media record at end of Volume: TestVolume1

bscan: bscan.c:428 End of Volume. VolFiles=3 VolBlocks=57 VolBytes=10,027,437

The key points to note are that bscan prints a line when each major record
is created. Due to the volume of output, it does not print a line for each file
record unless you supply the -v option twice or more on the command line.

In the case of a Job record, the new JobId will not normally be the same as
the original Jobid. For example, for the first JobId above, the new JobId is
1, but the original JobId is 2. This is nothing to be concerned about as it
is the normal nature of databases. bscan will keep everything straight.

Although bscan claims that it created a Client record for Client: Rufus
three times, it was actually only created the first time. This is normal.

You will also notice that it read an end of file after each Job (Got EOF on
device ...). Finally the last line gives the total statistics for the bscan.

If you had added a second -v option to the command line, Bacula would
have been even more verbose, dumping virtually all the details of each Job
record it encountered.

Now if you start Bacula and enter a list jobs command to the console
program, you will get:

36.7. BSCAN 467

+-------+----------+------------------+------+-----+----------+----------+---------+

| JobId | Name | StartTime | Type | Lvl | JobFiles | JobBytes | JobStat |

+-------+----------+------------------+------+-----+----------+----------+---------+

| 1 | kernsave | 2002-10-07 14:59 | B | F | 84 | 4180207 | T |

| 2 | kernsave | 2002-10-07 15:00 | B | I | 15 | 2170314 | T |

| 3 | kernsave | 2002-10-07 15:01 | B | I | 33 | 3662184 | T |

+-------+----------+------------------+------+-----+----------+----------+---------+

which corresponds virtually identically with what the database contained
before it was re-initialized and restored with bscan. All the Jobs and Files
found on the tape are restored including most of the Media record. The
Volume (Media) records restored will be marked as Full so that they cannot
be rewritten without operator intervention.

It should be noted that bscan cannot restore a database to the exact con-
dition it was in previously because a lot of the less important information
contained in the database is not saved to the tape. Nevertheless, the recon-
struction is sufficiently complete, that you can run restore against it and
get valid results.

36.7.3 Using bscan to Correct the Volume File Count

If the Storage daemon crashes during a backup Job, the catalog will not be
properly updated for the Volume being used at the time of the crash. This
means that the Storage daemon will have written say 20 files on the tape,
but the catalog record for the Volume indicates only 19 files.

Bacula refuses to write on a tape that contains a different number of files
from what is in the catalog. To correct this situation, you may run a bscan
with the -m option (but without the -s option) to update only the final
Media record for the Volumes read.

36.7.4 After bscan

If you use bscan to enter the contents of the Volume into an existing cata-
log, you should be aware that the records you entered may be immediately
pruned during the next job, particularly if the Volume is very old or had
been previously purged. To avoid this, after running bscan, you can manu-
ally set the volume status (VolStatus) to Read-Only by using the update
command in the catalog. This will allow you to restore from the volume
without having it immediately purged. When you have restored and backed
up the data, you can reset the VolStatus to Used and the Volume will be
purged from the catalog.

468 CHAPTER 36. VOLUME UTILITY TOOLS

36.8 bcopy

The bcopy program can be used to copy one Bacula archive file to another.
For example, you may copy a tape to a file, a file to a tape, a file to a file,
or a tape to a tape. For tape to tape, you will need two tape drives. (a
later version is planned that will buffer it to disk). In the process of making
the copy, no record of the information written to the new Volume is stored
in the catalog. This means that the new Volume, though it contains valid
backup data, cannot be accessed directly from existing catalog entries. If
you wish to be able to use the Volume with the Console restore command,
for example, you must first bscan the new Volume into the catalog.

36.8.1 bcopy Command Options

Usage: bcopy [-d debug_level] <input-archive> <output-archive>

-b bootstrap specify a bootstrap file

-c <file> specify configuration file

-dnn set debug level to nn

-i specify input Volume names (separated by |)

-o specify output Volume names (separated by |)

-p proceed inspite of I/O errors

-v verbose

-w dir specify working directory (default /tmp)

-? print this message

By using a bootstrap file, you can copy parts of a Bacula archive file to
another archive.

One of the objectives of this program is to be able to recover as much data
as possible from a damaged tape. However, the current version does not yet
have this feature.

As this is a new program, any feedback on its use would be appreciated. In
addition, I only have a single tape drive, so I have never been able to test
this program with two tape drives.

36.9 btape

This program permits a number of elementary tape operations via a tty
command interface. It works only with tapes and not with other kinds of
Bacula storage media (DVD, File, ...). The test command, described below,
can be very useful for testing older tape drive compatibility problems. Aside

36.9. BTAPE 469

from initial testing of tape drive compatibility with Bacula, btape will be
mostly used by developers writing new tape drivers.

btape can be dangerous to use with existing Bacula tapes because it will
relabel a tape or write on the tape if so requested regardless that the tape
may contain valuable data, so please be careful and use it only on blank
tapes.

To work properly, btape needs to read the Storage daemon’s configuration
file. As a default, it will look for bacula-sd.conf in the current directory.
If your configuration file is elsewhere, please use the -c option to specify
where.

The physical device name must be specified on the command line, and this
same device name must be present in the Storage daemon’s configuration
file read by btape

Usage: btape <options> <device_name>

-b <file> specify bootstrap file

-c <file> set configuration file to file

-d <nn> set debug level to nn

-p proceed inspite of I/O errors

-s turn off signals

-v be verbose

-? print this message.

36.9.1 Using btape to Verify your Tape Drive

An important reason for this program is to ensure that a Storage daemon
configuration file is defined so that Bacula will correctly read and write
tapes.

It is highly recommended that you run the test command before running
your first Bacula job to ensure that the parameters you have defined for
your storage device (tape drive) will permit Bacula to function properly.
You only need to mount a blank tape, enter the command, and the output
should be reasonably self explanatory. Please see the Tape Testing Chapter
of this manual for the details.

36.9.2 btape Commands

The full list of commands are:

Command Description

470 CHAPTER 36. VOLUME UTILITY TOOLS

======= ===========

autochanger test autochanger

bsf backspace file

bsr backspace record

cap list device capabilities

clear clear tape errors

eod go to end of Bacula data for append

eom go to the physical end of medium

fill fill tape, write onto second volume

unfill read filled tape

fsf forward space a file

fsr forward space a record

help print this command

label write a Bacula label to the tape

load load a tape

quit quit btape

rawfill use write() to fill tape

readlabel read and print the Bacula tape label

rectest test record handling functions

rewind rewind the tape

scan read() tape block by block to EOT and report

scanblocks Bacula read block by block to EOT and report

status print tape status

test General test Bacula tape functions

weof write an EOF on the tape

wr write a single Bacula block

rr read a single record

qfill quick fill command

The most useful commands are:

• test – test writing records and EOF marks and reading them back.

• fill – completely fill a volume with records, then write a few records
on a second volume, and finally, both volumes will be read back. This
command writes blocks containing random data, so your drive will not
be able to compress the data, and thus it is a good test of the real
physical capacity of your tapes.

• readlabel – read and dump the label on a Bacula tape.

• cap – list the device capabilities as defined in the configuration file and
as perceived by the Storage daemon.

The readlabel command can be used to display the details of a Bacula tape
label. This can be useful if the physical tape label was lost or damaged.

In the event that you want to relabel a Bacula, you can simply use the
label command which will write over any existing label. However, please

36.10. OTHER PROGRAMS 471

note for labeling tapes, we recommend that you use the label command in
the Console program since it will never overwrite a valid Bacula tape.

36.10 Other Programs

The following programs are general utility programs and in general do not
need a configuration file nor a device name.

36.11 bsmtp

bsmtp is a simple mail transport program that permits more flexibility than
the standard mail programs typically found on Unix systems. It can even
be used on Windows machines.

It is called:

Usage: bsmtp [-f from] [-h mailhost] [-s subject] [-c copy] [recipient ...]

-c set the Cc: field

-dnn set debug level to nn

-f set the From: field

-h use mailhost:port as the bsmtp server

-l limit the lines accepted to nn

-s set the Subject: field

-? print this message.

If the -f option is not specified, bsmtp will use your userid. If the option
-h is not specified bsmtp will use the value in the environment variable
bsmtpSERVER or if there is none localhost. By default port 25 is used.

If a line count limit is set with the -l option, bsmtp will not send an email
with a body text exceeding that number of lines. This is especially useful for
large restore job reports where the list of files restored might produce very
long mails your mail-server would refuse or crash. However, be aware that
you will probably suppress the job report and any error messages unless you
check the log file written by the Director (see the messages resource in this
manual for details).

recipients is a space separated list of email recipients.

The body of the email message is read from standard input.

An example of the use of bsmtp would be to put the following statement in

472 CHAPTER 36. VOLUME UTILITY TOOLS

the Messages resource of your bacula-dir.conf file. Note, these commands
should appear on a single line each.

mailcommand = "/home/bacula/bin/bsmtp -h mail.domain.com -f \"\(Bacula\) %r\"

-s \"Bacula: %t %e of %c %l\" %r"

operatorcommand = "/home/bacula/bin/bsmtp -h mail.domain.com -f \"\(Bacula\) %r\"

-s \"Bacula: Intervention needed for %j\" %r"

Where you replace /home/bacula/bin with the path to your Bac-
ula binary directory, and you replace mail.domain.com with the
fully qualified name of your bsmtp (email) server, which normally lis-
tens on port 25. For more details on the substitution characters
(e.g. %r) used in the above line, please see the documentation of the
MailCommand in the Messages Resource chapter of this manual.

It is HIGHLY recommended that you test one or two cases by hand to make
sure that the mailhost that you specified is correct and that it will accept
your email requests. Since bsmtp always uses a TCP connection rather
than writing in the spool file, you may find that your from address is being
rejected because it does not contain a valid domain, or because your message
is caught in your spam filtering rules. Generally, you should specify a fully
qualified domain name in the from field, and depending on whether your
bsmtp gateway is Exim or Sendmail, you may need to modify the syntax of
the from part of the message. Please test.

When running bsmtp by hand, you will need to terminate the message by
entering a ctl-d in column 1 of the last line.

If you are getting incorrect dates (e.g. 1970) and you are running with
a non-English language setting, you might try adding a LANG=”en US”
immediately before the bsmtp call.

36.12 dbcheck

dbcheck is a simple program that will search for logical inconsistencies in
the Bacula tables in your database, and optionally fix them. It is a database
maintenance routine, in the sense that it can detect and remove unused rows,
but it is not a database repair routine. To repair a database, see the tools
furnished by the database vendor. Normally dbcheck should never need to
be run, but if Bacula has crashed or you have a lot of Clients, Pools, or Jobs
that you have removed, it could be useful.

The dbcheck program can be found in the <bacula-source>/src/tools

36.12. DBCHECK 473

directory of the source distribution. Though it is built with the make pro-
cess, it is not normally ”installed”.

It is called:

Usage: dbcheck [-c config] [-C catalog name] [-d debug_level] []

-b batch mode

-C catalog name in the director conf file

-c director conf filename

-dnn set debug level to nn

-f fix inconsistencies

-v verbose

-? print this message

If the -c option is given with the Director’s conf file, there is no need to enter
any of the command line arguments, in particular the working directory as
dbcheck will read them from the file.

If the -f option is specified, dbcheck will repair (fix) the inconsistencies it
finds. Otherwise, it will report only.

If the -b option is specified, dbcheck will run in batch mode, and it will
proceed to examine and fix (if -f is set) all programmed inconsistency checks.
If the -b option is not specified, dbcheck will enter interactive mode and
prompt with the following:

Hello, this is the database check/correct program.

Please select the function you want to perform.

1) Toggle modify database flag

2) Toggle verbose flag

3) Repair bad Filename records

4) Repair bad Path records

5) Eliminate duplicate Filename records

6) Eliminate duplicate Path records

7) Eliminate orphaned Jobmedia records

8) Eliminate orphaned File records

9) Eliminate orphaned Path records

10) Eliminate orphaned Filename records

11) Eliminate orphaned FileSet records

12) Eliminate orphaned Client records

13) Eliminate orphaned Job records

14) Eliminate all Admin records

15) Eliminate all Restore records

16) All (3-15)

17) Quit

Select function number:

By entering 1 or 2, you can toggle the modify database flag (-f option) and
the verbose flag (-v). It can be helpful and reassuring to turn off the modify

474 CHAPTER 36. VOLUME UTILITY TOOLS

database flag, then select one or more of the consistency checks (items 3
through 9) to see what will be done, then toggle the modify flag on and
re-run the check.

The inconsistencies examined are the following:

• Duplicate filename records. This can happen if you accidentally run
two copies of Bacula at the same time, and they are both adding
filenames simultaneously. It is a rare occurrence, but will create an
inconsistent database. If this is the case, you will receive error mes-
sages during Jobs warning of duplicate database records. If you are
not getting these error messages, there is no reason to run this check.

• Repair bad Filename records. This checks and corrects filenames that
have a trailing slash. They should not.

• Repair bad Path records. This checks and corrects path names that
do not have a trailing slash. They should.

• Duplicate path records. This can happen if you accidentally run two
copies of Bacula at the same time, and they are both adding filenames
simultaneously. It is a rare occurrence, but will create an inconsistent
database. See the item above for why this occurs and how you know
it is happening.

• Orphaned JobMedia records. This happens when a Job record is
deleted (perhaps by a user issued SQL statement), but the correspond-
ing JobMedia record (one for each Volume used in the Job) was not
deleted. Normally, this should not happen, and even if it does, these
records generally do not take much space in your database. However,
by running this check, you can eliminate any such orphans.

• Orphaned File records. This happens when a Job record is deleted
(perhaps by a user issued SQL statement), but the corresponding File
record (one for each Volume used in the Job) was not deleted. Note,
searching for these records can be very time consuming (i.e. it may
take hours) for a large database. Normally this should not happen as
Bacula takes care to prevent it. Just the same, this check can remove
any orphaned File records. It is recommended that you run this once
a year since orphaned File records can take a large amount of space
in your database. You might want to ensure that you have indexes
on JobId, FilenameId, and PathId for the File table in your catalog
before running this command.

• Orphaned Path records. This condition happens any time a directory
is deleted from your system and all associated Job records have been

36.13. BREGEX 475

purged. During standard purging (or pruning) of Job records, Bacula
does not check for orphaned Path records. As a consequence, over a
period of time, old unused Path records will tend to accumulate and
use space in your database. This check will eliminate them. It is
recommended that you run this check at least once a year.

• Orphaned Filename records. This condition happens any time a file
is deleted from your system and all associated Job records have been
purged. This can happen quite frequently as there are quite a large
number of files that are created and then deleted. In addition, if you
do a system update or delete an entire directory, there can be a very
large number of Filename records that remain in the catalog but are
no longer used.

During standard purging (or pruning) of Job records, Bacula does
not check for orphaned Filename records. As a consequence, over a
period of time, old unused Filename records will accumulate and use
space in your database. This check will eliminate them. It is strongly
recommended that you run this check at least once a year, and for
large database (more than 200 Megabytes), it is probably better to
run this once every 6 months.

• Orphaned Client records. These records can remain in the database
long after you have removed a client.

• Orphaned Job records. If no client is defined for a job or you do not
run a job for a long time, you can accumulate old job records. This
option allow you to remove jobs that are not attached to any client
(and thus useless).

• All Admin records. This command will remove all Admin records,
regardless of their age.

• All Restore records. This command will remove all Restore records,
regardless of their age.

By the way, I personally run dbcheck only where I have messed up my
database due to a bug in developing Bacula code, so normally you should
never need to run dbcheck in spite of the recommendations given above,
which are given so that users don’t waste their time running dbcheck too
often.

36.13 bregex

bregex is a simple program that will allow you to test regular expressions

476 CHAPTER 36. VOLUME UTILITY TOOLS

against a file of data. This can be useful because the regex libraries on most
systems differ, and in addition, regex expressions can be complicated.

bregex is found in the src/tools directory and it is normally installed with
your system binaries. To run it, use:

Usage: bregex [-d debug_level] -f <data-file>

-f specify file of data to be matched

-l suppress line numbers

-n print lines that do not match

-? print this message.

The <data-file> is a filename that contains lines of data to be matched (or
not) against one or more patterns. When the program is run, it will prompt
you for a regular expression pattern, then apply it one line at a time against
the data in the file. Each line that matches will be printed preceded by its
line number. You will then be prompted again for another pattern.

Enter an empty line for a pattern to terminate the program. You can print
only lines that do not match by using the -n option, and you can suppress
printing of line numbers with the -l option.

This program can be useful for testing regex expressions to be applied
against a list of filenames.

36.14 bwild

bwild is a simple program that will allow you to test wild-card expressions
against a file of data.

bwild is found in the src/tools directory and it is normally installed with
your system binaries. To run it, use:

Usage: bwild [-d debug_level] -f <data-file>

-f specify file of data to be matched

-l suppress line numbers

-n print lines that do not match

-? print this message.

The <data-file> is a filename that contains lines of data to be matched (or
not) against one or more patterns. When the program is run, it will prompt

36.15. TESTFIND 477

you for a wild-card pattern, then apply it one line at a time against the
data in the file. Each line that matches will be printed preceded by its line
number. You will then be prompted again for another pattern.

Enter an empty line for a pattern to terminate the program. You can print
only lines that do not match by using the -n option, and you can suppress
printing of line numbers with the -l option.

This program can be useful for testing wild expressions to be applied against
a list of filenames.

36.15 testfind

testfind permits listing of files using the same search engine that is used
for the Include resource in Job resources. Note, much of the function-
ality of this program (listing of files to be included) is present in the
estimate command in the Console program.

The original use of testfind was to ensure that Bacula’s file search engine
was correct and to print some statistics on file name and path length. How-
ever, you may find it useful to see what bacula would do with a given
Include resource. The testfind program can be found in the <bacula-
source>/src/tools directory of the source distribution. Though it is built
with the make process, it is not normally ”installed”.

It is called:

Usage: testfind [-d debug_level] [-] [pattern1 ...]

-a print extended attributes (Win32 debug)

-dnn set debug level to nn

- read pattern(s) from stdin

-? print this message.

Patterns are used for file inclusion -- normally directories.

Debug level>= 1 prints each file found.

Debug level>= 10 prints path/file for catalog.

Errors are always printed.

Files/paths truncated is a number with len> 255.

Truncation is only in the catalog.

Where a pattern is any filename specification that is valid within an Include
resource definition. If none is specified, / (the root directory) is assumed.
For example:

./testfind /bin

478 CHAPTER 36. VOLUME UTILITY TOOLS

Would print the following:

Dir: /bin

Reg: /bin/bash

Lnk: /bin/bash2 -> bash

Lnk: /bin/sh -> bash

Reg: /bin/cpio

Reg: /bin/ed

Lnk: /bin/red -> ed

Reg: /bin/chgrp

...

Reg: /bin/ipcalc

Reg: /bin/usleep

Reg: /bin/aumix-minimal

Reg: /bin/mt

Lnka: /bin/gawk-3.1.0 -> /bin/gawk

Reg: /bin/pgawk

Total files : 85

Max file length: 13

Max path length: 5

Files truncated: 0

Paths truncated: 0

Even though testfind uses the same search engine as Bacula, each directory
to be listed, must be entered as a separate command line entry or entered
one line at a time to standard input if the - option was specified.

Specifying a debug level of one (i.e. -d1) on the command line will cause
testfind to print the raw filenames without showing the Bacula internal file
type, or the link (if any). Debug levels of 10 or greater cause the filename
and the path to be separated using the same algorithm that is used when
putting filenames into the Catalog database.

Chapter 37

Testing Your Tape Drive
With Bacula

This chapter is concerned with testing and configuring your tape drive to
make sure that it will work properly with Bacula using the btape program.

37.1 Get Your Tape Drive Working

In general, you should follow the following steps to get your tape drive to
work with Bacula. Start with a tape mounted in your drive. If you have
an autochanger, load a tape into the drive. We use /dev/nst0 as the tape
drive name, you will need to adapt it according to your system.

Do not proceed to the next item until you have succeeded with the previous
one.

1. Make sure that Bacula (the Storage daemon) is not running or that
you have unmounted the drive you will use for testing.

2. Use tar to write to, then read from your drive:

mt -f /dev/nst0 rewind

tar cvf /dev/nst0 .

mt -f /dev/nst0 rewind

tar tvf /dev/nst0

479

480 CHAPTER 37. TESTING YOUR TAPE DRIVE WITH BACULA

3. Make sure you have a valid and correct Device resource correspond-
ing to your drive. For Linux users, generally, the default one works.
For FreeBSD users, there are two possible Device configurations (see
below).

4. Run the btape test command:

./btape -c bacula-sd.conf /dev/nst0

test

It isn’t necessary to run the autochanger part of the test at this time,
but do not go past this point until the basic test succeeds. If you do
have an autochanger, please be sure to read the Autochanger chapter
of this manual.

5. Run the btape fill command, preferably with two volumes. This can
take a long time. If you have an autochanger and it is configured,
Bacula will automatically use it. If you do not have it configured,
you can manually issue the appropriate mtx command, or press the
autochanger buttons to change the tape when requested to do so.

6. FreeBSD users, if you have a pre-5.0 system run the tapetest program,
and make sure your system is patched if necessary. The tapetest pro-
gram can be found in the platform/freebsd directory. The instructions
for its use are at the top of the file.

7. Run Bacula, and backup a reasonably small directory, say 60
Megabytes. Do three successive backups of this directory.

8. Stop Bacula, then restart it. Do another full backup of the same
directory. Then stop and restart Bacula.

9. Do a restore of the directory backed up, by entering the following
restore command, being careful to restore it to an alternate location:

restore select all done

yes

Do a diff on the restored directory to ensure it is identical to the
original directory. If you are going to backup multiple different systems
(Linux, Windows, Mac, Solaris, FreeBSD, ...), be sure you test the
restore on each system type.

10. If you have an autochanger, you should now go back to the btape
program and run the autochanger test:

37.1. GET YOUR TAPE DRIVE WORKING 481

./btape -c bacula-sd.conf /dev/nst0

auto

Adjust your autochanger as necessary to ensure that it works correctly.
See the Autochanger chapter of this manual for a complete discussion
of testing your autochanger.

11. We strongly recommend that you use a dedicated SCSI controller for
your tape drives. Scanners are known to induce serious problems with
the SCSI bus, causing it to reset. If the SCSI bus is reset while Bacula
has the tape drive open, it will most likely be fatal to your tape since
the drive will rewind. These kinds of problems show up in the system
log. For example, the following was most likely caused by a scanner:

Feb 14 17:29:55 epohost kernel: (scsi0:A:2:0): No or incomplete CDB sent to device.

Feb 14 17:29:55 epohost kernel: scsi0: Issued Channel A Bus Reset. 1 SCBs aborted

If you have reached this point, you stand a good chance of having everything
work. If you get into trouble at any point, carefully read the documentation
given below. If you cannot get past some point, ask the bacula-users
email list, but specify which of the steps you have successfully completed.
In particular, you may want to look at the Tips for Resolving Problems
section below.

37.1.1 Problems When no Tape in Drive

When Bacula was first written the Linux 2.4 kernel permitted opening the
drive whether or not there was a tape in the drive. Thus the Bacula code is
based on the concept that if the drive cannot be opened, there is a serious
problem, and the job is failed.

With version 2.6 of the Linux kernel, if there is no tape in the drive, the OS
will wait two minutes (default) and then return a failure, and consequently,
Bacula version 1.36 and below will fail the job. This is important to keep in
mind, because if you use an option such as Offline on Unmount = yes,
there will be a point when there is no tape in the drive, and if another job
starts or if Bacula asks the operator to mount a tape, when Bacula attempts
to open the drive (about a 20 minute delay), it will fail and Bacula will fail
the job.

In version 1.38.x, the Bacula code partially gets around this problem – at
least in the initial open of the drive. However, functions like Polling the

482 CHAPTER 37. TESTING YOUR TAPE DRIVE WITH BACULA

drive do not work correctly if there is no tape in the drive. Providing you
do not use Offline on Unmount = yes, you should not experience job
failures as mentioned above. If you do experience such failures, you can
also increase the Maximum Open Wait time interval, which will give you
more time to mount the next tape before the job is failed.

37.1.2 Specifying the Configuration File

Starting with version 1.27, each of the tape utility programs including the
btape program requires a valid Storage daemon configuration file (actually,
the only part of the configuration file that btape needs is the Device re-
source definitions). This permits btape to find the configuration parameters
for your archive device (generally a tape drive). Without those parameters,
the testing and utility programs do not know how to properly read and write
your drive. By default, they use bacula-sd.conf in the current directory,
but you may specify a different configuration file using the -c option.

37.1.3 Specifying a Device Name For a Tape

btape device-name where the Volume can be found. In the case of a tape,
this is the physical device name such as /dev/nst0 or /dev/rmt/0ubn
depending on your system that you specify on the Archive Device directive.
For the program to work, it must find the identical name in the Device
resource of the configuration file. If the name is not found in the list of
physical names, the utility program will compare the name you entered to
the Device names (rather than the Archive device names).

When specifying a tape device, it is preferable that the ”non-rewind” variant
of the device file name be given. In addition, on systems such as Sun,
which have multiple tape access methods, you must be sure to specify to use
Berkeley I/O conventions with the device. The b in the Solaris (Sun) archive
specification /dev/rmt/0mbn is what is needed in this case. Bacula does
not support SysV tape drive behavior.

See below for specifying Volume names.

37.1.4 Specifying a Device Name For a File

If you are attempting to read or write an archive file rather than a tape, the
device-name should be the full path to the archive location including the
filename. The filename (last part of the specification) will be stripped and

37.2. BTAPE 483

used as the Volume name, and the path (first part before the filename) must
have the same entry in the configuration file. So, the path is equivalent to
the archive device name, and the filename is equivalent to the volume name.

37.2 btape

This program permits a number of elementary tape operations via a tty
command interface. The test command, described below, can be very useful
for testing tape drive compatibility problems. Aside from initial testing
of tape drive compatibility with Bacula, btape will be mostly used by
developers writing new tape drivers.

btape can be dangerous to use with existing Bacula tapes because it will
relabel a tape or write on the tape if so requested regardless of whether or
not the tape contains valuable data, so please be careful and use it only on
blank tapes.

To work properly, btape needs to read the Storage daemon’s configuration
file. As a default, it will look for bacula-sd.conf in the current directory.
If your configuration file is elsewhere, please use the -c option to specify
where.

The physical device name or the Device resource name must be specified
on the command line, and this same device name must be present in the
Storage daemon’s configuration file read by btape

Usage: btape [options] device_name

-b <file> specify bootstrap file

-c <file> set configuration file to file

-d <nn> set debug level to nn

-p proceed inspite of I/O errors

-s turn off signals

-v be verbose

-? print this message.

37.2.1 Using btape to Verify your Tape Drive

An important reason for this program is to ensure that a Storage daemon
configuration file is defined so that Bacula will correctly read and write
tapes.

It is highly recommended that you run the test command before running
your first Bacula job to ensure that the parameters you have defined for

484 CHAPTER 37. TESTING YOUR TAPE DRIVE WITH BACULA

your storage device (tape drive) will permit Bacula to function properly.
You only need to mount a blank tape, enter the command, and the output
should be reasonably self explanatory. For example:

(ensure that Bacula is not running)

./btape -c /usr/bin/bacula/bacula-sd.conf /dev/nst0

The output will be:

Tape block granularity is 1024 bytes.

btape: btape.c:376 Using device: /dev/nst0

*

Enter the test command:

test

The output produced should be something similar to the following: I’ve cut
the listing short because it is frequently updated to have new tests.

=== Append files test ===

This test is essential to Bacula.

I’m going to write one record in file 0,

two records in file 1,

and three records in file 2

btape: btape.c:387 Rewound /dev/nst0

btape: btape.c:855 Wrote one record of 64412 bytes.

btape: btape.c:857 Wrote block to device.

btape: btape.c:410 Wrote EOF to /dev/nst0

btape: btape.c:855 Wrote one record of 64412 bytes.

btape: btape.c:857 Wrote block to device.

btape: btape.c:855 Wrote one record of 64412 bytes.

btape: btape.c:857 Wrote block to device.

btape: btape.c:410 Wrote EOF to /dev/nst0

btape: btape.c:855 Wrote one record of 64412 bytes.

btape: btape.c:857 Wrote block to device.

btape: btape.c:855 Wrote one record of 64412 bytes.

btape: btape.c:857 Wrote block to device.

btape: btape.c:855 Wrote one record of 64412 bytes.

btape: btape.c:857 Wrote block to device.

btape: btape.c:410 Wrote EOF to /dev/nst0

btape: btape.c:387 Rewound /dev/nst0

btape: btape.c:693 Now moving to end of media.

btape: btape.c:427 Moved to end of media

We should be in file 3. I am at file 3. This is correct!

Now the important part, I am going to attempt to append to the tape.

...

=== End Append files test ===

37.2. BTAPE 485

If you do not successfully complete the above test, please resolve the prob-
lem(s) before attempting to use Bacula. Depending on your tape drive,
the test may recommend that you add certain records to your configuration.
We strongly recommend that you do so and then re-run the above test to
insure it works the first time.

Some of the suggestions it provides for resolving the problems may or may
not be useful. If at all possible avoid using fixed blocking. If the test
suddenly starts to print a long series of:

Got EOF on tape.

Got EOF on tape.

...

then almost certainly, you are running your drive in fixed block mode rather
than variable block mode. See below for more help of resolving fix versus
variable block problems.

It is also possible that you have your drive set in SysV tape drive mode.
The drive must use BSD tape conventions. See the section above on setting
your Archive device correctly.

For FreeBSD users, please see the notes below for doing further testing of
your tape drive.

37.2.2 Linux SCSI Tricks

You can find out what SCSI devices you have by doing:

cat /proc/scsi/scsi

For example, I get the following:

Attached devices:

Host: scsi2 Channel: 00 Id: 01 Lun: 00

Vendor: HP Model: C5713A Rev: H107

Type: Sequential-Access ANSI SCSI revision: 02

Host: scsi2 Channel: 00 Id: 04 Lun: 00

Vendor: SONY Model: SDT-10000 Rev: 0110

Type: Sequential-Access ANSI SCSI revision: 02

The above represents first an autochanger and second a simple tape drive.
The HP changer (the first entry) uses the same SCSI channel for data and
for control, so in Bacula, you would use:

486 CHAPTER 37. TESTING YOUR TAPE DRIVE WITH BACULA

Archive Device = /dev/nst0

Changer Device = /dev/sg0

If you want to remove the SDT-10000 device, you can do so as root with:

echo "scsi remove-single-device 2 0 4 0">/proc/scsi/scsi

and you can put add it back with:

echo "scsi add-single-device 2 0 4 0">/proc/scsi/scsi

where the 2 0 4 0 are the Host, Channel, Id, and Lun as seen on the output
from cat /proc/scsi/scsi. Note, the Channel must be specified as numeric.

Below is a slightly more complicated output, which is a single autochanger
with two drives, and which operates the changer on a different channel from
from the drives:

Attached devices:

Host: scsi0 Channel: 00 Id: 00 Lun: 00

Vendor: ATA Model: WDC WD1600JD-75H Rev: 08.0

Type: Direct-Access ANSI SCSI revision: 05

Host: scsi2 Channel: 00 Id: 04 Lun: 00

Vendor: HP Model: Ultrium 2-SCSI Rev: F6CH

Type: Sequential-Access ANSI SCSI revision: 03

Host: scsi2 Channel: 00 Id: 05 Lun: 00

Vendor: HP Model: Ultrium 2-SCSI Rev: F6CH

Type: Sequential-Access ANSI SCSI revision: 03

Host: scsi2 Channel: 00 Id: 06 Lun: 00

Vendor: OVERLAND Model: LXB Rev: 0106

Type: Medium Changer ANSI SCSI revision: 02

The above tape drives are accessed on /dev/nst0 and /dev/nst1, while the
control channel for those two drives is /dev/sg3.

37.3 Tips for Resolving Problems

37.3.1 Bacula Saves But Cannot Restore Files

If you are getting error messages such as:

Volume data error at 0:1! Wanted block-id: "BB02", got "". Buffer discarded

37.3. TIPS FOR RESOLVING PROBLEMS 487

It is very likely that Bacula has tried to do block positioning and ended up
at an invalid block. This can happen if your tape drive is in fixed block mode
while Bacula’s default is variable blocks. Note that in such cases, Bacula is
perfectly able to write to your Volumes (tapes), but cannot position to read
them.

There are two possible solutions.

1. The first and best is to always ensure that your drive is in variable
block mode. Note, it can switch back to fixed block mode on a reboot
or if another program uses the drive. So on such systems you need to
modify the Bacula startup files to explicitly set:

mt -f /dev/nst0 defblksize 0

or whatever is appropriate on your system. Note, if you are running
a Linux system, and the above command does not work, it is most
likely because you have not loaded the appropriate mt package, which
is often called mt st, but may differ according to your distribution.

2. The second possibility, especially, if Bacula wrote while the drive was
in fixed block mode, is to turn off block positioning in Bacula. This is
done by adding:

Block Positioning = no

to the Device resource. This is not the recommended procedure be-
cause it can enormously slow down recovery of files, but it may help
where all else fails. This directive is available in version 1.35.5 or later
(and not yet tested).

If you are getting error messages such as:

Volume data error at 0:0!

Block checksum mismatch in block=0 len=32625 calc=345678 blk=123456

You are getting tape read errors, and this is most likely due to one of the
following things:

1. An old or bad tape.

2. A dirty drive that needs cleaning (particularly for DDS drives).

488 CHAPTER 37. TESTING YOUR TAPE DRIVE WITH BACULA

3. A loose SCSI cable.

4. Old firmware in your drive. Make sure you have the latest firmware
loaded.

5. Computer memory errors.

6. Over-clocking your CPU.

7. A bad SCSI card.

37.3.2 Bacula Cannot Open the Device

If you get an error message such as:

dev open failed: dev.c:265 stored: unable to open

device /dev/nst0:> ERR=No such device or address

the first time you run a job, it is most likely due to the fact that you specified
the incorrect device name on your Archive Device.

If Bacula works fine with your drive, then all off a sudden you get error
messages similar to the one shown above, it is quite possible that your
driver module is being removed because the kernel deems it idle. This is
done via crontab with the use of rmmod -a. To fix the problem, you
can remove this entry from crontab, or you can manually modprob your
driver module (or add it to the local startup script). Thanks to Alan Brown
for this tip.

37.3.3 Incorrect File Number

When Bacula moves to the end of the medium, it normally uses the
ioctl(MTEOM) function. Then Bacula uses the ioctl(MTIOCGET)
function to retrieve the current file position from the mt fileno field. Some
SCSI tape drivers will use a fast means of seeking to the end of the medium
and in doing so, they will not know the current file position and hence re-
turn a -1. As a consequence, if you get ”This is NOT correct!” in the
positioning tests, this may be the cause. You must correct this condition in
order for Bacula to work.

There are two possible solutions to the above problem of incorrect file num-
ber:

37.3. TIPS FOR RESOLVING PROBLEMS 489

• Figure out how to configure your SCSI driver to keep track of the file
position during the MTEOM request. This is the preferred solution.

• Modify the Device resource of your bacula-sd.conf file to include:

Hardware End of File = no

This will cause Bacula to use the MTFSF request to seek to the end
of the medium, and Bacula will keep track of the file number itself.

37.3.4 Incorrect Number of Blocks or Positioning Errors

Bacula’s preferred method of working with tape drives (sequential devices)
is to run in variable block mode, and this is what is set by default. You
should first ensure that your tape drive is set for variable block mode (see
below).

If your tape drive is in fixed block mode and you have told Bacula to use
different fixed block sizes or variable block sizes (default), you will get errors
when Bacula attempts to forward space to the correct block (the kernel
driver’s idea of tape blocks will not correspond to Bacula’s).

All modern tape drives support variable tape blocks, but some older drives
(in particular the QIC drives) as well as the ATAPI ide-scsi driver run only
in fixed block mode. The Travan tape drives also apparently must run in
fixed block mode (to be confirmed).

Even in variable block mode, with the exception of the first record on the
second or subsequent volume of a multi-volume backup, Bacula will write
blocks of a fixed size. However, in reading a tape, Bacula will assume that
for each read request, exactly one block from the tape will be transferred.
This the most common way that tape drives work and is well supported by
Bacula.

Drives that run in fixed block mode can cause serious problems for Bacula
if the drive’s block size does not correspond exactly to Bacula’s block size.
In fixed block size mode, drivers may transmit a partial block or multiple
blocks for a single read request. From Bacula’s point of view, this destroys
the concept of tape blocks. It is much better to run in variable block mode,
and almost all modern drives (the OnStream is an exception) run in variable
block mode. In order for Bacula to run in fixed block mode, you must include
the following records in the Storage daemon’s Device resource definition:

490 CHAPTER 37. TESTING YOUR TAPE DRIVE WITH BACULA

Minimum Block Size = nnn

Maximum Block Size = nnn

where nnn must be the same for both records and must be identical to the
driver’s fixed block size.

We recommend that you avoid this configuration if at all possible by using
variable block sizes.

If you must run with fixed size blocks, make sure they are not 512 bytes.
This is too small and the overhead that Bacula has with each record will
become excessive. If at all possible set any fixed block size to something
like 64,512 bytes or possibly 32,768 if 64,512 is too large for your drive. See
below for the details on checking and setting the default drive block size.

To recover files from tapes written in fixed block mode, see below.

37.3.5 Ensuring that the Tape Modes Are Properly Set –
Linux Only

If you have a modern SCSI tape drive and you are having problems with the
test command as noted above, it may be that some program has set one or
more of your SCSI driver’s options to non-default values. For example, if
your driver is set to work in SysV manner, Bacula will not work correctly
because it expects BSD behavior. To reset your tape drive to the default
values, you can try the following, but ONLY if you have a SCSI tape drive
on a Linux system:

become super user

mt -f /dev/nst0 rewind

mt -f /dev/nst0 stoptions buffer-writes async-writes read-ahead

The above commands will clear all options and then set those specified.
None of the specified options are required by Bacula, but a number of other
options such as SysV behavior must not be set. Bacula does not support
SysV tape behavior. On systems other than Linux, you will need to consult
your mt man pages or documentation to figure out how to do the same
thing. This should not really be necessary though – for example, on both
Linux and Solaris systems, the default tape driver options are compatible
with Bacula. On Solaris systems, you must take care to specify the correct
device name on the Archive device directive. See above for more details.

You may also want to ensure that no prior program has set the default block
size, as happened to one user, by explicitly turning it off with:

37.3. TIPS FOR RESOLVING PROBLEMS 491

mt -f /dev/nst0 defblksize 0

If you are running a Linux system, and the above command does not work,
it is most likely because you have not loaded the appropriate mt package,
which is often called mt st, but may differ according to your distribution.

If you would like to know what options you have set before making any of
the changes noted above, you can now view them on Linux systems, thanks
to a tip provided by Willem Riede. Do the following:

become super user

mt -f /dev/nst0 stsetoptions 0

grep st0 /var/log/messages

and you will get output that looks something like the following:

kernel: st0: Mode 0 options: buffer writes: 1, async writes: 1, read ahead: 1

kernel: st0: can bsr: 0, two FMs: 0, fast mteom: 0, auto lock: 0,

kernel: st0: defs for wr: 0, no block limits: 0, partitions: 0, s2 log: 0

kernel: st0: sysv: 0 nowait: 0

Note, I have chopped off the beginning of the line with the date and machine
name for presentation purposes.

Some people find that the above settings only last until the next reboot, so
please check this otherwise you may have unexpected problems.

Beginning with Bacula version 1.35.8, if Bacula detects that you are running
in variable block mode, it will attempt to set your drive appropriately. All
OSes permit setting variable block mode, but some OSes do not permit
setting the other modes that Bacula needs to function properly.

37.3.6 Tape Hardware Compression and Blocking Size

As far as I can tell, there is no way with the mt program to check if your
tape hardware compression is turned on or off. You can, however, turn it
on by using (on Linux):

become super user

mt -f /dev/nst0 defcompression 1

492 CHAPTER 37. TESTING YOUR TAPE DRIVE WITH BACULA

and of course, if you use a zero instead of the one at the end, you will turn
it off.

If you have built the mtx program in the depkgs package, you can use
tapeinfo to get quite a bit of information about your tape drive even if
it is not an autochanger. This program is called using the SCSI control
device. On Linux for tape drive /dev/nst0, this is usually /dev/sg0, while
on FreeBSD for /dev/nsa0, the control device is often /dev/pass2. For
example on my DDS-4 drive (/dev/nst0), I get the following:

tapeinfo -f /dev/sg0

Product Type: Tape Drive

Vendor ID: ’HP ’

Product ID: ’C5713A ’

Revision: ’H107’

Attached Changer: No

MinBlock:1

MaxBlock:16777215

SCSI ID: 5

SCSI LUN: 0

Ready: yes

BufferedMode: yes

Medium Type: Not Loaded

Density Code: 0x26

BlockSize: 0

where the DataCompEnabled: yes means that tape hardware compres-
sion is turned on. You can turn it on and off (yes—no) by using the mt
commands given above. Also, this output will tell you if the BlockSize is
non-zero and hence set for a particular block size. Bacula is not likely to
work in such a situation because it will normally attempt to write blocks of
64,512 bytes, except the last block of the job which will generally be shorter.
The first thing to try is setting the default block size to zero using the mt
-f /dev/nst0 defblksize 0 command as shown above. On FreeBSD, this
would be something like: mt -f /dev/nsa0 blocksize 0.

On some operating systems with some tape drives, the amount of data that
can be written to the tape and whether or not compression is enabled is
determined by the density usually the mt -f /dev/nst0 setdensity xxx
command. Often mt -f /dev/nst0 status will print out the current density
code that is used with the drive. Most systems, but unfortunately not all,
set the density to the maximum by default. On some systems, you can also
get a list of all available density codes with: mt -f /dev/nst0 densities or
a similar mt command. Note, for DLT and SDLT devices, no-compression
versus compression is very often controlled by the density code. On FreeBSD
systems, the compression mode is set using mt -f /dev/nsa0 comp xxx

37.3. TIPS FOR RESOLVING PROBLEMS 493

where xxx is the mode you want. In general, see man mt for the options
available on your system.

Note, some of the above mt commands may not be persistent depending on
your system configuration. That is they may be reset if a program other
than Bacula uses the drive or, as is frequently the case, on reboot of your
system.

If your tape drive requires fixed block sizes (very unusual), you can use the
following records:

Minimum Block Size = nnn

Maximum Block Size = nnn

in your Storage daemon’s Device resource to force Bacula to write fixed size
blocks (where you sent nnn to be the same for both of the above records).
This should be done only if your drive does not support variable block
sizes, or you have some other strong reasons for using fixed block sizes. As
mentioned above, a small fixed block size of 512 or 1024 bytes will be very
inefficient. Try to set any fixed block size to something like 64,512 bytes or
larger if your drive will support it.

Also, note that the Medium Type field of the output of tapeinfo reports
Not Loaded, which is not correct. As a consequence, you should ignore
that field as well as the Attached Changer field.

To recover files from tapes written in fixed block mode, see below.

37.3.7 Tape Modes on FreeBSD

On most FreeBSD systems such as 4.9 and most tape drives, Bacula should
run with:

mt -f /dev/nsa0 seteotmodel 2

mt -f /dev/nsa0 blocksize 0

mt -f /dev/nsa0 comp enable

You might want to put those commands in a startup script to make sure your
tape driver is properly initialized before running Bacula, because depending
on your system configuration, these modes may be reset if a program other
than Bacula uses the drive or when your system is rebooted.

Then according to what the btape test command returns, you will probably
need to set the following (see below for an alternative):

494 CHAPTER 37. TESTING YOUR TAPE DRIVE WITH BACULA

Hardware End of Medium = no

BSF at EOM = yes

Backward Space Record = no

Backward Space File = no

Fast Forward Space File = no

TWO EOF = yes

Then be sure to run some append tests with Bacula where you start and
stop Bacula between appending to the tape, or use btape version 1.35.1 or
greater, which includes simulation of stopping/restarting Bacula.

Please see the file platforms/freebsd/pthreads-fix.txt in the main Bac-
ula directory concerning important information concerning compatibility
of Bacula and your system. A much more optimal Device configuration is
shown below, but does not work with all tape drives. Please test carefully
before putting either into production.

Note, for FreeBSD 4.10-RELEASE, using a Sony TSL11000 L100 DDS4
with an autochanger set to variable block size and DCLZ compression, Brian
McDonald reports that to get Bacula to append correctly between Bacula
executions, the correct values to use are:

mt -f /dev/nsa0 seteotmodel 1

mt -f /dev/nsa0 blocksize 0

mt -f /dev/nsa0 comp enable

and

Hardware End of Medium = no

BSF at EOM = no

Backward Space Record = no

Backward Space File = no

Fast Forward Space File = yes

TWO EOF = no

This has been confirmed by several other people using different hardware.
This configuration is the preferred one because it uses one EOF and no
backspacing at the end of the tape, which works much more efficiently and
reliably with modern tape drives.

Finally, here is a Device configuration that Danny Butroyd reports to
work correctly with the Overland Powerloader tape library using LT0-2 and
FreeBSD 5.4-Stable:

Overland Powerloader LT02 - 17 slots single drive

37.3. TIPS FOR RESOLVING PROBLEMS 495

Device {

Name = Powerloader

Media Type = LT0-2

Archive Device = /dev/nsa0

AutomaticMount = yes;

AlwaysOpen = yes;

RemovableMedia = yes;

RandomAccess = no;

Changer Command = "/usr/local/sbin/mtx-changer %c %o %S %a %d"

Changer Device = /dev/pass2

AutoChanger = yes

Alert Command = "sh -c ’tapeinfo -f %c |grep TapeAlert|cat’"

FreeBSD Specific Settings

Offline On Unmount = no

Hardware End of Medium = no

BSF at EOM = yes

Backward Space Record = no

Fast Forward Space File = no

TWO EOF = yes

}

The following Device resource works fine with Dell PowerVault 110T and

120T devices on both FreeBSD 5.3 and on NetBSD 3.0. It also works

with Sony AIT-2 drives on FreeBSD.

\footnotesize

\begin{verbatim}

Device {

...

FreeBSD/NetBSD Specific Settings

Hardware End of Medium = no

BSF at EOM = yes

Backward Space Record = no

Fast Forward Space File = yes

TWO EOF = yes

}

On FreeBSD version 6.0, it is reported that you can even set Backward
Space Record = yes.

37.3.8 Finding your Tape Drives and Autochangers on
FreeBSD

On FreeBSD, you can do a camcontrol devlist as root to determine what
drives and autochangers you have. For example,

undef# camcontrol devlist

at scbus0 target 2 lun 0 (pass0,sa0)

at scbus0 target 4 lun 0 (pass1,sa1)

496 CHAPTER 37. TESTING YOUR TAPE DRIVE WITH BACULA

at scbus0 target 4 lun 1 (pass2)

from the above, you can determine that there is a tape drive on /dev/sa0
and another on /dev/sa1 in addition since there is a second line for the
drive on /dev/sa1, you know can assume that it is the control device for
the autochanger (i.e. /dev/pass2). It is also the control device name to
use when invoking the tapeinfo program. E.g.

tapeinfo -f /dev/pass2

37.3.9 Using the OnStream driver on Linux Systems

Bacula version 1.33 (not 1.32x) is now working and ready for testing with
the OnStream kernel osst driver version 0.9.14 or above. Osst is available
from: http://sourceforge.net/projects/osst/.

To make Bacula work you must first load the new driver then, as root, do:

mt -f /dev/nosst0 defblksize 32768

Also you must add the following to your Device resource in your Storage
daemon’s conf file:

Minimum Block Size = 32768

Maximum Block Size = 32768

Here is a Device specification provided by Michel Meyers that is known to
work:

Device {

Name = "Onstream DI-30"

Media Type = "ADR-30"

Archive Device = /dev/nosst0

Minimum Block Size = 32768

Maximum Block Size = 32768

Hardware End of Medium = yes

BSF at EOM = no

Backward Space File = yes

Fast Forward Space File = yes

Two EOF = no

AutomaticMount = yes

AlwaysOpen = yes

Removable Media = yes

}

http://sourceforge.net/projects/osst/

37.4. HARDWARE COMPRESSION ON EXB-8900 497

37.4 Hardware Compression on EXB-8900

To active, check, or disable the hardware compression feature on an
EXB-8900, use the exabyte MammothTool. You can get it here:
http://www.exabyte.com/support/online/downloads/index.cfm. There is a
Solaris version of this tool. With option -C 0 or 1 you can disable or activate
compression. Start this tool without any options for a small reference.

37.4.1 Using btape to Simulate Filling a Tape

Because there are often problems with certain tape drives or systems when
end of tape conditions occur, btape has a special command fill that causes
it to write random data to a tape until the tape fills. It then writes at least
one more Bacula block to a second tape. Finally, it reads back both tapes
to ensure that the data has been written in a way that Bacula can recover
it. Note, there is also a single tape option as noted below, which you should
use rather than the two tape test. See below for more details.

This can be an extremely time consuming process (here it is about 6 hours)
to fill a full tape. Note, that btape writes random data to the tape when it is
filling it. This has two consequences: 1. it takes a bit longer to generate the
data, especially on slow CPUs. 2. the total amount of data is approximately
the real physical capacity of your tape, regardless of whether or not the
tape drive compression is on or off. This is because random data does not
compress very much.

To begin this test, you enter the fill command and follow the instructions.
There are two options: the simple single tape option and the multiple tape
option. Please use only the simple single tape option because the multiple
tape option still doesn’t work totally correctly. If the single tape option does
not succeed, you should correct the problem before using Bacula.

37.5 Recovering Files Written With Fixed Block

Sizes

If you have been previously running your tape drive in fixed block mode
(default 512) and Bacula with variable blocks (default), then in version
1.32f-x and 1.34 and above, Bacula will fail to recover files because it does
block spacing, and because the block sizes don’t agree between your tape
drive and Bacula it will not work.

http://www.exabyte.com/support/online/downloads/index.cfm

498 CHAPTER 37. TESTING YOUR TAPE DRIVE WITH BACULA

The long term solution is to run your drive in variable block mode as de-
scribed above. However, if you have written tapes using fixed block sizes,
this can be a bit of a pain. The solution to the problem is: while you are
doing a restore command using a tape written in fixed block size, ensure
that your drive is set to the fixed block size used while the tape was written.
Then when doing the restore command in the Console program, do not
answer the prompt yes/mod/no. Instead, edit the bootstrap file (the loca-
tion is listed in the prompt) using any ASCII editor. Remove all VolBlock
lines in the file. When the file is re-written, answer the question, and Bacula
will run without using block positioning, and it should recover your files.

37.6 Tape Blocking Modes

SCSI tapes may either be written in variable or fixed block sizes. Newer
drives support both modes, but some drives such as the QIC devices always
use fixed block sizes. Bacula attempts to fill and write complete blocks
(default 65K), so that in normal mode (variable block size), Bacula will
always write blocks of the same size except the last block of a Job. If
Bacula is configured to write fixed block sizes, it will pad the last block of
the Job to the correct size. Bacula expects variable tape block size drives
to behave as follows: Each write to the drive results in a single record being
written to the tape. Each read returns a single record. If you request less
bytes than are in the record, only those number of bytes will be returned,
but the entire logical record will have been read (the next read will retrieve
the next record). Thus data from a single write is always returned in a single
read, and sequentially written records are returned by sequential reads.

Bacula expects fixed block size tape drives to behave as follows: If a write
length is greater than the physical block size of the drive, the write will
be written as two blocks each of the fixed physical size. This single write
may become multiple physical records on the tape. (This is not a good
situation). According to the documentation, one may never write an amount
of data that is not the exact multiple of the blocksize (it is not specified if
an error occurs or if the the last record is padded). When reading, it is my
understanding that each read request reads one physical record from the
tape. Due to the complications of fixed block size tape drives, you should
avoid them if possible with Bacula, or you must be ABSOLUTELY certain
that you use fixed block sizes within Bacula that correspond to the physical
block size of the tape drive. This will ensure that Bacula has a one to one
correspondence between what it writes and the physical record on the tape.

Please note that Bacula will not function correctly if it writes a block and

37.7. DETAILS OF TAPE MODES 499

that block is split into two or more physical records on the tape. Bacula
assumes that each write causes a single record to be written, and that it
can sequentially recover each of the blocks it has written by using the same
number of sequential reads as it had written.

37.7 Details of Tape Modes

Rudolf Cejka has provided the following information concerning certain tape
modes and MTEOM.

Tape level It is always possible to position filemarks or blocks, whereas
positioning to the end-of-data is only optional feature, however it is
implemented very often. SCSI specification also talks about optional
sequential filemarks, setmarks and sequential setmarks, but these are
not implemented so often. Modern tape drives keep track of file po-
sitions in built-in chip (AIT, LTO) or at the beginning of the tape
(SDLT), so there is not any speed difference, if end-of-data or file-
marks is used (I have heard, that LTO-1 from all 3 manufacturers do
not use its chip for file locations, but a tape as in SDLT case, and I’m
not sure about LTO-2 and LTO-3 case). However there is a big differ-
ence, that end-of-data ignores file position, whereas filemarks returns
the real number of skipped files, so OS can track current file number
just in filemarks case.

OS level Solaris does use just SCSI SPACE Filemarks, it does not support
SCSI SPACE End-of-data. When MTEOM is called, Solaris does use
SCSI SPACE Filemarks with count = 1048576 for fast mode, and
combination of SCSI SPACE Filemarks with count = 1 with SCSI
SPACE Blocks with count = 1 for slow mode, so EOD mark on the
tape on some older tape drives is not skipped. File number is always
tracked for MTEOM.

Linux does support both SCSI SPACE Filemarks and End-of-data:
When MTEOM is called in MT ST FAST MTEOM mode, SCSI
SPACE End-of-data is used. In the other case, SCSI SPACE File-
marks with count = 8388607 is used. There is no real slow mode like
in Solaris - I just expect, that for older tape drives Filemarks may be
slower than End-of-data, but not so much as in Solaris slow mode. File
number is tracked for MTEOM just without MT ST FAST MTEOM
- when MT ST FAST MTEOM is used, it is not.

FreeBSD does support both SCSI SPACE Filemarks and End-of-data,
but when MTEOD (MTEOM) is called, SCSI SPACE End-of-data is

500 CHAPTER 37. TESTING YOUR TAPE DRIVE WITH BACULA

always used. FreeBSD never use SCSI SPACE Filemarks for MTEOD.
File number is never tracked for MTEOD.

Bacula level When Hardware End of Medium = Yes is used,
MTEOM is called, but it does not mean, that hardware End-of-data
must be used. When Hardware End of Medium = No, if Fast Forward
Space File = Yes, MTFSF with count = 32767 is used, else Block Read
with count = 1 with Forward Space File with count = 1 is used, which
is really very slow.

Hardware End of Medium = Yes—No The name of this option is mis-
leading and is the source of confusion, because it is not the hardware
EOM, what is really switched here.

If I use Yes, OS must not use SCSI SPACE End-of-data, because Bac-
ula expects, that there is tracked file number, which is not supported
by SCSI specification. Instead, the OS have to use SCSI SPACE File-
marks.

If I use No, an action depends on Fast Forward Space File.

When I set Hardware End of Medium = no and Fast Forward
Space File = no file positioning was very slow on my LTO-3 (about
ten to 100 minutes), but

with Hardware End of Medium = no and Fast Forward Space
File = yes, the time is ten to 100 times faster (about one to two
minutes).

37.8 Autochanger Errors

If you are getting errors such as:

3992 Bad autochanger "load slot 1, drive 1": ERR=Child exited with code 1.

and you are running your Storage daemon as non-root, then most likely you
are having permissions problems with the control channel. Running as root,
set permissions on /dev/sgX so that the userid and group of your Storage
daemon can access the device. You need to ensure that you all access to the
proper control device, and if you don’t have any SCSI disk drives (including
SATA drives), you might want to change the permissions on /dev/sg*.

37.9. SYSLOG ERRORS 501

37.9 Syslog Errors

If you are getting errors such as:

: kernel: st0: MTSETDRVBUFFER only allowed for root

you are most likely running your Storage daemon as non-root, and Bacula
is attempting to set the correct OS buffering to correspond to your Device
resource. Most OSes allow only root to issue this ioctl command. In general,
the message can be ignored providing you are sure that your OS parameters
are properly configured as described earlier in this manual. If you are run-
ning your Storage daemon as root, you should not be getting these system
log messages, and if you are, something is probably wrong.

502 CHAPTER 37. TESTING YOUR TAPE DRIVE WITH BACULA

Chapter 38

What To Do When Bacula
Crashes (Kaboom)

If you are running on a Linux system, and you have a set of working config-
uration files, it is very unlikely that Bacula will crash. As with all software,
however, it is inevitable that someday, it may crash, particularly if you are
running on another operating system or using a new or unusual feature.

This chapter explains what you should do if one of the three Bacula dae-
mons (Director, File, Storage) crashes. When we speak of crashing, we
mean that the daemon terminates abnormally because of an error. There
are many cases where Bacula detects errors (such as PIPE errors) and will
fail a job. These are not considered crashes. In addition, under certain
conditions, Bacula will detect a fatal in the configuration, such as lack of
permission to read/write the working directory. In that case, Bacula will
force itself to crash with a SEGFAULT. However, before crashing, Bacula
will normally display a message indicating why. For more details, please
read on.

38.1 Traceback

Each of the three Bacula daemons has a built-in exception handler which,
in case of an error, will attempt to produce a traceback. If successful the
traceback will be emailed to you.

For this to work, you need to ensure that a few things are setup correctly
on your system:

503

504CHAPTER 38. WHAT TO DO WHEN BACULA CRASHES (KABOOM)

1. You must have an installed copy of gdb (the GNU debugger), and it
must be on Bacula’s path. On some systems such as Solaris, gdb
may be replaced by dbx.

2. The Bacula installed script file btraceback must be in the same direc-
tory as the daemon which dies, and it must be marked as executable.

3. The script file btraceback.gdb must have the correct path to it spec-
ified in the btraceback file.

4. You must have a mail program which is on Bacula’s path. By default,
this mail program is set to bsmtp, so it must be correctly configured.

If all the above conditions are met, the daemon that crashes will produce a
traceback report and email it to you. If the above conditions are not true,
you can either run the debugger by hand as described below, or you may be
able to correct the problems by editing the btraceback file. I recommend
not spending too much time on trying to get the traceback to work as it can
be very difficult.

The changes that might be needed are to add a correct path to the gdb
program, correct the path to the btraceback.gdb file, change the mail
program or its path, or change your email address. The key line in the
btraceback file is:

gdb -quiet -batch -x /home/kern/bacula/bin/btraceback.gdb \

$1 $2 2>\&1 | bsmtp -s "Bacula traceback" your-address@xxx.com

Since each daemon has the same traceback code, a single btraceback file is
sufficient if you are running more than one daemon on a machine.

38.2 Testing The Traceback

To ”manually” test the traceback feature, you simply start Bacula then
obtain the PID of the main daemon thread (there are multiple threads).
The output produced here will look different depending on what OS and
what version of the kernel you are running. Unfortunately, the output had
to be split to fit on this page:

[kern@rufus kern]$ ps fax --columns 132 | grep bacula-dir

2103 ? S 0:00 /home/kern/bacula/k/src/dird/bacula-dir -c

/home/kern/bacula/k/src/dird/dird.conf

38.3. GETTING A TRACEBACK ON OTHER SYSTEMS 505

2104 ? S 0:00 _ /home/kern/bacula/k/src/dird/bacula-dir -c

/home/kern/bacula/k/src/dird/dird.conf

2106 ? S 0:00 _ /home/kern/bacula/k/src/dird/bacula-dir -c

/home/kern/bacula/k/src/dird/dird.conf

2105 ? S 0:00 _ /home/kern/bacula/k/src/dird/bacula-dir -c

/home/kern/bacula/k/src/dird/dird.conf

which in this case is 2103. Then while Bacula is running, you call the
program giving it the path to the Bacula executable and the PID. In this
case, it is:

./btraceback /home/kern/bacula/k/src/dird 2103

It should produce an email showing you the current state of the daemon (in
this case the Director), and then exit leaving Bacula running as if nothing
happened. If this is not the case, you will need to correct the problem by
modifying the btraceback script.

Typical problems might be that gdb or dbx for Solaris is not on the default
path. Fix this by specifying the full path to it in the btraceback file.
Another common problem is that you haven’t modified the script so that
the bsmtp program has an appropriate smtp server or the proper syntax for
your smtp server. If you use the mail program and it is not on the default
path, it will also fail. On some systems, it is preferable to use Mail rather
than mail.

38.3 Getting A Traceback On Other Systems

It should be possible to produce a similar traceback on systems other than
Linux, either using gdb or some other debugger. Solaris with dbx loaded
works quite fine. On other systems, you will need to modify the btraceback
program to invoke the correct debugger, and possibly correct the btrace-
back.gdb script to have appropriate commands for your debugger. If any-
one succeeds in making this work with another debugger, please send us a
copy of what you modified.

38.4 Manually Running Bacula Under The De-

bugger

If for some reason you cannot get the automatic traceback, or if you want
to interactively examine the variable contents after a crash, you can run

506CHAPTER 38. WHAT TO DO WHEN BACULA CRASHES (KABOOM)

Bacula under the debugger. Assuming you want to run the Storage daemon
under the debugger (the technique is the same for the other daemons, only
the name changes), you would do the following:

1. Start the Director and the File daemon. If the Storage daemon also
starts, you will need to find its PID as shown above (ps fax — grep
bacula-sd) and kill it with a command like the following:

kill -15 PID

where you replace PID by the actual value.

2. At this point, the Director and the File daemon should be running but
the Storage daemon should not.

3. cd to the directory containing the Storage daemon

4. Start the Storage daemon under the debugger:

gdb ./bacula-sd

5. Run the Storage daemon:

run -s -f -c ./bacula-sd.conf

You may replace the ./bacula-sd.conf with the full path to the Stor-
age daemon’s configuration file.

6. At this point, Bacula will be fully operational.

7. In another shell command window, start the Console program and do
what is necessary to cause Bacula to die.

8. When Bacula crashes, the gdb shell window will become active and
gdb will show you the error that occurred.

9. To get a general traceback of all threads, issue the following command:

thread apply all bt

After that you can issue any debugging command.

38.5. GETTING DEBUG OUTPUT FROM BACULA 507

38.5 Getting Debug Output from Bacula

Each of the daemons normally has debug compiled into the program, but
disabled. There are two ways to enable the debug output. One is to add the
-d nnn option on the command line when starting the debugger. The nnn
is the debug level, and generally anything between 50 and 200 is reasonable.
The higher the number, the more output is produced. The output is written
to standard output.

The second way of getting debug output is to dynamically turn it on using
the Console using the setdebug command. The full syntax of the command
is:

setdebug level=nnn client=client-name storage=storage-name dir

If none of the options are given, the command will prompt you. You can
selectively turn on/off debugging in any or all the daemons (i.e. it is not
necessary to specify all the components of the above command).

508CHAPTER 38. WHAT TO DO WHEN BACULA CRASHES (KABOOM)

Chapter 39

The Windows Version of
Bacula

At the current time only the File daemon or Client program has been
thouroughly tested on Windows and is suitable for a production environ-
ment. As a consequence, when we speak of the Windows version of Bacula
below, we are referring to the File daemon (client) only.

As of Bacula version 1.39.20 or greater, the installer is capable of installing
not just the Client program, but also the Director and the Storage daemon
and all the other programs that were previously available only on Unix sys-
tems. These additional programs, notably the Director and Storage daemon,
have been tested, but still need to be documented. As a consequence, if you
install and use them, please test them carefully before putting them into a
critical production environment.

The Windows version of the Bacula File daemon has been tested on Win98,
WinMe, WinNT, WinXP, Win2000, and Windows 2003 systems. We have
coded to support Win95, but no longer have a system for testing. The Win-
dows version of Bacula is a native Win32 port, but there are very few source
code changes to the Unix code, which means that the Windows version is
for the most part running code that has long proved stable on Unix sys-
tems. When running, it is perfectly integrated with Windows and displays
its icon in the system icon tray, and provides a system tray menu to obtain
additional information on how Bacula is running (status and events dialog
boxes). If so desired, it can also be stopped by using the system tray menu,
though this should normally never be necessary.

Once installed Bacula normally runs as a system service. This means that it
is immediately started by the operating system when the system is booted,

509

510 CHAPTER 39. THE WINDOWS VERSION OF BACULA

and runs in the background even if there is no user logged into the system.

39.1 Win32 Installation

Normally, you will install the Windows version of Bacula from the binaries.
This install is standard Windows .exe that runs an install wizard using
the NSIS Free Software installer, so if you have already installed Windows
software, it should be very familiar to you.

If you have a previous version Bacula (1.39.20 or lower) installed, you should
stop the service, uninstall it, and remove the Bacula installation directory
possibly saving your bacula-fd.conf, bconsole.conf, and wx-console.conf files
for use with the new version you will install. The Uninstall program is
normally found in c:\bacula\Uninstall.exe. We also recommend that you
completely remove the directory c:\bacula, because the current installer
uses a different directory structure (see below).

Providing you do not already have Bacula installed, the new in-
staller (1.39.22 and later) installs the binaries and dlls in c:\Program
Files\Bacula\bin and the configuration files in c:\Documents and Set-
tings\All Users\Application Data\Bacula In addition, the Start>All
Programs>Bacula menu item will be created during the installation, and
on that menu, you will find items for editing the configuration files, display-
ing the document, and starting wx-console or bconsole.

Finally, proceed with the installation.

• You must be logged in as Administrator to the local machine to do a
correct installation, if not, please do so before continuing. Some users
have attempted to install logged in as a domain administrator account
and experienced permissions problems attempting to run Bacula, so
we don’t recommend that option.

• Simply double click on the winbacula-1.xx.0.exe NSIS install icon.
The actual name of the icon will vary from one release version to
another.

winbacula-1.xx.0.exe

• Once launched, the installer wizard will ask you if you want to install
Bacula.

39.1. WIN32 INSTALLATION 511

• Next you will be asked to select the installation type.

• If you proceed, you will be asked to select the components to be in-
stalled. You may install the Bacula program (Bacula File Service) and
or the documentation. Both will be installed in sub-directories of the
install location that you choose later. The components dialog looks
like the following:

• If you are installing for the first time, you will be asked to enter some
very basic information about your configuration. If you are not sure
what to enter, or have previously saved configuration files, you can put
anything you want into the fields, then either replace the configuration
files later with the ones saved, or edit the file.

If you are upgrading an existing installation, the following will not be
displayed.

512 CHAPTER 39. THE WINDOWS VERSION OF BACULA

• While the various files are being loaded, you will see the following
dialog:

• Finally, the finish dialog will appear:

That should complete the installation process. When the Bacula File Server

is ready to serve files, an icon representing a cassette (or tape) will

appear in the system tray ; right click on it and a menu will
appear.

39.2. POST WIN32 INSTALLATION 513

The Events item is currently unimplemented, by selecting the Status item,
you can verify whether any jobs are running or not.

When the Bacula File Server begins saving files, the color of the holes in the

cassette icon will change from white to green , and if there is an error,

the holes in the cassette icon will change to red .

If you are using remote desktop connections between your Windows boxes,
be warned that that tray icon does not always appear. It will always be
visible when you log into the console, but the remote desktop may not
display it.

39.2 Post Win32 Installation

After installing Bacula and before running it, you should check the contents
of the configuration files to ensure that they correspond to your installation.
You can get to them by using: the Start>All Programs>Bacula menu
item.

Finally, but pulling up the Task Manager (ctl-alt-del), verify that Bacula
is running as a process (not an Application) with User Name SYSTEM. If
this is not the case, you probably have not installed Bacula while running
as Administrator, and hence it will be unlikely that Bacula can access all
the system files.

39.3 Uninstalling Bacula on Win32

Once Bacula has been installed, it can be uninstalled using the standard
Windows Add/Remove Programs dialog found on the Control panel.

39.4 Dealing with Win32 Problems

Sometimes Win32 machines the File daemon may have very slow backup
transfer rates compared to other machines. To you might try setting the
Maximum Network Buffer Size to 32,768 in both the File daemon and in
the Storage daemon.

If you are not using the portable option, and you have VSS (Volume Shadow

514 CHAPTER 39. THE WINDOWS VERSION OF BACULA

Copy) enabled in the Director, and you experience problems with Bacula
not being able to open files, it is most likely that you are running an an-
tivirus program that blocks Bacula from doing certain operations. In this
case, disable the antivirus program and try another backup. If it succeeds,
either get a different (better) antivirus program or use something like Run-
ClientJobBefore/After to turn off the antivirus program while the backup
is running.

If turning off anti-virus software does not resolve your VSS problems, you
might have to turn on VSS debugging. The following link describes how to
do this: http://support.microsoft.com/kb/887013/en-us.

The most likely source of problems is authentication when the Director at-
tempts to connect to the File daemon that you installed. This can occur if
the names and the passwords defined in the File daemon’s configuration file
bacula-fd.conf file on the Windows machine do not match with the names
and the passwords in the Director’s configuration file bacula-dir.conf lo-
cated on your Unix/Linux server.

More specifically, the password found in the Client resource in the Direc-
tor’s configuration file must be the same as the password in the Director
resource of the File daemon’s configuration file. In addition, the name of
the Director resource in the File daemon’s configuration file must be the
same as the name in the Director resource of the Director’s configuration
file.

It is a bit hard to explain in words, but if you understand that a Director
normally has multiple Clients and a Client (or File daemon) may permit
access by multiple Directors, you can see that the names and the passwords
on both sides must match for proper authentication.

One user had serious problems with the configuration file until he realized
that the Unix end of line conventions were used and Bacula wanted them in
Windows format. This has not been confirmed though, and Bacula version
2.0.0 and above should now accept all end of line conventions (Win32, Unix,
Mac).

Running Unix like programs on Windows machines is a bit frustrating be-
cause the Windows command line shell (DOS Window) is rather primitive.
As a consequence, it is not generally possible to see the debug information
and certain error messages that Bacula prints. With a bit of work, however,
it is possible. When everything else fails and you want to see what is going
on, try the following:

Start a DOS shell Window.

http://support.microsoft.com/kb/887013/en-us

39.4. DEALING WITH WIN32 PROBLEMS 515

c:\Program Files\bacula\bin\bacula-fd -t >out

type out

The precise path to bacula-fd depends on where it is installed. The example
above is the default used in 1.39.22 and later. The -t option will cause
Bacula to read the configuration file, print any error messages and then
exit. the > redirects the output to the file named out, which you can list
with the type command.

If something is going wrong later, or you want to run Bacula with a debug
option, you might try starting it as:

c:\Program Files\bacula\bin\bacula-fd -d 100 >out

In this case, Bacula will run until you explicitly stop it, which will give you
a chance to connect to it from your Unix/Linux server. In later versions of
Bacula (1.34 on, I think), when you start the File daemon in debug mode it
can write the output to a trace file bacula.trace in the current directory.
To enable this, before running a job, use the console, and enter:

trace on

then run the job, and once you have terminated the File daemon, you will
find the debug output in the bacula.trace file, which will probably be
located in the same directory as bacula-fd.exe.

In addition, you should look in the System Applications log on the Control
Panel to find any Windows errors that Bacula got during the startup process.

Finally, due to the above problems, when you turn on debugging, and specify
trace=1 on a setdebug command in the Console, Bacula will write the debug
information to the file bacula.trace in the directory from which Bacula is
executing.

If you are having problems with ClientRunBeforeJob scripts randomly dy-
ing, it is possible that you have run into an Oracle bug. See bug number
622 in the bugs.bacula.org database. The following information has been
provided by a user on this issue:

The information in this document applies to:

Oracle HTTP Server - Version: 9.0.4

Microsoft Windows Server 2003

Symptoms

516 CHAPTER 39. THE WINDOWS VERSION OF BACULA

When starting an OC4J instance, the System Clock runs faster, about 7

seconds per minute.

Cause

+ This is caused by the Sun JVM bug 4500388, which states that "Calling

Thread.sleep() with a small argument affects the system clock". Although

this is reported as fixed in JDK 1.4.0_02, several reports contradict this

(see the bug in

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4500388).

+ Also reported by Microsoft as "The system clock may run fast when you

use the ACPI power management timer as a high-resolution counter on Windows

2000-based computers" (See http://support.microsoft.com/?id=821893)

39.5 Windows Compatibility Considerations

If you are not using the VSS (Volume Shadow Copy) option described in
the next section of this chapter, and if any applications are running during
the backup and they have files opened exclusively, Bacula will not be able to
backup those files, so be sure you close your applications (or tell your users
to close their applications) before the backup. Fortunately, most Microsoft
applications do not open files exclusively so that they can be backed up.
However, you will need to experiment. In any case, if Bacula cannot open
the file, it will print an error message, so you will always know which files
were not backed up. For version 1.37.25 and greater, see the section below
on Volume Shadow Copy Service that permits backing up any file.

During backup, Bacula doesn’t know about the system registry, so you will
either need to write it out to an ASCII file using regedit /e or use a
program specifically designed to make a copy or backup the registry.

In Bacula version 1.31 and later, we use Windows backup API calls by
default. Typical of Windows, programming these special BackupRead and
BackupWrite calls is a real nightmare of complications. The end result gives
some distinct advantages and some disadvantages.

First, the advantages are that on WinNT/2K/XP systems, the security and
ownership information is now backed up. In addition, with the exception of
files in exclusive use by another program, Bacula can now access all system
files. This means that when you restore files, the security and ownership
information will be restored on WinNT/2K/XP along with the data.

The disadvantage of the Windows backup API calls is that it produces non-
portable backups. That is files and their data that are backed up on WinNT

39.5. WINDOWS COMPATIBILITY CONSIDERATIONS 517

using the native API calls (BackupRead/BackupWrite) cannot be restored
on Win95/98/Me or Unix systems. In principle, a file backed up on WinNT
can be restored on WinXP, but this remains to be seen in practice (not
yet tested). In addition, the stand-alone tools such as bls and bextract
cannot be used to retrieve the data for those files because those tools are not
available on Windows. All restores must use the Bacula restore command.
As of Bacula 1.39.x, thanks to Thorsten Engel, this restriction is removed,
and Bacula should be able to read non-portable backups on any system
and restore the data appropriately. However, on a system that does not
have the BackupRead/BackupWrite calls (older Windows versions and all
Unix/Linux machines), though the file data can be restored, the Windows
security and access control data will not be restored. This means that a
standard set of access permissions will be set for such restored files.

As a default, Bacula backs up Windows systems using the Windows API
calls. If you want to backup data on a WinNT/2K/XP system and restore
it on a Unix/Win95/98/Me system, we have provided a special portable
option that backs up the data in a portable fashion by using portable API
calls. See the portable option on the Include statement in a FileSet resource
in the Director’s configuration chapter for the details on setting this option.
However, using the portable option means you may have permissions prob-
lems accessing files, and none of the security and ownership information will
be backed up or restored. The file data can, however, be restored on any
system.

You should always be able to restore any file backed up on Unix
or Win95/98/Me to any other system. On some systems, such as
WinNT/2K/XP, you may have to reset the ownership of such restored files.
Any file backed up on WinNT/2K/XP should in principle be able to be
restored to a similar system (i.e. WinNT/2K/XP), however, I am unsure
of the consequences if the owner information and accounts are not iden-
tical on both systems. Bacula will not let you restore files backed up on
WinNT/2K/XP to any other system (i.e. Unix Win95/98/Me) if you have
used the defaults.

Finally, if you specify the portable=yes option on the files you back up.
Bacula will be able to restore them on any other system. However, any
WinNT/2K/XP specific security and ownership information will be lost.

The following matrix will give you an idea of what you can expect. Thanks
to Marc Brueckner for doing the tests:

Backup OS Restore OS Results

WinMe WinMe Works

WinMe WinNT Works (SYSTEM permissions)

518 CHAPTER 39. THE WINDOWS VERSION OF BACULA

WinMe WinXP Works (SYSTEM permissions)

WinMe Linux Works (SYSTEM permissions)

WinXP WinXP Works

WinXP WinNT Works (all files OK, but got ”The data is
invalid” message)

WinXP WinMe Error: Win32 data stream not supported.

WinXP WinMe Works if Portable=yes specified during
backup.

WinXP Linux Error: Win32 data stream not supported.

WinXP Linux Works if Portable=yes specified during
backup.

WinNT WinNT Works

WinNT WinXP Works

WinNT WinMe Error: Win32 data stream not supported.

WinNT WinMe Works if Portable=yes specified during
backup.

WinNT Linux Error: Win32 data stream not supported.

WinNT Linux Works if Portable=yes specified during
backup.

Linux Linux Works

Linux WinNT Works (SYSTEM permissions)

Linux WinMe Works

Linux WinXP Works (SYSTEM permissions)

Note: with Bacula versions 1.39.x and later, non-portable Windows data
can be restore to any machine.

39.6 Volume Shadow Copy Service

In version 1.37.30 and greater, you can turn on Microsoft’s Volume Shadow
Copy Service (VSS).

Microsoft added VSS to Windows XP and Windows 2003. From the perspec-

39.6. VOLUME SHADOW COPY SERVICE 519

tive of a backup-solution for Windows, this is an extremely important step.
VSS allows Bacula to backup open files and even to interact with applica-
tions like RDBMS to produce consistent file copies. VSS aware applications
are called VSS Writers, they register with the OS so that when Bacula wants
to do a Snapshot, the OS will notify the register Writer programs, which
may then create a consistent state in their application, which will be backed
up. Examples for these writers are ”MSDE” (Microsoft database engine),
”Event Log Writer”, ”Registry Writer” plus 3rd party-writers. If you have
a non-vss aware application (e.g. SQL Anywhere or probably MySQL), a
shadow copy is still generated and the open files can be backed up, but there
is no guarantee that the file is consistent.

Bacula produces a message from each of the registered writer programs when
it is doing a VSS backup so you know which ones are correctly backed up.

Bacula supports VSS on both Windows 2003 and Windows XP. Technically
Bacula creates a shadow copy as soon as the backup process starts. It does
then backup all files from the shadow copy and destroys the shadow copy
after the backup process. Please have in mind, that VSS creates a snapshot
and thus backs up the system at the state it had when starting the backup.
It will disregard file changes which occur during the backup process.

VSS can be turned on by placing an

Enable VSS = yes

in your FileSet resource.

The VSS aware File daemon has the letters VSS on the signon line that it
produces when contacted by the console. For example:

Tibs-fd Version: 1.37.32 (22 July 2005) VSS Windows XP MVS NT 5.1.2600

the VSS is shown in the line above. This only means that the File daemon
is capable of doing VSS not that VSS is turned on for a particular backup.
There are two ways of telling if VSS is actually turned on during a backup.
The first is to look at the status output for a job, e.g.:

Running Jobs:

JobId 1 Job NightlySave.2005-07-23_13.25.45 is running.

VSS Backup Job started: 23-Jul-05 13:25

Files=70,113 Bytes=3,987,180,650 Bytes/sec=3,244,247

Files Examined=75,021

Processing file: c:/Documents and Settings/kern/My Documents/My Pictures/Misc1/Sans titre - 39.pdd

SDReadSeqNo=5 fd=352

520 CHAPTER 39. THE WINDOWS VERSION OF BACULA

Here, you see under Running Jobs that JobId 1 is ”VSS Backup Job started
...” This means that VSS is enabled for that job. If VSS is not enabled, it
will simply show ”Backup Job started ...” without the letters VSS.

The second way to know that the job was backed up with VSS is to look at
the Job Report, which will look something like the following:

23-Jul 13:25 rufus-dir: Start Backup JobId 1, Job=NightlySave.2005-07-23_13.25.45

23-Jul 13:26 rufus-sd: Wrote label to prelabeled Volume "TestVolume001" on device "DDS-4" (/dev/nst0)

23-Jul 13:26 rufus-sd: Spooling data ...

23-Jul 13:26 Tibs: Generate VSS snapshots. Driver="VSS WinXP", Drive(s)="C"

23-Jul 13:26 Tibs: VSS Writer: "MSDEWriter", State: 1 (VSS_WS_STABLE)

23-Jul 13:26 Tibs: VSS Writer: "Microsoft Writer (Bootable State)", State: 1 (VSS_WS_STABLE)

23-Jul 13:26 Tibs: VSS Writer: "WMI Writer", State: 1 (VSS_WS_STABLE)

23-Jul 13:26 Tibs: VSS Writer: "Microsoft Writer (Service State)", State: 1 (VSS_WS_STABLE)

In the above Job Report listing, you see that the VSS snapshot was gener-
ated for drive C (if other drives are backed up, they will be listed on the
Drive(s)=”C” You also see the reports from each of the writer program.
Here they all report VSS WS STABLE, which means that you will get a
consistent snapshot of the data handled by that writer.

39.7 VSS Problems

Problems!VSS

If you are experiencing problems such as VSS hanging on MSDE, first try
running vssadmin to check for problems, then try running ntbackup which
also uses VSS to see if it has similar problems. If so, you know that the
problem is in your Windows machine and not with Bacula.

The FD hang problems were reported with MSDEwriter when:

• a local firewall locked local access to the MSDE TCP port (MS-
DEwriter seems to use TCP/IP and not Named Pipes).

• msdtcs was installed to run under ”localsystem”: try running msdtcs
under networking account (instead of local system) (com+ seems to
work better with this configuration).

39.8. WINDOWS FIREWALLS 521

39.8 Windows Firewalls

If you turn on the firewalling feature on Windows (default in WinXP SP2),
you are likely to find that the Bacula ports are blocked and you cannot
communicate to the other daemons. This can be deactivated through the
Security Notification dialog, which is apparently somewhere in the Se-
curity Center. I don’t have this on my computer, so I cannot give the
exact details.

The command:

netsh firewall set opmode disable

is purported to disable the firewall, but this command is not accepted on
my WinXP Home machine.

39.9 Windows Port Usage

If you want to see if the File daemon has properly opened the port and is
listening, you can enter the following command in a shell window:

netstat -an | findstr 910[123]

TopView is another program that has been recommend, but it is not a stan-
dard Win32 program, so you must find and download it from the Internet.

39.10 Windows Disaster Recovery

We don’t currently have a good solution for disaster recovery on Windows
as we do on Linux. The main piece lacking is a Windows boot floppy or a
Windows boot CD. Microsoft releases a Windows Pre-installation Environ-
ment (WinPE) that could possibly work, but we have not investigated it.
This means that until someone figures out the correct procedure, you must
restore the OS from the installation disks, then you can load a Bacula client
and restore files. Please don’t count on using bextract to extract files from
your backup tapes during a disaster recovery unless you have backed up
those files using the portable option. bextract does not run on Windows,
and the normal way Bacula saves files using the Windows API prevents the

522 CHAPTER 39. THE WINDOWS VERSION OF BACULA

files from being restored on a Unix machine. Once you have an operational
Windows OS loaded, you can run the File daemon and restore your user
files.

Please see Disaster Recovery of Win32 Systems for the latest suggestion,
which looks very promising.

It looks like Bart PE Builder, which creates a Windows PE (Pre-installation
Environment) Boot-CD, may be just what is needed to build a complete
disaster recovery system for Win32. This distribution can be found at
http://www.nu2.nu/pebuilder/.

39.11 Windows Restore Problems

Please see the Restore Chapter of this manual for problems that you might
encounter doing a restore.

sectionWindows Backup Problems If during a Backup, you get the mes-
sage: ERR=Access is denied and you are using the portable option, you
should try both adding both the non-portable (backup API) and the Volume
Shadow Copy options to your Director’s conf file.

In the Options resource:

portable = no

In the FileSet resource:

enablevss = yes

In general, specifying these two options should allow you to backup any file
on a Windows system. However, in some cases, if users have allowed to have
full control of their folders, even system programs such a Bacula can be
locked out. In this case, you must identify which folders or files are creating
the problem and do the following:

1. Grant ownership of the file/folder to the Administrators group, with
the option to replace the owner on all child objects.

2. Grant full control permissions to the Administrators group, and change
the user’s group to only have Modify permission to the file/folder and
all child objects.

Thanks to Georger Araujo for the above information.

http://www.nu2.nu/pebuilder/

39.12. WINDOWS OWNERSHIP AND PERMISSIONS PROBLEMS 523

39.12 Windows Ownership and Permissions Prob-
lems

If you restore files backed up from WinNT/XP/2K to an alternate directory,
Bacula may need to create some higher level directories that were not saved
(or restored). In this case, the File daemon will create them under the
SYSTEM account because that is the account that Bacula runs under as
a service. As of version 1.32f-3, Bacula creates these files with full access
permission. However, there may be cases where you have problems accessing
those files even if you run as administrator. In principle, Microsoft supplies
you with the way to cease the ownership of those files and thus change
the permissions. However, a much better solution to working with and
changing Win32 permissions is the program SetACL, which can be found
at http://setacl.sourceforge.net/.

If you have not installed Bacula while running as Administrator and if Bac-
ula is not running as a Process with the userid (User Name) SYSTEM, then
it is very unlikely that it will have sufficient permission to access all your
files.

Some users have experienced problems restoring files that participate in the
Active Directory. They also report that changing the userid under which
Bacula (bacula-fd.exe) runs, from SYSTEM to a Domain Admin userid,
resolves the problem.

39.13 Manually resetting the Permissions

The following solution was provided by Dan Langille <dan at langille in the
dot org domain>. The steps are performed using Windows 2000 Server but
they should apply to most Win32 platforms. The procedure outlines how
to deal with a problem which arises when a restore creates a top-level new
directory. In this example, ”top-level” means something like c:\src, not
c:\tmp\src where c:\tmp already exists. If a restore job specifies / as the
Where: value, this problem will arise.

The problem appears as a directory which cannot be browsed with Windows
Explorer. The symptoms include the following message when you try to click
on that directory:

http://setacl.sourceforge.net/

524 CHAPTER 39. THE WINDOWS VERSION OF BACULA

If you encounter this message, the following steps will change the permissions
to allow full access.

1. right click on the top level directory (in this example, c:/src) and
select Properties.

2. click on the Security tab.

3. If the following message appears, you can ignore it, and click on OK.

You should see something like this:

39.13. MANUALLY RESETTING THE PERMISSIONS 525

4. click on Advanced

5. click on the Owner tab

6. Change the owner to something other than the current owner (which
is SYSTEM in this example as shown below).

526 CHAPTER 39. THE WINDOWS VERSION OF BACULA

7. ensure the ”Replace owner on subcontainers and objects” box is
checked

8. click on OK

9. When the message ”You do not have permission to read the contents
of directory c:\src\basis. Do you wish to replace the directory permis-
sions with permissions granting you Full Control?”, click on Yes.

10. Click on OK to close the Properties tab

With the above procedure, you should now have full control over your re-
stored directory.

In addition to the above methods of changing permissions, there is a Mi-
crosoft program named cacls that can perform similar functions.

39.14. BACKING UP THE WINNT/XP/2K SYSTEM STATE 527

39.14 Backing Up the WinNT/XP/2K System
State

A suggestion by Damian Coutts using Microsoft’s NTBackup utility in con-
junction with Bacula should permit a full restore of any damaged system
files on Win2K/XP. His suggestion is to do an NTBackup of the critical
system state prior to running a Bacula backup with the following command:

ntbackup backup systemstate /F c:\systemstate.bkf

The backup is the command, the systemstate says to backup only the
system state and not all the user files, and the /F c:\systemstate.bkf
specifies where to write the state file. this file must then be saved and
restored by Bacula.

To restore the system state, you first reload a base operating system if
the OS is damaged, otherwise, this is not necessary, then you would use
Bacula to restore all the damaged or lost user’s files and to recover the
c:\systemstate.bkf file. Finally if there are any damaged or missing sys-
tem files or registry problems, you run NTBackup and catalogue the
system statefile, and then select it for restore. The documentation says you
can’t run a command line restore of the systemstate.

To the best of my knowledge, this has not yet been tested. If you test it,
please report your results to the Bacula email list.

39.15 Considerations for Filename Specifications

Please see the Director’s Configuration chapter of this manual for important
considerations on how to specify Windows paths in Bacula FileSet Include
and Exclude directives.

Bacula versions prior to 1.37.28 do not support Windows Unicode filenames.
As of that version, both bconsole and wx-console support Windows Uni-
code filenames. There may still be some problems with multiple byte char-
acters (e.g. Chinese, ...) where it is a two byte character but the displayed
character is not two characters wide.

Path/filenames longer than 260 characters (up to 32,000) are supported
beginning with Bacula version 1.39.20.

528 CHAPTER 39. THE WINDOWS VERSION OF BACULA

39.16 Win32 Specific File daemon Command Line

These options are not normally seen or used by the user, and are documented
here only for information purposes. At the current time, to change the
default options, you must either manually run Bacula or you must manually
edit the system registry and modify the appropriate entries.

In order to avoid option clashes between the options necessary for Bacula
to run on Windows and the standard Bacula options, all Windows specific
options are signaled with a forward slash character (/), while as usual, the
standard Bacula options are signaled with a minus (-), or a minus minus
(--). All the standard Bacula options can be used on the Windows version.
In addition, the following Windows only options are implemented:

/service Start Bacula as a service

/run Run the Bacula application

/install Install Bacula as a service in the system registry

/remove Uninstall Bacula from the system registry

/about Show the Bacula about dialogue box

/status Show the Bacula status dialogue box

/events Show the Bacula events dialogue box (not yet implemented)

/kill Stop any running Bacula

/help Show the Bacula help dialogue box

It is important to note that under normal circumstances the user should
never need to use these options as they are normally handled by the system
automatically once Bacula is installed. However, you may note these options
in some of the .bat files that have been created for your use.

39.17 Shutting down Windows Systems

Some users like to shutdown their Windows machines after a backup using
a Client Run After Job directive. If you want to do something similar, you
might take the shutdown program from the apcupsd project or one from the
Sysinternals project.

http://www.apcupsd.com
http://www.sysinternals.com/ntw2k/freeware/psshutdown.shtml

Chapter 40

Disaster Recovery Using
Bacula

40.1 General

When disaster strikes, you must have a plan, and you must have prepared
in advance otherwise the work of recovering your system and your files will
be considerably greater. For example, if you have not previously saved the
partitioning information for your hard disk, how can you properly rebuild
it if the disk must be replaced?

Unfortunately, many of the steps one must take before and immediately
after a disaster are very operating system dependent. As a consequence,
this chapter will discuss in detail disaster recovery (also called Bare Metal
Recovery) for Linux and Solaris. For Solaris, the procedures are still quite
manual. For FreeBSD the same procedures may be used but they are not
yet developed. For Win32, a number of Bacula users have reported success
using BartPE.

40.2 Important Considerations

Here are a few important considerations concerning disaster recovery that
you should take into account before a disaster strikes.

• If the building which houses your computers burns down or is otherwise
destroyed, do you have off-site backup data?

529

530 CHAPTER 40. DISASTER RECOVERY USING BACULA

• Disaster recovery is much easier if you have several machines. If you
have a single machine, how will you handle unforeseen events if your
only machine is down?

• Do you want to protect your whole system and use Bacula to recover
everything? or do you want to try to restore your system from the
original installation disks and apply any other updates and only restore
user files?

40.3 Steps to Take Before Disaster Strikes

• Create a Bacula Rescue CDROM for each of your Linux systems. Note,
it is possible to create one CDROM by copying the bacula-hostname
directory from each machine to the machine where you will be burning
the CDROM, so if the Linux distro/version is the same, you can have
a single CDROM that can recover multiple systems.

• Ensure that you always have a valid bootstrap file for your backup
and that it is saved to an alternate machine. This will permit you to
easily do a full restore of your system.

• If possible copy your catalog nightly to an alternate machine. If you
have a valid bootstrap file, this is not necessary, but can be very useful
if you do not want to reload everything. .

• Ensure that you always have a valid bootstrap file for your catalog
backup that is saved to an alternate machine. This will permit you to
restore your catalog more easily if needed.

• Test using the Bacula Rescue CDROM before you are forced to use it
in an emergency situation.

• Make a copy of your Bacula .conf files, particularly your bacula-
dir.conf, and your bacula-sd.conf files, because if your server goes
down, these files will be needed to get it back up and running, and
they can be difficult to rebuild from memory.

40.4 Bare Metal Recovery on Linux with a Bacula

Rescue CD

As an alternative to creating a Bacula Rescue CD, please see the section
below entitled Bare Metal Recovery using a LiveCD.

40.4. BARE METAL RECOVERY ON LINUX WITH A BACULA RESCUE CD531

The remainder of this section concerns recovering a Linux client computer
(i.e. one running just the Bacula File daemon). The Solaris procedures
can be found below under the Solaris Bare Metal Recovery section of this
chapter.

Previously Bacula supported a floppy rescue disk. This code has been re-
moved in 1.37.40 and later.

A so called ”Bare Metal” recovery is one where you start with an empty
hard disk and you restore your machine. There are also cases where you
may lose a file or a directory and want it restored. Please see the previous
chapter for more details for those cases.

The primary goals of the Bacula rescue CD are:

• NOT to be a general or universal recovery disk.

• to capture and setup a restore environment for a single system running
as a Client.

• to capture the current state of the hard disks on your system, so that
they can be easily restored from pre-generated scripts. Note, this is
not done by any other rescue CDROM, as far as I am aware.

• to create and save a statically linked copy of your current Bacula FD.
Thus you need no packages or other software to be installed before
using this CDROM and the Bacula File daemon on it.

• to be relatively easy to create. In most cases you simply type make
all in the rescue/linux/cdrom directory, then burn the ISO image
created. In contrast, if you have looked at any of the documentation
on how to remaster a CD or how to roll your own rescue CD, your
head will spin (at least mine did).

• to be easy for you to add any additional files, binaries, or libraries to
the CD.

• to build and work on any (or almost any) Linux flavor or release.

• you might ask why I don’t use Knoppix or some other preprepared
recovery disk, especially since Knoppix is very kind and provides the
Bacula FD on their disk. The answer is that: I am more comfortable
having my Linux boot up in rescue mode rather than another flavor.
In addition, the Bacula rescue CDROM contains a complete snapshot
of your disk partitioning, which is not the case with any other rescue
disk. If your harddisk dies, do you remember all the partitions you had

532 CHAPTER 40. DISASTER RECOVERY USING BACULA

and how big they are? I don’t, and without that information, you have
little hope of reformatting your harddisk and rebuilding your system.

One of the main of the advantages of a Bacula Rescue CDROM is that it
contains a bootable copy of your system, so you should be familiar with it.

Bare Metal Recovery assumes that you have the following items for your
system:

• A Bacula Rescue CDROM containing a copy of your OS and a copy
of your hard disk information, as well as a statically linked version of
the Bacula File daemon. This chapter describes how to build such a
CDROM.

• A full Bacula backup of your system possibly including Incremental
or Differential backups since the last Full backup

• A second system running the Bacula Director, the Catalog, and the
Storage daemon. (this is not an absolute requirement, but how to get
around it is not yet documented here)

40.5 Requirements

In addition, to the above assumptions, the following conditions or restric-
tions apply:

• Linux only – tested only on SuSE and Fedora Core 4, but should work
on other Linux distros.

• The scripts handle only SCSI and IDE disks.

• All partitions will be recreated, but only ext2, ext3, rfs and swap
partitions will be reformatted. Any other partitions such as Windows
FAT partitions will not be formatted by the scripts, but you can do it
by hand.

• You are using either lilo or grub as a boot loader, and you know
which one (not automatically detected).

• The partitioning and reformatting scripts *should* work with RAID
devices, but probably not with other ”complicated” disk partition-
ing/formatting schemes. They also should work with Reiser filesys-
tems. Please check them carefully. You will probably need to edit the
scripts by hand to make them work.

40.6. DIRECTORIES 533

• You will need mkisofs (might be part of cdrtools, but is a separate rpm
on my system); cdrecord or some other tool for burning the CDROM.

40.6 Directories

To build the Bacula Rescue CDROM, you must get a copy of the rescue
files. In version 1.37 and later, they are separate from the Bacula source.
The rescue files are distributed as a compressed tar file on the Source Forge
Bacula release area with the name bacula-rescue-xx.yy.zz.tar.gz. They are
also automatically installed in /etc/bacula/rescue when installing by rpms.
Another place you can find the rescue files is in the Source Forge Bacula
CVS module named rescue.

Please read the README file in the main directory of the Rescue source
code. Before using it, you must run configure and specify the location of the
Bacula source code (not necessary if installed from rpms). This permits the
rescue build scripts to automatically create a statically linked Bacula File
daemon.

You will find the necessary scripts in linux/cdrom subdirectory of the
rescue source code. If you installed the bacula rpm package the scripts will
be found in the /etc/bacula/rescue/linux/cdrom directory.

40.7 Preparation for a Bare Metal Recovery

Before you can do a Bare Metal recovery, you must create a Bacula Rescue
CDROM, which will contain everything you need to begin recovery. This
assumes that you will have your Director and Storage daemon running on
a different machine. If you want to recover a machine where the Director
and/or the database were previously running, things will be much more
complicated.

40.8 Creating a Bacula Rescue CDROM

You should probably make a new rescue CDROM each time you upgrade a
major version of Bacula and whenever you modify your disk partitioning.

To build the rescue CDROM from source, you must first configure the res-
cue package, which is distributed separately from the source. The simplest

534 CHAPTER 40. DISASTER RECOVERY USING BACULA

procedure is for you to pre-build a static-bacula-fd taking care to use a
minimum configuration such as:

cd <bacula-source>

./configure \

--prefix=/usr \

--sbindir=/usr/sbin \

--sysconfdir=/etc/bacula \

--with-scriptdir=/etc/bacula \

--enable-smartalloc \

--enable-client-only \

--enable-static-fd

make

Then to copy the src/filed/static-bacula-fd, and a valid working copy of
your bacula-fd.conf file to some specific directory. You can then proceed to
configure the rescue package with:

cd <bacula-rescue>

./configure \

--with-static-fd=<directory-containing-static-bacula-fd> \

--with-bacula-scripts=<directory-containing-bacula-fd.conf>

cd linux/cdrom

su

(enter root password)

make

The above instructions were for building the rescue CDROM from a bacula-
rescue release. The advantage of the above procedure is that you have
explicitly built your static-bacula-fd and you will supply the configuration
with a working copy of bacula-fd.conf containing the correct Director name
and password.

Alternatively when you configure the rescue package, you could supply it
with the path to your Bacula source code, and when building the rescue
disk, it will attepmpt to build a static-bacula-fd for you. We suggest you
manually build your static Bacula File daemon and use the –with-static-fd
option rather than letting the script attempt to build it (as shown below)
because by manually building it, you can ensure that there are no errors,
and you can execute it prior to putting it on the CD (e.g. ./bacula-fd -t).

To have the rescue scripts automatically build a static File daemon for you,
use:

cd <bacula-rescue>

40.8. CREATING A BACULA RESCUE CDROM 535

./configure \

--with-bacula=<bacula-source-directory>

cd linux/cdrom

su

(enter root password)

make

If you have multiple kernels installed on your system, you can specify which
one using the following configuration option:

cd <bacula-rescue>

./configure \

--with-kernel=<kernel-version> \

...

For example a kernel-version might be 2.6.14-1.1653.

One additional option that can be useful is to specify the device name of
your CDROM on the ./configure. To do so use:

cd <bacula-rescue>

./configure \

--with-dev=<device> \

...

Where <device> is typically replaced with something like /dev/hdc. This
option is needed only if you have a recent OS that used device specifications
rather than rather than ATA addresses, and you want to use the Bacula
script make burn to automatically burn your ISO onto a CDROM.

For users of the bacula-rescue rpm the static bacula-fd has already been
built and placed in /etc/bacula/rescue/linux/cdrom/bin/ along with
a symbolic link to your /etc/bacula/bacula-fd.conf file. Rpm users only
need to do the second step:

cd /etc/bacula/rescue/linux/cdrom

su (become root)

make

At this point, if the scripts are successful, they should have done the follow-
ing things:

• Made a copy of your kernel and its essential files.

536 CHAPTER 40. DISASTER RECOVERY USING BACULA

• Copied a number of binary files from your system.

• Copied all the necessary shared libraries to run the above binary files.

• Made a statically-linked version of your File daemon and copied it into
the CDROM build area.

• Made an ISO image and left it in bootcd.iso

Once this is accomplished, you need only burn it into a CDROM. This can
be done directly from the makefile with:

make burn

However, you may need to modify the Makefile to properly specify your
CD burner as the detection process is complicated especially if you have
two CDROMs or do not have cdrecord loaded on your system. Users of
the rescue rpm package should definitely examine the Makefile since it was
configured on the host used to produce the rpm package. If you find that
the make burn does not work for you, try doing a:

make scan

and use the output of that to modify the Makefile accordingly.

The ”make” that you did above actually does the equivalent to the following:

make kernel

make binaries

make bacula

make iso

If you wish, you can modify what you put on the CDROM and redo any part
of the make that you wish. For example, if you want to add a new directory,
you might do the first three makes, then add a new directory to the CDROM,
and finally do a ”make iso”. Please see the README file in the res-
cue/linux/cdrom or /etc/bacula/rescue/linux/cdromdirectory for
instructions on changing the contents of the CDROM.

At the current time, the size of the CDROM is about 100MB (compressed
to about 20MB), so there is quite a bit more room for additional programs.
Keep in mind that when this CDROM is booted, *everything* is in memory,

40.9. PUTTING MULTIPLE SYSTEMS ON YOUR RESCUE DISK 537

so the total size cannot exceed your memory size, and even then you will
need some reserve memory for running programs, ...

Finally, if you want to be completely responsible for getting your own FD
binary on the disk, you can do the following:

cd linux/cdrom

touch rpm_release

make kernel

make binaries

make bacula

(add your own Bacula FD to the bacula/bin directory)

make iso

rm -f rpm_release

The rpm release file prevents the make bacula from attempting to build or
copy a File daemon, so that you can do it before the ”make iso” step. Once
”make iso” is run, you can no longer add anything to the in-memory part
of the image. You can still add files to the cdtree directory, and when you
do a ”make burn” they will be written to the CDROM. However, to access
them, you must be able to mount the CDROM after booting it, then copy
them into memory.

40.9 Putting Multiple Systems on Your Rescue
Disk

You can put multiple systems on the same rescue CD if you wish. This is
because the information that is specific to your OS will be stored in the
/bacula-hostname directory, where hostname is the name of the host on
which you are building the CD. Suppose for example, you have two systems.
One named client1 and one named client2. Assume also that your CD
burner is on client1, and that is the machine we start on, and that we can
ssh into client2 and also client2’s disks are mounted on client1.

ssh client2

cd <bacula-source>

./configure --with-static-fd (our options)

make

cd <bacula-rescue-source>

./configure --with-bacula=<path-to-bacula-source>

cd linux/cdrom

su (become root)

make bacula

exit

538 CHAPTER 40. DISASTER RECOVERY USING BACULA

Again, for rpm package users the above command set would be:

ssh client2

cd /etc/bacula/rescue/linux/cdrom

su

(enter root password)

make bacula

exit

Thus we have just built a Bacula rescue directory on client2. Now, on
client1, we copy the appropriate directory to two places (explained below),
then build an ISO and burn it:

cd <bacula-source>

./configure (your options)

make

cd <bacula-rescue-source>

./configure --with-bacula=<path-to-bacula-source>

cd linux/cdrom

su (become root)

c=/mnt/client2/home/user/bacula/rescue/linux/cdrom

cp -a $c/roottree/bacula-client2 cdtree

make

make burn

exit

And with the rpm package:

cd /etc/bacula/rescue/linux/cdrom

su

(enter root password)

c=/mnt/client2/etc/bacula/rescue/linux/cdrom

cp -a $c/roottree/bacula-client2 cdtree

make

make burn

exit

In summary, with the above commands, we first build a Bacula directory
on client2 in roottree/bacula-client2, then we copied the bacula-client2 di-
rectory into the client1’s cdtree so it will also be on the CD as a separate
directory and thus can be read without booting the CDROM. Then we made
and burned the CDROM for client1, which of course, contains the client2
data.

40.10. RESTORING A CLIENT SYSTEM 539

40.10 Restoring a Client System

Now, let’s assume that your hard disk has just died and that you have
replaced it with an new identical drive. In addition, we assume that you
have:

1. A recent Bacula backup (Full plus Incrementals)

2. A Bacula Rescue CDROM.

3. Your Bacula Director, Catalog, and Storage daemon running on an-
other machine on your local network.

This is a relatively simple case, and later in this chapter, as time permits,
we will discuss how you might recover from a situation where the machine
that crashes is your main Bacula server (i.e. has the Director, the Catalog,
and the Storage daemon).

You will take the following steps to get your system back up and running:

1. Boot with your Bacula Rescue CDROM.

2. Start the Network (local network)

3. Re-partition your hard disk(s) as it was before

4. Re-format your partitions

5. Restore the Bacula File daemon (static version)

6. Perform a Bacula restore of all your files

7. Re-install your boot loader

8. Reboot

Now for the details ...

40.11 Boot with your Bacula Rescue CDROM

When the CDROM boots, you will be presented with a script that looks
like:

540 CHAPTER 40. DISASTER RECOVERY USING BACULA

Welcome to the Bacula Rescue Disk 2.0.0

To proceed, press the <ENTER> key or type "linux <runlevel>"

linux 1 -> shell

linux 2 -> login (default if ENTER pressed)

linux 3 -> network started and login (network not working yet)

linux debug -> print debug during boot then login

Normally, at this point, you simply press ENTER. However, you may supply
options for the boot if you wish.

Once it has booted, you will be requested to login something like:

bash-3.1#

You will be in the root directory, and you can proceed to examine your
system.

The complete Bacula rescue part of the CD will be in the directory:
/bacula-hostname, where hostname is replaced by the name of the host
machine on which you did the build for the CDROM. This naming procedure
allows you to put multiple restore environments for each of your machines on
a single CDROM if you so wish to do. Please see the README document
in the rescue/linux/cdrom directory for more information on adding to
the CDROM.

Start the Network: At this point, you should bring up your network.
Normally, this is quite simple and requires just a few commands. Please
cd into the /bacula-hostname directory before continuing. To simplify your
task, we have created a script that should work in most cases by typing:

cd /bacula-hostname

./start_network

You can test it by pinging another machine, or pinging your broken machine
machine from another machine. Do not proceed until your network is up.

Partition Your Hard Disk(s): Assuming that your hard disk crashed
and needs repartitioning, proceed with:

./partition.hda

40.11. BOOT WITH YOUR BACULA RESCUE CDROM 541

If you have multiple disks, do the same for each of them. For SCSI disks,
the repartition script will be named: partition.sda. If the script complains
about the disk being in use, simply go back and redo the df command
and umount commands until you no longer have your hard disk mounted.
Note, in many cases, if your hard disk was seriously damaged or a new one
installed, it will not automatically be mounted. If it is mounted, it is because
the emergency kernel found one or more possibly valid partitions.

If for some reason this procedure does not work, you can use the information
in partition.hda to re-partition your disks by hand using fdisk.

Format Your Hard Disk(s): If you have repartitioned your hard disk,
you must format it appropriately. The formatting script will put back swap
partitions, normal Unix partitions (ext2) and journaled partitions (ext3) as
well as Reiser partitions (rei). Do so by entering for each disk:

./format.hda

The format script will ask you if you want a block check done. We rec-
ommend to answer yes, but realize that for very large disks this can take
hours.

Mount the Newly Formatted Disks: Once the disks are partitioned
and formatted, you can remount them with the mount drives script. All
your drives must be mounted for Bacula to be able to access them. Run the
script as follows:

./mount_drives

df

The df command will tell you if the drives are mounted. If not, re-run the
script again. It isn’t always easy to figure out and create the mount points
and the mounts in the proper order, so repeating the ./mount drives com-
mand will not cause any harm and will most likely work the second time. If
not, correct it by hand before continuing.

Start the Network: Before starting the File Daemon, you must bring
up the network so that it can communicate with the Director and Storage
daemon. Generally you can do so by running:

./start_network

542 CHAPTER 40. DISASTER RECOVERY USING BACULA

Restore and Start the File Daemon: If you have booted with a Bac-
ula Rescue CDROM, your statically linked Bacula File daemon and the
bacula-fd.conf file will be in the /bacula-hostname/bin directory. Make sure
bacula-fd and bacula-fd.conf are both there.

If you did not already install a correct conf file, please edit the Bacula
configuration file, create the working/pid/subsys directory if you haven’t
already done so above, and start Bacula. Before starting Bacula, you
will need to move it and bacula-fd.conf from /bacula-hostname/bin, to the
/mnt/disk/tmp directory so that it will be on your hard disk. Then start it
with the following command:

chroot /mnt/disk /tmp/bacula-fd -c /tmp/bacula-fd.conf

The above command starts the Bacula File daemon with the proper root
disk location (i.e. /mnt/disk/tmp. If Bacula does not start, correct the
problem and start it. You can check if it is running by entering:

ps fax

You can kill Bacula by entering:

kill -TERM <pid>

where pid is the first number printed in front of the first occurrence of
bacula-fd in the ps fax command.

Now, you should be able to use another computer with Bacula installed to
check the status by entering:

status client=xxxx

into the Console program, where xxxx is the name of the client you are
restoring.

One common problem is that your bacula-dir.conf may contain machine
addresses that are not properly resolved on the stripped down system to
be restored because it is not running DNS. This is particularly true for the
address in the Storage resource of the Director, which may be very well
resolved on the Director’s machine, but not on the machine being restored
and running the File daemon. In that case, be prepared to edit bacula-
dir.conf to replace the name of the Storage daemon’s domain name with
its IP address.

40.11. BOOT WITH YOUR BACULA RESCUE CDROM 543

Restore Your Files: On the computer that is running the Director, you
now run a restore command and select the files to be restored (normally
everything), but before starting the restore, there is one final change you
must make using the mod option. You must change the Where directory
to be the root by using the mod option just before running the job and
selecting Where. Set it to:

/

then run the restore.

You might be tempted to avoid using chroot and running Bacula directly
and then using a Where to specify a destination of /mnt/disk. This is
possible, however, the current version of Bacula always restores files to the
new location, and thus any soft links that have been specified with absolute
paths will end up with /mnt/disk prefixed to them. In general this is not
fatal to getting your system running, but be aware that you will have to fix
these links if you do not use chroot.

Final Step: At this point, the restore should have finished with no errors,
and all your files will be restored. One last task remains and that is to write
a new boot sector so that your machine will boot. For lilo, you enter the
following command:

./run_lilo

If you are using grub instead of lilo, you must enter the following:

./run_grub

Note, I’ve had quite a number of problems with grub because it is rather
complicated and not designed to install easily under a simplified system. In
fact, the ./run grub script is not going to work on most Linux 2.6 kernels
with the latest grub, because grub-install references /usr/share/grub/... and
it uses /dev/pts, which will not be in /dev if you are using udev (as do many
2.6 kernels).

So, if you experience errors or end up unexpectedly in a chroot shell, simply
exit back to the normal shell and type in the appropriate commands from
the run grub script by hand until you get it to install. When you run the

544 CHAPTER 40. DISASTER RECOVERY USING BACULA

run grub script, it will print the commands that you should manually enter
if that is necessary.

In my more recent tests on FC4 running a 2.6.14 kernel and udev, I see that
because of the above mentioned problems with grub, you will need version
1.8.2 rescue disk or later, and you may be more successful in getting grub
to run by running it directly from the command line while logged into the
rescue kernel using:

/sbin/grub-install --root-directory=/mnt/disk /dev/hda

Note, in this case, you omit the chroot command, and you must replace
/dev/hda with your boot device. If you don’t know what your boot device
is, run the ./run grub script once and it will tell you.

Finally, I’ve even run into a case where grub-install was unable to rewrite
the boot block. In my case, it produced the following error message:

/dev/hdx does not have any corresponding BIOS drive.

The solution is to insure that all your disks are properly mounted on
/mnt/disk, then do the following:

chroot /mnt/disk

mount /dev/pts

Then edit the file /boot/grub/grub.conf and uncomment the line that
reads:

#boot=/dev/hda

So that it reads:

boot=/dev/hda

Note, the /dev/hda may be /dev/sda or possibly some other drive depending
on your configuration, but in any case, it is the same as the one that you
previously tried with grub-install.

Then, enter the following commands:

40.12. RESTORING A SERVER 545

grub --batch --device-map=/boot/grub/device.map \

--config-file=/boot/grub/grub.conf --no-floppy

root (hd0,0)

setup (hd0)

quit

If the grub call worked, you will get a prompt of grub> before the root,
setup, and quit commands, and after entering the setup command, it
should indicate that it successfully wrote the MBR (master boot record).

Reboot: First unmount all your hard disks, otherwise they will not be
cleanly shutdown, then reboot your machine by entering exit until you get
to the main prompt then enter Ctrl-d. Once back to the main CDROM
prompt, you will need to turn the power off, then back on to your machine
to get it to reboot.

If everything went well, you should now be back up and running. If not,
re-insert the emergency boot CDROM, boot, and figure out what is wrong.

40.12 Restoring a Server

Above, we considered how to recover a client machine where a valid Bacula
server was running on another machine. However, what happens if your
server goes down and you no longer have a running Director, Catalog, or
Storage daemon? There are several solutions:

1. Bring up static versions of your Director, Catalog, and Storage daemon
on the damaged machine.

2. Move your server to another machine.

3. Use a Hot Spare Server on another Machine.

The first option, is very difficult because it requires you to have created a
static version of the Director and the Storage daemon as well as the Catalog.
If the Catalog uses MySQL or PostgreSQL, this may or may not be possible.
In addition, to loading all these programs on a bare system (quite possible),
you will need to make sure you have a valid driver for your tape drive.

The second suggestion is probably a much simpler solution, and one I have
done myself. To do so, you might want to consider the following steps:

546 CHAPTER 40. DISASTER RECOVERY USING BACULA

• If you are using MySQL or PostgreSQL, configure, build and install it
from source (or use rpms) on your new system.

• Load the Bacula source code onto your new system, configure, install
it, and create the Bacula database.

• Ideally, you will have a copy of all the Bacula conf files that were
being used on your server. If not, you will at a minimum need create
a bacula-dir.conf that has the same Client resource that was used to
backup your system.

• If you have a valid saved Bootstrap file as created for your damaged
machine with WriteBootstrap, use it to restore the files to the damaged
machine, where you have loaded a static Bacula File daemon using the
Bacula Rescue disk). This is done by using the restore command and
at the yes/mod/no prompt, selecting mod then specifying the path to
the bootstrap file.

• If you have the Bootstrap file, you should now be back up and running,
if you do not have a Bootstrap file, continue with the suggestions
below.

• Using bscan scan the last set of backup tapes into your MySQL,
PostgreSQL or SQLite database.

• Start Bacula, and using the Console restore command, restore the
last valid copy of the Bacula database and the Bacula configuration
files.

• Move the database to the correct location.

• Start the database, and restart Bacula. Then use the Console restore
command, restore all the files on the damaged machine, where you
have loaded a Bacula File daemon using the Bacula Rescue disk.

For additional details of restoring your database, please see the
Restoring When Things Go Wrong section of the Console Restore Com-
mand chapter of this manual.

40.13 Linux Problems or Bugs

Since every flavor and every release of Linux is different, there are likely
to be some small difficulties with the scripts, so please be prepared to edit
them in a minimal environment. A rudimentary knowledge of vi is very

40.14. BARE METAL RECOVERY USING A LIVECD 547

useful. Also, these scripts do not do everything. You will need to reformat
Windows partitions by hand, for example.

Getting the boot loader back can be a problem if you are using grub because
it is so complicated. If all else fails, reboot your system from your floppy
but using the restored disk image, then proceed to a reinstallation of grub
(looking at the run-grub script can help). By contrast, lilo is a piece of cake.

40.14 Bare Metal Recovery using a LiveCD

Rather than building a full Bacula Rescue CDROM, you can use any system
rescue or LiveCD to recover your system. The big problem with most rescue
or LiveCDs is that they are not designed to capture the current state of
your system, so when you boot them on a damaged system, you might be
somewhat lost – e.g. how many of you remember your exact hard disk
partitioning.

This lack can be easily corrected by running the part of the Bacula Rescue
code that creates a directory containing a static-bacula-fd, a snapshot of
your current system disk configuration, and scripts that help restoring it.

The procedure is similar to creating and your Bacula Rescue CDROM de-
scribed above, but with the following differences:

Before a disaster strikes:

1. Run only the make bacula part of the Bacula Rescue procedure to
create the static Bacula File daemon, and system disk snapshot.

2. Save the directory generated (more details below) preferrably on a
CDROM or alternatively to some other system.

3. Possibly run make bacula every night as part of your backup process
to ensure that you have a current snapshot of your system.

Then when disaster strikes, do the following:

1. Boot with your system rescue disk or LiveCD (e.g. Knoppix).

2. Start the Network (local network).

3. Copy the Bacula recovery directory to the damaged system using ftp,
scp, wget or if your boot disk permits it reading it directly from a
CDROM.

548 CHAPTER 40. DISASTER RECOVERY USING BACULA

4. Continue as documented above as if you were using the Bacula Rescue
CDROM – that is.

5. Re-partition your hard disk(s) as it was before, if necessary.

6. Re-format your partitions, if necessary.

7. Restore the Bacula File daemon (static version).

8. Perform a Bacula restore of all your files.

9. Re-install your boot loader.

10. Reboot.

In order to create the Bacula recovery directory, you need a copy of the
Bacula Rescue code as described above, and you must first configure that
directory (and possibly your Bacula source) as described above in the section
entitled Creating a Bacula Rescue CDROM.

Once the configuration is done, you can do the following to create the Bacula
recovery directory:

cd <bacula-rescue-source>/linux/cdrom

su (become root)

make bacula

The directory you want to save will be created in the current directory with
the name bacula. You need only save that directory either as a directory
or possibly as a compressed tar file. If you run this procedure on multiple
machines, you will probably want to rename this directory to something like
bacula-hostname.

40.15 FreeBSD Bare Metal Recovery

The same basic techniques described above also apply to FreeBSD. Although
we don’t yet have a fully automated procedure, Alex Torres Molina has
provided us with the following instructions with a few additions from Jesse
Guardiani and Dan Langille:

1. Boot with the FreeBSD installation disk

2. Go to Custom, Partition and create your slices and go to Label and
create the partitions that you want. Apply changes.

40.15. FREEBSD BARE METAL RECOVERY 549

3. Go to Fixit to start an emergency console.

4. Create devs ad0 if they don’t exist under /mnt2/dev (in my
situation) with MAKEDEV. The device or devices you create depend
on what hard drives you have. ad0 is your first ATA drive. da0 would
by your first SCSI drive. Under OS version 5 and greater, your device
files are most likely automatically created for you.

5. mkdir /mnt/disk this is the root of the new disk

6. mount /mnt2/dev/ad0s1a /mnt/disk mount /mnt2/dev/ad0s1c
/mnt/disk/var mount /mnt2/dev/ad0s1d /mnt/disk/usr The
same hard drive issues as above apply here too. Note, under OS ver-
sion 5 or higher, your disk devices may be in /dev not /mnt2/dev.

7. Network configuration (ifconfig xl0 ip/mask + route add default ip-
gateway)

8. mkdir /mnt/disk/tmp

9. cd /mnt/disk/tmp

10. Copy bacula-fd and bacula-fd.conf to this path

11. If you need to, use sftp to copy files, after which you must do this: ln
-s /mnt2/usr/bin /usr/bin

12. chmod u+x bacula-fd

13. Modify bacula-fd.conf to fit this machine

14. Copy /bin/sh to /mnt/disk, necessary for chroot

15. Don’t forget to put your bacula-dir’s IP address and domain name in
/mnt/disk/etc/hosts if it’s not on a public net. Otherwise the FD on
the machine you are restoring to won’t be able to contact the SD and
DIR on the remote machine.

16. mkdir -p /mnt/disk/var/db/bacula

17. chroot /mnt/disk /tmp/bacula-fd -c /tmp/bacula-fd.conf to start
bacula-fd

18. Now you can go to bacula-dir and restore the job with the entire
contents of the broken server.

19. You must create /proc

550 CHAPTER 40. DISASTER RECOVERY USING BACULA

40.16 Solaris Bare Metal Recovery

The same basic techniques described above apply to Solaris:

• the same restrictions as those given for Linux apply

• you will need to create a Bacula Rescue disk

However, during the recovery phase, the boot and disk preparation proce-
dures are different:

• there is no need to create an emergency boot disk since it is an inte-
grated part of the Solaris boot.

• you must partition and format your hard disk by hand following man-
ual procedures as described in W. Curtis Preston’s book ”Unix Backup
& Recovery”

Once the disk is partitioned, formatted and mounted, you can continue with
bringing up the network and reloading Bacula.

40.17 Preparing Solaris Before a Disaster

As mentioned above, before a disaster strikes, you should prepare the in-
formation needed in the case of problems. To do so, in the rescue/solaris
subdirectory enter:

su

./getdiskinfo

./make_rescue_disk

The getdiskinfo script will, as in the case of Linux described above, create
a subdirectory diskinfo containing the output from several system utili-
ties. In addition, it will contain the output from the SysAudit program
as described in Curtis Preston’s book. This file diskinfo/sysaudit.bsi will
contain the disk partitioning information that will allow you to manually
follow the procedures in the ”Unix Backup & Recovery” book to repartition
and format your hard disk. In addition, the getdiskinfo script will create
a start network script.

Once you have your disks repartitioned and formatted, do the following:

40.18. BUGS AND OTHER CONSIDERATIONS 551

• Start Your Network with the start network script

• Restore the Bacula File daemon as documented above

• Perform a Bacula restore of all your files using the same commands as
described above for Linux

• Re-install your boot loader using the instructions outlined in the ”Unix
Backup & Recovery” book using installboot

40.18 Bugs and Other Considerations

Directory Modification and Access Times are Modified on pre-
1.30 Baculas : When a pre-1.30 version of Bacula restores a directory, it
first must create the directory, then it populates the directory with its files
and subdirectories. The act of creating the files and subdirectories updates
both the modification and access times associated with the directory itself.
As a consequence, all modification and access times of all directories will be
updated to the time of the restore.

This has been corrected in Bacula version 1.30 and later. The directory
modification and access times are reset to the value saved in the backup
after all the files and subdirectories have been restored. This has been
tested and verified on normal restore operations, but not verified during a
bare metal recovery.

Strange Bootstrap Files: If any of you look closely at the bootstrap
file that is produced and used for the restore (I sure do), you will probably
notice that the FileIndex item does not include all the files saved to the tape.
This is because in some instances there are duplicates (especially in the case
of an Incremental save), and in such circumstances, Bacula restores only
the last of multiple copies of a file or directory.

40.19 Disaster Recovery of Win32 Systems

Due to open system files, and registry problems, Bacula cannot save and
restore a complete Win2K/XP/NT environment.

A suggestion by Damian Coutts using Microsoft’s NTBackup utility in con-
junction with Bacula should permit a Full bare metal restore of Win2K/XP

552 CHAPTER 40. DISASTER RECOVERY USING BACULA

(and possibly NT systems). His suggestion is to do an NTBackup of the
critical system state prior to running a Bacula backup with the following
command:

ntbackup backup systemstate /F c:\systemstate.bkf

The backup is the command, the systemstate says to backup only the
system state and not all the user files, and the /F c:\systemstate.bkf
specifies where to write the state file. this file must then be saved and
restored by Bacula.

To restore the system state, you first reload a base operating system, then
you would use Bacula to restore all the users files and to recover the
c:\systemstate.bkf file, and finally, run NTBackup and catalogue the
system statefile, and then select it for restore. The documentation says you
can’t run a command line restore of the systemstate.

This procedure has been confirmed to work by Ludovic Strappazon – many
thanks!

A new tool is provided in the form of a bacula plugin for the BartPE rescue
CD. BartPE is a self-contained WindowsXP boot CD which you can make
using the PeBuilder tools available at http://www.nu2.nu/pebuilder/ and a
valid Windows XP SP1 CDROM. The plugin is provided as a zip archive.
Unzip the file and copy the bacula directory into the plugin directory of your
BartPE installation. Edit the configuration files to suit your installation and
build your CD according to the instructions at Bart’s site. This will permit
you to boot from the cd, configure and start networking, start the bacula
file client and access your director with the console program. The programs
menu on the booted CD contains entries to install the file client service,
start the file client service, and start the WX-Console. You can also open
a command line window and CD Programs\Bacula and run the command
line console bconsole.

40.20 Ownership and Permissions on Win32 Sys-
tems

Bacula versions after 1.31 should properly restore ownership and permis-
sions on all WinNT/XP/2K systems. If you do experience problems, gener-
ally in restores to alternate directories because higher level directories were
not backed up by Bacula, you can correct any problems with the SetACL
available under the GPL license at: http://sourceforge.net/projects/setacl/.

http://www.nu2.nu/pebuilder/
http://sourceforge.net/projects/setacl/

40.21. ALTERNATE DISASTER RECOVERY SUGGESTION FOR WIN32 SYSTEMS553

40.21 Alternate Disaster Recovery Suggestion for
Win32 Systems

Ludovic Strappazon has suggested an interesting way to backup and restore
complete Win32 partitions. Simply boot your Win32 system with a Linux
Rescue disk as described above for Linux, install a statically linked Bacula,
and backup any of the raw partitions you want. Then to restore the system,
you simply restore the raw partition or partitions. Here is the email that
Ludovic recently sent on that subject:

I’ve just finished testing my brand new cd LFS/Bacula

with a raw Bacula backup and restore of my portable.

I can’t resist sending you the results: look at the rates !!!

hunt-dir: Start Backup JobId 100, Job=HuntBackup.2003-04-17_12.58.26

hunt-dir: Bacula 1.30 (14Apr03): 17-Apr-2003 13:14

JobId: 100

Job: HuntBackup.2003-04-17_12.58.26

FileSet: RawPartition

Backup Level: Full

Client: sauvegarde-fd

Start time: 17-Apr-2003 12:58

End time: 17-Apr-2003 13:14

Files Written: 1

Bytes Written: 10,058,586,272

Rate: 10734.9 KB/s

Software Compression: None

Volume names(s): 000103

Volume Session Id: 2

Volume Session Time: 1050576790

Last Volume Bytes: 10,080,883,520

FD termination status: OK

SD termination status: OK

Termination: Backup OK

hunt-dir: Begin pruning Jobs.

hunt-dir: No Jobs found to prune.

hunt-dir: Begin pruning Files.

hunt-dir: No Files found to prune.

hunt-dir: End auto prune.

hunt-dir: Start Restore Job RestoreFilesHunt.2003-04-17_13.21.44

hunt-sd: Forward spacing to file 1.

hunt-dir: Bacula 1.30 (14Apr03): 17-Apr-2003 13:54

JobId: 101

Job: RestoreFilesHunt.2003-04-17_13.21.44

Client: sauvegarde-fd

Start time: 17-Apr-2003 13:21

End time: 17-Apr-2003 13:54

Files Restored: 1

Bytes Restored: 10,056,130,560

Rate: 5073.7 KB/s

FD termination status: OK

554 CHAPTER 40. DISASTER RECOVERY USING BACULA

Termination: Restore OK

hunt-dir: Begin pruning Jobs.

hunt-dir: No Jobs found to prune.

hunt-dir: Begin pruning Files.

hunt-dir: No Files found to prune.

hunt-dir: End auto prune.

40.22 Restoring to a Running System

If for some reason you want to do a Full restore to a system that has a work-
ing kernel (not recommended), you will need to take care not to overwrite
the following files:

/etc/grub.conf

/etc/X11/Conf

/etc/fstab

/etc/mtab

/lib/modules

/usr/modules

/usr/X11R6

/etc/modules.conf

40.23 Additional Resources

Many thanks to Charles Curley who wrote
Linux Complete Backup and Recovery HOWTO for the
The Linux Documentation Project. This is an excellent document on
how to do Bare Metal Recovery on Linux systems, and it was this document
that made me realize that Bacula could do the same thing.

You can find quite a few additional resources, both commercial and free at
Storage Mountain, formerly known as Backup Central.

And finally, the O’Reilly book, ”Unix Backup & Recovery” by W. Curtis
Preston covers virtually every backup and recovery topic including bare
metal recovery for a large range of Unix systems.

http://www.tldp.org/HOWTO/Linux-Complete-Backup-and-Recovery-HOWTO/index.html
http://www.tldp.org/
http://www.backupcentral.com

Chapter 41

Bacula TLS –
Communications Encryption

Bacula TLS (Transport Layer Security) is built-in network encryption code
to provide secure network transport similar to that offered by stunnel or
ssh. The data written to Volumes by the Storage daemon is not encrypted
by this code. For data encryption, please see the Data Encryption Chapter
of this manual.

The Bacula encryption implementations were written by Landon Fuller.

Supported features of this code include:

• Client/Server TLS Requirement Negotiation

• TLSv1 Connections with Server and Client Certificate Validation

• Forward Secrecy Support via Diffie-Hellman Ephemeral Keying

This document will refer to both ”server” and ”client” contexts. These
terms refer to the accepting and initiating peer, respectively.

Diffie-Hellman anonymous ciphers are not supported by this code. The use
of DH anonymous ciphers increases the code complexity and places explicit
trust upon the two-way CRAM-MD5 implementation. CRAM-MD5 is sub-
ject to known plaintext attacks, and it should be considered considerably
less secure than PKI certificate-based authentication.

Appropriate autoconf macros have been added to detect and use OpenSSL
if enabled on the ./configure line with --with-openssl

555

556CHAPTER 41. BACULA TLS – COMMUNICATIONS ENCRYPTION

41.1 TLS Configuration Directives

Additional configuration directives have been added to all the daemons (Di-
rector, File daemon, and Storage daemon) as well as the various different
Console programs. These new directives are defined as follows:

TLS Enable = <yes—no> Enable TLS support. If TLS is not enabled,
none of the other TLS directives have any effect. In other words, even
if you set TLS Require = yes you need to have TLS enabled or TLS
will not be used.

TLS Require = <yes—no> Require TLS connections. This directive is
ignored unless TLS Enable is set to yes. If TLS is not required, and
TLS is enabled, then Bacula will connect with other daemons either
with or without TLS depending on what the other daemon requests.
If TLS is enabled and TLS is required, then Bacula will refuse any
connection that does not use TLS.

TLS Certificate = <Directory> Path to a PEM encoded TLS certifi-
cate. It can be used as either a client or server certificate. PEM
stands for Privacy Enhanced Mail, but in this context refers to how
the certificates are encoded. It is used because PEM files are base64
encoded and hence ASCII text based rather than binary. They may
also contain encrypted information.

TLS Key = <Directory> Path to a PEM encoded TLS private key. It
must correspond to the TLS certificate.

TLS Verify Peer = <yes—no> Verify peer certificate. Instructs server
to request and verify the client’s x509 certificate. Any client certificate
signed by a known-CA will be accepted unless the TLS Allowed CN
configuration directive is used, in which case the client certificate must
correspond to the Allowed Common Name specified. This directive is
valid only for a server and not in a client context.

TLS Allowed CN = <string list> Common name attribute of allowed
peer certificates. If this directive is specified, all server certificates will
be verified against this list. This can be used to ensure that only the
CA-approved Director may connect. This directive may be specified
more than once. It is not valid in a client context.

TLS CA Certificate File = <Filename> The full path and filename
specifying a PEM encoded TLS CA certificate(s). Multiple certifi-
cates are permitted in the file. One of TLS CA Certificate File or
TLS CA Certificate Dir are required in a server context if TLS Verify

41.2. CREATING A SELF-SIGNED CERTIFICATE 557

Peer (see above) is also specified, and are always required in a client
context.

TLS CA Certificate Dir = <Directory> Full path to TLS CA certifi-
cate directory. In the current implementation, certificates must be
stored PEM encoded with OpenSSL-compatible hashes, which is the
subject name’s hash and an extension of bf .0. One of TLS CA Cer-

tificate File or TLS CA Certificate Dir are required in a server context
if TLS Verify Peer is also specified, and are always required in a client
context.

TLS DH File = <Directory> Path to PEM encoded Diffie-Hellman pa-
rameter file. If this directive is specified, DH key exchange will be used
for the ephemeral keying, allowing for forward secrecy of communica-
tions. DH key exchange adds an additional level of security because
the key used for encryption/decryption by the server and the client is
computed on each end and thus is never passed over the network if
Diffie-Hellman key exchange is used. Even if DH key exchange is not
used, the encryption/decryption key is always passed encrypted. This
directive is only valid within a server context.

To generate the parameter file, you may use openssl:

openssl dhparam -out dh1024.pem -5 1024

41.2 Creating a Self-signed Certificate

You may create a self-signed certificate for use with the Bacula TLS that
will permit you to make it function, but will not allow certificate validation.
The .pem file containing both the certificate and the key valid for ten years
can be made with the following:

openssl req -new -x509 -nodes -out bacula.pem -keyout bacula.pem -days 3650

The above script will ask you a number of questions. You may simply answer
each of them by entering a return, or if you wish you may enter your own
data.

Note, however, that self-signed certificates will only work for the outgo-
ing end of connections. For example, in the case of the Director making
a connection to a File Daemon, the File Daemon may be configured to al-
low self-signed certificates, but the certificate used by the Director must be
signed by a certificate that is explicitly trusted on the File Daemon end.

558CHAPTER 41. BACULA TLS – COMMUNICATIONS ENCRYPTION

This is necessary to prevent “man in the middle” attacks from tools such
as ettercap. Essentially, if the Director does not verify that it is talking
to a trusted remote endpoint, it can be tricked into talking to a malicious
3rd party who is relaying and capturing all traffic by presenting its own
certificates to the Director and File Daemons. The only way to prevent this
is by using trusted certificates, so that the man in the middle is incapable
of spoofing the connection using his own.

To get a trusted certificate (CA or Certificate Authority signed cer-
tificate), you will either need to purchase certificates signed by a
commercial CA or find a friend that has setup his own CA or be-
come a CA yourself, and thus you can sign all your own certificates.
The book OpenSSL by John Viega, Matt Mesier & Pravir Chandra
from O’Reilly explains how to do it, or you can read the documen-
tation provided in the Open-source PKI Book project at Source Forge:
http://ospkibook.sourceforge.net/docs/OSPKI-2.4.7/OSPKI-html/ospki-book.htm.
Note, this link may change.

The program TinyCA has a very nice Graphical User Interface that allows
you to easily setup and maintain your own CA. TinyCA can be found at
http://tinyca.sm-zone.net/.

41.3 Getting a CA Signed Certificate

The process of getting a certificate that is signed by a CA is quite a bit
more complicated. You can purchase one from quite a number of PKI
vendors, but that is not at all necessary for use with Bacula. To get a CA
signed certificate, you will either need to find a friend that has setup his
own CA or to become a CA yourself, and thus you can sign all your own
certificates. The book OpenSSL by John Viega, Matt Mesier & Pravir
Chandra from O’Reilly explains how to do it, or you can read the docu-
mentation provided in the Open-source PKI Book project at Source Forge:
http://ospkibook.sourceforge.net/docs/OSPKI-2.4.7/OSPKI-html/ospki-book.htm.
Note, this link may change.

41.4 Example TLS Configuration Files

Landon has supplied us with the TLS portions of his configuration files,
which should help you setting up your own.

bacula-dir.conf

http://ettercap.sourceforge.net/
http://ospkibook.sourceforge.net/docs/OSPKI-2.4.7/OSPKI-html/ospki-book.htm
http://tinyca.sm-zone.net/
http://ospkibook.sourceforge.net/docs/OSPKI-2.4.7/OSPKI-html/ospki-book.htm

41.4. EXAMPLE TLS CONFIGURATION FILES 559

Director { # define myself

Name = backup1-dir

...

TLS Enable = yes

TLS Require = yes

TLS Verify Peer = yes

TLS Allowed CN = "bacula@backup1.example.com"

TLS Allowed CN = "administrator@example.com"

TLS CA Certificate File = /usr/local/etc/ssl/ca.pem

This is a server certificate, used for incoming

console connections.

TLS Certificate = /usr/local/etc/ssl/backup1/cert.pem

TLS Key = /usr/local/etc/ssl/backup1/key.pem

}

Storage {

Name = File

Address = backup1.example.com

...

TLS Require = yes

TLS CA Certificate File = /usr/local/etc/ssl/ca.pem

This is a client certificate, used by the director to

connect to the storage daemon

TLS Certificate = /usr/local/etc/ssl/bacula@backup1/cert.pem

TLS Key = /usr/local/etc/ssl/bacula@backup1/key.pem

}

bacula-fd.conf

Director {

Name = backup1-dir

...

TLS Enable = yes

TLS Require = yes

TLS Verify Peer = yes

Allow only the Director to connect

TLS Allowed CN = "bacula@backup1.example.com"

TLS CA Certificate File = /usr/local/etc/ssl/ca.pem\

This is a server certificate. It is used by connecting

directors to verify the authenticity of this file daemon

TLS Certificate = /usr/local/etc/ssl/server1/cert.pem

TLS Key = /usr/local/etc/ssl/server1/key.pem

}

bacula-sd.conf

Storage { # definition of myself

Name = backup1-sd

...

These TLS configuration options are used for incoming

file daemon connections. Director TLS settings are handled

560CHAPTER 41. BACULA TLS – COMMUNICATIONS ENCRYPTION

below.

TLS Enable = yes

TLS Require = yes

Peer certificate is not required/requested -- peer validity

is verified by the storage connection cookie provided to the

File Daemon by the director.

TLS Verify Peer = no

TLS CA Certificate File = /usr/local/etc/ssl/ca.pem

This is a server certificate. It is used by connecting

file daemons to verify the authenticity of this storage daemon

TLS Certificate = /usr/local/etc/ssl/backup1/cert.pem

TLS Key = /usr/local/etc/ssl/backup1/key.pem

}

#

List Directors who are permitted to contact Storage daemon

#

Director {

Name = backup1-dir

...

TLS Enable = yes

TLS Require = yes

Require the connecting director to provide a certificate

with the matching CN.

TLS Verify Peer = yes

TLS Allowed CN = "bacula@backup1.example.com"

TLS CA Certificate File = /usr/local/etc/ssl/ca.pem

This is a server certificate. It is used by the connecting

director to verify the authenticity of this storage daemon

TLS Certificate = /usr/local/etc/ssl/backup1/cert.pem

TLS Key = /usr/local/etc/ssl/backup1/key.pem

}

Chapter 42

Data Encryption

Bacula permits file data encryption and signing within the File Daemon (or
Client) prior to sending data to the Storage Daemon. Upon restoration,
file signatures are validated and any mismatches are reported. At no time
does the Director or the Storage Daemon have access to unencrypted file
contents.

It is very important to specify what this implementation does NOT do:

• There is one important restore problem to be aware of, namely, it’s
possible for the director to restore new keys or a Bacula configuration
file to the client, and thus force later backups to be made with a
compromised key and/or with no encryption at all. You can avoid
this by not not changing the location of the keys in your Bacula File
daemon configuration file, and not changing your File daemon keys. If
you do change either one, you must ensure that no restore is done that
restores the old configuration or the old keys. In general, the worst
effect of this will be that you can no longer connect the File daemon.

• The implementation does not encrypt file metadata such as file path
names, permissions, and ownership. Extended attributes are also cur-
rently not encrypted. However, Mac OS X resource forks are en-
crypted.

Encryption and signing are implemented using RSA private keys coupled
with self-signed x509 public certificates. This is also sometimes known as
PKI or Public Key Infrastructure.

Each File Daemon should be given its own unique private/public key pair.
In addition to this key pair, any number of ”Master Keys” may be specified

561

562 CHAPTER 42. DATA ENCRYPTION

– these are key pairs that may be used to decrypt any backups should the
File Daemon key be lost. Only the Master Key’s public certificate should
be made available to the File Daemon. Under no circumstances should the
Master Private Key be shared or stored on the Client machine.

The Master Keys should be backed up to a secure location, such as a CD
placed in a in a fire-proof safe or bank safety deposit box. The Master
Keys should never be kept on the same machine as the Storage Daemon
or Director if you are worried about an unauthorized party compromising
either machine and accessing your encrypted backups.

While less critical than the Master Keys, File Daemon Keys are also a prime
candidate for off-site backups; burn the key pair to a CD and send the CD
home with the owner of the machine.

NOTE!!! If you lose your encryption keys, backups will be unrecoverable.
ALWAYS store a copy of your master keys in a secure, off-site location.

The basic algorithm used for each backup session (Job) is:

1. The File daemon generates a session key.

2. The FD encrypts that session key via PKE for all recipients (the file
daemon, any master keys).

3. The FD uses that session key to perform symmetric encryption on the
data.

42.1 Building Bacula with Encryption Support

The configuration option for enabling OpenSSL encryption support has not
changed since Bacula 1.38. To build Bacula with encryption support, you
will need the OpenSSL libraries and headers installed. When configuring
Bacula, use:

./configure --with-openssl ...

42.2 Encryption Technical Details

The implementation uses 128bit AES-CBC, with RSA encrypted symmetric
session keys. The RSA key is user supplied. If you are running OpenSSL
0.9.8 or later, the signed file hash uses SHA-256 – otherwise, SHA-1 is used.

42.3. GENERATING PRIVATE/PUBLIC ENCRYPTION KEYS 563

End-user configuration settings for the algorithms are not currently exposed
– only the algorithms listed above are used. However, the data written to
Volume supports arbitrary symmetric, asymmetric, and digest algorithms
for future extensibility, and the back-end implementation currently supports:

Symmetric Encryption:

- 128, 192, and 256-bit AES-CBC

- Blowfish-CBC

Asymmetric Encryption (used to encrypt symmetric session keys):

- RSA

Digest Algorithms:

- MD5

- SHA1

- SHA256

- SHA512

The various algorithms are exposed via an entirely re-usable, OpenSSL-
agnostic API (ie, it is possible to drop in a new encryption backend). The
Volume format is DER-encoded ASN.1, modeled after the Cryptographic
Message Syntax from RFC 3852. Unfortunately, using CMS directly was
not possible, as at the time of coding a free software streaming DER de-
coder/encoder was not available.

42.3 Generating Private/Public Encryption Keys

Generate a Master Key Pair with:

openssl genrsa -out master.key 2048

openssl req -new -key master.key -x509 -out master.cert

Generate a File Daemon Key Pair for each FD:

openssl genrsa -out fd-example.key 2048

openssl req -new -key fd-example.key -x509 -out fd-example.cert

cat fd-example.key fd-example.cert >fd-example.pem

564 CHAPTER 42. DATA ENCRYPTION

42.4 Example Data Encryption Configuration

bacula-fd.conf

FileDaemon {

Name = example-fd

FDport = 9102 # where we listen for the director

WorkingDirectory = /var/bacula/working

Pid Directory = /var/run

Maximum Concurrent Jobs = 20

PKI Signatures = Yes # Enable Data Signing

PKI Encryption = Yes # Enable Data Encryption

PKI Keypair = "/etc/bacula/fd-example.pem" # Public and Private Keys

PKI Master Key = "/etc/bacula/master.cert" # ONLY the Public Key

}

Chapter 43

Bacula Security Issues

• Security means being able to restore your files, so read the
Critical Items Chapter of this manual.

• The Clients (bacula-fd) must run as root to be able to access all the
system files.

• It is not necessary to run the Director as root.

• It is not necessary to run the Storage daemon as root, but you must
ensure that it can open the tape drives, which are often restricted
to root access by default. In addition, if you do not run the Storage
daemon as root, it will not be able to automatically set your tape drive
parameters on most OSes since these functions, unfortunately require
root access.

• You should restrict access to the Bacula configuration files, so that the
passwords are not world-readable. The Bacula daemons are password
protected using CRAM-MD5 (i.e. the password is not sent across the
network). This will ensure that not everyone can access the daemons.
It is a reasonably good protection, but can be cracked by experts.

• If you are using the recommended ports 9101, 9102, and 9103, you
will probably want to protect these ports from external access using a
firewall and/or using tcp wrappers (etc/hosts.allow).

• By default, all data that is sent across the network is unen-
crypted. However, Bacula does support TLS (transport layer
security) and can encrypt transmitted data. Please read the
TLS (SSL) Communications Encryption section of this manual.

• You should ensure that the Bacula working directories are readable
and writable only by the Bacula daemons.

565

566 CHAPTER 43. BACULA SECURITY ISSUES

• If you are using MySQL it is not necessary for it to run with root
permission.

• The default Bacula grant-mysql-permissions script grants all per-
missions to use the MySQL database without a password. If you want
security, please tighten this up!

• Don’t forget that Bacula is a network program, so anyone anywhere
on the network with the console program and the Director’s password
can access Bacula and the backed up data.

• You can restrict what IP addresses Bacula will bind to by using the
appropriate DirAddress, FDAddress, or SDAddress records in
the respective daemon configuration files.

• Be aware that if you are backing up your database using the default
script, if you have a password on your database, it will be passed as a
command line option to that script, and any user will be able to see
this information. If you want it to be secure, you will need to pass it
by an environment variable or a secure file.

43.1 Backward Compatibility

One of the major goals of Bacula is to ensure that you can restore tapes (I’ll
use the word tape to include disk Volumes) that you wrote years ago. This
means that each new version of Bacula should be able to read old format
tapes. The first problem you will have is to ensure that the hardware is still
working some years down the road, and the second problem will be to ensure
that the media will still be good, then your OS must be able to interface
to the device, and finally Bacula must be able to recognize old formats. All
the problems except the last are ones that we cannot solve, but by careful
planning you can.

Since the very beginning of Bacula (January 2000) until today (December
2005), there have been two major Bacula tape formats. The second format
was introduced in version 1.27 in November of 2002, and it has not changed
since then. In principle, Bacula can still read the original format, but I
haven’t tried it lately so who knows ...

Though the tape format is fixed, the kinds of data that we can put on the
tapes are extensible, and that is how we added new features such as ACLs,
Win32 data, encrypted data, ... Obviously, an older version of Bacula would
not know how to read these newer data streams, but each newer version of
Bacula should know how to read all the older streams.

43.2. CONFIGURING AND TESTING TCP WRAPPERS 567

If you want to be 100should:

1. Try reading old tapes from time to time – e.g. at least once a year.

2. Keep statically linked copies of every version of Bacula that you use in
production then if for some reason, we botch up old tape compatibility, you
can always pull out an old copy of Bacula ...

The second point is probably overkill but if you want to be sure, it may save
you someday.

43.2 Configuring and Testing TCP Wrappers

TCP Wrappers are implemented if you turn them on when configuring
(./configure --with-tcp-wrappers). With this code enabled, you may
control who may access your daemons. This control is done by modifying
the file: /etc/hosts.allow. The program name that Bacula uses when
applying these access restrictions is the name you specify in the daemon
configuration file (see below for examples). You must not use the twist
option in your /etc/hosts.allow or it will terminate the Bacula daemon
when a connection is refused.

The exact name of the package you need loaded to build with TCP wrappers
depends on the system. For example, on SuSE, the TCP wrappers libraries
needed to link Bacula are contained in the tcpd-devel package. On Red Hat,
the package is named tcp wrappers.

Dan Langille has provided the following information on configuring and
testing TCP wrappers with Bacula.

If you read hosts options(5), you will see an option called twist. This option
replaces the current process by an instance of the specified shell command.
Typically, something like this is used:

ALL : ALL \

: severity auth.info \

: twist /bin/echo "You are not welcome to use %d from %h."

The libwrap code tries to avoid twist if it runs in a resident process, but
that test will not protect the first hosts access() call. This will result in
the process (e.g. bacula-fd, bacula-sd, bacula-dir) being terminated if the
first connection to their port results in the twist option being invoked. The
potential, and I stress potential, exists for an attacker to prevent the dae-

568 CHAPTER 43. BACULA SECURITY ISSUES

mons from running. This situation is eliminated if your /etc/hosts.allow file
contains an appropriate rule set. The following example is sufficient:

undef-fd : localhost : allow

undef-sd : localhost : allow

undef-dir : localhost : allow

undef-fd : ALL : deny

undef-sd : ALL : deny

undef-dir : ALL : deny

You must adjust the names to be the same as the Name directives found in
each of the daemon configuration files. They are, in general, not the same
as the binary daemon names. It is not possible to use the daemon names
because multiple daemons may be running on the same machine but with
different configurations.

In these examples, the Director is undef-dir, the Storage Daemon is undef-
sd, and the File Daemon is undef-fd. Adjust to suit your situation. The
above example rules assume that the SD, FD, and DIR all reside on the
same box. If you have a remote FD client, then the following rule set on the
remote client will suffice:

undef-fd : director.example.org : allow

undef-fd : ALL : deny

where director.example.org is the host which will be contacting the client
(ie. the box on which the Bacula Director daemon runs). The use of ”ALL :
deny” ensures that the twist option (if present) is not invoked. To properly
test your configuration, start the daemon(s), then attempt to connect from
an IP address which should be able to connect. You should see something
like this:

$ telnet undef 9103

Trying 192.168.0.56...

Connected to undef.example.org.

Escape character is ’^]’.

Connection closed by foreign host.

$

This is the correct response. If you see this:

$ telnet undef 9103

Trying 192.168.0.56...

43.3. RUNNING AS NON-ROOT 569

Connected to undef.example.org.

Escape character is ’^]’.

You are not welcome to use undef-sd from xeon.example.org.

Connection closed by foreign host.

$

then twist has been invoked and your configuration is not correct and you
need to add the deny statement. It is important to note that your testing
must include restarting the daemons after each connection attempt. You can
also tcpdchk(8) and tcpdmatch(8) to validate your /etc/hosts.allow rules.
Here is a simple test using tcpdmatch:

$ tcpdmatch undef-dir xeon.example.org

warning: undef-dir: no such process name in /etc/inetd.conf

client: hostname xeon.example.org

client: address 192.168.0.18

server: process undef-dir

matched: /etc/hosts.allow line 40

option: allow

access: granted

If you are running Bacula as a standalone daemon, the warning above can
be safely ignored. Here is an example which indicates that your rules are
missing a deny statement and the twist option has been invoked.

$ tcpdmatch undef-dir 10.0.0.1

warning: undef-dir: no such process name in /etc/inetd.conf

client: address 10.0.0.1

server: process undef-dir

matched: /etc/hosts.allow line 91

option: severity auth.info

option: twist /bin/echo "You are not welcome to use

undef-dir from 10.0.0.1."

access: delegated

43.3 Running as non-root

Security advice from Dan Langille:

It is a good idea to run daemons with the lowest possible privileges. In
other words, if you can, don’t run applications as root which do not have to
be root. The Storage Daemon and the Director Daemon do not need to be
root. The File Daemon needs to be root in order to access all files on your
system. In order to run as non-root, you need to create a user and a group.

570 CHAPTER 43. BACULA SECURITY ISSUES

Choosing bacula as both the user name and the group name sounds like a
good idea to me.

The FreeBSD port creates this user and group for you. Here is what those
entries looked like on my FreeBSD laptop:

bacula:*:1002:1002::0:0:Bacula Daemon:/var/db/bacula:/sbin/nologin

I used vipw to create this entry. I selected a User ID and Group ID of 1002
as they were unused on my system.

I also created a group in /etc/group:

bacula:*:1002:

The bacula user (as opposed to the Bacula daemon) will have a home di-
rectory of /var/db/bacula which is the default location for the Bacula
database.

Now that you have both a bacula user and a bacula group, you can secure
the bacula home directory by issuing this command:

chown -R bacula:bacula /var/db/bacula/

This ensures that only the bacula user can access this directory. It also
means that if we run the Director and the Storage daemon as bacula, those
daemons also have restricted access. This would not be the case if they were
running as root.

It is important to note that the storage daemon actually needs to be in the
operator group for normal access to tape drives etc (at least on a FreeBSD
system, that’s how things are set up by default) Such devices are normally
chown root:operator. It is easier and less error prone to make Bacula a
member of that group than it is to play around with system permissions.

Starting the Bacula daemons

To start the bacula daemons on a FreeBSD system, issue the following com-
mand:

/usr/local/etc/rc.d/bacula.sh start

To confirm they are all running:

43.3. RUNNING AS NON-ROOT 571

$ ps auwx | grep bacula

root\ 63416\ 0.0\ 0.3\ 2040 1172\ ??\ Ss\ 4:09PM 0:00.01

/usr/local/sbin/bacula-sd -v -c /usr/local/etc/bacula-sd.conf

root\ 63418\ 0.0\ 0.3\ 1856 1036\ ??\ Ss\ 4:09PM 0:00.00

/usr/local/sbin/bacula-fd -v -c /usr/local/etc/bacula-fd.conf

root\ 63422\ 0.0\ 0.4\ 2360 1440\ ??\ Ss\ 4:09PM 0:00.00

/usr/local/sbin/bacula-dir -v -c /usr/local/etc/bacula-dir.conf

572 CHAPTER 43. BACULA SECURITY ISSUES

Chapter 44

Dealing with Firewalls

If you have a firewall or a DMZ installed on your computer, you may experi-
ence difficulties contacting one or more of the Clients to back them up. This
is especially true if you are trying to backup a Client across the Internet.

44.1 Technical Details

If you are attempting to do this, the sequence of network events in Bacula
to do a backup are the following:

Console -> DIR:9101

DIR -> SD:9103

DIR -> FD:9102

FD -> SD:9103

Where hopefully it is obvious that DIR represents the Director, FD the File
daemon or client, and SD the Storage daemon. The numbers that follow
those names are the standard ports used by Bacula, and the -> represents
the left side making a connection to the right side (i.e. the right side is the
”server” or is listening on the specified port), and the left side is the ”client”
that initiates the conversation.

Note, port 9103 serves both the Director and the File daemon, each having
its own independent connection.

If you are running iptables, you might add something like:

-A FW-1-INPUT -m state --state NEW -m tcp -p tcp --dport 9101:9103 -j ACCEPT

573

574 CHAPTER 44. DEALING WITH FIREWALLS

on your server, and

-A FW-1-INPUT -m state --state NEW -m tcp -p tcp --dport 9102 -j ACCEPT

on your client. In both cases, I assume that the machine is allowed to initiate
connections on any port. If not, you will need to allow outgoing connections
on ports 9102 and 9103 on your server and 9103 on your client. Thanks to
Raymond Norton for this tip.

44.2 A Concrete Example

The following discussion was originally written by Jesse Guardiani because
he has ’internal’ and ’external’ requiring the Director and the Client to
use different IP addresses. His original solution was to define two different
Storage resources in the Director’s conf file each pointing to the same Storage
daemon but with different IP addresses. In Bacula 1.38.x this no longer
works, because Bacula makes a one-to-one association between a Storage
daemon resource and a Device (such as an Autochanger). As a consequence,
I have modified his original text to a method that I believe will work, but
is as of yet untested (KES - July 2006).

My bacula server is on the 192.168.1.0/24 network at IP address
192.168.1.52. For the sake of discussion we will refer to this network as
the ’internal’ network because it connects to the internet through a NAT’d
firewall. We will call the network on the public (internet) side of the NAT’d
firewall the ’external’ network. Also, for the sake of discussion we will call
my bacula server:

server.int.mydomain.tld

when a fully qualified domain name is required, or simply:

server

if a hostname is adequate. We will call the various bacula daemons running
on the server.int.mydomain.tld machine:

server-fd

server-sd

server-dir

44.2. A CONCRETE EXAMPLE 575

In addition, I have two clients that I want to back up with Bacula. The first
client is on the internal network. Its fully qualified domain name is:

private1.int.mydomain.tld

And its hostname is:

private1

This machine is a client and therefore runs just one bacula daemon:

private1-fd

The second client is on the external network. Its fully qualified domain name
is:

public1.mydomain.tld

And its hostname is:

public1

This machine also runs just one bacula daemon:

public1-fd

Finally, I have a NAT firewall/gateway with two network interfaces. The
first interface is on the internal network and serves as a gateway to the in-
ternet for all the machines attached to the internal network (For example,
server.int.mydomain.tld and private1.int.mydomain.tld). The second inter-
face is on the external (internet) network. The external interface has been
assigned the name:

firewall.mydomain.tld

Remember:

*.int.mydomain.tld = internal network

*.mydomain.tld = external network

576 CHAPTER 44. DEALING WITH FIREWALLS

44.2.1 The Bacula Configuration Files for the Above

server-sd manages a 4 tape AIT autoloader. All of my backups are written
to server-sd. I have just *one* Device resource in my server-sd.conf file:

Autochanger {

Name = "autochanger1";\

Device = Drive0

Changer Device = /dev/ch0;

Changer Command = "/usr/local/sbin/chio-bacula %c %o %S %a";

}

Device {

Name = Drive0

DriveIndex = 0

Media Type = AIT-1;

Archive Device = /dev/nrsa1;

Label Media = yes;

AutoChanger = yes;

AutomaticMount = yes; # when device opened, read it

AlwaysOpen = yes;

Hardware End of Medium = No

Fast Forward Space File = No

BSF at EOM = yes

}

(note, please see the Tape Testing chapter of this manual for important
FreeBSD information.) However, unlike previously, there is only one Storage
definition in my server-dir.conf file:

Storage {

Name = "autochanger1" # Storage device for backing up

Address = Storage-server

SDPort = 9103

Password = "mysecretpassword"

Device = "autochanger1"

Media Type = AIT-1

Autochanger = yes

}

Note that the Storage resource uses neither of the two addresses to the Stor-
age daemon – neither server.int.mydomain.tld nor firewall.mydomain.tld,
but instead uses the address Storage-server.

What is key is that in the internal net, Storage-server is resolved to
server.int.mydomain.tld, either with an entry in /etc/hosts, or by creating
and appropriate DNS entry, and on the external net (the Client machine),
Storage-server is resolved to firewall.mydomain.tld.

44.2. A CONCRETE EXAMPLE 577

In addition to the above, I have two Client resources defined in server-
dir.conf:

Client {

Name = private1-fd

Address = private1.int.mydomain.tld

FDPort = 9102

Catalog = MyCatalog

Password = "mysecretpassword" # password for FileDaemon

}

Client {

Name = public1-fd

Address = public1.mydomain.tld

FDPort = 9102

Catalog = MyCatalog

Password = "mysecretpassword" # password for FileDaemon

}

And finally, to tie it all together, I have two Job resources defined in server-
dir.conf:

Job {

Name = "Private1-Backup"

Type = Backup

Client = private1-fd

FileSet = "Private1"

Schedule = "WeeklyCycle"

Storage = "autochanger1-int"

Messages = Standard

Pool = "Weekly"

Write Bootstrap = "/var/db/bacula/Private1-Backup.bsr"

Priority = 12

}

Job {

Name = "Public1-Backup"

Type = Backup

Client = public1-fd

FileSet = "Public1"

Schedule = "WeeklyCycle"

Storage = "autochanger1-ext"

Messages = Standard

Pool = "Weekly"

Write Bootstrap = "/var/db/bacula/Public1-Backup.bsr"

Priority = 13

}

It is important to notice that because the ’Private1-Backup’ Job is intended
to back up a machine on the internal network so it resolves Storage-server
to contact the Storage daemon via the internal net. On the other hand,

578 CHAPTER 44. DEALING WITH FIREWALLS

the ’Public1-Backup’ Job is intended to back up a machine on the external
network, so it resolves Storage-server to contact the Storage daemon via the
external net.

I have left the Pool, Catalog, Messages, FileSet, Schedule, and Director
resources out of the above server-dir.conf examples because they are not
pertinent to the discussion.

44.2.2 How Does It Work?

If I want to run a backup of private1.int.mydomain.tld and store that backup
using server-sd then my understanding of the order of events is this:

1. I execute my Bacula ’console’ command on server.int.mydomain.tld.

2. console connects to server-dir.

3. I tell console to ’run’ backup Job ’Private1-Backup’.

4. console relays this command to server-dir.

5. server-dir connects to private1-fd at private1.int.mydomain.tld:9102

6. server-dir tells private1-fd to start sending the files defined in the
’Private1-Backup’ Job’s FileSet resource to the Storage resource
’autochanger1’, which we have defined in server-dir.conf as having
the address:port of Storage-server, which is mapped by DNS to
server.int.mydomain.tld.

7. private1-fd connects to server.int.mydomain.tld:9103 and begins send-
ing files.

Alternatively, if I want to run a backup of public1.mydomain.tld and store
that backup using server-sd then my understanding of the order of events is
this:

1. I execute my Bacula ’console’ command on server.int.mydomain.tld.

2. console connects to server-dir.

3. I tell console to ’run’ backup Job ’Public1-Backup’.

4. console relays this command to server-dir.

44.2. A CONCRETE EXAMPLE 579

5. server-dir connects, through the NAT’d firewall, to public1-fd at pub-
lic1.mydomain.tld:9102

6. server-dir tells public1-fd to start sending the files defined in the
’Public1-Backup’ Job’s FileSet resource to the Storage resource ’au-
tochanger1’, which we have defined in server-dir.conf as having the
same address:port as above of Storage-server, but which on this ma-
chine is resolved to firewall.mydomain.tld:9103.

7. public1-fd connects to firewall.mydomain.tld:9103 and begins sending
files.

44.2.3 Important Note

In order for the above ’Public1-Backup’ Job to succeed, fire-
wall.mydomain.tld:9103 MUST be forwarded using the firewall’s configu-
ration software to server.int.mydomain.tld:9103. Some firewalls call this
’Server Publication’. Others may call it ’Port Forwarding’.

44.2.4 Firewall Problems

Either a firewall or a router may decide to timeout and terminate open con-
nections if they are not active for a short time. By Internet standards
the period should be two hours, and should be indefinitely extended if
KEEPALIVE is set as is the case by Bacula. If your firewall or router
does not respect these rules, you may find Bacula connections terminated.
In that case, the first thing to try is turning on the Heart Beat Interval
both in the File daemon and the Storage daemon and set an interval of say
five minutes.

Also, if you have denial of service rate limiting in your firewall, this too
can cause Bacula disconnects since Bacula can at times use very high access
rates. To avoid this, you should implement default accept rules for the
Bacula ports involved before the rate limiting rules.

Finally, if you have a Windows machine, it will most likely by default dis-
allow connections to the Bacula Windows File daemon. See the Windows
chapter of this manual for additional details.

580 CHAPTER 44. DEALING WITH FIREWALLS

Chapter 45

Using Bacula to Improve
Computer Security

Since Bacula maintains a catalog of files, their attributes, and either SHA1
or MD5 signatures, it can be an ideal tool for improving computer security.
This is done by making a snapshot of your system files with a Verify Job
and then checking the current state of your system against the snapshot, on
a regular basis (e.g. nightly).

The first step is to set up a Verify Job and to run it with:

Level = InitCatalog

The InitCatalog level tells Bacula simply to get the information on the
specified files and to put it into the catalog. That is your database is ini-
tialized and no comparison is done. The InitCatalog is normally run one
time manually.

Thereafter, you will run a Verify Job on a daily (or whatever) basis with:

Level = Catalog

The Level = Catalog level tells Bacula to compare the current state of
the files on the Client to the last InitCatalog that is stored in the catalog
and to report any differences. See the example below for the format of the
output.

You decide what files you want to form your ”snapshot” by specifying them

581

582CHAPTER 45. USING BACULA TO IMPROVE COMPUTER SECURITY

in a FileSet resource, and normally, they will be system files that do not
change, or that only certain features change.

Then you decide what attributes of each file you want compared by spec-
ifying comparison options on the Include statements that you use in the
FileSet resource of your Catalog Jobs.

45.1 The Details

In the discussion that follows, we will make reference to the Verify Config-
uration Example that is included below in the A Verify Configuration
Example section. You might want to look it over now to get an idea of
what it does.

The main elements consist of adding a schedule, which will normally be
run daily, or perhaps more often. This is provided by the VerifyCycle
Schedule, which runs at 5:05 in the morning every day.

Then you must define a Job, much as is done below. We recommend that
the Job name contain the name of your machine as well as the word Verify
or Check. In our example, we named it MatouVerify. This will permit
you to easily identify your job when running it from the Console.

You will notice that most records of the Job are quite standard, but that the
FileSet resource contains verify=pins1 option in addition to the standard
signature=SHA1 option. If you don’t want SHA1 signature comparison,
and we cannot imagine why not, you can drop the signature=SHA1 and
none will be computed nor stored in the catalog. Or alternatively, you can
use verify=pins5 and signature=MD5, which will use the MD5 hash
algorithm. The MD5 hash computes faster than SHA1, but is cryptograph-
ically less secure.

The verify=pins1 is ignored during the InitCatalog Job, but is used
during the subsequent Catalog Jobs to specify what attributes of the files
should be compared to those found in the catalog. pins1 is a reasonable set
to begin with, but you may want to look at the details of these and other
options. They can be found in the FileSet Resource section of this manual.
Briefly, however, the p of the pins1 tells Verify to compare the permissions
bits, the i is to compare inodes, the n causes comparison of the number of
links, the s compares the file size, and the 1 compares the SHA1 checksums
(this requires the signature=SHA1 option to have been set also).

You must also specify the Client and the Catalog resources for your Ver-

45.2. RUNNING THE VERIFY 583

ify job, but you probably already have them created for your client and
do not need to recreate them, they are included in the example below for
completeness.

As mentioned above, you will need to have a FileSet resource for the Verify
job, which will have the additional verify=pins1 option. You will want to
take some care in defining the list of files to be included in your FileSet.
Basically, you will want to include all system (or other) files that should not
change on your system. If you select files, such as log files or mail files, which
are constantly changing, your automatic Verify job will be constantly finding
differences. The objective in forming the FileSet is to choose all unchanging
important system files. Then if any of those files has changed, you will be
notified, and you can determine if it changed because you loaded a new
package, or because someone has broken into your computer and modified
your files. The example below shows a list of files that I use on my Red Hat
7.3 system. Since I didn’t spend a lot of time working on it, it probably
is missing a few important files (if you find one, please send it to me). On
the other hand, as long as I don’t load any new packages, none of these files
change during normal operation of the system.

45.2 Running the Verify

The first thing you will want to do is to run an InitCatalog level Verify Job.
This will initialize the catalog to contain the file information that will later
be used as a basis for comparisons with the actual file system, thus allowing
you to detect any changes (and possible intrusions into your system).

The easiest way to run the InitCatalog is manually with the console pro-
gram by simply entering run. You will be presented with a list of Jobs that
can be run, and you will choose the one that corresponds to your Verify Job,
MatouVerify in this example.

The defined Job resources are:

1: MatouVerify

2: kernsrestore

3: Filetest

4: kernsave

Select Job resource (1-4): 1

Next, the console program will show you the basic parameters of the Job
and ask you:

Run Verify job

584CHAPTER 45. USING BACULA TO IMPROVE COMPUTER SECURITY

JobName: MatouVerify

FileSet: Verify Set

Level: Catalog

Client: MatouVerify

Storage: DLTDrive

OK to run? (yes/mod/no): mod

Here, you want to respond mod to modify the parameters because the Level
is by default set to Catalog and we want to run an InitCatalog Job. After
responding mod, the console will ask:

Parameters to modify:

1: Job

2: Level

3: FileSet

4: Client

5: Storage

Select parameter to modify (1-5): 2

you should select number 2 to modify the Level, and it will display:

Levels:

1: Initialize Catalog

2: Verify from Catalog

3: Verify Volume

4: Verify Volume Data

Select level (1-4): 1

Choose item 1, and you will see the final display:

Run Verify job

JobName: MatouVerify

FileSet: Verify Set

Level: Initcatalog

Client: MatouVerify

Storage: DLTDrive

OK to run? (yes/mod/no): yes

at which point you respond yes, and the Job will begin.

Thereafter the Job will automatically start according to the schedule you
have defined. If you wish to immediately verify it, you can simply run a
Verify Catalog which will be the default. No differences should be found.

45.3. WHAT TO DO WHEN DIFFERENCES ARE FOUND 585

45.3 What To Do When Differences Are Found

If you have setup your messages correctly, you should be notified if there are
any differences and exactly what they are. For example, below is the email
received after doing an update of OpenSSH:

HeadMan: Start Verify JobId 83 Job=RufusVerify.2002-06-25.21:41:05

HeadMan: Verifying against Init JobId 70 run 2002-06-21 18:58:51

HeadMan: File: /etc/pam.d/sshd

HeadMan: st_ino differ. Cat: 4674b File: 46765

HeadMan: File: /etc/rc.d/init.d/sshd

HeadMan: st_ino differ. Cat: 56230 File: 56231

HeadMan: File: /etc/ssh/ssh_config

HeadMan: st_ino differ. Cat: 81317 File: 8131b

HeadMan: st_size differ. Cat: 1202 File: 1297

HeadMan: SHA1 differs.

HeadMan: File: /etc/ssh/sshd_config

HeadMan: st_ino differ. Cat: 81398 File: 81325

HeadMan: st_size differ. Cat: 1182 File: 1579

HeadMan: SHA1 differs.

HeadMan: File: /etc/ssh/ssh_config.rpmnew

HeadMan: st_ino differ. Cat: 812dd File: 812b3

HeadMan: st_size differ. Cat: 1167 File: 1114

HeadMan: SHA1 differs.

HeadMan: File: /etc/ssh/sshd_config.rpmnew

HeadMan: st_ino differ. Cat: 81397 File: 812dd

HeadMan: st_size differ. Cat: 2528 File: 2407

HeadMan: SHA1 differs.

HeadMan: File: /etc/ssh/moduli

HeadMan: st_ino differ. Cat: 812b3 File: 812ab

HeadMan: File: /usr/bin/scp

HeadMan: st_ino differ. Cat: 5e07e File: 5e343

HeadMan: st_size differ. Cat: 26728 File: 26952

HeadMan: SHA1 differs.

HeadMan: File: /usr/bin/ssh-keygen

HeadMan: st_ino differ. Cat: 5df1d File: 5e07e

HeadMan: st_size differ. Cat: 80488 File: 84648

HeadMan: SHA1 differs.

HeadMan: File: /usr/bin/sftp

HeadMan: st_ino differ. Cat: 5e2e8 File: 5df1d

HeadMan: st_size differ. Cat: 46952 File: 46984

HeadMan: SHA1 differs.

HeadMan: File: /usr/bin/slogin

HeadMan: st_ino differ. Cat: 5e359 File: 5e2e8

HeadMan: File: /usr/bin/ssh

HeadMan: st_mode differ. Cat: 89ed File: 81ed

HeadMan: st_ino differ. Cat: 5e35a File: 5e359

HeadMan: st_size differ. Cat: 219932 File: 234440

HeadMan: SHA1 differs.

HeadMan: File: /usr/bin/ssh-add

HeadMan: st_ino differ. Cat: 5e35b File: 5e35a

HeadMan: st_size differ. Cat: 76328 File: 81448

586CHAPTER 45. USING BACULA TO IMPROVE COMPUTER SECURITY

HeadMan: SHA1 differs.

HeadMan: File: /usr/bin/ssh-agent

HeadMan: st_ino differ. Cat: 5e35c File: 5e35b

HeadMan: st_size differ. Cat: 43208 File: 47368

HeadMan: SHA1 differs.

HeadMan: File: /usr/bin/ssh-keyscan

HeadMan: st_ino differ. Cat: 5e35d File: 5e96a

HeadMan: st_size differ. Cat: 139272 File: 151560

HeadMan: SHA1 differs.

HeadMan: 25-Jun-2002 21:41

JobId: 83

Job: RufusVerify.2002-06-25.21:41:05

FileSet: Verify Set

Verify Level: Catalog

Client: RufusVerify

Start time: 25-Jun-2002 21:41

End time: 25-Jun-2002 21:41

Files Examined: 4,258

Termination: Verify Differences

At this point, it was obvious that these files were modified during installa-
tion of the RPMs. If you want to be super safe, you should run a Verify
Level=Catalog immediately before installing new software to verify that
there are no differences, then run a Verify Level=InitCatalog immedi-
ately after the installation.

To keep the above email from being sent every night when the Verify Job
runs, we simply re-run the Verify Job setting the level to InitCatalog (as
we did above in the very beginning). This will re-establish the current state
of the system as your new basis for future comparisons. Take care that you
don’t do an InitCatalog after someone has placed a Trojan horse on your
system!

If you have included in your FileSet a file that is changed by the normal
operation of your system, you will get false matches, and you will need to
modify the FileSet to exclude that file (or not to Include it), and then
re-run the InitCatalog.

The FileSet that is shown below is what I use on my Red Hat 7.3 system.
With a bit more thought, you can probably add quite a number of additional
files that should be monitored.

45.4 A Verify Configuration Example

Schedule {

Name = "VerifyCycle"

45.4. A VERIFY CONFIGURATION EXAMPLE 587

Run = Level=Catalog sun-sat at 5:05

}

Job {

Name = "MatouVerify"

Type = Verify

Level = Catalog # default level

Client = MatouVerify

FileSet = "Verify Set"

Messages = Standard

Storage = DLTDrive

Pool = Default

Schedule = "VerifyCycle"

}

#

The list of files in this FileSet should be carefully

chosen. This is a good starting point.

#

FileSet {

Name = "Verify Set"

Include = verify=pins1 signature=SHA1 {

/boot

/bin

/sbin

/usr/bin

/lib

/root/.ssh

/home/kern/.ssh

/var/named

/etc/sysconfig

/etc/ssh

/etc/security

/etc/exports

/etc/rc.d/init.d

/etc/sendmail.cf

/etc/sysctl.conf

/etc/services

/etc/xinetd.d

/etc/hosts.allow

/etc/hosts.deny

/etc/hosts

/etc/modules.conf

/etc/named.conf

/etc/pam.d

/etc/resolv.conf

}

Exclude = { }

}

Client {

Name = MatouVerify

Address = lmatou

Catalog = Bacula

Password = ""

File Retention = 80d # 80 days

Job Retention = 1y # one year

588CHAPTER 45. USING BACULA TO IMPROVE COMPUTER SECURITY

AutoPrune = yes # Prune expired Jobs/Files

}

Catalog {

Name = Bacula

dbname = verify; user = bacula; password = ""

}

Chapter 46

Bacula RPM Packaging FAQ

1. How do I build Bacula for platform xxx?

2. How do I control which database support gets built?

3. What other defines are used?

4. I’m getting errors about not having permission when I try to build the packages. Do I need to be root?

5. I’m building my own rpms but on all platforms and compiles I get an unresolved dependency for something

6. I’m building my own rpms because you don’t publish for my platform. Can I get my packages released

7. Is there an easier way than sorting out all these command line options?

8. I just upgraded from 1.36.x to 1.38.x and now my director daemon won’t start. It appears to start but

9. There are a lot of rpm packages. Which packages do I need for what?

46.1 Answers

1. How do I build Bacula for platform xxx? The bacula spec file
contains defines to build for several platforms: Red Hat 7.x (rh7),
Red Hat 8.0 (rh8), Red Hat 9 (rh9), Fedora Core (fc1, fc3, fc4, fc5,
fc6), Whitebox Enterprise Linux 3.0 (wb3), Red Hat Enterprise Linux
(rhel3, rhel4), Mandrake 10.x (mdk), Mandriva 2006.x (mdv) CentOS
(centos3, centos4) and SuSE (su9, su10). The package build is con-
trolled by a mandatory define set at the beginning of the file. These
defines basically just control the dependency information that gets
coded into the finished rpm package as well as any special configure

589

590 CHAPTER 46. BACULA RPM PACKAGING FAQ

options required. The platform define may be edited in the spec file
directly (by default all defines are set to 0 or ”not set”). For example,
to build the Red Hat 7.x package find the line in the spec file which
reads

%define rh7 0

and edit it to read

%define rh7 1

Alternately you may pass the define on the command line when calling
rpmbuild:

rpmbuild -ba --define "build_rh7 1" bacula.spec

rpmbuild --rebuild --define build_rh7 1" bacula-x.x.x-x.src.rpm

2. How do I control which database support gets built? Another
mandatory build define controls which database support is compiled,
one of build sqlite, build mysql or build postgresql. To get the MySQL
package and support either set the

%define mysql 0

OR

%define mysql4 0

OR

%define mysql5 0

to

%define mysql 1

OR

%define mysql4 1

OR

%define mysql5 1

in the spec file directly or pass it to rpmbuild on the command line:

rpmbuild -ba --define "build_rh7 1" --define "build_mysql 1" bacula.spec

rpmbuild -ba --define "build_rh7 1" --define "build_mysql4 1" bacula.spec

rpmbuild -ba --define "build_rh7 1" --define "build_mysql5 1" bacula.spec

46.1. ANSWERS 591

3. What other defines are used? Three other building defines of note
are the depkgs version, docs version and rescuever identifiers. These
two defines are set with each release and must match the version of
those sources that are being used to build the packages. You would
not ordinarily need to edit these. See also the Build Options section
below for other build time options that can be passed on the command
line.

4. I’m getting errors about not having permission when I try to
build the packages. Do I need to be root? No, you do not need
to be root and, in fact, it is better practice to build rpm packages as a
non-root user. Bacula packages are designed to be built by a regular
user but you must make a few changes on your system to do this. If
you are building on your own system then the simplest method is to
add write permissions for all to the build directory (/usr/src/redhat/,
/usr/src/RPM or /usr/src/packages). To accomplish this, execute the
following command as root:

chmod -R 777 /usr/src/redhat

chmod -R 777 /usr/src/RPM

chmod -R 777 /usr/src/packages

If you are working on a shared system where you can not use the
method above then you need to recreate the appropriate above di-
rectory tree with all of its subdirectories inside your home directory.
Then create a file named

.rpmmacros

in your home directory (or edit the file if it already exists) and add
the following line:

%_topdir /home/myuser/redhat

Another handy directive for the .rpmmacros file if you wish to suppress
the creation of debug rpm packages is:

%debug_package %{nil}

5. I’m building my own rpms but on all platforms and com-
piles I get an unresolved dependency for something called
/usr/afsws/bin/pagsh. This is a shell from the OpenAFS (Andrew
File System). If you are seeing this then you chose to include the

592 CHAPTER 46. BACULA RPM PACKAGING FAQ

docs/examples directory in your package. One of the example scripts
in this directory is a pagsh script. Rpmbuild, when scanning for de-
pendencies, looks at the shebang line of all packaged scripts in addition
to checking shared libraries. To avoid this do not package the exam-
ples directory. If you are seeing this problem you are building a very
old bacula package as the examples have been removed from the doc
packaging.

6. I’m building my own rpms because you don’t publish for my
platform. Can I get my packages released to sourceforge for
other people to use? Yes, contributions from users are accepted
and appreciated. Please examine the directory platforms/contrib-rpm
in the source code for further information.

7. Is there an easier way than sorting out all these command
line options? Yes, there is a gui wizard shell script which you can
use to rebuild the src rpm package. Look in the source archive for
platforms/contrib-rpm/rpm wizard.sh. This script will allow you to
specify build options using gnome dialog screens. It requires zenity.

8. I just upgraded from 1.36.x to 1.38.x and now my director
daemon won’t start. It appears to start but dies silently
and I get a ”connection refused” error when starting the
console. What is wrong? Beginning with 1.38 the rpm packages
are configured to run the director and storage daemons as a non-root
user. The file daemon runs as user root and group bacula, the storage
daemon as user bacula and group disk, and the director as user bacula
and group bacula. If you are upgrading you will need to change some
file permissions for things to work. Execute the following commands
as root:

chown bacula.bacula /var/bacula/*

chown root.bacula /var/bacula/bacula-fd.9102.state

chown bacula.disk /var/bacula/bacula-sd.9103.state

Further, if you are using File storage volumes rather than tapes those
files will also need to have ownership set to user bacula and group
bacula.

9. There are a lot of rpm packages. Which packages do I need
for what? For a bacula server you need to select the packsge based
upon your preferred catalog database: one of bacula-mysql, bacula-
postgresql or bacula-sqlite. If your system does not provide an mtx
package you also need bacula-mtx to satisfy that dependancy. For
a client machine you need only install bacula-client. Optionally, for

46.2. BUILD OPTIONS 593

either server or client machines, you may install a graphical console
bacula-gconsole and/or bacula-wxconsole. One last package, bacula-
updatedb is required only when upgrading a server more than one
database revision level.

10. Support for RHEL3/4, CentOS 3/4 and x86 64 The examples
below show explicit build support for RHEL4 and CentOS 4. Build
support for x86 64 has also been added. Test builds have been done
on CentOS but not RHEL4.

Build with one of these 3 commands:

rpmbuild --rebuild \

--define "build_rhel4 1" \

--define "build_sqlite 1" \

bacula-1.38.3-1.src.rpm

rpmbuild --rebuild \

--define "build_rhel4 1" \

--define "build_postgresql 1" \

bacula-1.38.3-1.src.rpm

rpmbuild --rebuild \

--define "build_rhel4 1" \

--define "build_mysql4 1" \

bacula-1.38.3-1.src.rpm

For CentOS substitute ’--define "build_centos4 1"’ in place of rhel4.

For 64 bit support add ’--define "build_x86_64 1"’

46.2 Build Options

The spec file currently supports building on the following platforms:

Red Hat builds

--define "build_rh7 1"

--define "build_rh8 1"

--define "build_rh9 1"

Fedora Core build

--define "build_fc1 1"

--define "build_fc3 1"

--define "build_fc4 1"

--define "build_fc5 1"

--define "build_fc6 1"

Whitebox Enterprise build

594 CHAPTER 46. BACULA RPM PACKAGING FAQ

--define "build_wb3 1"

Red Hat Enterprise builds

--define "build_rhel3 1"

--define "build_rhel4 1"

CentOS build

--define "build_centos3 1"

--define "build_centos4 1"

SuSE build

--define "build_su9 1"

--define "build_su10 1"

Mandrake 10.x build

--define "build_mdk 1"

Mandriva build

--define "build_mdv 1"

MySQL support:

for mysql 3.23.x support define this

--define "build_mysql 1"

if using mysql 4.x define this,

currently: Mandrake 10.x, Mandriva 2006.0, SuSE 9.x & 10.0, FC4 & RHEL4

--define "build_mysql4 1"

if using mysql 5.x define this,

currently: SuSE 10.1 & FC5

--define "build_mysql5 1"

PostgreSQL support:

--define "build_postgresql 1"

Sqlite support:

--define "build_sqlite 1"

Build the client rpm only in place of one of the above database full builds:

--define "build_client_only 1"

X86-64 support:

--define "build_x86_64 1"

Supress build of gnome console:

--define "nobuild_gconsole 1"

Build the WXWindows console:

requires wxGTK >= 2.6

--define "build_wxconsole 1"

Build python scripting support:

--define "build_python 1"

Modify the Packager tag for third party packages:

--define "contrib_packager Your Name <youremail@site.org>"

46.3. RPM INSTALL PROBLEMS 595

46.3 RPM Install Problems

In general the RPMs, once properly built should install correctly. However,
when attempting to run the daemons, a number of problems can occur:

rong /var/bacula Permissions By default, the Director and Storage daemon do not run with root
permission. If the /var/bacula is owned by root, then it is possible
that the Director and the Storage daemon will not be able to access
this directory, which is used as the Working Directory. To fix this, the
easiest thing to do is:

chown bacula:bacula /var/bacula

Note: as of 1.38.8 /var/bacula is installed root:bacula with permissions
770.

cannot Access the Tape drive This can happen in some older RPM releases where the Storage dae-
mon ran under userid bacula, group bacula. There are two ways of
fixing this: the best is to modify the /etc/init.d/bacula-sd file so that
it starts the Storage daemon with group ”disk”. The second way to
fix the problem is to change the permissions of your tape drive (usu-
ally /dev/nst0) so that Bacula can access it. You will probably need
to change the permissions of the SCSI control device as well, which
is usually /dev/sg0. The exact names depend on your configuration,
please see the Tape Testing chapter for more information on devices.

596 CHAPTER 46. BACULA RPM PACKAGING FAQ

Chapter 47

The Bootstrap File

The information in this chapter is provided so that you may either create
your own bootstrap files, or so that you can edit a bootstrap file produced by
Bacula. However, normally the bootstrap file will be automatically created
for you during the restore command command in the Console program, or
by using a Write Bootstrap record in your Backup Jobs, and thus you will
never need to know the details of this file.

The bootstrap file contains ASCII information that permits precise spec-
ification of what files should be restored. It is a relatively compact form of
specifying the information, is human readable, and can be edited with any
text editor.

47.1 File Format

The general format of a bootstrap file is:

<keyword>= <value>

Where each keyword and the value specify which files to restore. More
precisely the keyword and their values serve to limit which files will be
restored and thus act as a filter. The absence of a keyword means that all
records will be accepted.

Blank lines and lines beginning with a pound sign (#) in the bootstrap file
are ignored.

There are keywords which permit filtering by Volume, Client, Job, FileIndex,
Session Id, Session Time, ...

597

598 CHAPTER 47. THE BOOTSTRAP FILE

The more keywords that are specified, the more selective the specification
of which files to restore will be. In fact, each keyword is ANDed with other
keywords that may be present.

For example,

Volume = Test-001

VolSessionId = 1

VolSessionTime = 108927638

directs the Storage daemon (or the bextract program) to restore only those
files on Volume Test-001 AND having VolumeSessionId equal to one AND
having VolumeSession time equal to 108927638.

The full set of permitted keywords presented in the order in which they are
matched against the Volume records are:

Volume The value field specifies what Volume the following commands
apply to. Each Volume specification becomes the current Volume, to
which all the following commands apply until a new current Volume
(if any) is specified. If the Volume name contains spaces, it should be
enclosed in quotes.

Count The value is the total number of files that will be restored for this
Volume. This allows the Storage daemon to know when to stop reading
the Volume.

VolFile The value is a file number, a list of file numbers, or a range of file
numbers to match on the current Volume. The file number represents
the physical file on the Volume where the data is stored. For a tape
volume, this record is used to position to the correct starting file, and
once the tape is past the last specified file, reading will stop.

VolBlock The value is a block number, a list of block numbers, or a range
of block numbers to match on the current Volume. The block number
represents the physical block on the Volume where the data is stored.
This record is currently not used.

VolSessionTime The value specifies a Volume Session Time to be matched
from the current volume.

VolSessionId The value specifies a VolSessionId, a list of volume session
ids, or a range of volume session ids to be matched from the current
Volume. Each VolSessionId and VolSessionTime pair corresponds to
a unique Job that is backed up on the Volume.

47.1. FILE FORMAT 599

JobId The value specifies a JobId, list of JobIds, or range of JobIds to
be selected from the current Volume. Note, the JobId may not be
unique if you have multiple Directors, or if you have reinitialized your
database. The JobId filter works only if you do not run multiple
simultaneous jobs.

Job The value specifies a Job name or list of Job names to be matched on
the current Volume. The Job corresponds to a unique VolSessionId
and VolSessionTime pair. However, the Job is perhaps a bit more
readable by humans. Standard regular expressions (wildcards) may
be used to match Job names. The Job filter works only if you do not
run multiple simultaneous jobs.

Client The value specifies a Client name or list of Clients to will be matched
on the current Volume. Standard regular expressions (wildcards) may
be used to match Client names. The Client filter works only if you do
not run multiple simultaneous jobs.

FileIndex The value specifies a FileIndex, list of FileIndexes, or range of
FileIndexes to be selected from the current Volume. Each file (data)
stored on a Volume within a Session has a unique FileIndex. For each
Session, the first file written is assigned FileIndex equal to one and
incremented for each file backed up.

This for a given Volume, the triple VolSessionId, VolSessionTime, and
FileIndex uniquely identifies a file stored on the Volume. Multiple
copies of the same file may be stored on the same Volume, but for
each file, the triple VolSessionId, VolSessionTime, and FileIndex will
be unique. This triple is stored in the Catalog database for each file.

Slot The value specifies the autochanger slot. There may be only a single
Slot specification for each Volume.

Stream The value specifies a Stream, a list of Streams, or a range of
Streams to be selected from the current Volume. Unless you really
know what you are doing (the internals of Bacula, you should avoid
this specification.

*JobType Not yet implemented.

*JobLevel Not yet implemented.

The Volume record is a bit special in that it must be the first record. The
other keyword records may appear in any order and any number following
a Volume record.

600 CHAPTER 47. THE BOOTSTRAP FILE

Multiple Volume records may be specified in the same bootstrap file, but
each one starts a new set of filter criteria for the Volume.

In processing the bootstrap file within the current Volume, each filter spec-
ified by a keyword is ANDed with the next. Thus,

Volume = Test-01

Client = "My machine"

FileIndex = 1

will match records on Volume Test-01 AND Client records for My ma-
chine AND FileIndex equal to one.

Multiple occurrences of the same record are ORed together. Thus,

Volume = Test-01

Client = "My machine"

Client = "Backup machine"

FileIndex = 1

will match records on Volume Test-01 AND (Client records for My ma-
chine OR Backup machine) AND FileIndex equal to one.

For integer values, you may supply a range or a list, and for all other values
except Volumes, you may specify a list. A list is equivalent to multiple
records of the same keyword. For example,

Volume = Test-01

Client = "My machine", "Backup machine"

FileIndex = 1-20, 35

will match records on Volume Test-01 AND (Client records for My ma-
chine OR Backup machine) AND (FileIndex 1 OR 2 OR 3 ... OR 20
OR 35).

As previously mentioned above, there may be multiple Volume records in
the same bootstrap file. Each new Volume definition begins a new set of
filter conditions that apply to that Volume and will be ORed with any other
Volume definitions.

As an example, suppose we query for the current set of tapes to restore all
files on Client Rufus using the query command in the console program:

Using default Catalog name=MySQL DB=bacula

47.1. FILE FORMAT 601

*query

Available queries:

1: List Job totals:

2: List where a file is saved:

3: List where the most recent copies of a file are saved:

4: List total files/bytes by Job:

5: List total files/bytes by Volume:

6: List last 10 Full Backups for a Client:

7: List Volumes used by selected JobId:

8: List Volumes to Restore All Files:

Choose a query (1-8): 8

Enter Client Name: Rufus

+-------+------------------+------------+-----------+----------+------------+

| JobId | StartTime | VolumeName | StartFile | VolSesId | VolSesTime |

+-------+------------------+------------+-----------+----------+------------+

| 154 | 2002-05-30 12:08 | test-02 | 0 | 1 | 1022753312 |

| 202 | 2002-06-15 10:16 | test-02 | 0 | 2 | 1024128917 |

| 203 | 2002-06-15 11:12 | test-02 | 3 | 1 | 1024132350 |

| 204 | 2002-06-18 08:11 | test-02 | 4 | 1 | 1024380678 |

+-------+------------------+------------+-----------+----------+------------+

The output shows us that there are four Jobs that must be restored. The first
one is a Full backup, and the following three are all Incremental backups.

The following bootstrap file will restore those files:

Volume=test-02

VolSessionId=1

VolSessionTime=1022753312

Volume=test-02

VolSessionId=2

VolSessionTime=1024128917

Volume=test-02

VolSessionId=1

VolSessionTime=1024132350

Volume=test-02

VolSessionId=1

VolSessionTime=1024380678

As a final example, assume that the initial Full save spanned two Volumes.
The output from query might look like:

+-------+------------------+------------+-----------+----------+------------+

| JobId | StartTime | VolumeName | StartFile | VolSesId | VolSesTime |

+-------+------------------+------------+-----------+----------+------------+

| 242 | 2002-06-25 16:50 | File0003 | 0 | 1 | 1025016612 |

| 242 | 2002-06-25 16:50 | File0004 | 0 | 1 | 1025016612 |

| 243 | 2002-06-25 16:52 | File0005 | 0 | 2 | 1025016612 |

| 246 | 2002-06-25 19:19 | File0006 | 0 | 2 | 1025025494 |

+-------+------------------+------------+-----------+----------+------------+

602 CHAPTER 47. THE BOOTSTRAP FILE

and the following bootstrap file would restore those files:

Volume=File0003

VolSessionId=1

VolSessionTime=1025016612

Volume=File0004

VolSessionId=1

VolSessionTime=1025016612

Volume=File0005

VolSessionId=2

VolSessionTime=1025016612

Volume=File0006

VolSessionId=2

VolSessionTime=1025025494

47.2 Automatic Generation of Bootstrap Files

One thing that is probably worth knowing: the bootstrap files that are
generated automatically at the end of the job are not as optimized as those
generated by the restore command. This is because the ones created at the
end of the file, contain all files written to the Volume for that job. As a
consequence, all the files saved to an Incremental or Differential job will be
restored first by the Full save, then by any Incremental or Differential saves.

When the bootstrap file is generated for the restore command, only one copy
(the most recent) of each file is restored.

So if you have spare cycles on your machine, you could optimize the boot-
strap files by doing the following:

./console

restore client=xxx select all

no

quit

Backup bootstrap file.

The above will not work if you have multiple FileSets because that will be
an extra prompt. However, the restore client=xxx select all builds the
in-memory tree, selecting everything and creates the bootstrap file.

The no answers the Do you want to run this (yes/mod/no) question.

47.3. A FINAL EXAMPLE 603

47.3 A Final Example

If you want to extract or copy a single Job, you can do it by selecting by
JobId (code not tested) or better yet, if you know the VolSessionTime and
the VolSessionId (printed on Job report and in Catalog), specifying this is by
far the best. Using the VolSessionTime and VolSessionId is the way Bacula
does restores. A bsr file might look like the following:

Volume="Vol001"

VolSessionId=10

VolSessionTime=1080847820

If you know how many files are backed up (on the job report), you can
enormously speed up the selection by adding (let’s assume there are 157
files):

FileIndex=1-157

Count=157

Finally, if you know the File number where the Job starts, you can also
cause bcopy to forward space to the right file without reading every record:

VolFile=20

There is nothing magic or complicated about a BSR file. Parsing it and
properly applying it within Bacula *is* magic, but you don’t need to worry
about that.

If you want to see a *real* bsr file, simply fire up the restore command in
the console program, select something, then answer no when it prompts to
run the job. Then look at the file restore.bsr in your working directory.

604 CHAPTER 47. THE BOOTSTRAP FILE

Chapter 48

Installing and Configuring
MySQL

48.1 Installing and Configuring MySQL – Phase I

If you use the ./configure --with-mysql=mysql-directory statement for con-
figuring Bacula, you will need MySQL version 3.23.53 or later installed in
the mysql-directory. Bacula has been tested on MySQL version 4.1.12
and works providing you are running it in the default installation that is
compatible with MySQL 3.23.x. If you are using one of the new modes such
as ANSI/ISO compatibility, you may experience problems.

If MySQL is installed in the standard system location, you need only en-
ter --with-mysql since the configure program will search all the standard
locations. If you install MySQL in your home directory or some other non-
standard directory, you will need to provide the full path to it.

Installing and Configuring MySQL is not difficult but can be confusing the
first time. As a consequence, below, we list the steps that we used to install it
on our machines. Please note that our configuration leaves MySQL without
any user passwords. This may be an undesirable situation if you have other
users on your system.

The notes below describe how to build MySQL from the source tar files. If
you have a pre-installed MySQL, you can return to complete the installation
of Bacula, then come back to Phase II of the MySQL installation. If you
wish to install MySQL from rpms, you will probably need to install the
following:

605

606 CHAPTER 48. INSTALLING AND CONFIGURING MYSQL

mysql-<version>.rpm

mysql-server-<version>.rpm

mysql-devel-<version>.rpm

The names of the packages may vary from distribution to distribution. It is
important to have the devel package loaded as it contains the libraries and
header files necessary to build Bacula. There may be additional packages
that are required to install the above, for example, zlib and openssl.

Once these packages are installed, you will be able to build Bacula (using
the files installed with the mysql package, then run MySQL using the files
installed with mysql-server. If you have installed MySQL by rpms, please
skip Phase I below, and return to complete the installation of Bacula, then
come back to Phase II of the MySQL installation when indicated to do so.

Beginning with Bacula version 1.31, the thread safe version of the MySQL
client library is used, and hence you should add the --enable-thread-safe-
client option to the ./configure as shown below:

1. Download MySQL source code from www.mysql.com/downloads

2. Detar it with something like:

tar xvfz mysql-filename

Note, the above command requires GNU tar. If you do not have GNU
tar, a command such as:

zcat mysql-filename — tar xvf -

will probably accomplish the same thing.

3. cd mysql-source-directory

where you replace mysql-source-directory with the directory name
where you put the MySQL source code.

4. ./configure --enable-thread-safe-client --prefix=mysql-directory

where you replace mysql-directory with the directory name where
you want to install mysql. Normally for system wide use this is
/usr/local/mysql. In my case, I use ˜kern/mysql.

5. make

This takes a bit of time.

6. make install

This will put all the necessary binaries, libraries and support files into
the mysql-directory that you specified above.

http://www.mysql.com/downloads

48.2. INSTALLING AND CONFIGURING MYSQL – PHASE II 607

7. ./scripts/mysql install db

This will create the necessary MySQL databases for controlling user
access. Note, this script can also be found in the bin directory in the
installation directory

The MySQL client library mysqlclient requires the gzip compression library
libz.a or libz.so. If you are using rpm packages, these libraries are in the
libz-devel package. On Debian systems, you will need to load the zlib1g-
dev package. If you are not using rpms or debs, you will need to find the
appropriate package for your system.

At this point, you should return to completing the installation of Bacula.
Later after Bacula is installed, come back to this chapter to complete the
installation. Please note, the installation files used in the second phase of
the MySQL installation are created during the Bacula Installation.

48.2 Installing and Configuring MySQL – Phase

II

At this point, you should have built and installed MySQL, or already have a
running MySQL, and you should have configured, built and installed Bac-
ula. If not, please complete these items before proceeding.

Please note that the ./configure used to build Bacula will need to include
--with-mysql=mysql-directory, where mysql-directory is the direc-
tory name that you specified on the ./configure command for configuring
MySQL. This is needed so that Bacula can find the necessary include head-
ers and library files for interfacing to MySQL.

Bacula will install scripts for manipulating the database (create, delete,
make tables etc) into the main installation directory. These files will be
of the form * bacula * (e.g. create bacula database). These files are also
available in the <bacula-src>/src/cats directory after running ./config-
ure. If you inspect create bacula database, you will see that it calls cre-
ate mysql database. The * bacula * files are provided for convenience. It
doesn’t matter what database you have chosen; create bacula database will
always create your database.

Now you will create the Bacula MySQL database and the tables that Bacula
uses.

1. Start mysql. You might want to use the startmysql script provided

608 CHAPTER 48. INSTALLING AND CONFIGURING MYSQL

in the Bacula release.

2. cd <install-directory> This directory contains the Bacula catalog in-
terface routines.

3. ./grant mysql privileges This script creates unrestricted access rights
for the user bacula. You may want to modify it to suit your situation.
Please note that none of the userids, including root, are password
protected. If you need more security, please assign a password to the
root user and to bacula. The program mysqladmin can be used for
this.

4. ./create mysql database This script creates the MySQL bacula
database. The databases you create as well as the access databases
will be located in <install-dir>/var/ in a subdirectory with the name
of the database, where <install-dir> is the directory name that you
specified on the --prefix option. This can be important to know if
you want to make a special backup of the Bacula database or to check
its size.

5. ./make mysql tables This script creates the MySQL tables used by
Bacula.

Each of the three scripts (grant mysql privileges, create mysql database and
make mysql tables) allows the addition of a command line argument. This
can be useful for specifying the user and or password. For example, you
might need to add -u root to the command line to have sufficient privilege
to create the Bacula tables.

To take a closer look at the access privileges that you have setup with the
above, you can do:

mysql-directory/bin/mysql -u root mysql

select * from user;

48.3 Re-initializing the Catalog Database

After you have done some initial testing with Bacula, you will probably
want to re-initialize the catalog database and throw away all the test Jobs
that you ran. To do so, you can do the following:

cd <install-directory>

./drop_mysql_tables

./make_mysql_tables

48.4. LINKING BACULA WITH MYSQL 609

Please note that all information in the database will be lost and you will be
starting from scratch. If you have written on any Volumes, you must write
an end of file mark on the volume so that Bacula can reuse it. Do so with:

(stop Bacula or unmount the drive)

mt -f /dev/nst0 rewind

mt -f /dev/nst0 weof

Where you should replace /dev/nst0 with the appropriate tape drive device
name for your machine.

48.4 Linking Bacula with MySQL

After configuring Bacula with

./configure --enable-thread-safe-client --prefix=<mysql-directory> where
<mysql-directory> is in my case /home/kern/mysql, you may have to
configure the loader so that it can find the MySQL shared libraries. If
you have previously followed this procedure and later add the --enable-
thread-safe-client options, you will need to rerun the ldconfig program
shown below. If you put MySQL in a standard place such as /usr/lib
or /usr/local/lib this will not be necessary, but in my case it is. The
description that follows is Linux specific. For other operating systems, please
consult your manuals on how to do the same thing:

First edit: /etc/ld.so.conf and add a new line to the end of the file with
the name of the mysql-directory. In my case, it is:

/home/kern/mysql/lib/mysql then rebuild the loader’s cache with:

/sbin/ldconfig If you upgrade to a new version of MySQL, the shared li-
brary names will probably change, and you must re-run the /sbin/ldconfig
command so that the runtime loader can find them.

Alternatively, your system my have a loader environment variable that can
be set. For example, on a Solaris system where I do not have root permission,
I use:

LD LIBRARY PATH=/home/kern/mysql/lib/mysql

Finally, if you have encryption enabled in MySQL, you may need to add -lssl
-lcrypto to the link. In that case, you can either export the appropriate
LDFLAGS definition, or alternatively, you can include them directly on the
./configure line as in:

610 CHAPTER 48. INSTALLING AND CONFIGURING MYSQL

LDFLAGS="-lssl -lcyrpto" \

./configure \

<your-options>

48.5 Installing MySQL from RPMs

If you are installing MySQL from RPMs, you will need to install both the
MySQL binaries and the client libraries. The client libraries are usually
found in a devel package, so you must install:

mysql

mysql-devel

This will be the same with most other package managers too.

48.6 Upgrading MySQL

If you upgrade MySQL, you must reconfigure, rebuild, and re-install Bacula
otherwise you are likely to get bizarre failures. If you install from rpms
and you upgrade MySQL, you must also rebuild Bacula. You can do so
by rebuilding from the source rpm. To do so, you may need to modify the
bacula.spec file to account for the new MySQL version.

Chapter 49

Installing and Configuring
PostgreSQL

Warning!!! If you are considering using PostreSQL, you should be aware of
their philosophy of upgrades, which could be destabilizing for a production
shop. Basically at every major version upgrade, you are required to dump
your database in an ASCII format, do the upgrade, and then reload your
database (or databases). This is because they frequently update the ”data
format” from version to version, and they supply no tools to automatically
do the conversion. If you forget to do the ASCII dump, your database may
become totally useless because none of the new tools can access it due to
the format change, and the PostgreSQL server will not be able to start.

49.1 Installing PostgreSQL

If you use the ./configure --with-postgresql=PostgreSQL-Directory
statement for configuring Bacula, you will need PostgreSQL version 7.3 or
later installed. NOTE! PostgreSQL versions earlier than 7.3 do not work
with Bacula. If PostgreSQL is installed in the standard system location, you
need only enter --with-postgresql since the configure program will search
all the standard locations. If you install PostgreSQL in your home directory
or some other non-standard directory, you will need to provide the full path
with the --with-postgresql option.

Installing and configuring PostgreSQL is not difficult but can be confusing
the first time. If you prefer, you may want to use a package provided by your
chosen operating system. Binary packages are available on most PostgreSQL

611

612CHAPTER 49. INSTALLING AND CONFIGURING POSTGRESQL

mirrors.

If you prefer to install from source, we recommend following the instructions
found in the PostgreSQL documentation.

If you are using FreeBSD, this FreeBSD Diary article will be useful. Even if
you are not using FreeBSD, the article will contain useful configuration and
setup information.

After installing PostgreSQL, you should return to completing the installation
of Bacula. Later, after Bacula is installed, come back to this chapter to
complete the installation. Please note, the installation files used in the
second phase of the PostgreSQL installation are created during the Bacula
Installation. You must still come back to complete the second phase of the
PostgreSQL installation even if you installed binaries (e.g. rpm, deb, ...).

49.2 Configuring PostgreSQL

At this point, you should have built and installed PostgreSQL, or already
have a running PostgreSQL, and you should have configured, built and in-
stalled Bacula. If not, please complete these items before proceeding.

Please note that the ./configure used to build Bacula will need to in-
clude --with-postgresql=PostgreSQL-directory, where PostgreSQL-
directory is the directory name that you specified on the ./configure com-
mand for configuring PostgreSQL (if you didn’t specify a directory or Post-
greSQL is installed in a default location, you do not need to specify the
directory). This is needed so that Bacula can find the necessary include
headers and library files for interfacing to PostgreSQL.

Bacula will install scripts for manipulating the database (create, delete,
make tables etc) into the main installation directory. These files will be
of the form * bacula * (e.g. create bacula database). These files are also
available in the <bacula-src>/src/cats directory after running ./config-
ure. If you inspect create bacula database, you will see that it calls cre-
ate postgresql database. The * bacula * files are provided for convenience.
It doesn’t matter what database you have chosen; create bacula database
will always create your database.

Now you will create the Bacula PostgreSQL database and the tables that
Bacula uses. These instructions assume that you already have PostgreSQL
running. You will need to perform these steps as a user that is able to create
new databases. This can be the PostgreSQL user (on most systems, this is

http://www.postgresql.org/docs/
http://www.freebsddiary.org/postgresql.php

49.2. CONFIGURING POSTGRESQL 613

the pgsql user).

1. cd <install-directory>

This directory contains the Bacula catalog interface routines.

2. ./create bacula database

This script creates the PostgreSQL bacula database. Before run-
ning this command, you should carefully think about what encoding
sequence you want for the text fields (paths, files, ...). Ideally, the
encoding should be set to UTF8. However, many Unix systems have
filenames that are not encoded in UTF8, either because you have not
set UTF8 as your default character set or because you have imported
files from elsewhere (e.g. MacOS X). For this reason, Bacula uses
SQL ASCII as the default encoding. If you want to change this, please
modify the script before running it.

If running the script fails, it is probably because the database is owned
by a user other than yourself. On many systems, the database owner is
pgsql and on others such as Red Hat and Fedora it is postgres. You
can find out which it is by examining your /etc/passwd file. To create
a new user under either your name or with say the name bacula, you
can do the following:

su

(enter root password)

su pgsql (or postgres)

createuser kern (or perhaps bacula)

Shall the new user be allowed to create databases? (y/n) y

Shall the new user be allowed to create more new users? (y/n) (choose

what you want)

exit

At this point, you should be able to execute the ./cre-
ate bacula database command.

3. ./make bacula tables

This script creates the PostgreSQL tables used by Bacula.

4. ./grant bacula privileges

This script creates the database user bacula with restricted access
rights. You may want to modify it to suit your situation. Please note
that this database is not password protected.

614CHAPTER 49. INSTALLING AND CONFIGURING POSTGRESQL

Each of the three scripts (create bacula database, make bacula tables, and
grant bacula privileges) allows the addition of a command line argument.
This can be useful for specifying the user name. For example, you might
need to add -h hostname to the command line to specify a remote database
server.

To take a closer look at the access privileges that you have setup with the
above, you can do:

PostgreSQL-directory/bin/psql --command \\dp bacula

Also, I had an authorization problem with the password. In the end, I had to
modify my pg hba.conf file (in /var/lib/pgsql/data on my machine) from:

local all all ident sameuser

to

local all all trust sameuser

This solved the problem for me, but it is not always a good thing to do from
a security standpoint. However, it allowed me to run my regression scripts
without having a password.

A more secure way to perform database authentication is with md5 password
hashes. Begin by editing the pg hba.conf file, and just prior the the existing
“local” and “host” lines, add the line:

local bacula bacula md5

and restart the Postgres database server (frequently, this can be done using
”/etc/init.d/postgresql restart”) to put this new authentication rule into
effect.

Next, become the Postgres administrator, postgres, either by logging on as
the postgres user, or by using su to become root and then using su - postgres
to become postgres. Add a password to the bacula database for the bacula
user using:

\$ psql bacula

bacula=# alter user bacula with password ’secret’;

ALTER USER

bacula=# \\q

49.3. RE-INITIALIZING THE CATALOG DATABASE 615

Next, you’ll have to add this password to two locations in the bacula-dir.conf
file: once to the Catalog resource and once to the RunBeforeJob entry in
the BackupCatalog Job resource. With the password in place, these two
lines should look something like:

dbname = bacula; user = bacula; password = "secret"

... and ...

RunBeforeJob = "/etc/make_catalog_backup bacula bacula secret"

Naturally, you should choose your own significantly more random password,
and ensure that the bacula-dir.conf file containing this password is readable
only by the root.

Even with the files containing the database password properly restricted,
there is still a security problem with this approach: on some platforms, the
environment variable that is used to supply the password to Postgres is avail-
able to all users of the local system. To eliminate this problem, the Postgres
team have deprecated the use of the environment variable password-passing
mechanism and recommend the use of a .pgpass file instead. To use this
mechanism, create a file named .pgpass containing the single line:

localhost:5432:bacula:bacula:secret

This file should be copied into the home directory of all accounts that will
need to gain access to the database: typically, root, bacula, and any users
who will make use of any of the console programs. The files must then have
the owner and group set to match the user (so root:root for the copy in
root, and so on), and the mode set to 600, limiting access to the owner of
the file.

49.3 Re-initializing the Catalog Database

After you have done some initial testing with Bacula, you will probably
want to re-initialize the catalog database and throw away all the test Jobs
that you ran. To do so, you can do the following:

cd <install-directory>

./drop_bacula_tables

./make_bacula_tables

./grant_bacula_privileges

616CHAPTER 49. INSTALLING AND CONFIGURING POSTGRESQL

Please note that all information in the database will be lost and you will be
starting from scratch. If you have written on any Volumes, you must write
an end of file mark on the volume so that Bacula can reuse it. Do so with:

(stop Bacula or unmount the drive)

mt -f /dev/nst0 rewind

mt -f /dev/nst0 weof

Where you should replace /dev/nst0 with the appropriate tape drive device
name for your machine.

49.4 Installing PostgreSQL from RPMs

If you are installing PostgreSQL from RPMs, you will need to install both
the PostgreSQL binaries and the client libraries. The client libraries are
usually found in a devel package, so you must install:

postgresql

postgresql-devel

This will be the same with most other package managers too. After installing
from rpms, you will still need to run the scripts that set up the database
and create the tables as described above.

49.5 Converting from MySQL to PostgreSQL

The conversion procedure presented here was worked out by Norm Dressler
<ndressler at dinmar dot com>

This process was tested using the following software versions:

• Linux Mandrake 10/Kernel 2.4.22-10 SMP

• Mysql Ver 12.21 Distrib 4.0.15, for mandrake-linux-gnu (i586)

• PostgreSQL 7.3.4

• Bacula 1.34.5

49.5. CONVERTING FROM MYSQL TO POSTGRESQL 617

WARNING: Always as a precaution, take a complete backup of your
databases before proceeding with this process!

1. Shutdown bacula (cd /etc/bacula;./bacula stop)

2. Run the following command to dump your Mysql database:

mysqldump -f -t -n >bacula-backup.dmp

3. Make a backup of your /etc/bacula directory (but leave the original
in place).

4. Go to your Bacula source directory and rebuild it to include Post-
greSQL support rather then Mysql support. Check the config.log file
for your original configure command and replace enable-mysql with
enable-postgresql.

5. Recompile Bacula with a make and if everything compiles completely,
perform a make install.

6. Shutdown Mysql.

7. Start PostgreSQL on your system.

8. Create a bacula user in Postgres with the createuser command. De-
pending on your Postgres install, you may have to SU to the user who
has privileges to create a user.

9. Verify your pg hba.conf file contains sufficient permissions to allow
bacula to access the server. Mine has the following since it’s on a
secure network:

local all all trust

host all all 127.0.0.1 255.255.255.255 trust

NOTE: you should restart your postgres server if you

made changes

10. Change into the /etc/bacula directory and prepare the database and
tables with the following commands:

./create_postgresql_database

./make_postgresql_tables

./grant_postgresql_privileges

618CHAPTER 49. INSTALLING AND CONFIGURING POSTGRESQL

11. Verify you have access to the database:

psql -Ubacula bacula

You should not get any errors.

12. Load your database from the Mysql database dump with:

psql -Ubacula bacula <bacula-backup.dmp>

13. Resequence your tables with the following commands:

psql -Ubacula bacula

SELECT SETVAL(’basefiles_baseid_seq’, (SELECT

MAX(baseid) FROM basefiles));

SELECT SETVAL(’client_clientid_seq’, (SELECT

MAX(clientid) FROM client));

SELECT SETVAL(’file_fileid_seq’, (SELECT MAX(fileid)

FROM file));

SELECT SETVAL(’filename_filenameid_seq’, (SELECT

MAX(filenameid) FROM filename));

SELECT SETVAL(’fileset_filesetid_seq’, (SELECT

MAX(filesetid) FROM fileset));

SELECT SETVAL(’job_jobid_seq’, (SELECT MAX(jobid) FROM job));

SELECT SETVAL(’jobmedia_jobmediaid_seq’, (SELECT

MAX(jobmediaid) FROM jobmedia));

SELECT SETVAL(’media_mediaid_seq’, (SELECT MAX(mediaid) FROM media));

SELECT SETVAL(’path_pathid_seq’, (SELECT MAX(pathid) FROM path));

SELECT SETVAL(’pool_poolid_seq’, (SELECT MAX(poolid) FROM pool));

14. At this point, start up Bacula, verify your volume library and perform
a test backup to make sure everything is working properly.

49.6 Upgrading PostgreSQL

If you upgrade PostgreSQL, you must reconfigure, rebuild, and re-install
Bacula otherwise you are likely to get bizarre failures. If you to modify the
bacula.spec file to account for the new PostgreSQL version. You can do so
by rebuilding from the source rpm. To do so, you may need install from
rpms and you upgrade PostgreSQL, you must also rebuild Bacula.

49.7. CREDITS 619

49.7 Credits

Many thanks to Dan Langille for writing the PostgreSQL driver. This will
surely become the most popular database that Bacula supports.

620CHAPTER 49. INSTALLING AND CONFIGURING POSTGRESQL

Chapter 50

Installing and Configuring
SQLite

50.1 Installing and Configuring SQLite – Phase I

If you use the ./configure --with-sqlite statement for configuring Bac-
ula, you will need SQLite version 2.8.16 or later installed. Our stan-
dard location (for the moment) for SQLite is in the dependency package
depkgs/sqlite-2.8.16. Please note that the version will be updated as
new versions are available and tested.

You may install and use SQLite version 3.x with Bacula by using: ./config-
ure --with-sqlite3. You should ensure that when the database is created
that you have used

PRAGMA synchronous = NORMAL;

otherwise SQLite version 3.x is four to ten times slower than version 2.8.16.

Installing and Configuring is quite easy.

1. Download the Bacula dependency packages

2. Detar it with something like:

tar xvfz depkgs.tar.gz

Note, the above command requires GNU tar. If you do not have GNU
tar, a command such as:

621

622 CHAPTER 50. INSTALLING AND CONFIGURING SQLITE

zcat depkgs.tar.gz — tar xvf -

will probably accomplish the same thing.

3. cd depkgs

4. make sqlite

At this point, you should return to completing the installation of Bacula.

Please note that the ./configure used to build Bacula will need to include
--with-sqlite.

50.2 Installing and Configuring SQLite – Phase II

This phase is done after you have run the ./configure command to con-
figure Bacula.

Bacula will install scripts for manipulating the database (create, delete,
make tables etc) into the main installation directory. These files will be
of the form * bacula * (e.g. create bacula database). These files are also
available in the <bacula-src>/src/cats directory after running ./config-
ure. If you inspect create bacula database, you will see that it calls cre-
ate sqlite database. The * bacula * files are provided for convenience. It
doesn’t matter what database you have chosen; create bacula database will
always create your database.

At this point, you can create the SQLite database and tables:

1. cd <install-directory>

This directory contains the Bacula catalog interface routines.

2. ./make sqlite tables

This script creates the SQLite database as well as the tables used by
Bacula. This script will be automatically setup by the ./configure
program to create a database named bacula.db in Bacula’s working
directory.

50.3 Linking Bacula with SQLite

If you have followed the above steps, this will all happen automatically and
the SQLite libraries will be linked into Bacula.

50.4. TESTING SQLITE 623

50.4 Testing SQLite

We have much less ”production” experience using SQLite than using
MySQL. SQLite has performed flawlessly for us in all our testing. How-
ever, several users have reported corrupted databases while using SQLite.
For that reason, we do not recommend it for production use.

If Bacula crashes with the following type of error when it is started:

Using default Catalog name=MyCatalog DB=bacula

Could not open database "bacula".

sqlite.c:151 Unable to open Database=/var/lib/bacula/bacula.db.

ERR=malformed database schema - unable to open a temporary database file

for storing temporary tables

this is most likely caused by the fact that some versions of SQLite attempt
to create a temporary file in the current directory. If that fails, because
Bacula does not have write permission on the current directory, then you
may get this errr. The solution is to start Bacula in a current directory
where it has write permission.

50.5 Re-initializing the Catalog Database

After you have done some initial testing with Bacula, you will probably
want to re-initialize the catalog database and throw away all the test Jobs
that you ran. To do so, you can do the following:

cd <install-directory>

./drop_sqlite_tables

./make_sqlite_tables

Please note that all information in the database will be lost and you will be
starting from scratch. If you have written on any Volumes, you must write
an end of file mark on the volume so that Bacula can reuse it. Do so with:

(stop Bacula or unmount the drive)

mt -f /dev/nst0 rewind

mt -f /dev/nst0 weof

Where you should replace /dev/nst0 with the appropriate tape drive device
name for your machine.

624 CHAPTER 50. INSTALLING AND CONFIGURING SQLITE

The internal database is not supported, please do
not use it.

50.6 Internal Bacula Database

Previously it was intended to be used primarily by Bacula developers for
testing; although SQLite is also a good choice for this. We do not recommend
its use in general.

This database is simplistic in that it consists entirely of Bacula’s internal
structures appended sequentially to a file. Consequently, it is in most cases
inappropriate for sites with many clients or systems with large numbers of
files, or long-term production environments.

Below, you will find a table comparing the features available with SQLite
and MySQL and with the internal Bacula database. At the current time,
you cannot dynamically switch from one to the other, but must rebuild the
Bacula source code. If you wish to experiment with both, it is possible to
build both versions of Bacula and install them into separate directories.

Feature SQLite or MySQL Bacula

Job Record Yes Yes

Media Record Yes Yes

FileName Record Yes No

File Record Yes No

FileSet Record Yes Yes

Pool Record Yes Yes

Client Record Yes Yes

JobMedia Record Yes Yes

List Job Records Yes Yes

List Media Records Yes Yes

List Pool Records Yes Yes

List JobMedia Records Yes Yes

Delete Pool Record Yes Yes

Delete Media Record Yes Yes

Update Pool Record Yes Yes

Implement Verify Yes No

MD5 Signatures Yes No

In addition, since there is no SQL available, the Console commands: sql-
query, query, retention, and any other command that directly uses SQL
are not available with the Internal database.

Chapter 51

Bacula Copyright,
Trademark, and Licenses

There are a number of different licenses that are used in Bacula. If you
have a printed copy of this manual, the details of each of the licenses re-
ferred to in this chapter can be found in the online version of the manual at
http://www.bacula.org.

51.1 FDL

The GNU Free Documentation License (FDL) is used for this manual, which
is a free and open license. This means that you may freely reproduce it and
even make changes to it. However, rather than distribute your own version
of this manual, we would much prefer if you would send any corrections or
changes to the Bacula project.

The most recent version of the manual can always be found online at
http://www.bacula.org.

51.2 GPL

The vast bulk of the source code is released under a modified version of
the GNU General Public License version 2. The modifications (actually ad-
ditions) are described in the source file LICENSE, and their purpose is not
to alter the essential qualities of the GPL but to permit more freedom in
linking certain third party software supposedly non-GPL compatible, and

625

http://www.bacula.org
http://www.bacula.org

626CHAPTER 51. BACULA COPYRIGHT, TRADEMARK, AND LICENSES

to clarify contributors IP and Copyright claims and non-infringment inten-
tions. The details and governing text are in the file LICENSE in the main
source directory.

Most of this code is copyrighted: Copyright c©2000-2006 Free Software Foun-
dation Europe e.V.

Portions may be copyrighted by other people (ATT, the Free Software Foun-
dation, ...). Generally these portions are released under a non-modified GPL
2 license.

51.3 LGPL

Some of the Bacula library source code is released under the
GNU Lesser General Public License. This permits third parties to use these
parts of our code in their proprietary programs to interface to Bacula.

51.4 Public Domain

Some of the Bacula code, or code that Bacula references, has been released
to the public domain. E.g. md5.c, SQLite.

51.5 Trademark

Bacula
R©

is a registered trademark of John Walker.

We have trademarked the Bacula name to ensure that any program using
the name Bacula will be exactly compatible with the program that we have
released. The use of the name Bacula is restricted to software systems that
agree exactly with the program presented here.

51.6 Fiduciary License Agreement

Developers who have contributed significant changes to the Bacula code
should have signed a Fiduciary License Agreement (FLA), which guarantees
them the right to use the code they have developed, and also ensures that
the Free Software Foundation Europe (and thus the Bacula project) has the

51.7. DISCLAIMER 627

rights to the code. This Fiduciary License Agreement is found on the Bacula
web site at:

http://www.bacula.org/FLA-bacula.en.pdf

and should be filled out then sent to:

Free Software Foundation Europe
Freedom Task Force
Sumatrastrasse 25
8006 Zürich
Switzerland

Please note that the above address is different from the officially registered
office mentioned in the document. When you send in such a complete doc-
ument, please notify me: kern at sibbald dot com.

51.7 Disclaimer

NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE
IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMIT-
TED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED
IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PAR-
TIES PROVIDE THE PROGRAM ”AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR
ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-
ABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED

http://www.bacula.org/FLA-bacula.en.pdf

628CHAPTER 51. BACULA COPYRIGHT, TRADEMARK, AND LICENSES

TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE
OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

Chapter 52

GNU Free Documentation
License

Version 1.2, November 2002

Copyright c©2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other func-
tional and useful document ”free” in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it, with or without modifying
it, either commercially or noncommercially. Secondarily, this License pre-
serves for the author and publisher a way to get credit for their work, while
not being considered responsible for modifications made by others.

This License is a kind of ”copyleft”, which means that derivative works of
the document must themselves be free in the same sense. It complements
the GNU General Public License, which is a copyleft license designed for
free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come

629

630 CHAPTER 52. GNU FREE DOCUMENTATION LICENSE

with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published as a printed
book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be distributed
under the terms of this License. Such a notice grants a world-wide, royalty-
free license, unlimited in duration, to use that work under the conditions
stated herein. The ”Document”, below, refers to any such manual or
work. Any member of the public is a licensee, and is addressed as ”you”.
You accept the license if you copy, modify or distribute the work in a way
requiring permission under copyright law.

A ”Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A ”Secondary Section” is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the publishers
or authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall
subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The ”Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says
that the Document is released under this License. If a section does not fit
the above definition of Secondary then it is not allowed to be designated
as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant Sections then there are none.

The ”Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License. A Front-Cover Text may be at
most 5 words, and a Back-Cover Text may be at most 25 words.

A ”Transparent” copy of the Document means a machine-readable copy,

631

represented in a format whose specification is available to the general public,
that is suitable for revising the document straightforwardly with generic
text editors or (for images composed of pixels) generic paint programs or
(for drawings) some widely available drawing editor, and that is suitable
for input to text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been
arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not ”Transparent” is called ”Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML
using a publicly available DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification. Examples of trans-
parent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are
not generally available, and the machine-generated HTML, PostScript or
PDF produced by some word processors for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this License
requires to appear in the title page. For works in formats which do not have
any title page as such, ”Title Page” means the text near the most prominent
appearance of the work’s title, preceding the beginning of the body of the
text.

A section ”Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text
that translates XYZ in another language. (Here XYZ stands for a specific
section name mentioned below, such as ”Acknowledgements”, ”Dedi-
cations”, ”Endorsements”, or ”History”.) To ”Preserve the Title”
of such a section when you modify the Document means that it remains a
section ”Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Dis-
claimers are considered to be included by reference in this License, but only
as regards disclaiming warranties: any other implication that these War-
ranty Disclaimers may have is void and has no effect on the meaning of this
License.

2. VERBATIM COPYING

632 CHAPTER 52. GNU FREE DOCUMENTATION LICENSE

You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices,
and the license notice saying this License applies to the Document are re-
produced in all copies, and that you add no other conditions whatsoever to
those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you dis-
tribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document’s
license notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the
front cover, and Back-Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent
and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying
in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the
latter option, you must take reasonably prudent steps, when you begin dis-
tribution of Opaque copies in quantity, to ensure that this Transparent copy
will remain thus accessible at the stated location until at least one year af-
ter the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Doc-

633

ument well before redistributing any large number of copies, to give them a
chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the
role of the Document, thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it. In addition, you must
do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from
that of the Document, and from those of previous versions (which
should, if there were any, be listed in the History section of the Docu-
ment). You may use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified Version,
together with at least five of the principal authors of the Document (all
of its principal authors, if it has fewer than five), unless they release
you from this requirement.

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent
to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of
this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and
required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled ”History”, Preserve its Title, and add to
it an item stating at least the title, year, new authors, and publisher of
the Modified Version as given on the Title Page. If there is no section
Entitled ”History” in the Document, create one stating the title, year,

634 CHAPTER 52. GNU FREE DOCUMENTATION LICENSE

authors, and publisher of the Document as given on its Title Page,
then add an item describing the Modified Version as stated in the
previous sentence.

J. Preserve the network location, if any, given in the Document for pub-
lic access to a Transparent copy of the Document, and likewise the
network locations given in the Document for previous versions it was
based on. These may be placed in the ”History” section. You may
omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled ”Acknowledgements” or ”Dedications”, Pre-
serve the Title of the section, and preserve in the section all the sub-
stance and tone of each of the contributor acknowledgements and/or
dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their
text and in their titles. Section numbers or the equivalent are not
considered part of the section titles.

M. Delete any section Entitled ”Endorsements”. Such a section may not
be included in the Modified Version.

N. Do not retitle any existing section to be Entitled ”Endorsements” or
to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections
as invariant. To do this, add their titles to the list of Invariant Sections in
the Modified Version’s license notice. These titles must be distinct from any
other section titles.

You may add a section Entitled ”Endorsements”, provided it contains noth-
ing but endorsements of your Modified Version by various parties–for ex-
ample, statements of peer review or that the text has been approved by an
organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of
Cover Texts in the Modified Version. Only one passage of Front-Cover Text
and one of Back-Cover Text may be added by (or through arrangements
made by) any one entity. If the Document already includes a cover text for

635

the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher
that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions,
provided that you include in the combination all of the Invariant Sections
of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice, and that you preserve
all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else
a unique number. Make the same adjustment to the section titles in the list
of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled ”History” in the
various original documents, forming one section Entitled ”History”; likewise
combine any sections Entitled ”Acknowledgements”, and any sections Enti-
tled ”Dedications”. You must delete all sections Entitled ”Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of
each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License
into the extracted document, and follow this License in all other respects
regarding verbatim copying of that document.

636 CHAPTER 52. GNU FREE DOCUMENTATION LICENSE

7. AGGREGATION WITH INDEPENDENT
WORKS

A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or distri-
bution medium, is called an ”aggregate” if the copyright resulting from the
compilation is not used to limit the legal rights of the compilation’s users be-
yond what the individual works permit. When the Document is included in
an aggregate, this License does not apply to the other works in the aggregate
which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one half of the entire
aggregate, the Document’s Cover Texts may be placed on covers that bracket
the Document within the aggregate, or the electronic equivalent of covers if
the Document is in electronic form. Otherwise they must appear on printed
covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute trans-
lations of the Document under the terms of section 4. Replacing Invariant
Sections with translations requires special permission from their copyright
holders, but you may include translations of some or all Invariant Sections
in addition to the original versions of these Invariant Sections. You may
include a translation of this License, and all the license notices in the Doc-
ument, and any Warranty Disclaimers, provided that you also include the
original English version of this License and the original versions of those
notices and disclaimers. In case of a disagreement between the translation
and the original version of this License or a notice or disclaimer, the original
version will prevail.

If a section in the Document is Entitled ”Acknowledgements”, ”Dedica-
tions”, or ”History”, the requirement (section 4) to Preserve its Title (sec-
tion 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to copy,
modify, sublicense or distribute the Document is void, and will automatically
terminate your rights under this License. However, parties who have received

637

copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address
new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License ”or
any later version” applies to it, you have the option of following the terms
and conditions either of that specified version or of any later version that
has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose
any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices
just after the title page:

Copyright c©YEAR YOUR NAME. Permission is granted to
copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled
”GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the ”with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with
the Front-Cover Texts being LIST, and with the Back-Cover
Texts being LIST.

638 CHAPTER 52. GNU FREE DOCUMENTATION LICENSE

If you have Invariant Sections without Cover Texts, or some other combina-
tion of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software
license, such as the GNU General Public License, to permit their use in free
software.

52.1. TABLE OF CONTENTS 639

GNU General Public License

image of a Philosophical GNU

• What to do if you see a possible GPL violation

• Translations of the GPL

52.1 Table of Contents

• GNU GENERAL PUBLIC LICENSE

– Preamble

– TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

– How to Apply These Terms to Your New Programs

52.2 GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

52.3 Preamble

The licenses for most software are designed to take away your freedom to
share and change it. By contrast, the GNU General Public License is in-
tended to guarantee your freedom to share and change free software--to
make sure the software is free for all its users. This General Public Li-
cense applies to most of the Free Software Foundation’s software and to any
other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License
instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price.
Our General Public Licenses are designed to make sure that you have the

http://www.gnu.org/graphics/philosophicalgnu.html
http://www.gnu.org/copyleft/gpl-violation.html
http://www.gnu.org/copyleft/copyleft.html#translations

640 CHAPTER 52. GNU FREE DOCUMENTATION LICENSE

freedom to distribute copies of free software (and charge for this service if
you wish), that you receive source code or can get it if you want it, that you
can change the software or use pieces of it in new free programs; and that
you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to
deny you these rights or to ask you to surrender the rights. These restrictions
translate to certain responsibilities for you if you distribute copies of the
software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or
for a fee, you must give the recipients all the rights that you have. You must
make sure that they, too, receive or can get the source code. And you must
show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2)
offer you this license which gives you legal permission to copy, distribute
and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that
everyone understands that there is no warranty for this free software. If the
software is modified by someone else and passed on, we want its recipients
to know that what they have is not the original, so that any problems
introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We
wish to avoid the danger that redistributors of a free program will individ-
ually obtain patent licenses, in effect making the program proprietary. To
prevent this, we have made it clear that any patent must be licensed for
everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification
follow.

52.4 TERMS AND CONDITIONS

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

0. This License applies to any program or other work which contains a
notice placed by the copyright holder saying it may be distributed under
the terms of this General Public License. The ”Program”, below, refers
to any such program or work, and a ”work based on the Program” means
either the Program or any derivative work under copyright law: that is to

52.4. TERMS AND CONDITIONS 641

say, a work containing the Program or a portion of it, either verbatim or
with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term ”modification”.) Each
licensee is addressed as ”you”.

Activities other than copying, distribution and modification are not covered
by this License; they are outside its scope. The act of running the Program
is not restricted, and the output from the Program is covered only if its
contents constitute a work based on the Program (independent of having
been made by running the Program). Whether that is true depends on
what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source
code as you receive it, in any medium, provided that you conspicuously
and appropriately publish on each copy an appropriate copyright notice and
disclaimer of warranty; keep intact all the notices that refer to this License
and to the absence of any warranty; and give any other recipients of the
Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you
may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it,
thus forming a work based on the Program, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that you
also meet all of these conditions:

• a) You must cause the modified files to carry prominent notices stating
that you changed the files and the date of any change.

• b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any part
thereof, to be licensed as a whole at no charge to all third parties under
the terms of this License.

• c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such interac-
tive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no
warranty (or else, saying that you provide a warranty) and that users
may redistribute the program under these conditions, and telling the
user how to view a copy of this License. (Exception: if the Program
itself is interactive but does not normally print such an announce-
ment, your work based on the Program is not required to print an
announcement.)

642 CHAPTER 52. GNU FREE DOCUMENTATION LICENSE

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Program, and can be rea-
sonably considered independent and separate works in themselves, then this
License, and its terms, do not apply to those sections when you distribute
them as separate works. But when you distribute the same sections as part
of a whole which is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose permissions for other
licensees extend to the entire whole, and thus to each and every part re-
gardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights
to work written entirely by you; rather, the intent is to exercise the right
to control the distribution of derivative or collective works based on the
Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under the
scope of this License.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections 1
and 2 above provided that you also do one of the following:

• a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections 1
and 2 above on a medium customarily used for software interchange;
or,

• b) Accompany it with a written offer, valid for at least three years, to
give any third party, for a charge no more than your cost of physically
performing source distribution, a complete machine-readable copy of
the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software
interchange; or,

• c) Accompany it with the information you received as to the offer to
distribute corresponding source code. (This alternative is allowed only
for noncommercial distribution and only if you received the program
in object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means

52.4. TERMS AND CONDITIONS 643

all the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and installation of
the executable. However, as a special exception, the source code distributed
need not include anything that is normally distributed (in either source or
binary form) with the major components (compiler, kernel, and so on) of
the operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering access to
copy from a designated place, then offering equivalent access to copy the
source code from the same place counts as distribution of the source code,
even though third parties are not compelled to copy the source along with
the object code.

4. You may not copy, modify, sublicense, or distribute the Program except
as expressly provided under this License. Any attempt otherwise to copy,
modify, sublicense or distribute the Program is void, and will automatically
terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed
it. However, nothing else grants you permission to modify or distribute
the Program or its derivative works. These actions are prohibited by law
if you do not accept this License. Therefore, by modifying or distributing
the Program (or any work based on the Program), you indicate your accep-
tance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the original
licensor to copy, distribute or modify the Program subject to these terms and
conditions. You may not impose any further restrictions on the recipients’
exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent in-
fringement or for any other reason (not limited to patent issues), conditions
are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the
conditions of this License. If you cannot distribute so as to satisfy simulta-
neously your obligations under this License and any other pertinent obliga-
tions, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of
the Program by all those who receive copies directly or indirectly through

644 CHAPTER 52. GNU FREE DOCUMENTATION LICENSE

you, then the only way you could satisfy both it and this License would be
to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply and
the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims; this
section has the sole purpose of protecting the integrity of the free software
distribution system, which is implemented by public license practices. Many
people have made generous contributions to the wide range of software dis-
tributed through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to
distribute software through any other system and a licensee cannot impose
that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain
countries either by patents or by copyrighted interfaces, the original copy-
right holder who places the Program under this License may add an explicit
geographical distribution limitation excluding those countries, so that dis-
tribution is permitted only in or among countries not thus excluded. In such
case, this License incorporates the limitation as if written in the body of this
License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address
new problems or concerns.

Each version is given a distinguishing version number. If the Program spec-
ifies a version number of this License which applies to it and ”any later
version”, you have the option of following the terms and conditions either of
that version or of any later version published by the Free Software Founda-
tion. If the Program does not specify a version number of this License, you
may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for
permission. For software which is copyrighted by the Free Software Founda-
tion, write to the Free Software Foundation; we sometimes make exceptions
for this. Our decision will be guided by the two goals of preserving the free

52.5. HOW TO APPLY THESE TERMS TO YOUR NEW PROGRAMS645

status of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER
PARTIES PROVIDE THE PROGRAM ”AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR
ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-
ABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE
OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

52.5 How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible
use to the public, the best way to achieve this is to make it free software
which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach
them to the start of each source file to most effectively convey the exclusion
of warranty; and each file should have at least the ”copyright” line and a
pointer to where the full notice is found.

646 CHAPTER 52. GNU FREE DOCUMENTATION LICENSE

{\em one line to give the program’s name and an idea of what it does.}

Copyright (C) {\em yyyy} {\em name of author}

This program is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2

of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA

02110-1301 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it
starts in an interactive mode:

Gnomovision version 69, Copyright (C) {\em year} {\em name of author}

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details

type ‘show w’. This is free software, and you are welcome

to redistribute it under certain conditions; type ‘show c’

for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the ap-
propriate parts of the General Public License. Of course, the commands
you use may be called something other than ‘show w’ and ‘show c’; they
could even be mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a ”copyright disclaimer” for the program, if necessary.
Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright

interest in the program ‘Gnomovision’

(which makes passes at compilers) written

by James Hacker.

{\em signature of Ty Coon}, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General Public
License instead of this License. Return to GNU’s home page.

http://www.gnu.org/home.html

52.5. HOW TO APPLY THESE TERMS TO YOUR NEW PROGRAMS647

FSF & GNU inquiries & questions to gnu@gnu.org. Other ways to contact
the FSF.

Comments on these web pages to webmasters@www.gnu.org, send other
questions to gnu@gnu.org.

Copyright notice above. Free Software Foundation, Inc., 51 Franklin St,
Fifth Floor, Boston, MA 02110-1301 USA

Updated: 3 Jan 2000 rms

mailto:gnu@gnu.org
http://www.gnu.org/home.html#ContactInfo
mailto:webmasters@www.gnu.org
mailto:gnu@gnu.org

648 CHAPTER 52. GNU FREE DOCUMENTATION LICENSE

GNU Lesser General Public License

image of a Philosophical GNU [English — Japanese]

• Why you shouldn’t use the Lesser GPL for your next library

• What to do if you see a possible LGPL violation

• Translations of the LGPL

• The GNU Lesser General Public License as a text file

• The GNU Lesser General Public License as a Texinfo file

This GNU Lesser General Public License counts as the suc-
cessor of the GNU Library General Public License. For
an explanation of why this change was necessary, read the
Why you shouldn’t use the Lesser GPL for your next library article.

52.6 Table of Contents

• GNU LESSER GENERAL PUBLIC LICENSE

– Preamble

– TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

– How to Apply These Terms to Your New Libraries

52.7 GNU LESSER GENERAL PUBLIC LICENSE

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts

as the successor of the GNU Library Public License, version 2, hence

the version number 2.1.]

http://www.gnu.org/graphics/philosophicalgnu.html
http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/lesser.ja.html
http://www.gnu.org/philosophy/why-not-lgpl.html
http://www.gnu.org/copyleft/gpl-violation.html
http://www.gnu.org/copyleft/copyleft.html#translationsLGPL
http://www.gnu.org/copyleft/lesser.txt
http://www.gnu.org/copyleft/lesser.texi
http://www.gnu.org/philosophy/why-not-lgpl.html

52.8. PREAMBLE 649

52.8 Preamble

The licenses for most software are designed to take away your freedom to
share and change it. By contrast, the GNU General Public Licenses are
intended to guarantee your freedom to share and change free software--to
make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially des-
ignated software packages--typically libraries--of the Free Software Foun-
dation and other authors who decide to use it. You can use it too, but we
suggest you first think carefully about whether this license or the ordinary
General Public License is the better strategy to use in any particular case,
based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price.
Our General Public Licenses are designed to make sure that you have the
freedom to distribute copies of free software (and charge for this service if
you wish); that you receive source code or can get it if you want it; that you
can change the software and use pieces of it in new free programs; and that
you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors
to deny you these rights or to ask you to surrender these rights. These re-
strictions translate to certain responsibilities for you if you distribute copies
of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for
a fee, you must give the recipients all the rights that we gave you. You
must make sure that they, too, receive or can get the source code. If you
link other code with the library, you must provide complete object files to
the recipients, so that they can relink them with the library after making
changes to the library and recompiling it. And you must show them these
terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the library,
and (2) we offer you this license, which gives you legal permission to copy,
distribute and/or modify the library.

To protect each distributor, we want to make it very clear that there is no
warranty for the free library. Also, if the library is modified by someone else
and passed on, the recipients should know that what they have is not the
original version, so that the original author’s reputation will not be affected
by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free

650 CHAPTER 52. GNU FREE DOCUMENTATION LICENSE

program. We wish to make sure that a company cannot effectively restrict
the users of a free program by obtaining a restrictive license from a patent
holder. Therefore, we insist that any patent license obtained for a version of
the library must be consistent with the full freedom of use specified in this
license.

Most GNU software, including some libraries, is covered by the ordinary
GNU General Public License. This license, the GNU Lesser General Public
License, applies to certain designated libraries, and is quite different from
the ordinary General Public License. We use this license for certain libraries
in order to permit linking those libraries into non-free programs.

When a program is linked with a library, whether statically or using a shared
library, the combination of the two is legally speaking a combined work,
a derivative of the original library. The ordinary General Public License
therefore permits such linking only if the entire combination fits its criteria
of freedom. The Lesser General Public License permits more lax criteria for
linking other code with the library.

We call this license the ”Lesser” General Public License because it does Less
to protect the user’s freedom than the ordinary General Public License.
It also provides other free software developers Less of an advantage over
competing non-free programs. These disadvantages are the reason we use
the ordinary General Public License for many libraries. However, the Lesser
license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage
the widest possible use of a certain library, so that it becomes a de-facto
standard. To achieve this, non-free programs must be allowed to use the
library. A more frequent case is that a free library does the same job as
widely used non-free libraries. In this case, there is little to gain by limiting
the free library to free software only, so we use the Lesser General Public
License.

In other cases, permission to use a particular library in non-free programs
enables a greater number of people to use a large body of free software. For
example, permission to use the GNU C Library in non-free programs enables
many more people to use the whole GNU operating system, as well as its
variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users’
freedom, it does ensure that the user of a program that is linked with the
Library has the freedom and the wherewithal to run that program using a
modified version of the Library.

52.9. TERMS AND CONDITIONS 651

The precise terms and conditions for copying, distribution and modification
follow. Pay close attention to the difference between a ”work based on
the library” and a ”work that uses the library”. The former contains code
derived from the library, whereas the latter must be combined with the
library in order to run.

52.9 TERMS AND CONDITIONS

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

0. This License Agreement applies to any software library or other program
which contains a notice placed by the copyright holder or other authorized
party saying it may be distributed under the terms of this Lesser General
Public License (also called ”this License”). Each licensee is addressed as
”you”.

A ”library” means a collection of software functions and/or data prepared
so as to be conveniently linked with application programs (which use some
of those functions and data) to form executables.

The ”Library”, below, refers to any such software library or work which
has been distributed under these terms. A ”work based on the Library”
means either the Library or any derivative work under copyright law: that
is to say, a work containing the Library or a portion of it, either verbatim
or with modifications and/or translated straightforwardly into another lan-
guage. (Hereinafter, translation is included without limitation in the term
”modification”.)

”Source code” for a work means the preferred form of the work for making
modifications to it. For a library, complete source code means all the source
code for all modules it contains, plus any associated interface definition files,
plus the scripts used to control compilation and installation of the library.

Activities other than copying, distribution and modification are not covered
by this License; they are outside its scope. The act of running a program us-
ing the Library is not restricted, and output from such a program is covered
only if its contents constitute a work based on the Library (independent of
the use of the Library in a tool for writing it). Whether that is true depends
on what the Library does and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete
source code as you receive it, in any medium, provided that you conspic-

652 CHAPTER 52. GNU FREE DOCUMENTATION LICENSE

uously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to
this License and to the absence of any warranty; and distribute a copy of
this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you
may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of
it, thus forming a work based on the Library, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that you
also meet all of these conditions:

• a) The modified work must itself be a software library.

• b) You must cause the files modified to carry prominent notices stating
that you changed the files and the date of any change.

• c) You must cause the whole of the work to be licensed at no charge
to all third parties under the terms of this License.

• d) If a facility in the modified Library refers to a function or a table of
data to be supplied by an application program that uses the facility,
other than as an argument passed when the facility is invoked, then
you must make a good faith effort to ensure that, in the event an appli-
cation does not supply such function or table, the facility still operates,
and performs whatever part of its purpose remains meaningful.

(For example, a function in a library to compute square roots has a
purpose that is entirely well-defined independent of the application.
Therefore, Subsection 2d requires that any application-supplied func-
tion or table used by this function must be optional: if the application
does not supply it, the square root function must still compute square
roots.)

These requirements apply to the modified work as a whole. If identifi-
able sections of that work are not derived from the Library, and can be
reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when
you distribute them as separate works. But when you distribute the
same sections as part of a whole which is a work based on the Library,
the distribution of the whole must be on the terms of this License,
whose permissions for other licensees extend to the entire whole, and
thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise

52.9. TERMS AND CONDITIONS 653

the right to control the distribution of derivative or collective works
based on the Library.

In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do this,
you must alter all the notices that refer to this License, so that they refer
to the ordinary GNU General Public License, version 2, instead of to this
License. (If a newer version than version 2 of the ordinary GNU General
Public License has appeared, then you can specify that version instead if
you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so
the ordinary GNU General Public License applies to all subsequent copies
and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library
into a program that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of
it, under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you accompany it with the complete
corresponding machine-readable source code, which must be distributed un-
der the terms of Sections 1 and 2 above on a medium customarily used for
software interchange.

If distribution of object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code
from the same place satisfies the requirement to distribute the source code,
even though third parties are not compelled to copy the source along with
the object code.

5. A program that contains no derivative of any portion of the Library, but
is designed to work with the Library by being compiled or linked with it, is
called a ”work that uses the Library”. Such a work, in isolation, is not a
derivative work of the Library, and therefore falls outside the scope of this
License.

However, linking a ”work that uses the Library” with the Library creates an
executable that is a derivative of the Library (because it contains portions
of the Library), rather than a ”work that uses the library”. The executable
is therefore covered by this License. Section 6 states terms for distribution

654 CHAPTER 52. GNU FREE DOCUMENTATION LICENSE

of such executables.

When a ”work that uses the Library” uses material from a header file that
is part of the Library, the object code for the work may be a derivative work
of the Library even though the source code is not. Whether this is true is
especially significant if the work can be linked without the Library, or if the
work is itself a library. The threshold for this to be true is not precisely
defined by law.

If such an object file uses only numerical parameters, data structure layouts
and accessors, and small macros and small inline functions (ten lines or
less in length), then the use of the object file is unrestricted, regardless of
whether it is legally a derivative work. (Executables containing this object
code plus portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute
the object code for the work under the terms of Section 6. Any executables
containing that work also fall under Section 6, whether or not they are linked
directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a
”work that uses the Library” with the Library to produce a work containing
portions of the Library, and distribute that work under terms of your choice,
provided that the terms permit modification of the work for the customer’s
own use and reverse engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library
is used in it and that the Library and its use are covered by this License. You
must supply a copy of this License. If the work during execution displays
copyright notices, you must include the copyright notice for the Library
among them, as well as a reference directing the user to the copy of this
License. Also, you must do one of these things:

• a) Accompany the work with the complete corresponding machine-
readable source code for the Library including whatever changes were
used in the work (which must be distributed under Sections 1 and 2
above); and, if the work is an executable linked with the Library, with
the complete machine-readable ”work that uses the Library”, as object
code and/or source code, so that the user can modify the Library and
then relink to produce a modified executable containing the modified
Library. (It is understood that the user who changes the contents of
definitions files in the Library will not necessarily be able to recompile
the application to use the modified definitions.)

• b) Use a suitable shared library mechanism for linking with the Li-

52.9. TERMS AND CONDITIONS 655

brary. A suitable mechanism is one that (1) uses at run time a copy
of the library already present on the user’s computer system, rather
than copying library functions into the executable, and (2) will oper-
ate properly with a modified version of the library, if the user installs
one, as long as the modified version is interface-compatible with the
version that the work was made with.

• c) Accompany the work with a written offer, valid for at least three
years, to give the same user the materials specified in Subsection 6a,
above, for a charge no more than the cost of performing this distribu-
tion.

• d) If distribution of the work is made by offering access to copy from
a designated place, offer equivalent access to copy the above specified
materials from the same place.

• e) Verify that the user has already received a copy of these materials
or that you have already sent this user a copy.

For an executable, the required form of the ”work that uses the Library”
must include any data and utility programs needed for reproducing the
executable from it. However, as a special exception, the materials to be
distributed need not include anything that is normally distributed (in either
source or binary form) with the major components (compiler, kernel, and
so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of
other proprietary libraries that do not normally accompany the operating
system. Such a contradiction means you cannot use both them and the
Library together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-
by-side in a single library together with other library facilities not covered
by this License, and distribute such a combined library, provided that the
separate distribution of the work based on the Library and of the other
library facilities is otherwise permitted, and provided that you do these two
things:

• a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library facilities.
This must be distributed under the terms of the Sections above.

• b) Give prominent notice with the combined library of the fact that
part of it is a work based on the Library, and explaining where to find
the accompanying uncombined form of the same work.

656 CHAPTER 52. GNU FREE DOCUMENTATION LICENSE

8. You may not copy, modify, sublicense, link with, or distribute the Library
except as expressly provided under this License. Any attempt otherwise
to copy, modify, sublicense, link with, or distribute the Library is void,
and will automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this License
will not have their licenses terminated so long as such parties remain in full
compliance.

9. You are not required to accept this License, since you have not signed
it. However, nothing else grants you permission to modify or distribute the
Library or its derivative works. These actions are prohibited by law if you do
not accept this License. Therefore, by modifying or distributing the Library
(or any work based on the Library), you indicate your acceptance of this
License to do so, and all its terms and conditions for copying, distributing
or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the original
licensor to copy, distribute, link with or modify the Library subject to these
terms and conditions. You may not impose any further restrictions on the
recipients’ exercise of the rights granted herein. You are not responsible for
enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent in-
fringement or for any other reason (not limited to patent issues), conditions
are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the
conditions of this License. If you cannot distribute so as to satisfy simul-
taneously your obligations under this License and any other pertinent obli-
gations, then as a consequence you may not distribute the Library at all.
For example, if a patent license would not permit royalty-free redistribution
of the Library by all those who receive copies directly or indirectly through
you, then the only way you could satisfy both it and this License would be
to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply, and
the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims; this
section has the sole purpose of protecting the integrity of the free software
distribution system which is implemented by public license practices. Many
people have made generous contributions to the wide range of software dis-
tributed through that system in reliance on consistent application of that

52.9. TERMS AND CONDITIONS 657

system; it is up to the author/donor to decide if he or she is willing to
distribute software through any other system and a licensee cannot impose
that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain
countries either by patents or by copyrighted interfaces, the original copy-
right holder who places the Library under this License may add an explicit
geographical distribution limitation excluding those countries, so that dis-
tribution is permitted only in or among countries not thus excluded. In such
case, this License incorporates the limitation as if written in the body of this
License.

13. The Free Software Foundation may publish revised and/or new versions
of the Lesser General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Library spec-
ifies a version number of this License which applies to it and ”any later
version”, you have the option of following the terms and conditions either
of that version or of any later version published by the Free Software Foun-
dation. If the Library does not specify a license version number, you may
choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free pro-
grams whose distribution conditions are incompatible with these, write to
the author to ask for permission. For software which is copyrighted by the
Free Software Foundation, write to the Free Software Foundation; we some-
times make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE,
THERE IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER
PARTIES PROVIDE THE LIBRARY ”AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE

658 CHAPTER 52. GNU FREE DOCUMENTATION LICENSE

ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR
ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE
THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-
ABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE
OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

52.10 How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible
use to the public, we recommend making it free software that everyone can
redistribute and change. You can do so by permitting redistribution under
these terms (or, alternatively, under the terms of the ordinary General Public
License).

To apply these terms, attach the following notices to the library. It is safest
to attach them to the start of each source file to most effectively convey the
exclusion of warranty; and each file should have at least the ”copyright” line
and a pointer to where the full notice is found.

{\it one line to give the library’s name and an idea of what it does.}

Copyright (C) {\it year} {\it name of author}

This library is free software; you can redistribute it and/or

modify it under the terms of the GNU Lesser General Public

License as published by the Free Software Foundation; either

version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

52.10. HOW TO APPLY THESE TERMS TO YOUR NEW LIBRARIES659

Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301

USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a ”copyright disclaimer” for the library, if necessary.
Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in

the library "Frob" (a library for tweaking knobs) written

by James Random Hacker.

{\it signature of Ty Coon}, 1 April 1990

Ty Coon, President of Vice

That’s all there is to it! Return to GNU’s home page.

FSF & GNU inquiries & questions to gnu@gnu.org. Other ways to contact
the FSF.

Comments on these web pages to webmasters@www.gnu.org, send other
questions to gnu@gnu.org.

Copyright notice above. Free Software Foundation, Inc., 51 Franklin St,
Fifth Floor, Boston, MA 02110-1301 USA USA

Updated: 27 Nov 2000 paulv

http://www.gnu.org/home.html
mailto:gnu@gnu.org
http://www.gnu.org/home.html#ContactInfo
mailto:webmasters@www.gnu.org
mailto:gnu@gnu.org

660 CHAPTER 52. GNU FREE DOCUMENTATION LICENSE

Chapter 53

Bacula Projects

Once a new major version of Bacula is released, the Bacula users will vote
on a list of new features. This vote is used as the main element determining
what new features will be implemented for the next version. Generally,
the development time for a new release is between four to nine months.
Sometimes it may be a bit longer, but in that case, there will be a number
of bug fix updates to the currently released version.

For the current list of project, please see the projects page in the CVS at:
http://cvs.sourceforge.net/viewcvs.py/*checkout*/bacula/bacula/projects
see the projects file in the main source directory. The projects file is
updated approximately once every six months.

Separately from the project list, Kern maintains a current list of
tasks as well as ideas, feature requests, and occasionally design notes.
This list is updated roughly weekly (sometimes more often). For a
current list of tasks you can see kernstodo in the Source Forge CVS at
http://cvs.sourceforge.net/viewcvs.py/*checkout*/bacula/bacula/kernstodo.

661

http://cvs.sourceforge.net/viewcvs.py/*checkout*/bacula/bacula/projects
http://cvs.sourceforge.net/viewcvs.py/*checkout*/bacula/bacula/kernstodo

662 CHAPTER 53. BACULA PROJECTS

Chapter 54

Thanks

I thank everyone who has helped this project. Unfortunately, I cannot thank
everyone (bad memory). However, the AUTHORS file in the main source
code directory should include the names of all persons who have contributed
to the Bacula project. Just the same, I would like to include thanks below
to special contributors as well as to the major contributors to the current
release.

Thanks to Richard Stallman for starting the Free Software movement and
for bringing us gcc and all the other GNU tools as well as the GPL license.

Thanks to Linus Torvalds for bringing us Linux.

Thanks to all the Free Software programmers. Without being able to peek
at your code, and in some cases, take parts of it, this project would have
been much more difficult.

Thanks to John Walker for suggesting this project, giving it a name, con-
tributing software he has written, and for his programming efforts on Bacula
as well as having acted as a constant sounding board and source of ideas.

Thanks to the apcupsd project where I started my Free Software efforts, and
from which I was able to borrow some ideas and code that I had written.

Special thanks to D. Scott Barninger for writing the bacula RPM spec file,
building all the RPM files and loading them onto Source Forge. This has
been a tremendous help.

Many thanks to Karl Cunningham for converting the manual from html
format to LaTeX. It was a major effort flawlessly done that will benefit the
Bacula users for many years to come. Thanks Karl.

663

664 CHAPTER 54. THANKS

Thanks to Dan Langille for the incredible amount of testing he did on
FreeBSD. His perseverance is truly remarkable. Thanks also for the many
contributions he has made to improve Bacula (pthreads patch for FreeBSD,
improved start/stop script and addition of Bacula userid and group, stunnel,
...), his continuing support of Bacula users. He also wrote the PostgreSQL
driver for Bacula and has been a big help in correcting the SQL.

Thanks to multiple other Bacula Packagers who make and release packages
for different platforms for Bacula.

Thanks to Christopher Hull for developing the native Win32 Bacula emula-
tion code and for contributing it to the Bacula project.

Thanks to Robert Nelson for bringing our Win32 implementation up to par
with all the same features that exist in the Unix/Linux versions. In addition,
he has ported the Director and Storage daemon to Win32!

Thanks to Thorsten Engel for his excellent knowledge of Win32 systems, and
for making the Win32 File daemon Unicode compatible, as well as making
the Win32 File daemon interface to Microsoft’s Volume Shadow Copy (VSS).
These two are big pluses for Bacula!

Thanks to Landon Fuller for writing both the communications and the data
encryption code for Bacula.

Thanks to Arno Lehmann for his excellent and infatigable help and advice
to users.

Thanks to all the Bacula users, especially those of you who have contributed
ideas, bug reports, patches, and new features.

The original variable expansion code used in the LabelFormat comes from
the Open Source Software Project (www.ossp.org). It has been adapted and
extended for use in Bacula. This code is now deprecated.

There have been numerous people over the years who have contributed ideas,
code, and help to the Bacula project. The file AUTHORS in the main source
release file contains a list of contributors. For all those who I have left out,
please send me a reminder, and in any case, thanks for your contribution.

Thanks to the Free Software Foundation Europe e.V. for assuming the re-
sponsibilities of protecting the Bacula copyright.

665

Copyrights and Trademarks

Certain words and/or products are Copyrighted or Trademarked such as
Windows (by Microsoft). Since they are numerous, and we are not neces-
sarily aware of the details of each, we don’t try to list them here. However,
we acknowledge all such Copyrights and Trademarks, and if any copyright
or trademark holder wishes a specific acknowledgment, notify us, and we
will be happy to add it where appropriate.

666 CHAPTER 54. THANKS

54.1 Bacula Bugs

Well fortunately there are not too many bugs, but thanks to Dan Langille,
we have a bugs database where bugs are reported. Generally, when a bug is
fixed, a patch for the currently released version will be attached to the bug
report.

The directory patches in the current CVS always contains a list of the
patches that have been created for the previously released version of Bacula.
In addition, the file patches-version-number in the patches directory
contains a summary of each of the patches.

A ”raw” list of the current task list and known issues can be found in
kernstodo in the main Bacula source directory.

http://bugs.bacula.org

Chapter 55

Variable Expansion

Please note that as of version 1.37, the Variable Expansion is deprecated
and replaced by Python scripting (not yet documented).

Variable expansion is somewhat similar to Unix shell variable expansion.
Currently (version 1.31), it is used only in format labels, but in the future,
it will most likely be used in more places.

55.1 General Functionality

This is basically a string expansion capability that permits referencing vari-
ables, indexing arrays, conditional replacement of variables, case conversion,
substring selection, regular expression matching and replacement, character
class replacement, padding strings, repeated expansion in a user controlled
loop, support of arithmetic expressions in the loop start, step and end con-
ditions, and recursive expansion.

When using variable expansion characters in a Volume Label Format record,
the format should always be enclosed in double quotes (”).

For example, ${HOME} will be replaced by your home directory as defined
in the environment. If you have defined the variable xxx to be Test, then
the reference ${xxx:p/7/Y/r} will right pad the contents of xxx to a
length of seven characters filling with the character Y giving YYYTest.

667

668 CHAPTER 55. VARIABLE EXPANSION

55.2 Bacula Variables

Within Bacula, there are three main classes of variables with some minor
variations within the classes. The classes are:

Counters Counters are defined by the Counter resources in the Director’s
conf file. The counter can either be a temporary counter that lasts for
the duration of Bacula’s execution, or it can be a variable that is stored
in the catalog, and thus retains its value from one Bacula execution to
another. Counter variables may be incremented by postfixing a plus
sign (+ after the variable name).

Internal Variables Internal variables are read-only, and may be related
to the current job (i.e. Job name), or maybe special variables such as
the date and time. The following variables are available:

Year – the full year

Month – the current month 1-12

Day – the day of the month 1-31

Hour – the hour 0-24

Minute – the current minute 0-59

Second – the current second 0-59

WeekDay – the current day of the week 0-6 with 0 being Sunday

Job – the job name

Dir – the Director’s name

Level – the Job Level

Type – the Job type

JobId – the JobId

JobName – the unique job name composed of Job and date

Storage – the Storage daemon’s name

Client – the Client’s name

NumVols – the current number of Volumes in the Pool

Pool – the Pool name

Catalog – the Catalog name

MediaType – the Media Type

55.3. FULL SYNTAX 669

Environment Variables Environment variables are read-only, and must
be defined in the environment prior to executing Bacula. En-
vironment variables may be either scalar or an array, where the
elements of the array are referenced by subscripting the variable
name (e.g. ${Months[3]}). Environment variable arrays are de-
fined by separating the elements with a vertical bar (—), thus set
Months=”Jan—Feb—Mar—Apr—...” defines an environment
variable named Month that will be treated as an array, and the ref-
erence ${Months[3]} will yield Mar. The elements of the array can
have differing lengths.

55.3 Full Syntax

Since the syntax is quite extensive, below, you will find the pseudo BNF.
The special characters have the following meaning:

::= definition

() grouping if the parens are not quoted

| separates alternatives

’/’ literal / (or any other character)

CAPS a character or character sequence

* preceding item can be repeated zero or more times

? preceding item can appear zero or one time

+ preceding item must appear one or more times

And the pseudo BNF describing the syntax is:

input ::= (TEXT

| variable

| INDEX_OPEN input INDEX_CLOSE (loop_limits)?

)*

variable ::= DELIM_INIT (name|expression)

name ::= (NAME_CHARS)+

expression ::= DELIM_OPEN

(name|variable)+

(INDEX_OPEN num_exp INDEX_CLOSE)?

(’:’ command)*

DELIM_CLOSE

command ::= ’-’ (TEXT_EXP|variable)+

| ’+’ (TEXT_EXP|variable)+

| ’o’ NUMBER (’-’|’,’) (NUMBER)?

| ’#’

| ’*’ (TEXT_EXP|variable)+

| ’s’ ’/’ (TEXT_PATTERN)+

’/’ (variable|TEXT_SUBST)*

670 CHAPTER 55. VARIABLE EXPANSION

’/’ (’m’|’g’|’i’|’t’)*

| ’y’ ’/’ (variable|TEXT_SUBST)+

’/’ (variable|TEXT_SUBST)*

’/’

| ’p’ ’/’ NUMBER

’/’ (variable|TEXT_SUBST)*

’/’ (’r’|’l’|’c’)

| ’%’ (name|variable)+

(’(’ (TEXT_ARGS)? ’)’)?

| ’l’

| ’u’

num_exp ::= operand

| operand (’+’|’-’|’*’|’/’|’%’) num_exp

operand ::= (’+’|’-’)? NUMBER

| INDEX_MARK

| ’(’ num_exp ’)’

| variable

loop_limits ::= DELIM_OPEN

(num_exp)? ’,’ (num_exp)? (’,’ (num_exp)?)?

DELIM_CLOSE

NUMBER ::= (’0’|...|’9’)+

TEXT_PATTERN::= (^(’/’))+

TEXT_SUBST ::= (^(DELIM_INIT|’/’))+

TEXT_ARGS ::= (^(DELIM_INIT|’)’))+

TEXT_EXP ::= (^(DELIM_INIT|DELIM_CLOSE|’:’|’+’))+

TEXT ::= (^(DELIM_INIT|INDEX_OPEN|INDEX_CLOSE))+

DELIM_INIT ::= ’$’

DELIM_OPEN ::= ’{’

DELIM_CLOSE ::= ’}’

INDEX_OPEN ::= ’[’

INDEX_CLOSE ::= ’]’

INDEX_MARK ::= ’#’

NAME_CHARS ::= ’a’|...|’z’|’A’|...|’Z’|’0’|...|’9’

55.4 Semantics

The items listed in command above, which always follow a colon (:) have
the following meanings:

- perform substitution if variable is empty

+ perform substitution if variable is not empty

o cut out substring of the variable value

length of the variable value

* substitute empty string if the variable value is not empty,

otherwise substitute the trailing parameter

s regular expression search and replace. The trailing

options are: m = multiline, i = case insensitive,

g = global, t = plain text (no regexp)

y transpose characters from class A to class B

p pad variable to l = left, r = right or c = center,

55.5. EXAMPLES 671

with second value.

% special function call (none implemented)

l lower case the variable value

u upper case the variable value

The loop limits are start, step, and end values.

A counter variable name followed immediately by a plus (+) will cause the
counter to be incremented by one.

55.5 Examples

To create an ISO date:

DLT-${Year}-${Month:p/2/0/r}-${Day:p/2/0/r}

on 20 June 2003 would give DLT-2003-06-20

If you set the environment variable mon to

January|February|March|April|May|...

File-${mon[${Month}]}/${Day}/${Year}

on the first of March would give File-March/1/2003

672 CHAPTER 55. VARIABLE EXPANSION

Chapter 56

Using Stunnel to Encrypt
Communications

Prior to version 1.37, Bacula did not have built-in communications encryp-
tion. Please see the TLS chapter if you are using Bacula 1.37 or greater.

Without too much effort, it is possible to encrypt the communications be-
tween any of the daemons. This chapter will show you how to use stunnel
to encrypt communications to your client programs. We assume the Direc-
tor and the Storage daemon are running on one machine that will be called
server and the Client or File daemon is running on a different machine called
client. Although the details may be slightly different, the same principles
apply whether you are encrypting between Unix, Linux, or Win32 machines.
This example was developed between two Linux machines running stunnel
version 4.04-4 on a Red Hat Enterprise 3.0 system.

56.1 Communications Ports Used

First, you must know that with the standard Bacula configuration, the Di-
rector will contact the File daemon on port 9102. The File daemon then
contacts the Storage daemon using the address and port parameters sup-
plied by the Director. The standard port used will be 9103. This is the
typical server/client view of the world, the File daemon is a server to the
Director (i.e. listens for the Director to contact it), and the Storage daemon
is a server to the File daemon.

673

674CHAPTER 56. USING STUNNEL TO ENCRYPT COMMUNICATIONS

56.2 Encryption

The encryption is accomplished between the Director and the File daemon
by using an stunnel on the Director’s machine (server) to encrypt the data
and to contact an stunnel on the File daemon’s machine (client), which
decrypts the data and passes it to the client.

Between the File daemon and the Storage daemon, we use an stunnel on
the File daemon’s machine to encrypt the data and another stunnel on the
Storage daemon’s machine to decrypt the data.

As a consequence, there are actually four copies of stunnel running, two on
the server and two on the client. This may sound a bit complicated, but it
really isn’t. To accomplish this, we will need to construct four separate conf
files for stunnel, and we will need to make some minor modifications to the
Director’s conf file. None of the other conf files need to be changed.

56.3 A Picture

Since pictures usually help a lot, here is an overview of what we will be
doing. Don’t worry about all the details of the port numbers and such for
the moment.

File daemon (client):

stunnel-fd1.conf

|===========|

Port 29102 >----| Stunnel 1 |-----> Port 9102

|===========|

stunnel-fd2.conf

|===========|

Port 9103 >----| Stunnel 2 |-----> server:29103

|===========|

Director (server):

stunnel-dir.conf

|===========|

Port 29102 >----| Stunnel 3 |-----> client:29102

|===========|

stunnel-sd.conf

|===========|

Port 29103 >----| Stunnel 4 |-----> 9103

|===========|

56.4. CERTIFICATES 675

56.4 Certificates

In order for stunnel to function as a server, which it does in our diagram
for Stunnel 1 and Stunnel 4, you must have a certificate and the key. It is
possible to keep the two in separate files, but normally, you keep them in
one single .pem file. You may create this certificate yourself in which case,
it will be self-signed, or you may have it signed by a CA.

If you want your clients to verify that the server is in fact valid (Stunnel 2
and Stunnel 3), you will need to have the server certificates signed by a CA
(Certificate Authority), and you will need to have the CA’s public certificate
(contains the CA’s public key).

Having a CA signed certificate is highly recommended if you are using
your client across the Internet, otherwise you are exposed to the man in the
middle attack and hence loss of your data.

See below for how to create a self-signed certificate.

56.5 Securing the Data Channel

To simplify things a bit, let’s for the moment consider only the data channel.
That is the connection between the File daemon and the Storage daemon,
which takes place on port 9103. In fact, in a minimalist solution, this is
the only connection that needs to be encrypted, because it is the one that
transports your data. The connection between the Director and the File
daemon is simply a control channel used to start the job and get the job
status.

Normally the File daemon will contact the Storage daemon on port 9103
(supplied by the Director), so we need an stunnel that listens on port 9103
on the File daemon’s machine, encrypts the data and sends it to the Storage
daemon. This is depicted by Stunnel 2 above. Note that this stunnel is
listening on port 9103 and sending to server:29103. We use port 29103 on
the server because if we would send the data to port 9103, it would go directly
to the Storage daemon, which doesn’t understand encrypted data. On the
server machine, we run Stunnel 4, which listens on port 29103, decrypts the
data and sends it to the Storage daemon, which is listening on port 9103.

676CHAPTER 56. USING STUNNEL TO ENCRYPT COMMUNICATIONS

56.6 Data Channel Configuration

The Storage resource of the bacula-dir.conf normally looks something like
the following:

Storage {

Name = File

Address = server

SDPort = 9103

Password = storage_password

Device = File

Media Type = File

}

Notice that this is running on the server machine, and it points the File
daemon back to server:9103, which is where our Storage daemon is listening.
We modify this to be:

Storage {

Name = File

Address = localhost

SDPort = 9103

Password = storage_password

Device = File

Media Type = File

}

This causes the File daemon to send the data to the stunnel running on
localhost (the client machine). We could have used client as the address as
well.

56.7 Stunnel Configuration for the Data Channel

In the diagram above, we see above Stunnel 2 that we use stunnel-fd2.conf on
the client. A pretty much minimal config file would look like the following:

client = yes

[29103]

accept = localhost:9103

connect = server:29103

The above config file does encrypt the data but it does not require a cer-
tificate, so it is subject to the man in the middle attack. The file I actually
used, stunnel-fd2.conf, looked like this:

56.7. STUNNEL CONFIGURATION FOR THE DATA CHANNEL 677

#

Stunnel conf for Bacula client -> SD

#

pid = /home/kern/bacula/bin/working/stunnel.pid

#

A cert is not mandatory here. If verify=2, a

cert signed by a CA must be specified, and

either CAfile or CApath must point to the CA’s

cert

#

cert = /home/kern/stunnel/stunnel.pem

CAfile = /home/kern/ssl/cacert.pem

verify = 2

client = yes

debug = 7

foreground = yes

[29103]

accept = localhost:9103

connect = server:29103

You will notice that I specified a pid file location because I ran stunnel under
my own userid so I could not use the default, which requires root permission.
I also specified a certificate that I have as well as verify level 2 so that the
certificate is required and verified, and I must supply the location of the
CA (Certificate Authority) certificate so that the stunnel certificate can be
verified. Finally, you will see that there are two lines commented out, which
when enabled, produce a lot of nice debug info in the command window.

If you do not have a signed certificate (stunnel.pem), you need to delete the
cert, CAfile, and verify lines.

Note that the stunnel.pem, is actually a private key and a certificate in a
single file. These two can be kept and specified individually, but keeping
them in one file is more convenient.

The config file, stunnel-sd.conf, needed for Stunnel 4 on the server machine
is:

#

Bacula stunnel conf for Storage daemon

#

pid = /home/kern/bacula/bin/working/stunnel.pid

#

A cert is mandatory here, it may be self signed

If it is self signed, the client may not use

verify

#

cert = /home/kern/stunnel/stunnel.pem

client = no

678CHAPTER 56. USING STUNNEL TO ENCRYPT COMMUNICATIONS

debug = 7

foreground = yes

[29103]

accept = 29103

connect = 9103

56.8 Starting and Testing the Data Encryption

It will most likely be the simplest to implement the Data Channel encryption
in the following order:

• Setup and run Bacula backing up some data on your client machine
without encryption.

• Stop Bacula.

• Modify the Storage resource in the Director’s conf file.

• Start Bacula

• Start stunnel on the server with:

stunnel stunnel-sd.conf

• Start stunnel on the client with:

stunnel stunnel-fd2.conf

• Run a job.

• If it doesn’t work, turn debug on in both stunnel conf files, restart the
stunnels, rerun the job, repeat until it works.

56.9 Encrypting the Control Channel

The Job control channel is between the Director and the File daemon, and as
mentioned above, it is not really necessary to encrypt, but it is good practice
to encrypt it as well. The two stunnels that are used in this case will be
Stunnel 1 and Stunnel 3 in the diagram above. Stunnel 3 on the server
might normally listen on port 9102, but if you have a local File daemon,

56.10. CONTROL CHANNEL CONFIGURATION 679

this will not work, so we make it listen on port 29102. It then sends the
data to client:29102. Again we use port 29102 so that the stunnel on the
client machine can decrypt the data before passing it on to port 9102 where
the File daemon is listening.

56.10 Control Channel Configuration

We need to modify the standard Client resource, which would normally look
something like:

Client {

Name = client-fd

Address = client

FDPort = 9102

Catalog = BackupDB

Password = "xxx"

}

to be:

Client {

Name = client-fd

Address = localhost

FDPort = 29102

Catalog = BackupDB

Password = "xxx"

}

This will cause the Director to send the control information to local-
host:29102 instead of directly to the client.

56.11 Stunnel Configuration for the Control
Channel

The stunnel config file, stunnel-dir.conf, for the Director’s machine would
look like the following:

#

Bacula stunnel conf for the Directory to contact a client

#

680CHAPTER 56. USING STUNNEL TO ENCRYPT COMMUNICATIONS

pid = /home/kern/bacula/bin/working/stunnel.pid

#

A cert is not mandatory here. If verify=2, a

cert signed by a CA must be specified, and

either CAfile or CApath must point to the CA’s

cert

#

cert = /home/kern/stunnel/stunnel.pem

CAfile = /home/kern/ssl/cacert.pem

verify = 2

client = yes

debug = 7

foreground = yes

[29102]

accept = localhost:29102

connect = client:29102

and the config file, stunnel-fd1.conf, needed to run stunnel on the Client
would be:

#

Bacula stunnel conf for the Directory to contact a client

#

pid = /home/kern/bacula/bin/working/stunnel.pid

#

A cert is not mandatory here. If verify=2, a

cert signed by a CA must be specified, and

either CAfile or CApath must point to the CA’s

cert

#

cert = /home/kern/stunnel/stunnel.pem

CAfile = /home/kern/ssl/cacert.pem

verify = 2

client = yes

debug = 7

foreground = yes

[29102]

accept = localhost:29102

connect = client:29102

56.12 Starting and Testing the Control Channel

It will most likely be the simplest to implement the Control Channel en-
cryption in the following order:

• Stop Bacula.

• Modify the Client resource in the Director’s conf file.

56.13. USING STUNNEL TO ENCRYPT TO A SECOND CLIENT 681

• Start Bacula

• Start stunnel on the server with:

stunnel stunnel-dir.conf

• Start stunnel on the client with:

stunnel stunnel-fd1.conf

• Run a job.

• If it doesn’t work, turn debug on in both stunnel conf files, restart the
stunnels, rerun the job, repeat until it works.

56.13 Using stunnel to Encrypt to a Second Client

On the client machine, you can just duplicate the setup that you have on
the first client file for file and it should work fine.

In the bacula-dir.conf file, you will want to create a second client pretty
much identical to how you did for the first one, but the port number must
be unique. We previously used:

Client {

Name = client-fd

Address = localhost

FDPort = 29102

Catalog = BackupDB

Password = "xxx"

}

so for the second client, we will, of course, have a different name, and we
will also need a different port. Remember that we used port 29103 for the
Storage daemon, so for the second client, we can use port 29104, and the
Client resource would look like:

Client {

Name = client2-fd

Address = localhost

FDPort = 29104

Catalog = BackupDB

Password = "yyy"

}

682CHAPTER 56. USING STUNNEL TO ENCRYPT COMMUNICATIONS

Now, fortunately, we do not need a third stunnel to on the Director’s ma-
chine, we can just add the new port to the config file, stunnel-dir.conf, to
make:

#

Bacula stunnel conf for the Directory to contact a client

#

pid = /home/kern/bacula/bin/working/stunnel.pid

#

A cert is not mandatory here. If verify=2, a

cert signed by a CA must be specified, and

either CAfile or CApath must point to the CA’s

cert

#

cert = /home/kern/stunnel/stunnel.pem

CAfile = /home/kern/ssl/cacert.pem

verify = 2

client = yes

debug = 7

foreground = yes

[29102]

accept = localhost:29102

connect = client:29102

[29104]

accept = localhost:29102

connect = client2:29102

There are no changes necessary to the Storage daemon or the other stunnel
so that this new client can talk to our Storage daemon.

56.14 Creating a Self-signed Certificate

You may create a self-signed certificate for use with stunnel that will per-
mit you to make it function, but will not allow certificate validation. The
.pem file containing both the certificate and the key can be made with the
following, which I put in a file named makepem:

#!/bin/sh

#

Simple shell script to make a .pem file that can be used

with stunnel and Bacula

#

OPENSSL=openssl

umask 77

PEM1="/bin/mktemp openssl.XXXXXX"

PEM2="/bin/mktemp openssl.XXXXXX"

56.15. GETTING A CA SIGNED CERTIFICATE 683

${OPENSSL} req -newkey rsa:1024 -keyout $PEM1 -nodes \

-x509 -days 365 -out $PEM2

cat $PEM1 > stunnel.pem

echo "" >>stunnel.pem

cat $PEM2 >>stunnel.pem

rm $PEM1 $PEM2

The above script will ask you a number of questions. You may simply answer
each of them by entering a return, or if you wish you may enter your own
data.

56.15 Getting a CA Signed Certificate

The process of getting a certificate that is signed by a CA is quite a bit more
complicated. You can purchase one from quite a number of PKI vendors,
but that is not at all necessary for use with Bacula.

To get a CA signed certificate, you will either need to find a friend that has
setup his own CA or to become a CA yourself, and thus you can sign all your
own certificates. The book OpenSSL by John Viega, Matt Mesier & Pravir
Chandra from O’Reilly explains how to do it, or you can read the docu-
mentation provided in the Open-source PKI Book project at Source Forge:
http://ospkibook.sourceforge.net/docs/OSPKI-2.4.7/OSPKI-html/ospki-book.htm.
Note, this link may change.

56.16 Using ssh to Secure the Communications

Please see the script ssh-tunnel.sh in the examples directory. It was
contributed by Stephan Holl.

http://ospkibook.sourceforge.net/docs/OSPKI-2.4.7/OSPKI-html/ospki-book.htm

General Index

--datadir, 51

--disable-ipv6, 51, 54
--disable-nls, 54

--enable-build-dird, 54

--enable-build-stored, 54
--enable-client-only, 53

--enable-conio, 55

--enable-gnome, 51
--enable-largefile, 54

--enable-readline, 56

--enable-smartalloc, 51
--enable-static-cons, 53

--enable-static-dir, 53

--enable-static-fd, 52
--enable-static-sd, 52

--enable-static-tools, 52

--enable-tray-monitor, 52
--enable-wx-console, 52

--mandir, 51

--sysbindir, 51
--sysconfdir, 51

--with-base-port, 56

--with-dir-group, 57
--with-dir-password, 57

--with-dir-user, 57

--with-dump-email, 57
--with-fd-group, 58

--with-fd-password, 57

--with-fd-user, 58
--with-libintl-prefix, 55

--with-mysql, 54

--with-pid-dir, 57
--with-postgresql, 55

--with-python, 55

--with-readline, 55

--with-sd-group, 58

--with-sd-password, 57

--with-sd-user, 58

--with-sqlite, 54

--with-sqlite3, 54

--with-subsys-dir, 57

--with-tcp-wrappers, 56

--with-working-dir, 56

MAJOR WARNING , 402

Above

Bacula Configuration Files for
the , 576

Actual Conf Files, 352

Adapting Your mtx-changer
script, 391

Adding a Second Client , 84

Adding Volumes to a Pool, 263

Additional Resources, 554

Address, 108

Advantages , 367, 369

Advantages of Bacula Over Other
Backup Programs , 18

After bscan, 467

alert, 224

Algorithm

New Volume, 316

Recycling , 316

all, 223

Alphabetic List of Console Com-
mands, 242

Alphabetic List of Console Key-
words, 239

684

GENERAL INDEX 685

Alternate Disaster Recovery Sug-
gestion for Win32 Sys-
tems, 553

ANSI and IBM Tape Labels, 415

Answers , 589

append, 222

Arguments

Command Line , 275

Attributes

Restoring Directory , 276

Authorization

Names Passwords and , 103

Authorization Errors, 419

Auto Starting the Daemons, 63

Autochanger

Automatic Labeling Using
Your , 446

Simulating Barcodes in your ,
389

Using the , 393

Autochanger Errors, 500

Autochanger Support , 377

Autochangers

Supported, 397

Supported , 27

Automated Disk Backup, 349

Automatic Generation of Boot-
strap Files , 602

Automatic Labeling Using Your
Autochanger , 446

Automatic Pruning, 313

Automatic Pruning and Recycling
Example , 322

Automatic Volume Labeling , 330

Automatic Volume Recycling , 311

Aware

FreeBSD Users Be , 26

Backing up

Partitions , 159

Backing up ACLs on ext3 or XFS
filesystems , 451

Backing Up Offsite Machines, 430

Backing Up Portables Using
DHCP , 447

Backing up Raw Partitions , 159
Backing Up the WinNT/XP/2K

System State, 527
Backing Up Third Party

Databases , 307
Backing up to Multiple Disks , 336
Backing Up Your Bacula Database

, 306
Backup

Simple One Tape , 367
Backup Strategies , 367
Backup to Disk, 424
Backups

slow, 126, 188, 433
Backups Failing, 423
Backward Compatibility, 566
Bacula

Before Running , 72
Disaster Recovery Using, 529
Installing, 39, 62
Running , 36
Upgrading, 40
What is , 1
Who Needs , 1

Bacula Autochanger Interface ,
395

Bacula Bugs , 666
Bacula Cannot Open the Device,

488
Bacula Components or Services ,

2
Bacula Configuration , 6
Bacula Configuration Files for the

Above , 576
Bacula Console, 237
Bacula Console Restore Com-

mand , 265
Bacula Copyright, Trademark,

and Licenses, 625
Bacula Events, 406
Bacula Frequently Asked Ques-

tions , 417

686 GENERAL INDEX

Bacula Projects , 661
Bacula Saves But Cannot Restore

Files, 486
Bacula Security Issues, 565
Bacula Trademark, 425
Bacula Variables , 668
Bacula-web, 290
BaculaR© - RPM Packaging FAQ ,

589
baculoa-dir.conf

Modification for the Data
Channel , 676

Barcode Support , 394
Bare Metal Recovery on Linux

with a Bacula Rescue CD,
530

Bare Metal Recovery using a
LiveCD, 547

Basic Volume Management, 327
Bcopy, 468
Bcopy Command Options, 468
Before Running Bacula , 72
Beta Releases, 42
Bextract, 460
bimagemgr, 289

Installation , 292
Usage , 294

Bimagemgr , 292
bimagemgr Installation , 292
bimagemgr Usage , 294
bls, 457

Listing Blocks, 459
Listing Jobs, 458

Boot with your Bacula Rescue
CDROM, 539

Bootstrap File , 597
bregex, 475
Brestore, 290
Brief Tutorial , 71
Broken pipe, 188, 194
Bscan

After, 467
bscan, 462
Bsmtp, 471

Btape, 468, 483
Btape Commands, 469

Bugs
Bacula , 666

Linux Problems or, 546
Bugs and Other Considerations,

551

Build Options, 593
Building a File Daemon or Client,

63

Building Bacula from Source, 45
Building Bacula with Encryption

Support, 562

Bweb, 290
bwild, 476

Cancelling jobs, 425
Cannot Access a Client, 421

Capabilities, 215
Catalog

Using bscan to Compare a
Volume to an existing,
465

catalog, 223

Catalog Maintenance , 297
Catalog Resource, 178

CDROM
Bare Metal Recovery on Linux

with a Bacula Rescue, 530

Boot with your Bacula Res-
cue, 539

Creating a Bacula Rescue, 533

Certificate
Creating a Self-signed , 557,

682

Getting a CA Signed , 558,
683

Certificates , 675

Changing Cartridges , 387
Channel

Encrypting the Control , 678
Securing the Data , 675

Starting and Testing the Con-
trol , 680

GENERAL INDEX 687

Checking Restores, 426
Client

Adding a Second , 84
Building a File Daemon or, 63
Using stunnel to Encrypt to a

Second , 681
Win32 Specific File daemon

Command Line Options,
528

Client Connect Wait, 194
Client Resource, 163
Client Resource , 187, 233
Client/File daemon Configuration

, 187
Clients

Considerations for Multiple ,
338

Command
Bacula Console Restore , 265
Full Form of the Update Slots

, 389
Restore , 265

Command Line Arguments , 275
Commands

Alphabetic List of Console,
242

btape, 469
Console, 230
File Selection , 280
Other Useful Console , 89
Special At , 260
Special dot, 260

Comments, 99
Communications

Using ssh to Secure the , 683
Communications Encryption, 555
Communications Errors, 433
Communications Ports Used , 673
Compacting Your MySQL

Database , 299
Compacting Your PostgreSQL

Database , 304
Compacting Your SQLite

Database , 305

Completion
Getting Notified of Job , 436

Compression, 429
Concrete Example , 574
Concurrent Disk Jobs, 332
Concurrent Jobs, 108, 419, 452
CONDITIONS

TERMS AND , 640, 651
Config Files for stunnel to Encrypt

the Control Channel , 679
Configuration

Bacula , 6
Client/File daemon , 187
Console, 225, 238
Monitor , 231
Python, 405
Storage Daemon, 193

Configure Options, 51
Configuring and Testing TCP

Wrappers, 567
Configuring the Console Program

, 31
Configuring the Director, 105
Configuring the Director , 33
Configuring the File daemon , 33
Configuring the Monitor Program

, 32
Configuring the Storage daemon ,

34
Considerations

Bugs and Other, 551
Important, 529
Security , 445
Windows Compatibility, 516
Windows NTFS Naming , 163

Console
Bacula, 237

console, 222
Console Command

Python, 411
Console Commands, 230
Console Configuration, 225, 238
Console Resource, 180, 227
ConsoleFont Resource, 226

688 GENERAL INDEX

Contents

Table of , 639, 648

Control Channel Configuration ,
679

Conventions Used in this Docu-
ment , 7

Converting from MySQL to Post-
greSQL , 616

Copyrights and Trademarks , 665

Count

Using bscan to Correct the
Volume File Count, 467

Counter Resource, 182

Crash

Rejected Volumes After a ,
442

Creating a Bacula Rescue
CDROM, 533

Creating a Pool , 92

Creating a Self-signed Certificate ,
557, 682

Creating Holiday Schedules , 446

Credits , 619

Critical Items , 67

Critical Items to Implement Be-
fore Production , 67

Current Implementation Restric-
tions , 19

Current State of Bacula , 15

Customizing the Configuration
Files , 97

Daemon

Configuring the File , 33

Configuring the Storage , 34

Detailed Information for each
, 104

Daemon Command Line Options ,
91

Daemons

Auto Starting the, 63

Starting the , 73

Daily Tape Rotation , 369

Daily, Weekly, Monthly Tape Us-
age Example , 320

Data Encryption, 561
Data Spooling , 401
Data Spooling Directives , 402
Database

Backing Up Your Bacula , 306
Compacting Your MySQL ,

299
Compacting Your Post-

greSQL , 304
Compacting Your SQLite ,

305
Internal Bacula , 624
MySQL Server Has Gone

Away, 301
MySQL Table is Full, 300
Re-initializing the Catalog ,

608, 615, 623
Repairing Your MySQL , 300
Repairing Your PostgreSQL ,

301
Restoring, 282
Starting the , 72

Database Performance Issues, 301
Database Performance Issues In-

dexes, 302
Database Size , 308
Databases

Backing Up Third Party , 307
Dbcheck, 472
Dealing with Firewalls , 573
Dealing with Multiple Magazines ,

388
Dealing with Win32 Problems,

513
Debug Daemon Output , 90
Debugger

Manually Running Bacula
Under The , 505

Debugging Python Scripts, 412
Dependency Packages, 43
Design

Overall, 350

GENERAL INDEX 689

Design Limitations or Restrictions
, 20

Detailed Information for each
Daemon , 104

Details
Practical , 368, 370
Technical , 573

Details , 582
Details of Tape Modes, 499
Device

Bacula Cannot Open the, 488
Device Configuration Records ,

381
Device Resource, 197
Devices

Multiple , 380
devices

SCSI, 378
Devices that require a mount

(DVD), 210
DHCP

Backing Up Portables Using ,
447

Differential Pool, 351
Difficulties Connecting from the

FD to the SD, 91
Directives

Data Spooling , 402
DVD, 344, 346
DVD Edit Codes, 345
Edit Codes, 210
Pruning , 313

Director
Configuring the, 105
Configuring the , 33

director, 221
Director Resource, 106, 196, 225
Director Resource , 191, 232
Director Resource Types, 105
Directories, 533

Excluding Files and , 159
Directory

Get Rid of the /lib/tls , 36
Disadvantages , 368, 370

Disaster
Preparing Solaris Before a,

550

Disaster Recovery , 37
Disaster Recovery of Win32 Sys-

tems, 551

Disaster Recovery Using Bacula,
529

Disclaimer , 627

Disk
Automated Backup, 349

Putting Multiple Systems on
Your CD, 537

Disk Volumes, 327

Disks
Backing up to Multiple , 336

Document
Conventions Used in this , 7

Does Bacula support Windows? ,
417

Domain

Public , 626
Drive

Testing Bacula Compatibility
with Your Tape, 35

Using btape to Verify your
Tape, 469, 483

Drives
Supported Tape , 25

Unsupported Tape , 26
DVD

Devices that require a mount,
210

DVD Specific Director Directives ,
346

DVD Specific SD Directives , 344
DVD Volumes, 343

DVD Writing, 343

Edit Codes for DVD Directives ,
345

Edit Codes for Mount and Un-
mount Directives , 210

Enable VSS, 519

690 GENERAL INDEX

Encrypting the Control Channel ,
678

Encryption
Communications, 555
Data, 561
Starting and Testing the Data

, 678
Transport, 555

Encryption , 674
Encryption Technical Details, 562
Ensuring that the Tape Modes

Are Properly Set – Linux
Only, 490

ERR:Connection Refused, 432
error, 223
Error Messages, 423
Errors

Autochanger, 500
Restore, 279
Syslog, 501

Events, 406
Example

Automatic Pruning and Recy-
cling , 322

Concrete , 574
Daily Weekly Monthly Tape

Usage , 320
Data Encryption Configura-

tion File, 564
File Daemon Configuration

File, 564
Final , 603
Python, 412
TLS Configuration Files, 558
Verify Configuration , 586

Example , 333
Example Client Configuration File

, 192
Example Configuration File , 385
Example Data Encryption Config-

uration, 564
Example Director Configuration

File, 183
Example Migration Jobs, 364

Example Restore Job Resource ,
280

Example Scripts , 379

Examples
FileSet , 153

Examples , 435, 671
EXB-8900

Hardware Compression, 497

Exclude Files on Windows Re-
gardless of Case, 449

Excluding Files and Directories ,
159

Executing Scripts on a Remote
Machine , 449

Expansion

Variable , 667
Extracting From Multiple Vol-

umes, 462

Extracting With a Bootstrap File,
462

Extracting with Include or Ex-
clude Lists, 461

FAQ
BaculaR© - RPM Packaging ,

589

fatal, 223
FDL , 625

Fiduciary License Agreement , 626

File
Bootstrap , 597

Example Client Configuration
, 192

Example Configuration , 385

Example Director Configura-
tion, 183

Extracting With a Bootstrap,
462

Maintaining a Valid Boot-
strap , 440

Sample Console Configura-
tion, 230

Sample Storage Daemon Con-
figuration, 215

GENERAL INDEX 691

Specifying a Device Name For
a, 456, 482

Specifying the Configuration,
482

file, 221
File Format , 597
File Selection Commands , 280
Filename

Selecting Files by , 273
Files

Actual Conf, 352
Automatic Generation of

Bootstrap , 602
Bacula Saves But Cannot Re-

store, 486
Customizing the Configura-

tion , 97
Including other Configuration

, 100
Modifying the Bacula Config-

uration, 66
Problems Restoring , 278
Restoring Your , 81
Setting Up Bacula Configura-

tion , 31
Testing your Configuration ,

35
FileSet

Testing Your , 163
Windows Example , 161

FileSet Examples, 153
FileSet Resource, 137
FileSets

Windows , 160
Filesystems

Backing up ACLs on ext3 or
XFS , 451

Fills
When The Tape , 86

Final Example , 603
Finding Tape Drives and Au-

tochangers on FreeBSD,
495

Firewall Problems, 579

Firewalls
Dealing with , 573

Windows, 521
Format

File , 597
Resource Directive , 98

Found
What To Do When Differ-

ences Are , 585

FreeBSD, 61
Finding Tape Drives and Au-

tochangers, 495

Tape Modes on, 493
FreeBSD Bare Metal Recovery,

548

FreeBSD Issues , 390
FreeBSD Users Be Aware , 26

FULL backup not found, 426

Full Form of the Update Slots
Command , 389

Full Pool, 351

Full Syntax , 669
Functionality

General , 667

General, 225, 529
General , 265

General Functionality , 667

Generating Private/Public En-
cryption Keypairs, 563

Get Rid of the /lib/tls Directory ,
36

Getting a CA Signed Certificate ,
558, 683

Getting A Traceback On Other
Systems , 505

Getting Debug Output from Bac-
ula , 507

Getting Email Notification to
Work , 437

Getting Notified of Job Comple-
tion , 436

Getting Notified that Bacula is
Running , 438

692 GENERAL INDEX

Getting Started with Bacula , 29

GNOME, 66

gnome-console, 289

GNU Free Documentation Li-
cense, 629

GNU GENERAL PUBLIC LI-
CENSE , 639

GNU General Public License , 639

GNU LESSER GENERAL PUB-
LIC LICENSE , 648

GNU Lesser General Public Li-
cense , 648

Going on Vacation , 448

GPL , 625

GUI Programs , 289

Handling

Total Automation of Bacula
Tape , 451

Hardware Compression on EXB-
8900, 497

Have

Knowing What SCSI Devices
You , 378

Heartbeat Interval, 188, 194

How Does It Work? , 578

How to Apply These Terms to
Your New Libraries , 658

How to Apply These Terms to
Your New Programs , 645

I Run a Restore Job and Bacula
Hangs. What do I do? ,
422

Implemented

What, 15

Important Considerations, 529

Important Migration Considera-
tions, 362

Important Note , 579

Including other Configuration
Files , 100

Incorrect File Number, 488

Incorrect Number of Blocks or Po-
sitioning Errors, 489

Incremental backups, 430

Incremental Pool, 352
info, 223

Installation, 510
Installing and Configuring

MySQL , 605

Installing and Configuring
MySQL – Phase I ,
605

Installing and Configuring
MySQL – Phase II ,
607

Installing and Configuring Post-
greSQL , 611

Installing and Configuring SQLite
, 621

Installing and Configuring SQLite
– Phase I , 621

Installing and Configuring SQLite
– Phase II , 622

Installing Bacula, 39, 62

Installing MySQL from RPMs,
610

Installing PostgreSQL from
RPMs, 616

Installing Tray Monitor, 66

Interactions Between the Bacula
Services, 12

Interface

Bacula Autochanger , 395
Internal Bacula Database , 624

Is Bacula Stable? , 418
Issues

Bacula Security, 565
FreeBSD , 390

Items

Critical , 67
Recommended , 69

Job
Running a , 75

Job Resource, 110

GENERAL INDEX 693

JobDefs Resource, 130
Jobs

Querying or Starting Jobs, 73

Running Concurrent, 452

Understanding, 29

Kaboom

What To Do When Bacula
Crashes , 503

KDE, 66

Key Concepts and Resource
Records , 327

Keywords

Alphabetic List of Console,
239

Knowing What SCSI Devices You
Have , 378

label, 245

Labeling

Automatic Volume , 330

Specifying Slots When , 386

Labeling Volumes with the Con-
sole Program , 94

Labeling Your Volumes , 93

Labels

Tape, 415

Understanding Pools Volumes
and , 30

Large file support, 425

LGPL , 626
Libraries

How to Apply These Terms to
Your New , 658

libwrappers, 56, 567

LICENSE

GNU GENERAL PUBLIC ,
639

GNU LESSER GENERAL
PUBLIC , 648

License

GNU Free Documentation,
629

GNU General Public , 639

GNU Lesser General Public ,
648

Licenses

Bacula Copyright Trademark,
625

Linking Bacula with MySQL , 609

Linking Bacula with SQLite , 622

Linux Problems or Bugs, 546

Linux SCSI Tricks, 485

List of GUI Programs, 289

Listing Blocks with bls, 459

Listing Jobs with bls, 458

Lists

Extracting with Include or
Exclude, 461

LiveCD

Bare Metal Recovery using a
LiveCD, 547

Log Rotation , 36

Log Watch, 36

Machine

Executing Scripts on a Re-
mote , 449

Magazines

Dealing with Multiple , 388

mail, 222

mail on error, 222

mail on success, 222

Maintaining a Valid Bootstrap
File , 440

Maintenance

Catalog , 297

Making Bacula Use a Single Tape,
320

Management

Basic Volume, 327

Managers

Other window, 66

Manually Changing Tapes , 368

Manually Recycling Volumes , 324

Manually resetting the Permis-
sions, 523

694 GENERAL INDEX

Manually Running Bacula Under
The Debugger , 505

MaxVolumeSize, 432

Message Resource, 192
Messages Resource, 180, 215, 219

Migrating from SQLite to MySQL
, 306

Migration, 357

Modes
Details, 499

Tape Blocking, 498
Modification of bacula-dir.conf for

the Data Channel , 676

Modifying the Bacula Configura-
tion Files, 66

Monitor

Installing Tray, 66
Monitor Configuration , 231

Monitor Resource , 231
mount, 223

Multi-drive Example Configura-
tion File , 385

Multiple Clients, 338

Multiple Devices , 380
Multiple manuals, 426

Multiple Simultaneous Jobs, 428
My Catalog is Full of Test Runs,

How Can I Start Over? ,
421

MySQL
Installing and Configuring ,

605

Installing from RPMs, 610
Linking Bacula with , 609

Migrating from SQLite to ,
306

MySQL Server Has Gone Away,
301

MySQL Table is Full, 300

Names, Passwords and Authoriza-
tion , 103

New Volume Algorithm, 316

No Email Notification, 428

Note
Important , 579

Notes

Other Make, 64

notsaved, 223
Number

Incorrect File, 488

Objects

Python, 406

On what machines does Bacula
run? , 418

One Files Configure Script, 61

operator, 222

Options

bcopy Command, 468
Configure, 51

Daemon Command Line , 91

Other Make Notes, 64

Other Points , 346, 403
Other Programs, 471

Other Useful Console Commands
, 89

Other window managers, 66

Output
Debug Daemon , 90

Overall Design, 350

Packages

Dependency, 43

Passwords, 103
Path and Filename Lengths, 427

Performance

Database, 301, 302

Periods
Setting Retention , 297

Permissions

Manually resetting the, 523

Phase I
Installing and Configuring

MySQL – , 605

Installing and Configuring
SQLite – , 621

Phase II

GENERAL INDEX 695

Installing and Configuring
MySQL – , 607

Installing and Configuring
SQLite – , 622

Picture , 674
Pipe Errors, 433
Points

Other , 346, 403
Pool

Adding Volumes to a, 263
Creating a , 92
Differential, 351
Full, 351
Incremental, 352

Pool changes, 428
Pool Options to Limit the Volume

Usage , 328
Pool Resource, 169
Post Win32 Installation, 513
PostgreSQL

Configuring PostgreSQL – ,
612

Converting from MySQL to ,
616

Installing , 611
Installing and Configuring ,

611
Installing from RPMs, 616

Practical Details , 368, 370
Preamble , 639, 649
Preparation for a Bare Metal Re-

covery, 533
Preparing Solaris Before a Disas-

ter, 550
Problem, 349
Problems

Firewalls, 579
Tips for Resolving, 486
VSS, 520
Windows Backup, 522
Windows Ownership and Per-

missions, 523
Windows Restore, 522

Problems Restoring Files , 278

Problems When no Tape in Drive,
481

Production
Critical Items to Implement

Before , 67
Program

Configuring the Console , 31
Configuring the Monitor , 32
Labeling Volumes with the

Console , 94
Quitting the Console , 84
Running the Console, 238
Stopping the Console, 239

program
bcopy, 468
bextract, 460
bls, 457
bregex, 475
bscan, 462
bsmtp, 471
btape, 468
bwild, 476
dbcheck, 472
testfind, 477

Programs
Advantages of Bacula Over

Other Backup , 18
GUI , 289
How to Apply These Terms to

Your New , 645
Other, 471

Projects
Bacula , 661

Pruning
Automatic, 313

Pruning Directives , 313
Public Domain , 626
Putting Multiple Systems on Your

Rescue Disk, 537
Python Configuration, 405
Python Console Command, 411
Python Example, 412
Python Objects, 406
Python Scripting, 405

696 GENERAL INDEX

Querying or starting Jobs, 73
Questions

Bacula Frequently Asked , 417
Quick Start, 50

Quick Start , 7
Quitting the Console Program , 84

Re-initializing the Catalog
Database , 608, 615, 623

Recognized Primitive Data Types
, 100

Recommended Items , 69
Recommended Options for Most

Systems, 58

Record
Sample Director’s Console ,

236

Sample File daemon’s Direc-
tor , 235

Sample Storage daemon’s Di-
rector , 236

Records

Device Configuration , 381

Key Concepts and Resource ,
327

Recovering Files Written With
Fixed Block Sizes, 497

Recovery

Bare Metal Recovery using a
LiveCD, 547

Disaster , 37

Disaster Recovery, 529

FreeBSD Bare Metal, 548
Preparation for a Bare Metal,

533

Solaris Bare Metal, 550
Windows Disaster, 521

Recycle Status , 318
Recycling, 428

Automatic Volume , 311
Restricting the Number of

Volumes and Recycling,
331

Recycling Algorithm , 316

Recycling All Your Volumes , 450
Red Hat, 59
Rejected Volumes After a Crash ,

442
relabel, 245, 251
Release Files, 39
Release Numbering, 41
Repairing Your MySQL Database

, 300
Repairing Your PostgreSQL

Database , 301
Requirements, 532

System , 21
Rescue

Bare Metal Recovery using a
LiveCD, 547

Disaster Recovery, 529
FreeBSD Bare Metal, 548

Resetting Directory and File Own-
ership and Permissions on
Win32 Systems, 552

Resource
Catalog, 178
Client, 163
Client , 187, 233
Console, 180, 227
ConsoleFont, 226
Counter, 182
Device, 197
Director, 106, 196, 225
Director , 191, 232
Example Restore Job , 280
FileSet, 137
Job, 110
JobDefs, 130
Message , 192
Messages, 180, 215, 219
Monitor , 231
Pool, 169
Schedule, 131
Storage, 166, 194
Storage , 233

Resource Directive Format , 98
Resource Types , 102

GENERAL INDEX 697

Resources

Additional, 554

Restore Command , 265

Restore Directories, 268

Restore Errors, 279

restored, 223

Restoring a Client System, 539

Restoring a Server, 545

Restoring Directory Attributes ,
276

Restoring Files Can Be Slow , 278

Restoring on Windows , 277

Restoring to a Running System,
554

Restoring When Things Go
Wrong , 282

Restoring Your Database, 282

Restoring Your Files , 81

Restricting the Number of Vol-
umes and Recycling, 331

Restrictions

Current Implementation , 19

Design Limitations or , 20

Retention Periods, 428, 431

Rotation

Daily Tape , 369

Log , 36

RPM Install Problems, 595

Running

Getting Notified that Bacula
is , 438

Running a Job , 75

Running as non-root , 569

Running Bacula , 36

Running Concurrent Jobs, 452

Running the Console Program,
238

Running the Console Program
from a Shell Script, 261

Running the Verify , 583

Sample Console Configuration
File, 230

Sample Director’s Console record.
, 236

Sample File daemon’s Director
record. , 235

Sample Storage Daemon Configu-
ration File, 215

Sample Storage daemon’s Director
record. , 236

Sample Tray Monitor configura-
tion, 235

saved, 223
Schedule problems, 424
Schedule Resource, 131
Schedules

Creating Holiday , 446
Technical Notes on, 135
Understanding, 29

Scratch Pool, 178
Script

One File Configure, 61
Running the Console Program

from a Shell, 261
Scripting

Python, 405
Scripts

Example , 379
SCSI devices, 378
SD

Difficulties Connecting from
the FD to the SD, 91

Securing the Data Channel , 675
Security, 565

Using Bacula to Improve
Computer , 581

security, 223
Security Considerations , 445
Selecting Files by Filename , 273
Semantics , 670
Server

Restoring a, 545
Services

Bacula Components or , 2
Interactions Between the Bac-

ula, 12

698 GENERAL INDEX

Setting Retention Periods , 297
Setting Up Bacula Configuration

Files , 31
Shutting down Windows Systems,

528
Simple One Tape Backup , 367
Simulating Barcodes in your Au-

tochanger , 389
Simultaneous Jobs, 108
Size

Database , 308
Tape Hardware Compression

and Blocking Size, 491
skipped, 223
Slots , 380
Slow

Restoring Files Can Be , 278
slow, 126, 188, 433
Solaris, 60
Solaris Bare Metal Recovery, 550
Solution, 349
Source

Building Bacula from, 45
Source Files, 39
Spaces

Upper/Lower Case, 99
) Commands, 260
Special dot Commands, 260
Specifications

Tape, 27
Specifying a Device Name For a

File, 456, 482
Specifying a Device Name For a

Tape, 455, 482
Specifying Slots When Labeling ,

386
Specifying the Configuration File,

455, 482
Specifying Volumes, 456
Spooling

Data , 401
SQLite

Installing and Configuring ,
621

Linking Bacula with , 622
Testing , 623

ssh hangs, 431
Start

Quick, 50
Quick , 7

Starting and Testing the Control
Channel , 680

Starting and Testing the Data En-
cryption , 678

Starting the Daemons , 73
Starting the Database , 72
State

Backing Up the
WinNT/XP/2K Sys-
tem, 527

Status
Recycle , 318

stderr, 223
stdout, 223
Steps to Take Before Disaster

Strikes, 530
Stopping the Console Program,

239
Storage Daemon Configuration,

193
Storage Resource, 166, 194
Storage Resource , 233
Strategies

Backup , 367
Strikes

Steps to Take Before Disaster,
530

Stunnel Configuration for the
Data Channel , 676

Suggestions
Tips and , 435

Support
Autochanger , 377
Barcode , 394

Supported Autochanger Models,
397

Supported Autochangers , 27
Supported Operating Systems, 45

GENERAL INDEX 699

Supported Operating Systems , 23
Supported Tape Drives , 25

Syntax
Full , 669

syslog, 222
Syslog Errors, 501

System
Restoring a Client, 539

Restoring to a Running, 554

System Requirements , 21
Systems

Alternate Disaster Recovery
Suggestion for Win32,
553

Disaster Recovery of Win32,
551

Getting A Traceback On
Other , 505

Recommended Options for
Most, 58

Resetting Directory and File
Ownership and Permis-
sions on Win32, 552

Shutting down Windows, 528
Supported Operating, 45

Supported Operating , 23
Using the OnStream driver on

Linux, 496

Table of Contents , 639, 648
Tape

Making Bacula Use a Single,
320

Specifying a Device Name For
a, 455, 482

Using btape to Simulate Fill-
ing, 497

Tape Blocking Modes, 498

Tape capacity, 429
Tape Hardware Compression and

Blocking Size, 491

Tape Modes on FreeBSD, 493
Tape Specifications, 27

Tapes

Manually Changing , 368
TCP Wrappers, 56, 567
Technical Details , 573
Technical Notes on Schedules, 135
terminate, 223
Terminology , 7
TERMS AND CONDITIONS ,

640, 651
Testfind, 477
Testing

Incorrect Number of Blocks or
Positioning Errors, 489

Testing Bacula Compatibility
with Your Tape Drive, 35

Testing SQLite , 623
Testing the Autochanger , 391
Testing The Traceback , 504
Testing your Configuration Files ,

35
Testing Your FileSet , 163
Testing Your Tape Drive With

Bacula, 479
Thanks , 663
The internal database is not sup-

ported, please do not use
it. , 624

Tips and Suggestions , 435
Tips for Resolving Problems, 486
TLS, 555
TLS – Communications Encryp-

tion, 555
TLS Configuration Files, 558
Tools

Volume Utility, 455
Total Automation of Bacula Tape

Handling , 451
Traceback

Testing The , 504
Traceback , 503
Trademark , 626
Trademarks

Copyrights and , 665
Transport Encryption, 555
Tray Monitor Security, 234

700 GENERAL INDEX

tray-monitor, 289
Tricks

Linux SCSI, 485
Tutorial

Brief , 71
Types

Director Resource, 105
Recognized Primitive Data ,

100

Resource , 102

Understanding Pools, Volumes
and Labels , 30

Unicode, 527
Uninstalling Bacula on Win32,

513

Unique Feature of Bacula, 427
Unsupported Tape Drives , 26

Upgrading
MySQL , 610

PostgreSQL , 618
Upgrading Bacula, 40

Upgrading Bacula Versions , 435
Upgrading MySQL , 610

Upgrading PostgreSQL , 618
Upper and Lower Case and

Spaces, 99

Usage
Pool Options to Limit the Vol-

ume , 328
Windows Port, 521

Use

What Database to, 49
Use it

The internal database is not
supported please do not ,
624

Used
Communications Ports , 673

to include other files, 100
Using Bacula to Improve Com-

puter Security , 581

Using bscan to Compare a Vol-
ume to an existing Cata-

log, 465

Using bscan to Correct the Vol-
ume File Count, 467

Using bscan to Recreate a Catalog
from a Volume, 465

Using btape to Simulate Filling a
Tape, 497

Using btape to Verify your Tape
Drive, 469, 483

Using Pools to Manage Volumes,
349

Using ssh to Secure the Commu-
nications , 683

Using Stunnel to Encrypt Com-
munications to Clients ,
673

Using stunnel to Encrypt to a Sec-
ond Client , 681

Using the Autochanger , 393

Using the OnStream driver on
Linux Systems, 496

Vacation

Going on , 448

Variable Expansion , 667

Variables

Bacula , 668

Verify

Running the , 583

Verify Configuration Example ,
586

Version Numbering, 41

Versions

Upgrading Bacula , 435

volmgmt, 224

Volume

Using bscan to Recreate a
Catalog from a Volume,
465

Volume Shadow Copy Service, 518

Volume Utility Tools, 455

Volumes

DVD, 343

GENERAL INDEX 701

Extracting From Multiple,
462

Labeling Your , 93
Manually Recycling , 324

Recycling All Your , 450
Specifying, 456

Using Pools to Manage, 349
VSS, 518

VSS Problems, 520

WARNING

MAJOR , 402
warning, 223

Watch
Log, 36

What Bacula is Not, 12
What Database to Use?, 49
What is Bacula? , 1, 417

What is Implemented, 15
What language is Bacula written

in? , 418

What tape to mount, 433
What To Do When Bacula

Crashes (Kaboom) , 503

What To Do When Differences
Are Found , 585

When The Tape Fills , 86

Who Needs Bacula? , 1
Win32, 61

Dealing with Problems, 513
Installation, 510

Post Installation, 513
Uninstalling Bacula, 513

Win32 Path Length Restriction,
527

Win32 Specific File daemon Com-
mand Line Options, 528

Windows

Considerations for Filename
Specifications, 527

Restoring on , 277

Windows Auto Start, 422
Windows Backup Problems, 522

Windows Client Dies, 423

Windows Compatibility Consider-
ations, 516

Windows Disaster Recovery, 521
Windows Example FileSet , 161
Windows FileSets , 160
Windows Firewalls, 521
Windows NTFS Naming Consid-

erations , 163
Windows Ownership and Permis-

sions Problems, 523
Windows Port Usage, 521
Windows Restore Problems, 522
Windows Version of Bacula, 509
Work

Getting Email Notification to
, 437

How Does It , 578
Wrappers

TCP, 56, 567
Writing DVDs, 343
wx-console, 289

Director Index

*WrapCounter, 183

aclsupport, 148
Address, 108, 164, 166, 226
Admin, 111
always, 127

append, 222
Autochanger, 168
AutoPrune, 165, 174
AutoPrune , 299

Backup, 111
Backups

slow, 126
Bootstrap, 116

Catalog, 114, 164, 178, 183
Catalog Files, 173
CatalogACL, 182
Cleaning Prefix, 177

Client, 117
Client (or FileDaemon), 163
Client Address, 164
Client Run After Job, 126

Client Run Before Job, 126
ClientACL, 181
Clone a Job, 128
CommandACL, 182

compression, 140
count , 282
Counter, 182
Counters , 668

days, 101
DB Address, 179

DB Name, 179

DB Port, 179

DB Socket, 179
debugging, 254

debugging Win32, 254

Description, 106
destination, 220

Device, 166

Differential, 112
Differential Backup Pool, 117

Differential Max Wait Time, 119

DifferentialPool, 132
dir , 281

DirAddress, 109

DirAddresses, 108
Directive

*WrapCounter, 183

aclsupport, 148
Autochanger, 168

AutoPrune, 165, 174

Bootstrap, 116
Catalog, 164, 178, 183

Catalog Files, 173

CatalogACL, 182
Cleaning Prefix, 177

Client, 117

Client (or FileDaemon), 163
Client Run After Job, 126

Client Run Before Job, 126

ClientACL, 181
CommandACL, 182

compression, 140

Counter, 182
DB Address, 179

DB Name, 179

DB Port, 179

702

DIRECTOR INDEX 703

DB Socket, 179

Description, 106

Device, 166

Differential Backup Pool, 117

Differential Max Wait Time,
119

DifferentialPool, 132

DirAddress, 109

DirAddresses, 108

DirPort, 109

Enable, 110

Enable VSS, 137

Exclude, 138

exclude, 148

FD Address, 164

FD Connect Timeout, 108

FD Port, 164

File Retention, 164

FileSet, 137

FileSetACL, 182

fstype, 149

Full Backup Pool, 117

FullPool, 132

hardlinks, 146

hfsplussupport, 149

ignore case, 149

Ignore FileSet Changes, 137

Include, 138

Incremental Backup Pool, 118

Incremental Max Wait Time,
119

IncrementalPool, 132

Job, 110

Job Retention, 164

JobACL, 181

JobDefs, 115

keepatime, 146

Label Format, 177

Level, 111, 131

Max Run Time, 118

Max Start Delay, 118

Max Wait Time, 118

Maximum, 183

Maximum Concurrent Jobs,
108, 127, 165, 168

Maximum Volume Bytes, 172
Maximum Volume Files, 172
Maximum Volume Jobs, 171
Maximum Volumes, 170
Media Type, 167
Messages, 107, 117, 132
Minimum, 182
mtimeonly, 145
Name, 106, 110, 131, 137, 164,

166, 170, 178, 181, 182
noatime, 145
onefs, 142
Password, 106, 164, 166, 181
password, 179
Pid Directory, 107
Pool, 117, 131, 170
Pool Type, 171
PoolACL, 182
portable, 143
Prefer Mounted Volumes, 119
Prefix Links, 127
Priority, 129, 165
Prune Files, 119
Prune Jobs, 119
Prune Volumes, 120
Purge Oldest Volume, 176
QueryFile, 107
readfifo, 145
recurse, 144
Recycle, 175
Recycle Current Volume, 176
Recycle Oldest Volume, 175
RecyclePool, 175
regex, 147
regexdir, 148
regexfile, 148
Replace, 127
Rerun Failed Levels, 126
Reschedule Interval, 128
Reschedule On Error, 128
Reschedule Times, 128
Run, 128, 131

704 DIRECTOR INDEX

Run After Job, 125
Run Before Job, 124
Run Script, 120

Schedule, 118, 131
ScheduleACL, 182

Scripts Directory, 107
SD Address, 166

SD Connect Timeout, 108
SD Port, 166
signature, 141

sparse, 144
Spool Attributes, 126

Spool Data, 126
SpoolData, 132
Storage, 118, 132, 166, 171

StorageACL, 181
Type, 110

Use Volume Once, 171
user, 179

verify, 141
Verify Job, 115
Volume Retention, 174

Volume Use Duration, 173
Where, 127

WhereACL, 182
wild, 146

wilddir, 146
wildfile, 147
Working Directory, 107

Write Bootstrap, 116
Write Part After Job, 130

WritePartAfterJob, 132
Director, 106
director, 221

directory, 101
DIRPort, 225

DirPort, 109
DiskToCatalog, 115

done , 282

Enable, 110

Enable VSS, 137, 519
Environment Variables , 669

estimate , 281

exclude, 148
Exclude { <file-list> } , 138
Exit Status, 121

FD Connect Timeout, 108

FD Port, 164
file, 221
File Daemon Address, 164
File Retention, 164
File Retention , 297

FileSet, 117, 137
FileSetACL, 182
find , 281
fstype, 149
Full, 111

Full Backup Pool, 117
FullPool, 132

hardlinks, 146
hfsplussupport, 149

hours , 101

ifnewer, 127
ifolder, 127
ignore case, 149

Ignore FileSet Changes, 137
Include { [Options {<file-

options>} ...] <file-list>
} , 138

Incremental, 111
Incremental Backup Pool, 118
Incremental Max Wait Time, 119
IncrementalPool, 132

InitCatalog, 114
integer, 101
Internal Variables , 668

Job, 110

Job Retention, 164
Job Retention , 298
JobACL, 181
JobDefs, 115
JobStart, 407

keepatime, 146

DIRECTOR INDEX 705

Label Format, 177
Level, 111, 131
long integer, 101

MailCommand, 220
mark , 281
Max Run Time, 118
Max Start Delay, 118
Max Wait Time, 118
Maximum, 183
Maximum Concurrent Jobs, 108,

127, 165, 168
Maximum Volume Bytes, 172
Maximum Volume Files, 172
Maximum Volume Jobs, 171
Maximum Volumes, 170
MD5, 141
Media Type, 167
Messages, 107, 117, 132, 220
Minimum, 182
minutes, 101
months , 102
mount, 223
mtimeonly, 145

Name, 106, 110, 131, 137, 164,
166, 170, 178, 181, 182,
220

never, 127
noatime, 145

onefs, 142
Options { <file-options> } , 138

Password, 106, 164, 166, 181, 226,
228

password, 101, 179
Pid Directory, 107
Pool, 117, 131, 170
Pool Type, 171
PoolACL, 182
portable, 143
positive integer , 101
Prefer Mounted Volumes, 119
Prefix Links, 127

Priority, 129, 165
Prune Files, 119
Prune Jobs, 119
Prune Volumes, 120
Purge Oldest Volume, 176
pwd , 282

quarters , 102
QueryFile, 107

readfifo, 145
recurse, 144
Recycle, 175
Recycle Current Volume, 176
Recycle Oldest Volume, 175
RecyclePool, 175
regex, 147
regexdir, 148
regexfile, 148
Replace, 127
Rerun Failed Levels, 126
Reschedule Interval, 128
Reschedule On Error, 128
Reschedule Times, 128
Restore, 111
Run, 128, 131
Run After Job, 125
Run Before Job, 124
RunScript, 120

Schedule, 118, 131
ScheduleACL, 182
Scripts Directory, 107
SD Connect Timeout, 108
SD Port, 166
seconds, 101
setdebug, 254
SHA1, 141
show, 254
signature, 141
size, 101
slow, 126
sparse, 144
Spool Attributes, 126
Spool Data, 126

706 DIRECTOR INDEX

SpoolData, 132
status, 255
Storage, 118, 132, 166, 171
Storage daemon Address, 166
StorageACL, 181

time, 101
Type, 110

unmark , 282
Use Volume Once, 171
user, 179

Verify, 111
verify, 141
Verify Job, 115
Volume Retention, 174
Volume Use Duration, 173
VolumeToCatalog, 115

weeks, 101
Where, 127
WhereACL, 182
wild, 146
wilddir, 146
wildfile, 147
Windows

debugging, 254
Working Directory, 107
Write Bootstrap, 116
Write Part After Job, 130
Write Part After Job , 346
WritePartAfterJob, 132

years , 102
yes or no , 101

File Daemon Index

*Archive , 10
*JobLevel , 599

*JobType , 599
*Update , 10

-r <job> , 92
/about, 528

/events, 528
/help, 528

/install, 528
/kill, 528
/remove, 528

/run, 528
/service, 528

/status, 528
<destination>, 221

, 520

a name , 8, 9
Address , 232–234

Administrator , 7

Backup , 7

Bootstrap File , 7

Catalog , 7

Client , 8, 599
Client (or FileDaemon), 187

Client (or FileDaemon) , 233
Console , 8

Count , 598

Daemon , 8

Differential , 8
Directive

Client (or FileDaemon), 187

Director, 191
FDAddress, 190

FDAddresses, 189
FDPort, 190

Heartbeat Interval, 188
Maximum Concurrent Jobs,

189

Maximum Network Buffer
Size, 190

Monitor, 191
Name, 188, 191

Password, 191
Pid Directory, 188

SDConnectTimeout, 190
Working Directory, 188

Directive , 8
Director, 191

Director , 8, 232
DIRPort , 232

exit , 282

FD Port , 233
FDAddress, 190

FDAddresses, 189
FDPort, 190

File Attributes , 8
File Daemon , 8

FileIndex , 599

Heartbeat Interval, 188
help , 282

Incremental , 9

Job , 599

707

708 FILE DAEMON INDEX

JobId , 599

lsmark , 281

Maximum Concurrent Jobs, 189
Maximum Network Buffer Size,

190
Monitor, 191
Monitor , 9, 231

Name, 188, 191
name, 100
Name , 232–234
name-string, 100
notsaved, 223

OperatorCommand, 221

Password, 191
Password , 232, 233
Pid Directory, 188

quit , 282

Recycle , 315
Refresh Interval , 232
Resource , 9
Restore , 9
restored, 223
Retention Period , 10

saved, 223
Schedule , 9
SD Port , 234
SDConnectTimeout, 190
Service , 9
skipped, 223
Slot , 599
stderr, 221
stdout, 221
Storage , 234
Storage Coordinates , 9
Storage Daemon , 10
Stream , 599
string, 100

VolBlock , 598

VolFile , 598
VolSessionId , 598
VolSessionTime , 598
Volume , 598
VSS Problems, 520

Working Directory, 188

Storage Daemon Index

-c <file> , 91
-d nn , 91

Alert Command, 201
Always Open, 202
Archive Device, 197
Autochanger, 200
Autochanger , 381
Autochanger Resource, 213, 383
Automatic mount, 215
Autoselect, 201

Backward Space File, 207
Backward Space Record, 207
Block Positioning, 209
BSF at EOM, 207

Changer Command, 200
Changer Command , 214, 381, 384
Changer Device, 200, 213, 383
Changer Device , 381
Close on Poll, 203
Connect Wait, 194

Device Type, 198
Directive

Always Open, 202
Archive Device, 197
Autochanger, 200
Automatic mount, 215
Autoselect, 201
Backward Space File, 207
Backward Space Record, 207
Block Positioning, 209
BSF at EOM, 207
Changer Command, 200

Changer Device, 200

Close on Poll, 203

Connect Wait, 194

Device Type, 198

Drive Index, 201

Fast Forward Space File, 206

Forward Space File, 208

Forward Space Record, 208

Free Space Command, 211

Hardware End of Medium,
206

Heartbeat Interval, 194

Label media, 215

Maximum block size, 206

Maximum Changer Wait, 202

Maximum Concurrent Jobs,
194

Maximum File Size, 208

Maximum Job Spool Size, 209

Maximum Network Buffer
Size, 209

Maximum Open Wait, 202,
203

Maximum Part Size, 210

Maximum Rewind Wait, 202

Maximum Spool Size, 209

Maximum Volume Size, 208

Media Type, 199

Minimum block size, 205

Monitor, 196

Mount Command, 211

Mount Point, 211

Name, 194, 196, 197

Offline On Unmount, 208

709

710 STORAGE DAEMON INDEX

Password, 196
Pid Directory, 194
Random access, 204
Removable media, 203
Requires Mount, 210
SDAddress, 196
SDAddresses, 195
SDPort, 196
Spool Directory, 210
TWO EOF, 207
Unmount Command, 211
Use MTIOCGET, 207
Volume Poll Interval, 203
Working Directory, 194
Write Part Command, 211

Drive Index, 201
Drive Index , 382

Fast Forward Space File, 206
Forward Space File, 208
Forward Space Record, 208
Free Space Command, 211
Free Space Command , 345

Hardware End of Medium, 206
Heartbeat Interval, 194

Label media, 215

Maximum block size, 206
Maximum Changer Wait, 202
Maximum Changer Wait , 382
Maximum Concurrent Jobs, 194
Maximum File Size, 208
Maximum Job Spool Size, 209
Maximum Network Buffer Size,

209
Maximum Open Wait, 202, 203
Maximum Part Size, 210
Maximum Rewind Wait, 202
Maximum Spool Size, 209
Maximum Volume Size, 208
Media Type, 199
Minimum block size, 205
Monitor, 196

Mount Command, 204, 211, 344
Mount Point, 204, 211, 344
mount storage , 89
mtx-changer list, 391
mtx-changer load, 391
mtx-changer loaded, 391
mtx-changer slots, 391
mtx-changer unload, 391

Name, 194, 196, 197, 213, 383

Offline On Unmount, 208

Password, 196
Password , 234
Pid Directory, 194

quit , 89

Random access, 204
Removable media, 203
Requires Mount, 210
Requires Mount , 204, 344
Resource

Autochanger, 213, 383

Scan , 11
SDAddress, 196
SDAddresses, 195
SDPort, 196
Session , 10
Spool Directory, 210

TWO EOF, 207

Unmount Command, 205, 211,
344

Use MTIOCGET, 207

Verify , 10
Volume , 11
Volume Poll Interval, 203

Working Directory, 194
Write Part Command, 211
Write Part Command , 344

Console Index

<destination>, 221

add, 242
Alphabetic List of Console Com-

mands, 242
Alphabetic List of Console Key-

words, 239
anything, 261
autodisplay on/off, 242
automount on/off, 243
AutoPrune , 314

Bacula Console, 237

cancel jobid, 243
Commands

Alphabetic List of Console,
242

Configuration
Console, 238

Console, 228
Bacula, 237

console, 221
Console Configuration, 238
ConsoleFont, 226
create pool, 243

delete, 243
Director, 225

enable, 244
estimate, 245
exit, 260

Font, 226

help, 245

Keywords
Alphabetic List of Console,

239

label, 245

list, 247
list files jobid , 89

list jobid , 89

list jobmedia , 89
list jobs , 89

list jobtotals , 89

list media , 89
list pools , 89

llist, 249

messages, 250

messages , 89

mount, 250

Name, 225, 226, 228

Program

Running the Console, 238
Stopping the Console, 239

prune, 251

purge, 251
python, 250

query, 259

quit, 259

relabel, 245, 251

release, 251
reload, 252

restore, 252

run, 253

711

712 CONSOLE INDEX

Running the Console Program,
238

setdebug, 254
show, 254
sqlquery, 254
status , 89
status dir , 89
status jobid , 89
Stopping the Console Program,

239

unmount, 257
unmount storage , 89
update, 257
use, 259

var name, 259
version, 259
Volume Retention, 314

wait, 260

	What is Bacula?
	Who Needs Bacula?
	Bacula Components or Services
	Bacula Configuration
	Conventions Used in this Document
	Quick Start
	Terminology
	What Bacula is Not
	Interactions Between the Bacula Services

	The Current State of Bacula
	What is Implemented
	Advantages Over Other Backup Programs
	Current Implementation Restrictions
	Design Limitations or Restrictions

	System Requirements
	Supported Operating Systems
	Supported Tape Drives
	Unsupported Tape Drives
	FreeBSD Users Be Aware!!!
	Supported Autochangers
	Tape Specifications

	Getting Started with Bacula
	Understanding Jobs and Schedules
	Understanding Pools, Volumes and Labels
	Setting Up Bacula Configuration Files
	Configuring the Console Program
	Configuring the Monitor Program
	Configuring the File daemon
	Configuring the Director
	Configuring the Storage daemon

	Testing your Configuration Files
	Testing Compatibility with Your Tape Drive
	Get Rid of the /lib/tls Directory
	Running Bacula
	Log Rotation
	Log Watch
	Disaster Recovery

	Installing Bacula
	Source Release Files
	Upgrading Bacula
	Releases Numbering
	Beta Releases
	Dependency Packages
	Supported Operating Systems
	Building Bacula from Source
	What Database to Use?
	Quick Start
	Configure Options
	Recommended Options for Most Systems
	Red Hat
	Solaris
	FreeBSD
	Win32
	One File Configure Script
	Installing Bacula
	Building a File Daemon or Client
	Auto Starting the Daemons
	Other Make Notes
	Installing Tray Monitor
	GNOME
	KDE
	Other window managers

	Modifying the Bacula Configuration Files

	Critical Items to Implement Before Production
	Critical Items
	Recommended Items

	A Brief Tutorial
	Before Running Bacula
	Starting the Database
	Starting the Daemons
	Using the Director to Query and Start Jobs
	Running a Job
	Restoring Your Files
	Quitting the Console Program
	Adding a Second Client
	When The Tape Fills
	Other Useful Console Commands
	Debug Daemon Output
	Patience When Starting Daemons or Mounting Blank Tapes
	Difficulties Connecting from the FD to the SD
	Daemon Command Line Options
	Creating a Pool
	Labeling Your Volumes
	Labeling Volumes with the Console Program

	Customizing the Configuration Files
	Resource Directive Format
	Comments
	Upper and Lower Case and Spaces
	Including other Configuration Files
	Recognized Primitive Data Types

	Resource Types
	Names, Passwords and Authorization
	Detailed Information for each Daemon

	Configuring the Director
	Director Resource Types
	The Director Resource
	The Job Resource
	The JobDefs Resource
	The Schedule Resource
	Technical Notes on Schedules

	The FileSet Resource
	FileSet Examples
	Backing up Raw Partitions
	Excluding Files and Directories
	Windows FileSets
	Testing Your FileSet
	The Client Resource
	The Storage Resource
	The Pool Resource
	The Scratch Pool

	The Catalog Resource
	The Messages Resource
	The Console Resource
	The Counter Resource
	Example Director Configuration File

	Client/File daemon Configuration
	The Client Resource
	The Director Resource
	The Message Resource
	Example Client Configuration File

	Storage Daemon Configuration
	Storage Resource
	Director Resource
	Device Resource
	Edit Codes for Mount and Unmount Directives
	Devices that require a mount (DVD)

	Autochanger Resource
	Capabilities
	Messages Resource
	Sample Storage Daemon Configuration File

	Messages Resource
	Console Configuration
	General
	The Director Resource
	The ConsoleFont Resource
	The Console Resource
	Console Commands
	Sample Console Configuration File

	Monitor Configuration
	The Monitor Resource
	The Director Resource
	The Client Resource
	The Storage Resource
	Tray Monitor Security
	Sample Tray Monitor configuration
	Sample File daemon's Director record.
	Sample Storage daemon's Director record.
	Sample Director's Console record.

	Bacula Console
	Console Configuration
	Running the Console Program
	Stopping the Console Program
	Alphabetic List of Console Keywords
	Alphabetic List of Console Commands
	Special dot Commands
	Special At (@) Commands
	Running the Console from a Shell Script
	Adding Volumes to a Pool
	General
	The Restore Command
	Selecting Files by Filename
	Command Line Arguments
	Restoring Directory Attributes
	Restoring on Windows
	Restoring Files Can Be Slow
	Problems Restoring Files
	Restore Errors
	Example Restore Job Resource
	File Selection Commands
	Restoring When Things Go Wrong

	GUI Programs
	List of GUI Programs
	bimagemgr
	bimagemgr installation
	bimagemgr usage

	Catalog Maintenance
	Setting Retention Periods
	Compacting Your MySQL Database
	Repairing Your MySQL Database
	MySQL Table is Full
	MySQL Server Has Gone Away
	Repairing Your PostgreSQL Database
	Database Performance Issues
	Performance Issues Indexes
	PostgreSQL Indexes
	MySQL Indexes
	SQLite Indexes

	Compacting Your PostgreSQL Database
	Compacting Your SQLite Database
	Migrating from SQLite to MySQL
	Backing Up Your Bacula Database
	Backing Up Third Party Databases
	Database Size

	Automatic Volume Recycling
	Automatic Pruning
	Pruning Directives
	Recycling Algorithm
	Recycle Status
	Making Bacula Use a Single Tape
	Daily, Weekly, Monthly Tape Usage Example
	 Automatic Pruning and Recycling Example
	Manually Recycling Volumes

	Basic Volume Management
	Key Concepts and Resource Records
	Pool Options to Limit the Volume Usage
	Automatic Volume Labeling
	Restricting the Number of Volumes and Recycling

	Concurrent Disk Jobs
	An Example
	Backing up to Multiple Disks
	Considerations for Multiple Clients

	DVD Volumes
	DVD Specific SD Directives
	Edit Codes for DVD Directives
	DVD Specific Director Directives
	Other Points

	Automated Disk Backup
	The Problem
	The Solution
	Overall Design
	Full Pool
	Differential Pool
	Incremental Pool

	The Actual Conf Files

	Migration
	Migration Job Resource Directives
	Migration Pool Resource Directives
	Important Migration Considerations
	Example Migration Jobs

	Backup Strategies
	Simple One Tape Backup
	Advantages
	Disadvantages
	Practical Details

	Manually Changing Tapes
	Daily Tape Rotation
	Advantages
	Disadvantages
	Practical Details

	Autochanger Support
	Knowing What SCSI Devices You Have
	Example Scripts
	Slots
	Multiple Devices
	Device Configuration Records

	Autochanger Resource
	An Example Configuration File
	A Multi-drive Example Configuration File
	Specifying Slots When Labeling
	Changing Cartridges
	Dealing with Multiple Magazines
	Simulating Barcodes in your Autochanger
	The Full Form of the Update Slots Command
	FreeBSD Issues
	Testing Autochanger and Adapting mtx-changer script
	Using the Autochanger
	Barcode Support
	Bacula Autochanger Interface

	Supported Autochangers
	Data Spooling
	Data Spooling Directives
	!!! MAJOR WARNING !!!
	Other Points

	Python Scripting
	Python Configuration
	Bacula Events
	Python Objects
	Python Console Command
	Debugging Python Scripts
	Python Example

	ANSI and IBM Tape Labels
	Director Pool Directive
	Storage Daemon Device Directives

	Bacula Frequently Asked Questions
	What is Bacula?
	Does Bacula support Windows?
	What language is Bacula written in?
	On what machines does Bacula run?
	Is Bacula Stable?
	I'm Getting Authorization Errors. What is Going On?
	Bacula Runs Fine but Cannot Access a Client on a Different Machine. Why?
	My Catalog is Full of Test Runs, How Can I Start Over?
	I Run a Restore Job and Bacula Hangs. What do I do?
	I Cannot Get My Windows Client to Start Automatically?
	My Windows Client Immediately Dies When I Start It
	My backups are not working on my Windows Client. What should I do?
	All my Jobs are scheduled for the same time. Will this cause problems?
	Can Bacula Backup My System To Files instead of Tape?
	Can I use a dummy device to test the backup?
	Can Bacula Backup and Restore Files Bigger than 2 Gigabytes?
	I want to stop a job.
	Why have You Trademarked the Name Bacula?
	Why is the Online Document for Version 1.39 but the Released Version is 1.38?
	Does Bacula really save and restore all files?
	I want an Incremental but Bacula runs it as a Full backup. Why?
	Do you really handle unlimited path lengths?
	What Is the Really Unique Feature of Bacula?
	How can I force one job to run after another?
	I Am Not Getting Email Notification, What Can I Do?
	My retention periods don't work
	Why aren't my files compressed?
	Incremental backups are not working
	I am waiting forever for a backup of an offsite machine
	SSH hangs forever after starting Bacula
	I'm confused by retention periods
	MaxVolumeSize is ignored
	I get a Connection refused when connecting to my Client
	Long running jobs die with Pipe Error
	How to I tell the Job which Volume to use?

	Tips and Suggestions
	Upgrading Bacula Versions
	Getting Notified of Job Completion
	Getting Email Notification to Work
	Getting Notified that Bacula is Running
	Maintaining a Valid Bootstrap File
	Rejected Volumes After a Crash
	Security Considerations
	Creating Holiday Schedules
	Automatic Labeling Using Your Autochanger
	Backing Up Portables Using DHCP
	Going on Vacation
	Exclude Files on Windows Regardless of Case
	Executing Scripts on a Remote Machine
	Recycling All Your Volumes
	Backing up ACLs on ext3 or XFS filesystems
	Total Automation of Bacula Tape Handling
	Running Concurrent Jobs

	Volume Utility Tools
	Specifying the Configuration File
	Specifying a Device Name For a Tape
	Specifying a Device Name For a File
	Specifying Volumes
	bls
	Listing Jobs
	Listing Blocks

	bextract
	Extracting with Include or Exclude Lists
	Extracting With a Bootstrap File
	Extracting From Multiple Volumes

	bscan
	Using bscan to Compare a Volume to an existing Catalog
	Using bscan to Recreate a Catalog from a Volume
	Using bscan to Correct the Volume File Count
	After bscan

	bcopy
	bcopy Command Options

	btape
	Using btape to Verify your Tape Drive
	btape Commands

	Other Programs
	bsmtp
	dbcheck
	bregex
	bwild
	testfind

	Testing Your Tape Drive With Bacula
	Get Your Tape Drive Working
	Problems When no Tape in Drive
	Specifying the Configuration File
	Specifying a Device Name For a Tape
	Specifying a Device Name For a File

	btape
	Using btape to Verify your Tape Drive
	Linux SCSI Tricks

	Tips for Resolving Problems
	Bacula Saves But Cannot Restore Files
	Bacula Cannot Open the Device
	Incorrect File Number
	Incorrect Number of Blocks or Positioning Errors
	Ensuring that the Tape Modes Are Properly Set -- Linux Only
	Tape Hardware Compression and Blocking Size
	Tape Modes on FreeBSD
	Finding your Tape Drives and Autochangers on FreeBSD
	Using the OnStream driver on Linux Systems

	Hardware Compression on EXB-8900
	Using btape to Simulate Filling a Tape

	Recovering Files Written With Fixed Block Sizes
	Tape Blocking Modes
	Details of Tape Modes
	Autochanger Errors
	Syslog Errors

	What To Do When Bacula Crashes (Kaboom)
	Traceback
	Testing The Traceback
	Getting A Traceback On Other Systems
	Manually Running Bacula Under The Debugger
	Getting Debug Output from Bacula

	The Windows Version of Bacula
	Win32 Installation
	Post Win32 Installation
	Uninstalling Bacula on Win32
	Dealing with Win32 Problems
	Windows Compatibility Considerations
	Volume Shadow Copy Service
	VSS Problems
	Windows Firewalls
	Windows Port Usage
	Windows Disaster Recovery
	Windows Restore Problems
	Windows Ownership and Permissions Problems
	Manually resetting the Permissions
	Backing Up the WinNT/XP/2K System State
	Considerations for Filename Specifications
	Win32 Specific File daemon Command Line
	Shutting down Windows Systems

	Disaster Recovery Using Bacula
	General
	Important Considerations
	Steps to Take Before Disaster Strikes
	Bare Metal Recovery on Linux with a Bacula Rescue CD
	Requirements
	Directories
	Preparation for a Bare Metal Recovery
	Creating a Bacula Rescue CDROM
	Putting Multiple Systems on Your Rescue Disk
	Restoring a Client System
	Boot with your Bacula Rescue CDROM
	Restoring a Server
	Linux Problems or Bugs
	Bare Metal Recovery using a LiveCD
	FreeBSD Bare Metal Recovery
	Solaris Bare Metal Recovery
	Preparing Solaris Before a Disaster
	Bugs and Other Considerations
	Disaster Recovery of Win32 Systems
	Ownership and Permissions on Win32 Systems
	Alternate Disaster Recovery Suggestion for Win32 Systems
	Restoring to a Running System
	Additional Resources

	Bacula TLS -- Communications Encryption
	TLS Configuration Directives
	Creating a Self-signed Certificate
	Getting a CA Signed Certificate
	Example TLS Configuration Files

	Data Encryption
	Building Bacula with Encryption Support
	Encryption Technical Details
	Generating Private/Public Encryption Keys
	Example Data Encryption Configuration

	Bacula Security Issues
	Backward Compatibility
	Configuring and Testing TCP Wrappers
	Running as non-root

	Dealing with Firewalls
	Technical Details
	A Concrete Example
	The Bacula Configuration Files for the Above
	How Does It Work?
	Important Note
	Firewall Problems

	Using Bacula to Improve Computer Security
	The Details
	Running the Verify
	What To Do When Differences Are Found
	A Verify Configuration Example

	Bacula RPM Packaging FAQ
	Answers
	Build Options
	RPM Install Problems

	The Bootstrap File
	File Format
	Automatic Generation of Bootstrap Files
	A Final Example

	Installing and Configuring MySQL
	Installing and Configuring MySQL -- Phase I
	Installing and Configuring MySQL -- Phase II
	Re-initializing the Catalog Database
	Linking Bacula with MySQL
	Installing MySQL from RPMs
	Upgrading MySQL

	Installing and Configuring PostgreSQL
	Installing PostgreSQL
	Configuring PostgreSQL
	Re-initializing the Catalog Database
	Installing PostgreSQL from RPMs
	Converting from MySQL to PostgreSQL
	Upgrading PostgreSQL
	Credits

	Installing and Configuring SQLite
	Installing and Configuring SQLite -- Phase I
	Installing and Configuring SQLite -- Phase II
	Linking Bacula with SQLite
	Testing SQLite
	Re-initializing the Catalog Database
	Internal Bacula Database

	Bacula Copyright, Trademark, and Licenses
	FDL
	GPL
	LGPL
	Public Domain
	Trademark
	Fiduciary License Agreement
	Disclaimer

	GNU Free Documentation License
	Table of Contents
	 GNU GENERAL PUBLIC LICENSETOC1
	 PreambleTOC2
	 TERMS AND CONDITIONSTOC3
	 How to Apply These Terms to Your New ProgramsTOC4
	Table of Contents
	 GNU LESSER GENERAL PUBLIC LICENSETOC12
	 PreambleTOC23
	 TERMS AND CONDITIONSTOC34
	 How to Apply These Terms to Your New LibrariesTOC45

	Bacula Projects
	Thanks
	Bacula Bugs

	Variable Expansion
	General Functionality
	Bacula Variables
	Full Syntax
	Semantics
	Examples

	Using Stunnel to Encrypt Communications
	Communications Ports Used
	Encryption
	A Picture
	Certificates
	Securing the Data Channel
	Data Channel Configuration
	Stunnel Configuration for the Data Channel
	Starting and Testing the Data Encryption
	Encrypting the Control Channel
	Control Channel Configuration
	Stunnel Configuration for the Control Channel
	Starting and Testing the Control Channel
	Using stunnel to Encrypt to a Second Client
	Creating a Self-signed Certificate
	Getting a CA Signed Certificate
	Using ssh to Secure the Communications

