
Synopsis Developer's Guide
Stefan Seefeld

Synopsis Developer's Guide
Stefan Seefeld

Version 0.11

Table of Contents
1. Introduction .. 1

1.1. Origins .. 1
1.2. Architecture .. 1

1.2.1. Sub-Projects ... 1
1.2.2. Code Layout ... 1

1.3. Current Status: Regression Test Reports ... 1
2. The Python API ... 3

2.1. The Processor Pipeline .. 3
2.2. The Parsers (Cpp, C, Cxx) ... 3
2.3. The HTML Formatter(s) ... 3
2.4. Python Regression Tests .. 3

3. The C++ API ... 5
3.1. The Parse Tree Module ... 5

3.1.1. The Encoding class .. 7
3.1.2. PTree::Display .. 7

3.2. The Symbol Table Module ... 8
3.2.1. SymbolTable::Display .. 8

3.3. The Type Analysis Module .. 9
3.3.1. The Type Repository .. 9
3.3.2. Overload Resolution .. 9
3.3.3. The Template Repository .. 9
3.3.4. Type Evaluation .. 9
3.3.5. Constant expressions .. 9

3.4. C++ Regression Tests ... 9

iii

Chapter 1. Introduction
The Synopsis Application Framework is a work in progress. Some of the APIs are quite stable and already
used in production. Others are in development. This document wants to provide some guidelines for de-
velopers and other adventurers to find their way around the project. APIs that are currently documented
here may mature and become stable, at which point their documentation will be migrated to the tutorial1.

1.1. Origins
The Synopsis Project was founded to support the documentation of the Fresco code base, which used a
number of different programming languages such as C++, Python, and IDL. The initial design focussed
on a high-level, multi-language Abstract Semantic Graph which would be manipulated using python Pro-
cessor objects to generate documentation in a variety of formats including postscript and html.

To support multiple languges, Synopsis uses python extension modules to generate a language-neutral
ASG. The IDL parser is based on omniORB2, the original C parser was based on ctool3, and the C++
parser on OpenC++4.

1.2. Architecture
Synopsis provides multiple representations of the parsed code, on different levels of granularity. Some of
them are exposed using Python, some using C++.

1.2.1. Sub-Projects
Synopsis contains two basic parts: A C++ library, providing an API to parse and analyze C and C++ source
files, as well as a Python package to parse and analyze IDL, C, C++, and Python code. While the former
provides fine-grained access to the low-level representations such as Parse Tree and Symbol Table, the
latter operates on an Abstract Semantic Graph.

Most of the Processorclasses from the Python API are written in pure Python, but some (notably the parser
classes) are actual extension modules that use the low-level APIs from the C++ API.

1.2.2. Code Layout
Following the hybrid nature of the project, the source layout has two more or less separate root directories.
Synopsis/ provides the Synopsis Python package, while src/ contains the sources for the C++ API.

1.3. Current Status: Regression Test Reports
It is important to regularly run tests to keep control of user-visible changes incured by code modifications.
The tests that are part of synopsis are not an absolute measure for success or failure, but rather reflect a
given state of the system at a particular point in time.

1 ../Tutorial/index.html
2 http://omniorb.sf.net
3 http://ctool.sf.net
4 http://www.csg.is.titech.ac.jp/~chiba/openc++.html

1

../Tutorial/index.html
http://omniorb.sf.net
http://ctool.sf.net
http://www.csg.is.titech.ac.jp/~chiba/openc++.html
../Tutorial/index.html
http://omniorb.sf.net
http://ctool.sf.net
http://www.csg.is.titech.ac.jp/~chiba/openc++.html

It sometimes happens that a new addition to the code will make a particular test fail, simply because that
test now produces a different output compared to what it used to produce before.

This may indicate a true regression, or it may mean that the expected output should be adjusted if the new
output is valid and should be the new reference.

The 'official' regression test results are available at all times as a test report5.

5 http://synopsis.fresco.org/tests

2

Introduction

http://synopsis.fresco.org/tests
http://synopsis.fresco.org/tests

Chapter 2.The Python API
The Python API in its current form is documented in the Tutorial1, so only things that are specific to devel-
opment are mentioned here. As explained in the previous chapter, synopsis was originally designed for
code documentation. To support this, An 'Abstract Semantic Graph' representation is used. Only declarations
are stored, together with comments preceeding them.

2.1.The Processor Pipeline
One of synopsis' main goals has been flexibility and extensibility with respect to how exactly the parsed
data are manipulated. It must be possible for users to define their own output format, or their own way to
annotate the source code in comments.

To achieve this flexibility, synopsis defines a Processor protocol, which allows multiple processors to be
chained into processing pipelines. This way, a user can define his own pipeline, or even define his own
processor.

Processors take an ASG as input, and return an ASG as output. One particular processor as Format-
ters.Dump.Processor, which dumps an ASG into an XML file. This may be useful for debugging purposes.

The scripting language used to define processors in terms of compound processors (i.e. pipelines) is docu-
mented here2.

2.2.The Parsers (Cpp, C, Cxx)
These processors are essentially shared C++ libraries which are loaded and operated by python as extension
modules. Their public APIs are discussed in the tutorial3, and the internals are discussed in the chapter on
the C++ API, though some particularities are worth mentioning here.

It is sometimes necessary to debug C/C++ code even when it is controlled through a python API. This
makes debugging a bit inconvenient. With gdb, you have to issue target exec python before executing
the python script that calls an extension module.

2.3.The HTML Formatter(s)
One of the most complex processors is the HTML formatter, which generates html documentation of the
parsed source code. There are a multitude of parameters to control many aspects of the formatting. It is
documented here4.

To help to validate the generated set of html pages, synopsis provides scripts/html-validator, which can
be used to traverse all references between the pages, and to make sure the html is valid.

2.4. Python Regression Tests
The python tests mainly consist in some synopsis script, defining a specific ASG processor pipeline, to-
gether with some input in one of the supported languages.

1 http://synopsis.fresco.org/docs/Tutorial
2 http://synopsis.fresco.org/docs/Tutorial/pipeline.html
3 http://synopsis.fresco.org/docs/Tutorial
4 http://synopsis.fresco.org/docs/Tutorial/html-formatter.html

3

http://synopsis.fresco.org/docs/Tutorial
http://synopsis.fresco.org/docs/Tutorial/pipeline.html
http://synopsis.fresco.org/docs/Tutorial
http://synopsis.fresco.org/docs/Tutorial/html-formatter.html
http://synopsis.fresco.org/docs/Tutorial
http://synopsis.fresco.org/docs/Tutorial/pipeline.html
http://synopsis.fresco.org/docs/Tutorial
http://synopsis.fresco.org/docs/Tutorial/html-formatter.html

The result will be an ASG that is dumped as XML to a file for simple validation.

4

The Python API

Chapter 3.The C++ API
The Parser operates on an in-memory buffer of the whole (preprocessed) file. The generated parse tree
refers to memory locations in that buffer, and it is possible to replace existing tree nodes by new ones, and
then writing the modified buffer back to a file, preserving all but the modified regions.

This feature makes this parser an excellent choice for source-to-source transformation, as the new code
doesn't need to be generated from scratch, but instead will preserve all features from the original file that
the user didn't explicitely modify.

Parsing a source file involves a number of classes, such as Buffer, Lexer, Parser, and SymbolFactory.
These can be constructed with a number of parameters, to control the specific language / language dialect
(C, C++, GNU extensions, MSVC extensions, etc.).

PTree

Statement DeclaratorExpression Encoding

Node

SymbolTable

Scope

+qualified_lookup()
+unqualified_lookup()
+find()
+declare() : void
+use() : void

+declaration : Node

Symbol

FunctionScopeLocalScope Namespace Class

Processor

Parser

+parse() : Node

Buffer

+get() : char
+unget() : void
+replace()

Lexer

+get_token()
+look_ahead()
+save()
+restore()

TypeAnalysis

TemplateInstantiator

OverloadResolver TypeEvaluator

ASG

DeclarationTypeId

3.1.The Parse Tree Module
The parser's principal role is to generate a parse tree. It does that by following language-specific production
rules that are followed after encountering lexical tokens that are provided by a lexer.

5

By means of construction flags it is possible to tell the lexer to accept e.g. 'class' as a keyword (C++) or
as an identifier (C). Similarly, it is possible to configure the parser for particular rules.

The parse tree itself is a lisp-like structure. All nodes subclass PTree::Atom (for terminals) or PTree::List
(for non-terminals). A Visitor allows to traverse the parse tree based on the real run-time types of the indi-
vidual nodes (there are about 120 different PTree::Node types).

6

The C++ API

3.1.1.The Encoding class
The C++ grammar makes it quite hard to recover certain semantic information from syntactic structure.
For example, in a simple declaration individual declarators may carry part of the type information for the
variables they declare. For example,

 char *a, b, c[3];
 \

three declarators a, b, and c. The first has type char *, the second char, the third char[3]. In order
to avoid the need to analyze the whole declaration to extract the type of a declarator, the parser attaches
the type and name to declarators.

A similar argument applies to other cases, where non-local information is encoded into a node's en-
coded_name and encoded_type member.

The Encoding class needs to be able to represent full type names, and thus it seems sensible to use a
mangling similar (or even identical !) to the one developed as part of the C++ ABI standard (see C++
ABI1).

3.1.2. PTree::Display
Parse Trees tend to grow quickly, and it becomes quickly hard to debug them by simply traversing the list.
Thus, the PTree module provides a simple means to print a (sub-)tree to an output stream.

 PTree::display(node, std::cout, false, false);
 \

will print the tree referred to by node to std::cout. The third parameter is a flag indicating whether
the encodings should be printed, too. The fourth parameter indicates, whether the actual C++ type of the
node being printed should be included in the output.

Since this API turned out to be rather useful, there is a stand-alone applet that just generates a parse tree
and then prints it out using the above function.

 display-ptree [-g <output>] [-d] [-r] [-e] <input>
 \

The available options are:

-g filename Generate a dot graph and write it to the given file.

-d Print debug information (in particular traces) during the parsing.

-r Print the C++ type of the parse tree nodes.

-e Print encoded names / types for nodes such as names, declarators, etc..

1 http://www.codesourcery.com/cxx-abi/abi.html#mangling

7

The C++ API

http://www.codesourcery.com/cxx-abi/abi.html#mangling
http://www.codesourcery.com/cxx-abi/abi.html#mangling
http://www.codesourcery.com/cxx-abi/abi.html#mangling

3.2.The Symbol Table Module
A symbol table is a representation of the source code that provides a means to associate names with symbols,
i.e. objects of a specific type. Such a symbol table is a graph composed of interconnected scopes, and the
type of the scopes as well as the topology of the graph determine how the symbol lookup is performed.

Symbols are declared by the parser as soon as they are encountered, since the parser itself may need them
later to disambiguate certain syntactic constructs.

3.2.1. SymbolTable::Display
As a way to inspect the constructed symbol table, the SymbolTable module provides a simple API to
print the content of a Scope.

 SymbolTable::display(scope, std::cout);
 \

will print the scope referred to by scope to std::cout.

Again, this API turned out to be rather useful, and so there is a stand-alone applet that just generates a
symbol table and then prints it out using the above function.

 display-symbols [-d] <input>
 \

The available options are:

8

The C++ API

-d Print debug information (in particular traces) during the parsing.

3.3.The Type Analysis Module
Type analysis is required to a limitted degree during parsing, as well as during semantic analysis that may
follow. During overload resolution type analysis is needed to find the best conversion (standard or user
defined), and for partial template specialization it is needed to match certain types for which a template
has to be instantiated.

The type system consists of trees composed of Type nodes which may be looked up in terms of their encoded
names (see Section 3.1.1, “The Encoding class”) in a TypeRepository.

3.3.1.The Type Repository

3.3.2. Overload Resolution

3.3.3.The Template Repository

3.3.4.Type Evaluation

3.3.5. Constant expressions

3.4. C++ Regression Tests
The main set of C++ tests currently performed by the regression test suite is concerned with symbol lookup.
Individual tests are copies of the code from the C++ specification, mainly clause 3.4.

Most of the failing tests fail because they haven't been implemented yet, i.e. there isn't even some expected
output to compare against. As the SymbolTable module is completed, these tests should eventually all be
passed

Further, more tests should be added that cover other aspects of the parser, such as type analysis.

9

The C++ API

	Synopsis Developer's Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. Origins
	1.2. Architecture
	1.2.1. Sub-Projects
	1.2.2. Code Layout

	1.3. Current Status: Regression Test Reports

	Chapter 2. The Python API
	2.1. The Processor Pipeline
	2.2. The Parsers (Cpp, C, Cxx)
	2.3. The HTML Formatter(s)
	2.4. Python Regression Tests

	Chapter 3. The C++ API
	3.1. The Parse Tree Module
	3.1.1. The Encoding class
	3.1.2. PTree::Display

	3.2. The Symbol Table Module
	3.2.1. SymbolTable::Display

	3.3. The Type Analysis Module
	3.3.1. The Type Repository
	3.3.2. Overload Resolution
	3.3.3. The Template Repository
	3.3.4. Type Evaluation
	3.3.5. Constant expressions

	3.4. C++ Regression Tests

