Library Coq.ZArith.Wf_Z
Require Import BinInt.
Require Import Zcompare.
Require Import Zorder.
Require Import Znat.
Require Import Zmisc.
Require Import Wf_nat.
Open Local Scope Z_scope.
Our purpose is to write an induction shema for {0,1,2,...}
similar to the nat schema (Theorem Natlike_rec). For that the
following implications will be used :
Then the diagram will be closed and the theorem proved.
(n:nat)(Q n)==(n:nat)(P (inject_nat n)) ===> (x:Z)`x > 0) -> (P x) /\ || || (Q O) (n:nat)(Q n)->(Q (S n)) <=== (P 0) (x:Z) (P x) -> (P (Zs x)) <=== (inject_nat (S n))=(Zs (inject_nat n)) <=== inject_nat_complete
Then the diagram will be closed and the theorem proved.
Lemma Z_of_nat_complete :
forall x:Z, 0 <= x -> exists n : nat, x = Z_of_nat n.
Lemma ZL4_inf : forall y:positive, {h : nat | nat_of_P y = S h}.
Lemma Z_of_nat_complete_inf :
forall x:Z, 0 <= x -> {n : nat | x = Z_of_nat n}.
Lemma Z_of_nat_prop :
forall P:Z -> Prop,
(forall n:nat, P (Z_of_nat n)) -> forall x:Z, 0 <= x -> P x.
Lemma Z_of_nat_set :
forall P:Z -> Set,
(forall n:nat, P (Z_of_nat n)) -> forall x:Z, 0 <= x -> P x.
Lemma natlike_ind :
forall P:Z -> Prop,
P 0 ->
(forall x:Z, 0 <= x -> P x -> P (Zsucc x)) -> forall x:Z, 0 <= x -> P x.
Lemma natlike_rec :
forall P:Z -> Set,
P 0 ->
(forall x:Z, 0 <= x -> P x -> P (Zsucc x)) -> forall x:Z, 0 <= x -> P x.
Section Efficient_Rec.
natlike_rec2 is the same as natlike_rec, but with a different proof, designed
to give a better extracted term.
Let R (a b:Z) := 0 <= a /\ a < b.
Let R_wf : well_founded R.
Lemma natlike_rec2 :
forall P:Z -> Type,
P 0 ->
(forall z:Z, 0 <= z -> P z -> P (Zsucc z)) -> forall z:Z, 0 <= z -> P z.
A variant of the previous using Zpred instead of Zs.
Lemma natlike_rec3 :
forall P:Z -> Type,
P 0 ->
(forall z:Z, 0 < z -> P (Zpred z) -> P z) -> forall z:Z, 0 <= z -> P z.
A more general induction principle on non-negative numbers using Zlt.
Lemma Zlt_0_rec :
forall P:Z -> Type,
(forall x:Z, (forall y:Z, 0 <= y < x -> P y) -> 0 <= x -> P x) ->
forall x:Z, 0 <= x -> P x.
Lemma Zlt_0_ind :
forall P:Z -> Prop,
(forall x:Z, (forall y:Z, 0 <= y < x -> P y) -> 0 <= x -> P x) ->
forall x:Z, 0 <= x -> P x.
Obsolete version of Zlt induction principle on non-negative numbers
Lemma Z_lt_rec :
forall P:Z -> Type,
(forall x:Z, (forall y:Z, 0 <= y < x -> P y) -> P x) ->
forall x:Z, 0 <= x -> P x.
Lemma Z_lt_induction :
forall P:Z -> Prop,
(forall x:Z, (forall y:Z, 0 <= y < x -> P y) -> P x) ->
forall x:Z, 0 <= x -> P x.
An even more general induction principle using Zlt.
Lemma Zlt_lower_bound_rec :
forall P:Z -> Type, forall z:Z,
(forall x:Z, (forall y:Z, z <= y < x -> P y) -> z <= x -> P x) ->
forall x:Z, z <= x -> P x.
Lemma Zlt_lower_bound_ind :
forall P:Z -> Prop, forall z:Z,
(forall x:Z, (forall y:Z, z <= y < x -> P y) -> z <= x -> P x) ->
forall x:Z, z <= x -> P x.
End Efficient_Rec.