
1

ModSecurity 2 Data Formats
Version 2.5.10-dev1 (March 24, 2009)

Copyright © 2004-2009 Breach Security, Inc. (http://www.breach.com)

Table of Contents

Alerts .. 2

Alert Action Description .. 2

Alert Justification Description .. 3

Meta-data .. 4

Escaping .. 4

Alerts in the Apache Error Log .. 5

Alerts in Audit Logs .. 5

Audit Log ... 7

Parts .. 8

Storage Formats ... 14

Transport Protocol ... 15

The purpose of this document is to describe the formats of the ModSecurity alert messages,

transaction logs and communication protocols, which would not only allow for a better

understanding what ModSecurity does but also for an easy integration with third-party tools and

products.

http://www.breach.com

ModSecurity 2 Data Formats

2

Alerts
As part of its operations ModSecurity will emit alerts, which are either warnings (non-fatal)

or errors (fatal, usually leading to the interception of the transaction in question). Below is an

example of a ModSecurity alert entry:

Access denied with code 505 (phase 1). Match of "rx

 ^HTTP/(0\\\\.9|1\\\\.[01])$" against "REQUEST_PROTOCOL" required.

 [id "960034"] [msg "HTTP protocol version is not allowed by policy"]

 [severity "CRITICAL"] [uri "/"] [unique_id "PQaTTVBEUOkAAFwKXrYAAAAM"]

Note
Alerts will only ever contain one line of text but we've broken the above example into multiple

lines to make it fit into the page.

Each alert entry begins with the engine message, which describes what ModSecurity did and

why. For example:

Access denied with code 505 (phase 1). Match of "rx

 ^HTTP/(0\\\\.9|1\\\\.[01])$" against "REQUEST_PROTOCOL" required.

Alert Action Description
The first part of the engine message tells you whether ModSecurity acted to interrupt transaction

or rule processing:

1. If the alert is only a warning, the first sentence will simply say Warning.

2. If the transaction was intercepted, the first sentence will begin with Access denied. What

follows is the list of possible messages related to transaction interception:

• Access denied with code %0 - a response with status code %0 was sent.

• Access denied with connection close - connection was abruptly closed.

• Access denied with redirection to %0 using status %1 - a redirection to URI %0 was

issued using status %1.

3. There is also a special message that ModSecurity emits where an allow action is

executed. There are three variations of this type of message:

• Access allowed - rule engine stopped processing rules (transaction was unaffected).

• Access to phase allowed - rule engine stopped processing rules in the current phase

only. Subsequent phases will be processed normally. Transaction was not affected by

this rule but it may be affected by any of the rules in the subsequent phase.

• Access to request allowed - rule engine stopped processing rules in the current phase.

Phases prior to request execution in the backend (currently phases 1 and 2) will not

ModSecurity 2 Data Formats

3

be processed. The response phases (currently phases 3 and 4) and others (currently

phase 5) will be processed as normal. Transaction was not affected by this rule but it

may be affected by any of the rules in the subsequent phase.

Alert Justification Description
The second part of the engine message explains why the alert was generated. Since it is

automatically generated from the rules it will be very technical in nature, talking about operators

and their parameters and give you insight into what the rule looked like. But this message cannot

give you insight into the reasoning behind the rule. A well-written rule will always specify a

human-readable message (using the msg action) to provide further information.

The format of the second part of the engine message depends on whether it was generated by

the operator (which happens on a match) or by the rule processor (which happens where there

is not a match, but the negation was used):

• @beginsWith - String match %0 at %1.

• @contains - String match %0 at %1.

• @containsWord - String match %0 at %1.

• @endsWith - String match %0 at %1.

• @eq - Operator EQ matched %0 at %1.

• @ge - Operator GE matched %0 at %1.

• @geoLookup - Geo lookup for %0 succeeded at %1.

• @inspectFile - File %0 rejected by the approver script %1: %2

• @le - Operator LE matched %0 at %1.

• @lt - Operator LT matched %0 at %1.

• @rbl - RBL lookup of %0 succeeded at %1.

• @rx - Pattern match %0 at %1.

• @streq - String match %0 at %1.

• @validateByteRange - Found %0 byte(s) in %1 outside range: %2.

• @validateDTD - XML: DTD validation failed.

• @validateSchema - XML: Schema validation failed.

• @validateUrlEncoding

• Invalid URL Encoding: Non-hexadecimal digits used at %0.

• Invalid URL Encoding: Not enough characters at the end of input at %0.

• @validateUtf8Encoding

• Invalid UTF-8 encoding: not enough bytes in character at %0.

• Invalid UTF-8 encoding: invalid byte value in character at %0.

• Invalid UTF-8 encoding: overlong character detected at %0.

ModSecurity 2 Data Formats

4

• Invalid UTF-8 encoding: use of restricted character at %0.

• Invalid UTF-8 encoding: decoding error at %0.

• @verifyCC - CC# match %0 at %1.

Messages not related to operators:

• When SecAction directive is processed - Unconditional match in SecAction.

• When SecRule does not match but negation is used - Match of %0 against %1 required.

Note
The parameters to the operators @rx and @pm (regular expression and text pattern, respectively)

will be truncated to 252 bytes if they are longer than this limit. In this case the parameter in the alert

message will be terminated with three dots.

Meta-data
The metadata fields are always placed at the end of the alert entry. Each metadata field is a text

fragment that consists of an open bracket followed by the metadata field name, followed by the

value and the closing bracket. What follows is the text fragment that makes up the id metadata

field.

[id "960034"]

The following metadata fields are currently used:

1. offset - The byte offset where a match occured within the target data. This is not

always available.

2. id - Unique rule ID, as specified by the id action.

3. rev - Rule revision, as specified by the rev action.

4. msg - Human-readable message, as specified by the msg action.

5. severity - Event severity as text, as specified by the severity action. The possible

values (with their corresponding numberical values in brackets) are EMERGENCY (0),

ALERT (1), CRITICAL (2), ERROR (3), WARNING (4), NOTICE (5), INFO (6) and

DEBUG (7).

6. unique_id - Unique event ID, generated automatically.

7. uri - Request URI.

8. logdata - contains transaction data fragment, as specified by the logdata action.

Escaping
ModSecurity alerts will always contain text fragments that were taken from configuration or the

transaction. Such text fragments escaped before they are user in messages, in order to sanitise

ModSecurity 2 Data Formats

5

the potentially dangerous characters. They are also sometimes surrounded using double quotes.

The escaping algorithm is as follows:

1. Characters 0x08 (BACKSPACE), 0x0a (NEWLINE), 0x10 (CARRIAGE RETURN),

0x09 (HORIZONTAL TAB) and 0x0b (VERTICAL TAB) will be represented as \b,

\n, \r, \t and \v, respectively.

2. Bytes from the ranges 0-0x1f and 0x7f-0xff (inclusive) will be represented as

\xHH, where HH is the hexadecimal value of the byte.

3. Backslash characters (\) will be represented as \\.

4. Each double quote character will be represented as \", but only if the entire fragment

is surrounded with double quotes.

Alerts in the Apache Error Log
Every ModSecurity alert conforms to the following format when it appears in the Apache error

log:

[Sun Jun 24 10:19:58 2007] [error] [client 192.168.0.1]

 ModSecurity: ALERT_MESSAGE

The above is a standard Apache error log format. The ModSecurity: prefix is specific to

ModSecurity. It is used to allow quick identification of ModSecurity alert messages when they

appear in the same file next to other Apache messages.

The actual message (ALERT_MESSAGE in the example above) is in the same format as described

in the Alerts section.

Note
Apache further escapes ModSecurity alert messages before writing them to the error log. This means

that all backslash characters will be doubled in the error log. In practice, since ModSecurity will

already represent a single backslash within an untrusted text fragment as two backslashes, the end

result in the Apache error log will be four backslashes. Thus, if you need to interpret a ModSecurity

message from the error log, you should decode the message part after the ModSecurity: prefix

first. This step will peel the first encoding layer.

Alerts in Audit Logs
Alerts are transported in the H section of the ModSecurity Audit Log. Alerts will appear each

on a separate line and in the order they were generated by ModSecurity. Each line will be in

the following format:

Message: ALERT_MESSAGE

ModSecurity 2 Data Formats

6

Below is an example of an H section that contains two alert messages:

--c7036611-H--

Message: Warning. Match of "rx ^apache.*perl" against

 "REQUEST_HEADERS:User-Agent" required. [id "990011"] [msg "Request

 Indicates an automated program explored the site"] [severity "NOTICE"]

Message: Warning. Pattern match "(?:\\b(?:(?:s(?:elect\\b(?:.{1,100}?\\b

 (?:(?:length|count|top)\\b.{1,100}?\\bfrom|from\\b.{1,100}?\\bwhere)

 |.*?\\b(?:d(?:ump\\b.*\\bfrom|ata_type)|(?:to_(?:numbe|cha)|inst)r))|p_

 (?:(?:addextendedpro|sqlexe)c|(?:oacreat|prepar)e|execute(?:sql)?|

 makewebt ..." at ARGS:c. [id "950001"] [msg "SQL Injection Attack.

 Matched signature: union select"] [severity "CRITICAL"]

Stopwatch: 1199881676978327 2514 (396 2224 -)

Producer: ModSecurity v2.x.x (Apache 2.x)

Server: Apache/2.x.x

--c7036611-Z--

ModSecurity 2 Data Formats

7

Audit Log
ModSecurity records one transaction in a single audit log file. Below is an example:

--c7036611-A--

[09/Jan/2008:12:27:56 +0000] OSD4l1BEUOkAAHZ8Y3QAAAAH 209.90.77.54 64995

 80.68.80.233 80

--c7036611-B--

GET //EvilBoard_0.1a/index.php?c='/**/union/**/select/**/1,concat(username,

 char(77),password,char(77),email_address,char(77),info,char(77),user_level,

 char(77))/**/from/**/eb_members/**/where/**/userid=1/*http://kamloopstutor.

 com/images/banners/on.txt? HTTP/1.1

TE: deflate,gzip;q=0.3

Connection: TE, cslose

Host: www.example.com

User-Agent: libwww-perl/5.808

--c7036611-F--

HTTP/1.1 404 Not Found

Content-Length: 223

Connection: close

Content-Type: text/html; charset=iso-8859-1

--c7036611-H--

Message: Warning. Match of "rx ^apache.*perl" against

 "REQUEST_HEADERS:User-Agent" required. [id "990011"] [msg "Request

 Indicates an automated program explored the site"] [severity "NOTICE"]

Message: Warning. Pattern match "(?:\\b(?:(?:s(?:elect\\b(?:.{1,100}?\\b

 (?:(?:length|count|top)\\b.{1,100}?\\bfrom|from\\b.{1,100}?\\bwhere)

 |.*?\\b(?:d(?:ump\\b.*\\bfrom|ata_type)|(?:to_(?:numbe|cha)|inst)r))|p_

 (?:(?:addextendedpro|sqlexe)c|(?:oacreat|prepar)e|execute(?:sql)?|

 makewebt ..." at ARGS:c. [id "950001"] [msg "SQL Injection Attack.

 Matched signature: union select"] [severity "CRITICAL"]

Stopwatch: 1199881676978327 2514 (396 2224 -)

Producer: ModSecurity v2.x.x (Apache 2.x)

Server: Apache/2.x.x

--c7036611-Z--

The file consist of multiple sections, each in different format. Separators are used to define

sections:

--c7036611-A--

ModSecurity 2 Data Formats

8

A separator always begins on a new line and conforms to the following format:

1. Two dashes

2. Unique boundary, which consists from several hexadecimal characters.

3. One dash character.

4. Section identifier, currently a single uppercase letter.

5. Two trailing dashes.

Refer to the documentation for SecAuditLogParts for the explanation of each part.

Parts
This section documents the audit log parts available in ModSecurity 2.x. They are:

• A - audit log header

• B - request headers

• C - request body

• D - intended response headers (NOT IMPLEMENTED)

• E - intended response body

• F - response headers

• G - response body (NOT IMPLEMENTED)

• H - audit log trailer

• I - reduced multipart request body

• J - multipart files information (NOT IMPLEMENTED)

• K - matched rules information

• Z - audit log footer

Audit Log Header (A)
ModSecurity 2.x audit log entries always begin with the header part. For example:

--c7036611-A--

[09/Jan/2008:12:27:56 +0000] OSD4l1BEUOkAAHZ8Y3QAAAAH 209.90.77.54 64995

 80.68.80.233 80

The header contains only one line, with the following information on it:

1. Timestamp

2. Unique transaction ID

3. Source IP address (IPv4 or IPv6)

4. Source port

5. Destination IP address (IPv4 or IPv6)

ModSecurity 2 Data Formats

9

6. Destination port

Request Headers (B)
The request headers part contains the request line and the request headers. The information

present in this part will not be identical to that sent by the client responsible for the transaction.

ModSecurity 2.x for Apache does not have access to the raw data; it sees what Apache itself sees.

While the end result may be identical to the raw request, differences are possible in some areas:

1. If any of the fields are NUL-terminated, Apache will only see the content prior to the

NUL.

2. Headers that span multiple lines (feature known as header folding) will be collapsed into

a single line.

3. Multiple headers with the same name will be combined into a single header (as allowed

by the HTTP RFC).

Request Body (C)
This part contains the request body of the transaction, after dechunking and decompression (if

applicable).

Intended Response Headers (D)
This part contains the status line and the request headers that would have been delivered to the

client had ModSecurity not intervened. Thus this part makes sense only for transactions where

ModSecurity altered the data flow. By differentiating before the intended and the final response

headers, we are able to record what was internally ready for sending, but also what was actually

sent.

Note
This part is reserved for future use. It is not implemented in ModSecurity 2.x.

Intended Response Body (E)
This part contains the transaction response body (before compression and chunking, where used)

that was either sent or would have been sent had ModSecurity not intervened. You can find

whether interception took place by looking at the Action header of the part H. If that header

is present, and the interception took place in phase 3 or 4 then the E part contains the intended

response body. Otherwise, it contains the actual response body.

Note
Once the G (actual response body) part is implemented, part E will be present only in audit logs that

contain a transaction that was intercepted, and there will be no need for further analsys.

ModSecurity 2 Data Formats

10

Response Headers (F)
This part contains the actual response headers sent to the client. Since ModSecurity 2.x for

Apache does not access the raw connection data, it constructs part F out of the internal Apache

data structures that hold the response headers.

Some headers (the Date and Server response headers) are generated just before they are sent

and ModSecurity is not able to record those. You should note than ModSecurity is working as

part of a reverse proxy, the backend web server will have generated these two servers, and in

that case they will be recorded.

Response Body (G)
When implemented, this part will contain the actual response body before compression and

chunking.

Note
This part is reserved for future use. It is not implemented in ModSecurity 2.x.

Audit Log Trailer (H)
Part H contains additional transaction meta-data that was obtained from the web server or from

ModSecurity itself. The part contains a number of trailer headers, which are similar to HTTP

headers (without support for header folding):

1. Action

2. Apache-Error

3. Message

4. Producer

5. Response-Body-Transformed

6. Sanitised-Args

7. Sanitised-Request-Headers

8. Sanitised-Response-Headers

9. Server

10.Stopwatch

11.WebApp-Info

Action
The Action header is present only for the transactions that were intercepted:

Action: Intercepted (phase 2)

The phase information documents the phase in which the decision to intercept took place.

ModSecurity 2 Data Formats

11

Apache-Error
The Apache-Error header contains Apache error log messages observed by ModSecurity,

excluding those sent by ModSecurity itself. For example:

Apache-Error: [file "/tmp/buildd/apache2-2.0.54/build-tree/apache2/server/

 core.c"] [line 3505] [level 3] File does not exist: /var/www/www.

 modsecurity.org/fst/documentation/modsecurity-apache/2.5.0-dev2

Message
Zero or more Message headers can be present in any trailer, and each such header will represent

a single ModSecurity warning or error, displayed in the order they were raised.

The example below was broken into multiple lines to make it fit this page:

Message: Access denied with code 400 (phase 2). Pattern match "^\w+:/" at

 REQUEST_URI_RAW. [file "/etc/apache2/rules-1.6.1/modsecurity_crs_20_

 protocol_violations.conf"] [line "74"] [id "960014"] [msg "Proxy access

 attempt"] [severity "CRITICAL"] [tag "PROTOCOL_VIOLATION/PROXY_ACCESS"]

Producer
The Producer header identifies the product that generated the audit log. For example:

Producer: ModSecurity for Apache/2.5.5 (http://www.modsecurity.org/).

ModSecurity allows rule sets to add their own signatures to the Producer information

(this is done using the SecComponentSignature directive). Below is an example of the

Producer header with the signature of one component (all one line):

Producer: ModSecurity for Apache/2.5.5 (http://www.modsecurity.org/);

 MyComponent/1.0.0 (Beta).

Response-Body-Transformed
This header will appear in every audit log that contains a response body:

Response-Body-Transformed: Dechunked

The contents of the header is constant at present, so the header is only useful as a reminder that

the recorded response body is not identical to the one sent to the client. The actual content is the

same, except that Apache may further compress the body and deliver it in chunks.

Sanitised-Args
The Sanitised-Args header contains a list of arguments that were sanitised (each byte of

their content replaced with an asterisk) before logging. For example:

ModSecurity 2 Data Formats

12

Sanitised-Args: "old_password", "new_password", "new_password_repeat".

Sanitised-Request-Headers
The Sanitised-Request-Headers header contains a list of request headers that were

sanitised before logging. For example:

Sanitised-Request-Headers: "Authentication".

Sanitised-Response-Headers
The Sanitised-Response-Headers header contains a list of response headers that were

sanitised before logging. For example:

Sanitised-Response-Headers: "My-Custom-Header".

Server
The Server header identifies the web server. For example:

Server: Apache/2.0.54 (Debian GNU/Linux) mod_ssl/2.0.54 OpenSSL/0.9.7e

This information may sometimes be present in any of the parts that contain response headers,

but there are a few cases when it isn't:

1. None of the response headers were recoreded.

2. The information in the response headers is not accurate because server signature masking

was used.

Stopwatch
The Stopwatch header provides certain diagnostic information that allows you to determine

the performance of the web server and of ModSecurity itself. It will typically look like this:

Stopwatch: 1222945098201902 2118976 (770* 4400 -)

Each line can contain up to 5 different values. Some values can be absent; each absent value will

be replaced with a dash.

The meanings of the values are as follows (all values are in microseconds):

1. Transaction timestamp in microseconds since January 1st, 1970.

2. Transaction duration.

3. The time between the moment Apache started processing the request and until phase 2

of ModSecurity began. If an asterisk is present that means the time includes the time it

took ModSecurity to read the request body from the client (typically slow). This value

can be used to provide a rough estimate of the client speed, but only with larger request

bodies (the smaller request bodies may arrive in a single TCP/IP packet).

ModSecurity 2 Data Formats

13

4. The time between the start of processing and until phase 2 was completed. If you

substract the previous value from this value you will get the exact duration of phase 2

(which is the main rule processing phase).

5. The time between the start of request processing and util we began sending a fully-

buffered response body to the client. If you substract this value from the total transaction

duration and divide with the response body size you may get a rough estimate of the

client speed, but only for larger response bodies.

WebApp-Info
The WebApp-Info header contains information on the application to which the recorded

transaction belongs. This information will appear only if it is known, which will happen if

SecWebAppId was set, or setsid or setuid executed in the transaction.

The header uses the following format:

WebApp-Info: "WEBAPPID" "SESSIONID" "USERID"

Each unknown value is replaced with a dash.

Reduced Multipart Request Body (I)
Transactions that deal with file uploads tend to be large, yet the file contents is not always relevant

from the security point of view. The I part was designed to avoid recording raw multipart/

form-data request bodies, replacing them with a simulated application/x-www-form-

urlencoded body that contains the same key-value parameters.

The reduced multipart request body will not contain any file information. The J part (currently

not implemented) is intended to carry the file metadata.

Multipart Files Information (J)
The purpose of part J is to record the information on the files contained in a multipart/

form-data request body. This is handy in the cases when the original request body was not

recorded, or when only a reduced version was recorded (e.g. when part I was used instead of

part C).

Note
This part is reserved for future use. It is not implemented in ModSecurity 2.x.

Matched Rules (K)
The matched rules part contains a record of all ModSecurity rules that matched during transaction

processing. You should note that if a rule that belongs to a chain matches then the entire chain

ModSecurity 2 Data Formats

14

will be recorded. This is because, even though the disruptive action may not have executed, other

per-rule actions have, and you will need to see the entire chain in order to understand the rules.

This part is available starting with ModSecurity 2.5.x.

Audit Log Footer (Z)
Part Z is a special part that only has a boundary but no content. Its only purpose is to signal the

end of an audit log.

Storage Formats
ModSecurity supports two audit log storage formats:

1. Serial audit log format - multiple audit log files stored in the same file.

2. Concurrent audit log format - one file is used for every audit log.

Serial Audit Log Format
The serial audit log format stores multiple audit log entries within the same file (one after

another). This is often very convinent (audit log entries are easy to find) but this format is only

suitable for light logging in the current ModSecurity implementation because writing to the file

is serialised: only one audit log entry can be written at any one time.

Concurrent Audit Log Format
The concurrent audit log format uses one file per audit log entry, and allows many transactions

to be recorded at once. A hierarchical directory structure is used to ensure that the number of

files created in any one directory remains relatively small. For example:

$LOGGING-HOME/20081128/20081128-1414/20081128-141417-

 egDKy38AAAEAAAyMHXsAAAAA

The current time is used to work out the directory structure. The file name is constructed using

the current time and the transaction ID.

The creation of every audit log in concurrent format is recorded with an entry in the concurrent

audit log index file. The format of each line resembles the common web server access log format.

For example:

192.168.0.111 192.168.0.1 - - [28/Nov/2008:15:06:32 +0000]

 "GET /?p=\\ HTTP/1.1" 200 69 "-" "-" NOfRx38AAAEAAAzcCU4AAAAA

 "-" /20081128/20081128-1506/20081128-150632-NOfRx38AAAEAAAzcCU4AAAAA

 0 1183 md5:ffee2d414cd43c2f8ae151652910ed96

The tokens on the line are as follows:

1. Hostname (or IP address, if the hostname is not known)

ModSecurity 2 Data Formats

15

2. Source IP address

3. Remote user (from HTTP Authentication)

4. Local user (from identd)

5. Timestamp

6. Request line

7. Response status

8. Bytes sent (in the response body)

9. Referrer information

10.User-Agent information

11.Transaction ID

12.Session ID

13.Audit log file name (relative to the audit logging home, as configured using the

SecAuditLogStorageDir directive)

14.Audit log offset

15.Audit log size

16.Audit log hash (the has begins with the name of the algorithm used, followed by a colon,

followed by the hexadecimal representation of the hash itself); this hash can be used to

verify that the transaction was correctly recorded and that it hasn't been modified since.

Note
Lines in the index file will be up to 3980 bytes long, and the information logged will be reduced to

fit where necessary. Reduction will occur within the individual fields, but the overall format will

remain the same. The character L will appear as the last character on a reduced line. A space will

be the last character on a line that was not reduced to stay within the limit.

Transport Protocol
Audit logs generated in multi-sensor deployments are of little use if left on the sensors. More

commonly, they will be transported to a central logging server using the transport protocol

described in this section:

1. The transport protocol is based on the HTTP protocol.

2. The server end is an SSL-enabled web server with HTTP Basic Authentication

configured.

3. Clients will open a connection to the centralisation web server and authenticate (given

the end-point URI, the username and the password).

ModSecurity 2 Data Formats

16

4. Clients will submit every audit log in a single PUT transaction, placing the file in the

body of the request and additional information in the request headers (see below for

details).

5. Server will process each submission and respond with an appropriate status code:

a. 200 (OK) - the submission was processed; the client can delete the corresponding

audit log entry if it so desires. The same audit log entry must not be submitted again.

b. 409 (Conflict) - if the submission is in invalid format and cannot be processed. The

client should attempt to fix the problem with the submission and attempt delivery

again at a later time. This error is generally going to occur due to a programming

error in the protocol implementation, and not because of the content of the audit log

entry that is being transported.

c. 500 (Internal Server Error) - if the server was unable to correctly process the

submission, due to its own fault. The client should re-attempt delivery at a later time.

A client that starts receiving 500 reponses to all its submission should suspend its

operations for a period of time before continuing.

Note
Server implementations are advised to accept all submissions that correctly implement the protocol.

Clients are unlikely to be able to overcome problems within audit log entries, so such problems are

best resolved on the server side.

Note
When en error occurs, the server may place an explanation of the problem in the text part of the

response line.

Request Headers Information
Each audit log entry submission must contain additional information in the request headers:

1. Header X-Content-Hash must contain the audit log entry hash. Clients should expect

the audit log entries to be validated against the hash by the server.

2. Header X-ForensicLog-Summary must contain the entire concurrent format index

line.

3. The Content-Lenght header must be present and contain the length of the audit log

entry.

	ModSecurity 2 Data Formats
	Table of Contents
	Alerts
	Alert Action Description
	Alert Justification Description
	Meta-data
	Escaping
	Alerts in the Apache Error Log
	Alerts in Audit Logs

	Audit Log
	Parts
	Audit Log Header (A)
	Request Headers (B)
	Request Body (C)
	Intended Response Headers (D)
	Intended Response Body (E)
	Response Headers (F)
	Response Body (G)
	Audit Log Trailer (H)
	Action
	Apache-Error
	Message
	Producer
	Response-Body-Transformed
	Sanitised-Args
	Sanitised-Request-Headers
	Sanitised-Response-Headers
	Server
	Stopwatch
	WebApp-Info

	Reduced Multipart Request Body (I)
	Multipart Files Information (J)
	Matched Rules (K)
	Audit Log Footer (Z)

	Storage Formats
	Serial Audit Log Format
	Concurrent Audit Log Format

	Transport Protocol
	Request Headers Information

