e —
BREACH

ModSecurity® Reference Manual

Version 2.5.10 (Sep 18, 2009)
Copyright © 2004-2009 Breach Security, Inc. (http://www.breach.com)

Table of Contents

10T U Tox £ o o SRR 8
HTTP Traffic LOGOiNg ..ccceeeeeeeeeeeeeee e, 8
Real-Time Monitoring and Attack Detectionccccvvveveeeee i, 8
Attack Prevention and Just-in-time PatChingcoccvrveiiiiiieiiiiiice e 8
Flexible RUIE ENQINEcooiiiiieiiee e 9
Embedded-mode DeploymMENtoeeeeiiiiiiiiiiieiieeeeeee e ee e ee e ee e e e eeeeeeeeeees 9
Network-based DEPIOYMENToeviiiiiiiiiieiee e 10
POFBDITITY ... 10
(Lol =] oo PP T PP PPPPRPPON 10

ModSecurity Core RUIES™cooiiiiiieieieeeeeeeeeeeeeeeeee et e e e e e e e e e e e e e e eeeeeeeees 11
OVEBIVIBIW .ttt ettt e et e e sttt e e e st e e e e b et e e e ebbe e e e e annbeee s 11
(0o =l U 1S3 0 0] = | S 11

LS = = 1o PSS 12

COoNfiQUIalioN DITECLIVESuuvveveuereieueerieiesseeereraeeereneeeereererrsreerereerenrnrrrrrernrernrnnrrnrnrrrnnnnne 15
1T o0 Yo o o TP PPOPPPRTPPRIS 15
SECAr QUITEBNT SEPAI At OF et 16
SECAUI T ENQGI NE oo 16
TS oV Lo | 1 Yo 17
LYo VU o L o 1o T 2 PRSP 17
SECAUdI t LOGD I IMDAE ..o 18

http://www.breach.com

ModSecurity® Reference Manual

SeCAUdi t LOGFi | @MDAE ..o 18
TS Y o N0 Lo [I Yo = | A TP 19
SecAudi t LogRel evant St at USccooocciiiiiiiiie e 20
SECAUdI t LOGSE OF QDI I ..eiiiiiiiiie et 20
SECAUAI T LOGTY PO oottt 21
SecCacheTr ansf or nat i ons (Deprecated/Experimental)ccccccvvvinininnnnnnnnns 21
ST ToL @ g o o] B I I P PUPRPRPPPRRR 22
SeCCoNPONENT Si GNAL UF € ..ooiiiiiiiiieiiie e 23
SeCcCont €Nt I NJ ECTT ON oo 23
SECCOO0KIT EFOF MAL ..o e e e 23
SECDAL ADH I i e e aa 24
SECDEDUGLOG i 24
SeCDebUGLOGLEVE] . 24
SecDef AUl T ACT T ON oo 25
SECGEOLOOKUPDD oo e e 25
SECGUAN Ai ANLOG woiiiiiiiiieeiiee et 26
ST o3 1Y =Y g 2= PSR ST 26
SECPAT Pr ot @CT i 27
SeCPdf Prot @Ct MBt NOdooiiiiiiiiiieee e 27
SECPAf Prot @CE SECT 1 i e e e 28
SecPdf Prot @Ct Ti MBOUL ..o e e 28
SecPdf Prot eCt TOKENNAMEuiiiiiiiii e 28
SECREQUEST BOAYACCESS ittt e e e e e e e e sanaeaes 29
SeCReqUEST BOOYLI M T oo 29
SecRequest BOAYNOFI | @SLi M T oo 30
SecRequest Bodyl NMENMDr YLI M T ... 30
SecRespoNsSeBOAYLI Mt .o 30
SecResponNsSeBodyLi Mt ACT T ON oo 31
SeCReSPONSEBOAYM MBTYPE oot 31
SecResponseBodyM meTypesC earcocceeii i, 32
SECRESPONSEBOUYACCESS ooiiiiieiiiiiieeee et e e e e ee e 32
ST o3 U RS 32
SECRUI €1 NNET it ANCE oo 35
SECRUI EBENQGI N e aa e ae e aaa s raenrasnrnnnnnnnnnnnnns 37
SECRUI €EREMDVEBY | A ..oovieiiiieecccee e a e 37
SECRUI EREMDVEBYIMEQ ..eeiiiiiiiiiie e 37
SecRul eScri pt (EXPerimental)coooiiiiieiiiiiie e 38
SecRul eUpdat eACt i ONBY I dovvviiiiiiiiiiiiiiiiiiiiiieeaee e 40
SECSEIr VA Si gNAL U © oooiiiiiiiiee et e e e s e e e e e e e s eaaeeeas 40

ModSecurity® Reference Manual

ST To 11 01 I P PP PP UUP PP PPPPRPRPPPRIN 41
SecUpl 0adDi I oo 41
SecUpl 0adFi | €EMDAE ...uviieeei e 41
SecUpl 0adKEEPFI | €S ..o 42
SECVEDADPL O e 42
Processing PhaSESccooooii i 44
Phase REQUESE HEAOEN'Sciii et e e e 45
Phase REQUESE BOOYcooiiiiiiiiiiiie et 45
Phase RESPONSE HEBAEN'Scooiiiiieiiiie e 45
Phase RESPONSE BOAYuvvurerriuiiiiiiieeiunnnessnnensresenernsenensesnsmeesrensnsmsnnennsnsmrrnnrnrnmnnne 46
0= S T oo o 1 o USSR 46
RV === PRSP 47
ARGS ..ot e e e e e e et e e e e ettt e e e e taeeeeannraeeeeanraeeeaans 47
ARGS_COMBI NED _SI ZEeiiiieiiiiiee ettt et e e e e 48
ARGS _INANES ...ttt et e e st e e e ettt e e e sbb e e e e s nnnae e s 48
ARGS _GET ooiiiiieiiiiii ettt e et e e e e e e ettt e e e ettt e e s et e e e e e nba e e e e e nraeaeaanraeeeeanes 48
ARGS _GET _NAMESooiiiiiiie ettt ettt e sttt e e e st e e e s st e e e e e st e e e e ansteeeeennsaeeeeannaeeas 48
S T (@ S PR 48
ARGS _POST_NANESoeiiieiiitiie ettt ettt ettt e e s bb e e e ssba e e e s sbaeeeeans 48
AUTH TYPE ...ttt e e e e e e e e et e e e e e ante e e e e e naneaeeannes 48
I YRR 49
T T R 49
FI LES _COVBI NED_SI ZE ...ttt 49
FILES NAMES ..ottt e e e et e e e et a e e st e e e e e snsaeaeesannnneeeans 49
FILES SIZES ...ttt et e e et e e e s e e e e ansaee e e e nnnaeeeeans 49
FILES _TIMPNANESooiiiitiiiee ittt et ettt e et e e e st e e e s snseee e e snnnneeeesnnneeas 50
L€ PP PPTPPRP 50
HI GHEST _SEVERI TY oottt ettt e et e e e n e e e sntaaa e e nnnnaeeeanns 50
IMATCHED VAR ...ttt e e e e ettt e e e e nta e e e snseeeeesnsneaeeeansaeeeeans 51
MATCHED VAR _NAMEooiitiiieeiiiiiee ettt e e st e e st e e e st e e s asaeeeeasnnseeaeannseeeeeanns 51
MODSEC BUI LD ...ttt e s 51
MULTI PART_CRLF_LF _LINES ...ooiiiiiiie ettt 51
MULTI PART_STRI CT_ERROR ...ooiiiiiiie ettt e see et a e e e s annnaeee s 51
MULTI PART_UNVATCHED BOUNDARYccoiitiiieiiiiiieeesiieee s siiee e snieee e 52
PATH T INFO ..ttt e et e et b e e e s b e e e s e 53
QUERY _STRI NG ...eeiiiiiiiiee ettt st a e e et e e e s sntaa e e e s nssaeaeaasnraaeesansaeeeeanes 53
REMOTE_ADDRootiiiitiiteeeiiiieeeasitteeeaasteeaeassaeeeeasssseeesanssaeeeesnsseeeeasnsseneessnsseeeeans 53
REMOTE_HOST ...ceiiiieiiitiee ettt e et a e s et e e e et e e e e nnsae e e e e nnnaeeeeans 53
REMOTE_PORT ...ttt ettt ettt ettt e e s et e e s et e e e s nnbba e e e s nnbneeeeans 53

ModSecurity® Reference Manual

REMOTE_USER ...ttt eeeeseeeseeeseeseeseeesees s esseeseesses e eseeeeeasseeseeesesseeseseneesens 53
REQBODY_PROCESSORoovoeeoeeeeeeeeseeeeeeeseeseeseeesees e eseesse e esesesees s eseesseesseeseees 54
REQBODY_PROCESSOR_ERRORcovoveeeeeeeeeeeeeeeeeseeeseeeseeeseeesees s seese s s 54
REQBODY_PROCESSOR _ERROR IMBG ...oovoeeeveeeeeeeeeeeeeeeeeeeeseseeeseseseseesseeseeseees 54
REQUEST _BASENANEcooveeeeeeeeeeeeeeeeeeseeseeesees s es e esessssesseesesesesseeseeeseesseesesesens 54
REQUEST _BODY ...oeeveeeeeeeeeseeeeseeeseeeseeseesseesseeseeeseseseeseeeseesseseessesesesseeseeeseseeeses 55
REQUEST_COOKI ES ..o teeeeeeeeeeeeseeesess e eeees s esseese s eseesseeseesse e aseessenenas 55
REQUEST _COOKI ES_ NANESccoveeeeeeeeeeeeeeeeseeseeseeeseseeeseeeeeesseesseeseeseeeseseseesens 55
REQUEST _FI LENANEvooveeeeeeeeee e eeeee e eseeese e s es e esese s esseesesesesseeseeeseesseeseeenens 55
REQUEST _HEADERSooveeiveteeeseeeeeeeeesseeesesseeeseessesssesseseseeseseseesseeseessesesasesssenenes 56
REQUEST _HEADERS. NAVESooveeeeeeeeeeeeeeeeeeeeeeeseeeeees e ssee s e eees e esesseeesesse 56
REQUEST LI NE oot eeeeeeee e e eee s eseeeses e eseeeee s eseee s eseeseeesesseseeeseseenes 56
REQUEST _IVETHOD w..oovoeeveeeeeeeeeeeeeeseeesee e es s s seseseseseeesees e ssesesessseseseseseeseees 56
REQUEST _PROTOCOL ..ot eeeeeeees e eseeeseee e es e aseees s eseseseesseeseseseseeeseeesos 56
REQUEST _URD oottt es e es e eeees e esess e 57
REQUEST _URL _RAW. ... oot eeeeeees s eees e seeese s eseeeseseesseeesaseeeseeenns 57
RESPONSE._ BODYveveeeeeeeeseeseeeeeseeeseeseeeseseseesseessesssesseeseseseesseessesseesesaseseseesnes 57
RESPONSE_ CONTENT _LENGTH ..ot eeeeeeveeseeeeeeeeeeseeeseeseesees s seeeseeeseeenes 57
RESPONSE,_ CONTENT_TYPE ...coeveeeeeeeeeeeeeeeeee e ee e eeee e ss e 57
RESPONSE, HEADERSooovoveeveeee e eeeese s eseeeeeseeseessseseesseeesesseeseeese s eseeeeens 58
RESPONSE._ HEADERS. NAVESooveoeveeeeeeeeeseeseeeseeeseeseeeseseseessseseeeseesseaseseseeeenees 58
RIESI=10 NSI=H =120 0 ©.0 IO 58
RESPONSE,_ STATUS ... teeeeeeeeeeeeeeeese s eseee s see e s ese e eseesse e s eseeenenas 58
RULE ..ottt es e e s s s s e e e e et e e e e s ee s e es e s s ees e en e 58
SCRI PT_BASENANEvooveeeeeeeeeeeseeeeeeseeeseeesees e eseeeseesseeseeesessseeseeesessesseseseesens 59
SCRI PT_FI LENANE ..ot seee s es e v s eseeeee e eees e s s eseeese e 59
SCORI PTG D oottt ee e ee et e s s ee s ee e s eseeere 59
SCRI PT_GROUPNANEoooveeeeeeeeeeeeeee e eeeeeeeseeeseeeseeseeeseeeseeseseseeess s eseeeseesenees 59
SCORI PT_IMODE ..ottt eeeee e eseeeeeee s eseee s es e seees s eseeess s esesese s eseeeseeseeeseees 59
SCORI PT_UI D oot s s es et st es e s e es s e es e s e es e ese e 60
SCRI PT_USERNANEocoveeeeeeeeeeeeeeeeeeseeeeeeseeeseesseeeses e sseesessees e es e sseeee s 60
SERVER ADDRvooeeeeeeeeeeeeeeeeoesees e eseeesese s eseesseeessas e esseessesseesesessas s eseeessesseeseees 60
SERVER NANEoveoeeeeeeveeeeeeeeesees e eseeeseeeseeseeeseeessas e eseeessesseeseseseesseseeeseeseeeseees 60
SERVER _PORT ..veoveeeeeseeeeees e eseeeeees e eseeeseseseesseeseeesses e eseeeseesseesesesees s eeeseessees e 60
SESSI ON ..ot eee st e et 61
ST IsT e N 0 TP 61
T VE oottt e e e e e e e e ee s et seee s ee et ee s et e st ee et er e 61
THVE_DAY eoveeeeeeeeeeeeeee e eeeee e es e s e es et eee s es e es e s es e s ee s s eses e s s eseeeeeseenes 61
TIVE_EPOCH oottt ee s ee e eee s es e es e ee e eseee e 61

ModSecurity® Reference Manual

TEME _HOUR et e e e e e e e et e e e e e e e e s e e aneees 61
TEIME M N e e e e e e e e e st e e e e e e e e s s aantbaeeeeeeesaananes 62
BT S © SR PRPRR 62
TEIE _SEC ..ttt ettt e ettt e e e e e e e et e e e e e e e s seaabbaeeeeeeeseananes 62
TEIME _MDAY ettt e e e e e e e e e e e e et e e e e e e e e e e e eabbrreeeeaaeesaaaneees 62
TIME _YEAR ..ottt e e e e e s e et e e e e e e e e e e sat b e e e e e e e e e s s e annees 62
10 S 62
USERI D oottt e e e e ettt e e e e e e e et b b e e e e e e e e e eeaarrreaaaaaeas 63
VAEBAPPI D ..ottt e e e e e e e e et e e e e e e et rrreaaaaaeas 63
VEEBSERVER ERROR LOGttt e et e e e e e annnaes 63
1Y SRR PPEPRR 63
Transformation fUNCLIONS ... 66
DASEBADECOAE ..o ———————— 66
DASEBAENCOAE ..o ——————— 66
CONMPI €SSWAI 1 ESPACE oo e e raae s 66
CSSDECOUR ... 67
E€SCAPESEUDECOUE ...oiiiiiiiiiie et 67
NEXDECOUE oo 67
NEXENCOTE ... e e e s e e e e e e s s ar e e e e e e e 67
Nt M ENE T T YDECOAE ..o 67
J SDECOUE .. 67
=Y T) 0 PPN 68
01T T o T = SRR PRSRP 68
110 1TSS O U SSTRRRRPO 68
[0 0 1< PP 68
0T 0= L EST = = A o 68
NOF IMAL i SEPAt W N e 68
PAr i tYEVENTDI T oo 68
PAr i tYOUATDI T e 68
pari tyZero7bit . 68
(=T 0 0)V = T NN PP 68
FeMDVEWAT T @SPACE ..o e e aaes 69
FePl ACECOMITENT 'S .oiiiiiiiiiie ittt 69
Fepl aceNUl | S s 69
U Y o o Yo P SURRR U PRSRP 69
UP I DECOAEUNI oo 69
UL ENCOAE oo 69
S AL e ——————————————————— 69
L I 12 = S S PPRPRR 69

ModSecurity® Reference Manual

EE T TR Gt s 70
L T 0 SRR 70
ACTIONS .ttt ettt e bt e e e b b et e e e bt e e s e n e e e e e b e e e e e 71
= | I 1 SRS OURSRRR 71
E210] o< oo [P PSP PP PPPRPP PO 72
AUAT T 1 00t —————— 72
DI OCK e e 73
o= T o) A1 PP 74
(o3 0 - I o PSP SUURRRR 74
o S SR UT R SOPPRRTR 75
(0 1= 0 PSR 76
JEPI ECAL BV AT ittt e e e e s e e e nnbnee e e e 76
(0] g0 o PP PPPRRPPPP 76
LD =T o TRTRTTRTPRPRRRRRTN 77
g o TI =1VZ- U PR 77
L 78
0 1 o o R SPPEER 78
0 o 79
oo Lo F= 1 - TSR PPRRPRR 79
10 o TN 79
0 T 1 X o o PSSR 80
NOAUAT T 1 00 oiiiieiiee e ————— 80
T] 1o T PR 80
1= 3PP 81
PAUSE e 81
PRASE oo 81
1= 0= oo SRR 82
Pl DX Y it 82
=0 LI =T o PSS 82
5RO 83
XY LI A=Y= A G o SRR 83
SANi 11 SEMAL CHEA ..eoveeiiiiiee e 83
Sani ti SEREQUEST HEAUETocooiiiiieiiee e 84
sanitiseResponseHeadercccooiii 84
LY=LV A= S T SRR PRRRR 84
£ = 1 Lo SR 85
LS = = o P 85
SO BNV e 85
SO VAl e 86

ModSecurity® Reference Manual

] G PP PPPPRPR PP 86
LS T A = 87
Sl AL US oo 87
S PTPRR 88
[4E= T PP 88
D 1 I BT PRSP 88
1001 = (0] £ TSP SPRPPPRIN 89
DEGI NSW TN e 89
(o0 1 A= VI 0 =SSR 89
ENASWW TN et e e e e e e e s e e e e e e e 89
L= o PP 89
L0 [P P PP P PP PP PP PP PP PP PPPPPPPPPPPRPRPIN 90
(o]=To] I oTo] QU] o R PP P PP P PP PP PPPPRPRPRPRIN 90
o | 90
I NSPECT Fi | @ e e e e 20
= SRR 91
PSPPSR 91
1 P 91
o0 S0 1 o I = SRR 92
0 | SR 92
0 PP 92
LS I = o [93
val i dat @Byt ERANGE ..o 93
V= U e = = I 0 SRR PPRERR 94
Val | dAt @SCREIMA ...t e e 94
(V= U o F= Y =1 g =g Yo o To F I o Yo 94
val i dat eUt f BENCOAI NG .ovveviiee i 95
A=Y ST YA O OO PP PP O PPPRPRPPPPRPTIN 95
1 I S 0 o RS 95
= o Lo T T 0 1 o o PP 97
PErSIStANt SEOTAJEeevvieiieiie et e e r e e e e e e s e r e e e e e e e aaaaes 98
MiISCEIANEOUS TOPICS ...eeeiueieieeeiiiiie e ettt e ettt e sttt e ettt e et e e s st e e e et e e e e annnneas 99
IMPEedanCe MISMEECHoiiiiiiiie i 99

ModSecurity® Reference Manual

Introduction

ModSecurity isaweb application firewall (WAF). With over 70% of attacks now carried out over
the web application level, organisations need all the help they can get in making their systems
secure. WAFs are deployed to establish an increased external security layer to detect and/or
prevent attacks before they reach web applications. ModSecurity provides protection from a
range of attacks against web applications and allows for HTTP traffic monitoring and real-time
analysis with little or no changes to existing infrastructure.

HTTP Traffic Logging

Web servers are typically well-equipped to log traffic in a form useful for marketing analyses,
but fall short logging traffic to web applications. In particular, most are not capable of logging
the request bodies. Your adversaries know this, and that is why most attacks are now carried
out via POST requests, rendering your systems blind. ModSecurity makesfull HTTP transaction
logging possible, allowing complete requests and responses to be logged. Its logging facilities
also alow fine-grained decisions to be made about exactly what is logged and when, ensuring
only the relevant datais recorded. As some of the request and/or response may contain sensitive
datain certain fields, ModSecurity can be configured to mask these fields before they are written
to the audit log.

Real-Time Monitoring and Attack Detection

Inaddition to providing logging facilities, ModSecurity can monitor theHT TP trafficinreal time
in order to detect attacks. In this case, ModSecurity operates as a web intrusion detection tool,
allowing you to react to suspicious events that take place at your web systems.

Attack Prevention and Just-in-time Patching

ModSecurity can also act immediately to prevent attacks from reaching your web applications.
There are three commonly used approaches:

1. Negative security model. A negative security model monitors requests for anomalies,
unusua behaviour, and common web application attacks. It keeps anomaly scores for
each request, | P addresses, application sessions, and user accounts. Requests with high
anomaly scores are either logged or rejected altogether.

2. Positive security model. When apositive security model is deployed, only requests that
are known to be valid are accepted, with everything else rejected. This model requires
knownledge of the web applications you are protecting. Therefore a positive security
model works best with applications that are heavily used but rarely updated so that
maintenance of the model is minimized.

ModSecurity® Reference Manual

3. Known weaknesses and vulnerabhilities. Its rule language makes ModSecurity an ideal

external patching tool. External patching (sometimes referred to as Virtual Patching)
is about reducing the window of opportunity. Time needed to patch application
vulnerabilities often runs to weeks in many organisations. With ModSecurity,
applications can be patched from the outside, without touching the application source
code (and even without any access to it), making your systems secure until a proper
patch is applied to the application.

Flexible Rule Engine

A flexible rule engine sits in the heart of ModSecurity. It implements the ModSecurity
Rule Language, which is a specialised programming language designed to work with HTTP
transaction data. The ModSecurity Rule Language is designed to be easy to use, yet flexible:
common operations are simple while complex operations are possible. Certified ModSecurity
Rules, included with ModSecurity, contain acomprehensive set of rulesthat implement general -
purpose hardening, protocol validation and detection of common web application security issues.
Heavily commented, these rules can be used as a learning tool.

Embedded-mode Deployment

M odSecurity isan embeddable web application firewall, which meansit can be deployed as part
of your existing web server infrastructure provided your web servers are Apache-based. This
deployment method has certain advantages:

1

No changesto existing network. It only takes afew minutes to add M odSecurity to your
existing web servers. And because it was designed to be completely passive by default,
you are free to deploy it incrementally and only use the features you need. It is equally
easy to remove or deactivate it if required.

No single point of failure. Unlike with network-based deployments, you will not be
introducing a new point of failureto your system.

Implicit load balancing and scaling. Because it works embedded in web servers,
ModSecurity will automatically take advantage of the additional load balancing and
scalability features. Y ou will not need to think of load balancing and scaling unless your
existing system needs them.

Minimal overhead. Because it works from inside the web server process there is
no overhead for network communication and minimal overhead in parsing and data
exchange.

No problem with encrypted or compressed content. Many DS systems have difficulties
analysing SSL traffic. Thisis not a problem for ModSecurity because it is positioned to
work when the traffic is decrypted and decompressed.

ModSecurity® Reference Manual

Network-based Deployment
M odSecurity worksequally well when deployed as part of an A pache-based reverse proxy server,
and many of our customers choose to do so. In this scenario, oneinstallation of ModSecurity can
protect any number of web servers (even the non-Apache ones).

Portability
ModSecurity is known to work well on a wide range of operating systems. Our customers are
successfully running it on Linux, Windows, Solaris, FreeBSD, OpenBSD, NetBSD, AlX, Mac
OS X, and HP-UX.

Licensing
M odSecurity isavailable under two licenses. Users can chooseto usethe software under theterms
of the GNU General Public Licenseversion 2 (licencetext isincluded with thedistribution), asan
Open Source/ Free Software product. A range of commercial licensesis aso available, together
with a range of commercial support contracts. For more information on commercial licensing
please contact Breach Security.

Note
ModSecurity, mod_security, ModSecurity Pro, and ModSecurity Core Rules are trademarks or
registered trademarks of Breach Security, Inc.

10

ModSecurity® Reference Manual

ModSecurity Core Rules™

Overview

Core

ModSecurity is aweb application firewall engine that provides very little protection on its own.
In order to become useful, ModSecurity must be configured with rules. In order to enable users
to take full advantage of ModSecurity out of the box, Breach Security, Inc. is providing a free
certified rule set for ModSecurity 2.x. Unlike intrusion detection and prevention systems, which
rely on signatures specific to known vulnerabilities, the Core Rules provide generic protection
from unknown vulnerahilities often found in web applications, which are in most cases custom
coded. The Core Rulesare heavily commented to allow it to be used as a step-by-step deployment
guide for ModSecurity. The latest Core Rules can be found at the ModSecurity website - http://
www.modsecurity.org/projects/rules.

Rules Content

In order to provide generic web applications protection, the Core Rules use the following
techniques:
» HTTP protection - detecting violations of the HTTP protocol and alocally defined usage
policy.
» Common Web Attacks Protection - detecting common web application security attack.
» Automation detection - Detecting bots, crawlers, scanners and other surface malicious
activity.
» Trojan Protection - Detecting access to Trojans horses.

* Error Hiding - Disguising error messages sent by the server.

11

http://www.modsecurity.org/projects/rules/
http://www.modsecurity.org/projects/rules/

ModSecurity® Reference Manual

Installation

ModSecurity installation regquirements:

1

ModSecurity 2.x works only with Apache 2.0.x or higher. Version 2.2.x is highly
recommended.

Make sure you have nod_uni que_i d installed.

mod_unique_id is packaged with Apache httpd.

libapr and libapr-util

http://apr.apache.org/

libpcre

http://www.pcre.org/

libxml2

http://xmlsoft.org/downl oads.html

libluavb.1.x

Thislibrary is optional and only needed if you will be using the new Lua engine.
http://www.lua.org/download.html

Note that ModSecurity requires the dynamic libraries. These are not built by default in
the source distribution, so the binary distribution is recommended.

libcurl v7.15.1 or higher
If youwill be using the M odSecurity L og Collector (mlogc) to send audit logsto acentral
repository, then you will also need the curl library.

http://curl.haxx.seflibcurl/

ModSecurity installation consists of the following steps:

1
2.
3.

Stop Apache httpd
Unpack the ModSecurity archive

Building differsfor UNIX (or UNIX-like) operating systems and Windows.
* UNIX
a. Run the configure script to generate a Makefile. Typically no options are needed.
./Iconfigure

Options are available for more customization (use. / conf i gure --hel p for
afull list), but typically you will only need to specify the location of the apxs
command installed by Apache httpd with the - - wi t h- apxs option.

./configure --wth-apxs=/path/to/httpd-2.x.y/bin/apxs

12

http://apr.apache.org/
http://www.pcre.org/
http://xmlsoft.org/downloads.html
http://www.lua.org/download.html
http://curl.haxx.se/libcurl/

ModSecurity® Reference Manual

Note

There are certain configure options that are meant for debugging an other development use. If
enabled, these options can substantially impact performance. These optionsincludeall - - debug-
* optionsaswell asthe- - enabl e- per f or nance- measur enent s options.

b. Compilewith: make
c. Optionally test with: make t est

Note

Thisis step is still a bit experimental. If you have problems, please send the full output and error
from the build to the support list. Most common issues arerel ated to not finding the required headers
and/or libraries.

d. Optionally build the ModSecurity Log Collector with: make m ogc

e. Optionally install M ogc: Review the | NSTALL file included in the apache2/
mlogc-src directory in the distribution.

f. Install the ModSecurity module with: make i nst al |

* Windows (MSVC++ 8)
a. Edit Makefi | e. wi n to configure the Apache base and library paths.

b. Compilewith: nmake -f Makefile.w n
c. Install the ModSecurity modulewith: nmake -f Makefile.win install

d. Copy the | i bxm 2. dll and | uab. 1. dl | to the Apache bi n directory.
Alternatively you can follow the step below for using LoadFile to load these
libraries.

4. Edit the main Apache httpd config file (usually ht t pd. conf)
On UNIX (and Windows if you did not copy the DLLSs as stated above) you must load
libxml2 and luab.1 before ModSecurity with something like this:

LoadFile /usr/lib/libxm 2.so
LoadFile /usr/lib/liblua5.1.so

L oad the ModSecurity module with:

LoadModul e security2 nodul e nodul es/ nod_security?2.so
5. Configure ModSecurity

6. Start Apache httpd
7. You should now have ModSecurity 2.x up and running.

13

ModSecurity® Reference Manual

Note

If you have compiled Apache yourself you might experience problems compiling ModSecurity
against PCRE. This is because Apache bundles PCRE but this library is also typically provided
by the operating system. | would expect most (all) vendor-packaged Apache distributions to be
configured to use an external PCRE library (so this should not be a problem).

Y ou want to avoid Apache using the bundled PCRE library and ModSecurity linking against the
one provided by the operating system. The easiest way to do this is to compile Apache against
the PCRE library provided by the operating system (or you can compile it against the latest PCRE
version you downloaded from the main PCRE distribution site). Y ou can do this at configure time
usingthe - - wi t h- pcr e switch. If you are not in aposition to recompile Apache, then, to compile
ModSecurity successfully, you'd till need to have access to the bundled PCRE headers (they are
available only in the Apache source code) and change the include path for ModSecurity (asyou did
in step 7 above) to point to them (viathe- - wi t h- pcr e ModSecurity configure option).

Do notethat if your Apache is using an external PCRE library you can compile ModSecurity with
W TH_PCRE_STUDY defined,which would possibly give you adight performance edgein regular
expression processing.

Non-gcc compilers may have problems running out-of-the-box as the current build system was
designed around the gcc compiler and some compiler/linker flags may differ. To use a non-gcc
compiler you may need some manual Makefile tweaks if issues cannot be solved by exporting
custom CFLAGS and CPPFLAGS environment variables.

If you are upgrading from ModSecurity 1.x, please refer to the migration matrix at http://
www.modsecurity.org/documentation/M odSecurity-Migration-Matrix.pdf

14

http://www.modsecurity.org/documentation/ModSecurity-Migration-Matrix.pdf
http://www.modsecurity.org/documentation/ModSecurity-Migration-Matrix.pdf

ModSecurity® Reference Manual

Configuration Directives

The following section outlines al of the ModSecurity directives. Most of the ModSecurity
directives can be used inside the various Apache Scope Directives such as Vi r t ual Host ,
Locati on, Locati onMat ch, Di r ect ory, etc... There are others, however, that can only
be used once in the main configuration file. This information is specified in the Scope sections
below. Thefirst version to use agiven directive is given in the Version sections below.
Theserules, along with the Core rulesfiles, should be contained isfiles outside of the httpd.conf
fileand called up with Apache "Include" directives. Thisallowsfor easier updating/migration of
therules. If you create your own custom rulesthat you would like to use with the Core rules, you
should create afile called - nodsecurity_crs_15 custonrul es. conf and placeitin
the samedirectory asthe Corerulesfiles. By using thisfile name, your custom ruleswill be called
up after the standard ModSecurity Core rules configuration file but before the other Core rules.
Thisalowsyour rulesto be evaluated first which can be useful if you need to implement specific
"alow" rules or to correct any false positives in the Core rules as they are applied to your site.

Note

It is highly encouraged that you do not edit the Core rules files themselves but rather place all
changes (such as SecRul eRenpveByl D, etc...) in your custom rules file. This will allow for
easier upgrading as newer Core rules are released by Breach Security on the ModSecurity website.

SecActi on

Description: Unconditionally processesthe action list it receives asthefirst and only parameter.
It accepts one parameter, the syntax of which isidentical to the third parameter of SecRul e.
Syntax: SecActi on actionl, acti on2, acti on3

Example Usage: SecActi on nol og, phase: 1, i ni t col : RESOURCE=
%4 REQUEST _FI LENAME}

Processing Phase: Any

Scope: Any

Version: 2.0.0

Dependencies/Notes. None

SecAction is best used when you unconditionally execute an action. This is explicit triggering
whereas the normal Actions are conditional based on data inspection of the request/response.
Thisis a useful directive when you want to run certain actions such asi ni t col toinitialize
collections.

15

ModSecurity® Reference Manual

SecAr gunent Separ at or

Description: Specifieswhich character to useasseparator for appl i cat i on/ x- www« f or m
ur | encoded content. Defaults to & Applications are sometimes (very rarely) written to use
asemicolon (;).

Syntax: SecAr gunent Separ at or char act er

Example Usage: SecAr gunent Separ at or

Processing Phase: Any

Scope: Main

Version: 2.0.0

Dependencies/Notes: None

Thisdirectiveisneeded if abackend web application is using anon-standard argument separator.
If thisdirectiveisnot set properly for each web application, then ModSecurity will not be ableto
parse the arguments appropriately and the effectiveness of the rule matching will be significantly
decreased.

SecAudi t Engi ne
Description: Configures the audit logging engine.
Syntax: SecAudi t Engi ne On| O f | Rel evant Onl y
Example Usage: SecAudi t Engi ne On
Processing Phase: N/A
Scope: Any
Version: 2.0.0
Dependencies/Notes: Can be set/changed withthe "ct | " action for the current transaction.

Example: The following example shows the various audit directives used together.

SecAudi t Engi ne Rel evant Only

SecAudi t Log | ogs/audit/audit.!| og

SecAudi t LogParts ABCFHZ

SecAudi t LogType concurrent

SecAudi t LogSt orageDi r | ogs/ audi t

SecAudi t LogRel evant St at us ~(?: 5| 4\d["4])

Possible values are:
* On - log dl transactions by default.
o« O f -donotlog transactions by default.

16

ModSecurity® Reference Manual

* Rel evant Onl y - by default only log transactions that have triggered a warning
or an error, or have a status code that is considered to be relevant (see
SecAudi t LogRel evant St at us).

SecAudi t Log

Description: Defines the path to the main audit log file.

Syntax: SecAudi t Log / path/to/ auditl og

Example Usage: SecAudi t Log /usr/ | ocal / apache/l ogs/ audit.| og

Processing Phase: N/A

Scope: Any

Version: 2.0.0

Dependencies/Notes: Thisfileisopen on startup when the server typically still runsasroot. You
should not allow non-root users to have write privileges for this file or for the directory it is
stored in..

This file will be used to store the audit log entries if serial audit logging format is used. If
concurrent audit logging format is used thisfile will be used as an index, and contain arecord of
all audit log files created. If you are planning to use Concurrent audit logging and sending your
audit log data off to aremote Console host or commercial M odSecurity Management Appliance,
then you will need to configure and use the ModSecurity Log Collector (mlogc) and use the
following format for the audit log:

SecAudi tLog "|/path/to/ m ogc /path/to/m ogc. conf"”

SecAudi t Log?2

Description: Defines the path to the secondary audit log index file when concurrent logging is
enabled. See SecAudi t Log2 for more details.

Syntax: SecAudi t Log2 / pat h/to/ auditl og2

Example Usage: SecAudi t Log2 /usr/ | ocal / apache/ | ogs/ audit2.| og
Processing Phase: N/A

Scope: Any

Version: 2.1.2

Dependencies/Notes: A main audit log must be defined viaSec Audi t Log beforethisdirective
may be used. Additionally, thislog isonly used for replicating the main audit log index filewhen
concurrent audit logging is used. It will not be used for non-concurrent audit logging.

17

ModSecurity® Reference Manual

SecAudi t LogDi r Mode

Description: Configures the mode (permissions) of any directories created for concurrent audit
logs using an octal mode (as used in chmod). See SecAudi t LogFi | eMbde for controlling
the mode of audit log files.

Syntax: SecAudi t LogDhi r Mode oct al _node| "defaul t"

Example Usage: SecAudi t LogDi r Mode 02750

Processing Phase: N/A

Scope: Any

Version: 2.5.10

Dependencies/Notes: Thisfeature is not available on operating systems not supporting octal file
modes. The default mode (0600) only grants read/write access to the account writing the file. If
access from another account is needed (using mpm-itk is a good example), then this directive
may berequired. However, use thisdirective with caution to avoid exposing potentially sensitive
data to unauthorized users. Using the value "default" will revert back to the default setting.

Note

The process umask may still limit the mode if it is being more restrictive than the mode set using
this directive.

SecAudi t LogFi | eMode

Description: Configures the mode (permissions) of any files created for concurrent audit logs
using an octal mode (as used in chmod). See Sec Audi t LogDi r Mode for controlling the mode
of created audit log directories.

Syntax: SecAudi t LogFi | eMbde octal node| "defaul t"

Example Usage: SecAudi t LogFi | eMode 00640

Processing Phase: N/A

Scope: Any

Version: 2.5.10

Dependencies/Notes: Thisfeature isnot available on operating systems not supporting octal file
modes. The default mode (0600) only grants read/write access to the account writing thefile. If
access from another account is needed (using mpm-itk is a good example), then this directive

may be required. However, use this directive with caution to avoid exposing potentially sensitive
data to unauthorized users. Using the value "default” will revert back to the default setting.

18

ModSecurity® Reference Manual

Note

The process umask may still limit the mode if it is being more restrictive than the mode set using
this directive.

SecAudi t LogPart s

Description: Defines which part of each transaction are going to be recorded in audit log. Each
part is assigned a single letter. If a letter appears in the list then the equivalent part of each
transactions will be recorded. See below for thelist of all parts.

Syntax: SecAudi t LogParts PARTS

Example Usage: SecAudi t LogParts ABCFHZ
Processing Phase: N/A

Scope: Any

Version: 2.0.0

Dependencies/Notes: At this time ModSecurity does not log response bodies of stock Apache
responses (e.g. 404), or the Ser ver and Dat e response headers.

Default: ABCFHZ.

Note

Pleaserefer to the M odSecurity Data Formats document for adetailed description of every available
part.

Available audit log parts:
* A - audit log header (mandatory)
* B - request headers
» C- request body (present only if the request body exists and ModSecurity is configured
tointercept it)
» D- RESERVED for intermediary response headers, not implemented yet.

» E - intermediary response body (present only if ModSecurity is configured to intercept
response bodies, and if the audit log engine is configured to record it). Intermediary
response body is the same as the actual response body unless ModSecurity intercepts
the intermediary response body, in which case the actual response body will contain the
error message (either the Apache default error message, or the ErrorDocument page).

* F - final response headers (excluding the Date and Server headers, which are always
added by Apachein the late stage of content delivery).

* G- RESERVED for the actual response body, not implemented yet.
* H-audit log trailer

19

ModSecurity® Reference Manual

| - This part is a replacement for part C. It will log the same data as C in al cases
exceptwhenrul ti part/form dat a encodinginused. Inthiscaseit will log afake
appl i cati on/ x- ww f orm url encoded body that contains the information
about parameters but not about the files. Thisis handy if you don't want to have (often
large) files stored in your audit logs.

* J - RESERVED. This part, when implemented, will contain information about the files
uploaded using mul ti part/ f or m dat a encoding.

e K- This part contains a full list of every rule that matched (one per ling) in the order
they were matched. Therulesare fully qualified and will thus show inherited actions and
default operators. Supported as of v2.5.0

» Z -fina boundary, signifies the end of the entry (mandatory)

SecAudi t LogRel evant St at us
Description: Configures which response status code is to be considered relevant for the purpose
of audit logging.
Syntax: SecAudi t LogRel evant St at us REGEX
Example Usage: SecAudi t LogRel evant St atus ~(?: 5] 4\ d[~4])
Processing Phase: N/A
Scope: Any
Version: 2.0.0
Dependencies/Notes. Must have the SecAudi t Engi ne set to Rel evantOnly. The
parameter is aregular expression.

Themain purpose of thisdirectiveisto allow you to configure audit logging for only transactions
that generate the specified HTTP Response Status Code. This directive is often used to the
decrease the total size of the audit log file. Keep in mind that if this parameter is used, then
successful attacks that result in 2200 OK status code will not be logged.

SecAudi t LogSt orageDi r
Description: Configuresthe storage directory where concurrent audit log entries are to be stored.
Syntax: SecAudi t LogSt orageDir /path/to/storage/dir
Example Usage: SecAudi t LogSt orageDi r /usr/ | ocal / apache/ | ogs/ audi t
Processing Phase: N/A
Scope: Any
Version: 2.0.0

20

ModSecurity® Reference Manual

Dependencies/Notes: SecAuditLogType must be set to Concurrent. The directory must aready
be created before starting Apache and it must be writable by the web server user as new files
are generated at runtime.

Aswith al logging mechanisms, ensure that you specify afile system location that has adequate
disk space and is not on the root partition.

SecAudi t LogType
Description: Configures the type of audit logging mechanism to be used.
Syntax: SecAudi t LogType Seri al | Concurrent
Example Usage: SecAudi t LogType Seri al
Processing Phase: N/A
Scope: Any
Version: 2.0.0
Dependencies/Notes. Must specify SecAudi t LogSt or ageDi r if you use concurrent
logging.
Possible values are:

1. Seri al - all audit log entrieswill be stored in the main audit logging file. Thisis more
convenient for casual use but it is slower as only one audit log entry can be written to
thefile at any onefile.

2. Concurr ent -auditlogentrieswill be stored in separatefiles, onefor each transaction.
Concurrent logging is the mode to use if you are going to send the audit log data off to
aremote ModSecurity Console host.

SecCacheTr ansf or mat i ons (Deprecated/

Experimental)

Description: Controls caching of transformations. Caching is off by default starting with 2.5.6,
when it was deprecated and downgraded back to experimental .

Syntax: SecCacheTransformati ons On| O f [options]

Example Usage: SecCacheTr ansf ormati ons On "mi nl en: 64, naxl en: 0"
Processing Phase: N/A

Scope: Any

Version: 2.5.0

Dependencies/Notes. N/A

First parameter:

21

ModSecurity® Reference Manual

e On - cache transformations (per transaction, per phase) alowing identica
transformations to be performed only once. (default)

e O f -donot cache any transformations, forcing all transformations to be performed for
each rule executed.

The following options are allowed (comma separated):

* increnental : on| of f -enabling thisoption will cache every transformation instead
of just the final transformation. (default: off)

* maxit ens: N- do not allow morethan N transformations to be cached. The cache will
then be disabled. A zero value is interpreted as "unlimited". This option may be useful
to limit caching for aform with alarge number of ARGS. (default: 512)

* m nl en: N- do not cache the transformation if the value's length is less than N bytes.
(default: 32)

* max| en: N- do not cache the transformation if the value's length is more than N bytes.
A zero valueisinterpreted as "unlimited". (default: 1024)

SecChrootDir

Description: Configures the directory path that will be used to jail the web server process.
Syntax: SecChrootDir /path/to/chroot/dir
Example Usage: SecChr oot Di r / chr oot
Processing Phase: N/A
Scope: Main
Version: 2.0.0
Dependencies/Notes: This feature is not available on Windows builds. The internal chroot
functionality provided by ModSecurity works great for simple setups. One example of asimple
setup isApache serving static files only, or running scripts using modul es.builds. Some problems
you might encounter with more complex setups:

1. DNS lookups do not work (this is because this feature requires a shared library that is

loaded on demand, after chroot takes place).
2. You cannot send email from PHP because it uses sendmail and sendmail is outside the
jail.

3. In some cases Apache graceful (reload) no longer works.
Y ou should be aware that the internal chroot feature might not be 100% reliable. Dueto thelarge
number of default and third-party modules available for the Apache web server, it isnot possible
to verify the interna chroot works reliably with all of them. A module, working from within
Apache, can do thingsthat make it easy to break out of thejail. In particular, if you are using any
of the modules that fork in the module initialisation phase (e.g. nod_f ast cgi , nod_f cgi d,

22

ModSecurity® Reference Manual

nod_cgi d), you are advised to examine each Apache process and observe its current working
directory, processroot, and thelist of open files. Consider what your options are and make your
own decision.

SecConponent Si gnat ur e
Description: Appends component signature to the ModSecurity signature.
Syntax: SecConponent Si gnat ure " COVPONENT _NAME/ X. Y. Z (COVMENT) "
Example usage: SecConponent Si gnature "Core Rul es/1.2.3"
Processing Phase: N/A
Scope: Main
Version: 2.5.0

Dependencies/Notes: This directive should be used to make the presence of significant
ModSecurity components known. The entire signature will be recorded in transaction audit log.
It should be used by ModSecurity module and rule set writers to make debugging easier.

SecContent |l njection
Description: Enables content injection using actionsappend and pr epend.
Syntax: SecCont ent | nj ection (On| O f)
Example Usage: SecCont ent I nj ection On
Processing Phase: N/A
Scope: Any
Version: 2.5.0
Dependencies/Notes. N/A

SecCooki eFor mat
Description: Selects the cookie format that will be used in the current configuration context.
Syntax: SecCooki eFormat 0| 1
Example Usage: SecCooki eFormat O
Processing Phase: N/A
Scope: Any
Version: 2.0.0
Dependencies/Notes: None
Possible values are:

e 0 - useversion 0 (Netscape) cookies. Thisiswhat most applications use. It isthe default
value.

23

ModSecurity® Reference Manual

e 1 -useversion 1 cookies.

SecDat aDi r

Description: Path where persistent data (e.g. | P address data, session data, etc) isto be stored.
Syntax: SecDatabDir /path/to/dir

Example Usage: SecDat abDi r /usr/| ocal / apache/ | ogs/ dat a

Processing Phase: N/A

Scope: Main

Dependencies/Notes. This directive is needed when initcol, setsid an setuid are used. Must be
writable by the web server user.

SecDebuglLog

Description: Path to the ModSecurity debug log file.

Syntax: SecDebuglLog / pat h/ t o/ nodsec- debug. | og

Example Usage: SecDebuglLog /usr/ | ocal / apache/| ogs/ modsec- debug. | og
Processing Phase: N/A

Scope: Any

Version: 2.0.0

Dependencies/Notes: None

SecDebuglLogLevel
Description: Configures the verboseness of the debug log data.
Syntax: SecDebugLoglLevel 0| 1| 2| 3| 4| 5| 6] 7] 8] 9
Example Usage: SecDebugLoglLevel 4
Processing Phase: N/A
Scope: Any
Version: 2.0.0
Dependencies/Notes: Levels1 - 3 are aways sent to the Apache error log. Therefore you can
alwaysuselevel 0 asthe default logging level in production. Level 5 isuseful when debugging.
It isnot advisable to use higher logging levelsin production as excessive logging can slow down
server significantly.
Possible values are:
* 0 -nologging.
» 1 - errors (intercepted requests) only.

e 2 -warnings.

24

ModSecurity® Reference Manual

3 - notices.
4 - details of how transactions are handled.

» 5 - asabove, but including information about each piece of information handled.

* 9 - log everything, including very detailed debugging information.

SecDef aul t Acti on

Description: Defines the default action to take on arule match.
Syntax: SecDef aul t Acti on actionl, action2, acti on3

Example Usage: SecDef aul t Acti on
| og, audi t1 og, deny, st at us: 403, phase: 2

Processing Phase: Any
Scope: Any
Version: 2.0.0

Dependencies/Notes: RulesfollowingaSecDef aul t Act i on directivewill inherit this setting
unlessaspecific actionisspecified for anindividual ruleor until another SecDef aul t Acti on
is specified. Take special note that in the logging disruptive actions are not allowed, but this can
inadvertently be inherited using adisruptive actionin SecDef aul t Acti on.

The default value is minimal (differing from previous versions):

SecDef aul t Acti on phase: 2,1 og, audi t| og, pass

Note
SecDef aul t Act i on must specify adisruptive action and a processing phase and cannot contain
metadata actions.

Warning

SecDef aul t Acti on is not inherited across configuration contexts. (For an example of
why this may be a problem for you, read the following ModSecurity Blog entry http://
bl og.modsecurity.org/2008/07/modsecurity-tri.html).

SecGeoLookupDb
Description: Defines the path to the geographical database file.
Syntax: SecGeolLookupDb /path/to/db
Example Usage: SecGeoLookupDb /usr/ | ocal / geo/ dat a/ GeoLiteCity. dat
Processing Phase: N/A

Scope: Any

25

http://blog.modsecurity.org/2008/07/modsecurity-tri.html
http://blog.modsecurity.org/2008/07/modsecurity-tri.html

ModSecurity® Reference Manual

Version: 2.5.0
Dependencies/Notes: Check out maxmi nd. comfor free database files.

SecCuar di anLog
Description: Configuration directive to use the httpd-guardian script to monitor for Denial of
Service (DoS) attacks.
Syntax: SecGuar di anLog |/ pat h/to/ htt pd-guardi an
Example Usage: SecCGuar di anLog |/ usr/ | ocal / apache/ bi n/ ht t pd- guar di an
Processing Phase: N/A
Scope: Main
Version: 2.0.0
Dependencies/Notes. By default httpd-guardian will defend against clients that send more than
120 requests in aminute, or more than 360 requests in five minutes.
Since 1.9, ModSecurity supports a new directive, SecGuardianLog, that is designed to send
all access data to another program using the piped logging feature. Since Apache is typically
deployed in a multi-process fashion, making information sharing difficult, the ideais to deploy
a single external process to observe al requests in a stateful manner, providing additional
protection.
Development of a state of the art externa protection tool will be a focus of subsequent
ModSecurity releases. However, a fully functional tool is aready available as part of the
Apache httpd tools project [http://www.apachesecurity.net/tools/]. The tool is called httpd-
guardian and can be used to defend against Denial of Service attacks. It uses the blacklist tool
(from the same project) to interact with an iptables-based (Linux) or pf-based (*BSD) firewall,
dynamically blacklisting the offending |P addresses. It can also interact with SnortSam (http://
www.snortsam.net). Assuming httpd-guardian is already configured (look into the source code
for the detailed instructions) you only need to add one line to your Apache configuration to
deploy it:

SecGuar di anLog |/ path/to/ htt pd-guardi an

SecMar ker

Description: Adds a fixed rule marker in the ruleset to be used as a target in a ski pAf t er
action. A SecMar ker directive essentially creates a rule that does nothing and whose only
purpose it to carry the given ID.

Syntax: SechMar ker I D
Example Usage: SecMar ker 9999

Processing Phase: Any

26

http://www.apachesecurity.net/tools/
http://www.apachesecurity.net/tools/

ModSecurity® Reference Manual

Scope: Any
Version: 2.5.0
Dependencies/Notes: None

SecRul e REQUEST_URI "~/ $" \

“chain, t:none, t:url Decode, t: | owercase, t: nornal i sePat h, ski pAfter: 99"
SecRul e REMOTE_ADDR "~127\.0\.0\.1%$" "chain"
SecRul e REQUEST_ HEADERS: User - Agent \

"AApache \ (internal dummy connection\)$" "t:none"
SecRul e &REQUEST HEADERS: Host " @q 0" \

"deny, | og, status: 400, id: 08, severity: 4, nsg:"' M ssing a Host Header'"
SecRul e &REQUEST HEADERS: Accept "@qg 0" \

"l og, deny, | og, st atus: 400, i d: 15, nsg: ' Request M ssing an Accept Header'"

SecMar ker 99

SecPdf Pr ot ect

Description: Enables the PDF XSS protection functionality. Once enabled access to PDF files
istracked. Direct access attempts are redirected to links that contain one-time tokens. Requests
with valid tokens are allowed through unmodified. Requestswith invalid tokens are also alowed
through but with forced download of the PDF files. This implementation uses response headers
to detect PDF files and thus can be used with dynamically generated PDF files that do not have
the. pdf extension in the request URI.

Syntax: SecPdf Protect On| O f

Example Usage: SecPdf Protect On

Processing Phase: N/A

Scope: Any

Version: 2.5.0

Dependencies/Notes: None

SecPdf Pr ot ect Met hod

Description: Configure desired protection method to be used when requests for PDF files
are detected. Possible values are TokenRedi r ect i on and For cedDownl oad. The token
redirection approach will attempt to redirect with tokenswhere possible. Thisalows PDF filesto
continue to be opened inline but only works for GET requests. Forced download always causes
PDF files to be delivered as opague binaries and attachments. The latter will always be used for
non-GET requests. Forced download is considered to be more secure but may cause usability
problems for users ("This PDF won't open anymore!").

27

ModSecurity® Reference Manual

Syntax: SecPdf Pr ot ect Met hod net hod

Example Usage: SecPdf Pr ot ect Met hod TokenRedi recti on
Processing Phase: N/A

Scope: Any

Version: 2.5.0

Dependencies/Notes. None

Default: TokenRedi recti on

SecPdf Pr ot ect Secr et

Description: Defines the secret that will be used to construct one-time tokens. Y ou should use a
reasonably long value for the secret (e.g. 16 charactersis good). Once selected the secret should
not be changed as it will break the tokens that were sent prior to change. But it's not a big deal
even if you change it. It will just force download of PDF files with tokens that were issued in
the last few seconds.

Syntax: SecPdf Pr ot ect Secret secret

Example Usage: SecPdf Pr ot ect Secret MyRandonfSecret Stri ng

Processing Phase: N/A

Scope: Any

Version: 2.5.0

Dependencies/Notes: None

SecPdf Pr ot ect Ti neout

Description: Defines the token timeout. After token expires it can no longer be used to allow
accessto PDF file. Request will be allowed through but the PDF will be delivered as attachment.

Syntax: SecPdf Pr ot ect Ti neout ti neout
Example Usage: SecPdf Pr ot ect Ti neout 10
Processing Phase: N/A

Scope: Any

Version: 2.5.0

Dependencies/Notes. None

Default: 10

SecPdf Pr ot ect TokenName

Description: Definesthe name of the token. The only reason you would want to change the name
of the token is if you wanted to hide the fact you are running ModSecurity. It's a good reason

28

ModSecurity® Reference Manual

but it won't really help as the adversary can look into the algorithm used for PDF protection and
figure it out anyway. It does raise the bar slightly so go ahead if you want to.

Syntax: SecPdf Pr ot ect TokenNane nane

Example Usage: SecPdf Pr ot ect TokenNanme PDFTOKEN
Processing Phase: N/A

Scope: Any

Version: 2.5.0

Dependencies/Notes: None

Default: PDFTOKEN

SecRequest BodyAccess
Description: Configures whether request bodies will be buffered and processed by ModSecurity
by default.
Syntax: SecRequest BodyAccess On| OF f
Example Usage: SecRequest BodyAccess On
Processing Phase: N/A
Scope: Any
Version: 2.0.0

Dependencies/Notes: This directive is required if you plan to inspect POST_PAYLQOAD. This
directive must be used along with the "phase:2" processing phase action and REQUEST _BODY
variable/location. If any of these 3 parts are not configured, you will not be able to inspect the
request bodies.

Possible values are:
* On - access request bodies.
e O f - donot attempt to access request bodies.

SecRequest BodyLi mt
Description: Configures the maximum request body size ModSecurity will accept for buffering.
Syntax: SecRequest BodyLi mit NUVBER | N BYTES
Example Usage: SecRequest BodyLi mt 134217728
Scope: Any
Version: 2.0.0

Dependencies/Notes: 131072 KB (134217728 bytes) is the default setting. Anything over this
limit will be rejected with status code 413 Request Entity Too Large. There is a hard limit of
1GB.

29

ModSecurity® Reference Manual

SecRequest BodyNoFi | esLim t

Description: Configures the maximum request body size ModSecurity will accept for buffering,
excluding the size of files being transported in the request. This directive comes handy to further
reduce susceptibility to DoS attacks when someoneis sending request bodies of very large sizes.
Web applications that require file uploads must configure SecRequest BodyLi m t toahigh
value. Since largefiles are streamed to disk file uploads will not increase memory consumption.
However, it's still possible for someone to take advantage of alarge request body limit and send
non-upload requests with large body sizes. This directive eliminates that |oophole.

Syntax: SecRequest BodyNoFi | esLi mit NUVBER_I N_BYTES
Example Usage: SecRequest BodyLi mt 131072

Scope: Any

Version: 2.5.0

Dependencies/Notes. 1 MB (1048576 bytes) is the default setting. This value is very
conservative. For most applications you should be able to reduce it down to 128 KB or lower.
Anything over the limit will be rejected with status code 413 Request Entity Too
Lar ge. Thereisahard limit of 1 GB.

SecRequest Bodyl nMenor yLi m t
Description: Configures the maximum request body size ModSecurity will store in memory.
Syntax: SecRequest Bodyl nMenoryLi mit NUVBER | N BYTES
Example Usage: SecRequest Bodyl nMenoryLimt 131072
Processing Phase: N/A
Scope: Any
Version: 2.0.0
Dependencies/Notes. None
By default the limit is 128 KB:

Store up to 128 KB in nenory
SecRequest Bodyl nMenoryLimt 131072

SecResponseBodyLi m t
Description: Configures the maximum response body size that will be accepted for buffering.
Syntax: SecResponseBodyLi mit NUMBER | N BYTES
Example Usage: SecResponseBodylLi nmit 524228
Processing Phase: N/A
Scope: Any

30

ModSecurity® Reference Manual

Version: 2.0.0

Dependencies/Notes: Anything over this limit will be rejected with status code 500 Internal
Server Error. This setting will not affect the responses with MIME types that are not marked for
buffering. Thereis ahard limit of 1 GB.

By default thislimit is configured to 512 KB:

Buffer response bodies of up to 512 KB in |ength
SecResponseBodyLi mt 524288

SecResponseBodyLi m t Acti on

Description: Controls what happens once a response body limit, configured with
SecResponseBodyLi mi t, is encountered. By default ModSecurity will reject a response
body that is longer than specified. Some web sites, however, will produce very long responses
making it difficult to come up with a reasonable limit. Such sites would have to raise the limit
significantly to function properly defying the purpose of having the limit in the first place (to
control memory consumption). With the ability to choose what happens once a limit is reached
site administrators can choose to inspect only the first part of the response, the part that can fit
into the desired limit, and let the rest through. Some could argue that allowing parts of responses
to go uninspected isaweakness. Thisistruein theory but only appliesto caseswherethe attacker
controls the output (e.g. can make it arbitrary long). In such cases, however, it is not possible to
prevent |leakage anyway. The attacker could compress, obfuscate, or even encrypt data before it
is sent back, and therefore bypass any monitoring device.

Syntax: SecResponseBodyLi m t Acti on Rej ect| ProcessParti al
Example Usage: SecResponseBodyLi mi t Acti on ProcessParti al
Processing Phase: N/A

Scope: Any

Version: 2.5.0

Dependencies/Notes: None

SecResponseBodyM neType
Description: Configureswhich M ME types are to be considered for response body buffering.
Syntax: SecResponseBodyM neType m ne/type
Example Usage: SecResponseBodyM nmeType text/plain text/htnl
Processing Phase: N/A
Scope: Any
Version: 2.0.0

31

ModSecurity® Reference Manual

Dependencies/Notes: Multiple SecResponseBodyM nmeType directives can be used to add
M ME types.
Thedefault valueist ext / pl ai ntext/ htm :

SecResponseBodyM neType text/plain text/htmn

SecResponseBodyM neTypesd ear

Description: Clearsthelist of M ME types considered for response body buffering, allowing you
to start populating the list from scratch.

Syntax: SecResponseBodyM neTypesd ear

Example Usage: SecResponseBodyM neTypesd ear

Processing Phase: N/A

Scope: Any

Version: 2.0.0

Dependencies/Notes: None

SecResponseBodyAccess
Description: Configures whether response bodies are to be buffer and analysed or not.
Syntax: SecResponseBodyAccess On| O f
Example Usage: SecResponseBodyAccess On
Processing Phase: N/A
Scope: Any
Version: 2.0.0

Dependencies/Notes: This directive is required if you plan to inspect HTML responses. This
directive must be used along with the"phase:4" processing phase action and RESPONSE_BODY
variable/location. If any of these 3 parts are not configured, you will not be able to inspect the
response bodies.

Possible values are:
* On - access response bodies (but only if the MIME type matches, see above).

o« O f - donot attempt to access response bodies.

SecRul e

Description: SecRul e isthe main ModSecurity directive. It isused to analyse dataand perform
actions based on the results.

Syntax: SecRul e VARI ABLES OPERATOR [ACTI ONS]

Example Usage: SecRul e REQUEST_URI "attack" \

32

ModSecurity® Reference Manual

"phase: 1,t:none, t:url Decode, t: | owercase, t: nornmalisePath"
Processing Phase: Any

Scope: Any

Version: 2.0.0

Dependencies/Notes. None

In generdl, the format of thisruleis asfollows:
SecRul e VARI ABLES OPERATOR [ACTI ONS]

The second part, OPERATOR, specifies how they are going to be checked. The third (optional)
part, ACTI ONS, specifies what to do whenever the operator used performs a successful match
against avariable.

Variables in rules
The first part, VARI ABLES, specifies which variables are to be checked. For example, the
following rule will reject atransaction that has the word dirty in the URI:

SecRul e ARGS dirty
Each rule can specify one or more variables:
SecRul e ARGS| REQUEST HEADERS: User - Agent dirty

Thereisathird format supported by the selection operator - X Path expression. X Path expressions
can only used against the special variable XML, which isavailable only of the request body was
processed as XML.

SecRul e XM.: / xPat h/ Expression dirty

Note

Not al collections support al selection operator format types. You should refer to the
documentation of each collection to determine what is and isn't supported.

Collections

A variable can contain one or many pieces of data, depending on the nature of the variable and
the way it is used. We've seen examples of both approaches in the previous section. When a
variable can contain more than one value we refer to it as a collection.

Collections are aways expanded before aruleisrun. For example, the following rule:

SecRul e ARGS dirty

33

ModSecurity® Reference Manual

will be expanded to:

SecRule ARGS:p dirty
SecRule ARGS: q dirty

in arequests that has only two parameters, named p and g.
Collections comein severd flavours:

Read-only Created at runtime using transaction data. For example:
ARGS (contains a list of all request parameter values)
and REQUEST _HEADERS (contains a list of all request
header values).

Transient Read/Write The TX collection is created (empty) for every
transaction. Rules can read from it and write to it (using
the set var action, for example), but the information
stored in this collection will not survive the end of
transaction.

Persistent Read/Write There are several collections that can be written to,
but which are persisted to the storage backend. These
collections are used to track clients across transactions.
Examples of collections that fall into this type are | P,
SESSI ON and USER.

Operators in rules
In the simplest possible case you will use a regular expression pattern as the second rule
parameter. Thisiswhat we've done in the examples above. If you do this ModSecurity assumes
you want to usether x (regular expression) operator. Y ou can also explicitly specify the operator
you want to use by using @ followed by the name of an operator, at the beginning of the second
SecRul e parameter:

SecRule ARGS "@x dirty"

Note how we had to use double quotes to delimit the second rule parameter. Thisis because the
second parameter now haswhitespaceinit. Any number of whitespace characters can follow the
name of the operator. If there are any non-whitespace characters there, they will all be treated
as aspecial parameter to the operator. In the case of the regular expression operator the special
parameter is the pattern that will be used for comparison.

The @ can be the second character if you are using negation to negate the result returned by
the operator:

SecRul e &ARGS "! @x "0$"

ModSecurity® Reference Manual

Operator negation
Operator results can be negated by using an exclamation mark at the beginning of the second
parameter. The following rule matchesif theword di r t y does not appear inthe User - Agent
regquest header:

SecRul e REQUEST_ HEADERS: User- Agent !dirty

Y ou can use the exclamation mark in combination with any parameter. If you do, the exclamation
mark needs to go first, followed by the explicit operator reference. The following rule has the
same effect as the previous example:

SecRul e REQUEST_ HEADERS: User-Agent "!@x dirty"

If you need to use negation in arule that is going to be applied to severa variables then it may
not be immediately clear what will happen. Consider the following example:

SecRul e ARGS: p| ARGS: g !dirty
The above ruleisidentical to:

SecRule ARGS:p !dirty
SecRule ARGS: g !'dirty

Warning
Negation is applied to operations against individual operations, not agains the entire variable list.

Actions in rules
The third parameter, ACTI ONS, can be omitted only because there is a helper feature that
specifiesthedefault actionlist. If the parameter isn't omitted the actions specified in the parameter
will be merged with the default action list to create the actual list of actionsthat will be processed
on arule match.

SecRul el nheri tance

Description: Configures whether the current context will inherit rules from the parent context
(configuration options are inherited in most cases - you should look up the documentation for
every directive to determineif it isinherited or not).

Syntax: SecRul el nheritance On| O f
Example Usage: SecRul el nheritance Of
Processing Phase: Any

Scope: Any

35

ModSecurity® Reference Manual

Version: 2.0.0

Dependencies/Notes: Resource-specific contexts (e.g. Locati on, Di r ect ory, etc) cannot
override phasel rules configured in the main server or inthevirtual server. Thisisbecause phase
lisrun early in the request processing process, before Apache maps request to resource. Virtual
host context can override phase 1 rules configured in the main server.

Example: Thefollowing example showswhere ModSecurity may be enabled in the main Apache
configuration scope, however you might want to configure your VirtualHosts differently. In the
first example, thefirst VirtualHost is not inheriting the ModSecurity main config directives and
in the second oneiitis.

SecRul eEngi ne On
SecDef aul t Acti on | og, pass, phase: 2

<Vi rtual Host *: 80>

Server Nane appl.com

Server Ali as www. appl. com

SecRul el nheritance Of

SecDef aul t Acti on | og, deny, phase: 1,redirect: http://ww.site2.com

</ Vi r t ual Host >

<Vi rtual Host *: 80>

Server Nane app2.com

Server Al i as www. app2. com

SecRul el nheritance On SecRul e ARGS "attack”

</ Vi r t ual Host >

Possible values are:
e n - inherit rules from the parent context.

o O f - donot inherit rules from the parent context.

Note

Configuration contexts are an Apache concept. Directives <Directory>, <Files>,
<Locat i on> and <Vi r t ual Host > are all used to create configuration contexts. For more
information please go to the Apache documentation section Configuration Sections [http://
httpd.apache.org/docs/2.0/sections.html].

36

http://httpd.apache.org/docs/2.0/sections.html
http://httpd.apache.org/docs/2.0/sections.html
http://httpd.apache.org/docs/2.0/sections.html

ModSecurity® Reference Manual

SecRul eEngi ne
Description: Configures the rules engine.
Syntax: SecRul eEngi ne On| OF f | Det ecti onOnl y
Example Usage: SecRul eEngi ne On
Processing Phase: Any
Scope: Any
Version: 2.0.0
Dependencies/Notes: This directive can also be controlled by the ctl action (ctl:ruleEngine=off)
for per rule processing.
Possible values are:
e On - processrules.
e O f -donot processrules.
e Det ecti onOnl y - process rules but never intercept transactions, even when rules are
configured to do so.

SecRul eRenoveByl d
Description: Removes matching rules from the parent contexts.
Syntax: SecRul eUpdat eActi onByl d RULEI D ACTI ONLI ST
Example Usage: SecRul eRenoveByI D 1 2 "9000-9010"
Processing Phase: Any
Scope: Any
Version: 2.0.0

Dependencies/Notes: This directive supports multiple parameters, where each parameter can
either be arule ID, or a range. Parameters that contain spaces must be delimited using double
quotes.

SecRul eRenpveByld 1 2 5 10-20 "400-556" 673

SecRul eRenoveByMsg
Description: Removes matching rules from the parent contexts.
Syntax: SecRul eRenpbveByMsg REGEX
Example Usage: SecRul eRenoveByMsg " FAI L"
Processing Phase: Any
Scope: Any
Version: 2.0.0

37

ModSecurity® Reference Manual

Dependencies/Notes: This directive supports multiple parameters. Each parameter is a regular
expression that will be applied to the message (specified using the ns g action).

SecRul eScri pt (Experimental)

Description: This directive creates a special rule that executes a Lua script to decide whether
to match or not. The main difference from SecRul e isthat there are no targets nor operators.
The script can fetch any variable from the ModSecurity context and use any (Lua) operator to
test them. The second optional parameter isthe list of actions whose meaning isidentical to that
of SecRul e.

Syntax: SecRul eScri pt /path/to/script.lua [ACTI ONS]
Example Usage: SecRul eScript "/path/to/file.lua" "bl ock"
Processing Phase: Any

Scope: Any

Version: 2.5.0

Dependencies/Notes. None

Note

All Lua scripts are compiled at configuration time and cached in memory. To reload scripts you
must reload the entire ModSecurity configuration by restarting Apache.

Example script:

-- Your script nust define the main entry
-- point, as bel ow
function main()
-- Log sonmething at level 1. Normally you shouldn't be
-- logging anything, especially not at level 1, but this is
-- just to show you can. Useful for debuggi ng.
mlog(l, "Hello world!");

-- Retrieve one vari abl e.
| ocal varl = m getvar (" REMOTE_ADDR');

-- Retrieve one variable, applying one transformation functi on.
-- The second paraneter is a string.
| ocal var2 = mgetvar("ARGS", "lowercase");

-- Retrieve one variable, applying several transfornation functions.
-- The second paraneter is now a |list. You should note that m getvar()
-- requires the use of comm to separate collection names from

38

ModSecurity® Reference Manual

-- variable nanes. This is because only one variable is returned.
| ocal var3 = mgetvar("ARGS. p", { "lowercase", "conpressWitespace" });

-- If you want this rule to match return a string

-- containing the error nessage. The nessage nust contain the nane
-- of the variable where the problemis | ocated.

-- return "Variable ARGS: p | ooks suspi cious!"

-- Oherwise, sinply return nil.
return nil;
end

In this first example we were only retrieving one variable at the time. In this case the name of
thevariableisknown to you. In many cases, however, you will want to examine variables whose
names you won't know in advance, for example script parameters.

Example showing use of m get var s() to retrieve many variables at once:

function main()
-- Retrieve script paraneters.
local d = mgetvars("ARGS', { "lowercase", "htm EntityDecode" });

-- Loop through the paranters.
for i =1, #d do
-- Exam ne paraneter val ue.
if (string.find(d[i].value, "<script")) then
-- Always specify the nane of the variable where the
-- problemis located in the error message.
return ("Suspected XSS in variable " dii].name .. ".");

end
end

-- Not hi ng wong found.
return nil;
end

Note

Gorto http://www.lua.org/ to find more about the L ua programming language. The reference manual
too isavailable online, at http://www.lua.org/manual/5.1/.

39

http://www.lua.org/
http://www.lua.org/manual/5.1/

ModSecurity® Reference Manual

Note

L uasupport ismarked as experimental asthe way the progamming interface may continueto evolve
while we are working for the best implementation style. Any user input into the programming
interface is appreciated.

SecRul eUpdat eActi onByl d

Description: Updates the action list of the specified rule.

Syntax: SecRul eRermoveByl d RULEI D ACTI ONLI ST

Example Usage: SecRul eUpdat eActi onByl d 12345 deny, st at us: 403
Processing Phase: Any

Scope: Any

Version: 2.5.0

Dependencies/Notes: This directive merges the specified action list with the rul€'s action list.
There are two limitations. The rule ID cannot be changed, nor can the phase. Further note that
actions that may be specified multiple times are appended to the original.

SecAction \
"t: | owercase, phase: 2,i d: 12345, pass, nsg: ' The Message', | og, audi t| og"
SecRul eUpdat eActi onByld 12345 "t: conpressWit espace, deny, st atus: 403, nsg:' A new nmess

The example above will cause the rule to be executed asiif it was specified as follows:

SecAction \
"t:| owercase, phase: 2,i d: 12345, | og, audi t1 og, t: conpr essWi t espace, deny, st at us: 403, n

SecSer ver Si gnat ure
Description: Instructs ModSecurity to change the datapresented in the " Server:" response header
token.
Syntax: SecSer ver Si gnat ure "WEB SERVER SOFTWARE"
Example Usage: SecSer ver Si gnhat ure "Net scape-Enterprise/ 6. 0"
Processing Phase: N/A
Scope: Main
Version: 2.0.0

Dependencies/Notes: In order for this directive to work, you must set the Apache ServerTokens
directiveto Full. ModSecurity will overwrite the server signature data held in this memory space
with the data set in this directive. If ServerTokens is not set to Full, then the memory space is
most likely not large enough to hold the new data we are looking to insert.

40

ModSecurity® Reference Manual

SecTnpDir
Description: Configures the directory where temporary fileswill be created.
Syntax: SecTnpDir /path/to/dir
Example Usage: SecTnpDir /tnp
Processing Phase: N/A
Scope: Any
Version: 2.0.0

Dependencies/Notes: Needs to be writable by the Apache user process. This is the directory
location where Apache will swap datato disk if it runs out of memory (more data than what was
specified in the SecRequestBodylnMemoryLimit directive) during inspection.

SecUpl oadDi r

Description: Configures the directory where intercepted files will be stored.
Syntax: SecUpl oadDi r /path/to/dir

Example Usage: SecUpl oadDir /tnp

Processing Phase: N/A

Scope: Any

Version: 2.0.0

Dependencies/Notes: This directory must be on the same filesystem as the temporary directory
defined with Sec TnpDi r . Thisdirectiveis used with SecUpl oadKeepFi | es.

SecUpl oadFi | eMbde
Description: Configures the mode (permissions) of any uploaded files using an octal mode (as
used in chmod).
Syntax: SecUpl oadFi | eMbde octal node| "defaul t"
Example Usage: SecUpl oadFi | eMode 0640
Processing Phase: N/A
Scope: Any
Version: 2.1.6

Dependencies/Notes: Thisfeature isnot available on operating systems not supporting octal file
modes. The default mode (0600) only grants read/write access to the account writing the file. If
access from another account is needed (using clamd is a good example), then this directive may
be required. However, use thisdirective with caution to avoid exposing potentially sensitive data
to unauthorized users. Using the value "default” will revert back to the default setting.

41

ModSecurity® Reference Manual

Note
The process umask may still limit the mode if it is being more restrictive than the mode set using
this directive.

SecUpl oadKeepFi | es
Description: Configures whether or not the intercepted files will be kept after transaction is
processed.
Syntax: SecUpl oadKeepFil es On| O f| Rel evant Only
Example Usage: SecUpl oadKeepFi |l es On
Processing Phase: N/A
Scope: Any
Version: 2.0.0

Dependencies/Notes: This directive requires the storage directory to be defined (using
SecUpl oadDi r).

Possible values are:
* On - Keep uploaded files.
o« O f - Do not keep uploaded files.

* Rel evant Onl y - Thiswill keep only thosefilesthat belong to requeststhat are deemed
relevant.

SecWebAppl d

Description: Creates a partition on the server that belongs to one web application.

Syntax: SecWebAppl d " NAMVE"

Example Usage: SecWebAppl d " WebAppl"

Processing Phase: N/A

Scope: Any

Version: 2.0.0

Dependencies/Notes: Partitions are used to avoid collisions between session 1Ds and user IDs.

This directive must be used if there are multiple applications deployed on the same server. If it
isn't used, acollision between session | Dsmight occur. Thedefault valueis def aul t . Example:

<Vi rtual Host *: 80>

Server Name appl. com

Server Ali as www. appl. com

SecWebAppl d " Appl"

SecRul e REQUEST COXKI ES: PHPSESSI D ! ~$ chai n, nol og, pass

42

ModSecurity® Reference Manual

SecActi on set si d: %4 REQUEST COCKI ES. PHPSESSI D}
</ Vi r t ual Host >

<Vi rt ual Host *: 80>

Server Nanme app2.com

Server Al i as www. app2. com

Sec\WebAppl d " App2"

SecRul e REQUEST COKI ES: PHPSESSI D ! ~$ chai n, nol og, pass
SecAction setsi d: %4 REQUEST_COCKI ES. PHPSESSI D}

</ Vi r t ual Host >

In the two examples configurations shown, SecWebAppld is being used in conjunction with
the Apache VirtuaHost directives. What this achieves is to create more unigue collection
names when being hosted on one server. Normally, when setsid is used, ModSecurity will
create a collection with the name "SESSION" and it will hold the value specified. With using
SecWebAppld as shown in the examples, however, the name of the collection would become
"Appl _SESSION" and "App2_SESSION".

SecWebAppld isrelevant in two cases.
1. You arelogging transactiong/alerts to the M odSecurity Console and you want to use the
web application ID to search only the transactions belonging to that application.
2. You are using the data persistence facility (collections SESSION and USER) and you
need to avoid collisions between sessions and users belonging to different applications.

43

ModSecurity® Reference Manual

Processing Phases

ModSecurity 2.x allows rulesto be placed in one of the following five phases:

1. Request headers (REQUEST _HEADERS)

2. Request body (REQUEST_BCDY)

3. Response headers (RESPONSE HEADERS)

4. Response body (RESPONSE_BQDY)

5. Logging (LOGA NG
Below is a diagram of the standard Apache Request Cycle. In the diagram, the 5 ModSecurity
processing phases are shown.

ModSecurity Phase:1

v
I (wait) I—bl post-read-request |_//' Request Headers
e

ModSecurity Phase:5
Logging

[fggig|

b\

\ m ModSecurity Phase:2

o \,W Request Body

v

ModSecurity Phase:4 D ModSecurity Phase:3
Response Body Response Headers
document

In order to select the phase a rule executes during, use the phase action either directly in therule
or inusing the SecDef aul t Act i on directive:

SecDef aul t Acti on "I og, pass, phase: 2"
SecRul e REQUEST HEADERS: Host "!~$" "deny, phase: 1"

Note
Keep in mind that rules are executed according to phases, so even if two rules are adjacent in a
configuration file, but are set to execute in different phases, they would not happen one after the

44

ModSecurity® Reference Manual

other. The order of rulesin the configuration file is important only within the rules of each phase.
Thisis especially important when using the ski p and ski pAft er actions.

Note

TheLOGA NGphaseisspecial. Itisexecuted at the end of each transaction no matter what happened
in the previous phases. This means it will be processed even if the request was intercepted or the
al | owaction was used to pass the transaction through.

Phase Request Headers

Rules in this phase are processed immediately after Apache completes reading the request
headers (post-read-request phase). At this point the request body has not been read yet, meaning
not all request arguments are available. Rules should be placed in this phase if you need to have
them run early (before Apache does something with the request), to do something before the
request body has been read, determine whether or not the request body should be buffered, or
decide how you want the request body to be processed (e.g. whether to parse it as XML or not).
Note

Rules in this phase can not leverage Apache scope directives (Directory, Location,
LocationMatch, etc...) as the post-read-request hook does not have this information yet. The
exception hereisthe VirtualHost directive. If you want to use ModSecurity rulesinside Apache
locations, then they should run in Phase 2. Refer to the Apache Request Cycle/ModSecurity
Processing Phases diagram.

Phase Request Body

This is the general-purpose input analysis phase. Most of the application-oriented rules should
go here. In this phase you are guaranteed to have received the request arguments (provided the
regquest body has been read). ModSecurity supports three encoding types for the request body
phase:

» application/ x-wwe+formurl encoded - used to transfer form data

e mul tipart/form dat a - usedfor file transfers

e text/xm -usedfor passing XML data
Other encodings are not used by most web applications.

Phase Response Headers

This phase takes place just before response headers are sent back to the client. Run here if you
want to observe the response before that happens, and if you want to use the response headers to
determine if you want to buffer the response body. Note that some response status codes (such

45

ModSecurity® Reference Manual

as 404) are handled earlier in the request cycle by Apache and my not be able to be triggered
as expected. Additionally, there are some response headers that are added by Apache at a later
hook (such as Date, Server and Connection) that we would not be able to trigger on or sanitize.
This should work appropriately in a proxy setup or within phase:5 (logging).

Phase Response Body

This is the genera-purpose output analysis phase. At this point you can run rules against the
response body (provided it was buffered, of course). Thisis the phase where you would want to
inspect the outbound HTML for information disclosure, error messages or failed authentication
text.

Phase Logging

Thisphaseisrun just before logging takes place. The rules placed into this phase can only affect
how the logging is performed. This phase can be used to inspect the error messages logged by
Apache. Y ou cannot deny/block connectionsin this phase asitistoo late. This phase also alows
for inspection of other response headers that weren't available during phase:3 or phase:4. Note
that you must be careful not to inherit a disruptive action into arule in this phase as thisis a
configuration error in ModSecurity 2.5.0 and later versions.

46

ModSecurity® Reference Manual

Variables

ARGS

The following variables are supported in ModSecurity 2.x:

ARGS is a collection and can be used on its own (means al arguments including the POST
Payload), with a static parameter (matches arguments with that name), or with a regular
expression (matches al arguments with name that matches the regular expression). To look at
only the query string or body arguments, see the ARGS_GET and ARGS_POST collections.
Some variables are actually collections, which are expanded into more variables at runtime. The
following example will examine all request arguments:

SecRul e ARGS dirty

Sometimes, however, you will want tolook only at partsof acollection. Thiscan beachieved with
the help of the selection operator(colon). The following example will only look at the arguments
named p (do notethat, in general, requests can contain multiple arguments with the same name):

SecRule ARGS:p dirty

It is also possible to specify exclusions. The following will examine all request arguments for
the word dirty, except the ones named z (again, there can be zero or more arguments named z):

SecRul e ARGS| ! ARGS: z dirty

Thereisaspecial operator that allows you to count how many variables there are in acollection.
The following rule will trigger if there is more than zero arguments in the request (ignore the
second parameter for the time being):

SecRul e &ARGS ! 0%

And sometimes you need to look at an array of parameters, each with adlightly different name.
In this case you can specify aregular expression in the selection operator itself. The following
rule will look into all arguments whose names begin withi d_:

SecRule ARGS:/"id_/ dirty

Note

Using ARGS: p will not result in any invocations against the operator if argument p does not exist.
In ModSecurity 1.X, the ARGS variable stood for QUERY _STRI NG+ POST_PAYLQAD, whereas

now it

expands to individua variables.

47

ModSecurity® Reference Manual

ARGS_COMVBI NED_SI ZE

This variable allows you to set more targeted evaluations on the total size of the Arguments as
compared with normal Apache LimitRequest directives. For example, you could create arule to
ensure that the total size of the argument datais below acertain threshold (to help prevent buffer
overflow issues). Example: Block request if the size of the argumentsis above 25 characters.

SecRul e REQUEST_FI LENAME "~/ cgi - bi n/ | ogi n\. php" \
“chai n, | og, deny, phase: 2, t: none, t: | owercase, t: nor mal i sePat h"
SecRul e ARGS_COMBI NED_SI ZE " @t 25"

ARGS_NAMES

Is a collection of the argument names. Y ou can search for specific argument names that you
want to block. In a positive policy scenario, you can also whitelist (using an inverted rule with
the ! character) only authorized argument names. Example: This example rule will only allow 2
argument names - p and a. If any other argument names are injected, it will be blocked.

SecRul e REQUEST_FI LENAME "/i ndex. php" \
“chai n, | og, deny, st at us: 403, phase: 2, t: none, t: | owercase, t: normal i sePat h"
SecRul e ARGS_NAMES "!~(p|a)$" "t:none, t: | owercase"

ARGS GET

ARGS_ GET issimilar to ARGS, but only contains arguments from the query string.

ARGS GET_NAMES

ARGS_GET_NAMES is similar to ARGS_NAMES, but only contains argument names from the
query string.

ARGS_POST

ARGS POST issimilar to ARGS, but only contains arguments from the POST body.

ARGS_POST_NAMES

ARGS POST_NAMES issimilar to ARGS_NANMES, but only contains argument names from the
POST body.

AUTH_TYPE

This variable holds the authentication method used to validate a user. Example:

SecRul e AUTH_TYPE "basi c" | og, deny, status: 403, phase: 1,t: | owercase

48

ModSecurity® Reference Manual

Note

This data will not be available in a proxy-mode deployment as the authentication
is not local. In a proxy-mode deployment, you would need to inspect the
REQUEST HEADERS: Aut hori zat i on header.

Collection, requires a single parameter (after colon). The ENV variable is set with setenv and
does not give access to the CGI environment variables. Example:

SecRul e REQUEST_FI LENAME "pri ntenv" pass, setenv:tag=suspi ci ous

SecRul e ENV: tag "suspi ci ous"

Collection. Contains a collection of original file names (as they were called on the remote user's
file system). Note: only availableif files were extracted from the request body. Example:

SecRul e FILES "\.conf$" | og, deny, status: 403, phase: 2

FI LES_COMBI NED_SI ZE

Single value. Total size of the uploaded files. Note: only available if files were extracted from
the request body. Example:

SecRul e FILES COVBI NED SI ZE "@t 1000" | og, deny, st at us: 403, phase: 2

FI LES NAMES

Collection w/o parameter. Containsalist of form fields that were used for file upload. Note: only
availableif files were extracted from the request body. Example:

SecRul e FI LES_NAMES "“upfil e$" |o0g, deny, st at us: 403, phase: 2

FI LES_SI ZES

Collection. Contains alist of file sizes. Useful for implementing a size limitation on individual
uploaded files. Note: only available if files were extracted from the request body. Example:

SecRul e FILES SIZES "@t 100" | og, deny, st atus: 403, phase: 2

49

ModSecurity® Reference Manual

FI LES TMPNANES

Collection. Containsacollection of temporary files namesonthedisk. Useful when used together
with @ nspect Fi | e. Note: only available if files were extracted from the request body.
Example:

SecRul e FI LES TMPNAMES " @ nspectFil e /path/to/inspect_script.pl"

GEO

CEOis acollection populated by the results of the last @eolLookup operator. The collection
can be used to match geographical fields looked from an IP address or hostname.

Available since ModSecurity 2.5.0.

Fields:

COUNTRY_CODE: Two character country code. EX: US, GB, etc.
COUNTRY_CODES: Up to three character country code.
COUNTRY_NAME: The full country name.

COUNTRY_CONTINENT: The two character continent that the country is located. EX:
EU

REGION: Thetwo character region. For US, thisis state. For Canada, providence, etc.
CITY: The city nameif supported by the database.

POSTAL_CODE: The postal code if supported by the database.

LATITUDE: The latitudeif supported by the database.

LONGITUDE: Thelongitude if supported by the database.

DMA_CODE: The metropolitan area code if supported by the database. (US only)
AREA CODE: The phone system area code. (US only)

Example:

SecGeolLookupDb /usr/ | ocal / geo/ dat a/ GeoLiteCity. dat

SecRul e REMOTE_ADDR " @eoLookup" "chai n, drop, nsg: ' Non-GB | P address'"
SecRul e GEO COUNTRY_CODE "! @treq GB"

H GHEST_SEVERI TY

This variable holds the highest severity of any rules that have matched so far. Severities are
numeric values and thus can be used with comparison operatorssuchas @'t , etc.

Note

Higher severities have alower numeric value.

50

ModSecurity® Reference Manual

A value of 255 indicates no severity has been set.

SecRul e H GHEST_SEVERI TY "@e 2" "phase: 2, deny, st at us: 500, nsg: ' severity % H GHEST_S

MATCHED VAR

This variable holds the value of the variable that was matched against. It is similar to the TX:0,
except it can be used for all operators and does not requirethat thecapt ur e action be specified.

SecRul e ARGS pattern chai n, deny

SecRul e MATCHED VAR "further scrutiny"

MATCHED VAR NANE

This variable holds the full name of the variable that was matched against.
SecRul e ARGS pattern setvar:tx. nymat ch=% MATCHED VAR NAME}

SecRul e TX: MYMATCH " @qg ARGS: par anml’ deny

MODSEC _BUI LD

This variable holds the ModSecurity build number. This variable isintended to be used to check
the build number prior to using afeature that is available only in a certain build. Example:

SecRul e MODSEC BUI LD "! @e 02050102" ski pAfter: 12345
SecRul e ARGS " @m sone key words" id: 12345, deny, st at us: 500

MULTI PART _CRLF_LF LI NES

This flag variable will be set to 1 whenever a multi-part request uses mixed line terminators.
Themul ti part/form dat a RFC requires CRLF sequence to be used to terminate lines.
Since some client implementations use only LF to terminate lines you might want to allow
them to proceed under certain circumstances (if you want to do this you will need to stop using
MULTI PART_STRI CT_ERROR and check each multi-part flag variable individually, avoiding
MULTI PART_LF_LI NE). However, mixing CRLF and LF line terminators is dangerous

as it can allow for evasion. Therefore, in such cases, you will have to add a check for
MULTI PART_CRLF_LF_LI NES.

MULTI PART_STRI CT_ERRCR

MULTI PART_STRI CT_ERROR will be set to 1 when any of the following variables
is also set to 1: REQBODY_ PROCESSOR ERROR, MULTI PART BOUNDARY_QUOTED,

51

ModSecurity® Reference Manual

MULTI PART_BOUNDARY_WHI TESPACE, MULTI PART_DATA_ BEFORE,
MULTI PART_DATA AFTER, MULTI PART_HEADER FOLDI NG MULTI PART_LF_LI NE,
MULTI PART _SEM COLON_M SSI NG. Each of these variables covers one unusua (although
sometimes legal) aspect of the request body in mul tipart/formdata format. Your
policies should always contain a rule to check either this variable (easier) or one or more
individual variables (if you know exactly what you want to accomplish). Depending on the rate
of false positives and your default policy you should decide whether to block or just warn when
theruleistriggered.

The best way to use this variableis asin the example below:

SecRul e MULTI PART_STRI CT_ERROR "! @qg 0" \
"phase: 2,t: none, | 0og, deny, nsg: ' Mul ti part request body \
failed strict validation: \

PE % REQBODY_PROCESSCOR _ERROR}, \

BQ % MULTI PART_BOUNDARY_QUOTED}, \

BW % MULTI PART_BOUNDARY_WH TESPACE}, \

DB % MULTI PART_DATA BEFORE}, \

DA % MULTI PART_DATA AFTER}, \

HF % MULTI PART _HEADER FOLDI NG}, \

LF % MULTI PART LF_LINE}, \

SM % MULTI PART_SEM COLON_M SSI NG ' "

Therul ti part/for m dat a parser wasupgraded in ModSecurity v2.1.3to actively look for
signs of evasion. Many variables (aslisted above) were added to expose various facts discovered
during the parsing process. The MULTI PART_STRI CT_ERROR variable is handy to check on
all abnormalities at once. Theindividual variables allow detection to be fine-tuned according to
your circumstancesin order to reduce the number of false positives. Detailed analysis of various
evasion techniques covered will be released as a separated document at a later date.

MULTI PART_UNVATCHED BOUNDARY

Set to 1 when, during the parsing phase of anul ti part/request - body, ModSecurity
encounters what feels like a boundary but it is not. Such an event may occur when evasion of
ModSecurity is attempted.

The best way to use this variable is as in the example below:

SecRul e MULTI PART_UNVATCHED BOUNDARY "! @q 0" \
"phase: 2,t:none, | og, deny, nsg: ' Mul ti part parser detected a possi bl e unmatched bounda

Change the rule from blocking to logging-only if many fal se positives are encountered.

52

ModSecurity® Reference Manual

PATH | NFO

Besides passing query information to a script/handler, you can also pass additional data, known
as extra path information, as part of the URL. Example:

SecRul e PATH | NFO "~/ (bi n| et c| sbi n] opt|usr)"

QUERY_STRI NG

This variable holds form data passed to the script/handler by appending data after a question
mark. Warning: Not URL -decoded. Example:

SecRul e QUERY_STRI NG "at t ack"

REMOTE_ADDR

This variable holds the I P address of the remote client. Example:

SecRul e REMOTE_ADDR "~192\.168\.1\.101%"

REMOTE_HOST

If HostnameL ookUps are set to On, then this variable will hold the DNS resolved remote host
name. If it is set to Off, then it will hold the remote IP address. Possible uses for this variable
would be to deny known bad client hosts or network blocks, or conversely, to alow in authorized
hosts. Example:

SecRul e REMOTE_HOST "\ . evil\. net work\ or g$"

REMOTE_PORT

This variable holds information on the source port that the client used when initiating the
connection to our web server. Example: in this example, we are evaluating to see if the
REMOTE_PORT islessthan 1024, which would indicate that the user is a privileged user (root).

SecRul e REMOTE _PORT "@t 1024" phase: 1,1 og, pass, setenv: renot e_port=privil eged

REMOTE_USER

Thisvariable holdsthe username of the authenticated user. If there are no password (basic|digest)
access controlsin place, then this variable will be empty. Example:

SecRul e REMOTE_USER " admi n"

Note

53

ModSecurity® Reference Manual

Thisdatawill not be available in a proxy-mode deployment as the authentication is not local.

REQBODY_PROCESSOR

Built-in processors are URLENCODED, MULTI PART, and XM_. Example:

SecRul e REQBODY_PROCESSOR "~XM.$ chain
SecRul e XML " @al i dat eDTD / opt/ apache-frontend/ conf/xm . dtd"

REQBODY PROCESSOR ERRCR

Possible values are 0 (no error) or 1 (error). Thisvariable will be set by request body processors
(typically the mul ti part/request - dat a parser or the XML parser) when they fail to
properly parse arequest payload.

Example:

SecRul e REQBODY_PROCESSOR_ERROR " @q 1" deny, phase: 2

Note

Your policies must have a rule to check REQBODY _PROCESSOR_ERROR at the beginning of
phase 2. Failure to do so will leave the door open for impedance mismatch attacks. It is possible,
for example, that a payload that cannot be parsed by ModSecurity can be successfully parsed by
more tolerant parser operating in the application. If your policy dictates blocking then you should
reject therequest if error is detected. When operating in detection-only mode your rule should alert
with high severity when request body processing fails.

REQBODY PROCESSCR ERROR MBG

Empty, or contains the error message from the processor. Example:

SecRul e REQBODY_PROCESSOR_ERROR MSG "failed to parse" t:|owercase

REQUEST BASENANE
Thisvariable holds just the filename part of REQUEST_FI LENAME (e.g. index.php).
Example:

SecRul e REQUEST_BASENAME "l ogi n\. php$" phase: 2,t: none, t: | owercase

Note
Please note that anti-evasion transformations are not applied to this variable by default.
REQUEST _BASENAME will recognise both/ and\ as path separators.

ModSecurity® Reference Manual

REQUEST BODY

This variable holds the data in the request body (including POST_PAYLOAD data).
REQUEST _BQODY should be used if the original order of the arguments is important (ARGS
should be used in all other cases). Example:

SecRul e REQUEST BODY "~user name=\w 25, }\ &asswor d=\ W 25, }\ &Submi t\ =l ogi n$"

Note

Thisvariableis only available if the URLENCODED request body processor parsed a request body.
This will occur by default when an appl i cati on/ x- www« f or nmt ur | encoded is detected,
or the URLENCODED request body parser isforced. Asof 2.5.7 it is possible to force the presence
of the REQUEST_BCODY variable, but only when there is no request body processor defined, using
thect | : f or ceRequest BodyVar i abl e option in the REQUEST_HEADERS phase.

REQUEST_COCKI ES

This variable is a collection of all of the cookie data. Example: the following example is using
the Ampersand special operator to count how many variables are in the collection. In thisrule,
it would trigger if the request does not include any Cookie headers.

SecRul e &REQUEST_COCXKI ES " @q 0"

REQUEST COOKI ES_NAMES

Thisvariableis acollection of the cookie names in the request headers. Example: the following
rule will trigger if the JSESSIONID cookie is not present.

SecRul e &REQUEST_COCKI ES_NAMES: JSESSIONI D " @q 0"

REQUEST FI LENAVE

This variable holds the relative REQUEST URI minus the QUERY_STRI NG part (e.g. /
index.php). Example:

SecRul e REQUEST_FI LENAME "~/ cgi-bin/l ogi n\. php$" phase: 2,t:none, t: normal i sePat h

Note
Please note that anti-evasion transformations are not used on REQUEST _FI LENAME by default.

55

ModSecurity® Reference Manual

REQUEST HEADERS

This variable can be used as either a collection of al of the request headers or can
be used to specify individual headers (by using REQUEST_HEADERS:Header-Name).
Example: the first example uses REQUEST_HEADERS as a collection and is applying the
val i dat eUr | Encodi ng operator against all headers.

SecRul e REQUEST_ HEADERS " @al i dat eUr | Encodi ng"
Example: the second example is targeting only the Host header.

SecRul e REQUEST HEADERS: Host "~[\d\.]+$" \
"deny, | og, st atus: 400, nsg: ' Host header is a nuneric |P address'"

REQUEST _HEADERS NAMES

Thisvariableis acollection of the names of all of the request headers. Example:

SecRul e REQUEST HEADERS NAMES "~x-forwarded-for" \
"l og, deny, status: 403,t: | owercase, nsg: ' Proxy Server Used'"

REQUEST_LI NE

This variable holds the complete request line sent to the server (including the
REQUEST METHOD and HTTP version data). Example: this example rule will trigger if the
request method is something other than GET, HEAD, POST or if the HTTP is something other
than HTTP/0.9, 1.0 or 1.1.

SecRul e REQUEST LINE "! (~((?:(?:pos|ge)t|head))|http/(0\.9]1\.0]21\.1)$)" t:none, t:|l

REQUEST METHOD

This variable holds the request method used by the client.
The following example will trigger if the request method is either CONNECT or TRACE.

SecRul e REQUEST METHOD "~((?:connect|trace))$" t:none,t:|owercase

REQUEST PROTOCOL

This variable holds the request protocol version information. Example:

SecRul e REQUEST_PROTOCOL "!“http/(0\.9]1\.0]1\.1)3$" t:none,t: | owercase

56

ModSecurity® Reference Manual

REQUEST URI

This variable holds the full URL including the QUERY_STRI NG data (e.g. /index.php?p=X),
however it will never contain adomain name, even if it was provided on the request line. It also
does not include either the REQUEST _METHOD or the HTTP version info.

Example:

SecRul e REQUEST URI "attack" phase:1,t:none,t:url Decode, t: | owercase,t: nornalisePath

Note
Please note that anti-evasion transformations are not used on REQUEST _URI by default.

REQUEST URI _RAW

Same as REQUEST _URI but will contain the domain nameif it was provided on the request line
(e.g. http://www.example.com/index.php?p=X).
Example:

SecRul e REQUEST URI _RAW"http:/" phase: 1,t:none,t:url Decode, t: | owercase,t:normalise

Note
Please note that anti-evasion transformations are not used on REQUEST _URI _ RAWby default.

RESPONSE_BCDY

This variable holds the data for the response payload.
Example:

SecRul e RESPONSE_BODY " CDBC Error Code"

RESPONSE_CONTENT _LENGTH

Response body length in bytes. Can be available starting with phase 3 but it does not have to be
(as the length of response body is not always known in advance.) If the size is not known this
variablewill contain azero. If RESPONSE_CONTENT _LENGTH contains azero in phase 5 that
means the actual size of the response body was 0.

The value of this variable can change between phases if the body is modified. For example, in
embedded mode nod__def | at e can compress the response body between phases 4 and 5.

RESPONSE_CONTENT _TYPE

Response content type. Only available starting with phase 3.

57

ModSecurity® Reference Manual

RESPONSE _HEADERS

This variable is similar to the REQUEST_HEADERS variable and can be used in the same
manner. Example:

SecRul e RESPONSE_HEADERS: X- Cache "M SS"

Note

This variable may not have access to some headers when running in embedded-mode. Headers
such as Server, Date, Connection and Content-Type are added during a later Apache hook just
prior to sending the data to the client. This data should be available, however, either during
ModSecurity phase:5 (logging) or when running in proxy-mode.

RESPONSE_HEADERS_NAMES

Thisvariableis acollection of the response header names. Example:
SecRul e RESPONSE HEADERS NAMES " Set - Cooki e"

Note

Same limitations as RESPONSE_HEADERS with regards to access to some headers in
embedded-mode.

RESPONSE_PROTOCCL

This variable holds the HTTP response protocol information. Example:

SecRul e RESPONSE_PROTOCCL "~AHTTP\/O\. 9"

RESPONSE_STATUS

This variable holds the HTTP response status code as generated by Apache. Example:
SecRul e RESPONSE_STATUS "~[45] "

Note

This directive may not work as expected in embedded-mode as Apache handles many of the
stock response codes (404, 401, etc...) earlier in Phase 2. This variable should work as expected
in a proxy-mode deployment.

RULE

This variable provides access to the i d, rev, severity, | ogdata, and nsg fields
of the rule that triggered the action. Only available for expansion in action strings
(egsetvar:tx.varnane=%rul e. i d}). Example:

58

ModSecurity® Reference Manual

SecRul e &REQUEST HEADERS: Host " @q 0" "I og, deny, setvar:tx. varname=%rule.id}"

SCRI PT_BASENAIVE

Thisvariable holds just the local filename part of SCRIPT_FILENAME. Example:
SecRul e SCRI PT_BASENAME "~l ogi n\ . php$"

Note

Thisvariableis not available in proxy mode.

SCRI PT_FI LENAME

Thisvariable holds the full path on the server to the requested script. (e.g. SCRIPT_NAME plus
the server path). Example:

SecRul e SCRI PT_FI LENAVE "~/ usr/ 1 ocal / apache/ cgi - bi n/ | ogi n\. php$"

Note

Thisvariableis not available in proxy mode.

SCRI PT G D

This variable holds the group id (numerical value) of the group owner of the script. Example:
SecRul e SCRIPT_ G D "!~46%"

Note

Thisvariableis not available in proxy mode.

SCRI PT_GROUPNANE

This variable holds the group name of the group owner of the script. Example:
SecRul e SCRI PT_GROUPNAME "! “apache$"

Note

Thisvariableis not available in proxy mode.

SCRI PT_MODE

This variable holds the script's permissions mode data (numerical - 1=execute, 2=write, 4=read
and 7=read/write/execute). Example: will trigger if the script has the WRITE permissions set.

SecRul e SCRI PT_MODE "~(2| 3| 6] 7) $"

59

ModSecurity® Reference Manual

Note

Thisvariableis not available in proxy mode.

SCRI PT_UI D

Thisvariable holdsthe user id (numerical value) of the owner of the script. Example: the example
rule below will trigger if the UID is not 46 (the Apache user).

SecRul e SCRIPT_U D "!"46%$"

Note

Thisvariable is not available in proxy mode.

SCRI PT_USERNAME

This variable holds the username of the owner of the script. Example:
SecRul e SCRI PT_USERNAME "! “apache$"

Note

Thisvariableis not available in proxy mode.

SERVER _ADDR

This variable contains the | P address of the server. Example:

SecRul e SERVER ADDR "~192\.168\.1\. 100%"

SERVER NANE

This variable contains the server's hostname or 1P address. Example:
SecRul e SERVER NAME " host nane\ . cons"

Note
This datais taken from the Host header submitted in the client request.

SERVER_PORT

This variable contains the local port that the web server is listening on. Example:

SecRul e SERVER PORT "~80%"

60

ModSecurity® Reference Manual

SESSI ON

Thisvariable is a collection, available only after set si d is executed. Example: the following
example shows how toinitialize a SESSION collection with setsid, how to use setvar to increase
the session.score values, how to set the session.blocked variable and finally how to deny the
connection based on the session:blocked value.

SecRul e REQUEST COKI ES: PHPSESSI D ! ~$ chai n, nol og, pass
SecActi on setsi d: %4 REQUEST COCKI ES. PHPSESSI D}
SecRul e REQUEST_URI "~/ cgi-bin/finger$" \
"phase: 2,t: none, t: | owercase, t: nornal i sePat h, pass, | og, setvar: sessi on. score=+10"
SecRul e SESSI ON: SCORE "@t 50" "pass, | og, setvar: session. bl ocked=1"
SecRul e SESSI ON: BLOCKED " @q 1" "Il og, deny, st at us: 403"

SESSI ONI D

Thisvariable isthe value set with set si d. Example:

SecRul e SESSI ONI D !'~$ chai n, nol og, pass
SecRul e REQUEST COXI ES: PHPSESSI D ' $
SecAction setsid: %4 REQUEST_COCKI ES. PHPSESSI D}

T ME

This variable holds aformatted string representing the time (hour:minute:second). Example:

SecRule TIME "~(([1]1(8]9))]([2](0]1]2]3))):\d{2}:\d{2}$"

TI ME_DAY

This variable holds the current date (1-31). Example: this rule would trigger anytime between
the 10th and 20th days of the month.

SecRul e TIME_DAY "~(([1] (0] 1| 2| 3| 4| 5| 6] 7| 8] 9))]| 20) $"
TI ME_EPOCH

This variable holds the time in seconds since 1970. Example:

SecRul e TI ME_EPOCH " @t 1000"

TI ME_HOUR

Thisvariable holds the current hour (0-23). Example: thisrule would trigger during "off hours'.

SecRul e TIME_HOUR "~(0] 1| 2| 3| 4|5/ 6| [1](8]9)|[2](0]1]|2]3))$"

61

ModSecurity® Reference Manual

TIME M N

This variable holds the current minute (0-59). Example: this rule would trigger during the last
half hour of every hour.

SecRule TIME_ M N "~(3]|4|5)"

TI ME_MON
This variable holds the current month (0-11). Example: this rule would match if the month was

either November (10) or December (11).

SecRul e TI ME_MON "~1"

TI ME_SEC

This variable holds the current second count (0-59). Example:

SecRul e TI ME_SEC "@t 30"

TI ME_\DAY

This variable holds the current weekday (0-6). Example: this rule would trigger only on week-
ends (Saturday and Sunday).

SecRul e TI ME_WDAY "~(0| 6) $"

TI ME_YEAR

This variable holds the current four-digit year data. Example:

SecRul e TI ME_YEAR "~2006%"

X

Transaction Collection. Thisis used to store pieces of data, create a transaction anomaly score,
and so on. Transaction variables are set for 1 request/response cycle. The scoring and evaluation
will not last past the current request/response process. Example: In this example, we are using
setvar to increase the tx.score value by 5 points. We then have afollow-up run that will evaluate
the transactional score this request and then it will decided whether or not to allow/deny the
reguest through.

Thefollowing isalist of reserved namesin the TX collection:

e TX: 0 - The matching value when using the @ x or @moperator with the capt ur e
action.

62

ModSecurity® Reference Manual

* TX: 1-TX: 9 - The captured subexpression value when using the @ x operator with
capturing parens and the capt ur e action.

SecRul e WEBSERVER _ERROR LOG "does not exist" "phase:5, pass, setvar:tx.score=+5"
SecRul e TX: SCORE " @t 20" deny, | og

USERI D

Thisvariable isthe value set with set ui d. Example:

SecActi on set ui d: %4 REMOTE_USER}, nol og
SecRul e USERI D "Adni n"

VEEBAPPI D

Thisvariable isthe value set with SecWebAppl d. Example:

SecWebAppl d "WebAppl"
SecRul e VWEBAPPI D "WebAppl" "chai n, | og, deny, st at us: 403"
SecRul e REQUEST HEADERS: Tr ansf er - Encodi ng "!*$"

WEBSERVER ERROR LOG

Contains zero or more error messages produced by the web server. Access to this variableisin
phase:5 (logging). Example:

SecRul e VEBSERVER ERROR LOG "Fil e does not exist" "phase:5, setvar:tx.score=+5"

XM

Can be used standalone (as a target for val i dat eDTD and val i dat eSchena) or with an
XPath expression parameter (which makes it a valid target for any function that accepts plain
text). Example using XPath:

SecDef aul t Acti on | og, deny, st at us: 403, phase: 2
SecRul e REQUEST_HEADERS: Cont ent - Type ~text/xm $ \
phase: 1,t: 1 ower case, nol og, pass, ctl: request BodyProcessor =XM_
SecRul e REQBODY_PROCESSOR "! AXM.$" ski pAfter: 12345
SecRul e XM.:/ enpl oyees/ enpl oyee/ nane/text () Fred
SecRul e XM.:/ xq: enpl oyees/ enpl oyee/ nane/text () Fred \
i d: 12345, xm ns: xg=htt p: // ww. exanpl e. coni enpl oyees

The first XPath expression does not use namespaces. It would match against payload such as
this one:

63

ModSecurity® Reference Manual

<enpl oyees>
<enpl oyee>

<nane>Fred Jones</ nanme>

<addr ess | ocati on="hone" >
<street >900 Aurora Ave.</street>
<city>Seattle</city>
<st at e>WA</ st at e>
<zi p>98115</ zi p>

</ addr ess>

<addr ess | ocati on="wor k" >
<street >2011 152nd Avenue NE</street>
<ci t y>Rednond</ci ty>
<st at e>WA</ st at e>
<zi p>98052</ zi p>

</ addr ess>

<phone | ocati on="wor k" >(425) 555- 5665</ phone>

<phone | ocati on="hone" >(206) 555- 5555</ phone>

<phone | ocati on="nobi | e">(206) 555- 4321</ phone>

</ enpl oyee>
</ enpl oyees>

The second X Path expression does use namespaces. It would match the following payload:

<xq: enpl oyees xm ns: xq="http://ww. exanpl e. com enpl oyees" >
<enpl oyee>
<name>Fred Jones</nane>
<addr ess | ocati on="hone">
<street>900 Aurora Ave.</street>
<city>Seattle</city>
<st at e>WA</ st at e>
<zi p>98115</ zi p>
</ addr ess>
<addr ess | ocati on="wor k" >
<street>2011 152nd Avenue NE</street>
<ci t y>Rednond</ci ty>
<st at e>WA</ st at e>
<zi p>98052</ zi p>
</ addr ess>
<phone | ocati on="wor k" >(425) 555- 5665</ phone>
<phone | ocati on="hone" >(206) 555- 5555</ phone>
<phone | ocati on="nobi | e">(206) 555-4321</ phone>
</ enpl oyee>
</ xq: enpl oyees>

ModSecurity® Reference Manual

Note the different namespace used in the second example.
To learn more about X Path we suggest the following resources:
1. XPath Standard [http://www.w3.org/TR/xpath]
2. XPath Tutorial [http://www.zvon.org/xx|/X PathTutorial/General/exampl es.html]

65

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.zvon.org/xxl/XPathTutorial/General/examples.html
http://www.zvon.org/xxl/XPathTutorial/General/examples.html

ModSecurity® Reference Manual

Transformation functions

When ModSecurity receives request or response information, it makes a copy of this data and
places it into memory. It is on this data in memory that transformation functions are applied.
The raw request/response data is never altered. Transformation functions are used to transform
avariable beforetesting itin arule.

Note
There are no default transformation functions as there were in previous versions of ModSecurity.

The following rule will ensure that an attacker does not use mixed case in order to evade the
ModSecurity rule:

SecRul e ARGS: p "xp_cndshel I " "t: | owercase"

multiple transformation actions can be used in the samerrule, for examplethe following rule also
ensures that an attacker does not use URL encoding (%xx encoding) for evasion. Note the order
of the transformation functions, which ensures that a URL encoded letter is first decoded and
than trandated to lower case.

SecRul e ARGS: p "xp_crdshel I™ "t:url Decode, t: | owercase”

One can use the SecDefaultAction command to ensure the trand ation occurs for every rule until
the next. Note that transformation actions are additive, so if a rule explicitly list actions, the
translation actions set by SecDefaultAction are still performed.

SecDef aul t Action t:url Decode, t:| owercase

The following transformation functions are supported:

base64Decode

This function decodes a base64-encoded string.

base64Encode

This function encodes input string using base64 encoding.

conpr essWi t espace

It converts whitespace characters (32, \f, \t, \n, \r, \v, 160) to spaces (ASCII 32) and then
compresses multiple consecutive space characters into one.

66

ModSecurity® Reference Manual

cssDecode

Decodes CSS-encoded characters, as specified at http://www.w3.0rg/TR/REC-CSS2/
syndata.html. Thisfunction uses only up to two bytesin the decoding process, meaningitisuseful
to uncover ASCII characters (that wouldn't normally be encoded) encoded using CSS encoding,
or to counter evasion which is a combination of a backslash and non-hexadecimal characters
(eg.j a\vascri pt isequivalenttoj avascri pt).

escapeSeqDecode

Thisfunction decode ANSI C escapesequences. \a, \b,\f,\n,\r,\t, \v,\ LV V200 A"
\ xHH (hexadecimal), \ 0000 (octal). Invalid encodings are left in the output.

hexDecode

This function decodes a hex-encoded string.

hexEncode

This function encodes input as hex-encoded string.

ht ml Enti t yDecode

This function decodes HTML entities present in input. The following variants are supported:
o &#xHHand &#xHH; (where H isany hexadecimal number)
o &#DDD and &#DDD; (where D isany decima number)
* " and " ;
* and &bsp;
e &t andé<
* > and > ;
This function will convert any entity into a single byte only, possibly resulting in a loss of

information. It is thus useful to uncover bytes that would otherwise not need to be encoded, but
it cannot do anything with the characters from the range above 255.

j sDecode

Decodes JavaScript escape sequences. If a\ uHHHH codeisin the range of FFO1-FF5E (thefull
width ASCII codes), then the higher byte is used to detect and adjust the lower byte. Otherwise,
only the lower byte will be used and the higher byte zeroed.

67

http://www.w3.org/TR/REC-CSS2/syndata.html
http://www.w3.org/TR/REC-CSS2/syndata.html

ModSecurity® Reference Manual

| engt h

This function converts the input to its numeric length (count of bytes).

| ower case

This function converts all charactersto lowercase using the current C locale.

md5

Thisfunction calculates an MD5 hash from input. Note that the computed hash isin araw binary
form and may need encoded into text to be usable (for example: t : nd5, t : hexEncode).

none

Not an actual transformation function, but an instruction to ModSecurity to remove al
transformation functions associated with the current rule.

nor nal | sePat h

Thisfunction will remove multiple slashes, self-references and directory back-references (except
when they are at the beginning of the input).

nor mal i sePat hW n

Same asnor nal i sePat h, but will first convert backslash characters to forward slashes.

parityEven7bit

This function calculates even parity of 7-bit data replacing the 8th bit of each target byte with
the calculated parity bit.

parityQOdd7bit
This function calculates odd parity of 7-bit data replacing the 8th bit of each target byte with
the calculated parity hit.

parityZero7bit

This function calculates zero parity of 7-bit data replacing the 8th bit of each target byte with a
zero parity bit which allows inspection of even/odd parity 7bit data as ASCII7 data.

renovelNul | s

This function removes NULL bytes from input.

68

ModSecurity® Reference Manual

renoveWi t espace

This function removes all whitespace characters from input.

repl aceConmment s

Thisfunction replaces each occurrence of aC-stylecomments(/ * ... */)withasingle space
(multiple consecutive occurrences of a space will not be compressed). Unterminated comments
will too be replaced with a space (ASCII 32). However, a standalone termination of a comment
(* /) will not be acted upon.

replaceNul | s
Thisfunction is enabled by default. It replaces NULL bytesin input with spaces (ASCII 32).

ur | Decode

This function decodes an URL-encoded input string. Invalid encodings (i.e. the ones that use
non-hexadecimal characters, or the ones that are at the end of string and have one or two
characters missing) will not be converted. If you want to detect invalid encodings use the
@al i dat eUr | Encodi ng operator. The transformation function should not be used against
variables that have already been URL-decoded unless it is your intention to perform URL
decoding twice!

ur | DecodeUni

In addition to decoding % x like ur| Decode, url DecodeUni aso decodes %uXXXX
encoding. If the codeisintherange of FFO1-FF5E (thefull width ASCII codes), then the higher
byte is used to detect and adjust the lower byte. Otherwise, only the lower byte will be used and
the higher byte zeroed.

url Encode

This function encodes input using URL encoding.

shal

Thisfunction calculates a SHA 1 hash from input. Note that the computed hash isin araw binary
form and may need encoded to be usable (for example: t : shal, t : hexEncode).

trinLeft

This function removes whitespace from the left side of input.

69

ModSecurity® Reference Manual

trinRi ght
This function removes whitespace from the right side of input.

trim

This function removes whitespace from both the left and right sides of input.

70

ModSecurity® Reference Manual

Actions

Each action belongs to one of five groups:

Disruptive actions

Non-disruptive actions

Flow actions

M eta-data actions

Data actions

al | ow

Cause ModSecurity to do something. In many cases
something means block transaction, but not in all. For
example, the allow action is classified as a disruptive
action, but it does the opposite of blocking. There can
only be one disruptive action per rule (if there are
multiple disruptive actions present, or inherited, only
the last one will take effect), or rule chain (in achain,
adisruptive action can only appear in thefirst rule).
Do something, but that something does not and cannot
affect the rule processing flow. Setting a variable, or
changing its value is an example of a non-disruptive
action. Non-disruptive action can appear in any rule,
including each rule belonging to achain.

These actions affect the rule flow (for example ski p
or ski pAfter).

M eta-data actions are used to provide moreinformation
about rules. Examplesinclude i d, rev, severity
and nmsg.

Not really actions, these are mere containers that hold
data used by other actions. For example, the st at us
action holdsthe status that will be used for blocking (if
it takes place).

Description: Stops rule processing on a successful match and allows the transaction to proceed.

Action Group: Disruptive

Example:

SecRul e REMOTE_ADDR "7192\. 168\. 1\. 100%" nol og, phase: 1, al | ow

Prior to ModSecurity 2.5 the al | ow action would only affect the current phase. An al | owin
phase 1 would skip processing the remaining rules in phase 1 but the rules from phase 2 would
execute. Starting with v2.5.0 al | ow was enhanced to allow for fine-grained control of what is

done. The following rules now apply:

71

ModSecurity® Reference Manual

1. If used oneitsown, likein the example above, al | owwill affect the entire transaction,
stopping processing of the current phase but also skipping over all other phases apart
from the logging phase. (The logging phaseis specid; it is designed to always execute.)

2. If used with parameter "phase”, al | ow will cause the engine to stop processing the
current phase. Other phases will continue as normal.

3. If used with parameter "request”, al | ow will cause the engine to stop processing the
current phase. The next phase to be processed will be phase RESPONSE HEADERS.

Examples:

Do not process request but process response.
SecActi on phase: 1, al | ow. r equest

Do not process transaction (request and response).
SecActi on phase: 1, al |l ow

If you want to allow aresponse through, put arulein phase RESPONSE HEADERS and simply
useal | owonitsown:

All ow response through.
SecActi on phase: 3, al | ow

append

Description: Appends text given as parameter to the end of response body. For this action to
work content injection must be enabled by setting SecCont ent | nj ect i on toOn. Also make
sure you check the content type of the response before you make changes to it (e.g. you don't
want to inject stuff into images).

Action Group: Non-disruptive
Processing Phases: 3 and 4.
Example:

SecRul e RESPONSE_CONTENT_TYPE "“text/htm " "nol og, pass, append: ' <hr >Foot er" "

Note

While macro expansion is alowed in the additional content, you are strongly cautioned against
inserting user defined datafields.

audi t | og

Description: Marks the transaction for logging in the audit log.

Action Group: Non-disruptive

72

ModSecurity® Reference Manual

Example:
SecRul e REMOTE_ADDR "~192\.168\. 1\. 100%$" audi tl og, phase: 1, al | ow

Note
The auditlog action is now explicit if log is aready specified.

bl ock

Description: Performs the default disruptive action.

Action Group: Disruptive

It is intended to be used by ruleset writers to signify that the rule was intended to block and
leaves the "how" up to the administrator. This action is currently a placeholder which will just
be replaced by the action from the last SecDef aul t Act i on in the same context. Using the
bl ock action with the SecRul eUpdat eAct i onByl d directive allows arule to be reverted
back to the previous SecDef aul t Act i on disruptive action.

In future versions of ModSecurity, more control and functionality will be added to define "how"
to block.

Examples:

Inthefollowing example, the second rulewill "deny" because of the SecDefaultAction disruptive
action. The intent being that the administrator could easily change this to another disruptive
action without editing the actual rules.

Admini strator defines "how' to bl ock (deny, status:403)...
SecDef aul t Acti on phase: 2, deny, st at us: 403, | og, audi t | og

Included froma rulest...

Intent is to warn for this User Agent

SecRul e REQUEST_ HEADERS: User - Agent "perl" "phase: 2, pass, nsg: ' Perl based user agent
Intent is to block for this User Agent, "how' described in SecDefaul t Action
SecRul e REQUEST_HEADERS: User - Agent "ni kt 0" "phase: 2, bl ock, nsg: ' Ni kt o0 Scanners | dent

In the following example, The rule is reverted back to the pass action defined in
the SecDefaultAction directive by using the SecRul eUpdat eAct i onByl d directive in
conjuction with the bl ock action. This alows an administrator to override an action in a 3rd
party rule without modifying the rule itself.

Admi ni strator defines "how' to bl ock (deny, status:403)...
SecDef aul t Acti on phase: 2, pass, | og, audi t| og

Included froma rulest...
SecRul e REQUEST HEADERS: User - Agent "ni kt 0" "id: 1, phase: 2, deny, nsg: ' Ni kt 0 Scanners |

73

ModSecurity® Reference Manual

Added by the adm ni strator
SecRul eUpdat eActi onByld 1 "bl ock"

capture
Description: When used together with the regular expression operator, capture action will create
copies of regular expression captures and place them into the transaction variable collection. Up
to ten captures will be copied on a successful pattern match, each with a name consisting of a
digit from0to 9.
Action Group: Non-disruptive

Example:

SecRul e REQUEST_BODY "~usernane=(\w{25,})" phase: 2, capture,t:none, chain
SecRule TX:1 "(?:(?:a(dm n| nonynmous)))"

Note
The 0 data captures the entire REGEX match and 1 captures the datain the first parens, etc...

chai n

Description: Chains the rule where the action is placed with the rule that immediately follows
it. The result is called arule chain. Chained rules allow for more complex rule matches where
you want to use a number of different VARIABLES to create a better rule and to help prevent
false positives.

Action Group: Flow

Example:

Refuse to accept POST requests that do

not specify request body I ength. Do note that

this rule should be preceeded by a rule that verifies

only valid request nmethods (e.g. GET, HEAD and POST) are used.
SecRul e REQUEST METHOD ~PCST$ chain, t: none

SecRul e REQUEST_HEADERS: Cont ent - Lengt h ~$ t: none

Note

In programming language concepts, think of chained rules somewhat similar to AND conditional
statements. The actions specified in the first portion of the chained rule will only be triggered if
al of the variable checks return positive hits. If one aspect of the chained rule is negative, then the
entire rule chain is negative. Also note that disruptive actions, execution phases, metadata actions
(id, rev, msg), skip and skipAfter actions can only be specified on by the chain starter rule.

74

ModSecurity® Reference Manual

ctl

Description: The ctl action allows configuration options to be updated for the transaction.
Action Group: Non-disruptive

Example:

Parse requests with Content-Type "text/xm " as XM
SecRul e REQUEST_CONTENT_TYPE ~text/xm nol og, pass, ctl:request BodyPr ocessor =XM

Note
The following configuration options are supported:
1. audi t Engi ne
audi t LogParts
debugLogLevel
rul eRenoveByl d (singlerule D, or asingle rule ID range accepted as parameter)
r equest BodyAccess
f or ceRequest BodyVari abl e
request BodyLi mi t

r equest BodyPr ocessor

© © N o gk~ w0 D

responseBodyAccess
10r esponseBodylLi mi t
11r ul eEngi ne

With the exception of r equest BodyPr ocessor and f or ceRequest BodyVari abl e,
each configuration option corresponds to one configuration directive and the usage isidentical.
Ther equest BodyPr ocessor option alows you to configure the request body processor.
By default ModSecurity will use the URLENCODED and MULTI PART processors to process
anappl i cati on/ x-wwform url encoded andanul ti part/form dat a bodies,
respectively. A third processor, XM, isal so supported, but it isnever used implicitly. Instead you
must tell ModSecurity to useit by placing afew rulesin the REQUEST _HEADERS processing
phase. After the request body was processed as XML you will be able to use the XML-related
features to inspect it.

Request body processors will not interrupt a transaction if an error occurs
during parsing. Instead they will set variables REQBODY_PROCESSOR _ERROR and
REQBODY_PROCESSOR_ERROR _MSG. These variables should be inspected in the
REQUEST _BQCDY phase and an appropriate action taken.

The f or ceRequest BodyVar i abl e option alows you to configure the REQUEST BODY
variableto be set when there is no request body processor configured. This allows for inspection
of request bodies of unknown types.

75

ModSecurity® Reference Manual

deny
Description: Stops rule processing and intercepts transaction.
Action Group: Disruptive

Example:

SecRul e REQUEST_ HEADERS: User - Agent "ni kt 0" "1 og, deny, nsg: ' Ni kt o Scanners Identifi ed

depr ecat evar

Description: Decrement counter based on its age.
Action Group: Non-Disruptive

Example: The following example will decrement the counter by 60 every 300 seconds.
SecActi on deprecat evar: sessi on. scor e=60/ 300

Note

Counter values are aways positive, meaning the value will never go below zero.

dr op

Description: Immediately initiate a "connection close" action to tear down the TCP connection
by sending a FIN packet.

Action Group: Disruptive

Example: The following example initiates an IP collection for tracking Basic Authentication
attempts. If the client goes over the threshold of morethan 25 attemptsin 2 minutes, it will DROP
subsequent connections.

SecActi on phase: 1,initcol:ip=% REMOTE_ADDR}, nol og
SecRul e ARGS:login "!2$" \

nol og, phase: 1, setvar:ip. aut h_attenpt =+1, deprecatevar:ip. aut h_attenpt =20/ 120
SecRul e | P: AUTH ATTEMPT " @t 25" \

"l og, dr op, phase: 1, nsg: ' Possi bl e Brute Force Attack'"

Note

This action is currently not available on Windows based builds. This action is extremely useful
when responding to both Brute Force and Denial of Service attacks in that, in both cases, you
want to minimize both the network bandwidth and the data returned to the client. This action
causes error message to appear inthelog " (9)Bad file descriptor: core_output_filter: writing data
to the network"

76

ModSecurity® Reference Manual

exec

Description: Executes an external script/binary supplied as parameter. As of v2.5.0, if the
parameter supplied to exec isalua script (detected by the . | ua extension) the script will be
processed internally. This means you will get direct access to the internal request context from
the script. Please read the SecRul eScri pt documentation for more details on how to write
Luascripts.

Action Group: Non-disruptive

Example:

The following is going to execute /usr/local/apache/bin/test.sh
as a shell script on rule match.
SecRul e REQUEST_URI "~/ cgi-bin/script\.pl" \
"phase: 2,t: none, t: | owercase, t: nornalisePath, | og, exec:/usr/| ocal /apache/ bin/test

The following is going to process /usr/l|ocal/apache/conf/exec.| ua
internally as a Lua script on rule natch.
SecRul e ARGS: p attack | og, exec:/usr/|ocal/apache/ conf/exec. | ua

Note

The exec action is executed independently from any disruptive actions. External scriptswill always
be called with no parameters. Some transaction information will be placed in environment variables.
All the usual CGI environment variableswill be there. Y ou should be aware that forking athreaded
processresultsin al threads being replicated in the new process. Forking can therefore incur larger
overhead in multi-threaded operation. The script you execute must write something (anything) to
stdout. If it doesn't ModSecurity will assume execution didn't work.

expi revar
Description: Configures a collection variable to expire after the given time in seconds.
Action Group: Non-disruptive

Example:

SecRul e REQUEST COOKI ES: JSESSI ONI D "!~$" nol og, phase: 1, pass, chai n
SecActi on setsi d: %4 REQUEST COXKI ES: JSESSI ONI D}
SecRul e REQUEST_URI "~/ cgi-bin/script\.pl" \
"phase: 2,t: none, t: | owercase, t: nornalisePath, | og, all ow, \
set var: sessi on. suspi ci ous=1, expi revar: sessi on. suspi ci ous=3600, phase: 1"

Note

77

ModSecurity® Reference Manual

| d

Y ou should use expirevar actions at the same time that you use setvar actions in order to keep
the indented expiration time. If they are used on their own (perhapsin a SecAction directive) the
expiretime could get re-set. When variables are removed from collections, and there are no other
changes, collections are not written to disk at the end of request. This is because the variables
can aways be expired again when the collection is read again on a subsequent request.

Description: Assignsaunique ID to the rule or chain.
Action Group: Meta-data
Example:

SecRul e &REQUEST_HEADERS: Host " @q 0" \
"l 0g,id: 60008, severity: 2, nsg: ' Request M ssing a Host Header'"

Note
These are the reserved ranges:

o 1-99,999; reserved for local (internal) use. Use as you see fit but do not use this range
for rulesthat are distributed to others.

» 100,000-199,999; reserved for internal use of the engine, to assign to rules that do not
have explicit IDs.

» 200,000-299,999; reserved for rules published at modsecurity.org.
* 300,000-399,999; reserved for rules published at gotroot.com.
* 400,000-419,999; unused (available for reservation).

. 420,000-429,999; reserved for ScallyWhack [http:/projects.otakud2.defwiki/
ScallyWhack].

» 430,000-899,999; unused (available for reservation).
» 900,000-999,999; reserved for the Core Rules [http://www.modsecurity.org/projects/

rules/] project.
» 1,000,000 and above; unused (available for reservation).

| nitcol

Description: Initialises a named persistent collection, either by loading data from storage or by
creating anew collection in memory.

Action Group: Non-disruptive
Example: The following example initiates | P address tracking.

SecAction phase: 1,initcol:ip=%REMOTE_ADDR}, nol og

78

http://projects.otaku42.de/wiki/ScallyWhack
http://projects.otaku42.de/wiki/ScallyWhack
http://projects.otaku42.de/wiki/ScallyWhack
http://www.modsecurity.org/projects/rules/
http://www.modsecurity.org/projects/rules/
http://www.modsecurity.org/projects/rules/

ModSecurity® Reference Manual

| og

Note

Normally you will want to use phase:1 along with initcol so that the collection is available in
all phases.

Collections are loaded into memory when the initcol action is encountered. The collection in
storage will be persisted (and the appropriate counters increased) only if it was changed during
transaction processing.

See the "Persistant Storage” section for further details.

Description: Indicates that a successful match of the rule needs to be logged.
Action Group: Non-disruptive
Example:

SecActi on phase: 1,initcol:ip=% REMOTE_ADDR}, | og

Note
This action will log matches to the Apache error log file and the ModSecurity audit log.

| ogdat a

meg

Description: Allows adata fragment to be logged as part of the alert message.
Action Group: Non-disruptive

Example:
SecRul e &ARGS: p "@q 0" "l og, |l ogdata: ' %4 TX 0} "

Note

The logdata information appears in the error and/or audit log files and is not sent back to the
client in response headers. Macro expansion is preformed so you may use variable names such
as %{ TX.0}, etc. Theinformation is properly escaped for use with logging binary data.

Description: Assigns acustom message to the rule or chain.
Action Group: Meta-data
Example:

SecRul e &REQUEST HEADERS: Host " @q 0" \
"l og,id: 60008, severity: 2, nsg: ' Request M ssing a Host Header'"

Note

79

ModSecurity® Reference Manual

The msg information appears in the error and/or audit log files and is not sent back to the client
in response headers.

mul ti Mat ch

Description: If enabled ModSecurity will perform multiple operator invocationsfor every target,
before and after every anti-evasion transformation is performed.

Action Group: Non-disruptive
Example:

SecDef aul t Acti on | og, deny, phase: 1,t:renoveNul | s, t: | owercase
SecRul e ARGS "attack" multi Match

Note

Normally, variables are evaluated once, only after all transformation functions have completed.
With multiMatch, variables are checked against the operator before and after every
transformation function that changes the input.

noaudi t | og

Description: Indicates that a successful match of the rule should not be used as criteria whether
the transaction should be logged to the audit log.

Action Group: Non-disruptive
Example:

SecRul e REQUEST_HEADERS: User - Agent "Test" all ow, noaudit| og

Note

If the SecAuditEngine is set to On, al of the transactions will be logged. If it is set to
RelevantOnly, then you can control it with the noauditlog action. Even if the noauditlog action
is applied to a specific rule and a rule either before or after triggered an audit event, then the
transaction will be logged to the audit log. The correct way to disable audit logging for the entire
transactionistousect | : audi t Engi ne=CF f "

nol og
Description: Prevents rule matches from appearing in both the error and audit 1ogs.
Action Group: Non-disruptive
Example:

SecRul e REQUEST_HEADERS: User - Agent "Test" al |l ow, nol og

Note

80

ModSecurity® Reference Manual

The nolog action also implies noauditlog.

pass
Description: Continues processing with the next rule in spite of a successful match.
Action Group: Disruptive
Examplel:

SecRul e REQUEST_ HEADERS: User - Agent "Test" | og, pass

When using pass with SecRule with multiple targets, all targets will be processed and all non-
disruptive actions will trigger for every match found. In the second example the TX:test target
would be incremented by 1 for each matching argument.

Example2:

SecRul e ARGS "test" |o0g, pass, setvar: TX. test=+1

Note
Thetransaction will not beinterrupted but alog will be generated for each matching target (unless
logging has been suppressed).

pause

Description: Pauses transaction processing for the specified number of milliseconds.
Action Group: Non-disruptive
Example:

SecRul e REQUEST HEADERS: User - Agent "Test" | og, deny, st at us: 403, pause: 5000

Note

Thisfeature can be of limited benefit for slowing down Brute Force Scanners, however use with
care. If you are under a Denial of Service type of attack, the pause feature may make matters
worse as this feature will cause child processesto sit idle until the pause is completed.

phase
Description: Placesthe rule (or the rule chain) into one of five available processing phases.
Action Group: Meta-data
Example:

SecDef aul t Acti on | og, deny, phase: 1,t:renoveNul | s, t: | owercase
SecRul e REQUEST_ HEADERS: User - Agent "Test" | og, deny, st at us: 403

81

ModSecurity® Reference Manual

Note

Keep in mind that is you specify the incorrect phase, the target variable that you specify may be
empty. This could lead to a false negative situation where your variable and operator (RegEX)
may be correct, but it misses malicious data because you specified the wrong phase.

prepend
Description: Prepends text given as parameter to the response body. For this action to work
content injection must be enabled by setting SecCont ent | nj ect i on to On. Also make sure
you check the content type of the response before you make changes to it (e.g. you don't want
to inject stuff into images).
Action Group: Non-disruptive
Processing Phases. 3 and 4.

Example:

SecRul e RESPONSE_CONTENT_TYPE ~text/htm "phase: 3, nol og, pass, prepend: ' Header
"'"

Note
While macro expansion is alowed in the additional content, you are strongly cautioned against
inserting user defined datafields.

pr oxy
Description: Intercepts transaction by forwarding request to another web server using the proxy
backend.

Action Group: Disruptive
Example:

SecRul e REQUEST HEADERS: User - Agent "Test" | og, proxy: http://ww. honeypot host. coni

Note

For thisaction to work, mod_proxy must also beinstalled. Thisactionisuseful if youwould like
to proxy matching requests onto a honeypot webserver.

redi r ect

Description: Intercepts transaction by issuing aredirect to the given location.
Action Group: Disruptive
Example:

SecRul e REQUEST_ HEADERS: User - Agent "Test" \

82

ModSecurity® Reference Manual

| og, redirect: http://ww. host nane. cont fail ed. htm

Note

If thest at us actionispresent and its valueis acceptable (301, 302, 303, or 307) it will be used
for the redirection. Otherwise status code 302 will be used.

rev
Description: Specifies rule revision.
Action Group: Meta-data
Example:

SecRul e REQUEST_METHOD "APUT$" "id: 340002, rev: 1, severity: 2, nsg: "' Restricted HTTP fun

Note

This action is used in combination with thei d action to allow the same rule ID to be used after
changes take place but to still provide some indication the rule changed.

sanitiseArg
Description: Sanitises (replaces each byte with an asterisk) a named request argument prior to
audit logging.
Action Group: Non-disruptive

Example:
SecActi on nol og, phase: 2, sani ti seArg: password

Note

The sanitize actions do not sanitize any data within the actual raw regquests but only on the copy
of data within memory that is set to log to the audit log. It will not sanitize the data in the
modsec_debug.log file (if thelog level is set high enough to capture this data).

sani ti semvat ched
Description: Sanitises the variable (request argument, request header, or response header) that
caused arule match.
Action Group: Non-disruptive
Example: This action can be used to sanitise arbitrary transaction elements when they match a
condition. For example, the example below will sanitise any argument that contains the word
password in the name.

SecRul e ARGS _NAMES passwor d nol og, pass, sani ti seMat ched

83

ModSecurity® Reference Manual

Note
Same note as sanitiseArg.

sani ti seRequest Header
Description: Sanitises a named request header.
Action Group: Non-disruptive
Example: Thiswill sanitise the data in the Authorization header.

SecActi on | og, phase: 1, sani ti seRequest Header : Aut hori zati on

Note
Same note as sanitiseArg.

sani ti seResponseHeader
Description: Sanitises a named response header.
Action Group: Non-disruptive
Example: Thiswill sanitise the Set-Cookie data sent to the client.

SecActi on | og, phase: 3, sani ti seResponseHeader : Set - Cooki e

Note
Same note as sanitiseArg.

severity
Description: Assigns severity to theruleit is placed with.
Action Group: Meta-data
Example:

SecRul e REQUEST_METHOD "~PUT$" "id: 340002, rev: 1, severity: CRITICAL, nsg: ' Restricted F

Note

Severity valuesin ModSecurity follow those of syslog, as below:
* 0- EMERGENCY

1-ALERT

2-CRITICAL

3- ERROR

4 - WARNING

5-NOTICE

ModSecurity® Reference Manual

* 6-INFO
» 7-DEBUG

It is possible to specify severity levels using either the numerical values or the text values. Y ou
should always specify severity levels using the text values. The use of the numerical valuesis
deprecated (as of v2.5.0) and may be removed in one of the susequent major updates.

setuid
Description: Special-purpose action that initialises the USER collection.
Action Group: Non-disruptive
Example:

SecActi on set ui d: 94 REMOTE_USER} , nol og

Note
After initialisation takes place the variable USERI D will be available for use in the subsequent
rules.

setsid
Description: Special-purpose action that initialises the SESSI ON collection.
Action Group: Non-disruptive
Example:

Initialise session variables using the session cookie val ue
SecRul e REQUEST COXKI ES: PHPSESSI D ! ~$ chai n, nol og, pass
SecActi on set si d: %4 REQUEST COCKI ES. PHPSESSI D}

Note

Onfirst invocation of thisaction the collection will be empty (not taking the predefined variables
into account - see i ni t col for more information). On subsequent invocations the contents
of the collection (session, in this case) will be retrieved from storage. After initialisation takes
place the variable SESSI ONI D will be available for use in the subsequent rules.This action
understands each application maintains its own set of sessions. It will utilise the current web
application ID to create a session namespace.

set env
Description: Creates, removes, or updates an environment variable.
Action Group: Non-disruptive
Examples:

85

ModSecurity® Reference Manual

To create anew variable (if you omit the value 1 will be used):
set env: nane=val ue

Toremove avariable:

set env: ! nane

Note
This action can be used to establish communication with other Apache modules.

setvar

skip

Description: Creates, removes, or updates a variable in the specified collection.
Action Group: Non-disruptive

Examples:

To create anew variable:

setvar:tx.score=10

To remove avariable prefix the name with exclamation mark:

setvar:!tx.score

To increase or decrease variable value use + and - charactersin front of anumerical value:

setvar:tx.score=+5

Description: Skips one or more rules (or chains) on successful match.
Action Group: Flow
Example:

SecRul e REQUEST_URI "~/ $" \
"phase: 2, chain, t: none, ski p: 2"
SecRul e REMOTE_ADDR "~127\.0\.0\.1$" "chain"
SecRul e REQUEST HEADERS: User - Agent "“Apache \ (i nternal dummy connection\)$" "t:none
SecRul e &REQUEST HEADERS: Host "@q 0" \

"deny, | og, st atus: 400, i d: 960008, severity: 4, msg: ' Request M ssing a Host Header'"
SecRul e &REQUEST HEADERS: Accept "@qg 0" \

"l og, deny, | og, st at us: 400, i d: 960015, nsg: ' Request M ssi ng an Accept Header'"

Note

86

ModSecurity® Reference Manual

Skip only appliesto the current processing phase and not necessarily the order in which the rules
appear inthe configuration file. If you group rules by processing phases, then skip should work as
expected. This action can not be used to skip rules within one chain. Accepts a single parameter
denoting the number of rules (or chains) to skip.

ski pAfter

Description: Skips rules (or chains) on successful match resuming rule execution after the
specified rule ID or marker (see SecMar ker) isfound.

Action Group: Flow
Example:

SecRul e REQUEST _URI "~/ $" "chain,t: none, ski pAfter: 960015"
SecRul e REMOTE_ADDR "~127\.0\.0\.1%" "chain"
SecRul e REQUEST_HEADERS: User - Agent "“Apache \ (i nternal dummy connection\)$
SecRul e &REQUEST HEADERS: Host " @q 0" \

"deny, | og, st at us: 400, i d: 960008, severity: 4, nsg: ' Request M ssing a Host
SecRul e &REQUEST_HEADERS: Accept "@q 0" \

"l og, deny, | og, st at us: 400, i d: 960015, nsg: ' Request M ssing an Accept Header'"

Note

Ski pAf t er only appliesto the current processing phase and not necessarily the order in which
the rules appear in the configuration file. If you group rules by processing phases, then skip
should work as expected. This action can not be used to skip rules within one chain. Accepts a
single parameter denoting the last rule 1D to skip.

st at us
Description: Specifies the response status code to use with actions deny and r edi rect .
Action Group: Data
Example:

SecDef aul t Acti on | og, deny, st at us: 403, phase: 1

Note

Status actions defined in Apache scope locations (such as Directory, Location, etc...) may be
superseded by phase: 1 action settings. The Apache ErrorDocument directive will be triggered if
present in the configuration. Therefore if you have previously defined a custom error page for a
given status then it will be executed and its output presented to the user.

87

ModSecurity® Reference Manual

t
Description: This action can be used which transformation function should be used against the
specified variables before they (or the results, rather) are run against the operator specified in
therule.
Action Group: Non-disruptive
Example:
SecDef aul t Acti on | og, deny, phase: 1,t:renoveNul | s, t: | owercase
SecRul e REQUEST_COOKI ES: SESSI ONI D "47414e81cbbef 3cf 8366e84eeacbhal091" \
| og, deny, status: 403, t: nmd5, t: hexEncode
Note
Any transformation functions that you specify in a SecRule will be in addition to previous ones
specified in SecDefaultAction. Use of "t:none" will remove all transformation functions for the
specified rule.
t ag
Description: Assigns custom text to arule or chain.
Action Group: Meta-data
Example:
SecRul e REQUEST_FI LENAME "\ b(?: n(?: map|et]|c)|w ?: guest|sh)|cnd(?:32)?|tel net|rcnd|f
"t:none, t:| owercase, deny, nsg: ' System Comuand Access',id:'950002',\
tag: ' WEB_ATTACK/ FI LE_I NJECTI ON , tag: ' OMASP/ A2' , severity:'2'"
Note
The tag information appearsin the error and/or audit log files. Itsintent is to be used to automate
classification of rules and the alerts generated by rules. Multiple tags can be used per rule/chain.
xm ns

Description: This action should be used together with an XPath expression to register a
namespace.

Action Group: Data

Example:

SecRul e REQUEST_ HEADERS: Cont ent - Type "text/xm " \
"phase: 1, pass, ctl : request BodyProcessor =XM_, ct| : request BodyAccess=0On, \
xm ns: xsd="htt p: //ww. w3. or g/ 2001/ XM_Schema"

SecRul e XM.:/ soap: Envel ope/ soap: Body/ ql: get Il nput/id() "123" phase: 2, deny

88

ModSecurity® Reference Manual

Operators

A number of operators can be used in rules, as documented below. The operator syntax uses the
@symbol followed by the specific operator name.

begi nsWth

Description: Thisoperator isa string comparison and returnstrue if the parameter valueisfound
at the beginning of theinput. Macro expansion is performed so you may use variable names such
as% TX. 1}, etc.

Example:
SecRul e REQUEST LINE "! @egi nsWth GET" t:none, deny, status: 403

SecRul e REQUEST_ADDR "~(.*)\.\d+$" deny, status: 403, capture, chain
SecRul e ARGS: gw "! @egi nsWth % TX 1}"

cont ai ns

Description: Thisoperator isastring comparison and returnstrueif the parameter valueisfound
anywhere in the input. Macro expansion is performed so you may use variable names such as
%{ TX.1}, etc.

Example:
SecRul e REQUEST LINE "! @ont ai ns . php" t:none, deny, status: 403

SecRul e REQUEST_ADDR "~(.*)$" deny, status: 403, capture, chain
SecRule ARGS:ip "!@ontains % TX 1}"

endsWth

€q

Description: Thisoperator isastring comparison and returnstrue if the parameter valueisfound
at the end of the input. Macro expansion is performed so you may use variable names such as
%{ TX.1}, etc.

Example:

SecRul e REQUEST LINE "! @ndsWth HTTP/1.1" t:none, deny, st atus: 403
SecRul e ARGS:route "! @ndsWth % REQUEST ADDR}" t:none, deny, st atus: 403

Description: This operator is a numerical comparison and stands for "equal to."

Example:

SecRul e &REQUEST_HEADERS_NAMES " @q 15"

89

ModSecurity® Reference Manual

ge
Description: This operator is anhumerical comparison and stands for "greater than or equal to."

Example:

SecRul e &REQUEST_HEADERS_NAMES " @e 15"

geoLookup

Description: This operator looks up various data fields from an IP address or hostname in the
target data. The results will be captured in the GEO collection.

Y ou must provide a database via Sec GeoLookupDb before this operator can be used.

Note

This operator matches and the action is executed on a successful lookup. For this reason, you
probably want to use the pass,nolog actions. This allows for set var and other non-disruptive
actions to be executed on amatch. If you wish to block on afailed lookup, then do something like
this (look for an empty GEO collection):

SecGeoLookupDb /usr/ | ocal / geo/ dat a/ CeoLi teCity. dat

SecRul e REMOTE_ADDR " @eolLookup" "pass, nol og"
SecRul e &GEO "@q 0" "deny, status: 403, nsg: ' Failed to | ookup I P "

See the GEOvariable for an example and more information on various fields available.

gt
Description: This operator is anumerical comparison and stands for "greater than."

Example:

SecRul e &REQUEST HEADERS_NAMES " @t 15"

| nspectFile
Description: Executesthe external script/binary given as parameter to the operator against every
file extracted from therequest. Asof v2.5.0, if the supplied filenameis not absoluteit istreated as
relativeto the directory inwhich the configuration fileresides. Also asof v2.5.0, if thefilenameis
determined to be a Lua script (based on its extension) the script will be processed by the internal
engine. Assuch it will have full accessto the ModSecurity context.

Example of using an external binary/script:

Execute external script to validate upl oaded files.

90

ModSecurity® Reference Manual

| e

| t

pm

SecRul e FI LES TMPNAMES " @ nspect Fi | e / opt/apache/ bi n/ i nspect_script.pl"
Example of using Lua script:

SecRul e FI LES TMPNANMES " @ nspect Fil e i nspect. | ua"

Scripti nspect . | ua:

function main(fil enane)

-- Do sonething to the file to verify it. In this exanple, we
-- read up to 10 characters fromthe begi nning of the file.

local f = io.open(filenane, "rb");

local d = f:read(10);

f:close();

-- Return null if there is no reason to believe there is ansything

-- wong with the file (no match). Returning any text will be taken
-- to mean a match should be trigerred.
return null;

end

Description: This operator isanumerical comparison and stands for "less than or equal to."

Example:

SecRul e &REQUEST_HEADERS_NAMES "@e 15"

Description: This operator isanumerical comparison and stands for "less than."

Example:

SecRul e &REQUEST HEADERS NAMES "@t 15"

Description: Phrase Match operator. This operator uses a set based matching engine (Aho-
Corasick) for faster matches of keyword lists. It will match any one of its arguments anywhere
in the target value. The match is case insensitive.

Example:

SecRul e REQUEST_ HEADERS: User - Agent " @m WebZl P WebCopi er Webster WebStri pper

91

Si t eSn

ModSecurity® Reference Manual

The abovewould deny accesswith 403 if any of thewords matched within the User-Agent HTTP
header value.

pnFronfil e

r bl

X

Description: Phrase Match operator. This operator uses a set based matching engine (Aho-
Corasick) for faster matches of keyword lists. This operator is the same as @mexcept that it
takesalist of filesasarguments. It will match any one of the phraseslisted in thefile(s) anywhere
in the target value.

Notes:

1. The contents of the files should be one phrase per line. End of line markers will be
stripped from the phrases, however, whitespace will not be trimmed from phrasesin the
file. Empty lines and comment lines (beginning with a'#) are ignored.

2. To dlow easier inclusion of phrase files with rulesets, relative paths may be used to
the phrase files. In this case, the path of the file containing the rule is prepended to the
phrase file path.

Example:
SecRul e REQUEST HEADERS: User - Agent " @m / pat h/to/ bl acklistl bl acklist2"

The above would deny access with 403 if any of the patternsin the two files matched within the
User-Agent HTTP header value. The bl ackl i st 2 file would need to be placed in the same
path as the file containing the rule.

Description: Look up the parameter in the RBL given as parameter. Parameter can be an |IPv4
address, or a hostname.

Example:

SecRul e REMOTE_ADDR " @ bl sc. surbl . org"”

Description: Regular expression operator. Thisis the default operator, so if the"@" operator is
not defined, it is assumed to berx.

Example:
SecRul e REQUEST_HEADERS: User - Agent " @ x ni kt o"

Note

92

"deny, statu

ModSecurity® Reference Manual

Regular expressions are handled by the PCRE library (http://www.pcre.org). ModSecurity
compilesits regular expressions with the following settings:

1. The entire input is treated as a single line, even when there are newline characters
present.

2. All matches are case-sensitive. If you do not care about case sensitivity you either
need to implement the | ower case transformation function, or use the per-pattern(?
i) modifier, as allowed by PCRE.

3. The PCRE_DOTALL and PCRE_DOLLAR _ENDONLY flags are set during compilation,
meaning asingledot will match any character, including the newlinesand a$ end anchor
will not match atrailing newline character.

streq

Description: Thisoperator isastring comparison and returnstrueif the parameter value matches
the input exactly. Macro expansion is performed so you may use variable names such as
%{TX.1}, etc.

Example:

SecRul e ARGS:foo "! @treq bar" t:none, deny, st atus: 403
SecRul e REQUEST_ADDR "~(.*)$" deny, status: 403, capture, chain
SecRul e REQUEST_HEADERS: | p- Address "! @treq %4 TX 1}"

val i dat eByt eRange

Description: Validates the byte range used in the variable falls into the specified range.
Example:

SecRul e ARGS: text " @ali dat eByt eRange 10, 13, 32-126"

Note

Y ou can force requests to consist only of bytes from a certain byte range. This can be useful to
avoid stack overflow attacks (since they usually contain "random" binary content). Default range
values are 0 and 255, i.e. al byte values are allowed. This directive does not check byte range
in a POST payload when mul ti part/f or m dat a encoding (file upload) is used. Doing so
would prevent binary files from being uploaded. However, after the parameters are extracted
from such request they are checked for avalid range.

validateByteRange is similar to the ModSecurity 1.X SecFilterForceByteRange Directive
however since it works in arule context, it has the following differences:

* You can specify adifferent range for different variables.
* It hasan "event" context (id, msg....)

93

http://www.pcre.org

ModSecurity® Reference Manual

* Itisexecuted in the flow of rulesrather than being a built in pre-check.

val i dat eDTD

Description: Validates the DOM tree generated by the XML request body processor against the
supplied DTD.

Example:

SecDef aul t Acti on | og, deny, st at us: 403, phase: 2
SecRul e REQUEST HEADERS: Cont ent - Type ~text/xm $ \
phase: 1, t: | ower case, nol og, pass, ctl : request BodyPr ocessor =XM.
SecRul e REQBODY_PROCESSCOR "!AXM.$" nol og, pass, ski pAfter: 12345
SecRul e XML " @al i dat eDTD / pat h/ t o/ apache2/ conf/xm . dtd" "deny,id: 12345"

Note
This operator requires request body to be processed as XML.

val i dat eSchema

Description: Validates the DOM tree generated by the XML request body processor against the
supplied XML Schema.

Example:

SecDef aul t Acti on | og, deny, st at us: 403, phase: 2
SecRul e REQUEST HEADERS: Cont ent - Type ~text/xm $ \
phase: 1,t: | ower case, nol og, pass, ctl: request BodyProcessor =XM.
SecRul e REQBODY_PROCESSOR "!AXM.$" nol og, pass, ski pAfter: 12345
SecRul e XML " @al i dat eScherma / pat h/ t o/ apache2/ conf/xm . xsd" "deny, id: 12345"

Note
This operator requires request body to be processed as XML.

val i dat eUr | Encodi ng
Description: Verifies the encodings used in the variable (if any) are valid.

Example:
SecRul e ARGS " @al i dat eUr| Encodi ng"

Note

URL encoding isan HTTP standard for encoding byte values within aURL. The byte is escaped
with a % followed by two hexadecimal values (0-F). This directive does not check encoding in

94

ModSecurity® Reference Manual

a POST payload when thenul t i part/f or m dat a encoding (file upload) is used. It is not
necessary to do so because URL encoding is not used for this encoding.

val i dat eUt f 8Encodi ng
Description: Verifiesthe variableisavalid UTF-8 encoded string.
Example:

SecRul e ARGS " @al i dat eUt f 8Encodi ng"

Note

UTF-8 encoding is valid on most web servers. Integer values between 0-65535 are encoded in a
UTF-8 byte sequence that is escaped by percents. The short form is two bytesin length.

check for three types of errors:

* Not enough bytes. UTF-8 supports two, three, four, five, and six byte encodings.
ModSecurity will locate cases when a byte or more is missing.

* Invalid encoding. The two most significant bits in most characters are supposed to be
fixed to 0x80. Attackers can use this to subvert Unicode decoders.

» Overlong characters. ASCII characters are mapped directly into the Unicode space and
are thus represented with a single byte. However, most ASCII characters can aso be
encoded with two, three, four, five, and six characters thus tricking the decoder into
thinking that the character is something else (and, presumably, avoiding the security
check).

veri fyCC
Description: This operator verifies agiven regular expression as a potential credit card number.

It first matches with a single generic regular expression then runs the resulting match through a
Luhn checksum algorithm to further verify it as a potential credit card number.

Example:

SecRul e ARGS "@erifyCC \d{13, 16}" \
"phase: 2, sani ti seMat ched, | og, audi t | og, pass, nsg: ' Potential credit card

W t hin
Description: This operator is a string comparison and returns true if the input value is found
anywhere within the parameter value. Note that thisis similar to @ ont ai ns, except that the
target and match values are reversed. Macro expansion is performed so you may use variable
names such as %{ TX.1}, etc.

Example:

95

ModSecurity® Reference Manual

SecRul e REQUEST _METHOD "! @ni t hi n get, post, head" t:|owercase, deny, st at us: 403

SecActi on "pass, setvar:'tx.all owed_net hods=get, post, head
SecRul e REQUEST _METHCOD "!@nm thin %tx. al | oned_net hods}" t: | owercase, deny, st at us: 403

96

ModSecurity® Reference Manual

Macro Expansion

Macrosallow for using place holdersin rulesthat will be expanded out to their values at runtime.
Currently only variable expansion is supported, however more options may be added in future
versions of ModSecurity.

Format:

9% VAR ABLE}
9% COLLECTI ON. VAR ABLE}

Macro expansion can be used in actions such as initcol, setsid, setuid, setvar, setenv, logdata.
Operators that are evaluated at runtime support expansion and are noted above. Such operators
include @beginsWith, @endsWith, @contains, @within and @streg. You cannot use macro
expansion for operatorsthat are" compiled" such as @pm, @rX, etc. asthese operators have their
values fixed at configure time for efficiency.

Some values you may want to expand includee TX, REMOTE_ADDR,

USERID, HIGHEST_SEVERITY, MATCHED_VAR, MATCHED_VAR_NAME,
MULTIPART_STRICT_ERROR, RULE, SESSION, USERID, among others.

97

ModSecurity® Reference Manual

Persistant Storage

At thistimeit is only possible to have three collections in which data is stored persistantly (i.e.
dataavailable to multiple requests). Theseare: | P, SESSI ONand USER.

Every collection contains several built-in variables that are available and are read-only unless
otherwise specified:

1. CREATE_TI ME - date/time of the creation of the collection.
I S_NEW- set to 1 if the collection is new (not yet persisted) otherwise set to O.
KEY - the value of theinitcol variable (the client's P address in the example).
LAST_UPDATE_TI ME - date/time of the last update to the collection.

TI MEQUT - dateftime in seconds when the collection will be updated on disk from
memory (if no other updates occur). This variable may be set if you wish to specifiy an
explicit expiration time (default is 3600 seconds).

6. UPDATE_COUNTER - how many times the collection has been updated since creation.

7. UPDATE_RATE - isthe average rate updates per minute since creation.

a M DN

To create a collection to hold session variables (SESSI ON) use action set si d. To create a
collection to hold user variables (USER) use action set ui d. To createacollection to hold client
address variables (1 P) use actioni ni t col .

Note

M odSecurity implements atomic updates of persistent variablesonly for integer variabl es (counters)
a thistime. Variables are read from storage whenever i ni t col is encountered in the rules and
persisted at the end of request processing. Counters are adjusted by applying a delta generated by
re-reading the persisted data just before being persisted. This keeps counter data consistent even if
the counter was modified and persisted by another thread/process during the transaction.

Note

ModSecurity uses a Berkley Database (SDBM) for persistant storage. This type of database is
generally limited to storing a maximum of 1008 bytes per key. This may be a limitation if you
are attempting to store a considerable amount of data in variables for a single key. Some of this
limitation is planned to be reduced in a future version of ModSecurity.

98

ModSecurity® Reference Manual

Miscellaneous Topics

Impedance Mismatch

Web application firewalls have adifficult job trying to make sense of datathat passes by, without
any knowledge of the application and its businesslogic. The protection they provide comesfrom
having an independent layer of security on the outside. Because data validation is done twice,
security can be increased without having to touch the application. In some cases, however, the
fact that everything is done twice brings problems. Problems can arise in the areas where the
communication protocols are not well specified, or where either the device or the application do
things that are not in the specification. In such cases it may be possible to design payload that
will beinterpreted in one way by one device and in another by the other device. Thisproblemis
better known as Impedance Mismatch. It can be exploited to evade the security devices.

While we will continue to enhance ModSecurity to deal with various evasion techniques the
problem can only be minimized, but never solved. With so many different application backend
chances are some will always do something completely unexpected. The only solution is to be
aware of the technologies in the backend when writing rules, adapting the rules to remove the
mismatch. See the next section for some examples.

PHP Peculiarities for ModSecurity Users
When writing rules to protect PHP applications you need to pay attention to the following facts:

1. When "register_globals' is set to "On" request parameters are automatically converted
to script variables. In some PHP versionsit is even possible to override the $SGLOBALS
array.

2. Whitespace at the beginning of parameter namesisignored. (Thisis very dangerous if
you are writing rulesto target specific named variables.)

3. The remaining whitespace (in parameter names) is converted to underscores. The same
applies to dots and to a "[" if the variable name does not contain a matching closing
bracket. (Meaning that if you want to exploit a script through a variable that contains an
underscore in the name you can send a parameter with a whitespace or a dot instead.)

4. Cookies can be treated as request parameters.

5. The discussion about variable names applies equally to the cookie names.

6. The order in which parameters are taken from the request and the environment is
EGPCS (environment, GET, POST, Cookies, built-in variables). This means that a
POST parameter will overwrite the parameters transported on the request line (in
QUERY_STRING).

99

ModSecurity® Reference Manual

7. When"magic_quotes_gpc" isset to"On" PHPwill use backslash to escapethefollowing
characters. single quote, double quote, backslash, and the nul byte.

8. If "magic_qguotes sybase" is set to "On" only the single quote will be escaped using
another single quote. In this case the "magic_quotes gpc" setting becomes irrelevant.
The "magic_quotes sybase" setting completely overrides the "magic_guotes gpc"
behaviour but "magic_quotes gpc" still must be set to "On" for the Sybase-specific
guoting to be work.

9. PHP will also automatically create nested arrays for you. For example "p[x][y]=1"
resultsin atotal of three variables.

100

	ModSecurity® Reference Manual
	Table of Contents
	Introduction
	HTTP Traffic Logging
	Real-Time Monitoring and Attack Detection
	Attack Prevention and Just-in-time Patching
	Flexible Rule Engine
	Embedded-mode Deployment
	Network-based Deployment
	Portability
	Licensing

	ModSecurity Core Rules™
	Overview
	Core Rules Content

	Installation
	Configuration Directives
	SecAction
	SecArgumentSeparator
	SecAuditEngine
	SecAuditLog
	SecAuditLog2
	SecAuditLogDirMode
	SecAuditLogFileMode
	SecAuditLogParts
	SecAuditLogRelevantStatus
	SecAuditLogStorageDir
	SecAuditLogType
	SecCacheTransformations (Deprecated/Experimental)
	SecChrootDir
	SecComponentSignature
	SecContentInjection
	SecCookieFormat
	SecDataDir
	SecDebugLog
	SecDebugLogLevel
	SecDefaultAction
	SecGeoLookupDb
	SecGuardianLog
	SecMarker
	SecPdfProtect
	SecPdfProtectMethod
	SecPdfProtectSecret
	SecPdfProtectTimeout
	SecPdfProtectTokenName
	SecRequestBodyAccess
	SecRequestBodyLimit
	SecRequestBodyNoFilesLimit
	SecRequestBodyInMemoryLimit
	SecResponseBodyLimit
	SecResponseBodyLimitAction
	SecResponseBodyMimeType
	SecResponseBodyMimeTypesClear
	SecResponseBodyAccess
	SecRule
	Variables in rules
	Collections
	Operators in rules
	Operator negation
	Actions in rules

	SecRuleInheritance
	SecRuleEngine
	SecRuleRemoveById
	SecRuleRemoveByMsg
	SecRuleScript (Experimental)
	SecRuleUpdateActionById
	SecServerSignature
	SecTmpDir
	SecUploadDir
	SecUploadFileMode
	SecUploadKeepFiles
	SecWebAppId

	Processing Phases
	Phase Request Headers
	Phase Request Body
	Phase Response Headers
	Phase Response Body
	Phase Logging

	Variables
	ARGS
	ARGS_COMBINED_SIZE
	ARGS_NAMES
	ARGS_GET
	ARGS_GET_NAMES
	ARGS_POST
	ARGS_POST_NAMES
	AUTH_TYPE
	ENV
	FILES
	FILES_COMBINED_SIZE
	FILES_NAMES
	FILES_SIZES
	FILES_TMPNAMES
	GEO
	HIGHEST_SEVERITY
	MATCHED_VAR
	MATCHED_VAR_NAME
	MODSEC_BUILD
	MULTIPART_CRLF_LF_LINES
	MULTIPART_STRICT_ERROR
	MULTIPART_UNMATCHED_BOUNDARY
	PATH_INFO
	QUERY_STRING
	REMOTE_ADDR
	REMOTE_HOST
	REMOTE_PORT
	REMOTE_USER
	REQBODY_PROCESSOR
	REQBODY_PROCESSOR_ERROR
	REQBODY_PROCESSOR_ERROR_MSG
	REQUEST_BASENAME
	REQUEST_BODY
	REQUEST_COOKIES
	REQUEST_COOKIES_NAMES
	REQUEST_FILENAME
	REQUEST_HEADERS
	REQUEST_HEADERS_NAMES
	REQUEST_LINE
	REQUEST_METHOD
	REQUEST_PROTOCOL
	REQUEST_URI
	REQUEST_URI_RAW
	RESPONSE_BODY
	RESPONSE_CONTENT_LENGTH
	RESPONSE_CONTENT_TYPE
	RESPONSE_HEADERS
	RESPONSE_HEADERS_NAMES
	RESPONSE_PROTOCOL
	RESPONSE_STATUS
	RULE
	SCRIPT_BASENAME
	SCRIPT_FILENAME
	SCRIPT_GID
	SCRIPT_GROUPNAME
	SCRIPT_MODE
	SCRIPT_UID
	SCRIPT_USERNAME
	SERVER_ADDR
	SERVER_NAME
	SERVER_PORT
	SESSION
	SESSIONID
	TIME
	TIME_DAY
	TIME_EPOCH
	TIME_HOUR
	TIME_MIN
	TIME_MON
	TIME_SEC
	TIME_WDAY
	TIME_YEAR
	TX
	USERID
	WEBAPPID
	WEBSERVER_ERROR_LOG
	XML

	Transformation functions
	base64Decode
	base64Encode
	compressWhitespace
	cssDecode
	escapeSeqDecode
	hexDecode
	hexEncode
	htmlEntityDecode
	jsDecode
	length
	lowercase
	md5
	none
	normalisePath
	normalisePathWin
	parityEven7bit
	parityOdd7bit
	parityZero7bit
	removeNulls
	removeWhitespace
	replaceComments
	replaceNulls
	urlDecode
	urlDecodeUni
	urlEncode
	sha1
	trimLeft
	trimRight
	trim

	Actions
	allow
	append
	auditlog
	block
	capture
	chain
	ctl
	deny
	deprecatevar
	drop
	exec
	expirevar
	id
	initcol
	log
	logdata
	msg
	multiMatch
	noauditlog
	nolog
	pass
	pause
	phase
	prepend
	proxy
	redirect
	rev
	sanitiseArg
	sanitiseMatched
	sanitiseRequestHeader
	sanitiseResponseHeader
	severity
	setuid
	setsid
	setenv
	setvar
	skip
	skipAfter
	status
	t
	tag
	xmlns

	Operators
	beginsWith
	contains
	endsWith
	eq
	ge
	geoLookup
	gt
	inspectFile
	le
	lt
	pm
	pmFromFile
	rbl
	rx
	streq
	validateByteRange
	validateDTD
	validateSchema
	validateUrlEncoding
	validateUtf8Encoding
	verifyCC
	within

	Macro Expansion
	Persistant Storage
	Miscellaneous Topics
	Impedance Mismatch
	PHP Peculiarities for ModSecurity Users

