e —
BREACH

ModSecurity 2 Data Formats

Version 2.5.10-dev1 (March 24, 2009)
Copyright © 2004-2009 Breach Security, Inc. (http://www.breach.com)

Table of Contents

N 1= 1 £ SPRRRR 2
Alert ACION DESCIIPLION ..uuuuuuurerirrereueueunuenenerenrnenrrrnrnrrenrrrrrrrrr———. 2
Alert Justification DESCIIPLIONcccuviiiiiiie e 3
Y LS = o = - PRSP PRR 4
S o101 o SRR 4
Alerts in the APache ErTOr LOQcevvvviieiiiiiiieieeeeeeeeeeeeeeeeeeeeeeee et e e 5
ALErtS iN AUAIT LOGS ...ttt e e e e e e s s st ae e e e e e e e s enaneeees 5

U o [oo O P TPP R PPPPPPPPPPRP 7
PaTS . e e e e e e e e e e e rerrr e aaaaeanes 8
RS0 =0 (<3 0] 01 7= £ 14
TranspOrt ProtOCOIuvviiiiiiii et e e e e s s s re e e e e e e e e aaanes 15

The purpose of this document is to describe the formats of the ModSecurity aert messages,
transaction logs and communication protocols, which would not only alow for a better
understanding what M odSecurity does but also for an easy integration with third-party tools and
products.

http://www.breach.com

ModSecurity 2 Data Formats

Alerts

As part of its operations ModSecurity will emit alerts, which are either warnings (non-fatal)
or errors (fatal, usually leading to the interception of the transaction in question). Below is an
example of a ModSecurity alert entry:

Access denied with code 505 (phase 1). Match of "rx
AHTTP/ (OV\\N . 9] 1N\\ V. [01]) $" agai nst "REQUEST_PROTOCOL" requir ed.
[id "960034"] [nmsg "HTTP protocol version is not allowed by policy"]
[severity "CRITICAL"] [uri "/"] [unique_id "PQaTTVBEUCKAAFWKXr YAAAAM']

Note

Alerts will only ever contain one line of text but we've broken the above example into multiple
linesto make it fit into the page.

Each alert entry begins with the engine message, which describes what ModSecurity did and
why. For example:

Access denied with code 505 (phase 1). Match of "rx
AHTTP/ (O\\ VL. 9] 1\\\\ . [01]) $" agai nst " REQUEST_PROTOCOL" required.

Alert Action Description

Thefirst part of the engine message tells you whether ModSecurity acted to interrupt transaction
or rule processing:
1. If theaert isonly awarning, the first sentence will ssmply say Warning.
2. If thetransaction wasintercepted, thefirst sentencewill begin with Access denied. What
followsisthelist of possible messages related to transaction interception:

» Access denied with code %0 - a response with status code %0 was sent.

* Access denied with connection close - connection was abruptly closed.

* Access denied with redirection to %0 using status %1 - aredirection to URI %8 was
issued using status %4..

3. There is also a special message that ModSecurity emits where an al | ow action is
executed. There are three variations of this type of message:

» Access allowed - rule engine stopped processing rules (transaction was unaffected).

» Access to phase allowed - rule engine stopped processing rules in the current phase
only. Subsequent phases will be processed normally. Transaction was not affected by
thisrule but it may be affected by any of the rules in the subsequent phase.

» Accessto request allowed - rule engine stopped processing rulesin the current phase.
Phases prior to request execution in the backend (currently phases 1 and 2) will not

ModSecurity 2 Data Formats

be processed. The response phases (currently phases 3 and 4) and others (currently
phase 5) will be processed as normal. Transaction was not affected by thisrule but it
may be affected by any of the rules in the subsequent phase.

Alert Justification Description

The second part of the engine message explains why the alert was generated. Since it is
automatically generated from the rulesit will be very technical in nature, talking about operators
and their parameters and give you insight into what the rule looked like. But this message cannot
give you insight into the reasoning behind the rule. A well-written rule will aways specify a
human-readable message (using the nsg action) to provide further information.

The format of the second part of the engine message depends on whether it was generated by
the operator (which happens on a match) or by the rule processor (which happens where there
is not amatch, but the negation was used):

o @egi nsWt h - String match %0 at %1.

e @ont ai ns - String match %0 at %1.

e @ont ai nsWr d - Sring match %0 at %1.

e @ndsW t h - Sring match %0 at %1.

e @q - Operator EQ matched %0 at %1.

* @e - Operator GE matched %0 at %1.

» @eoLookup - Geo lookup for %0 succeeded at %1.

* @nspect Fi |l e - File %0 rejected by the approver script %1: %2
* @ e - Operator LE matched %0 at %1.

e @t - Operator LT matched %0 at %1.

e @bl - RBL lookup of %0 succeeded at %1.

e @ x - Pattern match %0 at %1.

o @treq - Sring match %0 at %]1.

 @al i dat eByt eRange - Found %0 byte(s) in %1 outside range: %?2.
e @alidateDTD-XML: DTD validation failed.

« @alidateSchema - XML: Schema validation failed.

e @al i dateUrl Encodi ng
* Invalid URL Encoding: Non-hexadecimal digits used at %0.

 Invalid URL Encoding: Not enough characters at the end of input at %0.

» @alidateUtf8Encoding
 Invalid UTF-8 encoding: not enough bytesin character at %0.

 Invalid UTF-8 encoding: invalid byte value in character at %0.

 Invalid UTF-8 encoding: overlong character detected at %0.

ModSecurity 2 Data Formats

* Invalid UTF-8 encoding: use of restricted character at %0.
* Invalid UTF-8 encoding: decoding error at %0.
« @erifyCC- CC# match %0 at %1.
M essages not related to operators.
* When SecAct i on directiveis processed - Unconditional match in SecAction.
» When SecRul e doesnot match but negation isused - Match of %0 against %1 required.

Note

The parameters to the operators @ x and @m (regular expression and text pattern, respectively)
will betruncated to 252 bytesif they arelonger than thislimit. In this case the parameter in the alert
message will be terminated with three dots.

Meta-data

The metadata fields are always placed at the end of the alert entry. Each metadata field is atext
fragment that consists of an open bracket followed by the metadata field name, followed by the
value and the closing bracket. What follows is the text fragment that makes up thei d metadata
field.

[id "960034"]

The following metadata fields are currently used:

1. of f set - The byte offset where a match occured within the target data. This is not
always available.

i d - Uniquerule D, as specified by thei d action.
r ev - Rulerevision, as specified by ther ev action.

neg - Human-readable message, as specified by the ms g action.

o A~ W N

severity - Event severity astext, asspecified by theseveri t y action. Thepossible
values (with their corresponding numberical values in brackets) are EVERGENCY (0),
ALERT (1), CRI Tl CAL (2), ERROR (3), WARNI NG (4), NOTI CE (5), | NFO (6) and
DEBUG (7).

6. uni que_i d - Unique event 1D, generated automatically.

7. uri - Reguest URI.

(o]

. | ogdat a - contains transaction data fragment, as specified by thel ogdat a action.

Escaping
ModSecurity alertswill always contain text fragments that were taken from configuration or the
transaction. Such text fragments escaped before they are user in messages, in order to sanitise

ModSecurity 2 Data Formats

the potentially dangerous characters. They are also sometimes surrounded using double quotes.
The escaping algorithm is as follows:

1. Characters 0x08 (BACKSPACE), Ox0a (NEWL.I NE), 0x10 (CARRI AGE RETURN),
0x09 (HORI ZONTAL TAB) and 0x0b (VERTI CAL TAB) will be represented as\ b,
\n,\r,\'t and\ v, respectively.

2. Bytes from the ranges 0- Ox1f and Ox7f - Oxf f (inclusive) will be represented as
\ xHH, where HH is the hexadecimal value of the byte.

3. Backslash characters (\) will be represented as\ \ .

4. Each double quote character will be represented as\ ", but only if the entire fragment
is surrounded with double quotes.

Alerts in the Apache Error Log

Every ModSecurity aert conforms to the following format when it appears in the Apache error
log:

[Sun Jun 24 10:19:58 2007] [error] [client 192.168.0.1]
ModSecurity: ALERT NMESSAGE

The above is a standard Apache error log format. The ModSecuri ty: prefix is specific to
ModSecurity. It is used to allow quick identification of ModSecurity aert messages when they
appear in the same file next to other Apache messages.

The actual message (ALERT _ MESSAGE in the example above) isin the sameformat as described
in the Alerts section.

Note

Apachefurther escapes ModSecurity al ert messages beforewriting themto the error log. Thismeans
that all backslash characters will be doubled in the error log. In practice, since ModSecurity will
already represent a single backslash within an untrusted text fragment as two backslashes, the end
result inthe Apache error log will be four backslashes. Thus, if you need to interpret a M odSecurity
message from the error log, you should decode the message part after the ModSecuri ty: prefix
first. This step will peel the first encoding layer.

Alerts in Audit Logs

Alerts are transported in the H section of the ModSecurity Audit Log. Alerts will appear each
on a separate line and in the order they were generated by ModSecurity. Each line will bein
the following format:

Message: ALERT_MESSAGE

ModSecurity 2 Data Formats

Below is an example of an H section that contains two alert messages:

--c7036611- H -
Message: Warning. Match of "rx “apache. *perl" agai nst
" REQUEST_HEADERS: User - Agent" required. [id "990011"] [nmsg "Request
I ndi cates an aut omat ed program explored the site"] [severity "NOTI CE"]
Message: Warning. Pattern match "(?:\\b(?:(?:s(?:elect\\b(?:.{1,100}?\\b
(?:(?:1ength]count|top)\\b. {1,200} 2\\ bfrom from\b. {1, 100} ?\\ bwher e)
| . *2A\b(?2:d(?:unp\\b. *\\bfrom ata_type)| (?:to_(?: nunbe|cha)|inst)r))|p_
(?: (?: addext endedpro| sql exe) c| (?: oacreat | prepar) e| execut e(?: sql) ?|
makewebt ..." at ARGS:c. [id "950001"] [nBg "SQL Injection Attack.
Mat ched signature: union select"] [severity "CRI Tl CAL"]
St opwat ch: 1199881676978327 2514 (396 2224 -)
Producer: MdSecurity v2.x.x (Apache 2.x)
Server: Apache/ 2. x. x

--c7036611- Z- -

ModSecurity 2 Data Formats

Audit Log

ModSecurity records one transaction in asingle audit log file. Below is an example:

--c7036611- A- -

[09/ Jan/ 2008: 12: 27: 56 +0000] OSD4l 1BEUCKAAHZ8Y3QAAAAH 209. 90. 77. 54 64995
80. 68. 80. 233 80

--c7036611-B- -

CET //Evil Board_0. 1a/i ndex. php?c="/**/uni on/ **/ sel ect/**/ 1, concat (user narne,
char (77), password, char (77), enai | _address, char(77),info,char(77), user_|evel
char (77))/**/from **/eb_menbers/**/where/ **/ useri d=1/*http:// kam oopst ut or
conl i mages/ banners/on.txt? HITP/ 1.1

TE: defl ate, gzi p; g=0. 3

Connection: TE, cslose

Host: www. exanpl e. com

User - Agent: | i bwww perl/5.808

--c7036611-F- -

HTTP/ 1.1 404 Not Found

Content - Lengt h: 223

Connection: close

Cont ent - Type: text/htm; charset=i so-8859-1

--c7036611- H -
Message: Warning. Match of "rx “apache. *perl " agai nst
" REQUEST HEADERS: User - Agent" required. [id "990011"] [msg "Request
I ndi cat es an aut onmat ed program explored the site"] [severity "NOTI CE"]
Message: Warning. Pattern match "(?2:\\b(?:(?:s(?:elect\\b(?:.{1,100}?\\b
(?:(?:1ength|count|top)\\b. {1,100} A\ bfrom from\b. {1, 100} 2\ \ bwher e)
| . *2A\b(?2:d(?: unp\\ b. *\\ bfrom ata_type)| (?:to_(?: nunbe|cha)|inst)r))]|p_
(?: (?: addext endedpro| sql exe) c| (?: oacreat | prepar) e| execute(?:sql)?
makewebt ..." at ARGS:c. [id "950001"] [nmsg "SQ Injection Attack
Mat ched signature: union select”] [severity "CRITlI CAL"]
St opwat ch: 1199881676978327 2514 (396 2224 -)
Producer: MdSecurity v2.x.x (Apache 2.x)
Server: Apache/ 2. x. x

--c7036611- Z- -

The file consist of multiple sections, each in different format. Separators are used to define
sections:

--c7036611- A- -

ModSecurity 2 Data Formats

A separator always begins on a new line and conforms to the following format:
1. Two dashes
2. Unique boundary, which consists from several hexadecimal characters.
3. One dash character.
4. Section identifier, currently a single uppercase | etter.
5. Two trailing dashes.

Refer to the documentation for Sec Audi t LogPar t s for the explanation of each part.

Parts
This section documents the audit log parts available in ModSecurity 2.x. They are:
e A- audit log header
* B - request headers
* C- request body
« D- intended response headers (NOT IMPLEMENTED)
» E - intended response body
* F - response headers
» G- response body (NOT IMPLEMENTED)
e H-audit log trailer
* | - reduced multipart request body
e J - multipart filesinformation (NOT IMPLEMENTED)
» K- matched rulesinformation

Z - audit log footer

Audit Log Header (A)
ModSecurity 2.x audit log entries always begin with the header part. For example:

--c7036611- A- -
[09/ Jan/ 2008: 12: 27: 56 +0000] OSD4l 1BEUCKAAHZ8Y3QAAAAH 209. 90. 77. 54 64995
80. 68. 80. 233 80

The header contains only one line, with the following information on it:
1. Timestamp
2. Unique transaction ID
3. Source IP address (IPv4 or | Pv6)
4. Source port
5. Destination IP address (1Pv4 or I1Pv6)

ModSecurity 2 Data Formats

6. Destination port

Request Headers (B)
The request headers part contains the request line and the request headers. The information
present in this part will not be identical to that sent by the client responsible for the transaction.
ModSecurity 2.x for Apache does not have accessto the raw data; it seeswhat Apacheitself sees.
While the end result may be identical to the raw request, differences are possible in some areas:

1. If any of the fields are NUL-terminated, Apache will only see the content prior to the
NUL.

2. Headersthat span multiplelines (feature known as header folding) will be collapsed into
asingleline.

3. Multiple headers with the same name will be combined into asingle header (as allowed
by the HTTP RFC).

Request Body (O

This part contains the request body of the transaction, after dechunking and decompression (if
applicable).

Intended Response Headers (D)
This part contains the status line and the request headers that would have been delivered to the
client had ModSecurity not intervened. Thus this part makes sense only for transactions where
ModSecurity altered the data flow. By differentiating before the intended and the final response

headers, we are able to record what was internally ready for sending, but also what was actually
sent.

Note

This part isreserved for future use. It is not implemented in ModSecurity 2.x.

Intended Response Body (E)
This part contains the transaction response body (before compression and chunking, where used)
that was either sent or would have been sent had ModSecurity not intervened. You can find
whether interception took place by looking at the Act i on header of the part H. If that header
is present, and the interception took place in phase 3 or 4 then the E part contains the intended
response body. Otherwise, it contains the actual response body.

Note

Oncethe G(actual response body) part isimplemented, part E will be present only in audit logsthat
contain a transaction that was intercepted, and there will be no need for further analsys.

ModSecurity 2 Data Formats

Response Headers (F)

This part contains the actual response headers sent to the client. Since ModSecurity 2.x for
Apache does not access the raw connection data, it constructs part F out of the internal Apache
data structures that hold the response headers.

Some headers (the Dat e and Ser ver response headers) are generated just before they are sent
and ModSecurity is not able to record those. Y ou should note than ModSecurity is working as
part of areverse proxy, the backend web server will have generated these two servers, and in
that case they will be recorded.

Response Body (G)

When implemented, this part will contain the actua response body before compression and
chunking.

Note
This part isreserved for future use. It is not implemented in ModSecurity 2.x.

Audit Log Trailer (H)

Part H contains additional transaction meta-data that was obtained from the web server or from
ModSecurity itself. The part contains a number of trailer headers, which are similar to HTTP
headers (without support for header folding):

1. Action

Apache-Error

Message

Producer
Response-Body-Transformed
Sanitised-Args
Sanitised-Request-Headers
Sanitised-Response-Headers
Server

10.Stopwatch

11.WebApp-Info

© © N o gk~ 0w D

Action
The Act i on header is present only for the transactions that were intercepted:

Action: Intercepted (phase 2)

The phase information documents the phase in which the decision to intercept took place.

10

ModSecurity 2 Data Formats

Apache-Error

The Apache-Error header contains Apache error log messages observed by ModSecurity,
excluding those sent by ModSecurity itself. For example:

Apache-Error: [file "/tnp/buil dd/ apache2-2.0.54/buil d-tree/ apache2/server/
core.c"] [line 3505] [level 3] File does not exist: /var/ww/ ww.
nodsecurity. org/fst/docunentation/ nodsecurity-apache/2.5. 0-dev2

Message

Zero or more Mes sage headers can be present in any trailer, and each such header will represent
asingle ModSecurity warning or error, displayed in the order they were raised.

The example below was broken into multiple lines to make it fit this page:

Message: Access denied with code 400 (phase 2). Pattern match "~\w+: /" at
REQUEST URI _RAW [file "/etc/apache2/rul es-1.6.1/nodsecurity crs_20_
protocol _violations.conf"] [line "74"] [id "960014"] [nmsg "Proxy access
attenpt”] [severity "CRITICAL"] [tag "PROTOCOL_VI CLATI OV PROXY_ACCESS"]

Producer

The Pr oducer header identifies the product that generated the audit log. For example:
Producer: ModSecurity for Apache/2.5.5 (http://ww. nodsecurity.org/).

ModSecurity alows rule sets to add their own signatures to the Pr oducer information
(this is done using the SecConponent Si gnat ur e directive). Below is an example of the
Pr oducer header with the signature of one component (all one line):

Producer: MdSecurity for Apache/2.5.5 (http://ww. nodsecurity.org/);
MyConponent/ 1. 0.0 (Beta).

Response-Body-Transformed

This header will appear in every audit log that contains a response body:
Response- Body- Tr ansf or nred: Dechunked

The contents of the header is constant at present, so the header is only useful as a reminder that
the recorded response body is not identical to the one sent to the client. The actual content isthe
same, except that Apache may further compress the body and deliver it in chunks.

Sanitised-Args

The Sani ti sed- Ar gs header contains a list of arguments that were sanitised (each byte of
their content replaced with an asterisk) before logging. For example:

11

ModSecurity 2 Data Formats

Sanitised-Args: "ol d_password", "new password", "new password_repeat".

Sanitised-Request-Headers

The Sani ti sed- Request - Header s header contains a list of request headers that were
sanitised before logging. For example:

Sani ti sed- Request - Headers: "Aut hentication”.

Sanitised-Response-Headers

The Sani t i sed- Response- Header s header contains alist of response headers that were
sanitised before logging. For example:

Sani ti sed- Response- Headers: "My- Cust om Header".

Server
The Ser ver header identifies the web server. For example:
Server: Apache/2.0.54 (Debian GNU Li nux) nod_ssl/2.0.54 OpenSSL/0. 9. 7e
This information may sometimes be present in any of the parts that contain response headers,
but there are afew cases when it isn't:
1. None of the response headers were recoreded.
2. Theinformationin theresponse headersisnot accurate because server signature masking
was used.
Stopwatch

The St opwat ch header provides certain diagnostic information that allows you to determine
the performance of the web server and of ModSecurity itself. It will typically look like this:

St opwat ch: 1222945098201902 2118976 (770* 4400 -)

Each line can contain up to 5 different values. Some values can be absent; each absent value will
be replaced with a dash.
The meanings of the values are as follows (all values are in microseconds):
1. Transaction timestamp in microseconds since January 1st, 1970.
2. Transaction duration.
3. The time between the moment Apache started processing the request and until phase 2
of ModSecurity began. If an asterisk is present that means the time includes the time it
took ModSecurity to read the request body from the client (typically slow). This value

can be used to provide arough estimate of the client speed, but only with larger request
bodies (the smaller request bodies may arrive in asingle TCP/IP packet).

12

ModSecurity 2 Data Formats

4. The time between the start of processing and until phase 2 was completed. If you
substract the previous value from this value you will get the exact duration of phase 2
(which isthe main rule processing phase).

5. The time between the start of request processing and util we began sending a fully-
buffered response body to the client. If you substract thisvalue from the total transaction
duration and divide with the response body size you may get a rough estimate of the
client speed, but only for larger response bodies.

WebApp-Info

The WebApp- | nf o header contains information on the application to which the recorded
transaction belongs. This information will appear only if it is known, which will happen if
SecVWebAppl d was set, or set si d or set ui d executed in the transaction.

The header uses the following format:
WebApp- I nf o: "WEBAPPI D' "SESSI ONI D' " USERI D'

Each unknown value is replaced with a dash.

Reduced Multipart Request Body (1)

Transactionsthat deal with file uploadstend to belarge, yet thefile contentsisnot awaysrelevant
from the security point of view. Thel part was designed to avoid recording raw rmul ti part/
f or m dat a request badies, replacingthemwithasimulatedappl i cati on/ x- wwww f or m
ur | encoded body that contains the same key-value parameters.

The reduced multipart request body will not contain any file information. The J part (currently
not implemented) is intended to carry the file metadata.

Multipart Files Information (J)

The purpose of part J isto record the information on the files contained in anul ti part/
f or m dat a request body. This is handy in the cases when the original request body was not
recorded, or when only a reduced version was recorded (e.g. when part | was used instead of
part C).

Note

This part isreserved for future use. It is not implemented in ModSecurity 2.x.

Matched Rules (K)

Thematched rules part containsarecord of all ModSecurity rulesthat matched during transaction
processing. Y ou should note that if arule that belongs to a chain matches then the entire chain

13

ModSecurity 2 Data Formats

will berecorded. Thisisbecause, even though the disruptive action may not have executed, other
per-rule actions have, and you will need to see the entire chain in order to understand the rules.

This part is available starting with ModSecurity 2.5.x.

Audit Log Footer (2)

Part Z is a special part that only has a boundary but no content. Its only purpose isto signal the
end of an audit log.

Storage Formats
M odSecurity supports two audit log storage formats:

1. Serial audit log format - multiple audit log files stored in the samefile.

2. Concurrent audit log format - onefile is used for every audit log.

Serial Audit Log Format
The serial audit log format stores multiple audit log entries within the same file (one after
another). Thisis often very convinent (audit log entries are easy to find) but this format is only
suitable for light logging in the current ModSecurity implementation because writing to the file
is serialised: only one audit log entry can be written at any one time.

Concurrent Audit Log Format
The concurrent audit log format uses one file per audit log entry, and allows many transactions
to be recorded at once. A hierarchical directory structure is used to ensure that the number of
files created in any one directory remains relatively small. For example:

$LOGG NG- HOVE/ 20081128/ 20081128~ 1414/ 20081128~ 141417-
egDKy 38 AAAEAAAY MHXS AAAAA

The current time is used to work out the directory structure. The file name is constructed using
the current time and the transaction ID.

The creation of every audit log in concurrent format is recorded with an entry in the concurrent
audit log index file. The format of each line resemblesthe common web server accesslog format.

For example:
192.168.0.111 192.168.0.1 - - [28/ Nov/2008: 15: 06: 32 +0000]
"GET /?p=\\ HTTP/1.1" 200 69 "-" "-" NOf Rx38AAAEAAAZCcCU4AAAAA

"-" [/20081128/20081128- 1506/ 20081128- 150632- NOF Rx38AAAEAAAZ c CUAAAAAA
0 1183 nud5:ffee2d414cd43c2f 8ael51652910ed96

The tokens on the line are as follows:

1. Hostname (or IP address, if the hosthame is not known)

14

ModSecurity 2 Data Formats

Source |P address

Remote user (from HTTP Authentication)
Local user (from identd)

Timestamp

Request line

Response status

Bytes sent (in the response body)

© ©® N o gk~ 0D

Referrer information

10.User-Agent information

11.Transaction ID

12.Session ID

13.Audit log file name (relative to the audit logging home, as configured using the
SecAudi t LogSt or ageDi r directive)

14 Audit log offset

15.Audit log size

16.Audit log hash (the has begins with the name of the algorithm used, followed by a colon,

followed by the hexadecimal representation of the hash itself); this hash can be used to

verify that the transaction was correctly recorded and that it hasn't been modified since.

Note

Linesin the index file will be up to 3980 bytes long, and the information logged will be reduced to
fit where necessary. Reduction will occur within the individual fields, but the overall format will
remain the same. The character L will appear as the last character on areduced line. A space will
be the last character on aline that was not reduced to stay within the limit.

Transport Protocol

Audit logs generated in multi-sensor deployments are of little use if left on the sensors. More
commonly, they will be transported to a central logging server using the transport protocol
described in this section:
1. Thetransport protocol is based on the HTTP protocol.
2. The server end is an SSL-enabled web server with HTTP Basic Authentication
configured.
3. Clients will open a connection to the centralisation web server and authenticate (given
the end-point URI, the username and the password).

15

ModSecurity 2 Data Formats

4. Clients will submit every audit log in a single PUT transaction, placing the file in the
body of the request and additional information in the request headers (see below for
details).

5. Server will process each submission and respond with an appropriate status code:

a. 200 (OK) - the submission was processed; the client can delete the corresponding
audit log entry if it so desires. The same audit log entry must not be submitted again.

b. 409 (Conflict) - if the submission isin invalid format and cannot be processed. The
client should attempt to fix the problem with the submission and attempt delivery
again at alater time. This error is generally going to occur due to a programming
error in the protocol implementation, and not because of the content of the audit log
entry that is being transported.

c. 500 (Internal Server Error) - if the server was unable to correctly process the
submission, dueto its own fault. The client should re-attempt delivery at alater time.
A client that starts receiving 500 reponses to all its submission should suspend its
operations for a period of time before continuing.

Note

Server implementations are advised to accept all submissionsthat correctly implement the protocol.
Clients are unlikely to be able to overcome problems within audit log entries, so such problems are
best resolved on the server side.

Note

When en error occurs, the server may place an explanation of the problem in the text part of the
response line.

Request Headers Information
Each audit log entry submission must contain additional information in the request headers.

1. Header X- Cont ent - Hash must contain theaudit log entry hash. Clients should expect
the audit log entries to be validated against the hash by the server.

2. Header X- For ensi cLog- Sunmmar y must contain the entire concurrent format index
line.

3. TheCont ent - Lenght header must be present and contain the length of the audit log
entry.

16

	ModSecurity 2 Data Formats
	Table of Contents
	Alerts
	Alert Action Description
	Alert Justification Description
	Meta-data
	Escaping
	Alerts in the Apache Error Log
	Alerts in Audit Logs

	Audit Log
	Parts
	Audit Log Header (A)
	Request Headers (B)
	Request Body (C)
	Intended Response Headers (D)
	Intended Response Body (E)
	Response Headers (F)
	Response Body (G)
	Audit Log Trailer (H)
	Action
	Apache-Error
	Message
	Producer
	Response-Body-Transformed
	Sanitised-Args
	Sanitised-Request-Headers
	Sanitised-Response-Headers
	Server
	Stopwatch
	WebApp-Info

	Reduced Multipart Request Body (I)
	Multipart Files Information (J)
	Matched Rules (K)
	Audit Log Footer (Z)

	Storage Formats
	Serial Audit Log Format
	Concurrent Audit Log Format

	Transport Protocol
	Request Headers Information

