Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (13562 entries)
Instance Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (96 entries)
Projection Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (210 entries)
Record Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (71 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (6947 entries)
Section Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (306 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (351 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (182 entries)
Abbreviation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (295 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (2870 entries)
Module Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (286 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (433 entries)
Variable Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (1189 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (326 entries)

L

L [module, in Coq.FSets.FMapAVL]
L [module, in Coq.FSets.FSetAVL]
last [definition, in Coq.Lists.List]
law_cosines [lemma, in Coq.Reals.Rgeom]
lb_to_glb [lemma, in Coq.Reals.SeqProp]
le [definition, in Coq.Logic.Hurkens]
le [inductive, in Coq.Init.Peano]
Le [library]
leA_Tree [definition, in Coq.Sorting.Heap]
leA_Tree_Leaf [lemma, in Coq.Sorting.Heap]
leA_Tree_Node [lemma, in Coq.Sorting.Heap]
leb [definition, in Coq.Bool.Bool]
leb [definition, in Coq.Arith.Compare_dec]
leb_compare [lemma, in Coq.Arith.Compare_dec]
leb_complete [lemma, in Coq.Arith.Compare_dec]
leb_complete_conv [lemma, in Coq.Arith.Compare_dec]
leb_correct [lemma, in Coq.Arith.Compare_dec]
leb_correct_conv [lemma, in Coq.Arith.Compare_dec]
leb_refl [lemma, in Coq.Sets.Uniset]
left [constructor, in Coq.Init.Specif]
left_lex [constructor, in Coq.Relations.Relation_Operators]
left_prefix [lemma, in Coq.Wellfounded.Lexicographic_Exponentiation]
left_sym [constructor, in Coq.Relations.Relation_Operators]
LegacyQField [section, in Coq.QArith.Qreals]
LegacyRfield [section, in Coq.Reals.LegacyRfield]
LegacyRfield [library]
Leibniz [abbreviation, in Coq.FSets.FMapFacts]
lel [definition, in Coq.Lists.MonoList]
lel [definition, in Coq.Lists.List]
lelistA [inductive, in Coq.Sorting.Sorting]
lelistA_inv [lemma, in Coq.Sorting.Sorting]
lel_cons [lemma, in Coq.Lists.MonoList]
lel_cons [lemma, in Coq.Lists.List]
lel_cons_cons [lemma, in Coq.Lists.MonoList]
lel_cons_cons [lemma, in Coq.Lists.List]
lel_nil [lemma, in Coq.Lists.MonoList]
lel_nil [lemma, in Coq.Lists.List]
lel_refl [lemma, in Coq.Lists.List]
lel_refl [lemma, in Coq.Lists.MonoList]
lel_tail [lemma, in Coq.Lists.MonoList]
lel_tail [lemma, in Coq.Lists.List]
lel_trans [lemma, in Coq.Lists.List]
lel_trans [lemma, in Coq.Lists.MonoList]
lemma1 [lemma, in Coq.Logic.Hurkens]
Lemma1 [lemma, in Coq.Sets.Relations_2_facts]
lemma2 [lemma, in Coq.Logic.Hurkens]
Length [lemma, in Coq.Lists.TheoryList]
length [definition, in Coq.Strings.String]
length [definition, in Coq.Lists.List]
length [definition, in Coq.Lists.MonoList]
Length_l [definition, in Coq.Lists.TheoryList]
Length_l_pf [lemma, in Coq.Lists.TheoryList]
length_order [section, in Coq.Lists.List]
length_order [section, in Coq.Lists.MonoList]
length_order.a [variable, in Coq.Lists.List]
length_order.A [variable, in Coq.Lists.List]
length_order.a [variable, in Coq.Lists.MonoList]
length_order.b [variable, in Coq.Lists.MonoList]
length_order.b [variable, in Coq.Lists.List]
length_order.l [variable, in Coq.Lists.MonoList]
length_order.l [variable, in Coq.Lists.List]
length_order.m [variable, in Coq.Lists.MonoList]
length_order.m [variable, in Coq.Lists.List]
length_order.n [variable, in Coq.Lists.MonoList]
length_order.n [variable, in Coq.Lists.List]
length_pos [definition, in Coq.Numbers.Natural.BigN.Nbasic]
length_pos_lt [lemma, in Coq.Numbers.Natural.BigN.Nbasic]
less_than_empty [lemma, in Coq.Sets.Powerset_facts]
less_than_singleton [lemma, in Coq.Sets.Powerset_Classical_facts]
Lexicographic_Exponentiation [section, in Coq.Relations.Relation_Operators]
Lexicographic_Exponentiation [library]
Lexicographic_Exponentiation.A [variable, in Coq.Relations.Relation_Operators]
Lexicographic_Exponentiation.leA [variable, in Coq.Relations.Relation_Operators]
Lexicographic_Product [section, in Coq.Relations.Relation_Operators]
Lexicographic_Product [library]
Lexicographic_Product.A [variable, in Coq.Relations.Relation_Operators]
Lexicographic_Product.B [variable, in Coq.Relations.Relation_Operators]
Lexicographic_Product.leA [variable, in Coq.Relations.Relation_Operators]
Lexicographic_Product.leB [variable, in Coq.Relations.Relation_Operators]
lexprod [inductive, in Coq.Relations.Relation_Operators]
LexProd [abbreviation, in Coq.Wellfounded.Lexicographic_Product]
lex_exp [definition, in Coq.Relations.Relation_Operators]
Lex_Exp [abbreviation, in Coq.Wellfounded.Lexicographic_Exponentiation]
le_aa [constructor, in Coq.Relations.Relation_Operators]
le_ab [constructor, in Coq.Relations.Relation_Operators]
le_antisym [lemma, in Coq.Sets.Integers]
le_antisym [lemma, in Coq.Arith.Le]
le_AsB [inductive, in Coq.Relations.Relation_Operators]
Le_AsB [abbreviation, in Coq.Wellfounded.Disjoint_Union]
le_bb [constructor, in Coq.Relations.Relation_Operators]
le_dec [lemma, in Coq.Arith.Compare]
le_decide [lemma, in Coq.Arith.Compare]
le_double [lemma, in Coq.Reals.ArithProp]
le_elim_rel [lemma, in Coq.Arith.Le]
le_epsilon [lemma, in Coq.Reals.RIneq]
le_ge_dec [definition, in Coq.Arith.Compare_dec]
le_gt_dec [definition, in Coq.Arith.Compare_dec]
le_gt_S [lemma, in Coq.Arith.Gt]
le_gt_trans [lemma, in Coq.Arith.Gt]
le_INR [lemma, in Coq.Reals.RIneq]
le_IZR [lemma, in Coq.Reals.RIneq]
le_IZR_R1 [lemma, in Coq.Reals.RIneq]
le_le_S_dec [definition, in Coq.Arith.Compare_dec]
le_le_S_eq [lemma, in Coq.Arith.Compare]
le_lt_dec [definition, in Coq.Arith.Compare_dec]
le_lt_eq_dec [definition, in Coq.Arith.Compare_dec]
le_lt_n_Sm [lemma, in Coq.Arith.Lt]
le_lt_or_eq [lemma, in Coq.Arith.Lt]
le_lt_trans [lemma, in Coq.Arith.Lt]
le_max_l [lemma, in Coq.Arith.Max]
le_max_r [lemma, in Coq.Arith.Max]
le_minus [lemma, in Coq.Arith.Minus]
le_minusni_n [lemma, in Coq.Reals.ArithProp]
le_min_l [lemma, in Coq.Arith.Min]
le_min_r [lemma, in Coq.Arith.Min]
le_n [constructor, in Coq.Init.Peano]
le_ni_le [lemma, in Coq.NArith.Ndist]
le_not_gt [lemma, in Coq.Arith.Gt]
le_not_lt [lemma, in Coq.Arith.Lt]
le_n_O_eq [lemma, in Coq.Arith.Le]
le_n_S [lemma, in Coq.Arith.Le]
le_n_Sn [lemma, in Coq.Arith.Le]
le_n_2n [lemma, in Coq.Reals.Rprod]
le_Order [lemma, in Coq.Sets.Integers]
le_or_le_S [definition, in Coq.Arith.Compare]
le_or_lt [lemma, in Coq.Arith.Lt]
le_O_IZR [abbreviation, in Coq.Reals.RIneq]
le_O_n [lemma, in Coq.Arith.Le]
le_plus_l [lemma, in Coq.Arith.Plus]
le_plus_minus [lemma, in Coq.Arith.Minus]
le_plus_minus_r [lemma, in Coq.Arith.Minus]
le_plus_r [lemma, in Coq.Arith.Plus]
le_plus_trans [lemma, in Coq.Arith.Plus]
le_Pmult_nat [lemma, in Coq.NArith.Pnat]
le_pred [lemma, in Coq.Arith.Le]
le_pred_n [lemma, in Coq.Arith.Le]
le_refl [lemma, in Coq.Arith.Le]
le_reflexive [lemma, in Coq.Sets.Integers]
le_S [constructor, in Coq.Init.Peano]
le_Sn_le [lemma, in Coq.Arith.Le]
le_Sn_n [lemma, in Coq.Arith.Le]
le_Sn_O [lemma, in Coq.Arith.Le]
le_sup [constructor, in Coq.Wellfounded.Well_Ordering]
le_S_gt [lemma, in Coq.Arith.Gt]
le_S_n [lemma, in Coq.Arith.Le]
le_total_order [lemma, in Coq.Sets.Integers]
le_trans [lemma, in Coq.Sets.Integers]
le_trans [lemma, in Coq.Arith.Le]
le_WO [inductive, in Coq.Wellfounded.Well_Ordering]
le_0_IZR [lemma, in Coq.Reals.RIneq]
limit1_ext [lemma, in Coq.Reals.Rpower]
limit1_imp [lemma, in Coq.Reals.Rpower]
limit1_in [definition, in Coq.Reals.Rlimit]
limit_comp [lemma, in Coq.Reals.Rlimit]
limit_free [lemma, in Coq.Reals.Rlimit]
limit_in [definition, in Coq.Reals.Rlimit]
limit_inv [lemma, in Coq.Reals.Rlimit]
limit_minus [lemma, in Coq.Reals.Rlimit]
limit_mul [lemma, in Coq.Reals.Rlimit]
limit_plus [lemma, in Coq.Reals.Rlimit]
limit_Ropp [lemma, in Coq.Reals.Rlimit]
lim_x [lemma, in Coq.Reals.Rlimit]
list [inductive, in Coq.Lists.MonoList]
List [abbreviation, in Coq.Wellfounded.Lexicographic_Exponentiation]
list [inductive, in Coq.Lists.List]
List [definition, in Coq.Relations.Relation_Operators]
List [library]
ListOps [section, in Coq.Lists.List]
ListOps.A [variable, in Coq.Lists.List]
ListOps.eqA_dec [variable, in Coq.Lists.List]
ListOps.Permutation [section, in Coq.Lists.List]
ListOps.Reverse_Induction [section, in Coq.Lists.List]
ListPairs [section, in Coq.Lists.List]
ListPairs.A [variable, in Coq.Lists.List]
ListPairs.B [variable, in Coq.Lists.List]
Lists [section, in Coq.Lists.TheoryList]
Lists [section, in Coq.Lists.List]
ListSet [library]
Lists.A [variable, in Coq.Lists.TheoryList]
Lists.A [variable, in Coq.Lists.List]
Lists.Assoc_sec [section, in Coq.Lists.TheoryList]
Lists.Assoc_sec.B [variable, in Coq.Lists.TheoryList]
Lists.eqA_dec [variable, in Coq.Lists.TheoryList]
Lists.Find_sec [section, in Coq.Lists.TheoryList]
Lists.Find_sec.B [variable, in Coq.Lists.TheoryList]
Lists.Find_sec.P [variable, in Coq.Lists.TheoryList]
Lists.Find_sec.R [variable, in Coq.Lists.TheoryList]
Lists.Find_sec.RS_dec [variable, in Coq.Lists.TheoryList]
Lists.Find_sec.T [variable, in Coq.Lists.TheoryList]
Lists.Find_sec.TS_dec [variable, in Coq.Lists.TheoryList]
ListTactics [library]
list_contents [abbreviation, in Coq.Sorting.PermutSetoid]
list_contents [definition, in Coq.Sorting.Permutation]
list_contents [abbreviation, in Coq.Sorting.PermutEq]
list_contents_app [lemma, in Coq.Sorting.Permutation]
List_Dom [axiom, in Coq.Lists.MonoList]
list_eqdec [instance, in Coq.Classes.EquivDec]
list_eq_dec [lemma, in Coq.Lists.List]
list_power [definition, in Coq.Lists.List]
list_prod [definition, in Coq.Lists.List]
list_to_heap [lemma, in Coq.Sorting.Heap]
ln [definition, in Coq.Reals.Rpower]
ln_continue [lemma, in Coq.Reals.Rpower]
ln_exists [lemma, in Coq.Reals.Rpower]
ln_exists1 [lemma, in Coq.Reals.Rpower]
ln_exp [lemma, in Coq.Reals.Rpower]
ln_increasing [lemma, in Coq.Reals.Rpower]
ln_inv [lemma, in Coq.Reals.Rpower]
ln_lt_inv [lemma, in Coq.Reals.Rpower]
ln_lt_2 [lemma, in Coq.Reals.Rpower]
ln_mult [lemma, in Coq.Reals.Rpower]
ln_Rinv [lemma, in Coq.Reals.Rpower]
ln_1 [lemma, in Coq.Reals.Rpower]
LO [module, in Coq.FSets.FMapFullAVL]
LO [module, in Coq.FSets.FMapAVL]
locally_confluent [definition, in Coq.Sets.Relations_3]
Locally_confluent [definition, in Coq.Sets.Relations_3]
Logic [library]
Logic_lemmas [section, in Coq.Init.Logic]
Logic_lemmas.equality [section, in Coq.Init.Logic]
Logic_lemmas.equality.A [variable, in Coq.Init.Logic]
Logic_lemmas.equality.B [variable, in Coq.Init.Logic]
Logic_lemmas.equality.f [variable, in Coq.Init.Logic]
Logic_lemmas.equality.x [variable, in Coq.Init.Logic]
Logic_lemmas.equality.y [variable, in Coq.Init.Logic]
Logic_lemmas.equality.z [variable, in Coq.Init.Logic]
Logic_Type [library]
log_inf [definition, in Coq.ZArith.Zlogarithm]
log_inf_bounded [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
log_inf_correct [lemma, in Coq.ZArith.Zlogarithm]
log_inf_correct1 [definition, in Coq.ZArith.Zlogarithm]
log_inf_correct2 [definition, in Coq.ZArith.Zlogarithm]
log_inf_le_log_sup [lemma, in Coq.ZArith.Zlogarithm]
log_inf_shift_nat [lemma, in Coq.ZArith.Zlogarithm]
log_near [definition, in Coq.ZArith.Zlogarithm]
log_near_correct1 [lemma, in Coq.ZArith.Zlogarithm]
log_near_correct2 [lemma, in Coq.ZArith.Zlogarithm]
Log_pos [section, in Coq.ZArith.Zlogarithm]
log_sup [definition, in Coq.ZArith.Zlogarithm]
log_sup_correct1 [lemma, in Coq.ZArith.Zlogarithm]
log_sup_correct2 [lemma, in Coq.ZArith.Zlogarithm]
log_sup_le_Slog_inf [lemma, in Coq.ZArith.Zlogarithm]
log_sup_log_inf [lemma, in Coq.ZArith.Zlogarithm]
log_sup_shift_nat [lemma, in Coq.ZArith.Zlogarithm]
low [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
Lower_Bound [inductive, in Coq.Sets.Cpo]
Lower_Bound_definition [constructor, in Coq.Sets.Cpo]
low_trans [lemma, in Coq.Sorting.Heap]
lshiftl [definition, in Coq.Numbers.Cyclic.Int31.Cyclic31]
lt [definition, in Coq.Init.Peano]
LT [constructor, in Coq.FSets.OrderedType]
Lt [constructor, in Coq.Init.Datatypes]
Lt [library]
Ltl [inductive, in Coq.Relations.Relation_Operators]
ltl [abbreviation, in Coq.Wellfounded.Lexicographic_Exponentiation]
ltl_unit [lemma, in Coq.Wellfounded.Lexicographic_Exponentiation]
ltof [definition, in Coq.Arith.Wf_nat]
lt_asym [lemma, in Coq.Arith.Lt]
lt_div2 [lemma, in Coq.Arith.Div2]
lt_eq_lt_dec [definition, in Coq.Arith.Compare_dec]
lt_ge_dec [definition, in Coq.Arith.Bool_nat]
Lt_hd [constructor, in Coq.Relations.Relation_Operators]
lt_INR [lemma, in Coq.Reals.RIneq]
lt_INR_0 [abbreviation, in Coq.Reals.RIneq]
lt_irrefl [lemma, in Coq.Arith.Lt]
lt_IZR [lemma, in Coq.Reals.RIneq]
lt_le_S [lemma, in Coq.Arith.Lt]
lt_le_trans [lemma, in Coq.Arith.Lt]
lt_le_weak [lemma, in Coq.Arith.Lt]
lt_minus [lemma, in Coq.Arith.Minus]
lt_minus_O_lt [lemma, in Coq.Reals.ArithProp]
Lt_nil [constructor, in Coq.Relations.Relation_Operators]
lt_not_le [lemma, in Coq.Arith.Lt]
lt_n_O [lemma, in Coq.Arith.Lt]
lt_n_S [lemma, in Coq.Arith.Lt]
lt_n_Sm_le [lemma, in Coq.Arith.Lt]
lt_n_Sn [lemma, in Coq.Arith.Lt]
lt_or_eq [definition, in Coq.Arith.Compare]
lt_O_fact [lemma, in Coq.Arith.Factorial]
lt_O_IZR [abbreviation, in Coq.Reals.RIneq]
lt_O_minus_lt [lemma, in Coq.Arith.Minus]
lt_O_nat_of_P [lemma, in Coq.NArith.Pnat]
lt_O_neq [lemma, in Coq.Arith.Lt]
lt_O_Sn [lemma, in Coq.Arith.Lt]
lt_plus_trans [lemma, in Coq.Arith.Plus]
lt_pred [lemma, in Coq.Arith.Lt]
lt_pred_n_n [lemma, in Coq.Arith.Lt]
lt_S [lemma, in Coq.Arith.Lt]
lt_S_n [lemma, in Coq.Arith.Lt]
Lt_tl [constructor, in Coq.Relations.Relation_Operators]
lt_trans [lemma, in Coq.Arith.Lt]
lt_wB_wwB [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleBase]
lt_wf [lemma, in Coq.Arith.Wf_nat]
lt_wf_double_ind [lemma, in Coq.Arith.Wf_nat]
lt_wf_double_rec [lemma, in Coq.Arith.Wf_nat]
lt_wf_ind [lemma, in Coq.Arith.Wf_nat]
lt_wf_rec [lemma, in Coq.Arith.Wf_nat]
lt_wf_rec1 [lemma, in Coq.Arith.Wf_nat]
LT_WF_REL [section, in Coq.Arith.Wf_nat]
LT_WF_REL.A [variable, in Coq.Arith.Wf_nat]
LT_WF_REL.F [variable, in Coq.Arith.Wf_nat]
LT_WF_REL.F_compat [variable, in Coq.Arith.Wf_nat]
LT_WF_REL.R [variable, in Coq.Arith.Wf_nat]
lt_0_INR [lemma, in Coq.Reals.RIneq]
lt_0_IZR [lemma, in Coq.Reals.RIneq]
lt_0_wB [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleBase]
lt_0_wwB [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleBase]
lt_1_INR [lemma, in Coq.Reals.RIneq]
Lub [inductive, in Coq.Sets.Cpo]
lub [definition, in Coq.Reals.SeqProp]
Lub_definition [constructor, in Coq.Sets.Cpo]
L1 [lemma, in Coq.Logic.Berardi]
l2i [definition, in Coq.Numbers.Cyclic.Int31.Cyclic31]
l2i_i2l [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]



Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (13562 entries)
Instance Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (96 entries)
Projection Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (210 entries)
Record Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (71 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (6947 entries)
Section Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (306 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (351 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (182 entries)
Abbreviation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (295 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (2870 entries)
Module Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (286 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (433 entries)
Variable Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (1189 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (326 entries)