Library Coq.Numbers.Cyclic.Abstract.CyclicAxioms
This file specifies how to represent Z/nZ when n=2^d,
d being the number of digits of these bounded integers.
Require Import ZArith.
Require Import Znumtheory.
Require Import BigNumPrelude.
Require Import DoubleType.
Open Local Scope Z_scope.
First, a description via an operator record and a spec record.
Section Z_nZ_Op.
Variable znz : Type.
Record znz_op := mk_znz_op {
znz_digits : positive;
znz_zdigits: znz;
znz_to_Z : znz -> Z;
znz_of_pos : positive -> N * znz;
znz_head0 : znz -> znz;
znz_tail0 : znz -> znz;
znz_0 : znz;
znz_1 : znz;
znz_Bm1 : znz;
znz_compare : znz -> znz -> comparison;
znz_eq0 : znz -> bool;
znz_opp_c : znz -> carry znz;
znz_opp : znz -> znz;
znz_opp_carry : znz -> znz;
znz_succ_c : znz -> carry znz;
znz_add_c : znz -> znz -> carry znz;
znz_add_carry_c : znz -> znz -> carry znz;
znz_succ : znz -> znz;
znz_add : znz -> znz -> znz;
znz_add_carry : znz -> znz -> znz;
znz_pred_c : znz -> carry znz;
znz_sub_c : znz -> znz -> carry znz;
znz_sub_carry_c : znz -> znz -> carry znz;
znz_pred : znz -> znz;
znz_sub : znz -> znz -> znz;
znz_sub_carry : znz -> znz -> znz;
znz_mul_c : znz -> znz -> zn2z znz;
znz_mul : znz -> znz -> znz;
znz_square_c : znz -> zn2z znz;
znz_div21 : znz -> znz -> znz -> znz*znz;
znz_div_gt : znz -> znz -> znz * znz;
znz_div : znz -> znz -> znz * znz;
znz_mod_gt : znz -> znz -> znz;
znz_mod : znz -> znz -> znz;
znz_gcd_gt : znz -> znz -> znz;
znz_gcd : znz -> znz -> znz;
znz_add_mul_div : znz -> znz -> znz -> znz;
znz_pos_mod : znz -> znz -> znz;
znz_is_even : znz -> bool;
znz_sqrt2 : znz -> znz -> znz * carry znz;
znz_sqrt : znz -> znz }.
End Z_nZ_Op.
Section Z_nZ_Spec.
Variable w : Type.
Variable w_op : znz_op w.
Let w_digits := w_op.(znz_digits).
Let w_zdigits := w_op.(znz_zdigits).
Let w_to_Z := w_op.(znz_to_Z).
Let w_of_pos := w_op.(znz_of_pos).
Let w_head0 := w_op.(znz_head0).
Let w_tail0 := w_op.(znz_tail0).
Let w0 := w_op.(znz_0).
Let w1 := w_op.(znz_1).
Let wBm1 := w_op.(znz_Bm1).
Let w_compare := w_op.(znz_compare).
Let w_eq0 := w_op.(znz_eq0).
Let w_opp_c := w_op.(znz_opp_c).
Let w_opp := w_op.(znz_opp).
Let w_opp_carry := w_op.(znz_opp_carry).
Let w_succ_c := w_op.(znz_succ_c).
Let w_add_c := w_op.(znz_add_c).
Let w_add_carry_c := w_op.(znz_add_carry_c).
Let w_succ := w_op.(znz_succ).
Let w_add := w_op.(znz_add).
Let w_add_carry := w_op.(znz_add_carry).
Let w_pred_c := w_op.(znz_pred_c).
Let w_sub_c := w_op.(znz_sub_c).
Let w_sub_carry_c := w_op.(znz_sub_carry_c).
Let w_pred := w_op.(znz_pred).
Let w_sub := w_op.(znz_sub).
Let w_sub_carry := w_op.(znz_sub_carry).
Let w_mul_c := w_op.(znz_mul_c).
Let w_mul := w_op.(znz_mul).
Let w_square_c := w_op.(znz_square_c).
Let w_div21 := w_op.(znz_div21).
Let w_div_gt := w_op.(znz_div_gt).
Let w_div := w_op.(znz_div).
Let w_mod_gt := w_op.(znz_mod_gt).
Let w_mod := w_op.(znz_mod).
Let w_gcd_gt := w_op.(znz_gcd_gt).
Let w_gcd := w_op.(znz_gcd).
Let w_add_mul_div := w_op.(znz_add_mul_div).
Let w_pos_mod := w_op.(znz_pos_mod).
Let w_is_even := w_op.(znz_is_even).
Let w_sqrt2 := w_op.(znz_sqrt2).
Let w_sqrt := w_op.(znz_sqrt).
Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99).
Let wB := base w_digits.
Notation "[+| c |]" :=
(interp_carry 1 wB w_to_Z c) (at level 0, x at level 99).
Notation "[-| c |]" :=
(interp_carry (-1) wB w_to_Z c) (at level 0, x at level 99).
Notation "[|| x ||]" :=
(zn2z_to_Z wB w_to_Z x) (at level 0, x at level 99).
Record znz_spec := mk_znz_spec {
spec_to_Z : forall x, 0 <= [| x |] < wB;
spec_of_pos : forall p,
Zpos p = (Z_of_N (fst (w_of_pos p)))*wB + [|(snd (w_of_pos p))|];
spec_zdigits : [| w_zdigits |] = Zpos w_digits;
spec_more_than_1_digit: 1 < Zpos w_digits;
spec_0 : [|w0|] = 0;
spec_1 : [|w1|] = 1;
spec_Bm1 : [|wBm1|] = wB - 1;
spec_compare :
forall x y,
match w_compare x y with
| Eq => [|x|] = [|y|]
| Lt => [|x|] < [|y|]
| Gt => [|x|] > [|y|]
end;
spec_eq0 : forall x, w_eq0 x = true -> [|x|] = 0;
spec_opp_c : forall x, [-|w_opp_c x|] = -[|x|];
spec_opp : forall x, [|w_opp x|] = (-[|x|]) mod wB;
spec_opp_carry : forall x, [|w_opp_carry x|] = wB - [|x|] - 1;
spec_succ_c : forall x, [+|w_succ_c x|] = [|x|] + 1;
spec_add_c : forall x y, [+|w_add_c x y|] = [|x|] + [|y|];
spec_add_carry_c : forall x y, [+|w_add_carry_c x y|] = [|x|] + [|y|] + 1;
spec_succ : forall x, [|w_succ x|] = ([|x|] + 1) mod wB;
spec_add : forall x y, [|w_add x y|] = ([|x|] + [|y|]) mod wB;
spec_add_carry :
forall x y, [|w_add_carry x y|] = ([|x|] + [|y|] + 1) mod wB;
spec_pred_c : forall x, [-|w_pred_c x|] = [|x|] - 1;
spec_sub_c : forall x y, [-|w_sub_c x y|] = [|x|] - [|y|];
spec_sub_carry_c : forall x y, [-|w_sub_carry_c x y|] = [|x|] - [|y|] - 1;
spec_pred : forall x, [|w_pred x|] = ([|x|] - 1) mod wB;
spec_sub : forall x y, [|w_sub x y|] = ([|x|] - [|y|]) mod wB;
spec_sub_carry :
forall x y, [|w_sub_carry x y|] = ([|x|] - [|y|] - 1) mod wB;
spec_mul_c : forall x y, [|| w_mul_c x y ||] = [|x|] * [|y|];
spec_mul : forall x y, [|w_mul x y|] = ([|x|] * [|y|]) mod wB;
spec_square_c : forall x, [|| w_square_c x||] = [|x|] * [|x|];
spec_div21 : forall a1 a2 b,
wB/2 <= [|b|] ->
[|a1|] < [|b|] ->
let (q,r) := w_div21 a1 a2 b in
[|a1|] *wB+ [|a2|] = [|q|] * [|b|] + [|r|] /\
0 <= [|r|] < [|b|];
spec_div_gt : forall a b, [|a|] > [|b|] -> 0 < [|b|] ->
let (q,r) := w_div_gt a b in
[|a|] = [|q|] * [|b|] + [|r|] /\
0 <= [|r|] < [|b|];
spec_div : forall a b, 0 < [|b|] ->
let (q,r) := w_div a b in
[|a|] = [|q|] * [|b|] + [|r|] /\
0 <= [|r|] < [|b|];
spec_mod_gt : forall a b, [|a|] > [|b|] -> 0 < [|b|] ->
[|w_mod_gt a b|] = [|a|] mod [|b|];
spec_mod : forall a b, 0 < [|b|] ->
[|w_mod a b|] = [|a|] mod [|b|];
spec_gcd_gt : forall a b, [|a|] > [|b|] ->
Zis_gcd [|a|] [|b|] [|w_gcd_gt a b|];
spec_gcd : forall a b, Zis_gcd [|a|] [|b|] [|w_gcd a b|];
spec_head00: forall x, [|x|] = 0 -> [|w_head0 x|] = Zpos w_digits;
spec_head0 : forall x, 0 < [|x|] ->
wB/ 2 <= 2 ^ ([|w_head0 x|]) * [|x|] < wB;
spec_tail00: forall x, [|x|] = 0 -> [|w_tail0 x|] = Zpos w_digits;
spec_tail0 : forall x, 0 < [|x|] ->
exists y, 0 <= y /\ [|x|] = (2 * y + 1) * (2 ^ [|w_tail0 x|]) ;
spec_add_mul_div : forall x y p,
[|p|] <= Zpos w_digits ->
[| w_add_mul_div p x y |] =
([|x|] * (2 ^ [|p|]) +
[|y|] / (2 ^ ((Zpos w_digits) - [|p|]))) mod wB;
spec_pos_mod : forall w p,
[|w_pos_mod p w|] = [|w|] mod (2 ^ [|p|]);
spec_is_even : forall x,
if w_is_even x then [|x|] mod 2 = 0 else [|x|] mod 2 = 1;
spec_sqrt2 : forall x y,
wB/ 4 <= [|x|] ->
let (s,r) := w_sqrt2 x y in
[||WW x y||] = [|s|] ^ 2 + [+|r|] /\
[+|r|] <= 2 * [|s|];
spec_sqrt : forall x,
[|w_sqrt x|] ^ 2 <= [|x|] < ([|w_sqrt x|] + 1) ^ 2
}.
End Z_nZ_Spec.
Generic construction of double words
Section WW.
Variable w : Type.
Variable w_op : znz_op w.
Variable op_spec : znz_spec w_op.
Let wB := base w_op.(znz_digits).
Let w_to_Z := w_op.(znz_to_Z).
Let w_eq0 := w_op.(znz_eq0).
Let w_0 := w_op.(znz_0).
Definition znz_W0 h :=
if w_eq0 h then W0 else WW h w_0.
Definition znz_0W l :=
if w_eq0 l then W0 else WW w_0 l.
Definition znz_WW h l :=
if w_eq0 h then znz_0W l else WW h l.
Lemma spec_W0 : forall h,
zn2z_to_Z wB w_to_Z (znz_W0 h) = (w_to_Z h)*wB.
Lemma spec_0W : forall l,
zn2z_to_Z wB w_to_Z (znz_0W l) = w_to_Z l.
Lemma spec_WW : forall h l,
zn2z_to_Z wB w_to_Z (znz_WW h l) = (w_to_Z h)*wB + w_to_Z l.
End WW.
Injecting Z numbers into a cyclic structure
Section znz_of_pos.
Variable w : Type.
Variable w_op : znz_op w.
Variable op_spec : znz_spec w_op.
Notation "[| x |]" := (znz_to_Z w_op x) (at level 0, x at level 99).
Definition znz_of_Z (w:Type) (op:znz_op w) z :=
match z with
| Zpos p => snd (op.(znz_of_pos) p)
| _ => op.(znz_0)
end.
Theorem znz_of_pos_correct:
forall p, Zpos p < base (znz_digits w_op) -> [|(snd (znz_of_pos w_op p))|] = Zpos p.
Theorem znz_of_Z_correct:
forall p, 0 <= p < base (znz_digits w_op) -> [|znz_of_Z w_op p|] = p.
End znz_of_pos.
A modular specification grouping the earlier records.
Module Type CyclicType.
Parameter w : Type.
Parameter w_op : znz_op w.
Parameter w_spec : znz_spec w_op.
End CyclicType.