Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (13562 entries)
Instance Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (96 entries)
Projection Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (210 entries)
Record Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (71 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (6947 entries)
Section Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (306 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (351 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (182 entries)
Abbreviation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (295 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (2870 entries)
Module Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (286 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (433 entries)
Variable Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (1189 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (326 entries)

Z

Z [inductive, in Coq.ZArith.BinInt]
Zabs [definition, in Coq.ZArith.BinInt]
Zabs [library]
Zabs_dec [definition, in Coq.ZArith.Zabs]
Zabs_eq [lemma, in Coq.ZArith.Zabs]
Zabs_eq_case [lemma, in Coq.ZArith.Zabs]
Zabs_ind [lemma, in Coq.ZArith.Zabs]
Zabs_intro [lemma, in Coq.ZArith.Zabs]
Zabs_involutive [lemma, in Coq.ZArith.Zabs]
Zabs_N [definition, in Coq.ZArith.BinInt]
Zabs_nat [definition, in Coq.ZArith.BinInt]
Zabs_nat_le [lemma, in Coq.ZArith.Zabs]
Zabs_nat_lt [lemma, in Coq.ZArith.Zabs]
Zabs_nat_mult [lemma, in Coq.ZArith.Zabs]
Zabs_nat_Zminus [lemma, in Coq.ZArith.Zabs]
Zabs_nat_Zplus [lemma, in Coq.ZArith.Zabs]
Zabs_nat_Zsucc [lemma, in Coq.ZArith.Zabs]
Zabs_nat_Z_of_nat [lemma, in Coq.ZArith.Zabs]
Zabs_non_eq [lemma, in Coq.ZArith.Zabs]
Zabs_pos [lemma, in Coq.ZArith.Zabs]
Zabs_Qabs [lemma, in Coq.QArith.Qabs]
Zabs_spec [lemma, in Coq.ZArith.Zabs]
Zabs_square [lemma, in Coq.ZArith.Zabs]
Zabs_triangle [lemma, in Coq.ZArith.Zabs]
Zabs_Zmult [lemma, in Coq.ZArith.Zabs]
Zabs_Zopp [lemma, in Coq.ZArith.Zabs]
Zabs_Zsgn [lemma, in Coq.ZArith.Zabs]
ZAdd [library]
ZAddOrder [library]
ZAddOrderPropFunct [module, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.PosNeg [section, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.PosNeg.P [variable, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.PosNeg.P_wd [variable, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zadd_le_cases [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zadd_le_lt_mono [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zadd_le_mono [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zadd_le_mono_l [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zadd_le_mono_r [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zadd_lt_cases [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zadd_lt_le_mono [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zadd_lt_mono [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zadd_lt_mono_l [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zadd_lt_mono_r [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zadd_neg_cases [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zadd_neg_neg [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zadd_neg_nonpos [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zadd_nonneg_cases [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zadd_nonneg_nonneg [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zadd_nonneg_pos [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zadd_nonpos_cases [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zadd_nonpos_neg [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zadd_nonpos_nonpos [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zadd_pos_cases [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zadd_pos_nonneg [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zadd_pos_pos [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zle_add_le_sub_l [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zle_add_le_sub_r [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zle_le_add_le [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zle_le_sub_lt [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zle_lt_add_lt [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zle_lt_sub_lt [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zle_sub_le_add [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zle_sub_le_add_l [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zle_sub_le_add_r [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zle_sub_nonneg [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zle_sub_0 [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zle_0_sub [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zlt_add_lt_sub_l [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zlt_add_lt_sub_r [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zlt_add_pos_l [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zlt_add_pos_r [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zlt_le_add_lt [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zlt_le_sub_lt [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zlt_sub_lt_add [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zlt_sub_lt_add_l [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zlt_sub_lt_add_r [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zlt_sub_pos [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zlt_sub_0 [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zlt_0_sub [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zopp_le_mono [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zopp_lt_mono [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zopp_neg_pos [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zopp_nonneg_nonpos [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zopp_nonpos_nonneg [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zopp_pos_neg [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zsub_le_cases [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zsub_le_lt_mono [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zsub_le_mono [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zsub_le_mono_l [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zsub_le_mono_r [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zsub_lt_cases [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zsub_lt_le_mono [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zsub_lt_mono [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zsub_lt_mono_l [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zsub_lt_mono_r [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zsub_neg [abbreviation, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zsub_neg_cases [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zsub_nonneg [abbreviation, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zsub_nonneg_cases [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zsub_nonpos [abbreviation, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zsub_nonpos_cases [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zsub_pos [abbreviation, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Zsub_pos_cases [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropFunct.Z0_pos_neg [lemma, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZAddOrderPropMod [module, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZAddPropFunct [module, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.sub_opp_l [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zadd_add_simpl_l_l [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zadd_add_simpl_l_r [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zadd_add_simpl_r_l [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zadd_add_simpl_r_r [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zadd_assoc [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zadd_cancel_l [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zadd_cancel_r [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zadd_comm [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zadd_move_l [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zadd_move_r [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zadd_move_0_l [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zadd_move_0_r [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zadd_opp_diag_l [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zadd_opp_diag_r [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zadd_opp_l [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zadd_opp_r [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zadd_pred_l [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zadd_pred_r [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zadd_shuffle1 [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zadd_shuffle2 [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zadd_simpl_l [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zadd_simpl_r [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zadd_sub_assoc [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zadd_sub_swap [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zadd_succ_l [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zadd_succ_r [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zadd_wd [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zadd_0_l [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zadd_0_r [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zadd_1_l [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zadd_1_r [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zeq_opp_l [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zeq_opp_r [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zopp_add_distr [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zopp_inj [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zopp_inj_wd [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zopp_involutive [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zopp_pred [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zopp_sub_distr [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zopp_succ [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zopp_0 [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zsub_add_distr [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zsub_add_simpl_r_l [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zsub_add_simpl_r_r [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zsub_cancel_l [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zsub_cancel_r [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zsub_diag [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zsub_move_l [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zsub_move_r [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zsub_move_0_l [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zsub_move_0_r [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zsub_opp_r [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zsub_pred_l [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zsub_pred_r [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zsub_simpl_l [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zsub_simpl_r [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zsub_sub_distr [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zsub_succ_l [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zsub_succ_r [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zsub_0_l [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropFunct.Zsub_0_r [lemma, in Coq.Numbers.Integer.Abstract.ZAdd]
ZAddPropMod [module, in Coq.Numbers.Integer.Abstract.ZMul]
ZArith [library]
ZArith_base [library]
ZArith_dec [library]
ZAxioms [library]
ZAxiomsSig [module, in Coq.Numbers.Integer.Abstract.ZAxioms]
ZAxiomsSig.P [abbreviation, in Coq.Numbers.Integer.Abstract.ZAxioms]
ZAxiomsSig.S [abbreviation, in Coq.Numbers.Integer.Abstract.ZAxioms]
ZAxiomsSig.Z [abbreviation, in Coq.Numbers.Integer.Abstract.ZAxioms]
ZAxiomsSig.Zadd [abbreviation, in Coq.Numbers.Integer.Abstract.ZAxioms]
ZAxiomsSig.Zeq [abbreviation, in Coq.Numbers.Integer.Abstract.ZAxioms]
ZAxiomsSig.Zle [abbreviation, in Coq.Numbers.Integer.Abstract.ZAxioms]
ZAxiomsSig.Zlt [abbreviation, in Coq.Numbers.Integer.Abstract.ZAxioms]
ZAxiomsSig.Zmax [abbreviation, in Coq.Numbers.Integer.Abstract.ZAxioms]
ZAxiomsSig.Zmin [abbreviation, in Coq.Numbers.Integer.Abstract.ZAxioms]
ZAxiomsSig.Zmul [abbreviation, in Coq.Numbers.Integer.Abstract.ZAxioms]
ZAxiomsSig.Zopp [axiom, in Coq.Numbers.Integer.Abstract.ZAxioms]
ZAxiomsSig.Zopp_succ [axiom, in Coq.Numbers.Integer.Abstract.ZAxioms]
ZAxiomsSig.Zopp_0 [axiom, in Coq.Numbers.Integer.Abstract.ZAxioms]
ZAxiomsSig.Zsub [abbreviation, in Coq.Numbers.Integer.Abstract.ZAxioms]
ZAxiomsSig.Zsucc_pred [axiom, in Coq.Numbers.Integer.Abstract.ZAxioms]
ZAxiomsSig.Z0 [abbreviation, in Coq.Numbers.Integer.Abstract.ZAxioms]
ZAxiomsSig.Z1 [abbreviation, in Coq.Numbers.Integer.Abstract.ZAxioms]
ZBase [library]
ZBasePropFunct [module, in Coq.Numbers.Integer.Abstract.ZBase]
ZBasePropFunct.Zcentral_induction [lemma, in Coq.Numbers.Integer.Abstract.ZBase]
ZBasePropFunct.Zeq_dec [lemma, in Coq.Numbers.Integer.Abstract.ZBase]
ZBasePropFunct.Zeq_dne [lemma, in Coq.Numbers.Integer.Abstract.ZBase]
ZBasePropFunct.Zeq_refl [lemma, in Coq.Numbers.Integer.Abstract.ZBase]
ZBasePropFunct.Zeq_sym [lemma, in Coq.Numbers.Integer.Abstract.ZBase]
ZBasePropFunct.Zeq_trans [lemma, in Coq.Numbers.Integer.Abstract.ZBase]
ZBasePropFunct.Zneq_sym [lemma, in Coq.Numbers.Integer.Abstract.ZBase]
ZBasePropFunct.Zpred_inj [lemma, in Coq.Numbers.Integer.Abstract.ZBase]
ZBasePropFunct.Zpred_inj_wd [lemma, in Coq.Numbers.Integer.Abstract.ZBase]
ZBasePropFunct.Zpred_succ [lemma, in Coq.Numbers.Integer.Abstract.ZBase]
ZBasePropFunct.Zpred_wd [lemma, in Coq.Numbers.Integer.Abstract.ZBase]
ZBasePropFunct.Zsucc_inj [lemma, in Coq.Numbers.Integer.Abstract.ZBase]
ZBasePropFunct.Zsucc_inj_wd [lemma, in Coq.Numbers.Integer.Abstract.ZBase]
ZBasePropFunct.Zsucc_inj_wd_neg [lemma, in Coq.Numbers.Integer.Abstract.ZBase]
ZBasePropFunct.Zsucc_wd [lemma, in Coq.Numbers.Integer.Abstract.ZBase]
ZBasePropMod [module, in Coq.Numbers.Integer.Abstract.ZAdd]
Zbinary [library]
ZBinary [library]
ZBinAxiomsMod [module, in Coq.Numbers.Integer.Binary.ZBinary]
ZBinAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZ [definition, in Coq.Numbers.Integer.Binary.ZBinary]
ZBinAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZadd [definition, in Coq.Numbers.Integer.Binary.ZBinary]
ZBinAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZadd_succ_l [lemma, in Coq.Numbers.Integer.Binary.ZBinary]
ZBinAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZadd_0_l [lemma, in Coq.Numbers.Integer.Binary.ZBinary]
ZBinAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZeq [definition, in Coq.Numbers.Integer.Binary.ZBinary]
ZBinAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZeq_equiv [lemma, in Coq.Numbers.Integer.Binary.ZBinary]
ZBinAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZinduction [lemma, in Coq.Numbers.Integer.Binary.ZBinary]
ZBinAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZmul [definition, in Coq.Numbers.Integer.Binary.ZBinary]
ZBinAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZmul_succ_l [lemma, in Coq.Numbers.Integer.Binary.ZBinary]
ZBinAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZmul_0_l [lemma, in Coq.Numbers.Integer.Binary.ZBinary]
ZBinAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZpred [definition, in Coq.Numbers.Integer.Binary.ZBinary]
ZBinAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZpred_succ [lemma, in Coq.Numbers.Integer.Binary.ZBinary]
ZBinAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZsub [definition, in Coq.Numbers.Integer.Binary.ZBinary]
ZBinAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZsub_succ_r [lemma, in Coq.Numbers.Integer.Binary.ZBinary]
ZBinAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZsub_0_r [lemma, in Coq.Numbers.Integer.Binary.ZBinary]
ZBinAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZsucc [definition, in Coq.Numbers.Integer.Binary.ZBinary]
ZBinAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZ0 [definition, in Coq.Numbers.Integer.Binary.ZBinary]
ZBinAxiomsMod.NZOrdAxiomsMod.NZle [definition, in Coq.Numbers.Integer.Binary.ZBinary]
ZBinAxiomsMod.NZOrdAxiomsMod.NZlt [definition, in Coq.Numbers.Integer.Binary.ZBinary]
ZBinAxiomsMod.NZOrdAxiomsMod.NZlt_eq_cases [lemma, in Coq.Numbers.Integer.Binary.ZBinary]
ZBinAxiomsMod.NZOrdAxiomsMod.NZlt_irrefl [lemma, in Coq.Numbers.Integer.Binary.ZBinary]
ZBinAxiomsMod.NZOrdAxiomsMod.NZlt_succ_r [lemma, in Coq.Numbers.Integer.Binary.ZBinary]
ZBinAxiomsMod.NZOrdAxiomsMod.NZmax [definition, in Coq.Numbers.Integer.Binary.ZBinary]
ZBinAxiomsMod.NZOrdAxiomsMod.NZmax_l [lemma, in Coq.Numbers.Integer.Binary.ZBinary]
ZBinAxiomsMod.NZOrdAxiomsMod.NZmax_r [lemma, in Coq.Numbers.Integer.Binary.ZBinary]
ZBinAxiomsMod.NZOrdAxiomsMod.NZmin [definition, in Coq.Numbers.Integer.Binary.ZBinary]
ZBinAxiomsMod.NZOrdAxiomsMod.NZmin_l [lemma, in Coq.Numbers.Integer.Binary.ZBinary]
ZBinAxiomsMod.NZOrdAxiomsMod.NZmin_r [lemma, in Coq.Numbers.Integer.Binary.ZBinary]
ZBinAxiomsMod.Zopp [definition, in Coq.Numbers.Integer.Binary.ZBinary]
ZBinAxiomsMod.Zopp_succ [lemma, in Coq.Numbers.Integer.Binary.ZBinary]
ZBinAxiomsMod.Zopp_0 [lemma, in Coq.Numbers.Integer.Binary.ZBinary]
ZBinAxiomsMod.Zsucc_pred [lemma, in Coq.Numbers.Integer.Binary.ZBinary]
ZBinMulOrderPropMod [module, in Coq.Numbers.Integer.Binary.ZBinary]
Zbool [library]
Zbounded_induction [lemma, in Coq.Numbers.BigNumPrelude]
Zcase_sign [lemma, in Coq.ZArith.Zcomplements]
Zcompare [definition, in Coq.ZArith.BinInt]
Zcompare [library]
ZcompareSpec [inductive, in Coq.Numbers.Cyclic.Int31.Cyclic31]
ZcompareSpecEq [constructor, in Coq.Numbers.Cyclic.Int31.Cyclic31]
ZcompareSpecGt [constructor, in Coq.Numbers.Cyclic.Int31.Cyclic31]
ZcompareSpecLt [constructor, in Coq.Numbers.Cyclic.Int31.Cyclic31]
Zcompare_antisym [lemma, in Coq.ZArith.Zcompare]
Zcompare_egal_dec [lemma, in Coq.ZArith.Zcompare]
Zcompare_elim [lemma, in Coq.ZArith.Zcompare]
Zcompare_eq_case [lemma, in Coq.ZArith.Zcompare]
Zcompare_Eq_eq [lemma, in Coq.ZArith.Zcompare]
Zcompare_Eq_iff_eq [lemma, in Coq.ZArith.Zcompare]
Zcompare_gt [lemma, in Coq.Numbers.BigNumPrelude]
Zcompare_Gt_Lt_antisym [lemma, in Coq.ZArith.Zcompare]
Zcompare_Gt_not_Lt [lemma, in Coq.ZArith.Zcompare]
Zcompare_Gt_spec [lemma, in Coq.ZArith.Zcompare]
Zcompare_Gt_trans [lemma, in Coq.ZArith.Zcompare]
Zcompare_mult_compat [lemma, in Coq.ZArith.Zcompare]
Zcompare_opp [lemma, in Coq.ZArith.Zcompare]
Zcompare_plus_compat [lemma, in Coq.ZArith.Zcompare]
Zcompare_rec [lemma, in Coq.ZArith.ZArith_dec]
Zcompare_refl [lemma, in Coq.ZArith.Zcompare]
Zcompare_spec [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
Zcompare_succ_compat [lemma, in Coq.ZArith.Zcompare]
Zcompare_succ_Gt [lemma, in Coq.ZArith.Zcompare]
Zcomplements [library]
ZC1 [lemma, in Coq.NArith.BinPos]
ZC2 [lemma, in Coq.NArith.BinPos]
ZC3 [lemma, in Coq.NArith.BinPos]
ZC4 [lemma, in Coq.NArith.BinPos]
Zdiv [definition, in Coq.ZArith.Zdiv]
Zdiv [library]
Zdivide [inductive, in Coq.ZArith.Znumtheory]
Zdivide_antisym [lemma, in Coq.ZArith.Znumtheory]
Zdivide_bounds [lemma, in Coq.ZArith.Znumtheory]
Zdivide_dec [lemma, in Coq.ZArith.Znumtheory]
Zdivide_factor_l [lemma, in Coq.ZArith.Znumtheory]
Zdivide_factor_r [lemma, in Coq.ZArith.Znumtheory]
Zdivide_intro [constructor, in Coq.ZArith.Znumtheory]
Zdivide_le [lemma, in Coq.ZArith.Znumtheory]
Zdivide_minus_l [lemma, in Coq.ZArith.Znumtheory]
Zdivide_mod [lemma, in Coq.ZArith.Znumtheory]
Zdivide_mod_minus [lemma, in Coq.ZArith.Znumtheory]
Zdivide_mult_l [lemma, in Coq.ZArith.Znumtheory]
Zdivide_mult_r [lemma, in Coq.ZArith.Znumtheory]
Zdivide_opp_l [lemma, in Coq.ZArith.Znumtheory]
Zdivide_opp_l_rev [lemma, in Coq.ZArith.Znumtheory]
Zdivide_opp_r [lemma, in Coq.ZArith.Znumtheory]
Zdivide_opp_r_rev [lemma, in Coq.ZArith.Znumtheory]
Zdivide_plus_r [lemma, in Coq.ZArith.Znumtheory]
Zdivide_power_2 [lemma, in Coq.ZArith.Zpow_facts]
Zdivide_refl [lemma, in Coq.ZArith.Znumtheory]
Zdivide_trans [lemma, in Coq.ZArith.Znumtheory]
Zdivide_Zabs_inv_l [lemma, in Coq.ZArith.Znumtheory]
Zdivide_Zabs_l [lemma, in Coq.ZArith.Znumtheory]
Zdivide_Zdiv_eq [lemma, in Coq.ZArith.Znumtheory]
Zdivide_Zdiv_eq_2 [lemma, in Coq.ZArith.Znumtheory]
Zdivide_Zdiv_lt_pos [lemma, in Coq.ZArith.Znumtheory]
Zdivide_Zgcd [lemma, in Coq.ZArith.Znumtheory]
Zdivide_0 [lemma, in Coq.ZArith.Znumtheory]
Zdivide_1 [lemma, in Coq.ZArith.Znumtheory]
Zdiv2 [definition, in Coq.ZArith.Zeven]
Zdiv2_two_power_nat [lemma, in Coq.ZArith.Zbinary]
Zdiv_eucl [definition, in Coq.ZArith.Zdiv]
Zdiv_eucl_exist [lemma, in Coq.ZArith.Zdiv]
Zdiv_eucl_extended [lemma, in Coq.ZArith.Zdiv]
Zdiv_eucl_POS [definition, in Coq.ZArith.Zdiv]
Zdiv_gcd_zero [lemma, in Coq.Numbers.BigNumPrelude]
Zdiv_le_compat_l [lemma, in Coq.ZArith.Zdiv]
Zdiv_le_lower_bound [lemma, in Coq.ZArith.Zdiv]
Zdiv_le_upper_bound [lemma, in Coq.ZArith.Zdiv]
Zdiv_lt_upper_bound [lemma, in Coq.ZArith.Zdiv]
Zdiv_mod_unique [lemma, in Coq.ZArith.Zdiv]
Zdiv_mod_unique_2 [lemma, in Coq.ZArith.Zdiv]
Zdiv_mult_cancel_l [definition, in Coq.Numbers.BigNumPrelude]
Zdiv_mult_cancel_l [lemma, in Coq.ZArith.Zdiv]
Zdiv_mult_cancel_r [lemma, in Coq.ZArith.Zdiv]
Zdiv_mult_cancel_r [definition, in Coq.Numbers.BigNumPrelude]
Zdiv_mult_le [lemma, in Coq.ZArith.Zdiv]
Zdiv_neg [lemma, in Coq.Numbers.BigNumPrelude]
Zdiv_opp_opp [lemma, in Coq.ZArith.Zdiv]
Zdiv_rest [definition, in Coq.ZArith.Zpower]
Zdiv_rest_aux [definition, in Coq.ZArith.Zpower]
Zdiv_rest_correct [lemma, in Coq.ZArith.Zpower]
Zdiv_rest_correct1 [lemma, in Coq.ZArith.Zpower]
Zdiv_rest_correct2 [lemma, in Coq.ZArith.Zpower]
Zdiv_rest_proof [constructor, in Coq.ZArith.Zpower]
Zdiv_rest_proofs [inductive, in Coq.ZArith.Zpower]
Zdiv_sgn [lemma, in Coq.ZArith.Zdiv]
Zdiv_shift_r [lemma, in Coq.Numbers.BigNumPrelude]
Zdiv_small [lemma, in Coq.ZArith.Zdiv]
Zdiv_unique [lemma, in Coq.ZArith.Zdiv]
Zdiv_unique_full [lemma, in Coq.ZArith.Zdiv]
Zdiv_Zdiv [lemma, in Coq.ZArith.Zdiv]
Zdiv_0_l [lemma, in Coq.ZArith.Zdiv]
Zdiv_0_r [lemma, in Coq.ZArith.Zdiv]
Zdiv_1_l [lemma, in Coq.ZArith.Zdiv]
Zdiv_1_r [lemma, in Coq.ZArith.Zdiv]
Zdouble [definition, in Coq.ZArith.BinInt]
Zdouble_minus_one [definition, in Coq.ZArith.BinInt]
Zdouble_mult [lemma, in Coq.ZArith.BinInt]
Zdouble_plus_one [definition, in Coq.ZArith.BinInt]
Zdouble_plus_one_mult [lemma, in Coq.ZArith.BinInt]
Zegal_left [lemma, in Coq.ZArith.auxiliary]
Zeq_bool [definition, in Coq.ZArith.Zbool]
Zeq_bool_eq [lemma, in Coq.ZArith.Zbool]
Zeq_bool_neq [lemma, in Coq.ZArith.Zbool]
Zeq_is_eq_bool [lemma, in Coq.ZArith.Zbool]
Zeq_le [lemma, in Coq.ZArith.Zorder]
Zeq_minus [lemma, in Coq.ZArith.BinInt]
Zeq_plus_swap [lemma, in Coq.ZArith.Zorder]
zero [definition, in Coq.Strings.Ascii]
zerob [definition, in Coq.Bool.Zerob]
Zerob [library]
zerob_false_elim [lemma, in Coq.Bool.Zerob]
zerob_false_intro [lemma, in Coq.Bool.Zerob]
zerob_true_elim [lemma, in Coq.Bool.Zerob]
zerob_true_intro [lemma, in Coq.Bool.Zerob]
zerop [definition, in Coq.Arith.Compare_dec]
zerop_bool [definition, in Coq.Arith.Bool_nat]
ZERO_le_N_digits [lemma, in Coq.ZArith.Zlogarithm]
Zeven [definition, in Coq.ZArith.Zeven]
Zeven [library]
Zeven_bit_value [lemma, in Coq.ZArith.Zbinary]
Zeven_bool [definition, in Coq.ZArith.Zeven]
Zeven_dec [definition, in Coq.ZArith.Zeven]
Zeven_div2 [lemma, in Coq.ZArith.Zeven]
Zeven_ex [lemma, in Coq.ZArith.Zeven]
Zeven_mult_Zeven_l [lemma, in Coq.ZArith.Zeven]
Zeven_mult_Zeven_r [lemma, in Coq.ZArith.Zeven]
Zeven_not_Zodd [lemma, in Coq.ZArith.Zeven]
Zeven_odd_bool [definition, in Coq.ZArith.Zbool]
Zeven_odd_dec [definition, in Coq.ZArith.Zeven]
Zeven_plus_Zeven [lemma, in Coq.ZArith.Zeven]
Zeven_plus_Zodd [lemma, in Coq.ZArith.Zeven]
Zeven_pred [lemma, in Coq.ZArith.Zeven]
Zeven_Sn [lemma, in Coq.ZArith.Zeven]
Zeven_2p [lemma, in Coq.ZArith.Zeven]
Zgcd [definition, in Coq.ZArith.Znumtheory]
Zgcdn [definition, in Coq.ZArith.Zgcd_alt]
Zgcdn_is_gcd [lemma, in Coq.ZArith.Zgcd_alt]
Zgcdn_linear_bound [lemma, in Coq.ZArith.Zgcd_alt]
Zgcdn_ok_before_fibonacci [lemma, in Coq.ZArith.Zgcd_alt]
Zgcdn_pos [lemma, in Coq.ZArith.Zgcd_alt]
Zgcdn_worst_is_fibonacci [lemma, in Coq.ZArith.Zgcd_alt]
Zgcd_alt [definition, in Coq.ZArith.Zgcd_alt]
Zgcd_alt [library]
Zgcd_alt_pos [lemma, in Coq.ZArith.Zgcd_alt]
Zgcd_bound [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
Zgcd_bound [definition, in Coq.ZArith.Zgcd_alt]
Zgcd_bound_fibonacci [lemma, in Coq.ZArith.Zgcd_alt]
Zgcd_div_pos [lemma, in Coq.Numbers.BigNumPrelude]
Zgcd_div_swap [lemma, in Coq.ZArith.Znumtheory]
Zgcd_div_swap0 [lemma, in Coq.ZArith.Znumtheory]
Zgcd_inv_0_l [lemma, in Coq.ZArith.Znumtheory]
Zgcd_inv_0_r [lemma, in Coq.ZArith.Znumtheory]
Zgcd_is_gcd [lemma, in Coq.ZArith.Znumtheory]
Zgcd_is_gcd [lemma, in Coq.ZArith.Zgcd_alt]
Zgcd_is_pos [lemma, in Coq.ZArith.Znumtheory]
Zgcd_mult_rel_prime [lemma, in Coq.Numbers.BigNumPrelude]
Zgcd_spec [lemma, in Coq.ZArith.Znumtheory]
Zgcd_sym [lemma, in Coq.Numbers.BigNumPrelude]
Zgcd_Zabs [lemma, in Coq.Numbers.BigNumPrelude]
Zgcd_1 [lemma, in Coq.Numbers.BigNumPrelude]
Zgcd_1_rel_prime [lemma, in Coq.ZArith.Znumtheory]
Zge [definition, in Coq.ZArith.BinInt]
Zge_bool [definition, in Coq.ZArith.Zbool]
Zge_cases [lemma, in Coq.ZArith.Zbool]
Zge_compare [lemma, in Coq.ZArith.Zcompare]
Zge_iff_le [lemma, in Coq.ZArith.Zorder]
Zge_is_le_bool [lemma, in Coq.ZArith.Zbool]
Zge_le [lemma, in Coq.ZArith.Zorder]
Zge_left [lemma, in Coq.ZArith.auxiliary]
Zge_minus_two_power_nat_S [lemma, in Coq.ZArith.Zbinary]
Zge_trans [lemma, in Coq.ZArith.Zorder]
Zggcd [definition, in Coq.ZArith.Znumtheory]
Zggcd_correct_divisors [lemma, in Coq.ZArith.Znumtheory]
Zggcd_gcd [lemma, in Coq.ZArith.Znumtheory]
Zggcd_opp [lemma, in Coq.ZArith.Znumtheory]
Zgt [definition, in Coq.ZArith.BinInt]
Zgt_asym [lemma, in Coq.ZArith.Zorder]
Zgt_bool [definition, in Coq.ZArith.Zbool]
Zgt_cases [lemma, in Coq.ZArith.Zbool]
Zgt_compare [lemma, in Coq.ZArith.Zcompare]
Zgt_iff_lt [lemma, in Coq.ZArith.Zorder]
Zgt_irrefl [lemma, in Coq.ZArith.Zorder]
Zgt_is_gt_bool [lemma, in Coq.ZArith.Zbool]
Zgt_is_le_bool [lemma, in Coq.ZArith.Zbool]
Zgt_left [lemma, in Coq.ZArith.auxiliary]
Zgt_left_gt [lemma, in Coq.ZArith.auxiliary]
Zgt_left_rev [lemma, in Coq.ZArith.auxiliary]
Zgt_le_succ [lemma, in Coq.ZArith.Zorder]
Zgt_le_trans [lemma, in Coq.ZArith.Zorder]
Zgt_lt [lemma, in Coq.ZArith.Zorder]
Zgt_not_le [lemma, in Coq.ZArith.Zorder]
Zgt_pos_0 [lemma, in Coq.ZArith.Zorder]
Zgt_square_simpl [lemma, in Coq.ZArith.Zorder]
Zgt_succ [lemma, in Coq.ZArith.Zorder]
Zgt_succ_gt_or_eq [lemma, in Coq.ZArith.Zorder]
Zgt_succ_le [lemma, in Coq.ZArith.Zorder]
Zgt_succ_pred [lemma, in Coq.ZArith.Zorder]
Zgt_trans [lemma, in Coq.ZArith.Zorder]
Zgt_trans_succ [lemma, in Coq.ZArith.Zorder]
Zgt_0_le_0_pred [lemma, in Coq.ZArith.Zorder]
Zhints [library]
Zind [lemma, in Coq.ZArith.BinInt]
Zip [section, in Coq.Lists.Streams]
zipWith [definition, in Coq.Lists.Streams]
Zip.A [variable, in Coq.Lists.Streams]
Zip.B [variable, in Coq.Lists.Streams]
Zip.C [variable, in Coq.Lists.Streams]
Zip.f [variable, in Coq.Lists.Streams]
Zis_gcd [inductive, in Coq.ZArith.Znumtheory]
Zis_gcd_bezout [lemma, in Coq.ZArith.Znumtheory]
Zis_gcd_even_odd [lemma, in Coq.ZArith.Znumtheory]
Zis_gcd_for_euclid [lemma, in Coq.ZArith.Znumtheory]
Zis_gcd_for_euclid2 [lemma, in Coq.ZArith.Znumtheory]
Zis_gcd_gcd [lemma, in Coq.ZArith.Znumtheory]
Zis_gcd_intro [constructor, in Coq.ZArith.Znumtheory]
Zis_gcd_minus [lemma, in Coq.ZArith.Znumtheory]
Zis_gcd_mod [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
Zis_gcd_mult [lemma, in Coq.ZArith.Znumtheory]
Zis_gcd_opp [lemma, in Coq.ZArith.Znumtheory]
Zis_gcd_refl [lemma, in Coq.ZArith.Znumtheory]
Zis_gcd_rel_prime [lemma, in Coq.ZArith.Znumtheory]
Zis_gcd_sym [lemma, in Coq.ZArith.Znumtheory]
Zis_gcd_unique [lemma, in Coq.ZArith.Znumtheory]
Zis_gcd_uniqueness_apart_sign [lemma, in Coq.ZArith.Znumtheory]
Zis_gcd_0 [lemma, in Coq.ZArith.Znumtheory]
Zis_gcd_0_abs [lemma, in Coq.ZArith.Znumtheory]
Zis_gcd_1 [lemma, in Coq.ZArith.Znumtheory]
Zle [definition, in Coq.ZArith.BinInt]
Zlength [definition, in Coq.ZArith.Zcomplements]
Zlength_aux [definition, in Coq.ZArith.Zcomplements]
Zlength_cons [lemma, in Coq.ZArith.Zcomplements]
Zlength_correct [lemma, in Coq.ZArith.Zcomplements]
Zlength_nil [lemma, in Coq.ZArith.Zcomplements]
Zlength_nil_inv [lemma, in Coq.ZArith.Zcomplements]
Zlength_properties [section, in Coq.ZArith.Zcomplements]
Zlength_properties.A [variable, in Coq.ZArith.Zcomplements]
Zle_antisym [lemma, in Coq.ZArith.Zorder]
Zle_bool [definition, in Coq.ZArith.Zbool]
Zle_bool_antisym [lemma, in Coq.ZArith.Zbool]
Zle_bool_imp_le [lemma, in Coq.ZArith.Zbool]
Zle_bool_plus_mono [lemma, in Coq.ZArith.Zbool]
Zle_bool_refl [lemma, in Coq.ZArith.Zbool]
Zle_bool_total [definition, in Coq.ZArith.Zbool]
Zle_bool_trans [lemma, in Coq.ZArith.Zbool]
Zle_cases [lemma, in Coq.ZArith.Zbool]
Zle_compare [lemma, in Coq.ZArith.Zcompare]
Zle_ge [lemma, in Coq.ZArith.Zorder]
Zle_gt_trans [lemma, in Coq.ZArith.Zorder]
Zle_imp_le_bool [lemma, in Coq.ZArith.Zbool]
Zle_is_le_bool [lemma, in Coq.ZArith.Zbool]
Zle_left [lemma, in Coq.ZArith.auxiliary]
Zle_left_rev [lemma, in Coq.ZArith.auxiliary]
Zle_le_succ [lemma, in Coq.ZArith.Zorder]
Zle_lt_or_eq [lemma, in Coq.ZArith.Zorder]
Zle_lt_succ [lemma, in Coq.ZArith.Zorder]
Zle_lt_trans [lemma, in Coq.ZArith.Zorder]
Zle_max_l [lemma, in Coq.ZArith.Zmax]
Zle_max_r [lemma, in Coq.ZArith.Zmax]
Zle_minus_le_0 [lemma, in Coq.ZArith.Zorder]
Zle_min_l [lemma, in Coq.ZArith.Zmin]
Zle_min_r [lemma, in Coq.ZArith.Zmin]
Zle_mult_approx [lemma, in Coq.ZArith.auxiliary]
Zle_neg_pos [lemma, in Coq.ZArith.Zorder]
Zle_not_gt [lemma, in Coq.ZArith.Zorder]
Zle_not_lt [lemma, in Coq.ZArith.Zorder]
Zle_or_lt [lemma, in Coq.ZArith.Zorder]
Zle_plus_swap [lemma, in Coq.ZArith.Zorder]
Zle_pred [lemma, in Coq.ZArith.Zorder]
Zle_refl [lemma, in Coq.ZArith.Zorder]
Zle_succ [lemma, in Coq.ZArith.Zorder]
Zle_succ_le [lemma, in Coq.ZArith.Zorder]
Zle_trans [lemma, in Coq.ZArith.Zorder]
Zle_0_minus_le [lemma, in Coq.ZArith.Zorder]
Zle_0_nat [lemma, in Coq.ZArith.Zorder]
Zle_0_pos [lemma, in Coq.ZArith.Zorder]
Zle_0_1 [lemma, in Coq.ZArith.Zorder]
Zlogarithm [library]
Zlt [definition, in Coq.ZArith.BinInt]
ZLt [library]
Zlt0_not_eq [lemma, in Coq.Numbers.BigNumPrelude]
Zlt_asym [lemma, in Coq.ZArith.Zorder]
Zlt_bool [definition, in Coq.ZArith.Zbool]
Zlt_cases [lemma, in Coq.ZArith.Zbool]
Zlt_compare [lemma, in Coq.ZArith.Zcompare]
Zlt_cotrans [lemma, in Coq.ZArith.ZArith_dec]
Zlt_cotrans_neg [lemma, in Coq.ZArith.ZArith_dec]
Zlt_cotrans_pos [lemma, in Coq.ZArith.ZArith_dec]
Zlt_gt [lemma, in Coq.ZArith.Zorder]
Zlt_gt_succ [lemma, in Coq.ZArith.Zorder]
Zlt_irrefl [lemma, in Coq.ZArith.Zorder]
Zlt_is_le_bool [lemma, in Coq.ZArith.Zbool]
Zlt_is_lt_bool [lemma, in Coq.ZArith.Zbool]
Zlt_left [lemma, in Coq.ZArith.auxiliary]
Zlt_left_lt [lemma, in Coq.ZArith.auxiliary]
Zlt_left_rev [lemma, in Coq.ZArith.auxiliary]
Zlt_le_succ [lemma, in Coq.ZArith.Zorder]
Zlt_le_trans [lemma, in Coq.ZArith.Zorder]
Zlt_le_weak [lemma, in Coq.ZArith.Zorder]
Zlt_lower_bound_ind [lemma, in Coq.ZArith.Wf_Z]
Zlt_lower_bound_rec [lemma, in Coq.ZArith.Wf_Z]
Zlt_lt_double [lemma, in Coq.ZArith.Zpower]
Zlt_lt_succ [lemma, in Coq.ZArith.Zorder]
Zlt_minus_simpl_swap [lemma, in Coq.ZArith.Zorder]
Zlt_neg_0 [lemma, in Coq.ZArith.Zorder]
Zlt_not_eq [lemma, in Coq.ZArith.Zorder]
Zlt_not_le [lemma, in Coq.ZArith.Zorder]
Zlt_O_minus_lt [abbreviation, in Coq.ZArith.Zorder]
Zlt_plus_swap [lemma, in Coq.ZArith.Zorder]
Zlt_pred [lemma, in Coq.ZArith.Zorder]
Zlt_square_simpl [lemma, in Coq.ZArith.Zorder]
Zlt_succ [lemma, in Coq.ZArith.Zorder]
Zlt_succ_gt [lemma, in Coq.ZArith.Zorder]
Zlt_succ_le [lemma, in Coq.ZArith.Zorder]
Zlt_succ_pred [lemma, in Coq.ZArith.Zorder]
Zlt_trans [lemma, in Coq.ZArith.Zorder]
Zlt_two_power_nat_S [lemma, in Coq.ZArith.Zbinary]
Zlt_0_ind [lemma, in Coq.ZArith.Wf_Z]
Zlt_0_le_0_pred [lemma, in Coq.ZArith.Zorder]
Zlt_0_minus_lt [lemma, in Coq.ZArith.Zorder]
Zlt_0_rec [lemma, in Coq.ZArith.Wf_Z]
Zlt_0_1 [lemma, in Coq.ZArith.Zorder]
ZL0 [lemma, in Coq.ZArith.BinInt]
ZL10 [lemma, in Coq.NArith.BinPos]
ZL11 [lemma, in Coq.NArith.BinPos]
ZL16 [lemma, in Coq.NArith.Pnat]
ZL17 [lemma, in Coq.NArith.Pnat]
ZL3 [lemma, in Coq.NArith.Pnat]
ZL4 [lemma, in Coq.NArith.Pnat]
ZL4_inf [lemma, in Coq.ZArith.Wf_Z]
ZL5 [lemma, in Coq.NArith.Pnat]
ZL6 [lemma, in Coq.NArith.Pnat]
ZL7 [lemma, in Coq.NArith.Pnat]
ZL8 [lemma, in Coq.NArith.Pnat]
ZMake [library]
Zmax [definition, in Coq.ZArith.Zmax]
Zmax [library]
Zmax1 [abbreviation, in Coq.ZArith.Zmax]
Zmax2 [abbreviation, in Coq.ZArith.Zmax]
Zmax_assoc [lemma, in Coq.ZArith.Zmax]
Zmax_case [lemma, in Coq.ZArith.Zmax]
Zmax_case_strong [lemma, in Coq.ZArith.Zmax]
Zmax_comm [lemma, in Coq.ZArith.Zmax]
Zmax_idempotent [lemma, in Coq.ZArith.Zmax]
Zmax_irreducible_inf [lemma, in Coq.ZArith.Zmax]
Zmax_left [lemma, in Coq.ZArith.Zmax]
Zmax_le_prime_inf [lemma, in Coq.ZArith.Zmax]
Zmax_lub [lemma, in Coq.ZArith.Zmax]
Zmax_min_absorption_r_r [lemma, in Coq.ZArith.Zminmax]
Zmax_min_distr_r [lemma, in Coq.ZArith.Zminmax]
Zmax_min_modular_r [lemma, in Coq.ZArith.Zminmax]
Zmax_right [lemma, in Coq.ZArith.Zmax]
Zmax_spec [lemma, in Coq.ZArith.Zmax]
Zmin [definition, in Coq.ZArith.Zmin]
Zmin [library]
Zminmax [library]
Zminus [definition, in Coq.ZArith.BinInt]
Zminus_diag [lemma, in Coq.ZArith.BinInt]
Zminus_diag_reverse [lemma, in Coq.ZArith.BinInt]
Zminus_eq [lemma, in Coq.ZArith.BinInt]
Zminus_mod [lemma, in Coq.ZArith.Zdiv]
Zminus_mod_idemp_l [lemma, in Coq.ZArith.Zdiv]
Zminus_mod_idemp_r [lemma, in Coq.ZArith.Zdiv]
Zminus_plus [lemma, in Coq.ZArith.BinInt]
Zminus_plus_distr [lemma, in Coq.ZArith.BinInt]
Zminus_plus_simpl_l [lemma, in Coq.ZArith.BinInt]
Zminus_plus_simpl_l_reverse [lemma, in Coq.ZArith.BinInt]
Zminus_plus_simpl_r [lemma, in Coq.ZArith.BinInt]
Zminus_succ_l [lemma, in Coq.ZArith.BinInt]
Zminus_succ_r [lemma, in Coq.ZArith.BinInt]
Zminus_0_l_reverse [lemma, in Coq.ZArith.BinInt]
Zminus_0_r [lemma, in Coq.ZArith.BinInt]
Zmin_assoc [lemma, in Coq.ZArith.Zmin]
Zmin_case [lemma, in Coq.ZArith.Zmin]
Zmin_case_strong [lemma, in Coq.ZArith.Zmin]
Zmin_comm [lemma, in Coq.ZArith.Zmin]
Zmin_glb [lemma, in Coq.ZArith.Zmin]
Zmin_idempotent [lemma, in Coq.ZArith.Zmin]
Zmin_irreducible [lemma, in Coq.ZArith.Zmin]
Zmin_irreducible_inf [lemma, in Coq.ZArith.Zmin]
Zmin_le_prime_inf [lemma, in Coq.ZArith.Zmin]
Zmin_max_absorption_r_r [lemma, in Coq.ZArith.Zminmax]
Zmin_max_distr_r [lemma, in Coq.ZArith.Zminmax]
Zmin_max_modular_r [lemma, in Coq.ZArith.Zminmax]
Zmin_n_n [abbreviation, in Coq.ZArith.Zmin]
Zmin_or [abbreviation, in Coq.ZArith.Zmin]
Zmin_plus [abbreviation, in Coq.ZArith.Zmin]
Zmin_spec [lemma, in Coq.ZArith.Zmin]
Zmin_SS [abbreviation, in Coq.ZArith.Zmin]
Zmisc [library]
Zmod [definition, in Coq.ZArith.Zdiv]
ZModulo [section, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
ZModulo [library]
ZModuloCyclicType [module, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
ZModuloCyclicType.w [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
ZModuloCyclicType.w_op [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
ZModuloCyclicType.w_spec [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
ZModulo.digits [variable, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
ZModulo.digits_ne_1 [variable, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
Zmod' [definition, in Coq.ZArith.Zdiv]
Zmod'_correct [lemma, in Coq.ZArith.Zdiv]
Zmod2 [definition, in Coq.ZArith.Zbinary]
Zmod2_twice [lemma, in Coq.ZArith.Zbinary]
Zmod_distr [lemma, in Coq.Numbers.BigNumPrelude]
Zmod_divide [lemma, in Coq.ZArith.Znumtheory]
Zmod_divides [lemma, in Coq.ZArith.Zdiv]
Zmod_divide_minus [lemma, in Coq.ZArith.Znumtheory]
Zmod_div_mod [lemma, in Coq.ZArith.Znumtheory]
Zmod_eq [lemma, in Coq.ZArith.Zdiv]
Zmod_eqm [lemma, in Coq.ZArith.Zdiv]
Zmod_equal [lemma, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
Zmod_eq_full [lemma, in Coq.ZArith.Zdiv]
Zmod_le [lemma, in Coq.ZArith.Zdiv]
Zmod_le_first [lemma, in Coq.Numbers.BigNumPrelude]
Zmod_mod [lemma, in Coq.ZArith.Zdiv]
zmod_op [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
Zmod_opp_opp [lemma, in Coq.ZArith.Zdiv]
Zmod_POS [definition, in Coq.ZArith.Zdiv]
Zmod_POS_correct [lemma, in Coq.ZArith.Zdiv]
Zmod_shift_r [lemma, in Coq.Numbers.BigNumPrelude]
Zmod_small [lemma, in Coq.ZArith.Zdiv]
zmod_spec [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
Zmod_unique [lemma, in Coq.ZArith.Zdiv]
Zmod_unique_full [lemma, in Coq.ZArith.Zdiv]
Zmod_0_l [lemma, in Coq.ZArith.Zdiv]
Zmod_0_r [lemma, in Coq.ZArith.Zdiv]
Zmod_1_l [lemma, in Coq.ZArith.Zdiv]
Zmod_1_r [lemma, in Coq.ZArith.Zdiv]
ZMul [library]
ZMulOrder [library]
ZMulOrderPropFunct [module, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zeq_mul_0 [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zeq_mul_0_l [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zeq_mul_0_r [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zeq_mul_1 [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zeq_square_0 [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zle_mul_diag_l [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zle_mul_diag_r [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zle_mul_0 [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zle_0_mul [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zle_0_square [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zlt_mul_diag_l [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zlt_mul_diag_r [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zlt_mul_n1_neg [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zlt_mul_n1_pos [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zlt_mul_r [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zlt_mul_0 [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zlt_n1_mul_r [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zlt_0_mul [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zlt_1_mul_l [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zlt_1_mul_neg [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zlt_1_mul_pos [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_cancel_l [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_cancel_r [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_id_l [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_id_r [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_le_mono_neg_l [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_le_mono_neg_r [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_le_mono_nonneg [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_le_mono_nonneg_l [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_le_mono_nonneg_r [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_le_mono_nonpos [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_le_mono_nonpos_l [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_le_mono_nonpos_r [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_le_mono_pos_l [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_le_mono_pos_r [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_lt_mono_neg_l [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_lt_mono_neg_r [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_lt_mono_nonneg [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_lt_mono_nonpos [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_lt_mono_pos_l [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_lt_mono_pos_r [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_lt_pred [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_neg [abbreviation, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_neg_neg [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_neg_pos [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_nonneg [abbreviation, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_nonneg_nonneg [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_nonneg_nonpos [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_nonpos [abbreviation, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_nonpos_nonneg [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_nonpos_nonpos [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_pos [abbreviation, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_pos_neg [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_pos_pos [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zmul_2_mono_l [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zneq_mul_0 [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Znlt_square_0 [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zsquare_le_mono_nonneg [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zsquare_le_mono_nonpos [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zsquare_le_simpl_nonneg [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zsquare_le_simpl_nonpos [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zsquare_lt_mono_nonneg [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zsquare_lt_mono_nonpos [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zsquare_lt_simpl_nonneg [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zsquare_lt_simpl_nonpos [lemma, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulOrderPropFunct.Zsquare_nonneg [abbreviation, in Coq.Numbers.Integer.Abstract.ZMulOrder]
ZMulPropFunct [module, in Coq.Numbers.Integer.Abstract.ZMul]
ZMulPropFunct.Zeq_mul_0 [lemma, in Coq.Numbers.Integer.Abstract.ZMul]
ZMulPropFunct.Zmul_add_distr_l [lemma, in Coq.Numbers.Integer.Abstract.ZMul]
ZMulPropFunct.Zmul_add_distr_r [lemma, in Coq.Numbers.Integer.Abstract.ZMul]
ZMulPropFunct.Zmul_assoc [lemma, in Coq.Numbers.Integer.Abstract.ZMul]
ZMulPropFunct.Zmul_comm [lemma, in Coq.Numbers.Integer.Abstract.ZMul]
ZMulPropFunct.Zmul_opp_l [lemma, in Coq.Numbers.Integer.Abstract.ZMul]
ZMulPropFunct.Zmul_opp_opp [lemma, in Coq.Numbers.Integer.Abstract.ZMul]
ZMulPropFunct.Zmul_opp_r [lemma, in Coq.Numbers.Integer.Abstract.ZMul]
ZMulPropFunct.Zmul_pred_l [lemma, in Coq.Numbers.Integer.Abstract.ZMul]
ZMulPropFunct.Zmul_pred_r [lemma, in Coq.Numbers.Integer.Abstract.ZMul]
ZMulPropFunct.Zmul_sub_distr_l [lemma, in Coq.Numbers.Integer.Abstract.ZMul]
ZMulPropFunct.Zmul_sub_distr_r [lemma, in Coq.Numbers.Integer.Abstract.ZMul]
ZMulPropFunct.Zmul_succ_l [lemma, in Coq.Numbers.Integer.Abstract.ZMul]
ZMulPropFunct.Zmul_succ_r [lemma, in Coq.Numbers.Integer.Abstract.ZMul]
ZMulPropFunct.Zmul_wd [lemma, in Coq.Numbers.Integer.Abstract.ZMul]
ZMulPropFunct.Zmul_0_l [lemma, in Coq.Numbers.Integer.Abstract.ZMul]
ZMulPropFunct.Zmul_0_r [lemma, in Coq.Numbers.Integer.Abstract.ZMul]
ZMulPropFunct.Zmul_1_l [lemma, in Coq.Numbers.Integer.Abstract.ZMul]
ZMulPropFunct.Zmul_1_r [lemma, in Coq.Numbers.Integer.Abstract.ZMul]
ZMulPropFunct.Zneq_mul_0 [lemma, in Coq.Numbers.Integer.Abstract.ZMul]
ZMulPropMod [module, in Coq.Numbers.Integer.Abstract.ZLt]
Zmult [definition, in Coq.ZArith.BinInt]
Zmult_assoc [lemma, in Coq.ZArith.BinInt]
Zmult_assoc_reverse [lemma, in Coq.ZArith.BinInt]
Zmult_comm [lemma, in Coq.ZArith.BinInt]
Zmult_compare_compat_l [lemma, in Coq.ZArith.Zcompare]
Zmult_compare_compat_r [lemma, in Coq.ZArith.Zcompare]
Zmult_divide_compat_l [lemma, in Coq.ZArith.Znumtheory]
Zmult_divide_compat_r [lemma, in Coq.ZArith.Znumtheory]
Zmult_ge_compat [lemma, in Coq.ZArith.Zorder]
Zmult_ge_compat_l [lemma, in Coq.ZArith.Zorder]
Zmult_ge_compat_r [lemma, in Coq.ZArith.Zorder]
Zmult_ge_reg_r [lemma, in Coq.ZArith.Zorder]
Zmult_gt_compat_l [lemma, in Coq.ZArith.Zorder]
Zmult_gt_compat_r [lemma, in Coq.ZArith.Zorder]
Zmult_gt_reg_r [lemma, in Coq.ZArith.Zorder]
Zmult_gt_0_compat [lemma, in Coq.ZArith.Zorder]
Zmult_gt_0_le_compat_r [lemma, in Coq.ZArith.Zorder]
Zmult_gt_0_le_0_compat [lemma, in Coq.ZArith.Zorder]
Zmult_gt_0_lt_compat_l [lemma, in Coq.ZArith.Zorder]
Zmult_gt_0_lt_compat_r [lemma, in Coq.ZArith.Zorder]
Zmult_gt_0_lt_reg_r [lemma, in Coq.ZArith.Zorder]
Zmult_gt_0_lt_0_reg_r [lemma, in Coq.ZArith.Zorder]
Zmult_gt_0_reg_l [lemma, in Coq.ZArith.Zorder]
Zmult_integral [lemma, in Coq.ZArith.BinInt]
Zmult_integral_l [lemma, in Coq.ZArith.BinInt]
Zmult_le_approx [lemma, in Coq.ZArith.auxiliary]
Zmult_le_compat [lemma, in Coq.ZArith.Zorder]
Zmult_le_compat_l [lemma, in Coq.ZArith.Zorder]
Zmult_le_compat_r [lemma, in Coq.ZArith.Zorder]
Zmult_le_reg_r [lemma, in Coq.ZArith.Zorder]
Zmult_le_0_compat [lemma, in Coq.ZArith.Zorder]
Zmult_le_0_reg_r [lemma, in Coq.ZArith.Zorder]
Zmult_lt_b [lemma, in Coq.Numbers.BigNumPrelude]
Zmult_lt_compat [lemma, in Coq.ZArith.Zorder]
Zmult_lt_compat2 [lemma, in Coq.ZArith.Zorder]
Zmult_lt_compat_l [lemma, in Coq.ZArith.Zorder]
Zmult_lt_compat_r [lemma, in Coq.ZArith.Zorder]
Zmult_lt_O_compat [abbreviation, in Coq.ZArith.Zorder]
Zmult_lt_reg_r [lemma, in Coq.ZArith.Zorder]
Zmult_lt_0_compat [lemma, in Coq.ZArith.Zorder]
Zmult_lt_0_le_compat_r [lemma, in Coq.ZArith.Zorder]
Zmult_lt_0_le_reg_r [lemma, in Coq.ZArith.Zorder]
Zmult_lt_0_reg_r [lemma, in Coq.ZArith.Zorder]
Zmult_lt_0_reg_r_2 [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
Zmult_minus_distr_l [lemma, in Coq.ZArith.BinInt]
Zmult_minus_distr_r [lemma, in Coq.ZArith.BinInt]
Zmult_mod [lemma, in Coq.ZArith.Zdiv]
Zmult_mod_distr_l [lemma, in Coq.ZArith.Zdiv]
Zmult_mod_distr_r [lemma, in Coq.ZArith.Zdiv]
Zmult_mod_idemp_l [lemma, in Coq.ZArith.Zdiv]
Zmult_mod_idemp_r [lemma, in Coq.ZArith.Zdiv]
Zmult_one [lemma, in Coq.ZArith.Znumtheory]
Zmult_opp_comm [lemma, in Coq.ZArith.BinInt]
Zmult_opp_opp [lemma, in Coq.ZArith.BinInt]
Zmult_permute [lemma, in Coq.ZArith.BinInt]
Zmult_plus_distr_l [lemma, in Coq.ZArith.BinInt]
Zmult_plus_distr_r [lemma, in Coq.ZArith.BinInt]
Zmult_power [lemma, in Coq.ZArith.Zpow_facts]
Zmult_reg_l [lemma, in Coq.ZArith.BinInt]
Zmult_reg_r [lemma, in Coq.ZArith.BinInt]
Zmult_succ_l [lemma, in Coq.ZArith.BinInt]
Zmult_succ_l_reverse [lemma, in Coq.ZArith.BinInt]
Zmult_succ_r [lemma, in Coq.ZArith.BinInt]
Zmult_succ_r_reverse [lemma, in Coq.ZArith.BinInt]
Zmult_0_l [lemma, in Coq.ZArith.BinInt]
Zmult_0_r [lemma, in Coq.ZArith.BinInt]
Zmult_0_r_reverse [lemma, in Coq.ZArith.BinInt]
Zmult_1_inversion_l [lemma, in Coq.ZArith.BinInt]
Zmult_1_l [lemma, in Coq.ZArith.BinInt]
Zmult_1_r [lemma, in Coq.ZArith.BinInt]
Znat [library]
ZNatPairs [library]
Zne [definition, in Coq.ZArith.BinInt]
Zneg [constructor, in Coq.ZArith.BinInt]
Zneg_plus_distr [lemma, in Coq.ZArith.BinInt]
Zneg_xI [lemma, in Coq.ZArith.BinInt]
Zneg_xO [lemma, in Coq.ZArith.BinInt]
Zneq_bool [definition, in Coq.ZArith.Zbool]
Zne_left [lemma, in Coq.ZArith.auxiliary]
Znot_ge_lt [lemma, in Coq.ZArith.Zorder]
Znot_gt_le [lemma, in Coq.ZArith.Zorder]
Znot_le_gt [lemma, in Coq.ZArith.Zorder]
Znot_le_succ [lemma, in Coq.ZArith.Zorder]
Znot_lt_ge [lemma, in Coq.ZArith.Zorder]
Znumtheory [library]
znz [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_add [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_add [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_add_c [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_add_c [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_add_carry [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_add_carry [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_add_carry_c [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_add_carry_c [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_add_mul_div [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_add_mul_div [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_Bm1 [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_Bm1 [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_compare [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_compare [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_digits [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_digits [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_div [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_div [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_div21 [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_div21 [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_div_gt [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_div_gt [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_eq0 [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_eq0 [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_gcd [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_gcd [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_gcd_gt [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_gcd_gt [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_head0 [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_head0 [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_is_even [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_is_even [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_mod [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_mod [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_mod_gt [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_mod_gt [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_mul [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_mul [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_mul_c [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_mul_c [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_of_pos [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_of_pos [section, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_of_pos [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_of_pos.op_spec [variable, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_of_pos.w [variable, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_of_pos.w_op [variable, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_of_pos_correct [lemma, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_of_Z [definition, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_of_Z_correct [lemma, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_op [record, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_opp [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_opp [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_opp_c [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_opp_c [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_opp_carry [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_opp_carry [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_pos_mod [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_pos_mod [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_pred [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_pred [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_pred_c [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_pred_c [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_spec [record, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_sqrt [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_sqrt [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_sqrt2 [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_sqrt2 [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_square_c [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_square_c [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_sub [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_sub [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_sub_c [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_sub_c [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_sub_carry [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_sub_carry [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_sub_carry_c [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_sub_carry_c [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_succ [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_succ [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_succ_c [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_succ_c [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_tail0 [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_tail0 [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_to_Z [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_to_Z [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_WW [definition, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_W0 [definition, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_zdigits [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_zdigits [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_0 [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_0 [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_0W [definition, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_1 [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
znz_1 [projection, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
zn2z [inductive, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleType]
Zn2Z [section, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleType]
Zn2Z.znz [variable, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleType]
zn2z_to_Z [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleType]
zn2z_word_comm [definition, in Coq.Numbers.Natural.BigN.Nbasic]
Zodd [definition, in Coq.ZArith.Zeven]
Zodd_bit_value [lemma, in Coq.ZArith.Zbinary]
Zodd_bool [definition, in Coq.ZArith.Zeven]
Zodd_dec [definition, in Coq.ZArith.Zeven]
Zodd_div2 [lemma, in Coq.ZArith.Zeven]
Zodd_div2_neg [lemma, in Coq.ZArith.Zeven]
Zodd_ex [lemma, in Coq.ZArith.Zeven]
Zodd_mult_Zodd [lemma, in Coq.ZArith.Zeven]
Zodd_not_Zeven [lemma, in Coq.ZArith.Zeven]
Zodd_plus_Zeven [lemma, in Coq.ZArith.Zeven]
Zodd_plus_Zodd [lemma, in Coq.ZArith.Zeven]
Zodd_pred [lemma, in Coq.ZArith.Zeven]
Zodd_Sn [lemma, in Coq.ZArith.Zeven]
Zodd_2p_plus_1 [lemma, in Coq.ZArith.Zeven]
ZOdiv [definition, in Coq.ZArith.ZOdiv_def]
ZOdiv [library]
ZOdiv_def [library]
ZOdiv_eucl [definition, in Coq.ZArith.ZOdiv_def]
ZOdiv_eucl_correct [lemma, in Coq.ZArith.ZOdiv_def]
ZOdiv_eucl_Zdiv_eucl_pos [lemma, in Coq.ZArith.ZOdiv]
ZOdiv_le_lower_bound [lemma, in Coq.ZArith.ZOdiv]
ZOdiv_le_upper_bound [lemma, in Coq.ZArith.ZOdiv]
ZOdiv_lt_upper_bound [lemma, in Coq.ZArith.ZOdiv]
ZOdiv_mod_unique_full [lemma, in Coq.ZArith.ZOdiv]
ZOdiv_mult_cancel_l [lemma, in Coq.ZArith.ZOdiv]
ZOdiv_mult_cancel_r [lemma, in Coq.ZArith.ZOdiv]
ZOdiv_mult_le [lemma, in Coq.ZArith.ZOdiv]
ZOdiv_opp_l [lemma, in Coq.ZArith.ZOdiv]
ZOdiv_opp_opp [lemma, in Coq.ZArith.ZOdiv]
ZOdiv_opp_r [lemma, in Coq.ZArith.ZOdiv]
ZOdiv_sgn [lemma, in Coq.ZArith.ZOdiv]
ZOdiv_small [lemma, in Coq.ZArith.ZOdiv]
ZOdiv_unique [lemma, in Coq.ZArith.ZOdiv]
ZOdiv_unique_full [lemma, in Coq.ZArith.ZOdiv]
ZOdiv_Zdiv_pos [lemma, in Coq.ZArith.ZOdiv]
ZOdiv_ZOdiv [lemma, in Coq.ZArith.ZOdiv]
ZOdiv_0_l [lemma, in Coq.ZArith.ZOdiv]
ZOdiv_0_r [lemma, in Coq.ZArith.ZOdiv]
ZOdiv_1_l [lemma, in Coq.ZArith.ZOdiv]
ZOdiv_1_r [lemma, in Coq.ZArith.ZOdiv]
ZOmod [definition, in Coq.ZArith.ZOdiv_def]
ZOmod_divides [lemma, in Coq.ZArith.ZOdiv]
ZOmod_le [lemma, in Coq.ZArith.ZOdiv]
ZOmod_lt [lemma, in Coq.ZArith.ZOdiv]
ZOmod_lt_neg [lemma, in Coq.ZArith.ZOdiv]
ZOmod_lt_neg_neg [lemma, in Coq.ZArith.ZOdiv]
ZOmod_lt_neg_pos [lemma, in Coq.ZArith.ZOdiv]
ZOmod_lt_pos [lemma, in Coq.ZArith.ZOdiv]
ZOmod_lt_pos_neg [lemma, in Coq.ZArith.ZOdiv]
ZOmod_lt_pos_pos [lemma, in Coq.ZArith.ZOdiv]
ZOmod_mod [lemma, in Coq.ZArith.ZOdiv]
ZOmod_opp_l [lemma, in Coq.ZArith.ZOdiv]
ZOmod_opp_opp [lemma, in Coq.ZArith.ZOdiv]
ZOmod_opp_r [lemma, in Coq.ZArith.ZOdiv]
ZOmod_sgn [lemma, in Coq.ZArith.ZOdiv]
ZOmod_sgn2 [lemma, in Coq.ZArith.ZOdiv]
ZOmod_small [lemma, in Coq.ZArith.ZOdiv]
ZOmod_unique [lemma, in Coq.ZArith.ZOdiv]
ZOmod_unique_full [lemma, in Coq.ZArith.ZOdiv]
ZOmod_Zmod_pos [lemma, in Coq.ZArith.ZOdiv]
ZOmod_Zmod_zero [lemma, in Coq.ZArith.ZOdiv]
ZOmod_0_l [lemma, in Coq.ZArith.ZOdiv]
ZOmod_0_r [lemma, in Coq.ZArith.ZOdiv]
ZOmod_1_l [lemma, in Coq.ZArith.ZOdiv]
ZOmod_1_r [lemma, in Coq.ZArith.ZOdiv]
ZOmult_mod [lemma, in Coq.ZArith.ZOdiv]
ZOmult_mod_distr_l [lemma, in Coq.ZArith.ZOdiv]
ZOmult_mod_distr_r [lemma, in Coq.ZArith.ZOdiv]
ZOmult_mod_idemp_l [lemma, in Coq.ZArith.ZOdiv]
ZOmult_mod_idemp_r [lemma, in Coq.ZArith.ZOdiv]
Zone_divide [lemma, in Coq.ZArith.Znumtheory]
Zone_min_pos [lemma, in Coq.ZArith.Zbool]
Zone_pos [lemma, in Coq.ZArith.Zbool]
ZOplus_mod [lemma, in Coq.ZArith.ZOdiv]
ZOplus_mod_idemp_l [lemma, in Coq.ZArith.ZOdiv]
ZOplus_mod_idemp_r [lemma, in Coq.ZArith.ZOdiv]
Zopp [definition, in Coq.ZArith.BinInt]
Zopp_eq_mult_neg_1 [lemma, in Coq.ZArith.BinInt]
Zopp_inj [lemma, in Coq.ZArith.BinInt]
Zopp_involutive [lemma, in Coq.ZArith.BinInt]
Zopp_mult_distr_l [lemma, in Coq.ZArith.BinInt]
Zopp_mult_distr_l_reverse [lemma, in Coq.ZArith.BinInt]
Zopp_mult_distr_r [lemma, in Coq.ZArith.BinInt]
Zopp_neg [lemma, in Coq.ZArith.BinInt]
Zopp_plus_distr [lemma, in Coq.ZArith.BinInt]
Zopp_succ [lemma, in Coq.ZArith.BinInt]
Zorder [library]
ZOrderPropFunct [module, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zgt_wf [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zleft_induction [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zleft_induction' [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zle_antisymm [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zle_dec [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zle_dne [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zle_ge_cases [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zle_gt_cases [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zle_ind [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zle_le_pred [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zle_le_succ_r [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zle_lt_trans [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zle_neq [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zle_ngt [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zle_pred_l [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zle_pred_lt [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zle_pred_lt_succ [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zle_refl [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zle_succ_diag_r [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zle_succ_l [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zle_succ_le_pred [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zle_succ_r [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zle_trans [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zle_wd [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zle_0_1 [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_asymm [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_dec [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_dne [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_eq_cases [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_eq_gt_cases [abbreviation, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_exists_pred [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_ge_cases [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_gt_cases [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_ind [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_irrefl [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_le_incl [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_le_pred [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_le_trans [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_lt_pred [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_lt_succ_r [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_neq [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_nge [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_ngt [abbreviation, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_n1_r [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_pred_l [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_pred_le [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_pred_lt [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_pred_lt_succ [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_succ_diag_r [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_succ_iter_r [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_succ_l [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_succ_lt_pred [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_succ_r [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_trans [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_trichotomy [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_wd [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_wf [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_0_1 [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zlt_1_l [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zmax_l [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zmax_r [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zmax_wd [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zmin_l [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zmin_r [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zmin_wd [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zneg_nonneg_cases [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zneg_pos_cases [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zneq_pred_l [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zneq_succ_diag_l [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zneq_succ_diag_r [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zneq_succ_iter_l [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Znle_gt [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Znle_pred_r [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Znle_succ_diag_l [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Znlt_ge [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Znlt_succ_diag_l [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Znlt_succ_r [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Znonpos_nonneg_cases [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Znonpos_pos_cases [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zorder_induction [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zorder_induction' [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zorder_induction'_0 [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zorder_induction_0 [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zpred_le_mono [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zpred_lt_mono [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zright_induction [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zright_induction' [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zstrong_left_induction [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zstrong_left_induction' [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zstrong_right_induction [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zstrong_right_induction' [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zsucc_le_mono [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropFunct.Zsucc_lt_mono [lemma, in Coq.Numbers.Integer.Abstract.ZLt]
ZOrderPropMod [module, in Coq.Numbers.Integer.Abstract.ZAddOrder]
ZO_div_exact_full_1 [lemma, in Coq.ZArith.ZOdiv]
ZO_div_exact_full_2 [lemma, in Coq.ZArith.ZOdiv]
ZO_div_lt [lemma, in Coq.ZArith.ZOdiv]
ZO_div_mod_eq [lemma, in Coq.ZArith.ZOdiv]
ZO_div_monotone [lemma, in Coq.ZArith.ZOdiv]
ZO_div_monotone_pos [lemma, in Coq.ZArith.ZOdiv]
ZO_div_mult [lemma, in Coq.ZArith.ZOdiv]
ZO_div_plus [lemma, in Coq.ZArith.ZOdiv]
ZO_div_plus_l [lemma, in Coq.ZArith.ZOdiv]
ZO_div_pos [lemma, in Coq.ZArith.ZOdiv]
ZO_div_same [lemma, in Coq.ZArith.ZOdiv]
ZO_mod_mult [lemma, in Coq.ZArith.ZOdiv]
ZO_mod_plus [lemma, in Coq.ZArith.ZOdiv]
ZO_mod_same [lemma, in Coq.ZArith.ZOdiv]
ZO_mult_div_ge [lemma, in Coq.ZArith.ZOdiv]
ZO_mult_div_le [lemma, in Coq.ZArith.ZOdiv]
ZPairsAxiomsMod [module, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.add_wd [abbreviation, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.N [abbreviation, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NE [abbreviation, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.Nsemi_ring [lemma, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.Induction [section, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.Induction.A [variable, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.Induction.A_wd [variable, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZ [definition, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZadd [definition, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZadd_succ_l [lemma, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZadd_0_l [lemma, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZeq [definition, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZeq_equiv [lemma, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZinduction [lemma, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZmul [definition, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZmul_succ_l [lemma, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZmul_0_l [lemma, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZpred [definition, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZpred_succ [lemma, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZsub [definition, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZsub_succ_r [lemma, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZsub_0_r [lemma, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZsucc [definition, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.NZ0 [definition, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.ZE_refl [lemma, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.ZE_sym [lemma, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZAxiomsMod.ZE_trans [lemma, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZle [definition, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZlt [definition, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZlt_eq_cases [lemma, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZlt_irrefl [lemma, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZlt_succ_r [lemma, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZmax [definition, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZmax_l [lemma, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZmax_r [lemma, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZmin [definition, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZmin_l [lemma, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.NZOrdAxiomsMod.NZmin_r [lemma, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.Z [definition, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.Zadd [definition, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.Zeq [definition, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.Zle [definition, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.Zlt [definition, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.Zmax [definition, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.Zmin [definition, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.Zmul [definition, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.Zopp [definition, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.Zopp_succ [lemma, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.Zopp_0 [lemma, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.Zpred [definition, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.Zsub [definition, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.Zsucc [definition, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.Zsucc_pred [lemma, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
ZPairsAxiomsMod.Z0 [definition, in Coq.Numbers.Integer.NatPairs.ZNatPairs]
Zplus [definition, in Coq.ZArith.BinInt]
Zplus' [definition, in Coq.ZArith.BinInt]
Zplus_assoc [lemma, in Coq.ZArith.BinInt]
Zplus_assoc_reverse [lemma, in Coq.ZArith.BinInt]
Zplus_comm [lemma, in Coq.ZArith.BinInt]
Zplus_compare_compat [lemma, in Coq.ZArith.Zcompare]
Zplus_diag_eq_mult_2 [lemma, in Coq.ZArith.BinInt]
Zplus_eq_compat [lemma, in Coq.ZArith.BinInt]
Zplus_gt_compat_l [lemma, in Coq.ZArith.Zorder]
Zplus_gt_compat_r [lemma, in Coq.ZArith.Zorder]
Zplus_gt_reg_l [lemma, in Coq.ZArith.Zorder]
Zplus_gt_reg_r [lemma, in Coq.ZArith.Zorder]
Zplus_le_compat [lemma, in Coq.ZArith.Zorder]
Zplus_le_compat_l [lemma, in Coq.ZArith.Zorder]
Zplus_le_compat_r [lemma, in Coq.ZArith.Zorder]
Zplus_le_lt_compat [lemma, in Coq.ZArith.Zorder]
Zplus_le_reg_l [lemma, in Coq.ZArith.Zorder]
Zplus_le_reg_r [lemma, in Coq.ZArith.Zorder]
Zplus_le_0_compat [lemma, in Coq.ZArith.Zorder]
Zplus_lt_compat [lemma, in Coq.ZArith.Zorder]
Zplus_lt_compat_l [lemma, in Coq.ZArith.Zorder]
Zplus_lt_compat_r [lemma, in Coq.ZArith.Zorder]
Zplus_lt_le_compat [lemma, in Coq.ZArith.Zorder]
Zplus_lt_reg_l [lemma, in Coq.ZArith.Zorder]
Zplus_lt_reg_r [lemma, in Coq.ZArith.Zorder]
Zplus_max_distr_r [lemma, in Coq.ZArith.Zmax]
Zplus_minus [lemma, in Coq.ZArith.BinInt]
Zplus_minus_eq [lemma, in Coq.ZArith.BinInt]
Zplus_min_distr_r [lemma, in Coq.ZArith.Zmin]
Zplus_mod [lemma, in Coq.ZArith.Zdiv]
Zplus_mod_idemp_l [lemma, in Coq.ZArith.Zdiv]
Zplus_mod_idemp_r [lemma, in Coq.ZArith.Zdiv]
Zplus_mod_one [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSqrt]
Zplus_opp_expand [lemma, in Coq.ZArith.BinInt]
Zplus_opp_l [lemma, in Coq.ZArith.BinInt]
Zplus_opp_r [lemma, in Coq.ZArith.BinInt]
Zplus_permute [lemma, in Coq.ZArith.BinInt]
Zplus_reg_l [lemma, in Coq.ZArith.BinInt]
Zplus_succ_comm [lemma, in Coq.ZArith.BinInt]
Zplus_succ_l [lemma, in Coq.ZArith.BinInt]
Zplus_succ_r [abbreviation, in Coq.ZArith.BinInt]
Zplus_succ_r_reverse [lemma, in Coq.ZArith.BinInt]
Zplus_0_l [lemma, in Coq.ZArith.BinInt]
Zplus_0_r [lemma, in Coq.ZArith.BinInt]
Zplus_0_r_reverse [lemma, in Coq.ZArith.BinInt]
Zplus_0_simpl_l [lemma, in Coq.ZArith.BinInt]
Zplus_0_simpl_l_reverse [lemma, in Coq.ZArith.BinInt]
ZPminus [definition, in Coq.ZArith.BinInt]
Zpos [constructor, in Coq.ZArith.BinInt]
Zpos_eq [lemma, in Coq.ZArith.BinInt]
Zpos_eq_iff [lemma, in Coq.ZArith.BinInt]
Zpos_eq_rev [lemma, in Coq.ZArith.BinInt]
Zpos_eq_Z_of_nat_o_nat_of_P [lemma, in Coq.ZArith.Znat]
Zpos_max [lemma, in Coq.ZArith.Zmax]
Zpos_max_1 [lemma, in Coq.ZArith.Zmax]
Zpos_min [lemma, in Coq.ZArith.Zmin]
Zpos_minus [lemma, in Coq.ZArith.Zmax]
Zpos_minus_morphism [lemma, in Coq.ZArith.BinInt]
Zpos_mult_morphism [lemma, in Coq.ZArith.BinInt]
Zpos_plus_distr [lemma, in Coq.ZArith.BinInt]
Zpos_P_of_succ_nat [lemma, in Coq.ZArith.Znat]
Zpos_succ_morphism [lemma, in Coq.ZArith.BinInt]
Zpos_xI [lemma, in Coq.ZArith.BinInt]
Zpos_xO [lemma, in Coq.ZArith.BinInt]
Zpower [definition, in Coq.ZArith.Zpow_def]
Zpower [library]
Zpower2_le_lin [lemma, in Coq.ZArith.Zpow_facts]
Zpower2_lt_lin [lemma, in Coq.ZArith.Zpow_facts]
Zpower2_Psize [lemma, in Coq.ZArith.Zpow_facts]
Zpower_divide [lemma, in Coq.ZArith.Zpow_facts]
Zpower_exp [lemma, in Coq.ZArith.Zpower]
Zpower_ge_0 [lemma, in Coq.ZArith.Zpow_facts]
Zpower_gt_0 [lemma, in Coq.ZArith.Zpow_facts]
Zpower_gt_1 [lemma, in Coq.ZArith.Zpow_facts]
Zpower_le_monotone [lemma, in Coq.ZArith.Zpow_facts]
Zpower_le_monotone2 [lemma, in Coq.ZArith.Zpow_facts]
Zpower_le_monotone3 [lemma, in Coq.ZArith.Zpow_facts]
Zpower_le_monotone_inv [lemma, in Coq.ZArith.Zpow_facts]
Zpower_lt_monotone [lemma, in Coq.ZArith.Zpow_facts]
Zpower_mod [lemma, in Coq.ZArith.Zpow_facts]
Zpower_mult [lemma, in Coq.ZArith.Zpow_facts]
Zpower_nat [definition, in Coq.ZArith.Zpower]
Zpower_nat_is_exp [lemma, in Coq.ZArith.Zpower]
Zpower_nat_powerRZ [lemma, in Coq.Reals.Rfunctions]
Zpower_nat_powerRZ_absolu [lemma, in Coq.Reals.Rfunctions]
Zpower_nat_Zpower [lemma, in Coq.ZArith.Zpow_facts]
Zpower_NR0 [lemma, in Coq.Reals.Rfunctions]
Zpower_pos [definition, in Coq.ZArith.Zpow_def]
Zpower_pos_is_exp [lemma, in Coq.ZArith.Zpower]
Zpower_pos_nat [lemma, in Coq.ZArith.Zpower]
Zpower_pos_pos [lemma, in Coq.ZArith.Zpow_facts]
Zpower_pos_0_l [lemma, in Coq.ZArith.Zpow_facts]
Zpower_pos_1_l [lemma, in Coq.ZArith.Zpow_facts]
Zpower_pos_1_r [lemma, in Coq.ZArith.Zpow_facts]
Zpower_Qpower [lemma, in Coq.QArith.Qpower]
Zpower_theory [lemma, in Coq.ZArith.Zpow_def]
Zpower_Zabs [lemma, in Coq.ZArith.Zpow_facts]
Zpower_Zsucc [lemma, in Coq.ZArith.Zpow_facts]
Zpower_0_l [lemma, in Coq.ZArith.Zpow_facts]
Zpower_0_r [lemma, in Coq.ZArith.Zpow_facts]
Zpower_1_l [lemma, in Coq.ZArith.Zpow_facts]
Zpower_1_r [lemma, in Coq.ZArith.Zpow_facts]
Zpower_2 [lemma, in Coq.ZArith.Zpow_facts]
Zpow_def [library]
Zpow_facts [library]
Zpow_mod [definition, in Coq.ZArith.Zpow_facts]
Zpow_mod_correct [lemma, in Coq.ZArith.Zpow_facts]
Zpow_mod_pos [definition, in Coq.ZArith.Zpow_facts]
Zpow_mod_pos_correct [lemma, in Coq.ZArith.Zpow_facts]
Zpred [definition, in Coq.ZArith.BinInt]
Zpred' [definition, in Coq.ZArith.BinInt]
Zpred'_inj [lemma, in Coq.ZArith.BinInt]
Zpred'_succ' [lemma, in Coq.ZArith.BinInt]
Zpred_pred' [lemma, in Coq.ZArith.BinInt]
Zpred_succ [lemma, in Coq.ZArith.BinInt]
Zrel_prime_neq_mod_0 [lemma, in Coq.ZArith.Znumtheory]
Zsgn [definition, in Coq.ZArith.BinInt]
Zsgn_neg [lemma, in Coq.ZArith.Zabs]
Zsgn_null [lemma, in Coq.ZArith.Zabs]
Zsgn_pos [lemma, in Coq.ZArith.Zabs]
Zsgn_pos_iff [lemma, in Coq.ZArith.ZOdiv]
Zsgn_spec [lemma, in Coq.ZArith.Zabs]
Zsgn_Zabs [lemma, in Coq.ZArith.Zabs]
Zsgn_Zmult [lemma, in Coq.ZArith.Zabs]
Zsgn_Zopp [lemma, in Coq.ZArith.Zabs]
ZSig [library]
ZSigZAxioms [library]
ZSig_ZAxioms [module, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZAxiomsMod.B [definition, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZAxiomsMod.BP [lemma, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZAxiomsMod.BS [lemma, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZAxiomsMod.B0 [lemma, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZAxiomsMod.B_holds [lemma, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZAxiomsMod.Induction [section, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZAxiomsMod.Induction.A [variable, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZAxiomsMod.Induction.AS [variable, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZAxiomsMod.Induction.A0 [variable, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZAxiomsMod.Induction.A_wd [variable, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZAxiomsMod.NZ [definition, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZAxiomsMod.NZadd [definition, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZAxiomsMod.NZadd_succ_l [lemma, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZAxiomsMod.NZadd_0_l [lemma, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZAxiomsMod.NZeq [definition, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZAxiomsMod.NZeq_equiv [lemma, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZAxiomsMod.NZinduction [lemma, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZAxiomsMod.NZmul [definition, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZAxiomsMod.NZmul_succ_l [lemma, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZAxiomsMod.NZmul_0_l [lemma, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZAxiomsMod.NZpred [definition, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZAxiomsMod.NZpred_succ [lemma, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZAxiomsMod.NZsub [definition, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZAxiomsMod.NZsub_succ_r [lemma, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZAxiomsMod.NZsub_0_r [lemma, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZAxiomsMod.NZsucc [definition, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZAxiomsMod.NZ0 [definition, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZle [definition, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZlt [definition, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZlt_eq_cases [lemma, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZlt_irrefl [lemma, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZlt_succ_r [lemma, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZmax [definition, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZmax_l [lemma, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZmax_r [lemma, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZmin [definition, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZmin_l [lemma, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.NZmin_r [lemma, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.spec_compare_alt [lemma, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.spec_le [lemma, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.spec_lt [lemma, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.spec_max [lemma, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.NZOrdAxiomsMod.spec_min [lemma, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.Zopp [definition, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.Zopp_succ [lemma, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.Zopp_0 [lemma, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
ZSig_ZAxioms.Zsucc_pred [lemma, in Coq.Numbers.Integer.SpecViaZ.ZSigZAxioms]
Zsplit2 [lemma, in Coq.ZArith.Zeven]
Zsqrt [definition, in Coq.ZArith.Zsqrt]
Zsqrt [library]
Zsqrt_interval [lemma, in Coq.ZArith.Zsqrt]
Zsqrt_le [lemma, in Coq.ZArith.Zsqrt]
Zsqrt_plain [definition, in Coq.ZArith.Zsqrt]
Zsqrt_plain_is_pos [lemma, in Coq.ZArith.Zsqrt]
Zsqrt_square_id [lemma, in Coq.ZArith.Zsqrt]
Zsquare [definition, in Coq.ZArith.Zpow_facts]
Zsquare_correct [lemma, in Coq.ZArith.Zpow_facts]
Zsquare_le [lemma, in Coq.Numbers.BigNumPrelude]
Zsquare_mult [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSqrt]
Zsquare_pos [lemma, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSqrt]
Zsucc [definition, in Coq.ZArith.BinInt]
Zsucc' [definition, in Coq.ZArith.BinInt]
Zsucc'_discr [lemma, in Coq.ZArith.BinInt]
Zsucc'_inj [lemma, in Coq.ZArith.BinInt]
Zsucc'_pred' [lemma, in Coq.ZArith.BinInt]
Zsucc_discr [lemma, in Coq.ZArith.BinInt]
Zsucc_eq_compat [lemma, in Coq.ZArith.BinInt]
Zsucc_gt_compat [lemma, in Coq.ZArith.Zorder]
Zsucc_gt_reg [lemma, in Coq.ZArith.Zorder]
Zsucc_inj [lemma, in Coq.ZArith.BinInt]
Zsucc_inj_contrapositive [lemma, in Coq.ZArith.BinInt]
Zsucc_le_compat [lemma, in Coq.ZArith.Zorder]
Zsucc_le_reg [lemma, in Coq.ZArith.Zorder]
Zsucc_lt_compat [lemma, in Coq.ZArith.Zorder]
Zsucc_lt_reg [lemma, in Coq.ZArith.Zorder]
Zsucc_max_distr [lemma, in Coq.ZArith.Zmax]
Zsucc_min_distr [lemma, in Coq.ZArith.Zmin]
Zsucc_pred [lemma, in Coq.ZArith.BinInt]
Zsucc_succ' [lemma, in Coq.ZArith.BinInt]
Ztrichotomy [lemma, in Coq.ZArith.Zorder]
Ztrichotomy_inf [lemma, in Coq.ZArith.Zorder]
ZType [module, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.add [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.compare [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.div [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.div_eucl [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.eq [definition, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.eq_bool [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.gcd [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.le [definition, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.lt [definition, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.max [definition, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.min [definition, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.minus_one [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.modulo [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.mul [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.of_Z [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.one [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.opp [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.power_pos [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.pred [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.spec_add [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.spec_compare [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.spec_div [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.spec_div_eucl [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.spec_eq_bool [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.spec_gcd [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.spec_modulo [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.spec_mul [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.spec_m1 [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.spec_of_Z [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.spec_opp [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.spec_power_pos [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.spec_pred [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.spec_sqrt [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.spec_square [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.spec_sub [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.spec_succ [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.spec_0 [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.spec_1 [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.sqrt [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.square [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.sub [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.succ [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.t [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.to_Z [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
ZType.zero [axiom, in Coq.Numbers.Integer.SpecViaZ.ZSig]
Zwf [definition, in Coq.ZArith.Zwf]
Zwf [library]
Zwf_up [definition, in Coq.ZArith.Zwf]
Zwf_up_well_founded [lemma, in Coq.ZArith.Zwf]
Zwf_well_founded [lemma, in Coq.ZArith.Zwf]
Z0 [constructor, in Coq.ZArith.BinInt]
Z2P [definition, in Coq.QArith.Qreduction]
Z2P_correct [lemma, in Coq.QArith.Qreduction]
Z2P_correct2 [lemma, in Coq.QArith.Qreduction]
Z_as_DT [module, in Coq.Logic.DecidableTypeEx]
Z_as_Int [module, in Coq.ZArith.Int]
Z_as_Int.eq_dec [definition, in Coq.ZArith.Int]
Z_as_Int.ge_lt_dec [definition, in Coq.ZArith.Int]
Z_as_Int.gt_le_dec [definition, in Coq.ZArith.Int]
Z_as_Int.int [definition, in Coq.ZArith.Int]
Z_as_Int.i2z [definition, in Coq.ZArith.Int]
Z_as_Int.i2z_eq [lemma, in Coq.ZArith.Int]
Z_as_Int.i2z_max [lemma, in Coq.ZArith.Int]
Z_as_Int.i2z_minus [lemma, in Coq.ZArith.Int]
Z_as_Int.i2z_mult [lemma, in Coq.ZArith.Int]
Z_as_Int.i2z_opp [lemma, in Coq.ZArith.Int]
Z_as_Int.i2z_plus [lemma, in Coq.ZArith.Int]
Z_as_Int.i2z_0 [lemma, in Coq.ZArith.Int]
Z_as_Int.i2z_1 [lemma, in Coq.ZArith.Int]
Z_as_Int.i2z_2 [lemma, in Coq.ZArith.Int]
Z_as_Int.i2z_3 [lemma, in Coq.ZArith.Int]
Z_as_Int.max [definition, in Coq.ZArith.Int]
Z_as_Int.minus [definition, in Coq.ZArith.Int]
Z_as_Int.mult [definition, in Coq.ZArith.Int]
Z_as_Int.opp [definition, in Coq.ZArith.Int]
Z_as_Int.plus [definition, in Coq.ZArith.Int]
Z_as_Int._0 [definition, in Coq.ZArith.Int]
Z_as_Int._1 [definition, in Coq.ZArith.Int]
Z_as_Int._2 [definition, in Coq.ZArith.Int]
Z_as_Int._3 [definition, in Coq.ZArith.Int]
Z_as_OT [module, in Coq.FSets.OrderedTypeEx]
Z_as_OT.compare [definition, in Coq.FSets.OrderedTypeEx]
Z_as_OT.eq [definition, in Coq.FSets.OrderedTypeEx]
Z_as_OT.eq_dec [definition, in Coq.FSets.OrderedTypeEx]
Z_as_OT.eq_refl [definition, in Coq.FSets.OrderedTypeEx]
Z_as_OT.eq_sym [definition, in Coq.FSets.OrderedTypeEx]
Z_as_OT.eq_trans [definition, in Coq.FSets.OrderedTypeEx]
Z_as_OT.lt [definition, in Coq.FSets.OrderedTypeEx]
Z_as_OT.lt_not_eq [lemma, in Coq.FSets.OrderedTypeEx]
Z_as_OT.lt_trans [lemma, in Coq.FSets.OrderedTypeEx]
Z_as_OT.t [definition, in Coq.FSets.OrderedTypeEx]
Z_BRIC_A_BRAC [section, in Coq.ZArith.Zbinary]
Z_dec [lemma, in Coq.ZArith.ZArith_dec]
Z_dec' [lemma, in Coq.ZArith.ZArith_dec]
Z_div2_value [lemma, in Coq.ZArith.Zbinary]
Z_div_exact_full_1 [lemma, in Coq.ZArith.Zdiv]
Z_div_exact_full_2 [lemma, in Coq.ZArith.Zdiv]
Z_div_exact_1 [lemma, in Coq.ZArith.Zdiv]
Z_div_exact_2 [lemma, in Coq.ZArith.Zdiv]
Z_div_ge [lemma, in Coq.ZArith.Zdiv]
Z_div_ge0 [lemma, in Coq.ZArith.Zdiv]
Z_div_le [lemma, in Coq.ZArith.Zdiv]
Z_div_lt [lemma, in Coq.ZArith.Zdiv]
Z_div_mod [lemma, in Coq.ZArith.Zdiv]
Z_div_mod_eq [lemma, in Coq.ZArith.Zdiv]
Z_div_mod_eq_full [lemma, in Coq.ZArith.Zdiv]
Z_div_mod_full [lemma, in Coq.ZArith.Zdiv]
Z_div_mod_POS [lemma, in Coq.ZArith.Zdiv]
Z_div_mult [lemma, in Coq.ZArith.Zdiv]
Z_div_mult_full [lemma, in Coq.ZArith.Zdiv]
Z_div_nz_opp_full [lemma, in Coq.ZArith.Zdiv]
Z_div_nz_opp_r [lemma, in Coq.ZArith.Zdiv]
Z_div_plus [lemma, in Coq.ZArith.Zdiv]
Z_div_plus_full [lemma, in Coq.ZArith.Zdiv]
Z_div_plus_full_l [lemma, in Coq.ZArith.Zdiv]
Z_div_plus_l [definition, in Coq.Numbers.BigNumPrelude]
Z_div_pos [lemma, in Coq.ZArith.Zdiv]
Z_div_same [lemma, in Coq.ZArith.Zdiv]
Z_div_same_full [lemma, in Coq.ZArith.Zdiv]
Z_div_zero_opp_full [lemma, in Coq.ZArith.Zdiv]
Z_div_zero_opp_r [lemma, in Coq.ZArith.Zdiv]
Z_eq_bool [definition, in Coq.ZArith.Zbool]
Z_eq_dec [definition, in Coq.ZArith.ZArith_dec]
Z_eq_mult [lemma, in Coq.ZArith.BinInt]
Z_ge_dec [definition, in Coq.ZArith.ZArith_dec]
Z_ge_lt_bool [definition, in Coq.ZArith.Zbool]
Z_ge_lt_dec [definition, in Coq.ZArith.ZArith_dec]
Z_gt_dec [definition, in Coq.ZArith.ZArith_dec]
Z_gt_le_bool [definition, in Coq.ZArith.Zbool]
Z_gt_le_dec [definition, in Coq.ZArith.ZArith_dec]
Z_le_dec [definition, in Coq.ZArith.ZArith_dec]
Z_le_gt_bool [definition, in Coq.ZArith.Zbool]
Z_le_gt_dec [definition, in Coq.ZArith.ZArith_dec]
Z_le_lt_eq_dec [definition, in Coq.ZArith.ZArith_dec]
Z_lt_abs_induction [lemma, in Coq.ZArith.Zcomplements]
Z_lt_abs_rec [lemma, in Coq.ZArith.Zcomplements]
Z_lt_dec [definition, in Coq.ZArith.ZArith_dec]
Z_lt_ge_bool [definition, in Coq.ZArith.Zbool]
Z_lt_ge_dec [definition, in Coq.ZArith.ZArith_dec]
Z_lt_induction [lemma, in Coq.ZArith.Wf_Z]
Z_lt_le_dec [lemma, in Coq.ZArith.ZArith_dec]
Z_lt_rec [lemma, in Coq.ZArith.Wf_Z]
Z_modulo_2 [lemma, in Coq.ZArith.Zeven]
Z_mod_lt [lemma, in Coq.ZArith.Zdiv]
Z_mod_mult [lemma, in Coq.ZArith.Zdiv]
Z_mod_neg [lemma, in Coq.ZArith.Zdiv]
Z_mod_nz_opp_full [lemma, in Coq.ZArith.Zdiv]
Z_mod_nz_opp_r [lemma, in Coq.ZArith.Zdiv]
Z_mod_plus [lemma, in Coq.ZArith.Zdiv]
Z_mod_plus_full [lemma, in Coq.ZArith.Zdiv]
Z_mod_remainder [lemma, in Coq.ZArith.Zdiv]
Z_mod_same [lemma, in Coq.ZArith.Zdiv]
Z_mod_same_full [lemma, in Coq.ZArith.Zdiv]
Z_mod_zero_opp [lemma, in Coq.ZArith.Zdiv]
Z_mod_zero_opp_full [lemma, in Coq.ZArith.Zdiv]
Z_mod_zero_opp_r [lemma, in Coq.ZArith.Zdiv]
Z_mult_div_ge [lemma, in Coq.ZArith.Zdiv]
Z_mult_div_ge_neg [lemma, in Coq.ZArith.Zdiv]
Z_noteq_bool [definition, in Coq.ZArith.Zbool]
Z_noteq_dec [definition, in Coq.ZArith.ZArith_dec]
Z_notzerop [definition, in Coq.ZArith.ZArith_dec]
Z_nZ_Op [section, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
Z_nZ_Op.znz [variable, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
Z_nZ_Spec [section, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
Z_nZ_Spec.w [variable, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
Z_nZ_Spec.w_op [variable, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
Z_of_N [definition, in Coq.ZArith.BinInt]
Z_of_nat [definition, in Coq.ZArith.BinInt]
Z_of_nat_complete [lemma, in Coq.ZArith.Wf_Z]
Z_of_nat_complete_inf [lemma, in Coq.ZArith.Wf_Z]
Z_of_nat_of_N [lemma, in Coq.NArith.Nnat]
Z_of_nat_prop [lemma, in Coq.ZArith.Wf_Z]
Z_of_nat_set [lemma, in Coq.ZArith.Wf_Z]
Z_of_N_abs [lemma, in Coq.NArith.Nnat]
Z_of_N_eq [lemma, in Coq.NArith.Nnat]
Z_of_N_eq_iff [lemma, in Coq.NArith.Nnat]
Z_of_N_eq_rev [lemma, in Coq.NArith.Nnat]
Z_of_N_ge [lemma, in Coq.NArith.Nnat]
Z_of_N_ge_iff [lemma, in Coq.NArith.Nnat]
Z_of_N_ge_rev [lemma, in Coq.NArith.Nnat]
Z_of_N_gt [lemma, in Coq.NArith.Nnat]
Z_of_N_gt_iff [lemma, in Coq.NArith.Nnat]
Z_of_N_gt_rev [lemma, in Coq.NArith.Nnat]
Z_of_N_le [lemma, in Coq.NArith.Nnat]
Z_of_N_le_iff [lemma, in Coq.NArith.Nnat]
Z_of_N_le_rev [lemma, in Coq.NArith.Nnat]
Z_of_N_le_0 [lemma, in Coq.NArith.Nnat]
Z_of_N_lt [lemma, in Coq.NArith.Nnat]
Z_of_N_lt_iff [lemma, in Coq.NArith.Nnat]
Z_of_N_lt_rev [lemma, in Coq.NArith.Nnat]
Z_of_N_max [lemma, in Coq.NArith.Nnat]
Z_of_N_min [lemma, in Coq.NArith.Nnat]
Z_of_N_minus [lemma, in Coq.NArith.Nnat]
Z_of_N_mult [lemma, in Coq.NArith.Nnat]
Z_of_N_of_nat [lemma, in Coq.NArith.Nnat]
Z_of_N_plus [lemma, in Coq.NArith.Nnat]
Z_of_N_pos [lemma, in Coq.NArith.Nnat]
Z_of_N_succ [lemma, in Coq.NArith.Nnat]
Z_R_minus [lemma, in Coq.Reals.RIneq]
Z_to_binary [lemma, in Coq.ZArith.Zbinary]
Z_to_binary_Sn [lemma, in Coq.ZArith.Zbinary]
Z_to_binary_Sn_z [lemma, in Coq.ZArith.Zbinary]
Z_to_binary_to_Z [lemma, in Coq.ZArith.Zbinary]
Z_to_two_compl [lemma, in Coq.ZArith.Zbinary]
Z_to_two_compl_Sn [lemma, in Coq.ZArith.Zbinary]
Z_to_two_compl_Sn_z [lemma, in Coq.ZArith.Zbinary]
Z_to_two_compl_to_Z [lemma, in Coq.ZArith.Zbinary]
Z_zerop [definition, in Coq.ZArith.ZArith_dec]
Z_2nZ [section, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
Z_2nZ.op_spec [variable, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
Z_2nZ.w [variable, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
Z_2nZ.w_op [variable, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]



Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (13562 entries)
Instance Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (96 entries)
Projection Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (210 entries)
Record Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (71 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (6947 entries)
Section Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (306 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (351 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (182 entries)
Abbreviation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (295 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (2870 entries)
Module Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (286 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (433 entries)
Variable Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (1189 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (326 entries)