# Licensed under a 3-clause BSD style license - see LICENSE.rst
""" An extensible ASCII table reader and writer.
core.py:
Core base classes and functions for reading and writing tables.
:Copyright: Smithsonian Astrophysical Observatory (2010)
:Author: Tom Aldcroft (aldcroft@head.cfa.harvard.edu)
"""
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
## * Redistributions of source code must retain the above copyright
## notice, this list of conditions and the following disclaimer.
## * Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
## * Neither the name of the Smithsonian Astrophysical Observatory nor the
## names of its contributors may be used to endorse or promote products
## derived from this software without specific prior written permission.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
## ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
## WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
## DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
## DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
## (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
## LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
## ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
## (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
## SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import os
import re
import csv
import itertools
import functools
import numpy
import warnings
from ...utils.exceptions import AstropyWarning
from ...table import Table
from ...utils.data import get_readable_fileobj
from ...utils import OrderedDict
from . import connect
# Global dictionary mapping format arg to the corresponding Reader class
FORMAT_CLASSES = {}
[docs]class InconsistentTableError(ValueError):
pass
# Python 3 compatibility tweaks. Should work back through 2.4.
try:
from cStringIO import StringIO
except ImportError:
from io import StringIO
try:
next = next
except NameError:
next = lambda x: x.next()
try:
izip = itertools.izip
except AttributeError:
izip = zip
try:
long = long
except NameError:
long = int
try:
unicode = unicode
except NameError:
unicode = str
[docs]class NoType(object):
pass
[docs]class StrType(NoType):
pass
[docs]class NumType(NoType):
pass
[docs]class FloatType(NumType):
pass
[docs]class IntType(NumType):
pass
[docs]class AllType(StrType, FloatType, IntType):
pass
[docs]class Column(object):
"""Table column.
The key attributes of a Column object are:
* **name** : column name
* **type** : column type (NoType, StrType, NumType, FloatType, IntType)
* **str_vals** : list of column values as strings
* **data** : list of converted column values
"""
def __init__(self, name):
self.name = name
self.type = NoType
self.str_vals = []
self.fill_values = {}
[docs]class BaseSplitter(object):
"""Base splitter that uses python's split method to do the work.
This does not handle quoted values. A key feature is the formulation of
__call__ as a generator that returns a list of the split line values at
each iteration.
There are two methods that are intended to be overridden, first
``process_line()`` to do pre-processing on each input line before splitting
and ``process_val()`` to do post-processing on each split string value. By
default these apply the string ``strip()`` function. These can be set to
another function via the instance attribute or be disabled entirely, for
example::
reader.header.splitter.process_val = lambda x: x.lstrip()
reader.data.splitter.process_val = None
:param delimiter: one-character string used to separate fields
"""
delimiter = None
[docs] def process_line(self, line):
"""Remove whitespace at the beginning or end of line. This is especially useful for
whitespace-delimited files to prevent spurious columns at the beginning or end."""
return line.strip()
[docs] def process_val(self, val):
"""Remove whitespace at the beginning or end of value."""
return val.strip()
def __call__(self, lines):
if self.process_line:
lines = (self.process_line(x) for x in lines)
for line in lines:
vals = line.split(self.delimiter)
if self.process_val:
yield [self.process_val(x) for x in vals]
else:
yield vals
[docs] def join(self, vals):
if self.delimiter is None:
delimiter = ' '
else:
delimiter = self.delimiter
return delimiter.join(str(x) for x in vals)
[docs]class DefaultSplitter(BaseSplitter):
"""Default class to split strings into columns using python csv. The class
attributes are taken from the csv Dialect class.
Typical usage::
# lines = ..
splitter = ascii.DefaultSplitter()
for col_vals in splitter(lines):
for col_val in col_vals:
...
:param delimiter: one-character string used to separate fields.
:param doublequote: control how instances of *quotechar* in a field are quoted
:param escapechar: character to remove special meaning from following character
:param quotechar: one-character stringto quote fields containing special characters
:param quoting: control when quotes are recognised by the reader
:param skipinitialspace: ignore whitespace immediately following the delimiter
"""
delimiter = ' '
quotechar = '"'
doublequote = True
escapechar = None
quoting = csv.QUOTE_MINIMAL
skipinitialspace = True
[docs] def process_line(self, line):
"""Remove whitespace at the beginning or end of line. This is especially useful for
whitespace-delimited files to prevent spurious columns at the beginning or end.
If splitting on whitespace then replace unquoted tabs with space first"""
if self.delimiter == '\s':
line = _replace_tab_with_space(line, self.escapechar, self.quotechar)
return line.strip()
def __init__(self):
self.csv_writer = None
self.csv_writer_out = StringIO()
def __call__(self, lines):
"""Return an iterator over the table ``lines``, where each iterator output
is a list of the split line values.
:param lines: list of table lines
:returns: iterator
"""
if self.process_line:
lines = [self.process_line(x) for x in lines]
# In Python 2.x the inputs to csv cannot be unicode. In Python 3 these
# lines do nothing.
escapechar = None if self.escapechar is None else str(self.escapechar)
quotechar = None if self.quotechar is None else str(self.quotechar)
delimiter = None if self.delimiter is None else str(self.delimiter)
if delimiter == '\s':
delimiter = ' '
csv_reader = csv.reader(lines,
delimiter=delimiter,
doublequote=self.doublequote,
escapechar=escapechar,
quotechar=quotechar,
quoting=self.quoting,
skipinitialspace=self.skipinitialspace
)
for vals in csv_reader:
if self.process_val:
yield [self.process_val(x) for x in vals]
else:
yield vals
[docs] def join(self, vals):
# In Python 2.x the inputs to csv cannot be unicode
escapechar = None if self.escapechar is None else str(self.escapechar)
quotechar = None if self.quotechar is None else str(self.quotechar)
delimiter = ' ' if self.delimiter is None else str(self.delimiter)
if self.csv_writer is None:
self.csv_writer = csv.writer(self.csv_writer_out,
delimiter=delimiter,
doublequote=self.doublequote,
escapechar=escapechar,
quotechar=quotechar,
quoting=self.quoting,
lineterminator='',
)
self.csv_writer_out.seek(0)
self.csv_writer_out.truncate()
if self.process_val:
vals = [self.process_val(x) for x in vals]
self.csv_writer.writerow(vals)
return self.csv_writer_out.getvalue()
def _replace_tab_with_space(line, escapechar, quotechar):
"""Replace tab with space within ``line`` while respecting quoted substrings"""
newline = []
in_quote = False
lastchar = 'NONE'
for char in line:
if char == quotechar and lastchar != escapechar:
in_quote = not in_quote
if char == '\t' and not in_quote:
char = ' '
lastchar = char
newline.append(char)
return ''.join(newline)
def _get_line_index(line_or_func, lines):
"""Return the appropriate line index, depending on ``line_or_func`` which
can be either a function, a positive or negative int, or None.
"""
if hasattr(line_or_func, '__call__'):
return line_or_func(lines)
elif line_or_func:
if line_or_func >= 0:
return line_or_func
else:
n_lines = sum(1 for line in lines)
return n_lines + line_or_func
else:
return line_or_func
[docs]class BaseData(object):
"""Base table data reader.
:param start_line: None, int, or a function of ``lines`` that returns None or int
:param end_line: None, int, or a function of ``lines`` that returns None or int
:param comment: Regular expression for comment lines
:param splitter_class: Splitter class for splitting data lines into columns
"""
start_line = None
end_line = None
comment = None
splitter_class = DefaultSplitter
write_spacer_lines = ['ASCII_TABLE_WRITE_SPACER_LINE']
formats = {}
fill_values = []
fill_include_names = None
fill_exclude_names = None
def __init__(self):
self.splitter = self.__class__.splitter_class()
[docs] def process_lines(self, lines):
"""Strip out comment lines and blank lines from list of ``lines``
:param lines: all lines in table
:returns: list of lines
"""
nonblank_lines = (x for x in lines if x.strip())
if self.comment:
re_comment = re.compile(self.comment)
return [x for x in nonblank_lines if not re_comment.match(x)]
else:
return [x for x in nonblank_lines]
[docs] def get_data_lines(self, lines):
"""Set the ``data_lines`` attribute to the lines slice comprising the
table data values."""
data_lines = self.process_lines(lines)
start_line = _get_line_index(self.start_line, data_lines)
end_line = _get_line_index(self.end_line, data_lines)
if start_line is not None or end_line is not None:
self.data_lines = data_lines[slice(start_line, end_line)]
else: # Don't copy entire data lines unless necessary
self.data_lines = data_lines
[docs] def get_str_vals(self):
"""Return a generator that returns a list of column values (as strings)
for each data line."""
return self.splitter(self.data_lines)
[docs] def masks(self, cols):
"""Set fill value for each column and then apply that fill value
In the first step it is evaluated with value from ``fill_values`` applies to
which column using ``fill_include_names`` and ``fill_exclude_names``.
In the second step all replacements are done for the appropriate columns.
"""
if self.fill_values:
self._set_fill_values(cols)
self._set_masks(cols)
def _set_fill_values(self, cols):
"""Set the fill values of the individual cols based on fill_values of BaseData
fill values has the following form:
<fill_spec> = (<bad_value>, <fill_value>, <optional col_name>...)
fill_values = <fill_spec> or list of <fill_spec>'s
"""
if self.fill_values:
# when we write tables the columns may be astropy.table.Columns
# which don't carry a fill_values by default
for col in cols:
if ~hasattr(col, 'fill_values'):
col.fill_values = {}
# if input is only one <fill_spec>, then make it a list
try:
self.fill_values[0] + ''
self.fill_values = [self.fill_values]
except TypeError:
pass
# Step 1: Set the default list of columns which are affected by fill_values
colnames = set(self.header.colnames)
if self.fill_include_names is not None:
colnames.intersection_update(self.fill_include_names)
if self.fill_exclude_names is not None:
colnames.difference_update(self.fill_exclude_names)
# Step 2a: Find out which columns are affected by this tuple
# iterate over reversed order, so last condition is set first and
# overwritten by earlier conditions
for replacement in reversed(self.fill_values):
if len(replacement) < 2:
raise ValueError("Format of fill_values must be "
"(<bad>, <fill>, <optional col1>, ...)")
elif len(replacement) == 2:
affect_cols = colnames
else:
affect_cols = replacement[2:]
for i, key in ((i, x) for i, x in enumerate(self.header.colnames) if x in affect_cols):
cols[i].fill_values[replacement[0]] = str(replacement[1])
def _set_masks(self, cols):
"""Replace string values in col.str_vals and set masks"""
if self.fill_values:
for col in (col for col in cols if col.fill_values):
col.mask = numpy.zeros(len(col.str_vals), dtype=numpy.bool)
for i, str_val in ((i, x) for i, x in enumerate(col.str_vals)
if x in col.fill_values):
col.str_vals[i] = col.fill_values[str_val]
col.mask[i] = True
def _replace_vals(self, cols):
"""Replace string values in col.str_vals"""
if self.fill_values:
for col in (col for col in cols if col.fill_values):
for i, str_val in ((i, x) for i, x in enumerate(col.str_vals)
if x in col.fill_values):
col.str_vals[i] = col.fill_values[str_val]
[docs] def write(self, lines):
if hasattr(self.start_line, '__call__'):
raise TypeError('Start_line attribute cannot be callable for write()')
else:
data_start_line = self.start_line or 0
while len(lines) < data_start_line:
lines.append(itertools.cycle(self.write_spacer_lines))
self._set_fill_values(self.cols)
self._set_col_formats()
for col in self.cols:
col.str_vals = list(col.iter_str_vals())
self._replace_vals(self.cols)
col_str_iters = [col.str_vals for col in self.cols]
for vals in zip(*col_str_iters):
lines.append(self.splitter.join(vals))
def _set_col_formats(self):
"""
"""
for col in self.cols:
if col.name in self.formats:
col.format = self.formats[col.name]
[docs]def convert_numpy(numpy_type):
"""Return a tuple ``(converter_func, converter_type)``. The converter
function converts a list into a numpy array of the given ``numpy_type``.
This type must be a valid `numpy type
<http://docs.scipy.org/doc/numpy/user/basics.types.html>`_, e.g.
numpy.int, numpy.uint, numpy.int8, numpy.int64, numpy.float, numpy.float64,
numpy.str. The converter type is used to track the generic data type (int,
float, str) that is produced by the converter function.
"""
# Infer converter type from an instance of numpy_type.
type_name = numpy.array([], dtype=numpy_type).dtype.name
if 'int' in type_name:
converter_type = IntType
elif 'float' in type_name:
converter_type = FloatType
elif 'str' in type_name:
converter_type = StrType
else:
converter_type = AllType
def converter(vals):
return numpy.array(vals, numpy_type)
return converter, converter_type
[docs]class BaseOutputter(object):
"""Output table as a dict of column objects keyed on column name. The
table data are stored as plain python lists within the column objects.
"""
converters = {}
# Derived classes must define default_converters and __call__
@staticmethod
def _validate_and_copy(col, converters):
"""Validate the format for the type converters and then copy those
which are valid converters for this column (i.e. converter type is
a subclass of col.type)"""
converters_out = []
try:
for converter in converters:
converter_func, converter_type = converter
if not issubclass(converter_type, NoType):
raise ValueError()
if issubclass(converter_type, col.type):
converters_out.append((converter_func, converter_type))
except (ValueError, TypeError):
raise ValueError('Error: invalid format for converters, see documentation\n%s' %
converters)
return converters_out
def _convert_vals(self, cols):
for col in cols:
converters = self.converters.get(col.name,
self.default_converters)
col.converters = self._validate_and_copy(col, converters)
while not hasattr(col, 'data'):
try:
converter_func, converter_type = col.converters[0]
if not issubclass(converter_type, col.type):
raise TypeError()
col.data = converter_func(col.str_vals)
col.type = converter_type
except (TypeError, ValueError):
col.converters.pop(0)
except OverflowError:
# Overflow during conversion (most likely an int that doesn't fit in native C long).
# Put string at the top of the converters list for the next while iteration.
warnings.warn("OverflowError converting to {0} for column {1}, using string instead."
.format(converter_type.__name__, col.name), AstropyWarning)
col.converters.insert(0, convert_numpy(numpy.str))
except IndexError:
raise ValueError('Column %s failed to convert' % col.name)
[docs]class TableOutputter(BaseOutputter):
"""
Output the table as an astropy.table.Table object.
"""
default_converters = [convert_numpy(numpy.int),
convert_numpy(numpy.float),
convert_numpy(numpy.str)]
def __call__(self, cols, meta):
self._convert_vals(cols)
# If there are any values that were filled and tagged with a mask bit then this
# will be a masked table. Otherwise use a plain table.
masked = any(hasattr(col, 'mask') and numpy.any(col.mask) for col in cols)
out = Table([x.data for x in cols], names=[x.name for x in cols], masked=masked,
meta=meta['table'])
for col, out_col in zip(cols, out.columns.values()):
if masked and hasattr(col, 'mask'):
out_col.data.mask = col.mask
for attr in ('format', 'unit', 'description'):
if hasattr(col, attr):
setattr(out_col, attr, getattr(col, attr))
return out
class MetaBaseReader(type):
def __init__(cls, name, bases, dct):
super(MetaBaseReader, cls).__init__(name, bases, dct)
format = dct.get('_format_name')
if format is None:
return
FORMAT_CLASSES[format] = cls
io_formats = ['ascii.' + format] + dct.get('_io_registry_format_aliases', [])
if dct.get('_io_registry_suffix'):
func = functools.partial(connect.io_identify, dct['_io_registry_suffix'])
connect.io_registry.register_identifier(io_formats[0], Table, func)
for io_format in io_formats:
func = functools.partial(connect.io_read, io_format)
connect.io_registry.register_reader(io_format, Table, func)
if dct.get('_io_registry_can_write', True):
func = functools.partial(connect.io_write, io_format)
connect.io_registry.register_writer(io_format, Table, func)
def _is_number(x):
try:
x = float(x)
return True
except ValueError:
pass
return False
def _apply_include_exclude_names(table, names, include_names, exclude_names, strict_names):
"""Apply names, include_names and exclude_names to a table.
:param table: input table (Reader object, NumPy struct array, list of lists, etc)
:param names: list of names to override those in table (default=None uses existing names)
:param include_names: list of names to include in output (default=None selects all names)
:param exclude_names: list of names to exlude from output (applied after ``include_names``)
:param strict_names: apply strict checks on column names
"""
# Check column names. This must be done before applying the names transformation
# so that guessing will fail appropriately if `names` is supplied. For instance
# if the basic reader is given a table with no column header row.
if strict_names:
# Impose strict requirements on column names (normally used in guessing)
bads = [" ", ",", "|", "\t", "'", '"']
for name in table.colnames:
if (_is_number(name) or
len(name) == 0 or
name[0] in bads or
name[-1] in bads):
raise ValueError('Column name {0!r} does not meet strict name requirements'
.format(name))
if names is not None:
# Rename table column names to those passed by user
if len(names) != len(table.colnames):
raise ValueError('Length of names argument ({0}) does not match number'
' of table columns ({1})'.format(len(names), len(table.colnames)))
# Temporarily rename with names that are not in `names` or `table.colnames`.
# This ensures that rename succeeds regardless of existing names.
xxxs = 'x' * max(len(name) for name in list(names) + list(table.colnames))
for ii, colname in enumerate(table.colnames):
table.rename_column(colname, xxxs + str(ii))
for ii, name in enumerate(names):
table.rename_column(xxxs + str(ii), name)
names = set(table.colnames)
if include_names is not None:
names.intersection_update(include_names)
if exclude_names is not None:
names.difference_update(exclude_names)
if names != set(table.colnames):
remove_names = set(table.colnames) - set(names)
table.remove_columns(remove_names)
[docs]class BaseReader(object):
"""Class providing methods to read and write an ASCII table using the specified
header, data, inputter, and outputter instances.
Typical usage is to instantiate a Reader() object and customize the
``header``, ``data``, ``inputter``, and ``outputter`` attributes. Each
of these is an object of the corresponding class.
There is one method ``inconsistent_handler`` that can be used to customize the
behavior of ``read()`` in the event that a data row doesn't match the header.
The default behavior is to raise an InconsistentTableError.
"""
__metaclass__ = MetaBaseReader
names = None
include_names = None
exclude_names = None
strict_names = False
def __init__(self):
self.header = BaseHeader()
self.data = BaseData()
self.inputter = BaseInputter()
self.outputter = TableOutputter()
# Data and Header instances benefit from a little cross-coupling. Header may need to
# know about number of data columns for auto-column name generation and Data may
# need to know about header (e.g. for fixed-width tables where widths are spec'd in header.
self.data.header = self.header
self.header.data = self.data
# Metadata, consisting of table-level meta and column-level meta. The latter
# could include information about column type, description, formatting, etc,
# depending on the table meta format.
self.meta = OrderedDict(table=OrderedDict(),
cols=OrderedDict())
[docs] def read(self, table):
"""Read the ``table`` and return the results in a format determined by
the ``outputter`` attribute.
The ``table`` parameter is any string or object that can be processed
by the instance ``inputter``. For the base Inputter class ``table`` can be
one of:
* File name
* String (newline separated) with all header and data lines (must have at least 2 lines)
* List of strings
:param table: table input
:returns: output table
"""
# If ``table`` is a file then store the name in the ``data``
# attribute. The ``table`` is a "file" if it is a string
# without the new line specific to the OS.
try:
if os.linesep not in table + '':
self.data.table_name = os.path.basename(table)
except TypeError:
# Not a string.
pass
# Same from __init__. ??? Do these need to be here?
self.data.header = self.header
self.header.data = self.data
# Get a list of the lines (rows) in the table
self.lines = self.inputter.get_lines(table)
# Set self.data.data_lines to a slice of lines contain the data rows
self.data.get_data_lines(self.lines)
# Extract table meta values (e.g. keywords, comments, etc). Updates self.meta.
self.header.update_meta(self.lines, self.meta)
# Get the table column definitions
self.header.get_cols(self.lines)
cols = self.header.cols
self.data.splitter.cols = cols
for i, str_vals in enumerate(self.data.get_str_vals()):
if len(str_vals) != len(cols):
str_vals = self.inconsistent_handler(str_vals, len(cols))
# if str_vals is None, we skip this row
if str_vals is None:
continue
# otherwise, we raise an error only if it is still inconsistent
if len(str_vals) != len(cols):
errmsg = ('Number of header columns (%d) inconsistent with '
'data columns (%d) at data line %d\n'
'Header values: %s\n'
'Data values: %s' % (len(cols), len(str_vals), i,
[x.name for x in cols], str_vals))
raise InconsistentTableError(errmsg)
for j, col in enumerate(cols):
col.str_vals.append(str_vals[j])
self.data.masks(cols)
table = self.outputter(cols, self.meta)
self.cols = self.header.cols
_apply_include_exclude_names(table, self.names, self.include_names, self.exclude_names,
self.strict_names)
return table
[docs] def inconsistent_handler(self, str_vals, ncols):
"""Adjust or skip data entries if a row is inconsistent with the header.
The default implementation does no adjustment, and hence will always trigger
an exception in read() any time the number of data entries does not match
the header.
Note that this will *not* be called if the row already matches the header.
:param str_vals: A list of value strings from the current row of the table.
:param ncols: The expected number of entries from the table header.
:returns:
list of strings to be parsed into data entries in the output table. If
the length of this list does not match ``ncols``, an exception will be
raised in read(). Can also be None, in which case the row will be
skipped.
"""
# an empty list will always trigger an InconsistentTableError in read()
return str_vals
@property
[docs] def write(self, table):
"""Write ``table`` as list of strings.
:param table: input table data (astropy.table.Table object)
:returns: list of strings corresponding to ASCII table
"""
_apply_include_exclude_names(table, self.names, self.include_names, self.exclude_names,
self.strict_names)
# link information about the columns to the writer object (i.e. self)
self.header.cols = table.columns.values()
self.data.cols = table.columns.values()
# Write header and data to lines list
lines = []
self.header.write(lines)
self.data.write(lines)
return lines
[docs]class WhitespaceSplitter(DefaultSplitter):
[docs] def process_line(self, line):
"""Replace tab with space within ``line`` while respecting quoted substrings"""
newline = []
in_quote = False
lastchar = None
for char in line:
if char == self.quotechar and (self.escapechar is None or
lastchar != self.escapechar):
in_quote = not in_quote
if char == '\t' and not in_quote:
char = ' '
lastchar = char
newline.append(char)
return ''.join(newline)
extra_reader_pars = ('Reader', 'Inputter', 'Outputter',
'delimiter', 'comment', 'quotechar', 'header_start',
'data_start', 'data_end', 'converters',
'data_Splitter', 'header_Splitter',
'names', 'include_names', 'exclude_names', 'strict_names',
'fill_values', 'fill_include_names', 'fill_exclude_names')
def _get_reader(Reader, Inputter=None, Outputter=None, **kwargs):
"""Initialize a table reader allowing for common customizations. See ui.get_reader()
for param docs. This routine is for internal (package) use only and is useful
because it depends only on the "core" module.
"""
reader_kwargs = dict([k, v] for k, v in kwargs.items() if k not in extra_reader_pars)
reader = Reader(**reader_kwargs)
if Inputter is not None:
reader.inputter = Inputter()
reader.outputter = TableOutputter()
if Outputter is not None:
reader.outputter = Outputter()
if 'delimiter' in kwargs:
reader.header.splitter.delimiter = kwargs['delimiter']
reader.data.splitter.delimiter = kwargs['delimiter']
if 'comment' in kwargs:
reader.header.comment = kwargs['comment']
reader.data.comment = kwargs['comment']
if 'quotechar' in kwargs:
reader.header.splitter.quotechar = kwargs['quotechar']
reader.data.splitter.quotechar = kwargs['quotechar']
if 'data_start' in kwargs:
reader.data.start_line = kwargs['data_start']
if 'data_end' in kwargs:
reader.data.end_line = kwargs['data_end']
if 'header_start' in kwargs:
reader.header.start_line = kwargs['header_start']
if 'converters' in kwargs:
reader.outputter.converters = kwargs['converters']
if 'data_Splitter' in kwargs:
reader.data.splitter = kwargs['data_Splitter']()
if 'header_Splitter' in kwargs:
reader.header.splitter = kwargs['header_Splitter']()
if 'names' in kwargs:
reader.names = kwargs['names']
if 'include_names' in kwargs:
reader.include_names = kwargs['include_names']
if 'exclude_names' in kwargs:
reader.exclude_names = kwargs['exclude_names']
# Strict names is normally set only within the guessing process to
# indicate that column names cannot be numeric or have certain
# characters at the beginning or end. It gets used in
# core._apply_include_exclude_names().
if 'strict_names' in kwargs:
reader.strict_names = kwargs['strict_names']
if 'fill_values' in kwargs:
reader.data.fill_values = kwargs['fill_values']
if 'fill_include_names' in kwargs:
reader.data.fill_include_names = kwargs['fill_include_names']
if 'fill_exclude_names' in kwargs:
reader.data.fill_exclude_names = kwargs['fill_exclude_names']
return reader
extra_writer_pars = ('delimiter', 'comment', 'quotechar', 'formats',
'strip_whitespace',
'names', 'include_names', 'exclude_names',
'fill_values', 'fill_include_names',
'fill_exclude_names')
def _get_writer(Writer, **kwargs):
"""Initialize a table writer allowing for common customizations. This
routine is for internal (package) use only and is useful because it depends
only on the "core" module. """
writer_kwargs = dict([k, v] for k, v in kwargs.items() if k not in extra_writer_pars)
writer = Writer(**writer_kwargs)
if 'delimiter' in kwargs:
writer.header.splitter.delimiter = kwargs['delimiter']
writer.data.splitter.delimiter = kwargs['delimiter']
if 'comment' in kwargs:
writer.header.write_comment = kwargs['comment']
writer.data.write_comment = kwargs['comment']
if 'quotechar' in kwargs:
writer.header.splitter.quotechar = kwargs['quotechar']
writer.data.splitter.quotechar = kwargs['quotechar']
if 'formats' in kwargs:
writer.data.formats = kwargs['formats']
if 'strip_whitespace' in kwargs:
if kwargs['strip_whitespace']:
# Restore the default SplitterClass process_val method which strips
# whitespace. This may have been changed in the Writer
# initialization (e.g. Rdb and Tab)
Class = writer.data.splitter.__class__
obj = writer.data.splitter
writer.data.splitter.process_val = Class.process_val.__get__(obj, Class)
else:
writer.data.splitter.process_val = None
if 'names' in kwargs:
writer.header.names = kwargs['names']
if 'include_names' in kwargs:
writer.include_names = kwargs['include_names']
if 'exclude_names' in kwargs:
writer.exclude_names = kwargs['exclude_names']
if 'fill_values' in kwargs:
writer.data.fill_values = kwargs['fill_values']
if 'fill_include_names' in kwargs:
writer.data.fill_include_names = kwargs['fill_include_names']
if 'fill_exclude_names' in kwargs:
writer.data.fill_exclude_names = kwargs['fill_exclude_names']
return writer