astropy:docs

Example: Defining a new spherical coordinate system

This document describes in detail how to subclass and define a custom spherical coordinate system, as mentioned in Designing Coordinate Systems and the docstring for SphericalCoordinatesBase. In this example, we will define a coordinate system defined by the plane of orbit of the Sagittarius Dwarf Galaxy (hereafter Sgr; as defined in Majewski et al. 2003). The Sgr coordinate system is often referred to in terms of two angular coordinates, \Lambda,B.

We’ll start by using a template to generate a descriptive docstring for our subclass. Then we’ll add some glue to the default initializer to recognize that we want to call the coordinates Lambda and Beta. Then we have to define the transformation from this coordinate system to some other built-in system, in this case we will use spherical Galactic Coordinates as defined in Galactic.

The first step is to create a new class for our coordinates, let’s call it SgrCoordinates and make it a subclass of SphericalCoordinatesBase:

import astropy.coordinates as coord

class SgrCoordinates(coord.SphericalCoordinatesBase):
    """ A spherical coordinate system defined by the orbit of the
        Sagittarius dwarf galaxy, as described in
            http://adsabs.harvard.edu/abs/2003ApJ...599.1082M
        and further explained in
            http://www.astro.virginia.edu/~srm4n/Sgr/.

"""

We can use some convenience variables defined at the superclass level to generate a descriptive docstring for our subclass:

__doc__ = __doc__.format(params=coord.SphericalCoordinatesBase. \
        _init_docstring_param_templ.format(lonnm='Lambda', latnm='Beta'))

This may look scary, but let’s break down what it is doing. __doc__ is a class attribute defined in the superclass, SphericalCoordinatesBase, and is just a string with a placeholder for a docstring specific to this subclass. We specify that extra, descriptive text by using format() with the params keyword. params expects a string describing the variable names of our current coordinate system. We can generate this from a template as well by formatting another class attribute and telling it what we want to name our coordinates (in this case, Lambda and Beta). The template string is defined as a class attribute _init_docstring_param_templ, and expects the name of the longitude-equivalent (Lambda) and latitude-equivalent (Beta) coordinates:

coord.SphericalCoordinatesBase._init_docstring_param_templ
                              .format(lonnm='Lambda', latnm='Beta')

If this looks strange or complicated, just remember that we’re just doing this to help the user (this will provide them with a nice docstring if they look at the help for this class). The bottom line: if you want to define a custom spherical coordinate system with two angular coordinates, copy and paste the below line into the class definition and change 'Lambda' to the name of your longitude coordinate, and 'Beta' to the name of your latitude coordinate.:

__doc__ = __doc__.format(params=coord.SphericalCoordinatesBase. \
        _init_docstring_param_templ.format(lonnm='Lambda', latnm='Beta'))

Next we can define our subclass’ initializer, __init__(). We start by calling __init__() on the superclass. Then, we add a catch to see if the user passed in another SphericalCoordinatesBase object in. If so, we can just transform those coordinates to SgrCoordinates and copy the attributes directly. Otherwise, we have to tell our subclass how to parse the arguments and keyword arguments that the user passed in. We do this with the _initialize_latlon() classmethod. This convenience function accepts the name of the longitude coordinate, the name of the latitude coordinate, and the arguments and keyword arguments passed to this initializer. This function will handle parsing the args and kwargs to validate and sanitize the input from the user.:

def __init__(self, *args, **kwargs):
    super(SgrCoordinates, self).__init__()

    if len(args) == 1 and len(kwargs) == 0 and
        isinstance(args[0], coord.SphericalCoordinatesBase):

        newcoord = args[0].transform_to(self.__class__)
        self._lonangle = newcoord._lonangle
        self._latangle = newcoord._latangle
        self._distance = newcoord._distance
    else:
        super(SgrCoordinates, self).
            _initialize_latlon('Lambda', 'Beta', args, kwargs)

Next we have to tell the class what to use for the longitude and latitude when doing coordinate transformations with other coordinate systems. We do that by defining properties of the class – in this case Lambda and Beta – that reference the internal names for the longitude and latitude:

@property
def Lambda(self):
    return self._lonangle

@property
def Beta(self):
    return self._latangle

Finally, we customize the default string formatting by specifying the string names of the longitude and latitude, as well as the default numerical representation (degree minute second for longitude and degree minute second for latitude):

# strings used for making __repr__ work
_repr_lon_name = 'Lambda'
_repr_lat_name = 'Beta'

# Default format for to_string
_default_string_style = 'dmsdms'

Now our coordinate system is set up! You can now create SgrCoordinates objects by passing any valid specifiers accepted by SphericalCoordinatesBase, but you won’t be able to transform to and from any other coordinate systems because we haven’t yet defined how to do that.

We will define the coordinate transformation as a function that accepts a Galactic object and returns an SgrCoordinates object. We could alternatively define the transformation by specifying a transformation matrix ( static_transform_matrix), but in this case the transformation is from a left-handed coordinate system to a right- handed system, so we need more control over the transformation. We’ll start by constructing the rotation matrix, using the helper function astropy.coordinates.angles.rotation_matrix

# Define the Euler angles (from Law & Majewski 2010)
phi = np.radians(180+3.75)
theta = np.radians(90-13.46)
psi = np.radians(180+14.111534)

# Generate the rotation matrix using the x-convention (see Goldstein)
D = rotation_matrix(phi, "z", unit=u.radian)
C = rotation_matrix(theta, "x", unit=u.radian)
B = rotation_matrix(psi, "z", unit=u.radian)
sgr_matrix = np.array(B.dot(C).dot(D))

This is done at the module level, since it will be used by both the transformation from Sgr to Galactic as well as the inverse from Galactic to Sgr. Now we can define our first transformation function:

# Galactic to Sgr coordinates
@transformations.transform_function(coord.Galactic, SgrCoordinates)
def galactic_to_sgr(galactic_coord):
    """ Compute the transformation from Galactic spherical to
        heliocentric Sgr coordinates.
    """

    l = np.atleast_1d(galactic_coord.l.radian)
    b = np.atleast_1d(galactic_coord.b.radian)

    X = cos(b)*cos(l)
    Y = cos(b)*sin(l)
    Z = sin(b)

    # Calculate X,Y,Z,distance in the Sgr system
    Xs, Ys, Zs = sgr_matrix.dot(np.array([X, Y, Z]))
    Zs = -Zs

    # Calculate the angular coordinates lambda,beta
    Lambda = np.degrees(np.arctan2(Ys,Xs))
    Lambda[Lambda < 0] = Lambda[Lambda < 0] + 360
    Beta = np.degrees(np.arcsin(Zs/np.sqrt(Xs*Xs+Ys*Ys+Zs*Zs)))

    return SgrCoordinates(Lambda, Beta, distance=galactic_coord.distance,
                          unit=(u.degree, u.degree))

The decorator @transformations.transform_function(coord.Galactic, SgrCoordinates) registers this function with the Coordinates subpackage as a transformation. Inside the function, we simply follow the same procedure as detailed by David Law’s transformation code. Note that in this case, both coordinate systems are heliocentric, so we can simply copy any distance from the Galactic object.

We then register the inverse transformation by using the Transpose of the rotation matrix:

@transformations.transform_function(SgrCoordinates, coord.Galactic)
def sgr_to_galactic(sgr_coord):
    """ Compute the transformation from heliocentric Sgr coordinates to
        spherical Galactic.
    """
    L = np.atleast_1d(sgr_coord.Lambda.radian)
    B = np.atleast_1d(sgr_coord.Beta.radian)

    Xs = cos(B)*cos(L)
    Ys = cos(B)*sin(L)
    Zs = sin(B)
    Zs = -Zs

    X, Y, Z = sgr_matrix.T.dot(np.array([Xs, Ys, Zs]))

    l = np.degrees(np.arctan2(Y,X))
    b = np.degrees(np.arcsin(Z/np.sqrt(X*X+Y*Y+Z*Z)))

    if l<0:
        l += 360

    return coord.Galactic(l, b, distance=sgr_coord.distance,
                          unit=(u.degree, u.degree))

Now that we’ve registered these transformations between SgrCoordinates and Galactic, we can transform between any coordinate system and SgrCoordinates (as long as the other system has a path to transform to Galactic). For example, to transform from ICRS coordinates to SgrCoordinates, we simply:

>>> from astropy import units as u
>>> import astropy.coordinates as coord
>>> icrs = coord.ICRS(280.161732, 11.91934, unit=(u.degree,u.degree))
>>> icrs.transform_to(SgrCoordinates)  
<SgrCoordinates Lambda=346.81827 deg, Beta=-39.28367 deg>

The complete code for the above example is included below for reference.

See Also

Complete Code for Example

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# coding: utf-8

""" Astropy coordinate class for the Sagittarius coordinate system """

from __future__ import division, print_function

__author__ = "adrn <adrn@astro.columbia.edu>"

# Standard library
import os, sys

# Third-party
import numpy as np
from numpy import cos, sin

import astropy.coordinates as coord
import astropy.units as u
from astropy.coordinates import transformations
from astropy.coordinates.angles import rotation_matrix

__all__ = ["SgrCoordinates"]

class SgrCoordinates(coord.SphericalCoordinatesBase):
    """ A Heliocentric spherical coordinate system defined by the orbit
        of the Sagittarius dwarf galaxy, as described in
            http://adsabs.harvard.edu/abs/2003ApJ...599.1082M
        and further explained in
            http://www.astro.virginia.edu/~srm4n/Sgr/.

    """
    __doc__ = __doc__.format(params=coord.SphericalCoordinatesBase. \
            _init_docstring_param_templ.format(lonnm='Lambda', latnm='Beta'))

    def __init__(self, *args, **kwargs):
        super(SgrCoordinates, self).__init__()

        if len(args) == 1 and len(kwargs) == 0 and \
            isinstance(args[0], coord.SphericalCoordinatesBase):

            newcoord = args[0].transform_to(self.__class__)
            self._lonangle = newcoord._lonangle
            self._latangle = newcoord._latangle
            self._distance = newcoord._distance
        else:
            super(SgrCoordinates, self).\
                _initialize_latlon('Lambda', 'Beta', args, kwargs)

    # strings used for making __repr__ work
    _repr_lon_name = 'Lambda'
    _repr_lat_name = 'Beta'

    # Default format for to_string
    _default_string_style = 'dmsdms'

    @property
    def Lambda(self):
        return self._lonangle

    @property
    def Beta(self):
        return self._latangle

# Define the Euler angles (from Law & Majewski 2010)
phi = np.radians(180+3.75)
theta = np.radians(90-13.46)
psi = np.radians(180+14.111534)

# Generate the rotation matrix using the x-convention (see Goldstein)
D = rotation_matrix(phi, "z", unit=u.radian)
C = rotation_matrix(theta, "x", unit=u.radian)
B = rotation_matrix(psi, "z", unit=u.radian)
sgr_matrix = np.array(B.dot(C).dot(D))

# Galactic to Sgr coordinates
@transformations.transform_function(coord.Galactic, SgrCoordinates)
def galactic_to_sgr(galactic_coord):
    """ Compute the transformation from Galactic spherical to
        heliocentric Sgr coordinates.
    """

    l = np.atleast_1d(galactic_coord.l.radian)
    b = np.atleast_1d(galactic_coord.b.radian)

    X = cos(b)*cos(l)
    Y = cos(b)*sin(l)
    Z = sin(b)

    # Calculate X,Y,Z,distance in the Sgr system
    Xs, Ys, Zs = sgr_matrix.dot(np.array([X, Y, Z]))
    Zs = -Zs

    # Calculate the angular coordinates lambda,beta
    Lambda = np.degrees(np.arctan2(Ys,Xs))
    Lambda[Lambda < 0] = Lambda[Lambda < 0] + 360
    Beta = np.degrees(np.arcsin(Zs/np.sqrt(Xs*Xs+Ys*Ys+Zs*Zs)))

    return SgrCoordinates(Lambda, Beta, distance=galactic_coord.distance,
                          unit=(u.degree, u.degree))

@transformations.transform_function(SgrCoordinates, coord.Galactic)
def sgr_to_galactic(sgr_coord):
    """ Compute the transformation from heliocentric Sgr coordinates to
        spherical Galactic.
    """
    L = np.atleast_1d(sgr_coord.Lambda.radian)
    B = np.atleast_1d(sgr_coord.Beta.radian)

    Xs = cos(B)*cos(L)
    Ys = cos(B)*sin(L)
    Zs = sin(B)
    Zs = -Zs

    X, Y, Z = sgr_matrix.T.dot(np.array([Xs, Ys, Zs]))

    l = np.degrees(np.arctan2(Y,X))
    b = np.degrees(np.arcsin(Z/np.sqrt(X*X+Y*Y+Z*Z)))

    if l<0:
        l += 360

    return coord.Galactic(l, b, distance=sgr_coord.distance,
                          unit=(u.degree, u.degree))

if __name__ == "__main__":
    # Example use case for our newly defined coordinate class
    ra_dec = coord.ICRS(152.88572, 11.57281, unit=(u.degree,
                                                              u.degree))
    sgr = ra_dec.transform_to(SgrCoordinates)
    print(sgr)