astropy:docs

Source code for astropy.cosmology.core

# Licensed under a 3-clause BSD style license - see LICENSE.rst
import sys
import warnings
from math import sqrt, pi, exp, log, floor
from abc import ABCMeta, abstractmethod

import numpy as np

from .. import constants as const
from ..config import ConfigurationItem
from ..utils.misc import isiterable
from ..utils.exceptions import AstropyUserWarning
from .. import units as u

from . import parameters

# Originally authored by Andrew Becker (becker@astro.washington.edu),
# and modified by Neil Crighton (neilcrighton@gmail.com) and Roban
# Kramer (robanhk@gmail.com).

# Many of these adapted from Hogg 1999, astro-ph/9905116
# and Linder 2003, PRL 90, 91301

__all__ = ["FLRW", "LambdaCDM", "FlatLambdaCDM", "wCDM", "FlatwCDM",
           "Flatw0waCDM", "w0waCDM", "wpwaCDM", "w0wzCDM", "get_current",
           "set_current", "WMAP5", "WMAP7", "WMAP9", "Planck13"]

__doctest_requires__ = {'*': ['scipy.integrate']}

# Constants

# Mpc in km
Mpc_km = (1 * u.Mpc).to(u.km)

arcsec_in_radians = 1 / 3600. * pi / 180
arcmin_in_radians = 1 / 60. * pi / 180


# Radiation parameter over c^2 in cgs
a_B_c2 = 4 * const.sigma_sb.cgs.value / const.c.cgs.value ** 3

# Boltzmann constant in eV / K
kB_evK = const.k_B.decompose().to(u.eV / u.K)

DEFAULT_COSMOLOGY = ConfigurationItem(
    'default_cosmology', 'no_default',
    'The default cosmology to use. Note this is only read on import, '
    'so changing this value at runtime has no effect.')


class CosmologyError(Exception):
    pass


class Cosmology(object):
    """ Placeholder for when a more general Cosmology class is
    implemented. """
    pass


[docs]class FLRW(Cosmology): """ A class describing an isotropic and homogeneous (Friedmann-Lemaitre-Robertson-Walker) cosmology. This is an abstract base class -- you can't instantiate examples of this class, but must work with one of its subclasses such as `LambdaCDM` or `wCDM`. Parameters ---------- H0 : float or scalar astropy.units.Quantity Hubble constant at z = 0. If a float, must be in [km/sec/Mpc] Om0 : float Omega matter: density of non-relativistic matter in units of the critical density at z=0. Ode0 : float Omega dark energy: density of dark energy in units of the critical density at z=0. Tcmb0 : float or scalar astropy.units.Quantity Temperature of the CMB z=0. If a float, must be in [K]. Default: 2.725. Setting this to zero will turn off both photons and neutrinos (even massive ones) Neff : float Effective number of Neutrino species. Default 3.04. m_nu : astropy.units.Quantity Mass of each neutrino species. If this is a scalar Quantity, then all neutrino species are assumed to have that mass. Otherwise, the mass of each species. The actual number of neutrino species (and hence the number of elements of m_nu if it is not scalar) must be the floor of Neff. Usually this means you must provide three neutrino masses unless you are considering something like a sterile neutrino. name : str Optional name for this cosmological object. Notes ----- Class instances are static -- you can't change the values of the parameters. That is, all of the attributes above are read only. """ __metaclass__ = ABCMeta def __init__(self, H0, Om0, Ode0, Tcmb0=2.725, Neff=3.04, m_nu=u.Quantity(0.0, u.eV), name=None): # all densities are in units of the critical density self._Om0 = float(Om0) if self._Om0 < 0.0: raise ValueError("Matter density can not be negative") self._Ode0 = float(Ode0) self._Neff = float(Neff) if self._Neff < 0.0: raise ValueError("Effective number of neutrinos can " "not be negative") self.name = name # Tcmb may have units self._Tcmb0 = u.Quantity(Tcmb0, unit=u.K, dtype=np.float) if not self._Tcmb0.isscalar: raise ValueError("Tcmb0 is a non-scalar quantity") # Hubble parameter at z=0, km/s/Mpc self._H0 = u.Quantity(H0, unit=u.km / u.s / u.Mpc, dtype=np.float) if not self._H0.isscalar: raise ValueError("H0 is a non-scalar quantity") # 100 km/s/Mpc * h = H0 (so h is dimensionless) self._h = self._H0.value / 100. # Hubble distance self._hubble_distance = (const.c / self._H0).to(u.Mpc) # H0 in s^-1 H0_s = self._H0.to(1.0 / u.s) # Hubble time self._hubble_time = (1. / H0_s).to(u.Gyr) # critical density at z=0 (grams per cubic cm) self._critical_density0 = (3. * H0_s ** 2 / (8. * pi * const.G.cgs)).cgs # Load up neutrino masses. self._nneutrinos = int(floor(self._Neff)) # In Py2.x, floor is floating # We are going to share Neff between the neutrinos equally. # In detail this is not correct, but it is a standard assumption # because propertly calculating it is a) complicated b) depends # on the details of the massive nuetrinos (e.g., their weak # interactions, which could be unusual if one is considering sterile # neutrinos) self._massivenu = False if self._nneutrinos > 0 and self._Tcmb0.value > 0: self._neff_per_nu = self._Neff / self._nneutrinos # We can't use the u.Quantity constructor as we do above # because it doesn't understand equivalencies if not isinstance(m_nu, u.Quantity): raise ValueError("m_nu must be a Quantity") m_nu = m_nu.to(u.eV, equivalencies=u.mass_energy()) # Now, figure out if we have massive neutrinos to deal with, # and, if so, get the right number of masses # It is worth the effort to keep track of massless ones seperately # (since they are quite easy to deal with, and a common use case # is to set only one neutrino to have mass) if m_nu.isscalar: # Assume all neutrinos have the same mass if m_nu.value == 0: self._nmasslessnu = self._nneutrinos self._nmassivenu = 0 else: self._massivenu = True self._nmasslessnu = 0 self._nmassivenu = self._nneutrinos self._massivenu_mass = (m_nu.value * np.ones(self._nneutrinos)) else: # Make sure we have the right number of masses # -unless- they are massless, in which case we cheat a little if m_nu.value.min() < 0: raise ValueError("Invalid (negative) neutrino mass" " encountered") if m_nu.value.max() == 0: self._nmasslessnu = self._nneutrinos self._nmassivenu = 0 else: self._massivenu = True if len(m_nu) != self._nneutrinos: raise ValueError("Unexpected number of neutrino masses") # Segregate out the massless ones try: # Numpy < 1.6 doesn't have count_nonzero self._nmasslessnu = np.count_nonzero(m_nu.value == 0) except AttributeError: self._nmasslessnu = len(np.nonzero(m_nu.value == 0)[0]) self._nmassivenu = self._nneutrinos - self._nmasslessnu w = np.nonzero(m_nu.value > 0)[0] self._massivenu_mass = m_nu[w] # Compute photon density, Tcmb, neutrino parameters # Tcmb0=0 removes both photons and neutrinos, is handled # as a special case for efficiency if self._Tcmb0.value > 0: # Compute photon density from Tcmb self._Ogamma0 = a_B_c2 * self._Tcmb0.value ** 4 /\ self._critical_density0.value # Compute Neutrino temperature # The constant in front is (4/11)^1/3 -- see any # cosmology book for an explanation -- for example, # Weinberg 'Cosmology' p 154 eq (3.1.21) self._Tnu0 = 0.7137658555036082 * self._Tcmb0 # Compute Neutrino Omega and total relativistic component # for massive neutrinos if self._massivenu: nu_y = self._massivenu_mass / (kB_evK * self._Tnu0) self._nu_y = nu_y.value self._Onu0 = self._Ogamma0 * self.nu_relative_density(0) else: # This case is particularly simple, so do it directly # The 0.2271... is 7/8 (4/11)^(4/3) -- the temperature # bit ^4 (blackbody energy density) times 7/8 for # FD vs. BE statistics. self._Onu0 = 0.22710731766 * self._Neff * self._Ogamma0 else: self._Ogamma0 = 0.0 self._Tnu0 = u.Quantity(0.0, u.K) self._Onu0 = 0.0 # Compute curvature density self._Ok0 = 1.0 - self._Om0 - self._Ode0 - self._Ogamma0 - self._Onu0 def _namelead(self): """ Helper function for constructing __repr__""" if self.name is None: return "{0}(".format(self.__class__.__name__) else: return "{0}(name=\"{1}\", ".format(self.__class__.__name__, self.name) def __repr__(self): retstr = "{0}H0={1:.3g}, Om0={2:.3g}, Ode0={3:.3g}, "\ "Tcmb0={4:.4g}, Neff={5:.3g}, m_nu={6})" return retstr.format(self._namelead(), self._H0, self._Om0, self._Ode0, self._Tcmb0, self._Neff, self.m_nu) # Set up a set of properties for H0, Om0, Ode0, Ok0, etc. for user access. # Note that we don't let these be set (so, obj.Om0 = value fails) @property
[docs] def H0(self): """ Return the Hubble constant as an astropy.units.Quantity at z=0""" return self._H0
@property
[docs] def Om0(self): """ Omega matter; matter density/critical density at z=0""" return self._Om0
@property
[docs] def Ode0(self): """ Omega dark energy; dark energy density/critical density at z=0""" return self._Ode0
@property
[docs] def Ok0(self): """ Omega curvature; the effective curvature density/critical density at z=0""" return self._Ok0
@property
[docs] def Tcmb0(self): """ Temperature of the CMB as astropy.units.Quantity at z=0""" return self._Tcmb0
@property
[docs] def Tnu0(self): """ Temperature of the neutrino background as astropy.units.Quantity at z=0""" return self._Tnu0
@property
[docs] def Neff(self): """ Number of effective neutrino species""" return self._Neff
@property
[docs] def has_massive_nu(self): """ Does this cosmology have at least one massive neutrino species?""" if self._Tnu0.value == 0: return False return self._massivenu
@property
[docs] def m_nu(self): """ Mass of neutrino species""" if self._Tnu0.value == 0: return None if not self._massivenu: # Only massless return u.Quantity(np.zeros(self._nmasslessnu), u.eV, dtype=np.float) if self._nmasslessnu == 0: # Only massive return u.Quantity(self._massivenu_mass, u.eV, dtype=np.float) # A mix -- the most complicated case numass = np.append(np.zeros(self._nmasslessnu), self._massivenu_mass.value) return u.Quantity(numass, u.eV, dtype=np.float)
@property
[docs] def h(self): """ Dimensionless Hubble constant: h = H_0 / 100 [km/sec/Mpc]""" return self._h
@property
[docs] def hubble_time(self): """ Hubble time as astropy.units.Quantity""" return self._hubble_time
@property
[docs] def hubble_distance(self): """ Hubble distance as astropy.units.Quantity""" return self._hubble_distance
@property
[docs] def critical_density0(self): """ Critical density as astropy.units.Quantity at z=0""" return self._critical_density0
@property
[docs] def Ogamma0(self): """ Omega gamma; the density/critical density of photons at z=0""" return self._Ogamma0
@property
[docs] def Onu0(self): """ Omega nu; the density/critical density of neutrinos at z=0""" return self._Onu0
@abstractmethod
[docs] def w(self, z): """ The dark energy equation of state. Parameters ---------- z : array_like Input redshifts. Returns ------- w : ndarray, or float if input scalar The dark energy equation of state Notes ------ The dark energy equation of state is defined as :math:`w(z) = P(z)/\\rho(z)`, where :math:`P(z)` is the pressure at redshift z and :math:`\\rho(z)` is the density at redshift z, both in units where c=1. This must be overridden by subclasses. """ raise NotImplementedError("w(z) is not implemented")
[docs] def Om(self, z): """ Return the density parameter for non-relativistic matter at redshift `z`. Parameters ---------- z : array_like Input redshifts. Returns ------- Om : ndarray, or float if input scalar The density of non-relativistic matter relative to the critical density at each redshift. """ if isiterable(z): z = np.asarray(z) return self._Om0 * (1. + z) ** 3 * self.inv_efunc(z) ** 2
[docs] def Ok(self, z): """ Return the equivalent density parameter for curvature at redshift `z`. Parameters ---------- z : array_like Input redshifts. Returns ------- Ok : ndarray, or float if input scalar The equivalent density parameter for curvature at each redshift. """ if isiterable(z): z = np.asarray(z) # Common enough case to be worth checking explicitly if self._Ok0 == 0: return np.zeros(np.asanyarray(z).shape, dtype=np.float) else: if self._Ok0 == 0: return 0.0 return self._Ok0 * (1. + z) ** 2 * self.inv_efunc(z) ** 2
[docs] def Ode(self, z): """ Return the density parameter for dark energy at redshift `z`. Parameters ---------- z : array_like Input redshifts. Returns ------- Ode : ndarray, or float if input scalar The density of non-relativistic matter relative to the critical density at each redshift. """ if isiterable(z): z = np.asarray(z) # Common case worth checking if self._Ode0 == 0: return np.zeros(np.asanyarray(z).shape, dtype=np.float) else: if self._Ode0 == 0: return 0.0 return self._Ode0 * self.de_density_scale(z) * self.inv_efunc(z) ** 2
[docs] def Ogamma(self, z): """ Return the density parameter for photons at redshift `z`. Parameters ---------- z : array_like Input redshifts. Returns ------- Ogamma : ndarray, or float if input scalar The energy density of photons relative to the critical density at each redshift. """ if isiterable(z): z = np.asarray(z) return self._Ogamma0 * (1. + z) ** 4 * self.inv_efunc(z) ** 2
[docs] def Onu(self, z): """ Return the density parameter for massless neutrinos at redshift `z`. Parameters ---------- z : array_like Input redshifts. Returns ------- Onu : ndarray, or float if input scalar The energy density of photons relative to the critical density at each redshift. Note that this includes their kinetic energy (if they have mass), so it is not equal to the commonly used :math:`\\sum \\frac{m_{\\nu}}{94 eV}`, which does not include kinetic energy. """ if isiterable(z): z = np.asarray(z) if self._Onu0 == 0: return np.zeros(np.asanyarray(z).shape, dtype=np.float) else: if self._Onu0 == 0: return 0.0 return self.Ogamma(z) * self.nu_relative_density(z)
[docs] def Tcmb(self, z): """ Return the CMB temperature at redshift `z`. Parameters ---------- z : array_like Input redshifts. Returns ------- Tcmb : astropy.units.Quantity The temperature of the CMB in K. """ if isiterable(z): z = np.asarray(z) return self._Tcmb0 * (1. + z)
[docs] def Tnu(self, z): """ Return the neutrino temperature at redshift `z`. Parameters ---------- z : array_like Input redshifts. Returns ------- Tnu : astropy.units.Quantity The temperature of the cosmic neutrino background in K. """ if isiterable(z): z = np.asarray(z) return self._Tnu0 * (1. + z)
[docs] def nu_relative_density(self, z): """ Neutrino density function relative to the energy density in photons. Parameters ---------- z : array like Redshift Returns ------- f : ndarray, or float if z is scalar The neutrino density scaling factor relative to the density in photons at each redshift Notes ----- The density in neutrinos is given by .. math:: \\rho_{\\nu} \\left(a\\right) = 0.2271 \\, N_{eff} \\, f\\left(m_{\\nu} a / T_{\\nu 0} \\right) \\, \\rho_{\\gamma} \\left( a \\right) where .. math:: f \\left(y\\right) = \\frac{120}{7 \\pi^4} \\int_0^{\\infty} \\, dx \\frac{x^2 \\sqrt{x^2 + y^2}} {e^x + 1} assuming that all neutrino species have the same mass. If they have different masses, a similar term is calculated for each one. Note that f has the asymptotic behavior :math:`f(0) = 1`. This method returns :math:`0.2271 f` using an analytical fitting formula given in Komatsu et al. 2011, ApJS 192, 18. """ # See Komatsu et al. 2011, eq 26 and the surrounding discussion # However, this is modified to handle multiple neutrino masses # by computing the above for each mass, then summing prefac = 0.22710731766 # 7/8 (4/11)^4/3 -- see any cosmo book # The massive and massless contribution must be handled seperately # But check for common cases first if not self._massivenu: if np.isscalar(z): return prefac * self._Neff else: return prefac * self._Neff *\ np.ones(np.asanyarray(z).shape, dtype=np.float) p = 1.83 invp = 1.0 / p if np.isscalar(z): curr_nu_y = self._nu_y / (1.0 + z) # only includes massive ones rel_mass_per = (1.0 + (0.3173 * curr_nu_y) ** p) ** invp rel_mass = rel_mass_per.sum() + self._nmasslessnu else: z = np.asarray(z) retarr = np.empty_like(z) curr_nu_y = self._nu_y / (1. + np.expand_dims(z, axis=-1)) rel_mass_per = (1. + (0.3173 * curr_nu_y) ** p) ** invp rel_mass = rel_mass_per.sum(-1) + self._nmasslessnu return prefac * self._neff_per_nu * rel_mass
def _w_integrand(self, ln1pz): """ Internal convenience function for w(z) integral.""" # See Linder 2003, PRL 90, 91301 eq (5) # Assumes scalar input, since this should only be called # inside an integral z = exp(ln1pz) - 1.0 return 1.0 + self.w(z)
[docs] def de_density_scale(self, z): """ Evaluates the redshift dependence of the dark energy density. Parameters ---------- z : array_like Input redshifts. Returns ------- I : ndarray, or float if input scalar The scaling of the energy density of dark energy with redshift. Notes ----- The scaling factor, I, is defined by :math:`\\rho(z) = \\rho_0 I`, and is given by .. math:: I = \\exp \\left( 3 \int_{a}^1 \\frac{ da^{\\prime} }{ a^{\\prime} } \\left[ 1 + w\\left( a^{\\prime} \\right) \\right] \\right) It will generally helpful for subclasses to overload this method if the integral can be done analytically for the particular dark energy equation of state that they implement. """ # This allows for an arbitrary w(z) following eq (5) of # Linder 2003, PRL 90, 91301. The code here evaluates # the integral numerically. However, most popular # forms of w(z) are designed to make this integral analytic, # so it is probably a good idea for subclasses to overload this # method if an analytic form is available. # # The integral we actually use (the one given in Linder) # is rewritten in terms of z, so looks slightly different than the # one in the documentation string, but it's the same thing. from scipy.integrate import quad if isiterable(z): z = np.asarray(z) ival = np.array([quad(self._w_integrand, 0, log(1 + redshift))[0] for redshift in z]) return np.exp(3 * ival) else: ival = quad(self._w_integrand, 0, log(1 + z))[0] return exp(3 * ival)
[docs] def efunc(self, z): """ Function used to calculate H(z), the Hubble parameter. Parameters ---------- z : array_like Input redshifts. Returns ------- E : ndarray, or float if input scalar The redshift scaling of the Hubble constant. Notes ----- The return value, E, is defined such that :math:`H(z) = H_0 E`. It is not necessary to override this method, but if de_density_scale takes a particularly simple form, it may be advantageous to. """ if isiterable(z): z = np.asarray(z) Om0, Ode0, Ok0 = self._Om0, self._Ode0, self._Ok0 if self._massivenu: Or = self._Ogamma0 * (1 + self.nu_relative_density(z)) else: Or = self._Ogamma0 + self._Onu0 zp1 = 1.0 + z return np.sqrt(zp1 ** 2 * ((Or * zp1 + Om0) * zp1 + Ok0) + Ode0 * self.de_density_scale(z))
[docs] def inv_efunc(self, z): """Inverse of efunc. Parameters ---------- z : array_like Input redshifts. Returns ------- E : ndarray, or float if input scalar The redshift scaling of the inverse Hubble constant. """ # Avoid the function overhead by repeating code if isiterable(z): z = np.asarray(z) Om0, Ode0, Ok0 = self._Om0, self._Ode0, self._Ok0 if self._massivenu: Or = self._Ogamma0 * (1 + self.nu_relative_density(z)) else: Or = self._Ogamma0 + self._Onu0 zp1 = 1.0 + z return 1.0 / np.sqrt(zp1 ** 2 * ((Or * zp1 + Om0) * zp1 + Ok0) + Ode0 * self.de_density_scale(z))
def _tfunc(self, z): """ Integrand of the lookback time. Parameters ---------- z : array_like Input redshifts. Returns ------- I : ndarray, or float if input scalar The integrand for the lookback time References ---------- Eqn 30 from Hogg 1999. """ if isiterable(z): zp1 = 1.0 + np.asarray(z) else: zp1 = 1. + z return 1.0 / (zp1 * self.efunc(z)) def _xfunc(self, z): """ Integrand of the absorption distance. Parameters ---------- z : array_like Input redshifts. Returns ------- X : ndarray, or float if input scalar The integrand for the absorption distance References ---------- See Hogg 1999 section 11. """ if isiterable(z): zp1 = 1.0 + np.asarray(z) else: zp1 = 1. + z return zp1 ** 2 / self.efunc(z)
[docs] def H(self, z): """ Hubble parameter (km/s/Mpc) at redshift `z`. Parameters ---------- z : array_like Input redshifts. Returns ------- H : astropy.units.Quantity Hubble parameter at each input redshift. """ return self._H0 * self.efunc(z)
[docs] def scale_factor(self, z): """ Scale factor at redshift `z`. The scale factor is defined as :math:`a = 1 / (1 + z)`. Parameters ---------- z : array_like Input redshifts. Returns ------- a : ndarray, or float if input scalar Scale factor at each input redshift. """ if isiterable(z): z = np.asarray(z) return 1. / (1. + z)
[docs] def lookback_time(self, z): """ Lookback time in Gyr to redshift `z`. The lookback time is the difference between the age of the Universe now and the age at redshift `z`. Parameters ---------- z : array_like Input redshifts. Must be 1D or scalar Returns ------- t : astropy.units.Quantity Lookback time in Gyr to each input redshift. """ from scipy.integrate import quad if not isiterable(z): return self._hubble_time * quad(self._tfunc, 0, z)[0] out = np.array([quad(self._tfunc, 0, redshift)[0] for redshift in z]) return self._hubble_time * np.array(out)
[docs] def age(self, z): """ Age of the universe in Gyr at redshift `z`. Parameters ---------- z : array_like Input redshifts. Must be 1D or scalar. Returns ------- t : astropy.units.Quantity The age of the universe in Gyr at each input redshift. """ from scipy.integrate import quad if not isiterable(z): return self._hubble_time * quad(self._tfunc, z, np.inf)[0] out = [quad(self._tfunc, redshift, np.inf)[0] for redshift in z] return self._hubble_time * np.array(out)
[docs] def critical_density(self, z): """ Critical density in grams per cubic cm at redshift `z`. Parameters ---------- z : array_like Input redshifts. Returns ------- rho : astropy.units.Quantity Critical density in g/cm^3 at each input redshift. """ return self._critical_density0 * (self.efunc(z)) ** 2
[docs] def comoving_distance(self, z): """ Comoving line-of-sight distance in Mpc at a given redshift. The comoving distance along the line-of-sight between two objects remains constant with time for objects in the Hubble flow. Parameters ---------- z : array_like Input redshifts. Must be 1D or scalar. Returns ------- d : ndarray, or float if input scalar Comoving distance in Mpc to each input redshift. """ from scipy.integrate import quad if not isiterable(z): return self._hubble_distance * quad(self.inv_efunc, 0, z)[0] out = [quad(self.inv_efunc, 0, redshift)[0] for redshift in z] return self._hubble_distance * np.array(out)
[docs] def comoving_transverse_distance(self, z): """ Comoving transverse distance in Mpc at a given redshift. This value is the transverse comoving distance at redshift `z` corresponding to an angular separation of 1 radian. This is the same as the comoving distance if omega_k is zero (as in the current concordance lambda CDM model). Parameters ---------- z : array_like Input redshifts. Must be 1D or scalar. Returns ------- d : astropy.units.Quantity Comoving transverse distance in Mpc at each input redshift. Notes ----- This quantity also called the 'proper motion distance' in some texts. """ Ok0 = self._Ok0 dc = self.comoving_distance(z) if Ok0 == 0: return dc sqrtOk0 = sqrt(abs(Ok0)) dh = self._hubble_distance if Ok0 > 0: return dh / sqrtOk0 * np.sinh(sqrtOk0 * dc.value / dh.value) else: return dh / sqrtOk0 * np.sin(sqrtOk0 * dc.value / dh.value)
[docs] def angular_diameter_distance(self, z): """ Angular diameter distance in Mpc at a given redshift. This gives the proper (sometimes called 'physical') transverse distance corresponding to an angle of 1 radian for an object at redshift `z`. Weinberg, 1972, pp 421-424; Weedman, 1986, pp 65-67; Peebles, 1993, pp 325-327. Parameters ---------- z : array_like Input redshifts. Must be 1D or scalar. Returns ------- d : astropy.units.Quantity Angular diameter distance in Mpc at each input redshift. """ if isiterable(z): z = np.asarray(z) return self.comoving_transverse_distance(z) / (1. + z)
[docs] def luminosity_distance(self, z): """ Luminosity distance in Mpc at redshift `z`. This is the distance to use when converting between the bolometric flux from an object at redshift `z` and its bolometric luminosity. Parameters ---------- z : array_like Input redshifts. Must be 1D or scalar. Returns ------- d : astropy.units.Quantity Luminosity distance in Mpc at each input redshift. References ---------- Weinberg, 1972, pp 420-424; Weedman, 1986, pp 60-62. """ if isiterable(z): z = np.asarray(z) return (1. + z) * self.comoving_transverse_distance(z)
[docs] def angular_diameter_distance_z1z2(self, z1, z2): """ Angular diameter distance between objects at 2 redshifts. Useful for gravitational lensing. Parameters ---------- z1, z2 : array_like, shape (N,) Input redshifts. z2 must be large than z1. Returns ------- d : astropy.units.Quantity, shape (N,) or single if input scalar The angular diameter distance between each input redshift pair. Raises ------ CosmologyError If omega_k is < 0. Notes ----- This method only works for flat or open curvature (omega_k >= 0). """ # does not work for negative curvature Ok0 = self._Ok0 if Ok0 < 0: raise CosmologyError('Ok0 must be >= 0 to use this method.') outscalar = False if not isiterable(z1) and not isiterable(z2): outscalar = True z1 = np.atleast_1d(z1) z2 = np.atleast_1d(z2) if z1.size != z2.size: raise ValueError('z1 and z2 must be the same size.') if (z1 > z2).any(): raise ValueError('z2 must greater than z1') # z1 < z2 if (z2 < z1).any(): z1, z2 = z2, z1 dm1 = self.comoving_transverse_distance(z1).value dm2 = self.comoving_transverse_distance(z2).value dh_2 = self._hubble_distance.value ** 2 if Ok0 == 0: # Common case worth checking out = (dm2 - dm1) / (1. + z2) else: out = ((dm2 * np.sqrt(1. + Ok0 * dm1 ** 2 / dh_2) - dm1 * np.sqrt(1. + Ok0 * dm2 ** 2 / dh_2)) / (1. + z2)) if outscalar: return u.Quantity(out[0], u.Mpc) return u.Quantity(out, u.Mpc)
[docs] def absorption_distance(self, z): """ Absorption distance at redshift `z`. This is used to calculate the number of objects with some cross section of absorption and number density intersecting a sightline per unit redshift path. Parameters ---------- z : array_like Input redshifts. Must be 1D or scalar. Returns ------- d : float or ndarray Absorption distance (dimensionless) at each input redshift. References ---------- Hogg 1999 Section 11. (astro-ph/9905116) Bahcall, John N. and Peebles, P.J.E. 1969, ApJ, 156L, 7B """ from scipy.integrate import quad if not isiterable(z): return quad(self._xfunc, 0, z)[0] out = np.array([quad(self._xfunc, 0, redshift)[0] for redshift in z]) return out
[docs] def distmod(self, z): """ Distance modulus at redshift `z`. The distance modulus is defined as the (apparent magnitude - absolute magnitude) for an object at redshift `z`. Parameters ---------- z : array_like Input redshifts. Must be 1D or scalar. Returns ------- distmod : astropy.units.Quantity Distance modulus at each input redshift, in magnitudes """ # Remember that the luminosity distance is in Mpc val = 5. * np.log10(self.luminosity_distance(z).value * 1.e5) return u.Quantity(val, u.mag)
[docs] def comoving_volume(self, z): """ Comoving volume in cubic Mpc at redshift `z`. This is the volume of the universe encompassed by redshifts less than `z`. For the case of omega_k = 0 it is a sphere of radius `comoving_distance(z)` but it is less intuitive if omega_k is not 0. Parameters ---------- z : array_like Input redshifts. Must be 1D or scalar. Returns ------- V : astropy.units.Quantity Comoving volume in :math:`Mpc^3` at each input redshift. """ Ok0 = self._Ok0 if Ok0 == 0: return 4. / 3. * pi * self.comoving_distance(z) ** 3 dh = self._hubble_distance.value # .value for speed dm = self.comoving_transverse_distance(z).value term1 = 4. * pi * dh ** 3 / (2. * Ok0) * u.Mpc ** 3 term2 = dm / dh * np.sqrt(1 + Ok0 * (dm / dh) ** 2) term3 = sqrt(abs(Ok0)) * dm / dh if Ok0 > 0: return term1 * (term2 - 1. / sqrt(abs(Ok0)) * np.arcsinh(term3)) else: return term1 * (term2 - 1. / sqrt(abs(Ok0)) * np.arcsin(term3))
[docs] def kpc_comoving_per_arcmin(self, z): """ Separation in transverse comoving kpc corresponding to an arcminute at redshift `z`. Parameters ---------- z : array_like Input redshifts. Must be 1D or scalar. Returns ------- d : astropy.units.Quantity The distance in comoving kpc corresponding to an arcmin at each input redshift. """ return (self.comoving_transverse_distance(z).to(u.kpc) * arcmin_in_radians / u.arcmin)
[docs] def kpc_proper_per_arcmin(self, z): """ Separation in transverse proper kpc corresponding to an arcminute at redshift `z`. Parameters ---------- z : array_like Input redshifts. Must be 1D or scalar. Returns ------- d : astropy.units.Quantity The distance in proper kpc corresponding to an arcmin at each input redshift. """ return (self.angular_diameter_distance(z).to(u.kpc) * arcmin_in_radians / u.arcmin)
[docs] def arcsec_per_kpc_comoving(self, z): """ Angular separation in arcsec corresponding to a comoving kpc at redshift `z`. Parameters ---------- z : array_like Input redshifts. Must be 1D or scalar. Returns ------- theta : astropy.units.Quantity The angular separation in arcsec corresponding to a comoving kpc at each input redshift. """ return u.arcsec / (self.comoving_transverse_distance(z).to(u.kpc) * arcsec_in_radians)
[docs] def arcsec_per_kpc_proper(self, z): """ Angular separation in arcsec corresponding to a proper kpc at redshift `z`. Parameters ---------- z : array_like Input redshifts. Must be 1D or scalar. Returns ------- theta : astropy.units.Quantity The angular separation in arcsec corresponding to a proper kpc at each input redshift. """ return u.arcsec / (self.angular_diameter_distance(z).to(u.kpc) * arcsec_in_radians)
[docs]class LambdaCDM(FLRW): """FLRW cosmology with a cosmological constant and curvature. This has no additional attributes beyond those of FLRW. Parameters ---------- H0 : float or astropy.units.Quantity Hubble constant at z = 0. If a float, must be in [km/sec/Mpc] Om0 : float Omega matter: density of non-relativistic matter in units of the critical density at z=0. Ode0 : float Omega dark energy: density of the cosmological constant in units of the critical density at z=0. Tcmb0 : float or astropy.units.Quantity Temperature of the CMB z=0. If a float, must be in [K]. Default: 2.725. Neff : float Effective number of Neutrino species. Default 3.04. m_nu : astropy.units.Quantity Mass of each neutrino species. If this is a scalar Quantity, then all neutrino species are assumed to have that mass. Otherwise, the mass of each species. The actual number of neutrino species (and hence the number of elements of m_nu if it is not scalar) must be the floor of Neff. Usually this means you must provide three neutrino masses unless you are considering something like a sterile neutrino. name : str Optional name for this cosmological object. Examples -------- >>> from astropy.cosmology import LambdaCDM >>> cosmo = LambdaCDM(H0=70, Om0=0.3, Ode0=0.7) The comoving distance in Mpc at redshift z: >>> z = 0.5 >>> dc = cosmo.comoving_distance(z) """ def __init__(self, H0, Om0, Ode0, Tcmb0=2.725, Neff=3.04, m_nu=u.Quantity(0.0, u.eV), name=None): FLRW.__init__(self, H0, Om0, Ode0, Tcmb0, Neff, m_nu, name=name)
[docs] def w(self, z): """Returns dark energy equation of state at redshift `z`. Parameters ---------- z : array_like Input redshifts. Returns ------- w : ndarray, or float if input scalar The dark energy equation of state Notes ------ The dark energy equation of state is defined as :math:`w(z) = P(z)/\\rho(z)`, where :math:`P(z)` is the pressure at redshift z and :math:`\\rho(z)` is the density at redshift z, both in units where c=1. Here this is :math:`w(z) = -1`. """ if np.isscalar(z): return -1.0 else: return -1.0 * np.ones(np.asanyarray(z).shape, dtype=np.float)
[docs] def de_density_scale(self, z): """ Evaluates the redshift dependence of the dark energy density. Parameters ---------- z : array_like Input redshifts. Returns ------- I : ndarray, or float if input scalar The scaling of the energy density of dark energy with redshift. Notes ----- The scaling factor, I, is defined by :math:`\\rho(z) = \\rho_0 I`, and in this case is given by :math:`I = 1`. """ if np.isscalar(z): return 1. else: return np.ones(np.asanyarray(z).shape, dtype=np.float)
[docs] def efunc(self, z): """ Function used to calculate H(z), the Hubble parameter. Parameters ---------- z : array_like Input redshifts. Returns ------- E : ndarray, or float if input scalar The redshift scaling of the Hubble consant. Notes ----- The return value, E, is defined such that :math:`H(z) = H_0 E`. """ if isiterable(z): z = np.asarray(z) # We override this because it takes a particularly simple # form for a cosmological constant Om0, Ode0, Ok0 = self._Om0, self._Ode0, self._Ok0 if self._massivenu: Or = self._Ogamma0 * (1. + self.nu_relative_density(z)) else: Or = self._Ogamma0 + self._Onu0 zp1 = 1.0 + z return np.sqrt(zp1 ** 2 * ((Or * zp1 + Om0) * zp1 + Ok0) + Ode0)
[docs] def inv_efunc(self, z): r""" Function used to calculate :math:`\frac{1}{H_z}`. Parameters ---------- z : array_like Input redshifts. Returns ------- E : ndarray, or float if input scalar The inverse redshift scaling of the Hubble constant. Notes ----- The return value, E, is defined such that :math:`H_z = H_0 / E`. """ if isiterable(z): z = np.asarray(z) Om0, Ode0, Ok0 = self._Om0, self._Ode0, self._Ok0 if self._massivenu: Or = self._Ogamma0 * (1 + self.nu_relative_density(z)) else: Or = self._Ogamma0 + self._Onu0 zp1 = 1.0 + z return 1.0 / np.sqrt(zp1 ** 2 * ((Or * zp1 + Om0) * zp1 + Ok0) + Ode0)
[docs]class FlatLambdaCDM(LambdaCDM): """FLRW cosmology with a cosmological constant and no curvature. This has no additional attributes beyond those of FLRW. Parameters ---------- H0 : float or astropy.units.Quantity Hubble constant at z = 0. If a float, must be in [km/sec/Mpc] Om0 : float Omega matter: density of non-relativistic matter in units of the critical density at z=0. Tcmb0 : float or astropy.units.Quantity Temperature of the CMB z=0. If a float, must be in [K]. Default: 2.725. Neff : float Effective number of Neutrino species. Default 3.04. m_nu : astropy.units.Quantity Mass of each neutrino species. If this is a scalar Quantity, then all neutrino species are assumed to have that mass. Otherwise, the mass of each species. The actual number of neutrino species (and hence the number of elements of m_nu if it is not scalar) must be the floor of Neff. Usually this means you must provide three neutrino masses unless you are considering something like a sterile neutrino. name : str Optional name for this cosmological object. Examples -------- >>> from astropy.cosmology import FlatLambdaCDM >>> cosmo = FlatLambdaCDM(H0=70, Om0=0.3) The comoving distance in Mpc at redshift z: >>> z = 0.5 >>> dc = cosmo.comoving_distance(z) """ def __init__(self, H0, Om0, Tcmb0=2.725, Neff=3.04, m_nu=u.Quantity(0.0, u.eV), name=None): FLRW.__init__(self, H0, Om0, 0.0, Tcmb0, Neff, m_nu, name=name) # Do some twiddling after the fact to get flatness self._Ode0 = 1.0 - self._Om0 - self._Ogamma0 - self._Onu0 self._Ok0 = 0.0
[docs] def efunc(self, z): """ Function used to calculate H(z), the Hubble parameter. Parameters ---------- z : array_like Input redshifts. Returns ------- E : ndarray, or float if input scalar The redshift scaling of the Hubble consant. Notes ----- The return value, E, is defined such that :math:`H(z) = H_0 E`. """ if isiterable(z): z = np.asarray(z) # We override this because it takes a particularly simple # form for a cosmological constant Om0, Ode0 = self._Om0, self._Ode0 if self._massivenu: Or = self._Ogamma0 * (1 + self.nu_relative_density(z)) else: Or = self._Ogamma0 + self._Onu0 zp1 = 1.0 + z return np.sqrt(zp1 ** 3 * (Or * zp1 + Om0) + Ode0)
[docs] def inv_efunc(self, z): r"""Function used to calculate :math:`\frac{1}{H_z}`. Parameters ---------- z : array_like Input redshifts. Returns ------- E : ndarray, or float if input scalar The inverse redshift scaling of the Hubble constant. Notes ----- The return value, E, is defined such that :math:`H_z = H_0 / E`. """ if isiterable(z): z = np.asarray(z) Om0, Ode0 = self._Om0, self._Ode0 if self._massivenu: Or = self._Ogamma0 * (1. + self.nu_relative_density(z)) else: Or = self._Ogamma0 + self._Onu0 zp1 = 1.0 + z return 1.0 / np.sqrt(zp1 ** 3 * (Or * zp1 + Om0) + Ode0)
def __repr__(self): retstr = "{0}H0={1:.3g}, Om0={2:.3g}, Tcmb0={3:.4g}, "\ "Neff={4:.3g}, m_nu={5})" return retstr.format(self._namelead(), self._H0, self._Om0, self._Tcmb0, self._Neff, self.m_nu)
[docs]class wCDM(FLRW): """FLRW cosmology with a constant dark energy equation of state and curvature. This has one additional attribute beyond those of FLRW. Parameters ---------- H0 : float or astropy.units.Quantity Hubble constant at z = 0. If a float, must be in [km/sec/Mpc] Om0 : float Omega matter: density of non-relativistic matter in units of the critical density at z=0. Ode0 : float Omega dark energy: density of dark energy in units of the critical density at z=0. w0 : float Dark energy equation of state at all redshifts. This is pressure/density for dark energy in units where c=1. A cosmological constant has w0=-1.0. Tcmb0 : float or astropy.units.Quantity Temperature of the CMB z=0. If a float, must be in [K]. Default: 2.725. Neff : float Effective number of Neutrino species. Default 3.04. m_nu : astropy.units.Quantity Mass of each neutrino species. If this is a scalar Quantity, then all neutrino species are assumed to have that mass. Otherwise, the mass of each species. The actual number of neutrino species (and hence the number of elements of m_nu if it is not scalar) must be the floor of Neff. Usually this means you must provide three neutrino masses unless you are considering something like a sterile neutrino. name : str Optional name for this cosmological object. Examples -------- >>> from astropy.cosmology import wCDM >>> cosmo = wCDM(H0=70, Om0=0.3, Ode0=0.7, w0=-0.9) The comoving distance in Mpc at redshift z: >>> z = 0.5 >>> dc = cosmo.comoving_distance(z) """ def __init__(self, H0, Om0, Ode0, w0=-1., Tcmb0=2.725, Neff=3.04, m_nu=u.Quantity(0.0, u.eV), name=None): FLRW.__init__(self, H0, Om0, Ode0, Tcmb0, Neff, m_nu, name=name) self._w0 = float(w0) @property
[docs] def w0(self): """ Dark energy equation of state""" return self._w0
[docs] def w(self, z): """Returns dark energy equation of state at redshift `z`. Parameters ---------- z : array_like Input redshifts. Returns ------- w : ndarray, or float if input scalar The dark energy equation of state Notes ------ The dark energy equation of state is defined as :math:`w(z) = P(z)/\\rho(z)`, where :math:`P(z)` is the pressure at redshift z and :math:`\\rho(z)` is the density at redshift z, both in units where c=1. Here this is :math:`w(z) = w_0`. """ if np.isscalar(z): return self._w0 else: return self._w0 * np.ones(np.asanyarray(z).shape, dtype=np.float)
[docs] def de_density_scale(self, z): """ Evaluates the redshift dependence of the dark energy density. Parameters ---------- z : array_like Input redshifts. Returns ------- I : ndarray, or float if input scalar The scaling of the energy density of dark energy with redshift. Notes ----- The scaling factor, I, is defined by :math:`\\rho(z) = \\rho_0 I`, and in this case is given by :math:`I = \\left(1 + z\\right)^{3\\left(1 + w_0\\right)}` """ if isiterable(z): z = np.asarray(z) return (1. + z) ** (3. * (1. + self._w0))
[docs] def efunc(self, z): """ Function used to calculate H(z), the Hubble parameter. Parameters ---------- z : array_like Input redshifts. Returns ------- E : ndarray, or float if input scalar The redshift scaling of the Hubble consant. Notes ----- The return value, E, is defined such that :math:`H(z) = H_0 E`. """ if isiterable(z): z = np.asarray(z) Om0, Ode0, Ok0, w0 = self._Om0, self._Ode0, self._Ok0, self._w0 if self._massivenu: Or = self._Ogamma0 * (1. + self.nu_relative_density(z)) else: Or = self._Ogamma0 + self._Onu0 zp1 = 1.0 + z return np.sqrt(zp1 ** 2 * ((Or * zp1 + Om0) * zp1 + Ok0) + Ode0 * zp1 ** (3. * (1. + w0)))
[docs] def inv_efunc(self, z): r""" Function used to calculate :math:`\frac{1}{H_z}`. Parameters ---------- z : array_like Input redshifts. Returns ------- E : ndarray, or float if input scalar The inverse redshift scaling of the Hubble constant. Notes ----- The return value, E, is defined such that :math:`H_z = H_0 / E`. """ if isiterable(z): z = np.asarray(z) Om0, Ode0, Ok0, w0 = self._Om0, self._Ode0, self._Ok0, self._w0 if self._massivenu: Or = self._Ogamma0 * (1. + self.nu_relative_density(z)) else: Or = self._Ogamma0 + self._Onu0 zp1 = 1.0 + z return 1.0 / np.sqrt(zp1 ** 2 * ((Or * zp1 + Om0) * zp1 + Ok0) + Ode0 * zp1 ** (3. * (1. + w0)))
def __repr__(self): retstr = "{0}H0={1:.3g}, Om0={2:.3g}, Ode0={3:.3g}, w0={4:.3g}, "\ "Tcmb0={5:.4g}, Neff={6:.3g}, m_nu={7})" return retstr.format(self._namelead(), self._H0, self._Om0, self._Ode0, self._w0, self._Tcmb0, self._Neff, self.m_nu)
[docs]class FlatwCDM(wCDM): """FLRW cosmology with a constant dark energy equation of state and no spatial curvature. This has one additional attribute beyond those of FLRW. Parameters ---------- H0 : float or astropy.units.Quantity Hubble constant at z = 0. If a float, must be in [km/sec/Mpc] Om0 : float Omega matter: density of non-relativistic matter in units of the critical density at z=0. w0 : float Dark energy equation of state at all redshifts. This is pressure/density for dark energy in units where c=1. A cosmological constant has w0=-1.0. Tcmb0 : float or astropy.units.Quantity Temperature of the CMB z=0. If a float, must be in [K]. Default: 2.725. Neff : float Effective number of Neutrino species. Default 3.04. m_nu : astropy.units.Quantity Mass of each neutrino species. If this is a scalar Quantity, then all neutrino species are assumed to have that mass. Otherwise, the mass of each species. The actual number of neutrino species (and hence the number of elements of m_nu if it is not scalar) must be the floor of Neff. Usually this means you must provide three neutrino masses unless you are considering something like a sterile neutrino. name : str Optional name for this cosmological object. Examples -------- >>> from astropy.cosmology import FlatwCDM >>> cosmo = FlatwCDM(H0=70, Om0=0.3, w0=-0.9) The comoving distance in Mpc at redshift z: >>> z = 0.5 >>> dc = cosmo.comoving_distance(z) """ def __init__(self, H0, Om0, w0=-1., Tcmb0=2.725, Neff=3.04, m_nu=u.Quantity(0.0, u.eV), name=None): FLRW.__init__(self, H0, Om0, 0.0, Tcmb0, Neff, m_nu, name=name) self._w0 = float(w0) # Do some twiddling after the fact to get flatness self._Ode0 = 1.0 - self._Om0 - self._Ogamma0 - self._Onu0 self._Ok0 = 0.0
[docs] def efunc(self, z): """ Function used to calculate H(z), the Hubble parameter. Parameters ---------- z : array_like Input redshifts. Returns ------- E : ndarray, or float if input scalar The redshift scaling of the Hubble consant. Notes ----- The return value, E, is defined such that :math:`H(z) = H_0 E`. """ if isiterable(z): z = np.asarray(z) Om0, Ode0, w0 = self._Om0, self._Ode0, self._w0 if self._massivenu: Or = self._Ogamma0 * (1. + self.nu_relative_density(z)) else: Or = self._Ogamma0 + self._Onu0 zp1 = 1. + z return np.sqrt(zp1 ** 3 * (Or * zp1 + Om0) + Ode0 * zp1 ** (3. * (1 + w0)))
[docs] def inv_efunc(self, z): r""" Function used to calculate :math:`\frac{1}{H_z}`. Parameters ---------- z : array_like Input redshifts. Returns ------- E : ndarray, or float if input scalar The inverse redshift scaling of the Hubble constant. Notes ----- The return value, E, is defined such that :math:`H_z = H_0 / E`. """ if isiterable(z): z = np.asarray(z) Om0, Ode0, Ok0, w0 = self._Om0, self._Ode0, self._Ok0, self._w0 if self._massivenu: Or = self._Ogamma0 * (1. + self.nu_relative_density(z)) else: Or = self._Ogamma0 + self._Onu0 zp1 = 1. + z return 1. / np.sqrt(zp1 ** 3 * (Or * zp1 + Om0) + Ode0 * zp1 ** (3. * (1. + w0)))
def __repr__(self): retstr = "{0}H0={1:.3g}, Om0={2:.3g}, w0={3:.3g}, Tcmb0={4:.4g}, "\ "Neff={5:.3g}, m_nu={6})" return retstr.format(self._namelead(), self._H0, self._Om0, self._w0, self._Tcmb0, self._Neff, self.m_nu)
[docs]class w0waCDM(FLRW): """FLRW cosmology with a CPL dark energy equation of state and curvature. The equation for the dark energy equation of state uses the CPL form as described in Chevallier & Polarski Int. J. Mod. Phys. D10, 213 (2001) and Linder PRL 90, 91301 (2003): :math:`w(z) = w_0 + w_a (1-a) = w_0 + w_a z / (1+z)`. Parameters ---------- H0 : float or astropy.units.Quantity Hubble constant at z = 0. If a float, must be in [km/sec/Mpc] Om0 : float Omega matter: density of non-relativistic matter in units of the critical density at z=0. Ode0 : float Omega dark energy: density of dark energy in units of the critical density at z=0. w0 : float Dark energy equation of state at z=0 (a=1). This is pressure/density for dark energy in units where c=1. wa : float Negative derivative of the dark energy equation of state with respect to the scale factor. A cosmological constant has w0=-1.0 and wa=0.0. Tcmb0 : float or astropy.units.Quantity Temperature of the CMB z=0. If a float, must be in [K]. Default: 2.725. Neff : float Effective number of Neutrino species. Default 3.04. m_nu : astropy.units.Quantity Mass of each neutrino species. If this is a scalar Quantity, then all neutrino species are assumed to have that mass. Otherwise, the mass of each species. The actual number of neutrino species (and hence the number of elements of m_nu if it is not scalar) must be the floor of Neff. Usually this means you must provide three neutrino masses unless you are considering something like a sterile neutrino. name : str Optional name for this cosmological object. Examples -------- >>> from astropy.cosmology import w0waCDM >>> cosmo = w0waCDM(H0=70, Om0=0.3, Ode0=0.7, w0=-0.9, wa=0.2) The comoving distance in Mpc at redshift z: >>> z = 0.5 >>> dc = cosmo.comoving_distance(z) """ def __init__(self, H0, Om0, Ode0, w0=-1., wa=0., Tcmb0=2.725, Neff=3.04, m_nu=u.Quantity(0.0, u.eV), name=None): FLRW.__init__(self, H0, Om0, Ode0, Tcmb0, Neff, m_nu, name=name) self._w0 = float(w0) self._wa = float(wa) @property
[docs] def w0(self): """ Dark energy equation of state at z=0""" return self._w0
@property
[docs] def wa(self): """ Negative derivative of dark energy equation of state w.r.t. a""" return self._wa
[docs] def w(self, z): """Returns dark energy equation of state at redshift `z`. Parameters ---------- z : array_like Input redshifts. Returns ------- w : ndarray, or float if input scalar The dark energy equation of state Notes ------ The dark energy equation of state is defined as :math:`w(z) = P(z)/\\rho(z)`, where :math:`P(z)` is the pressure at redshift z and :math:`\\rho(z)` is the density at redshift z, both in units where c=1. Here this is :math:`w(z) = w_0 + w_a (1 - a) = w_0 + w_a \\frac{z}{1+z}`. """ if isiterable(z): z = np.asarray(z) return self._w0 + self._wa * z / (1.0 + z)
[docs] def de_density_scale(self, z): """ Evaluates the redshift dependence of the dark energy density. Parameters ---------- z : array_like Input redshifts. Returns ------- I : ndarray, or float if input scalar The scaling of the energy density of dark energy with redshift. Notes ----- The scaling factor, I, is defined by :math:`\\rho(z) = \\rho_0 I`, and in this case is given by .. math:: I = \\left(1 + z\\right)^{3 \\left(1 + w_0 + w_a\\right)} \exp \\left(-3 w_a \\frac{z}{1+z}\\right) """ if isiterable(z): z = np.asarray(z) zp1 = 1.0 + z return zp1 ** (3 * (1 + self._w0 + self._wa)) * \ np.exp(-3 * self._wa * z / zp1)
def __repr__(self): retstr = "{0}H0={1:.3g}, Om0={2:.3g}, "\ "Ode0={3:.3g}, w0={4:.3g}, wa={5:.3g}, Tcmb0={6:.4g}, "\ "Neff={7:.3g}, m_nu={8})" return retstr.format(self._namelead(), self._H0, self._Om0, self._Ode0, self._w0, self._wa, self._Tcmb0, self._Neff, self.m_nu)
[docs]class Flatw0waCDM(w0waCDM): """FLRW cosmology with a CPL dark energy equation of state and no curvature. The equation for the dark energy equation of state uses the CPL form as described in Chevallier & Polarski Int. J. Mod. Phys. D10, 213 (2001) and Linder PRL 90, 91301 (2003): :math:`w(z) = w_0 + w_a (1-a) = w_0 + w_a z / (1+z)`. Parameters ---------- H0 : float or astropy.units.Quantity Hubble constant at z = 0. If a float, must be in [km/sec/Mpc] Om0 : float Omega matter: density of non-relativistic matter in units of the critical density at z=0. w0 : float Dark energy equation of state at z=0 (a=1). This is pressure/density for dark energy in units where c=1. wa : float Negative derivative of the dark energy equation of state with respect to the scale factor. A cosmological constant has w0=-1.0 and wa=0.0. Tcmb0 : float or astropy.units.Quantity Temperature of the CMB z=0. If a float, must be in [K]. Default: 2.725. Neff : float Effective number of Neutrino species. Default 3.04. m_nu : astropy.units.Quantity Mass of each neutrino species. If this is a scalar Quantity, then all neutrino species are assumed to have that mass. Otherwise, the mass of each species. The actual number of neutrino species (and hence the number of elements of m_nu if it is not scalar) must be the floor of Neff. Usually this means you must provide three neutrino masses unless you are considering something like a sterile neutrino. name : str Optional name for this cosmological object. Examples -------- >>> from astropy.cosmology import Flatw0waCDM >>> cosmo = Flatw0waCDM(H0=70, Om0=0.3, w0=-0.9, wa=0.2) The comoving distance in Mpc at redshift z: >>> z = 0.5 >>> dc = cosmo.comoving_distance(z) """ def __init__(self, H0, Om0, w0=-1., wa=0., Tcmb0=2.725, Neff=3.04, m_nu=u.Quantity(0.0, u.eV), name=None): FLRW.__init__(self, H0, Om0, 0.0, Tcmb0, Neff, m_nu, name=name) # Do some twiddling after the fact to get flatness self._Ode0 = 1.0 - self._Om0 - self._Ogamma0 - self._Onu0 self._Ok0 = 0.0 self._w0 = float(w0) self._wa = float(wa) def __repr__(self): retstr = "{0}H0={1:.3g}, Om0={2:.3g}, "\ "w0={3:.3g}, Tcmb0={4:.4g}, Neff={5:.3g}, m_nu={6})" return retstr.format(self._namelead(), self._H0, self._Om0, self._w0, self._Tcmb0, self._Neff, self.m_nu)
[docs]class wpwaCDM(FLRW): """FLRW cosmology with a CPL dark energy equation of state, a pivot redshift, and curvature. The equation for the dark energy equation of state uses the CPL form as described in Chevallier & Polarski Int. J. Mod. Phys. D10, 213 (2001) and Linder PRL 90, 91301 (2003), but modified to have a pivot redshift as in the findings of the Dark Energy Task Force (Albrecht et al. arXiv:0901.0721 (2009)): :math:`w(a) = w_p + w_a (a_p - a) = w_p + w_a( 1/(1+zp) - 1/(1+z) )`. Parameters ---------- H0 : float or astropy.units.Quantity Hubble constant at z = 0. If a float, must be in [km/sec/Mpc] Om0 : float Omega matter: density of non-relativistic matter in units of the critical density at z=0. Ode0 : float Omega dark energy: density of dark energy in units of the critical density at z=0. wp : float Dark energy equation of state at the pivot redshift zp. This is pressure/density for dark energy in units where c=1. wa : float Negative derivative of the dark energy equation of state with respect to the scale factor. A cosmological constant has w0=-1.0 and wa=0.0. zp : float Pivot redshift -- the redshift where w(z) = wp Tcmb0 : float or astropy.units.Quantity Temperature of the CMB z=0. If a float, must be in [K]. Default: 2.725. Neff : float Effective number of Neutrino species. Default 3.04. m_nu : astropy.units.Quantity Mass of each neutrino species. If this is a scalar Quantity, then all neutrino species are assumed to have that mass. Otherwise, the mass of each species. The actual number of neutrino species (and hence the number of elements of m_nu if it is not scalar) must be the floor of Neff. Usually this means you must provide three neutrino masses unless you are considering something like a sterile neutrino. name : str Optional name for this cosmological object. Examples -------- >>> from astropy.cosmology import wpwaCDM >>> cosmo = wpwaCDM(H0=70, Om0=0.3, Ode0=0.7, wp=-0.9, wa=0.2, zp=0.4) The comoving distance in Mpc at redshift z: >>> z = 0.5 >>> dc = cosmo.comoving_distance(z) """ def __init__(self, H0, Om0, Ode0, wp=-1., wa=0., zp=0, Tcmb0=2.725, Neff=3.04, m_nu=u.Quantity(0.0, u.eV), name=None): FLRW.__init__(self, H0, Om0, Ode0, Tcmb0, Neff, m_nu, name=name) self._wp = float(wp) self._wa = float(wa) self._zp = float(zp) @property
[docs] def wp(self): """ Dark energy equation of state at the pivot redshift zp""" return self._wp
@property
[docs] def wa(self): """ Negative derivative of dark energy equation of state w.r.t. a""" return self._wa
@property
[docs] def zp(self): """ The pivot redshift, where w(z) = wp""" return self._zp
[docs] def w(self, z): """Returns dark energy equation of state at redshift `z`. Parameters ---------- z : array_like Input redshifts. Returns ------- w : ndarray, or float if input scalar The dark energy equation of state Notes ------ The dark energy equation of state is defined as :math:`w(z) = P(z)/\\rho(z)`, where :math:`P(z)` is the pressure at redshift z and :math:`\\rho(z)` is the density at redshift z, both in units where c=1. Here this is :math:`w(z) = w_p + w_a (a_p - a)` where :math:`a = 1/1+z` and :math:`a_p = 1 / 1 + z_p`. """ if isiterable(z): z = np.asarray(z) apiv = 1.0 / (1.0 + self._zp) return self._wp + self._wa * (apiv - 1.0 / (1. + z))
[docs] def de_density_scale(self, z): """ Evaluates the redshift dependence of the dark energy density. Parameters ---------- z : array_like Input redshifts. Returns ------- I : ndarray, or float if input scalar The scaling of the energy density of dark energy with redshift. Notes ----- The scaling factor, I, is defined by :math:`\\rho(z) = \\rho_0 I`, and in this case is given by .. math:: a_p = \\frac{1}{1 + z_p} I = \\left(1 + z\\right)^{3 \\left(1 + w_p + a_p w_a\\right)} \exp \\left(-3 w_a \\frac{z}{1+z}\\right) """ if isiterable(z): z = np.asarray(z) zp1 = 1. + z apiv = 1. / (1. + self._zp) return zp1 ** (3. * (1. + self._wp + apiv * self._wa)) * \ np.exp(-3. * self._wa * z / zp1)
def __repr__(self): retstr = "{0}H0={1:.3g}, Om0={2:.3g}, Ode0={3:.3g}, wp={4:.3g}, "\ "wa={5:.3g}, zp={6:.3g}, Tcmb0={7:.4g}, Neff={8:.3g}, "\ "m_nu={9})" return retstr.format(self._namelead(), self._H0, self._Om0, self._Ode0, self._wp, self._wa, self._zp, self._Tcmb0, self._Neff, self.m_nu)
[docs]class w0wzCDM(FLRW): """FLRW cosmology with a variable dark energy equation of state and curvature. The equation for the dark energy equation of state uses the simple form: :math:`w(z) = w_0 + w_z z`. This form is not recommended for z > 1. Parameters ---------- H0 : float or astropy.units.Quantity Hubble constant at z = 0. If a float, must be in [km/sec/Mpc] Om0 : float Omega matter: density of non-relativistic matter in units of the critical density at z=0. Ode0 : float Omega dark energy: density of dark energy in units of the critical density at z=0. Ok0 : float Omega curvature: equivalent curvature density in units of the critical density at z=0. w0 : float Dark energy equation of state at z=0. This is pressure/density for dark energy in units where c=1. A cosmological constant has w0=-1.0. wz : float Derivative of the dark energy equation of state with respect to z. Tcmb0 : float or astropy.units.Quantity Temperature of the CMB z=0. If a float, must be in [K]. Default: 2.725. Neff : float Effective number of Neutrino species. Default 3.04. m_nu : float or ndarray or astropy.units.Quantity Mass of each neutrino species, in eV. If this is a float or scalar Quantity, then all neutrino species are assumed to have that mass. If a ndarray or array Quantity, then these are the values of the mass of each species. The actual number of neutrino species (and hence the number of elements of m_nu if it is not scalar) must be the floor of Neff. Usually this means you must provide three neutrino masses unless you are considering something like a sterile neutrino. name : str Optional name for this cosmological object. Examples -------- >>> from astropy.cosmology import w0wzCDM >>> cosmo = w0wzCDM(H0=70, Om0=0.3, Ode0=0.7, w0=-0.9, wz=0.2) The comoving distance in Mpc at redshift z: >>> z = 0.5 >>> dc = cosmo.comoving_distance(z) """ def __init__(self, H0, Om0, Ode0, w0=-1., wz=0., Tcmb0=2.725, Neff=3.04, m_nu=u.Quantity(0.0, u.eV), name=None): FLRW.__init__(self, H0, Om0, Ode0, Tcmb0, Neff, m_nu, name=name) self._w0 = float(w0) self._wz = float(wz) @property
[docs] def w0(self): """ Dark energy equation of state at z=0""" return self._w0
@property
[docs] def wz(self): """ Derivative of the dark energy equation of state w.r.t. z""" return self._wz
[docs] def w(self, z): """Returns dark energy equation of state at redshift `z`. Parameters ---------- z : array_like Input redshifts. Returns ------- w : ndarray, or float if input scalar The dark energy equation of state Notes ------ The dark energy equation of state is defined as :math:`w(z) = P(z)/\\rho(z)`, where :math:`P(z)` is the pressure at redshift z and :math:`\\rho(z)` is the density at redshift z, both in units where c=1. Here this is given by :math:`w(z) = w_0 + w_z z`. """ if isiterable(z): z = np.asarray(z) return self._w0 + self._wz * z
[docs] def de_density_scale(self, z): """ Evaluates the redshift dependence of the dark energy density. Parameters ---------- z : array_like Input redshifts. Returns ------- I : ndarray, or float if input scalar The scaling of the energy density of dark energy with redshift. Notes ----- The scaling factor, I, is defined by :math:`\\rho(z) = \\rho_0 I`, and in this case is given by .. math:: I = \\left(1 + z\\right)^{3 \\left(1 + w_0 - w_z\\right)} \exp \\left(-3 w_z z\\right) """ if isiterable(z): z = np.asarray(z) zp1 = 1. + z return zp1 ** (3. * (1. + self._w0 - self._wz)) *\ np.exp(-3. * self._wz * z)
def __repr__(self): retstr = "{0}H0={1:.3g}, Om0={2:.3g}, "\ "Ode0={3:.3g}, w0={4:.3g}, wz={5:.3g} Tcmb0={6:.4g}, "\ "Neff={7:.3g}, m_nu={8})" return retstr.format(self._namelead(), self._H0, self._Om0, self._Ode0, self._w0, self._wz, self._Tcmb0, self._Neff, self.m_nu) # Pre-defined cosmologies. This loops over the parameter sets in the # parameters module and creates a LambdaCDM or FlatLambdaCDM instance # with the same name as the parameter set in the current module's namespace. # Note this assumes all the cosmologies in parameters are LambdaCDM, # which is true at least as of this writing.
for key in parameters.available: par = getattr(parameters, key) if par['flat']: cosmo = FlatLambdaCDM(par['H0'], par['Om0'], Tcmb0=par['Tcmb0'], Neff=par['Neff'], m_nu=u.Quantity(par['m_nu'], u.eV), name=key) cosmo.__doc__ = "%s instance of FlatLambdaCDM cosmology\n\n(from %s)" % (key, par['reference']) else: cosmo = LambdaCDM(par['H0'], par['Om0'], par['Ode0'], Tcmb0=par['Tcmb0'], Neff=par['Neff'], m_nu=u.Quantity(par['m_nu'], u.eV), name=key) cosmo.__doc__ = "%s instance of LambdaCDM cosmology\n\n(from %s)" % (key, par['reference']) setattr(sys.modules[__name__], key, cosmo) # don't leave these variables floating around in the namespace del key, par, cosmo ######################################################################### # The variable below contains the current cosmology used by the # convenience functions below and by other astropy functions if no # cosmology is explicitly given. It can be set with set_current() and # should be accessed using get_current(). ######################################################################### def get_cosmology_from_string(arg): """ Return a cosmology instance from a string. """ if arg == 'no_default': cosmo = None else: try: cosmo = getattr(sys.modules[__name__], arg) except AttributeError: s = "Unknown cosmology '%s'. Valid cosmologies:\n%s" % ( arg, parameters.available) raise ValueError(s) return cosmo _current = get_cosmology_from_string(DEFAULT_COSMOLOGY())
[docs]def get_current(): """ Get the current cosmology. If no current has been set, the WMAP9 comology is returned and a warning is given. Returns ------- cosmo : `Cosmology` instance See Also -------- set_current : sets the current cosmology """ if _current is None: warnings.warn('No default cosmology has been specified, ' 'using 9-year WMAP.', AstropyUserWarning) return WMAP9 return _current
[docs]def set_current(cosmo): """ Set the current cosmology. Call this with an empty string ('') to get a list of the strings that map to available pre-defined cosmologies. .. warning:: `set_current` is the only way to change the current cosmology at runtime! The current cosmology can also be read from an option in the astropy configuration file when astropy.cosmology is first imported. However, any subsequent changes to the cosmology configuration option using `ConfigurationItem.set <astropy.config.configuration.ConfigurationItem.set>` at run-time will not update the current cosmology. Parameters ---------- cosmo : str or `Cosmology` instance The cosmology to use. See Also -------- get_current : returns the currently-set cosmology """ global _current if isinstance(cosmo, basestring): _current = get_cosmology_from_string(cosmo) elif isinstance(cosmo, Cosmology): _current = cosmo else: raise ValueError( "Argument must be a string or cosmology instance. Valid strings:" "\n%s" % parameters.available)

Page Contents