SHOGUN  3.2.1
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
LinearTimeMMD.h
Go to the documentation of this file.
1 /*
2  * Copyright (c) The Shogun Machine Learning Toolbox
3  * Written (w) 2012-2013 Heiko Strathmann
4  * Written (w) 2014 Soumyajit De
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright notice, this
11  * list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright notice,
13  * this list of conditions and the following disclaimer in the documentation
14  * and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
20  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  * The views and conclusions contained in the software and documentation are those
28  * of the authors and should not be interpreted as representing official policies,
29  * either expressed or implied, of the Shogun Development Team.
30  */
31 
32 #ifndef LINEAR_TIME_MMD_H_
33 #define LINEAR_TIME_MMD_H_
34 
36 
37 namespace shogun
38 {
39 
40 class CStreamingFeatures;
41 class CFeatures;
42 
65 {
66 public:
69 
81  CStreamingFeatures* q, index_t m, index_t blocksize=10000);
82 
84  virtual ~CLinearTimeMMD();
85 
104  virtual void compute_statistic_and_variance(
105  SGVector<float64_t>& statistic, SGVector<float64_t>& variance,
106  bool multiple_kernels=false);
107 
112  virtual void compute_statistic_and_Q(
114 
117  {
118  return S_LINEAR_TIME_MMD;
119  }
120 
122  virtual const char* get_name() const
123  {
124  return "LinearTimeMMD";
125  }
126 
127 protected:
141  CList* data, index_t num_this_run);
142 
143 private:
146  void compute_squared_mmd(CKernel* kernel, CList* data,
149  SGVector<float64_t>& qp, index_t num_this_run);
150 
151 };
152 
153 }
154 
155 #endif /* LINEAR_TIME_MMD_H_ */
156 
int32_t index_t
Definition: common.h:60
virtual void compute_statistic_and_Q(SGVector< float64_t > &statistic, SGMatrix< float64_t > &Q)
virtual EStatisticType get_statistic_type() const
virtual void compute_statistic_and_variance(SGVector< float64_t > &statistic, SGVector< float64_t > &variance, bool multiple_kernels=false)
Abstract base class that provides an interface for performing kernel two-sample test on streaming dat...
Definition: StreamingMMD.h:86
virtual SGVector< float64_t > compute_squared_mmd(CKernel *kernel, CList *data, index_t num_this_run)
virtual const char * get_name() const
Streaming features are features which are used for online algorithms.
This class implements the linear time Maximum Mean Statistic as described in [1] for streaming data (...
Definition: LinearTimeMMD.h:64
The Kernel base class.
Definition: Kernel.h:150
Class List implements a doubly connected list for low-level-objects.
Definition: List.h:82

SHOGUN Machine Learning Toolbox - Documentation