SCORE-P

USER MANUAL
1.3 (revision 7349)

Fri Aug 29 2014 14:42:08

COPYRIGHT ©2009-2012,
RWTH Aachen University, Germany
Gesellschaft fuer numerische Simulation mbH, Germany
Technische Universitaet Dresden, Germany
University of Oregon, Eugene, USA
Forschungszentrum Juelich GmbH, Germany
German Research School for Simulation Sciences GmbH, Germany
Technische Universitact Muenchen, Germany

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the names of

RWTH Aachen University,

Gesellschaft fuer numerische Simulation mbH Braunschweig,

Technische Universitaet Dresden,

University of Oregon, Eugene,

Forschungszentrum Juelich GmbH,

German Research School for Simulation Sciences GmbH, or the

Technische Universitaet Muenchen,

nor the names of their contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIB-
UTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DI-
RECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTI-
TUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

ii

Contents

Contents

1 Introduction

1.1
1.2
1.3
1.4
1.5

About this Document
Getting Help and Support
Basics of Performance Optimization

Score-P Software Architecture Overview

Acknowledgment

2 Getting Started

2.1

22
23
24
2.5

Score-P Quick Installation
2.1.1 Prerequisites,
2.1.2 General Autotools Build Options
2.1.3 Score-P Specific Build Options
Instrumentation

Measurement and Analysis

Report Examination
Simple Example 0L

3 Application Instrumentation

3.1
32
33
34
35
3.6
3.7
3.8

3.9
3.10

Automatic Compiler Instrumentation

Manual Region Instrumentation

Instrumentation for Parameter-Based Profiling

Measurement Control Instrumentation

Source-Code Instrumentation Enabling Online Access

Semi-Automatic Instrumentation of POMP2 User Regions
Preprocessing before POMP2 and OpenMP instrumentation

Source-Code Instrumentation Using PDT
3.8.1 Limitations
Binary Instrumentation UsingCobi

Enforce Linking of Static/Shared Score-P Libraries

4 Application Measurement

4.1

Profiling

Page

iii

CO W W W N =

10
10
11
12
14
14
15

17
22
23
26
27
28
29
31
31
32
32
33

35

CONTENTS

4.1.1 Parameter-Based Profiling 37

412 PhaseProfiling 37

4.1.3 Dynamic Region Profiling 37

414 Clustering o vt 39

4.1.5 Enabling additional debug output on inconsistent profiles . 40

42 Tracing i e 41

43 Filtering 41
4.3.1 Source File Name Filter Block 42

432 Region Name FilterBlock 43

4.4 Selective Recording oL 44

4.5 Trace BufferRewind 46
4.5.1 Selectionof MPI Groups 47

4.6 Recording MPI Communicator Names 49

4.7 Recording Performance Metrics 49
4.7.1 PAPI Hardware Performance Counters 49

472 Resource Usage Counters 50

473 MetricPlugins oL, 51

4.8 CUDA Performance Measurement 52

49 Online Access Interface 53

5 Usage of scorep-score 57
5.1 Basicusage e 57

5.2 Additional per-region information 59

5.3 Defining and testingafilter 59

5.4 Calculating the effects of recording hardware counters 60

6 Performance Analysis Workflow Using Score-P 61
6.1 Program Instrumentation 62

6.2 Summary Measurement Collection 63

6.3 Summary report examination 64

6.4 Summary experiment SCOring 64

6.5 Advanced summary measurement collection 66

6.6 Advanced summary report examination 68

6.7 Event trace collection and examination 69
Appendix A Score-P INSTALL 73
Appendix B MPI wrapper affiliation 89
B.1 Functiontogroup 89
B.2 Grouptofunction 97
Appendix C Score-P Metric Plugin Example 103
Appendix D Score-P Tools 107
D1 scorep oL 107

iv

CONTENTS

D.2
D3
D4
D.5

scorep-config L.
scorep-info Lo
SCOIEP-SCOTE . . « « v v v v e et ettt e e e e
scorep-backend-info oo oL

Appendix E Score-P Measurement Configuration Variables

Appendix F Module Documentation

F.1

Score-P User Adapter
F.1.1 Detailed Description

F.1.2 Define Documentation

Appendix G File Documentation

G.1

G.2

SCOREP_User.h File Reference
G.1.1 Detailed Description
SCOREP_User_Types.h File Reference
G.2.1 Detailed Description
G.2.2 Define Documentation
G.2.3 Typedef Documentation

113

123
123
125
125

Chapter 1

Introduction

This document provides an introduction to Score—P: the Scalable Performance
Measurement Infrastructure for Parallel Codes. It is a software system that pro-
vides a measurement infrastructure for profiling, event trace recording, and online
analysis of High Performance Computing (HPC) applications. It has been devel-
oped within the framework of the Scalable Infrastructure for the Automated Perfor-
mance Analysis of Parallel Codes (SILC) project funded by the German Federal
Ministry of Education and Research (BMBF) under its HPC programme and the
Performance Refactoring of Instrumentation, Measurement, and Analysis Tech-
nologies for Petascale Computing (PRIMA) project,funded by the United States
Department of Energy (DOE) with the goals of being highly scalable and easy to
use.

The partners involved in the development of this system within the SILC and
PRIMA projects were:

* Forschungszentrum Jiilich,
¢ German Research School for Simulation Sciences,
* Gesellschaft flir numerische Simulation mbH,

* Gesellschaft fiir Wissens— und Technologietransfer der
TU Dresden (GWT-TUD GmbH),

¢ Rheinisch-Westfdlische Technische Hochschule (RWTH)
Aachen,

* Technische Universitdt Dresden,
e Technische Universitat Minchen,

e and University of Oregon

http://www.score-p.org
http://www.vi-hps.org/projects/silc
http://www.bmbf.bund.de
http://www.vi-hps.org/projects/prima
http://energy.gov/
http://www.fz-juelich.de/jsc
http://www.parallel.grs-sim.de
http://www.gns-mbh.com
http://www.gwtonline.de
http://www.gwtonline.de
http://www.rz.rwth-aachen.de
http://www.rz.rwth-aachen.de
http://www.tu-dresden.de/zih
http://www.lrr.in.tum.de
http://nic.uoregon.edu/prl

CHAPTER 1. INTRODUCTION

The goal of Score-P is to simplify the analysis of the behavior of high perfor-
mance computing software and to allow the developers of such software to find out
where and why performance problems arise, where bottlenecks may be expected
and where their codes offer room for further improvements with respect to the run
time. A number of tools have been around to help in this respect, but typically each
of these tools has only handled a certain subset of the questions of interest. A soft-
ware developer who wanted to have a complete picture of his code therefore was
required to use a multitude of programs to obtain the desired information. Most of
these utilities work along similar principles. The first step is usually an instrumen-
tation of the code to be investigated. Next, the instrumented programs are executed
and write out (often very large amounts of) performance data. These data are then
finally graphically displayed and analyzed after the end of the program run. In
certain special cases, the visualization and analysis of the program behavior is also
done while the program is running.

A crucial problem in the traditional approach used to be the fact that each analysis
tool had its own instrumentation system, so the user was commonly forced to re-
peat the instrumentation procedure if more than one tool was to be employed. In
this context, Score-P offers the user a maximum of convenience by providing the
Opari2 instrumenter as a common infrastructure for a number of analysis tools like
Periscope, Scalasca, Vampir, and Tau that obviates the need for multi-
ple repetitions of the instrumentation and thus substantially reduces the amount of
work required. It is open for other tools as well. Moreover, Score-P provides the
new Open Trace Format Version 2 (OTF2) for the tracing data and the new CUBE4
profiling data format which allow a better scaling of the tools with respect to both
the run time of the process to be analyzed and the number of cores to be used.

@scorep supports the following programming paradigms:

Multi-process paradigms: e MPI
* SHMEM

Thread-parallel paradigms: * OpenMP
* Pthreads

Accelerator-based paradigms: e CUDA

And possible combinations from these including simple serial programs.

1.1 About this Document

This document consists of three parts. This chapter is devoted to a basic introduc-
tion to performance analysis in general and the components of the Score-P system
in particular. Chapter 2 is a beginner’s guide to using the Score-P tool suite.

2

http://www.lrr.in.tum.de/periscope
http://www.scalasca.org
http://www.vampir.eu
http://www.cs.uoregon.edu/research/tau

1.2 Getting Help and Support

It demonstrates the basic steps and commands required to initiate a performance
analysis of a parallel application. In the Chapters 3 and 4, the reader can find
more detailed information about the components of Score-P. Chapter 6 provides a
typical workflow of performance analysis with Score-P and detailed instructions.

1.2 Getting Help and Support

The Score-P project uses various mailing lists to coordinate the development and
to provide support to the user community. An overview of the available mailing
lists can be found in 1.1.

You can subscribe to the news@score-p.organd support@score-p.org
by ...

Table 1.1: Score-P mailing lists

List Address Subscription | Posting Usage

news @score-p.org open core team | Important news regarding
the Score-P software, e.g.
announcements of new re-
leases.
support@score-p.org | closed anyone Bug reports and general
user support for the
Score-P software.

1.3 Basics of Performance Optimization

Performance optimization is a process that is usually executed in a work cycle
consisting of a number of individual steps as indicated in Figure 1.1.

Thus, the process always begins with the original application in its unoptimized
state. This application needs to be instrumented, i. e. it must be prepared in order
to enable the measurement of the performance properties to take place. There
are different ways to do this, including manual instrumentation of the source code
by the user, automatic instrumentation by the compiler, or linking against pre-
instrumented libraries. All these options are available in Score-P.

When the instrumented application obtained in this way is executed, the additional
commands introduced during the instrumentation phase collect the data required
to evaluate the performance properties of the code. Depending on the user’s re-
quirements, Score-P allows to store these data either as a profile or as event traces.
The user must keep in mind here that the execution of the additional instructions
of course requires some run time and storage space. Thus the measurement itself

3

mailto:news@score-p.org
mailto:support@score-p.org

CHAPTER 1. INTRODUCTION

Un-optimized Instrumented

GBI |hstrumentation application

-~

Improved
application

Code Analysis
optimization Y

Code
improvement
potential

Evaluation\
<

\Measurement

Measurement

data

Performance

information

Optimized Performance Presentation

application report

Figure 1.1: The performance optimization cycle

has a certain influence of the performance of the instrumented code. Whether the
perturbations introduced in this way have a significant effect on the behavior de-
pends on the specific structure of the code to be investigated. In many cases the
perturbations will be rather small so that the overall results can be considered to
be a realistic approximation of the corresponding properties of the uninstrumented
code. Howeyver, certain constructions like regions with very small temporal extent
that are executed frequently are likely to suffer from significant perturbations. It is
therefore advisable not to measure such regions.

The next step is the analysis of the data obtained in the measurement phase. Tra-
ditionally this has mainly been done post mortem, i. e. after the execution of the
instrumented application has ended. This is of course possible in Score-P too, but
Score-P offers the additional option to go into the analysis in the so-called on-line
mode, i. e. to investigate the performance data while the application is still run-
ning. If the collected data are event traces then a more detailed investigation is
possible than in the case of profiles. In particular, one can then also look at more
sophisticated dependencies between events happening on different processes.

The optimization cycle then continues with the presentation of the analysis results
in a report. Here it is important to eliminate the part of the information that is
irrelevant for the code optimization from the measured data. The reduction of
the complexity achieved in this way will simplify the evaluation of the data for
the user. However, care must be taken in order not to present the results in a too
abstract fashion which would hide important facts from the user.

4

1.4 Score-P Software Architecture Overview

The performance report then allows the user to evaluate the performance of the
code. One can then either conclude that the application behaves sufficiently well
and exit the optimization cycle with the optimized version of the software being
chosen as the final state, or one can proceed to identify weaknesses that need to be
addressed and the potential for improvements of the code.

In the latter case, one then continues by changing the source code according to the
outcome of the previous step and thus obtains an improved application that then
can again be instrumented to become ready for a re-entry into the optimization
cycle.

1.4 Score-P Software Architecture Overview

In order to allow the user to perform such an optimization of his code (typically
written in Fortran, C, or C++ and implemented in a serial way or using a paral-
lelization via an multi-process, thread-parallel, accelerator-based paradigm, or a
combination thereof), the Score-P system provides a number of components that
interact with each other and with external tools. A graphical overview of this struc-
ture is given in Fig. 1.2. We shall now briefly introduce the elements of this
structure; more details will be given in the later chapters of this document.

Call-path profiles
Event traces (OTF2) (CUBE4, TAU) I

Hardware counter (PAPI, rusage) interface

Score-P measurement infrastructure

* * -
I Instrumention wrapper I

Process-level Thread-level Accelerator-based Source code
parallelism parallelism parallelism s User instrumentation
(MPI, SHMEM) (OpenMP, Pthreads) (CUDA)

Application

=

Figure 1.2: Overview of the Score-P measurement system architecture and the
tools interface.

CHAPTER 1. INTRODUCTION

In order to instrument an application, the user needs to recompile the application
using the Score-P instrumentation command, which is added as a prefix to the
original compile and link command lines. It automatically detects the program-
ming paradigm by parsing the original build instructions and utilizes appropriate
and configurable methods of instrumentation. These are currently:

* compiler instrumentation,

* MPI and SHMEM library interposition,

¢ source code instrumentation via the TAU instrumenter,
* OpenMP source code instrumentation using OpariZ2.

* Pthread instrumentation via GNU Id library wrapping.
* binary instrumentation using Cobi

¢ CUDA instrumentation

While the first three of these methods are based on using tools provided externally,
the Opari2 instrumenter for OpenMP programs is a part of the Score-P infras-
tructure itself. It is an extension of the well known and frequently used OpenMP
Pragma And Region Instrumenter system (Opari) that has been success-
fully used in the past in combination with tools like Scalasca, VampirTrace and
ompP. The fundamental concept of such a system is a source-to-source translation
that automatically adds all necessary calls to a runtime measurement library allow-
ing to collect runtime performance data of Fortran, C, or C++ OpenMP applica-
tions. This translation is based on the idea of OpenMP pragma/directive rewriting.
The key innovation in Opari2, as compared to its predecessor, is the capability to
support features introduced in version 3.0 of the OpenMP standard, in particular its
new tasking functionality and OpenMP nesting. Opari used to work by automati-
cally wrapping OpenMP constructs like parallel regions with calls to the portable
OpenMP monitoring interface POMP. In order to reflect the above-mentioned ex-
tensions, this interface also had to be replaced by an enhanced version, POMP2.

Additionally, the user may instrument the code manually with convenient macros
provided by Score-P. Score-P also includes the option for instrumentation of ex-
ecutables using binary rewriting. Later Score-P may be extended with sampling
functionality that provides an alternative to direct instrumentation.

During measurement, the system records several performance metrics including
execution time, communication metrics, and optionally hardware counters. Perfor-
mance data is stored in appropriately sized chunks of a preallocated memory buffer
that are assigned to threads on demand, efficiently utilizing the available memory
and avoiding measurement perturbation by flushing the data to disk prematurely.

6

http://www2.fz-juelich.de/jsc/kojak/opari/
http://www2.fz-juelich.de/jsc/kojak/opari/
https://wiki.alcf.anl.gov/index.php/POMP

1.4 Score-P Software Architecture Overview

Without recompilation, measurement runs can switch between tracing and profiling
mode. In tracing mode, the performance events are passed to the tracing back-
end of Score-P and are written to files for subsequent post mortem analysis using
Scalasca or Vampir. This backend uses the newly developed Open Trace Format
2 (OTF2), the joint successor of the Open Trace Format used by Vampir and
the Epilog format used by Scalasca. The Score-P system contains a new library
with reading and writing routines for OTF2. Basically, OTF2 is a full merge of
its two predecessors that retains all their features, and it is planned to become the
default data source for future versions of both Vampir and Scalasca. In this way,
the user is free to choose between these two complementary tools to investigate the
trace files and may select the one that is more appropriate for the specific question
at hand. As an alternative to writing the trace data to disk and evaluating them post
mortem, it is also possible to directly hand over the data to on-line analysis tools
like Periscope. The corresponding interface that allows this on-line access is also
an integral part of Score-P.

In profiling mode, the performance events are summarized at runtime separately for
each call-path like in Scalasca. Additionally, support for phases, dynamic regions
and parameter-based profiling has been integrated. The collected data is passed to
the Score-P’s profiling back-end CUBE4 for post mortem analysis using Scalasca
or TAU or is used directly through the on-line access interface by Periscope. Also
in profiling mode, Score-P supports the automatic detection of MPI wait states.
Usually such inefficiencies are important bottlenecks and are thoroughly investi-
gated by means of automatic trace analysis and subsequent visual analysis using a
time-line representation. In the case of Score-P wait time profiling, inefficiencies
are detected immediately when the respective MPI call is completed and stored as
an additional metric in the call-path profile. In comparison to earlier versions of
CUBE, this new one features a more powerful data model, more flexibility in the
specification of system resource hierarchies and display parameters, and various
techniques to enhance the efficiency that result in a much better scaling behavior
of the analysis tool even in a range of tens of thousands of processes.

As a rough guideline for users who are uncertain which of these two modes to em-
ploy, we provide a brief comparison of their main advantages and disadvantages.
Specifically, tracing mode allows to retain temporal and spatial connections, and
it can reflect the dynamical behavior to an arbitrary precision. Moreover, statis-
tical information and profiles may be derived from the program traces. On the
other hand, the amount of data that is produced in the tracing mode can become
prohibitively large; profiles tend to require much less storage space. In addition,
the additional load that is imposed on the process, and hence the perturbations of
the behavior of the code to be analyzed, are much smaller in profiling mode than
in tracing mode. And finally we mention that the accurate synchronization of the
clocks is an important aspect in tracing mode that may cause difficulties.

http://www.tu-dresden.de/zih/otf

CHAPTER 1. INTRODUCTION

1.5 Acknowledgment

The development of Score-P was sponsored by a grant from the German Federal
Ministry of Education and Research (Grant No. 01IH08006) within
the framework of its High Performance Computing programme and with a grant
from the US Department of Energy (Award No. DE-SC0001621). This
support is gratefully acknowledged.

http://www.bmbf.bund.de
http://www.bmbf.bund.de
http://energy.gov/

Chapter 2

Getting Started

In order to quickly introduce the user to the Score-P system, we explain how to
build and install the tool and look at a simple example. We go through the example
in full detail.

As mentioned above, the three core steps of a typical work cycle in the investigation
of the behavior of a software package can be described as follows:

* Instrumentation of user code: Calls to the measurement system are inserted
into the application. This can be done either fully automatically or with a
certain amount of control handed to the software developer.

* Measurement and analysis: The instrumented application is executed under
the control of the measurement system and the information gathered during
the run time of this process is stored and analyzed.

* Examination of results: The information about the behavior of the code at run
time is visualized and the user gets the opportunity to examine the reported
results.

After building and installing the tool, we shall go through these three steps one
after the other in the next sections. This will be followed by a full workflow exam-
ple. For getting detailed presentations of available features, see Section 3 for the
instrumentation step and Section 4 for the measurement.

2.1 Score-P Quick Installation

The Score-P performance analysis tool uses the GNU Autotools (Autoconf, Au-
tomake, Libtool and M4) build system. The use of Autotools allows Score-P to be
build in many different systems with varying combinations of compilers, libraries
and MPI implementations.

CHAPTER 2. GETTING STARTED

Autotools based projects are build as follows:

1. The available compilers and tools available are detected from the environ-
ment by the configure script.

2. Makefiles are generated based on the detected compilers and tools.

3. The generated Makefile project is then built and installed.
Score-P will have features enabled or disabled, based on the detection made by the
Autotools generated configure script. The following 2 sub-sections cover manda-

tory prerequisites as well as optional features that are enabled based on what is
available in the configured platform.

2.1.1 Prerequisites

To build Score-P, C, C++ and Fortran compilers and related tools are required.
These can be available as modules (typically on super-computer environments) or
as packages (on most Linux or BSD distributions).

For Debian based Linux systems using the APT package manager, the following
command (as root) is sufficient to build Score-P with minimal features enabled:

apt-get install gcc g++ gfortran mpich2

On Red-Hat and derivative Linux systems running the YUM package manager, in
a similar way:

yum install gcc g++ gfortran mpich2
For users of the SuperMUC, it is recommended to load the following modules:

module load ccomp/intel/12.1 fortran/intel/12.1 \
mpi.ibm/5.2_PMR-fixes papi/4.9

2.1.2 General Autotools Build Options

System administrators can build Score-P with the familiar:

./configure && make && make install

The previous sequence of commands will detect compilers, libraries and headers,
and then build and install Score-P in the following system directories:

10

2.1 Score-P Quick Installation

/usr/local/bin
/usr/local/lib
/usr/local/include
/usr/local/share

Users that are not administrators on the target machine may need to install the tool
in an different location (due to permissions). The prefix flag should be specified
with the target directory:

./configure --prefix=<installation directory>

For example, in the install/scozrep directory on his/her home folder:

./configure —--prefix=$HOME/install/scorep

In this case, the user’s PATH variable needs to be updated to include the bin
directory of Score-P, and the appropriate library and include folders specified (with
—-L and -T) when instrumenting and building applications.

Users of the SuperMUC (after loading the required modules mentioned previ-
ously), can issue the following command to configure Score-P:

./configure —--prefix=$HOME/install/scorep -—-enable-static \
—--disable-shared --with-nocross-compiler-suite=intel \
——with-mpi=openmpi --with-papi-header=$PAPI_BASE/include \
-—with-papi-1ib=$PAPI_BASE/lib

2.1.3 Score-P Specific Build Options

In addition to general options available in all Autotools based build systems, there
are Score-P configuration flags. These can be printed out by passing the --help flag
to the configure script.

They are usually self explanatory. Here is a list of them with a short explanation:

® ——with-nocross-compiler-suite= (gcc|ibm]|intel|
pathscale|pgi|studio)
Specifies the compiler suite to use when not cross-compiling. Selecting one
of the options sets all relevant variables to their expected names. These are
CC, FC, F77, as well as the linker, preprocessor, etc.

® —-with-frontend-compiler-suite= (gcc|ibm|intel|
pathscale|pgi|studio)

Similar to the previous configuration flag, but for cross-compiling environ-
ments.

11

CHAPTER 2. GETTING STARTED

e ——with-mpi=(mpich2|impi|openmpi) The MPI compiler and run-
time suite to use. Currently there are entries for MPICH2, Intel MPI and
Open MPL.

* ——with-shmem= (openshmem|openmpi|sgimpt) The SHMEM com-
piler suite to build this package in non cross-compiling mode. Usually au-
todetected. Needs to be in $PATH.

s ——with-otf2=(yes|<otf2-bindir>) An already install OTF2 can
be specified with this flag. This is usually not necessary since OTF2 is built
together with Score-P. Specify yes if the tool is in your $PATH, otherwise
specify the full path.

* ——with-opari2=(yes|<opari2-bindir>) Similar to the previous
configuration flag, but for OPARI2.

* ——with-cube= (yes|<cube-bindir>) Similar to the previous two
configuration flags, but for CUBE.

2.2 Instrumentation

Various analysis tools are supported by the Score-P infrastructure. Most of these
tools are focused on certain special aspects that are significant in the code opti-
mization process, but none of them provides the full picture. In the traditional
workflow, each tool used to have its own measurement system, and hence its own
instrumenter, so the user was forced to instrument his code more than once if more
than one class of features of the application was to be investigated. One of the key
advantages of Score-P is that it provides an instrumentation system that can be used
for all the performance measurement and analysis tools, so that the instrumentation
work only needs to be done once.

Internally, the instrumentation itself will insert special measurement calls into the
application code at specific important points (events). This can be done in an al-
most automatic way using corresponding features of typical compilers, but also
semi-automatically or in a fully manual way, thus giving the user complete con-
trol of the process. In general, an automatic instrumentation is most convenient
for the user. However, this approach may lead to too many and/or too disruptive
measurements, and for such cases it is then advisable to use selective manual in-
strumentation and measurement instead. For the moment, we shall however start
the procedure in an automatic way to keep things simple for novice users.

To this end, we need to ask the Score-P instrumenter to take care of all the necessary
instrumentation of user and MPI functions. This is done by using the scorep
command that needs to be prefixed to all the compile and link commands usually
employed to build the application. Thus, an application executable app that is

12

2.2 Instrumentation

normally generated from the two source files appl.£90 and app2.£90 via the
command:

mpif90 appl.f90 app2.f90 -o app

will now be built by:

scorep mpif90 appl.f90 app2.f90 -o app

using the Score-P instrumenter.

In practice one will usually perform compilation and linking in separate steps, and
it is not necessary to compile all source files at the same time (e.g., if makefiles are
used). It is possible to use the Score-P instrumenter in such a case too, and this
actually gives more flexibility to the user. Specifically, it is often sufficient to use
the instrumenter not in all compilations but only in those that deal with source files
containing MPI code. However, when invoking the linker, the instrumenter must
always be used.

When makefiles are employed to build the application, it is convenient to define
a placeholder variable to indicate whether a “preparation” step like an instrumen-
tation is desired or only the pure compilation and linking. For example, if this
variable is called PREP then the lines defining the C compiler in the makefile can
be changed from:

MPICC = mpicc
to

MPICC

$ (PREP) mpicc

(and analogously for linkers and other compilers). One can then use the same
makefile to either build an instrumented version with the

make PREP="scorep"
command or a fully optimized and not instrumented default build by simply using:

make

in the standard way, i.e. without specifying PREP on the command line. Of course
it is also possible to define the same compiler twice in the makefile, once with and
once without the PREP variable, as in:

13

CHAPTER 2. GETTING STARTED

MPICC = $(PREP) mpicc
MPICC_NO_INSTR mpicc

and to assign the former to those source files that must be instrumented and the
latter to those files that do not need this.

2.3 Measurement and Analysis

Once the code has been instrumented, the user can initiate a measurement run using
this executable. To this end, it is sufficient to simply execute the target application
in the usual way, i.e.:

mpiexec SMPIFLAGS app [app_args]
in the case of an MPI or hybrid code, or simply:
app [app_args]

for a serial or pure OpenMP program. Depending on the details of the local MPI
installation, in the former case the mp iexec command may have to be substituted
by an appropriate replacement.

When running the instrumented executable, the measurement system will cre-
ate a directory called scorep-YYYYMMDD_HHMM_XXXXXXXX where its mea-
surement data will be stored. Here YYYYMMDD and HHMM are the date (in year-
month-day format) and time, respectively, when the measurement run was started,
whereas XXXXXXXX is an additional identification number. Thus, repeated mea-
surements, as required by the optimization work cycle, can easily be performed
without the danger of accidentally overwriting results of earlier measurements. The
environment variables SCOREP_ENABLE_TRACING and SCOREP_ENABLE_—
PROFILING control whether event trace data or profiles are stored in this direc-
tory. By setting either variable to t rue, the corresponding data will be written to
the directory. The default values are t rue for SCOREP_ENABLE_PROFILING
and false for SCOREP_ENABLE_TRACING.

2.4 Report Examination

After the completion of the execution of the instrumented code, the requested data
(traces or profiles) is available in the indicated locations. Appropriate tools can then
be used to visualize this information and to generate reports, and thus to identify
weaknesses of the code that need to be modified in order to obtain programs with
a better performance. A number of tools are already available for this purpose.
This includes, in particular, the CUBE4 performance report explorer

14

http://www.scalasca.org

2.5 Simple Example

for viewing and analyzing profile data, Vampi r for the investigation of trace in-
formation, and the corresponding components of the TAU toolsuite.

Alternatively, the Periscope system may be used to analyze the behaviour of
the code on-line during its run time, i.e. (in contrast to the approaches mentioned
above) before the end of the program run.

2.5 Simple Example

As a specific example, we look at a short C code for the solution of a Poisson
equation in a hybrid (MPI and OpenMP) environment. The corresponding source
code comes as part of the Score-P distribution under the scorep/test/jacobi/ folder.
Various other versions are also available - not only hybrid but also for a pure MPI
parallelization, a pure OpenMP approach, and in a non-parallel way; and, in each
case, not only in C but also in C++ and Fortran.

As indicated above, the standard call sequence:

mpicc —-std=c99 -g -02 —-fopenmp -c jacobi.c
mpicc -std=c99 -g -02 -fopenmp -c main.c
mpicc -std=c99 -g -02 -fopenmp -o jacobi jacobi.o main.o -1lm

that would first compile the two C source files and then link everything to form the
final executable needs to be modified by prepending scorep to each of the three
commands, i.e. we now have to write:

scorep mpicc -std=c99 -g -02 -fopenmp -c Jjacobi.c

scorep mpicc -std=c99 -g -02 -fopenmp -c main.c

scorep mpicc -std=c99 -g -02 -fopenmp -o Jjacobi Jjacobi.o \
main.o —-1lm

This call sequence will create a number of auxiliary C source files containing the
original source code and a number of commands introduced by the measurement
system in order to enable the latter to create the required measurements when the
code is actually run. These modified source files are then compiled and linked, thus
producing the desired executable named jacobi.

The actual measurement process is then initiated, e.g., by the call:

mpiexec -n 2 ./jacobi

The output data of this process will be stored in a newly created experiment direc-
tory scorep-YYYYMMDD_HHMM_XXXXXXXX whose name is built up from the
date and time when the measurement was started and an identification number.

As we had not explicitly set any Score-P related environment variables, the profil-
ing mode was active by default. We obtain a file called profile.cubex con-
taining profiling data in the experiment directory as the result of the measurement
run. This file can be visually analyzed with the help of CUBE.

15

http://www.vampir.eu
http://www.cs.uoregon.edu/Research/tau/home.php
http://www.lrr.in.tum.de/periscope

CHAPTER 2. GETTING STARTED

If we had set the variable SCOREP_ENABLE_TRACING to t rue, we would addi-
tionally have obtained trace data, namely the so called anchor file t races.otf2
and the global definitions traces.def as well as a subdirectory traces that
contains the actual trace data. This trace data is written in Open Trace Format 2
(OTF2) format. OTF?2 is the joint successor of the classical formats OTF (used, e.
g., by Vampir) and Epilog (used by Scalasca). A tool like Vampir can then be used
to give a visual representation of the information contained in these files.

16

Chapter 3

Application Instrumentation

Score-P provides several possibilities to instrument user application code. Besides
the automatic compiler-based instrumentation (Section 3.1), it provides manual
instrumentation using the Score-P User API (Section 3.2), semi-automatic in-
strumentation using POMP2 directives (Section 3.6) and, if configured, auto-
matic source-code instrumentation using the PDToolkit-based instrumenter (Sec-
tion 3.8).

As well as user routines and specified source regions, Score-P currently supports
the following kinds of events:

e MPI library calls:

Instrumentation is accomplished using the standard MPI profiling interface
PMPI. To enable it, the application program has to be linked against the
Score-P MPI (or hybrid) measurement library plus MPI-specific libraries.
Note that the Score-P libraries must be linked before the MPI library to en-
sure interposition will be effective.

e library calls:

Instrumentation is accomplished using the profiling interface or the GNU
linker for library wrapping. To enable it, the application program has to
be linked against the Score-P (or hybrid) measurement library plus -specific
libraries. Note that the Score-P libraries must be linked before the library to
ensure interposition will be effective.

* OpenMP directives & API calls:

The Score-P measurement system uses the OPARI2 tool for instrumentation
of OpenMP constructs. See the OPARI2 documentation on how to instru-
ment OpenMP source code. In addition, the application must be linked with
the Score-P OpenMP (or hybrid) measurement library.

CHAPTER 3. APPLICATION INSTRUMENTATION

* Pthread library calls:

The Score-P measurement system uses GNU linker for instrumentation of
Pthreads library calls. At the moment only a few library calls are supported.

The Score-P instrumenter command scorep automatically takes care of compila-
tion and linking to produce an instrumented executable, and should be prefixed to
compile and link commands. Often this only requires prefixing definitions for CC
or MPICC (and equivalents) in Makefiles.

Usually the Score-P instrumenter scorep is able to automatically detect the pro-
gramming paradigm from the set of compile and link options given to the compiler.
In some cases however, when the compiler or compiler wrapper enables specific
programming paradigm by default (e.g., Pthreads on Cray and Blue Gene/Q sys-
tems), scorep needs to be made aware of the programming paradigm in order
to do the correct instrumentation. Please see scorep ——help for the available
options.

When using Makefiles, it is often convenient to define a "preparation preposition”

placeholder (e.g., PREP) which can be prefixed to (selected) compile and link com-
mands:

MPICC $ (PREP) mpicc
MPICXX = S$(PREP) mpicxx
MPIF90 $ (PREP) mpif90

These can make it easier to prepare an instrumented version of the program with

make PREP="scorep"

while default builds (without specifying PREP on the command line) remain fully
optimized and without instrumentation.

In order to instrument applications which employ GNU Autotools for building,
following instrumentation procedure has to be used:

1. Configure application as usual, but provide additional argument:
——disable—-dependency-tracking

2. Build application using make command with compiler specification vari-
ables set as follows:
make CC="scorep <your-cc—compiler>" \
CXX="scorep <your—cxx-compiler>" \
FC="scorep <your-fc-compiler>"

When compiling without the Score-P instrumenter, the scorep-config com-

mand can be used to simplify determining the appropriate linker flags and libraries,
or include paths:

18

scorep-config [--mpp=none|--mpp=mpi |--mpp=shmem] \
[-—thread=none|--thread=omp|--thread=pthread] --libs

The --mpp=<paradigm> switch selects which message passing paradigm is used.
Currently, Score-P supports applications using MPI (--mpp=mpi) or SHMEM (
--mpp=shmem) and applications without any message passing paradigm. It is not
possible to specify two message passing systems for the same application. The
--thread=<paradigm> switch selects which threading system is used in Score-P.
You may use OpenMP (--thread=omp), no threading system (--thread=none)
or POSIX threading system (--thread=pthread). It is not possible to specify two
threading systems for the same application. However, you may combine a message
passing system with a threading system.

Note

A particular installation of Score-P may not offer all measurement configura-
tions!

The scorep-configcommand can also be used to determine the right compiler
flags for specifying the include directory of the scorep/SCOREP_User.h or
scorep/SCOREP_User. inc header files. When compiling without using the
Score-P instrumenter, necessary defines and compiler instrumentation flags can be
obtained by calling one of the following, depending on the language:

scorep-config —--cflags [<options>]
scorep-config —--cxxflags [<options>]
scorep-config —--fflags [<options>]

If you compile a C file, you should use ~—cflags. If you use a C++ program, you
should use ——cxxflags. And if you compile a Fortran source file, you should
use ——flags.

With the additional options it is possible to select the used adapter, the threading
system and the message passing system. For each adapter, we provides a pair of
flags of the form ——adapter, and ——noadapter (please replace adapter by
the name of the adapter). This allows to get options for non-default instrumentation
possibilities. E.g., ——user enables the manual instrumentation with the Score-P
user API, the ——nocompiler option disables compiler instrumentation.

Score-P supports a variety of instrumentation types for user-level source routines
and arbitrary regions, in addition to fully-automatic MPI and OpenMP instrumen-
tation, as summarized in Table 3.1.

When the instrumenter determines that MPI or OpenMP are being used, it auto-
matically enables MPI library instrumentation or OPARI2-based OpenMP instru-
mentation, respectively. The default set of instrumented MPI library functions is
specified when Score-P is installed. All OpenMP parallel constructs and API calls
are instrumented by default.

19

CHAPTER 3. APPLICATION INSTRUMENTATION

Table 3.1: Score-P instrumenter option overview

Type of Instrumenter Default Instrumented| Runtime
instrumen- | switch value routines measure-
tation ment control
MPI ——mpp=mnpi/ (auto) configured see Sec. 4.5.1
——mpp=none by install
SHMEM ——mpp=shmem/ (auto) configured -
——mpp=none by install
OpenMP -—thread=omp/ | (auto) all parallel | —
——thread=none constructs
Pthread ——thread= (auto) Basic -
pthread Pthread
library calls

Compiler, ——compiler/ enabled all Filtering,

Sec. 3.1 ——nocompiler Sec. 4.3

PDT, ——pdt/ disabled all Filtering,

Sec. 3.8 ——nopdt Sec. 4.3

POMP2 ——pomp/ depends manually Filtering,

user re- | ——nopomp on annotated Sec. 4.3

gions, Sec. OpenMP

3.6 usage

Manual, —--user/ disabled manually Filtering,

Sec. 3.2 ——nouser annotated Sec. 4.3,
and selective
recording,
Sec. 4.4

20

By default, automatic instrumentation of user-level source routines by the com-
piler is enabled (equivalent to specifying ——compiler). The compiler instru-
mentation can be disabled with ——nocompi ler when desired, such as when us-
ing PDToolkit, or POMP2 or Score-P user API manual source annotations, are
enabled with ——pdt, ——pomp and ——user, respectively. Compiler, PDToolkit,
POMP?2 and Score-P user API instrumentation can all be used simultaneously, or in
arbitrary combinations, however, it is generally desirable to avoid instrumentation
duplication (which would result if all are used to instrument the same routines).
Note that enabling PDToolkit instrumentation automatically enables Score-P user
instrumentation, because it inserts Score-P user macros into the source code.

Note

There are two ways of internal data handling for measurements involving the
OpenMP threading model. The possible options are:
——thread=omp:pomp_tpd

——thread=omp:ancestry

These options should be identical in behavior. If you specify ——thread=omp
or OpenMP is automatically detected, the default is pomp_tpd .

Sometimes it is desirable to explicitly direct the Score-P instrumenter to do nothing
except execute the associated compile/link command. For such cases it is possi-
ble to disable default instrumentation with ——nocompiler, -—thread=none,
and/or ——mpp=none. Although no instrumentation is performed, this can help
verify that the Score-P instrumenter correctly handles the compile/link commands.

Note

Disabling OpenMP in the instrumenter for OpenMP applications will cause
errors during program execution if any event occurs inside of a parallel region.

Each thread model uses a default internal locking mechanism for the Score-P mea-
surement system. For the standard use case there is no need to specify an explicit
locking mode. However, on certain systems or for performance reasons it might

be useful to change the locking mode. For these cases the instrumenter provides the

option ——mutex=[omp | pthread|pthread:spinlock|pthread:wrap|none]
. Current possibilities are the OpenMP locking (omp), Pthread mutex (pthread),
Pthread spinlock (pthread:spinlock), Pthread mutex, where original functions re-

placed with __real functions (pthread:wrap), and none at all (none). Which of

these are available for a given installation will be determined at configure time.

Note

Not all combinations of thread model and explicit choice of locking are useful.
Currently, only the combination of no locking with a real threading system is
overwritten by the thread model default to ensure thread safety.

21

CHAPTER 3. APPLICATION INSTRUMENTATION

3.1 Automatic Compiler Instrumentation

Most current compilers support automatic insertion of instrumentation calls at rou-
tine entry and exit(s), and Score-P can use this capability to determine which rou-
tines are included in an instrumented measurement.

Compiler instrumentation of all routines in the specified source file(s) is enabled by
default by Score-P, or can be explicitly requested with ——compiler. Compiler
instrumentation is disabled with ——nocompiler.

Note

Depending on the compiler, and how it performs instrumentation, insertion of
instrumentation may disable in-lining and other significant optimizations, or
in-lined routines may not be instrumented at all (and therefore "invisible").

Automatic compiler-based instrumentation has been tested with a number of dif-
ferent compilers:

* GCC (UNIX-like operating systems, not tested with Windows)

IBM xlc, xIC (version 7 or later, IBM Blue Gene)

IBM xIf (version 9.1 or later, IBM Blue Gene)

PGI (on Linux)

* Intel compilers (version 10 or later, Linux)

SUN Studio compilers (Linux, Fortran only)

In all cases, Score-P supports automatic instrumentation of C, C++ and, Fortran
codes, except for the SUN Studio compilers which only provide appropriate sup-
port in their Fortran compiler.

Note

The automatic compiler instrumentation might create a significant relative
measurement overhead on short function calls. This can impact the overall ap-
plication performance during measurement. C++ applications are especially
prone to suffer from this, depending on application design and whether C++
STL functions are also instrumented by the compiler. Currently, it is not pos-
sible to prevent the instrumentation of specific functions on all platforms when
using automatic compiler instrumentation.

Names provided for instrumented routines depend on the compiler, which may add
underscores and other decorations to Fortran and C++ routine names, and whether
name "demangling" has been enabled when Score-P was installed and could be
applied successfully.

22

3.2 Manual Region Instrumentation

3.2 Manual Region Instrumentation

In addition to the automatic compiler-based instrumentation (see Section 3.1),
instrumentation can be done manually. Manual instrumentation can also be used
to augment automatic instrumentation with region or phase annotations, which can
improve the structure of analysis reports. Furthermore, it offers the possibility
to record additional, user defined metrics. Generally, the main program routine
should be instrumented, so that the entire execution is measured and included in
the analysis.

Instrumentation can be performed in the following ways, depending on the pro-
gramming language used.

Fortran:

#include "scorep/SCOREP_User.inc"
subroutine foo
SCOREP_USER_REGION_DEFINE (my_region_handle)
! more declarations
SCOREP_USER_REGION_BEGIN(my_region_handle, "foo",
SCOREP_USER_REGION_TYPE_COMMON)
! do something

SCOREP_USER_REGION_END (my_region_handle)

end subroutine foo
C/C++:

#include <scorep/SCOREP_User.h>
void foo ()
{
SCOREP_USER_REGION_DEFINE (my_region_handle)

// more declarations

SCOREP_USER_REGION_BEGIN(my_region_handle, "foo",
SCOREP_USER_REGION_TYPE_COMMON)

// do something

SCOREP_USER_REGION_END (my_region_handle)

C++ only:

#include <scorep/SCOREP_User.h>

void foo ()

23

CHAPTER 3. APPLICATION INSTRUMENTATION

{
SCOREP_USER_REGION("foo", SCOREP_USER_REGION_TYPE_FUNCTION)

// do something
}

Note

When using Fortran, make sure the C preprocessor expands the macros. In
most cases, the fortran compiler invoke the C preprocessor if the source file
suffix is in capital letters. However, some compilers provide extra flags to tell
the compiler to use a C preprocessor. Furthermore, it is important to use the
C-like #include with the leading *#’-character to include the SCOREP_ -
User.inc header file. Otherwise, the inclusion may happen after the C
preprocessor ran. As result the fortran compiler complains about unknown
preprocessing directives.

Region handles (my_region_handle) should be registered in each annotated
function/subroutine prologue before use within the associated body, and should
not already be declared in the same program scope.

For every region, the region type can be indicated via the region type flag. Possible
region types are:

SCOREP_USER_REGION_TYPE_COMMON Indicates regions without a spe-
cial region type.

SCOREP_USER_REGION_TYPE_FUNCTION Indicates that the region is a
function or subroutine

SCOREP_USER_REGION_TYPE_LOOP Indicates that the region is the body
of a loop, with the same number of iterations in all locations.

SCOREP_USER_REGION_TYPE_DYNAMIC Set this type to create a sepa-
rate branch in the call-tree for every execution of the region. See Section
4.1.3.

SCOREP_USER_REGION_TYPE_PHASE Indicates that this region belongs
to a special phase. See Section 4.1.2.

To create a region of combined region types you can connect two or more types
with the binary OR-operator, e.g.:

SCOREP_USER_REGION_BEGIN(handle, "foo",
SCOREP_USER_REGION_TYPE_LOOP |
SCOREP_USER_REGION_TYPE_PHASE |
SCOREP_USER_REGION_TYPE_DYNAMIC)

24

3.2 Manual Region Instrumentation

For function instrumentation in C and C++, Score-P provides macros, which au-
tomatically pass the name and function type to Score-P measurement system. The
SCOREP_USER_FUNC_BEGIN macro contains a variable definition. Thus, com-
pilers that require strict separation of declaration and execution part, may not work
with this macro.

C/C++:

#include <scorep/SCOREP_User.h>

void foo()

{
SCOREP_USER_FUNC_BEGIN ()
// do something
SCOREP_USER_FUNC_END ()

In some cases, it might be useful to have the possibility to define region handles
with a global scope. In C/C++, a region handle can be defined at a global scope
with SCOREP_USER_GLOBAL_REGION_DEFINE. In this case, the SCOREP_ -
USER_REGION_DEFINE must be omitted. The SCOREP_USER_GLOBAL_ -
REGION_DEFINE must only appear in one file. To use the same global variable
in other files, too, declare the global region in other files with SCOREP_USER_ -
GLOBAL_REGION_EXTERNAL.

File 1:

SCOREP_USER_GLOBAL_REGION_DEFINE (global_handle)

foo ()

{
SCOREP_USER_REGION_BEGIN(global_handle, "phase 1",

SCOREP_USER_REGION_TYPE_PHASE)

// do something
SCOREP_USER_REGION_END (global_handle)

}

File 2:

SCOREP_USER_GLOBAL_REGION_EXTERNAL (global_handle)

bar ()

{
SCOREP_USER_REGION_BEGIN(global_handle, "phase 1",

SCOREP_USER_REGION_TYPE_PHASE)

// do something
SCOREP_USER_REGION_END (global_handle)

}

Note

These macros are not available in Fortran.

25

CHAPTER 3. APPLICATION INSTRUMENTATION

The source files instrumented with Score-P user macros have to be compiled with
-DSCOREP_USER_ENABLE otherwise SCOREP_* calls expand to nothing and
are ignored. If the Score-P instrumenter ——user flag is used, the SCOREP_ -
USER_ENABLE symbol will be defined automatically. Also note, that Fortran
source files instrumented this way have to be preprocessed with the C preprocessor
(CPP).

Manual routine instrumentation in combination with automatic source-code instru-
mentation by the compiler or PDT leads to double instrumentation of user routines,
i.e., usually only user region instrumentation is desired in this case.

3.3 Instrumentation for Parameter-Based Profiling

The Score-P user API provides also macros for parameter-based profiling. In
parameter-based profiling, the parameters of a function are used to split up the
call-path for executions of different parameter values. In Score-P parameter-based
profiling is supported for integer and string parameters. To associate a parame-
ter value to a region entry, insert a call to SCOREP_USER_PARAMETER_INT64
for signed integer parameters, SCOREP_USER_PARAMETER_UINT64 for un-
signed integer parameters, or SCOREP_USER_PARAMETER_STRING for string
parameters after the region entry (e.g. after SCOREP_USER_REGION_BEGIN or
SCOREP_USER_FUNC_BEGIN).

Fortran:

#include "scorep/SCOREP_User.inc"

subroutine foo (i, s)
integer :: 1
character (x) :: s

SCOREP_USER_REGION_DEFINE (my_region_handle)
SCOREP_USER_PARAMETER_DEFINE (int_param)
SCOREP_USER_PARAMETER_DEFINE (string_param)
SCOREP_USER_REGION_BEGIN (my_region_handle, "my_region",
SCOREP_USER_REGION_TYPE_COMMON)
SCOREP_USER_PARAMETER_INT64 (int_param, "myint",i)
SCOREP_USER_PARAMETER_UINT64 (uint_param, "myuint",i)
SCOREP_USER_PARAMETER_STRING (string_param, "mystring",s)

// do something

SCOREP_USER_REGION_END (my_region_handle)
end subroutine foo

C/C++:

#include <scorep/SCOREP_User.h>

26

3.4 Measurement Control Instrumentation

void foo(int64_t myint, uint64_t myuint, char xmystring)

{
SCOREP_USER_REGION_DEFINE (my_region_handle)
SCOREP_USER_REGION_BEGIN(my_region_handle, "foo",
SCOREP_USER_REGION_TYPE_COMMON)
SCOREP_USER_PARAMETER_INT64 ("myint",myint)
SCOREP_USER_PARAMETER_UINT64 ("myuint™, myuint)
SCOREP_USER_PARAMETER_STRING ("mystring"”, mystring)

// do something

SCOREP_USER_REGION_END (my_region_handle)

In C/C++, only a name for the parameter and the value needs to be provided. In
Fortran, the handle must be defined first with SCOREP_USER_PARAMETER_ —
DEFINE. The defined handle name must be unique in the current scope. The
macro SCOREP_USER_PARAMETER_INT64 as well as the macro SCOREP_ —
USER_PARAMETER_STRING need the handle as the first argument, followed by
the name and the value.

3.4 Measurement Control Instrumentation

The Score-P user API also provides several macros for measurement control that
can be incorporated in source files and activated during instrumentation. The macro
SCOREP_RECORDING_OFF can be used to (temporarily) pause recording until a
subsequent SCOREP_RECORDING_ON. Just like the already covered user-defined
annotated regions, SCOREP_ RECORDING_ON and the corresponding SCOREP_ —
RECORDING_OFF must be correctly nested with other enter/exit events. Finally,
with SCOREP_RECORDING_IS_ON you can test whether recording is switched
on.

Events are not recorded when recording is switched off (though associated defi-
nitions are), resulting in smaller measurement overhead. In particular, traces can
be much smaller and can target specific application phases (e.g., excluding ini-
tialization and/or finalization) or specific iterations. Since the recording switch is
process-local, and effects all threads on the process, it can only be initiated outside
of OpenMP parallel regions. Switching recording on/off is done independently on
each MPI process without synchronization.

Note

Switching recording on/off may result in inconsistent traces or profiles, if not
applied with care. In particular, if communication is recorded incomplete (e.g.
if the send is missing but the corresponding receive event is recorded) it may

27

CHAPTER 3. APPLICATION INSTRUMENTATION

result in errors during execution or analysis. Furthermore, it is not possible
to switch recording on/off from within parallel OpenMP regions. We recom-
mend to use the selective recording interface, instead of the manual on/off
switch whenever possible. Special care is required in combination with selec-
tive recording (see Section 4.4, which also switches recording on/off.

3.5 Source-Code Instrumentation Enabling Online Access

The Online Access interface to the measurement system of Score-P allows remote
control of measurement and access to the profile data. The online access interface
may not be available on all platforms. To use the Online Access interface, Score-P
must have been built with Online Access (OA) support.

The Online Access module requires the user to specify at least one online access
phase. The online access phase does not show the behavior of a region of type
phase as defined in Section 3.2. However, the way to specify an online access
phase is similar to manual region instrumentation. The start and end of the on-
line access phase defines the interaction points, where new measurement control
commands are applied and data requests are answered.

To insert an online online access phase into the code, the user has to insert the
macros SCOREP_USER_OA_PHASE_BEGIN and the corresponding SCOREP_ —
USER_OA_PHASE_END at appropriate locations. These macros must be

* correctly nested with all regions and

* must be potential global synchronization points.

Common practice is to mark the body of the application’s main loop as online
access phase, in order to utilize the main loop iterations for iterative online analysis.
Only the measurements collected inside the OA phase could be configured and
retrieved.

Instrumentation can be performed in the following ways, depending on the pro-
gramming language used.

Fortran:

#include "scorep/SCOREP_User.inc"

subroutine foo
SCOREP_USER_REGION_DEFINE (my_region_handle)
! more declarations

SCOREP_USER_OA_PHASE_BEGIN(my_region_handle, "foo",
SCOREP_USER_REGION_TYPE_COMMON)
! do something

28

3.6 Semi-Automatic Instrumentation of POMP2 User Regions

SCOREP_USER_OA_PHASE_END (my_region_handle)

end subroutine foo
C/C++:

#include <scorep/SCOREP_User.h>

void foo ()
{
SCOREP_USER_REGION_DEFINE (my_region_handle)

// do something

SCOREP_USER_OA_PHASE_BEGIN(my_region_handle, "foo",
SCOREP_USER_REGION_TYPE_COMMON)

// do something

SCOREP_USER_OA_PHASE_END (my_region_handle)

3.6 Semi-Automatic Instrumentation of POMP2 User Regions

If you manually instrument the desired user functions and regions of your applica-
tion source files using the POMP2 INST directives described below, the Score-P
instrumenter ——pomp flag will generate instrumentation for them. It is automat-
ically enabled for OpenMP applications, but can be disabled with ——nopomp.
POMP?2 instrumentation directives are supported for Fortran and C/C++. The main
advantages are that

* being directives, the instrumentation is ignored during "normal" compilation
and

* this semi-automatic instrumentation procedure can be used when fully auto-
matic compiler instrumentation is not supported.

The INST BEGIN/END directives can be used to mark any user-defined sequence
of statements. If this block has several exit points (as is often the case for func-
tions), all but the last have to be instrumented by INST ALTEND.

Fortran:

subroutine foo(...)
!declarations
!POMPS$ INST BEGIN (foo)

if (<condition>) then

29

CHAPTER 3. APPLICATION INSTRUMENTATION

'POMPS INST ALTEND (foo)
return
end if

!POMPS$ INST END (foo)
end subroutine foo

C/C++:

void foo(...)

{
/+ declarations x/
#pragma pomp inst begin (foo)

if (<condition>)

{
#pragma pomp inst altend(foo)
return;

}

#pragma pomp inst end(foo)

At least the main program function has to be instrumented in this way, and addi-
tionally, one of the following should be inserted as the first executable statement of
the main program:

Fortran:

program main
! declarations
'POMPS$ INST INIT

end program main
C/C++:

int main(int argc, charxx argv)
{

/* declarations =/

#pragma pomp inst init

Note

The POMP2 instrumentation uses the OPARI2 instrumenter. Thus, for OpenMP
application, which automatically enable OPARI2 to instrument the parallel
constructs, POMP2 user region instrumentation is enabled, too. Too disable
POMP?2 user region instrumentation for OpenMP applications, pass ——nopomp
to the instrumenter.

30

3.7 Preprocessing before POMP2 and OpenMP instrumentation

By default, the source code is preprocessed before POMP2 instrumentation hap-
pens. For more information on the preprocessing, see Section 3.7.

3.7 Preprocessing before POMP2 and OpenMP instrumentation

By default, source files are preprocessed before the semi-automatic POMP?2 instru-
mentation or the OpenMP construct instrumentation with OPARI2 happens. This
ensures, that all constructs and regions that might be contained in header files,
templates, or macros are properly instrumented. Furthermore, conditional compi-
lation directives take effect, too. The necessary steps are performed by the Score-P
instrumenter tool.

Some Fortran compilers do not regard information about the original source lo-
cation that the preprocessing leaves in the preprocessed code. This causes wrong
source code information for regions from compiler instrumentation, and manual
source code instrumentation. However, these compilers also disregard the source
code information left by OPARI2. Thus, for these compilers the source location
information is incorrect anyway.

If the preprocessing is not desired, you can disable it with the ——nopreprocess
flag. In this case the instrumentation is performed before the preprocessing hap-
pens. In this case constructs and regions in header files, macros, or templates are
not instrumented. Conditional compilation directives around constructs may also
lead to broken instrumentation.

Note

If a parallel region is not instrumented, the application will crash during run-
time.

The preprocessing does not work in combination with PDT source code instru-
mentation. Thus, if PDT instrumentation is enabled, it changes the default to not
preprocess a source file. If you manually specify preprocessing and PDT source
code instrumentation, the instrumenter will abort with an error.

3.8 Source-Code Instrumentation Using PDT

If Score-P has been configured with PDToolkit support, automatic source-code
instrumentation can be used as an alternative instrumentation method. In this case,
the source code of the target application is pre-processed before compilation, and
appropriate Score-P user API calls will be inserted automatically. However, please
note that this feature is still somewhat experimental and has a number of limitations
(see Section 3.8.1).

31

CHAPTER 3. APPLICATION INSTRUMENTATION

To enable PDT-based source-code instrumentation, call scorep with the ——pdt
option, e.g.,

scorep —--pdt mpicc -c foo.c

This will by default instrument all routines found in foo. c. (To avoid double in-
strumentation, automatic compiler instrumentation is disabled when using Source-
Code Instrumentation with PDT. However, if you you can enforce additional com-
piler instrumentation with ——compiler.)

3.8.1 Limitations

Currently the support for the PDT-based source-code instrumenter still has a num-
ber of limitations:

* When instrumenting Fortran 77 applications, the inserted instrumentation
code snippets do not yet adhere to the Fortran 77 line length limit. Typi-
cally, it is possible to work around this issue by supplying extra command
line flags (e.g., ~-ffixed-line-length-132 or —-gfixed=132)to the
compiler.

* Code in C/C++ header files as well as included code in Fortran (either using
the C preprocessor or the include keyword) will currently not be instru-
mented.

* Support for C++ templates and classes is currently only partially imple-
mented.

* Advanced TAU instrumentation features such as static/dynamic timers, loop,
I/O and memory instrumentation are not yet supported. Respective entries
in the selective instrumentation file will be ignored.

3.9 Binary Instrumentation Using Cobi

If you have an installation of the binary instrumenter Cobi, you can configure
Score-P to support binary instrumentation of functions with Cobi during Score-
P installation. To use Cobi for function instrumentation, you must set the ——cobi
flag. E.g.

scorep —--cobi mpicc foo.c -o foo

By default, it will disable automatic compiler instrumentation during compilation
and instrument all function in the executable. Although the instrumentation hap-
pens after linking, we recommend to compile all objects with the ——cobi flag to

32

3.10 Enforce Linking of Static/Shared Score-P Libraries

avoid double instrumentation. However, you can enforce compiler instrumentation
with ——compiler.

Note

Cobi is still considered to be an experimental tool. Thus, it may have some
limitations. E.g. it is currently only available for GNU compilers and requires
Score-P to be build in shared mode. Also the support for Cobi itself is limited.

3.10 Enforce Linking of Static/Shared Score-P Libraries

If the Score-P was build with shared libraries and with static libraries, the instru-
menter uses the compiler defaults for linking. E.g. if the compiler chooses shared
libraries by default, the instrumenter will link your application with the shared
Score-P libraries. Furthermore, the linking is affected by parameters in the original
link command. E.g. if your link command contains a -Bstat ic flag, afterwards
appended Score-P libraries are also linked statically.

If you want to override the default and enforce linking of static or dynamic Score-
P libraries, you can add the flag ——static or ——dynamic for the instrumenter.
E.g. a command to enforce static linking can look like:

scorep —--static mpicc foo.c -o foo

In this case, the linking against the static version of the Score-P libraries is en-
forced.

If enforcing static or dynamic linking is not possible on your system, e.g., because
no static/dynamic Score-P libraries are installed, the instrumenter will abort with
an error. You can determine whether ——stat ic or ——dynami c is available from
the output of scorep —-help. Ifthe ——static or ——dynamic flags are not
shown, then they are not available.

33

CHAPTER 3. APPLICATION INSTRUMENTATION

34

Chapter 4

Application Measurement

If an application was instrumented with Score-P, you will get an executable, which
you can execute like the uninstrumented application. After the application run, you
will find an experiment directory in your current working directory, which contains
all recorded data. The experiment directory has the format scorep-YYYYMMDD_ —
HHMM_XXXXXXXX, where YYYYMMDD and HHMM encodes the date followed by a
series of random numbers. You may specify the name of the experiment direc-
tory by setting the environment variable SCOREP_EXPERIMENT_DIRECTORY
to the desired name of the directory. If the directory already exists, the existing
directory will be renamed by appending a date like above by default. You can let
Score-P abort the measurement immediately by setting SCOREP_ OVERWRITE_ -
EXPERIMENT_DIRECTORY to false if the experiment directory already exists.
This has only an effect if SCOREP_EXPERIMENT_DIRECTORY was set too.

In general, you can record a profile and/or a event trace. Whether a profile and/or a
trace is recorded, is specified by the environment variables SCOREP_ENABLE_ -
PROFILING and SCOREP_ENABLE_TRACING. If the value of this variables is
zero or false, profiling/tracing is disabled. Otherwise Score-P will record a pro-
file and/or trace. By default, profiling and tracing are both enabled.

You may start with a profiling run, because of its lower space requirements. Ac-
cording to profiling results, you may configure the trace buffer limits, filtering or
selective recording for recording traces.

Score-P allows to configure several parameters via environment variables. After
the measurement run you can find a scorep.cfg file in your experiment direc-
tory which contains the configuration of the measurement run. If you had not set
configuration values explicitly, the file will contain the default values. This file is
safe to be used as input for a POSIX shell. For example if you want to reuse the
same configuration from an previous measurement run something like this:

S set -a

CHAPTER 4. APPLICATION MEASUREMENT

$. scorep.cfg
$ set +a
4.1 Profiling

Score-P implements a call-tree based profiling system. Every node in the call tree
represent a recorded region. The edges of the tree represent the caller-callee rela-
tionship: The children of a node are those regions, that are entered/exited within a
region. The path from the root to an arbitrary node, represents a call-path. Thus,
every node in the tree identifies also the call-path from the root to itself.

Together with a node, the statistics for the call-path are stored. By default, the
runtime and the number of visits are recorded. Additionally, hardware counters
can be configured and are stored for every call-path. User defined metrics are only
stored in those nodes, where the metric was triggered.

For enabling profiling, set the SCOREP_ENABLE_PROFILING environment vari-
able to 1 or t rue. After the execution of your application you will then find a file,
named profile.cubex in your measurement directory, which you can display
with the CUBE4 with cube—-gt profile.cubex. The name of the profile can
be changed through the environment variable SCOREP_PROFILING_BASE_—
NAME. The extension . cubex will be appended to the base name you specify in
the environment variable SCOREP_PROFILING_BASE_NAME.

By default, Score-P writes the profile in CUBE4 base format. Hereby, for every
metric contains one value, usually only the sum. However, Score-P allows to store
the profile in two other formats. To change the default format, set the environment
variable SCOREP_PROFILING_FORMAT. The following formats are available:

¢ CUBEA4 is the default format.

* CUBE_TUPLE is an extended CUBE format. It provides a tuple of sum,
minimum, maximum, number of samples, sum of squares for every metric.

* TAU_SNAPSHOT is a textual format used by TAU. It creates a file per
location and thus, may not scale to large machines.

Score-P records a call tree profile. The maximum call-path depth that is recorded
is limited to 30, by default. This avoids extremely large profiles for recursive calls.
However, this limit can be changed with the environment variable SCOREP_ —
PROFILING_MAX_ CALLPATH_DEPTH.

36

4.1 Profiling

411 Parameter-Based Profiling

Parameter-based profiling allows to separate the recoded statistics for a region, de-
pending on the values of one or multiple parameters. In the resulting call-tree, each
occurred parameter-value will create a sub-node of the region. Every parameter has
a parameter name. Thus, if multiple parameters are used, they can be distinguished
and split the call-tree in the order of the parameter events. In the final call-tree it
looks like every parameter-name/parameter-value pair is a separate region.

Currently, the only source for parameter events is manual instrumentation (see Sec-
tion 3.3).

4.1.2 Phase Profiling

Phase-profiling allows, to group the execution of the application into logical phases.
Score-P records a separate call-tree for every phase in the application. A phase
starts when a region of type SCOREP_USER_REGION_TYPE_PHASE (see Sec-
tion 3.2) is entered. If the region is exited, the phase is left. If two phases are
nested, then the outer phase is left, when the inner phase is entered. If the inner
phase is exited, the outer phase is re-entered. Figure 4.1 shows the difference
in the call-tree if the regions with the names phasel and phase2 are not of type
SCOREP_USER_REGION_TYPE_PHASE on the left side and the forest if they
are of type SCOREP_USER_REGION_TYPE_PHASE on the right side.

If the phase consists of multiple partitions, and thus cannot be enclosed by a single
code region, all code-regions that form the phase must have the same region handle.
The possibility to define global region handles in C/C++ might be useful for the
definition of phases that are have multiple partitions (see Section 3.2).

4.1.3 Dynamic Region Profiling

When profiling, multiple visits of a call-path are summarized. However, e.g, for
investigations in time-dependent behavior of an application, each iteration of a
main loop (or some other region) should create a separate profile sub-tree. For
such cases, Score-P allows to define regions to by of type dynamic. For dynamic
regions, each entry of the region will create a separate path. For this cause, the
Score-P profiling system creates an extra parameter, named instance. On each
visit to a dynamic region, the instance parameter for this call-path is increased
and triggered automatically. Thus, the every visit to a dynamic region generates a
separate subtree in the profile.

As an example, let us assume that an application contains the regions foo and
main, where main calls foo three times. A regular profile would show two call-
pathes:

37

CHAPTER 4. APPLICATION MEASUREMENT

main
main !
A
I T

'

|

I—Iﬁ

hase2
:

l—;l

e

Figure 4.1: Call-tree changes when using phases. The left side shows the calltree
if no region is of type phase. The right side shows the call-tree forest with phases.

* main

* main/foo

If foo is a dynamic region, the profile would contain additional sub-nodes for each
visit of foo. The resulting profile would contain the following call-pathes:

* main

* main/foo

* main/foo/instance=0
* main/foo/instance=1

e main/foo/instance=2

In this case main/foo contains the summarized statistics for all 3 visits, while
main/foo/instance=0 contains the statistics for the first visits of the call-
path.

38

4.1 Profiling

Note

The enumeration of the instance is per call-path and not per dynamic region.
In particular, if a dynamic region foo appears in 2 call-paths, it has 2 instance
number 0, one in both call-paths. It is not a global enumeration of the visits to
foo but enumerates the visits of foo in a particular call-path from 0 to N.

Currently, the only possibility to define dynamic regions is via the manual region
instrumentation, described in Section 3.2.

Note

Using dynamic regions can easily create very large profiles. Thus, use this
feature with care. If you are only interested in some parts of the application,
selective recording (see Section 4.4) might be a memory space save alterna-
tive. Furthermore, you can use clustering (see Section 4.1.4) to reduce the
memory requirements.

4.1.4 Clustering

Clustering allows to reduce the memory requirements of a dynamic region, by clus-
tering similar sub-trees into one cluster. A visualization tool (like CUBE 4) might
expand the clusters back to single iterations transparently. You can enable/dis-
able clustering via the environment variable SCOREP_PROFILING_ENABLE_ -
CLUSTERING. By default, clustering is enabled.

Currently, clustering is limited to the instances of one node in the call-tree. If a
dynamic region appears on several call-paths, Score-P will only cluster one, and
generate separate sub-trees for every iterations in all other call-paths. By default,
Score-P will cluster the instances of that dynamic region call-path that it enters
first. If you have only one call-path where a dynamic region occurs (e.g., if the
body of the main loop is the only dynamic region), this region will be clustered
automatically. Otherwise, we recommend to specify the region you want to cluster
in the environment variable SCOREP_PROFILING_CLUSTERED_ REGION.

Note

If the selected region appears on multiple call-paths, only one of them is clus-
tered. Score-P chooses the call-path of that regions that it enters first. In
particular, if the selected dynamic region is nested into itself, the outermost
occurrence is clustered.

Furthermore, the clustered region must not be inside of a parallel region, but must
be at a sequential part of the program. However, the clustered region may contain
parallel regions.

39

CHAPTER 4. APPLICATION MEASUREMENT

Table 4.1: Clustering modes

Mode | Description

0 No structural similarity required.

1 The sub-trees structure must match.

2 The sub-trees structure and the number of visits must match.

3 The structure of the call-path to MPI calls must match. Nodes
that are not on an MPI call-path may differ.

4 Like Mode 3, but the number of visits of the MPI calls must
match, too.

5 Like Mode 4, but the number of visits must match also match on
all nodes on the call-path to an MPI function.

Clustering is a lossy compression mechanism. The accuracy increases if more
clusters are available. On the downside, more clusters require more memory. You
can specify the number of clusters you want by setting the environment variable
SCOREP_PROFILING_CLUSTER_COUNT to the number of cluster you want to
have. The default cluster number is 64.

Furthermore, you can enforce a minimal structural similarity of instances of a clus-
ter. Clusters that fit the minimal structural similarity requirements belong to the
same equivalence class. Only instances of the same equivalence class will be clus-
tered together. If you have more equivalence classes than the number of clusters
you specified in SCOREP_PROFILING_CLUSTER_COUNT, the maximal num-
ber of clusters is increased. Thus, you might get more clusters than you specified.

The minimal structural similarity is defined by the clustering mode which can be
set via the environment variable SCOREP_PROFILING_CLUSTERING_MODE.
The value of this variable is a number between O and 5, specifying one of the
modes described in Table 4.1.

4.1.5 Enabling additional debug output on inconsistent profiles

If the Score-P profiling system detects inconsistencies during measurement, it stops
recording the profile and prints an error message. Examples for reasons of an in-
consistent profile are, if the nesting order of function entries and exits is broken, or
events appear for an uninitialized thread. This might indicate an bug of the profile,
but typically the cause is an erroneous instrumentation. E.g. if manual instrumen-
tation is applied, but not all possible exit points of a function are instrumented.

In order to support debugging of manual instrumentation, or during the develop-
ment of own automatic instrumentation techniques, the profile can write additional
information about its current state in a textual form into a file. This output may
contain the following information:

40

4.2 Tracing

* The current call stack of the failing thread
* The profile structure of the failing thread

* The complete profile structure

None of the three entries is guaranteed to appear in the output, it depends on the
current state of the profile. It might not be possible to provide any output at all.
Furthermore, the online representation of the profile structure may differ from the
final profile structure.

You can enable this additional output by setting the environment variable SCOREP__—
PROFILING_ENABLE_CORE_FILES to true. Then, if the profile detects an
inconsistency, it will write a core file into your measurement directory. If an in-
constant profiles is detected on multiple locations, every location where an incon-
sistency is detected will write a core file. Thus, it is not recommended, to enable
this feature for large scale runs.

4,2 Tracing

Score-P can write events to OTF2 traces. By setting the environment variable
SCOREP_ENABLE_TRACING, you can control whether a trace is recorded. If
the value is 0 or false no trace is recorded, if the value is non-zero or true, a
trace is recorded. If the variable is not specified, Score-P records traces on default.
After trace recording you will find the OTF2 anchor file, named trace.otf2 in
the experiment directory, along with the trace data.

4.3 Filtering

When automatic compiler instrumentation or automated source code instrumen-
tation with PDT has been used to instrument user-level source-program routines,
there are cases where measurement and associated analysis are degraded, e.g., by
frequently-executed, small and/or generally uninteresting functions, methods and
subroutines.

A measurement filtering capability is therefore supported for compiler instrumented
regions, regions instrumented with Score-P user API and regions from OPARI2
instrumentation (see Section 3.6). Because PDT instrumentation (Section 3.8) in-
serts, Score-P user API instrumentation, those regions can be filtered, too. Regions
can be filtered based on their region name (e.g., their function name) or based on
the source file, in which they are defined.

A file that contains the filter definition can be specified via the environment vari-
able SCOREP_FILTERING_FILE. If no filter definition file is specified, all in-

41

CHAPTER 4. APPLICATION MEASUREMENT

strumented regions are recorded. For filtered regions, the enter/exit events are not
recorded in trace and profile.

The filter definition file can contain two blocks:

* One block defines filter rules for filtering regions based on the source files
they are defined in.

* One filter block defined rules for region names.

When the filter rules are applied, the source file name filter is evaluated first. If a
region is filtered because it appears in a filtered source file, it cannot be included
by the function name filter. If a region was defined in a not-filtered source file, the
region name filter is evaluated. This means, events for a region are not recorded
if they are filtered by the source file filter or the region name filter. Events for a
region are recorded if the region is neither filtered by the source file filter nor by the
region name filter. If one of the both filter blocks is not specified, it is equivalent
to an empty filter block.

Beside the two filter blocks, you may use comments in the filter definition file.
Comments start with the character "#’ and is terminated by a new line. You may
use comments also inside the filter blocks. If a region name or source file name
contains ’#’, you must escape it with a backslash.

4.3.1 Source File Name Filter Block

The filter block for source file names, must be enclosed by SCOREP_FILE_ -
NAMES_BEGIN and SCOREP_FILE_NAMES_END. In between you can specify
an arbitrary number of include and exclude rules which are evaluated in sequential
order. At the beginning all source files are included. Source files that are excluded
after all rules are evaluated, are filtered.

An exclude rule starts with the keyword EXCLUDE followed by one or multiple
white-space separated source file names. Respectively, include rules start with
INCLUDE followed by one or multiple white-space separated file names. For the
specification of file names, bash-like wild-cards are supported. In particular, the
“x” wild-card matches an string of arbitrary length, the *?” matches exactly one
arbitrary character, or within ‘[]* you may specify multiple options.

Note

Unlike bash, a ’+’ may match a string that contains slashes. E.g, you may use
the "%’ wild-card for path prefixes.

An example source file filter block could look like this:

42

4.3 Filtering

SCOREP_FILE_NAMES_BEGIN # This is a comment
EXCLUDE */filtering/filterx*
INCLUDE */filter_test.c
SCOREP_FILE_NAMES_END

Note

ThekﬂyWOKb(SCOREP_FILE_NAMES_BEGIN,SCOREP_FILE_NAMES_—
END, EXCLUDE, and INCLUDE) are case-sensitive.

The filtering is based on the filenames as seen by the measurement system. De-
pending on instrumentation method and compiler the actual filename may contain
the absolute path, a relative path or no path at all. The instrumentation tool tries to
create as much absolute paths as possible. Paths are simplified before comparison
toarule. E.g. it removes path/. ./, /./ and multiple slashes. You may look up
the actual filename in the resulting output of the measurement.

4.3.2 Region Name Filter Block

The filter block for the region names, must be enclosed by SCOREP_REGION_ -
NAMES_BEGIN and SCOREP_REGION_NAMES_END. In between you can spec-
ify an arbitrary number of include and exclude rules which are evaluated in sequen-
tial order. At the beginning, all regions are included. Regions that are excluded
after all rules are evaluated, are filtered.

Note

Regions that are defined in source files that are filtered, are excluded due to
the source file filter. They cannot be included anymore by an include rule in
the region filter block.

An exclude rule starts with the keyword EXCLUDE followed by one or multi-
ple white-space separated region names. Respectively, include rules start with
INCLUDE followed by one or multiple white-space separated expressions. For
the specification of region names, bash-like wild-cards are supported. In particu-
lar, the *x* wild card matches an string of arbitrary length, the *?” matches exactly
one arbitrary character, or within ‘[]° you may specify multiple options.

An example region filter block could look like this:

SCOREP_REGION_NAMES_BEGIN
EXCLUDE =«
INCLUDE bar foo
baz
main
SCOREP_REGION_NAMES_END

43

CHAPTER 4. APPLICATION MEASUREMENT

In this example, all but the functions bar, foo, baz and main are filtered.

The filtering is based on the region names as seen by the measurement system.
Depending on instrumentation method and compiler the actual region name may
be mangled, or decorated. Thus, you may want to inspect the profile to determine
the name of a region inside the measurement system.

In some cases, the instrumentation provides mangled names, which are demangled
by Score-P. In this cases, Score-P uses the demangled form for display in profile
and trace definitions, and thus, the demangled form should be used in the filter file.
However, The MANGLED keyword marks a filter rule to be applied on the mangled
name, if a different mangled name is available. If no mangled name is available,
the rule is applied on the displayed name instead. The MANGLED keyword must
appear inside of an include rule or exclude rule. All patterns of the rule that follow
the MANGLED keyword, are applied to the mangled name, if the mangled name is
available.

In the following example, foo and baz are applied to the mangled name, while bar
and main are applied on the displayed name.

SCOREP_REGION_NAMES_BEGIN
EXCLUDE =
INCLUDE bar MANGLED foo
baz
INCLUDE main
SCOREP_REGION_NAMES_END

The displayed name may also be mangled if no demangled form is available. It is
not necessary to prepend rules with the MANGLED keyword if the displayed name
is mangled, but only if a mangled name is available that differs from the displayed
name.

Note

The keywords (e.g., EXCLUDE, INCLUDE, SCOREP_REGION_NAMES_ -
BEGIN, SCOREP_REGION_NAMES_END, and MANGLED are case-sensitive.

4.4 Selective Recording

Score-P experiments record by default all events during the whole execution run.
If tracing is enabled the event data will be collected in buffers on each process that
must be adequately sized to store events from the entire execution.

Instrumented routines which are executed frequently, while only performing a
small amount of work each time they are called, have an undesirable impact on
measurement. The measurement overhead for such routines is large in compar-
ison to the execution time of the uninstrumented routine, resulting in measure-
ment dilation. Recording these events requires significant space and analysis takes

44

4.4 Selective Recording

longer with relatively little improvement in quality. Filtering can be employed
during measurement (described in Section 4.3) to ignore events from compiler-
instrumented routines or user-instrumented routines.

Another possibility is not to record the whole application run. In many cases, only
parts of the application are of interest for analysis (e.g. a frequently performed cal-
culation) while other parts are of less interest (e.g., initialization and finalization)
for performance analysis. Or the calculation itself shows iterative behavior, where
recording of one iteration would be sufficient for analysis. Restricting recording
to one or multiple time intervals during measurement would reduce the required
space and overhead. This approach is called selective recording.

Score-P provides two possibilities for selective recording.

* A configuration file can specify recorded regions. The entry and exit of those
regions define an interval during which events are recorded.

* With user instrumentation, the recording can be manually switched on /off.
(See Section 3.2).

Switching recording on or off, can result in inconsistent traces or profiles, if not
applied with care. Especially, switching recording on/off manually via SCOREP_ -
RECORDING_ON and SCOREP_RECORDING_OFF from the Score-P user instru-
mentation macros is not recommended. Inconsistent traces may result in errors or
deadlocks during analysis, or show unusable data. The consistency is endangered
if:

* OpenMP events are missing in one thread while other threads have them.
Furthermore, the OpenMP parallel region events are required if any event
inside a parallel region is recorded. To prevent inconsistencies from incom-
plete recording of OpenMP events, it is not possible to switch recording
on/off from inside a parallel region

* MPI a communication is only recorded partially, e.g. if a send is missing,
but the corresponding receive on another process is recorded. To ensure
recording of complete communication is the responsibility of the user.

* enter/exit events are not correctly nested.

How recording can be controlled through Score-P macros which are inserted in the
application’s source code, is explained in Section 3.2. Thus, this section focuses
on first possibility, where the user specify recorded regions via a configuration file.
Selective recording affects tracing and profiling.

For selective recording, you can specify one or multiple traced regions. The record-
ing is enabled when a recorded region is entered. If the region is exited, record-
ing of events is switched off again. If a recorded region is called inside another

45

CHAPTER 4. APPLICATION MEASUREMENT

recorded region, thus, the recording is already enabled, it will not disable record-
ing of it exits, but recording will be switched off, if all recorded regions are exited.

For recorded regions only regions from Score-P user instrumentation can be se-
lected. If regions from other instrumentation methods are specified in the configu-
ration file for selective recording, they are ignored.

For a recorded region, the recording can be restricted to certain executions of that
region. Therefor, the enters for a recorded region are counted, and a particular ex-
ecution can be specified by the number of its enter. If a recorded region is called
recursively, the recording is only switched off, if the exit is reached, that corre-
sponds to the enter that enabled recording.

The configuration file is a simple text file, where every line contains the name of
exactly one region. Optionally, a comma-separated list of execution numbers or

intervals of execution numbers can be specified. A configuration file could look
like follows:

foo
bar 23:25, 50, 60:62
baz 1

This configuration file would record all executions of foo, the executions 23, 24,
25, 50, 60, 61, and 62 of bar, and the second (numbering starts with 0) execution
of baz.

To apply the selective recording configuration file to a measurement run of your ap-
plication, set the environment variable SCOREP_SELECTIVE_CONFIG_FILE
to the configuration file and run your instrumented application. If SCOREP_ -
SELECTIVE_CONFIG_FILE is empty, or the given file cannot be opened, the
whole application run will be recorded (no selective recording will apply).

4.5 Trace Buffer Rewind

Introducing a long-term event-trace recording mode, the trace buffer rewind feature
allows to discard the preceding section of the event trace at certain control points or
phase markers. The live decision whether to keep or discard a section can depend
on the presence or absence of certain behaviour patterns as well as on similarity or
difference with other sections.

Based on user regions (see 3.2), three macros are given which control the rewind.
These are:

// to define a local region handle based on the function

// SCOREP_USER_REGION_DEFINE(...)
SCOREP_USER_REWIND_DEFINE (regionHandle)

// similar to SCOREP_USER_REGION_BEGIN(...)

46

4.5 Trace Buffer Rewind

SCOREP_USER_REWIND_POINT(regionHandle, "name")

// similar to SCOREP_USER_REGION_END(...)

// w/ additional parameter to control the rewind (yes or no)
SCOREP_USER_REWIND_CHECK (regionHandle, boolean)

The user has to specify whether or not a rewind is requested with a boolean vari-
able in the SCOREP_USER_REWIND_ CHECK function. There are two different
approaches what to do with the rewind region in the trace based on the boolean
variable. If the boolean variable is true, the trace buffer will be reset to an old
snapshot and after that rewind region enter and leave events will be written into
the trace buffer to mark the presence of the trace buffer rewind. This rewind re-
gion then looks like a normal user-defined region in the trace. If the variable is
false, than no events of the rewind region are written into the trace, so that the trace
buffer looks like the user never instrumented the code w/ rewind regions. Trace
buffer flushes have an impact on the rewind regions, i.e. if a flush occurs all pre-
vious stored rewind points (which are not "checked", i.e. the flush is in between
the region) will be deleted and the SCOREP_USER_REWIND_CHECK function
won’t write the enter/leave events into the trace independently from the boolean
variable. Wrong nested rewind regions are handled as follows:

SCOREP_USER_REWIND_POINT(point 1, ...);

. do stuff ...

SCOREP_USER_REWIND_POINT (point 2, ...);
. do stuff ...

SCOREP_USER_REWIND_CHECK(point 1, true);
. do stuff ...

SCOREP_USER_REWIND_CHECK(point 2, true);

The check for point 2 would corrupt the trace buffer, so point 2 would be deleted
and ignored in the second check.

45.1 Selection of MPI Groups

The Message Passing Interface (MPI) adapter of Score-P supports the tracing of
most of MPI’s 300+ function calls. MPI defines a so-called ’profiling interface’
that supports the provision of wrapper libraries that can easily interposed between
the user application and the MPI library calls.

The general Score-P filtering mechanism is not applied to MPI functions. Instead,
the user can decide whether event generation is turned on or off for a group of MPI
functions, at strat time of the application. These groups are the listed sub-modules
of this adapter. Each module has a short string token that identifies this group.
To activate event generation for a specific group, the user can specify a comma-
separated list of tokens in the configuration variable SCOREP_MPI_ENABLE_-—
GROUPS. Additionally, special tokens exist to ease the handling by the user. A

47

CHAPTER 4. APPLICATION MEASUREMENT

Token Module

ALL Activate all available modules

DEFAULT Activate the configured default
modules of CG, COLL, ENV, IO,
P2P, RMA, TOPO, XNONBLOCK.
This can be used to easily activate
additional modules.

CG Communicators and groups

COLL Collective communication

ENV Environmental management

ERR Error handlers

EXT External interfaces

10 /0

MISC Miscellaneous

P2P Point-to-point communication

RMA One-sided communication

SPAWN Process management interface (aka
Spawn)

TOPO Topology communicators

TYPE MPI Datatypes

XNONBLOCK Extended non-blocking
communication events

XREQTEST Test events for tests of uncompleted
requests

complete list of available tokens that can be specified in the runtime configuration
is listed below.

Note

Event generation in this context only relates to flow and transfer events. Track-
ing of communicators, groups, and other internal data is unaffected and always
turned on.

Example:
SCOREP_MPT_ENABLE_GROUPS=ENV, P2P

This will enable event generation for environmental management, including MPT_ -
Init and MPI_Finalize, as well as point-to-point communication, but will
disable it for all other functions groups.

A shorthand to get event generation for all supported function calls is

SCOREP_MPI_ENABLE_GROUPS=ALL

48

4.6 Recording MPI Communicator Names

A shorthand to add a single group, e.g. TYPE, to the configured default is

SCOREP_MPI_ENABLE_GROUPS=DEFAULT, TYPE

A detailed overview of the MPI functions associated with each group can be found
in Appendix B.

A somehow special role plays the XNONBLOCK flag. This flag determines what
kind of events are generated by non-blocking peer-to-peer MPI function calls. If
XNONBLOCK is not set, an OTF2_MPI_Send event is created at the non-blocking
send call and an OTF2_MPI_Recv event is recorded when a non-blocking receive
request has completed. If XNONBLOCK is set, an OTF2_Isend event is recorded

at the non-blocking send and an OTF2_IsendComplete event when the event was
completed. Furthermore, on a non-blocking receive, it records an OTF2_IRecvRequest
event. On request completion an OTF2_IRecv event is recorded. In both cases the
group P2P must be enabled. Otherwise Score-P records no events for peer-to-peer
communication functions.

4.6 Recording MPI Communicator Names

The measurement system tracks also the names of MPI communicators to easily
identify them later in the analysis. This is done via the MPI_Comm_set_name
call. But there are some restrictions. First, the name of a communicator is only
recorded at the first call to MPTI_Comm_set_name for this communicator. Later
calls are ignored. Also this call is only honored when the call was made from
the rank which is rank O in this communicator. Other calls from other ranks are
ignored. And lastly the name will also be not recorded if the communicator has
only one member.

4.7 Recording Performance Metrics

If Score-P has been built with performance metric support it is capable of recording
performance counter information. To request the measurement of certain counters,
the user is required to set individual environment variables. The user can leave
these environment variables unset to indicate that no counters are requested. Re-
quested counters will be recorded with every enter/exit event.

4.7.1 PAPI Hardware Performance Counters

Score-P provides the possibility to query hardware performance counters and in-
clude these metrics into the trace and/or profile. Score-P uses the Performance

49

http://icl.cs.utk.edu/papi/
http://icl.cs.utk.edu/papi/

CHAPTER 4. APPLICATION MEASUREMENT

Application Programming Interface (PAPI) to access hardware per-
formance counters. Recording of PAPI performance counters is enabled by set-
ting the environment variable SCOREP_METRIC_PAPT to a comma-separated list
of counter names. Counter names can be any PAPI preset names or PAPI native
counter names.

Example:

SCOREP_METRIC_PAPI=PAPI_FP_OPS,PAPI_L2_TCM

This will record the number of floating point instructions and level 2 cache misses.
If any of the requested counters is not recognized, program execution will be
aborted with an error message. The PAPI utility programs papi_avail and
papi_native_avail report information about the counters available on the
current platform.

If you want to change the separator used in the list of PAPI counter names, set the
environment variable SCOREP_METRIC_PAPI_SEP to the desired character.

Note

In addition it is possible to specify metrics that will be recorded only by
the initial thread of a process. Please use SCOREP_METRIC_PAPI_PER_-
PROCESS for that reason.

4.7.2 Resource Usage Counters

Besides PAPI, Resource Usage Counters can be recorded. These metrics use the
Unix system call get rusage to provide information about consumed resources
and operating system events such as user/system time, received signals, and num-
ber of page faults. The manual page of get rusage provides a list of resource
usage counters. Please note that the availability of specific counters depends on the
operating system.

You can enable recording of resource usage counters by setting the SCOREP_ —
METRIC_RUSAGE environment variable. The variable should contain a comma-
separated list of counter names.

Example:

SCOREP_METRIC_RUSAGE=ru_utime, ru_stime

This will record the consumed user time and system time. If any of the requested
counters is not recognized, program execution will be aborted with an error mes-
sage.

50

http://icl.cs.utk.edu/papi/
http://icl.cs.utk.edu/papi/

4.7 Recording Performance Metrics

Note

Please be aware of the scope of displayed resource usage statistics. Score-P
records resource usage statistics for each individual thread, if the output while
configuring your Score-P installation contains something like

RUSAGE_THREAD support: yes

Otherwise, the information displayed is valid for the whole process. That
means, for multi-threaded programs the information is the sum of resources
used by all threads in the process.

A shorthand to record all resource usage counters is

SCOREP_METRIC_RUSAGE=all

However, this is not recommended as most operating systems does not support all
metrics.

If you want to change the separator used in the list of resource usage metrics, set the
environment variable SCOREP_METRIC_RUSAGE_SEP to the desired character.

Example:

SCOREP_METRIC_RUSAGE_SEP=:
This indicates that counter names in the list are separated by colons.

Note

In addition it is possible to specify metrics that will be recorded only by the
initial thread of a process. Please use SCOREP_METRIC_RUSAGE_PER_-—
PROCESS for that reason.

4.7.3 Metric Plugins

Metric plugins extend the functionality of Score-P by providing additional counter
as external libraries. The libraries are loaded when tracing or profiling your appli-
cation. So there is no need to recompile your application or instrument it manually.

The small example of a synchronous metric plugin can be found in Appendix C.
The commands to build the corresponding library of this plugin might look like:

gcc —c¢ —fPIC hello_world.c \

-0 libHelloWorld.so.o ‘scorep-config —--cppflags’®
gcc —-shared -Wl,-soname, libHelloWorld.so \

-0 libHelloWorld.so libHelloWorld.so.o

51

CHAPTER 4. APPLICATION MEASUREMENT

To enable a metric plugin, set the environment variable SCOREP_METRIC_ -
PLUGINS. In the following example we want to use a plugin named HelloWorld.
The corresponding was built as 1ibHelloWorld. so. Furthermore, we select
two counters metricl and metric?2 from the plugin. Make sure that the metric
plugin library is placed in a directory which is part of LD_LIBRARY_PATH.

SCOREP_METRIC_PLUGINS=HelloWorld
SCOREP_METRIC_HELLOWORLD=metricl,metric2

4.8 CUDA Performance Measurement

If Score-P has been built with CUDA support it is capable of recording CUDA
API function calls and GPU activities. The measurement is based on NVIDIA’s
CUDA Profiling and Tool Interface (CUPTI), which is an integral part of the
CUDA Toolkit since version 4.1.

Score-P can wrap the NVIDIA compiler (scorep nvece) to instrument .cu files.
If Score-P has been built with the Intel compiler an additional flag has to be added
for instrumentation:

——compiler-bindir=<path-to-intel-compiler-command>
Otherwise the program will not be instrumented, as nvcc uses the GNU compiler

by default.

Setting the environment variable SCOREP__CUDA_ENARLE to yes enables CUDA
measurement. To enable a particular composition of CUDA measurement features
the variable should contain a comma-separated list of the following CUDA mea-
surement options:

runtime = CUDA runtime API

driver = CUDA driver API

kernel = CUDA kernels

kernel_serial = Serialized kernel recording

kernel_counter = Fixed CUDA kernel metrics

idle = GPU compute idle time

pure_idle = GPU idle time (memory copies are not idle)
memcpy = CUDA memory copies

sync = Record implicit and explicit CUDA synchronization
gpumemusage = Record CUDA memory (de)allocations as a counter
references = Record references between CUDA activities
flushatexit = Flush CUDA activity buffer at program exit
yes/DEFAULT/1 = "runtime, kernel,memcpy"

no = Disable CUDA measurement

(same as unset SCOREP_CUDA_ENABLE)

CUPTI uses an extra buffer to store its activity records. If the size of this buffer is
too small, Score-P will print a warning about the current buffer size and the number

52

4.9 Online Access Interface

of dropped records. To avoid dropping of records increase the buffer size via the
environment variable SCOREP_CUDA_BUFFER (default: 1M).

Since CUDA toolkit version 5.5 the chunk size for the CUPTI activity buffer can
be specified via the environment variable SCOREP__CUDA_BUFFER_CHUNK (de-
fault: 8k). Buffer chunks are allocated whenever CUPTI requests a buffer (e.g.
to record activities on a CUDA stream). SCOREP_CUDA_BUFFER specifies the
upper bound of memory to be allocated for CUPTI activities. Therefore it should
be a multiple of SCOREP_CUDA_BUFFER_CHUNK.

Note

Make sure to call cudaDeviceReset () or cudaDeviceSynchronize ()
before the exit of the program. Otherwise GPU activities might be missing in
the trace.

For CUDA 5.5 there is an error in CUPTTI buffer handling. The last activity in

a CUPTI activity buffer (SCOREP_CUDA_BUFFER_CHUNK) gets lost, when
the buffer is full. To avoid this issue specify SCOREP_CUDA_BUFFER_—
CHUNK as large as necessary to store all CUDA device activities until the
CUDA device is synchronized with the host. In CUDA 6.0 this issue is fixed

and CUPTI does not request buffers for individual streams any more.

Score-P supports CUDA monitoring since CUDA toolkit version 4.1. Make
sure that the Score-P installation has configured CUDA support. The configure
summary should contain the line:

CUDA support: yes

If not, for most systems it is sufficient to specify the CUDA toolkit directory
at Score-P configuration time:

—-—-with-libcudart=<path-to-cuda-toolkit-directory>

Otherwise check the configure help output to specify the location of the CUDA
toolkit and CUPTI libraries and include files:

./configure —--help=recursive | grep -E " (cuda|cupti)"

CUDA device and host activities can be filtered by name at runtime using the
Score-P filter file (see Section 4.3). Filtering does not remove CUDA activities
inserted by Score-P or CUDA data transfers inserted as RDMA events. If a kernel
is filtered, no kernel launch properties activated in SCOREP_CUDA_ENABLE us-
ing kernel_counter are inserted for this kernel. GPU idle time is not affected
by kernel filtering.

4.9 Online Access Interface

Online Access (OA) is an interface to the measurement system of Score-P allow-
ing online analysis capable tools to configure and retrieve profile measurements
remotely over sockets.

53

CHAPTER 4. APPLICATION MEASUREMENT

The Online Access interface implememts a client-server paradigm, where Score-P
acts as a server accepting connections from the remote tool. During the initializa-
tion, the OA module of the Score-P creates one socket for each application process.
The network addresses and the ports of these sockets are published at the registry
service and could be later queried by the remote tool. The hostname and the port
of the registry service should be specified via the SCOREP_ONLINEACCESS_ -
REG_HOST and SCOREP_ONLINEACCESS_REG_PORT environment variables,
respectively. After publishing the socket addresses and ports, the OA module will
accept connections. Once the connection is established the OA module will sus-
pend the application execution and wait for requests. The format of the requests is
plain text following the syntax below:

<request> = <configuration>|<execution>|<retrieval>

<configuration> = BEGINREQUESTS GLOBAL <request_type>
ENDREQUESTS

<request_type> = MPI | EXECUTION_TIME |

METRIC <metric_specification>
<metric_specification> = PERISCOPE <periscope_metric_code> |

PAPI "<papi_counter_name>" |

RUSAGE "rusage_metric_name" |

OTHER "metric_name"

<execution> = TERMINATE | RUNTOSTART | RUNTOEND
<retrieval> = GETSUMMARYDATA
where

* BEGINREQUESTS indicates the beginning of the request list,
* ENDREQUESTS indicates the end of the request list,

* GLOBAL indicates that the following measurement request is applied to all
locations,

* MPT requests mpi wait states analysis,
* EXECUTION_TIME requests execution time,
* METRIC indicates the begin of the metric request,

* PERISCOPE <periscope_metric_code> requests a metric by the
Periscope internal code,

* PAPI <papi_counter_name>requests aa PAPI hardware counter met-
ric by the counter name,

* RUSAGE <rusage_counter_name> requests a Resource Usage Counter
metric by the counter name,

54

4.9 Online Access Interface

* OTHER <metric_name> requests a metric, to be defined in Score-P def-
inition system, specified by the name,

e TERMINATE requests termination of the application,
* RUNTOSTART requests Score-P to run the beginning of the OA phase,
* RUNTOEND requests Score-P to run the end of the OA phase,

* GETSUMMARYDATA requests retrieval of the profile data.

When the GETSUMMARY request is received, the OA module will transform the
call-path profile into a flat profile and send the data back to the remote tool. The
flat profile is sent in two parts, where the first part carries the region definition data
and the second part carries profile measurements. Each part starts with the key
word MERGED_REGION_DEFINITIONS or FLAT_PROFILE and followed by
the number of the entries and the buffer containing the data.

55

CHAPTER 4. APPLICATION MEASUREMENT

56

Chapter 5

Usage of scorep-score

scorep-score is a tool that allows to estimate the size of an OTF2 trace from a
CUBEA4 profile. Furthermore, the effects of filters are estimated. The main goal is
to define appropriate filters for a tracing run from a profile.

The general work-flow for performance analysis with Score-P is:

1. Instrument an application (see Section 3).

2. Perform a measurement run and record a profile (see Section 4). The profile
already gives an overview what may happen inside the application.

3. Use scorep-score to define an appropriate filter for an application Otherwise
the trace file may become too large. This step is explained in this Chapter.

4. Perform a measurement run with tracing enabled and the filter applied (see
Section 4.2 and Section 4.3).

5. Perform in-depth analysis on the trace data.

5.1 Basic usage

To invoke scorep-score you must provide the filename of a CUBE4 profile as
argument. Thus, the basic command looks like this:

scorep-score profile.cubex

The output of the command may look like this (taking an MPI/OpenMP hybrid
application as an example):

CHAPTER 5. USAGE OF SCOREP-SCORE

Estimated aggregate size of event trace: 20MB
Estimated requirements for largest trace buffer (max_buf): 20MB
Estimated memory requirements (SCOREP_TOTAL_MEMORY) : 24MB

(hint: When tracing set SCOREP_TOTAL_MEMORY=24MB to avoid intermediate flushes

or reduce requirements using USR regions filters.)

flt type max_buf [B] visits time[s] time[%] time/visit[us]
ALL 19,377,048 786,577 27.48 100.0 34.93
USR 16,039,680 668,320 0.36 1.3 0.53
OMP 3,328,344 117,881 26.92 98.0 228.37
COM 9,024 376 0.20 0.7 532.17

The first line of the output gives an estimation of the total size of the trace, ag-
gregated over all processes. This information is useful for estimating the space
required on disk. In the given example, the estimated total size of the event trace is
20MB.

The second line prints an estimation of the memory space required by a single
process for the trace. The memory space that Score-P reserves on each process at
application start must be large enough to hold the process’ trace in memory in order
to avoid flushes during runtime, because flushes heavily disturb measurements. In
addition to the trace, Score-P requires some additinal memory to maintain internal
data structures. Thus, it provides also an estimation for the total amount of required
memory on each process. The memory size per process that Score-P reserves is set
via the environment variable SCOREP_TOTAL_MEMORY. In the given example
the per process memory should be larger than 24MB.

Beginning with the 6th line, scorep—score prints a table that show how the
trace memory requirements and the runtime is distributed among certain function
groups. The column max_ tbc shows how much trace buffer is needed on a single
process. The column time (s) shows how much execution time was spend in
regions of that group in seconds, the column % shows the fraction of the overall
runtime that was used by this group, and the column time/visit (us) shows
the average time per visit in microseconds.

The following groups exist:
e ALL: Includes all functions of the application
* OMP: This group contains all regions that represent an OpenMP construct
* MPI: This group contains all MPI functions
* SHMEM: This group contains all SHMEM functions

* COM: This group contains all functions, implemented by the user that appear
on a call-path to an OpenMP construct, or MPI/SHMEM function.

» USR: This group contains all user functions that do not appear on a call-path
to an OpenMP construct, or MPI/SHMEM function.

58

region
ALL
USR
OMP
COM

5.2 Additional per-region information

5.2 Additional per-region information

For a more detailed output, which shows the data for every region, you can use the
—r option. The command could look like this.

scorep-score profile.cubex -r

This command adds information about the used buffer sizes and execution time of
every region to the table. The additional lines of the output may look like this:

flt type max_buf [B] visits time[s] time [%] time/visit [us]
COM 24 4 0.00 0.0 67.78
COM 24 4 0.00 0.0 81.20
USR 24 4 0.12 2.0 30931.14
COM 24 4 0.05 0.8 12604.78
USR 24 4 0.00 0.0 23.76
COM 24 4 0.01 0.2 3441.83
COM 24 4 0.48 7.7 120338.17

The region name is displayed in the column named region . The column type
shows to which group this region belongs. In the example above the function main
belongs to group COM required 24 bytes per process and used 0 s execution time.
The regions are sorted by their buffer requirements.

5.3 Defining and testing a filter

For defining a filter, it is recommended to exclude short frequently called functions
from measurement, because they require a lot of buffer space (represented by a high
value under max_tbc) but incur a high measurement overhead. Furthermore,
for communication analysis, functions that appear on a call-path to MPI functions
and OpenMP constructs (regions of type COM) are usually of more interest than
user functions of type USR which do not appear on call-path to communications.
MPI functions and OpenMP constructs cannot be filtered. Thus, it is usually a
good approach to exclude regions of type USR starting at the top of the list until
you reduced the trace to your needs. Section 4.3 describes the format of a filter
specification file.

If you have a filter file, you can test the effect of your filter on the trace file. There-
for, you need to pass a —f followed by the file name of your filter. E.g. if your
filter file name is myfilter , the command looks like this:

scorep-score profile.cubex —-f myfilter

59

region

Init

main
InitializeMatr
CheckError
PrintResults
Finish

Jacobi

CHAPTER 5. USAGE OF SCOREP-SCORE

An example output is:

Estimated aggregate size of event trace: TkB
Estimated requirements for largest trace buffer (max_buf): 1806 bytes
Estimated memory requirements (SCOREP_TOTAL_MEMORY) : 5MB

(hint: When tracing set SCOREP_TOTAL_MEMORY=5MB to avoid intermediate flushes
or reduce requirements using USR regions filters.)

flt type max_buf [B] visits time[s] time[%] time/visit[us]
- ALL 2,093 172 5.17 100.0 30066.64
- MPI 1,805 124 4.20 81.3 33910.31
- COM 240 40 0.84 16.3 21092.44
- USR 48 8 0.12 2.4 15360.71
* ALL 1,805 124 4.20 81.3 33910.31
- MP I 1,805 124 4.20 81.3 33910.31
+ FLT 288 48 0.97 18.7 20137.15

Now, the output estimates the total trace size an the required memory per process,
if you would apply the provided filter for the measurement run which records the
trace. A new group FLT appears, which contains all regions that are filtered. Under
max_tbc the group FLT displays how the memory requirements per process are
reduced. Furthermore, the groups that end on —FLT , like ALL-FLT contain only
the unfiltered regions of the original group. E.g. USR-FLT contains all regions of
group USR that are not filtered.

Furthermore, the column f£1t is no longer empty but contain a symbol that indi-
cates how this group is affected by the filter. A ’~’ means 'not filtered’, a’+” means
filtered” and a *«’ appears in front of groups that potentially can be affected by the
filter.

You may combine the —f option with a —r option. In this case, for each function a
"+’ or ’~’ indicates whether the function is filtered.

5.4 Calculating the effects of recording hardware counters

Recording additional metrics, e.g. hardware counters may significantly increase
the trace size, because for many events additional metric values are stored. In
order to estimate the effects of these metrics, you may add a —c followed by the
number of metrics you want to record. E.g.

scorep-score profile.cubex -c 3

would mean that scorep-score estimates the disk and memory requirements
for the case that you record 3 additional metrics.

60

region
ALL
MPI
COM
USR

ALL-FLT
MPI-FLT
FLT

Chapter 6

Performance Analysis Workflow Using
Score-P

This chapter demonstrates a typical performance analysis workflow using Score-P.
It consist of the following steps:

1. Program instrumentation (Section 6.1)

2. Summary measurement collection (Section 6.2)

3. Summary report examination (Section 6.3)

4. Summary experiment scoring (Section 6.4)

5. Advanced summary measurement collection (Section 6.5)
6. Advanced summary report examination (Section 6.6)

7. Event trace collection and examination (Section 6.7)

The workflow is demonstrated using NPB BT-MZ benchmark as an example. BT-
MZ solves a discretized version of unsteady, compressible Navier-Stokes equations
in three spatial dimensions. It performs 200 time-steps on a regular 3-dimensional
grid using ADI and verifies solution error within acceptable limit. It uses intra-
zone computation with OpenMP and inter-zone communication with MPIL. The
benchmark can be build with a predefined data class (S,W,A,B,C.D,E,F) and any
number of MPI processes and OpenMP threads.

NPB BT-MZ distribution already prepared for this example could be obtained from
here.

http://www.vi-hps.org/upload/material/general/VIHPS-tutorial-exercise.tgz

CHAPTER 6. PERFORMANCE ANALYSIS WORKFLOW USING
SCORE-P

6.1 Program Instrumentation

In order to collect performance measurements, BT-MZ has to be instrumented.
There are various types of instrumentation supported by Score-P which cover a
broad spectrum of performance analysis use cases (see Chapter 3 for more details).

In this example we start with automatic compiler instrumentation by prepend-
ing compiler/linker specification variable MPIF 77 found in config/make.def
with scorep:

SITE- AND/OR PLATFORM-SPECIFIC DEFINITIONS

#MPIF77 = mpif77
Alternative variants to perform instrumentation

MPIF77 = scorep mpif77
This links MPI Fortran programs; usually the same as ${MPIF77}
FLINK = S (MPIF77)

After the makefile is modified and saved, it is recommended to return to the root
folder of the application and clean-up previously build files:

)

% make clean

Now the application is ready to be instrumented by simply issuing the standard
build command:

% make bt-mz CLASS=W NPROCS=4

After the command is issued, the make command should produce the output similar
to the one below:

cd BT-MZ; make CLASS=W NPROCS=4 VERSION=

make: Entering directory ’'BT-MZ’

cd ../sys; cc -0 setparams setparams.c —-1lm

../sys/setparams bt-mz 4 W

scorep mpif77 -c -03 —-fopenmp bt.f

[...]

cd ../common; scorep —-user mpif77 -c -03 —-fopenmp timers.f
scorep mpif77 -03 -fopenmp -o ../bin.scorep/bt-mz_W.4 \

62

6.2 Summary Measurement Collection

bt.o initialize.o exact_solution.o exact_rhs.o set_constants.o \
adi.o rhs.o zone_setup.o x_solve.o y_solve.o exch_gbc.o \
solve_subs.o z_solve.o add.o error.o verify.o mpi_setup.o \
../common/print_results.o ../common/timers.o

Built executable ../bin.scorep/bt-mz_W.4

make: Leaving directory ’BT-MZ’

When make finishes, the built and instrumented application could be found under
bin.scorep/bt-mz.4.

6.2 Summary Measurement Collection

Now instrumented BT-MZ is ready to be executed and to be profiled by Score-P
at the same time. However before doing so, one has an opportunity to configure
Score-P measurement by setting Score-P environment variables. For the complete
list of variables please refer to Appendix E.

The typical Score-P performance analysis workflow implies collecting summary
performance information first and then in detail performance exploration using ex-
ecution traces. Therefore Score-P has to be configured to perform profiling and

tracing has to be disabled. This is done by setting corresponding environment vari-
ables:

% export SCOREP_ENABLE_PROFILING=1
% export SCOREP_ENABLE_TRACING=0

Performance data collected by Score-P will be stored in an experiment directory.
In order to efficiently manage multiple experiments, one can specify a meaningful
name for the experiment directory by setting

% export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_W_4x4_sum

After Score-P is prepared for summary collection, the instrumented application can
be started as usual:

cd bin.scorep
export OM_NUM_THREADS=4
mpiexec -np 4 ./bt-mz_W.4

o0 o oP

The BT-MZ output should look similar to the listing below:

NAS Parallel Benchmarks (NPB3.3-MZ-MPI) BT-MZ MPI+OpenMP Benchmark

Number of zones: 4 x 4
Iterations: 200 dt: 0.000800

63

CHAPTER 6. PERFORMANCE ANALYSIS WORKFLOW USING
SCORE-P

Number of active processes: 4

Use the default load factors with threads

Total number of threads: 16 (4.0 threads/process)
Calculated speedup = 15.78
Time step 1

[... More application output ...]

After application execution is finished, the summary performance data collected by
Score-P is stored in the experiment directory bin.scorep/scorep_bt-mz_-
W_4x4_sum. The directory contains the following files:

* scorep.cfg - arecord of the measurement configuration used in the run

* profile.cubex - the analysis report that was collated after measurement

6.3 Summary report examination

After BT-MZ finishes execution, the summary performance data measured by Score-
P can be investigated with CUBE or ParaProf interactive report exploration tools.

CUBE:

)

% cube scorep_bt-mz_W_4x4_sum/profile.cubex

ParaProf:

°

% paraprof scorep_bt-mz_W_4x4_sum/profile.cubex

Both tools will reveal the call-path profile of BT-MZ annotated with metrics: Time,
Visits count, MPI message statistics (bytes sent/received). For more informa-
tion on using the tool please refer to the corresponding documentation (CUBE,
ParaProf).

6.4 Summary experiment scoring

Though we were able to collect the profile data, one can mention that the execution
took longer in comparison to un-instrumented run, even when the time spent for
measurement start-up/finalization is disregarded. Longer execution times of the
instrumented application is a sign of high instrumentation/measurement overhead.
Furthermore, this overhead might result in large trace files and buffer flushes in the
later tracing experiment if Score-P is not properly configured.

64

http://www.scalasca.org/download/documentation/documentation.html
http://www.cs.uoregon.edu/Research/tau/docs/paraprof/index.html

6.4 Summary experiment scoring

In order to investigate sources of the overhead and to tune measurement config-
uration for consequent trace collection with Score-P, scorep—score tool (see
Section 5 for more details about scorep—score) can be used:

°

% scorep-score scorep_bt-mz_W_4x4_sum/profile.cubex
Estimated aggregate size of event trace (total_tbc):
990247448 bytes
Estimated requirements for largest trace buffer (max_tbc):
256229936 bytes
(hint: When tracing set SCOREP_TOTAL_MEMORY > max_tbc to avoid
intermediate flushes
or reduce requirements using file listing names of USR regions
to be filtered.)

flt type max_tbc time % region
ALL 256229936 5549.78 100.0 ALL
USR 253654608 1758.27 31.7 USR
OMP 5853120 3508.57 63.2 OMP
COM 343344 183.09 3.3 COM
MPI 93776 99.86 1.8 MPI

The textual output of the tool generates an estimation of the size of an OTF2 trace
produced, should Score-P be run using the current configuration. Here the trace
size estimation could be also seen as a measure of overhead, since both are pro-
portional to the number of recorded events. Additionally, the tool shows the distri-
bution of the required trace size over call-path classes. From the report above one
can see that the estimated trace size needed is equal to 1 GB in total or 256 MB per
MPI rank, which is significant. From the breakdown per call-path class one can
see that most of the overhead is due to user-level computations. In order to further
localize the source of the overhead, scorep—score can print the breakdown of
the buffer size on per-region basis:

% scorep-score -r scorep_bt-mz_W_4x4_sum/profile.cubex

[...]

flt type max_tbc time % region
ALL 256229936 5549.78 100.0 ALL
USR 253654608 1758.27 31.7 USR
OMP 5853120 3508.57 63.2 OMP
COM 343344 183.09 3.3 COM
MPI 93776 99.86 1.8 MPI
USR 79176312 559.15 31.8 binvcrhs_
USR 79176312 532.73 30.3 matvec_sub_
USR 79176312 532.18 30.3 matmul_sub_
USR 7361424 50.51 2.9 binvrhs_
USR 7361424 56.35 3.2 lhsinit_
USR 3206688 27.32 1.6 exact_solution_
OMP 1550400 1752.20 99.7 !Somp implicit barrier
OMP 257280 0.44 0.0 !$omp parallel @exch_gbc.f
OMP 257280 0.61 0.0 !S$Somp parallel @exch_gbc.f
OMP 257280 0.48 0.0 !'$Somp parallel @exch_gbc.f

65

CHAPTER 6. PERFORMANCE ANALYSIS WORKFLOW USING
SCORE-P

The regions marked as USR type contribute to around 32% of the total time, how-
ever, much of that is very likely to be measurement overhead due to frequently-
executed small routines. Therefore, it is highly recommended to remove these
routines from measurements. This can be achieved by placing them into a filter
file (please refer to Section 5.3 for more details about filter file specification) as
regions to be excluded from measurements. There is already a filter file prepared
for BT-MZ which can be used:

)

% cat ../config/scorep.filt
SCOREP_REGION_NAMES_BEGIN EXCLUDE
binvcrhsx*

matmul_subx*

matvec_sub#*

exact_solutionx

binvrhs*

lhs*initx*

timer_x

One can use scorep—score once again to verify the effect of the filter file :

% scorep-score —-f ../config/scorep.filt scorep_bt-mz_W_4x4_sum
Estimated aggregate size of event trace (total_tbc):
20210360 bytes
Estimated requirements for largest trace buffer (max_tbc):
6290888 bytes
(hint: When tracing set SCOREP_TOTAL_MEMORY > max_tbc to avoid
intermediate flushes
or reduce requirements using file listing names of USR regions
to be filtered.)

Now one can see that the trace size is reduced to just 20MB in total or 6MB per
MPI rank. The regions filtered out will be marked with "+" in the left-most column
of the per-region report.

6.5 Advanced summary measurement collection

After the filtering file is prepared to exclude the sources of the overhead, it is rec-
ommended to repeat summary collection, in order to obtain more precise measure-
ments.

In order to specify the filter file to be used during measurements, the corresponding
environment variable has to be set:

% export SCOREP_FILTERING_FILE=../config/scorep.filt

It is also recommended to adjust the experiment directory name for the new run:

66

6.5 Advanced summary measurement collection

% export SCOREP_EXPERIMENT_DIRECTORY=\
scorep_bt-mz_W_4x4_sum_with_filter

Score-P also has a possibility to record hardware counters (see Section 4.7.1) and
operating system resource usage (see Section 4.7.2) in addition to default time and
number of visits metrics. Hardware counters could be configured by setting Score-
P environment variable SCOREP_METRIC_PAPT to the comma-separated list of
PAPI events (other separator could be specified by setting SCOREP_METRIC_—
PAPI_SEP):

% export SCOREP_METRIC_PAPI=PAPI_TOT_INS,PAPI_FP_INS

Note

The specified combination of the hardware events has to be valid, otherwise
Score-P will abort execution. Please runpapi_avail and papi_native_-—
avail in order to get the list of the available PAPI generic and native events.

Operating system resource usage metrics are configured by setting the following
variable:

% export SCOREP_METRIC_RUSAGE=ru_maxrss,ru_stime

Additionally Score-P can be configured to record only a subset of the mpi func-
tions. This is achieved by setting SCOREP_MPI_ENABLE_GROUPS variable with
a comma-separated list of sub-groups of MPI functions to be recorded (see Ap-
pendix B):

% export SCOREP_MPI_ENABLE_GROUPS=cg, coll,p2p, xnonblock

In case performance of the CUDA code is of interest, Score-P can be configured to
measure CUPTI metrics as follows (see Section 4.8):

% export SCOREP_CUDA_ENABLE=gpu, kernel, idle

When the granularity offered by the automatic compiler instrumentation is not suf-
ficient, one can use Score-P manual user instrumentation API (see Section 3.2) for
more fine-grained annotation of particular code segments. For example initializa-
tion code, solver or any other code segment of interest can be annotated.

In order to enable user instrumentation, an ——user argument has to be passed to
Score-P command prepending compiler and linker specification:

$ MPIF77 = scorep --user mpif77

67

CHAPTER 6. PERFORMANCE ANALYSIS WORKFLOW USING
SCORE-P

Below, the loop found on line ... in file ... is annotated as a user region:

#include "scorep/SCOREP_User.inc"
subroutine foo(...)
! Declarations
SCOREP_USER_REGION_DEFINE (solve)
! Some code...
SCOREP_USER_REGION_BEGIN(solve, “<solver>", \
SCOREP_USER_REGION_TYPE_LOOP)
do i=1,100
[...]
end do
SCOREP_USER_REGION_END (solve)
! Some more code...
end subroutine

This will appear as an additional region in the report.

BT-MZ has to be recompiled and relinked in order to complete instrumentation.

% make clean
% make bt-mz CLASS=W NPROCS=4

After applying advanced configurations described above, summary collection with
Score-P can be started as usual:

% mpiexec -np 4 ./bt-mz_W.4

6.6 Advanced summary report examination

After execution is finished, one can use scorep-score tool to verify the effect
of filtering:

)

% scorep-score scorep_bt-mz_W_4x4_sum_with_filter/profile.cubex
Estimated aggregate size of event trace (total_tbc):
20210360 bytes
Estimated requirements for largest trace buffer (max_tbc):
6290888 bytes
(hint: When tracing set SCOREP_TOTAL_MEMORY > max_tbc to avoid
intermediate flushes
or reduce requirements using file listing names of USR regions
to be filtered.)

flt type max_tbc time % region
ALL 6290888 241.77 100.0 ALL
OMP 5853120 168.94 69.9 OMP
COM 343344 35.57 14.7 COM
MPI 93776 37.25 15.4 MPI
USR 672 0.01 0.0 USR

68

6.7 Event trace collection and examination

The report above shows significant reduction in runtime (due to elimination of the
overhead) not only in USR regions but also in MPI/OMP regions as well.

Now, the extended summary report can be interactively explored using CUBE:
% cube scorep_bt-mz_W_4x4_sum_with_filter/profile.cubex
or ParaProf:

% paraprof scorep_bt-mz_W_4x4_sum_with_filter/profile.cubex

6.7 Event trace collection and examination

After exploring extended summary report, additional insight into performance of
BT-MZ can be gained by performing trace collection. In order to do so, Score-P
has to be configured to perform tracing by setting corresponding variable to t rue
and disabling profile generation:

o°

export SCOREP_ENABLE_TRACING=true
% export SCOREP_ENABLE_PROFILING=false

Additionally it is recommended to set a meaningful experiment directory name:

% export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_W_4x4_trace

After BT-MZ execution is finished, a separate trace file per thread is written into
the new experiment directory. In order to explore it, Vampi r tool can be used:

o

% vampir scorep_bt-mz_W_4x4_trace/traces.otf?2

Please consider that traces can become extremely large and unwieldy, because the
size of the trace is proportional to number of processes/threads (width), duration
(length) and detail (depth) of measurement. When the trace is too large to hold in
the memory allocated by Score-P, flushes can happen. Unfortunately the resulting
traces are of little value, since uncoordinated flushes result in cascades of distortion.

Traces should be written to a parallel file system, e.g., to /work or /scratch
which are typically provided for this purpose.

69

http://www.vampir.eu/tutorial/manual

CHAPTER 6. PERFORMANCE ANALYSIS WORKFLOW USING
SCORE-P

70

Appendices

Appendix A

Score-P INSTALL

E

* % o

EE S A S I . S I S I T

This file is part of the Score-P software (http://www.score-p.org)

Copyright (c) 2009-2013,
RWTH Aachen University, Germany

Copyright (c) 2009-2013,
Gesellschaft fuer numerische Simulation mbH Braunschweig, Germany

Copyright (c) 2009-2014,
Technische Universitaet Dresden, Germany

Copyright (c) 2009-2013,
University of Oregon, Eugene, USA

Copyright (c) 2009-2014,
Forschungszentrum Juelich GmbH, Germany

Copyright (c) 2009-2013,
German Research School for Simulation Sciences GmbH, Juelich/Aachen,

Copyright (c) 2009-2013,
Technische Universitaet Muenchen, Germany

This software may be modified and distributed under the terms of
a BSD-style license. See the COPYING file in the package base
directory for details.

Score—P INSTALL GUIDE

This file describes how to configure, compile, and install the Score-P
measurement infrastructure. If you are not familiar with using the
configure scripts generated by GNU autoconf, read the "Generic

Germany

APPENDIX A. SCORE-P INSTALL

Installation Instructions" section below; then return here.

Quick start

In a nutshell, configuring, building, and installing Score-P can be as
simple as executing the shell commands

./configure —--prefix=<installdir>
make
make install

If you don’t specify —--prefix, /opt/scorep will be used.

Depending on your system configuration and specific needs, the build
process can be customized as described below.

Note Score-P requires a case sensitive file system to build correctly.

Configuration

The configure script in this package tries to automatically determine
the platform for which Score-P will be compiled in order to provide
reasonable defaults for backend (i.e., compute-node) compilers,

MPI compilers, and, in case of cross-compiling environments, frontend
(i.e., login-node) compilers.

Depending on the environment it is possible to override the platform
defaults by using the following configure options:

—-with-machine-name=<default machine name>
The default machine name used in profile and trace
output. We suggest using a unique name, e.g., the
fully qualified domain name. If not set, a name
based on the detected platform is used. Can be
overridden at measurement time by setting the
environment variable SCOREP_MACHINE_NAME.

In non-cross-compiling environments, the compiler suite used to build
the backend parts can be specified explicitly if desired. On Linux
clusters it is currently recommended to use this option to select a
compiler suite other than GCC.

—-with-nocross—-compiler-suite=(gcc|ibm|intel|pgi|studio)
The compiler suite used to build this package in
non-cross—compiling environments. Needs to be in $PATH.
[Default: gcc]

In cross—compiling environments, the compiler suite used to build the
frontend parts can be specified explicitly if desired.

74

——with-frontend-compiler-suite=(gcc|ibm|intel|pgi|studio)
The compiler suite used to build the frontend parts of
this package in cross-compiling environments. Needs to
be in S$PATH.
[Default: gcc]

The MPI compiler, if in $PATH, 1is usually autodetected. If there are
several MPI compilers in $PATH the user is requested to select one
using the configure option:

——with-mpi=(bullxmpi|hp|ibmpoe|intel|intel2|intel3|intelpoe]|lam| \
mpibull?2 |mpich|mpich2|mpich3|openmpi|platform|scali| \
sgimpt | sun)

The MPI compiler suite to build this package in non
cross—-compiling mode. Usually autodetected. Needs to be
in S$PATH.

Note that there is currently no consistency check if backend and MPI
compiler are from the same vendor. If they are not, linking problems
(undefined references) might occur.

The SHMEM compiler, if in $PATH, is usually autodetected. If there are
several SHMEM compilers in $PATH the user is requested to select one
using the configure option:

—-with-shmem= (openshmem|openmpi | sgimpt)
The SHMEM compiler suite to build this package in
non cross-compiling mode. Usually autodetected.
Needs to be in $PATH.

If a particular system requires to use compilers different to those
Score-P currently supports, please edit the three files
vendor/common/build-config/platforms/platform-+-user-provided to your
needs and use the following configure option:

—-—with-custom-compilers
Customize compiler settings by 1. copying the three
files
<srcdir>/vendor/common/build-config/platforms/platform-x-user-provided
to the directory where you run configure <builddir>,
2. editing those files to your needs, and 3. running
configure. Alternatively, edit the files under <srcdir>
directly. Files in <builddir> take precedence. You are
entering unsupported terrain. Namaste, and good luck!

On cross-compile systems the default frontend compiler is IBM XL for
the Blue Gene series and GCC on all other platforms. The backend
compilers will either be automatically selected by the platform
detection (IBM Blue Gene series) or by the currently loaded
environment modules (Cray XT series). If you want to customize these
settings please use the configure option ’'—--with-custom-compilers’ as
described above.

Although this package comes with recent versions of the OTF2 and CUBE4

75

APPENDIX A. SCORE-P INSTALL

writer libraries as well as the OPARI2 instrumenter included, it is
possible to use existing installations instead. Here, the —--without
option means ’'without external installation’, i.e., the component
provided with the tarball will be used:

——with-otf2[=<otf2-bindir>]
Use an already installed and compatible OTF2 library
(vl.4 or newer). Provide path to otf2-config.
Auto-detected if already in $PATH.

——with-cube [=<cube-bindir>]
Use an already installed and compatible CUBE4 library
(v4d.2 or newer). Provide path to cube-config.
Auto-detected if already in $PATH.

——with-opari2[=<opari2-bindir>]
Use an already installed and compatible OPARI2 (v.1l.1
or newer). Provide path to opari2-config.
Auto-detected if already in $PATH.

For the components otf2 and opari2, the corresponding
——without—-<component> or —--with-<component>=no options will ignore the
<component>-config in $PATH but use the Score-P internal components.

Options to further specify which features and external packages should
be used to build Score-P are as follows:

—-—enable-debug activate internal debug output [no]
——enable-shared[=PKGS] build shared libraries [default=no]
——enable-static[=PKGS] Dbuild static libraries [default=yes]
—-—enable-backend-test-runs
Enable execution of tests during ’'make check’ [no]
(does not affect building of tests, though). If
disabled, the files ’check-file—-x’ and/or
"skipped_tests’ listing the tests are generated in the
corresponding build directory.
—-—enable-cuda
Enable or disable support for CUDA. Fail if support
can’t be satisfied but was requested.
——enable-timer-bgl_rts_get_timebase
enable bgl_rts_get_timebase timer if available instead
of platform default
——enable-timer-bgg mftb
enable bgg mftb timer if available instead of platform
default
——enable-timer-bgp_get_timebase
enable bgp_get_timebase timer if available instead of
platform default
——enable-timer-clock_gettime
enable clock_gettime timer if available
[Default on Linux platforms]
——enable-timer-cycle_counter_tsc
enable cycle_counter_tsc timer if available instead of
platform default
——enable-timer—-gettimeofday
enable gettimeofday timer if available instead of

76

platform default
—-—enable-timer-ibm_realtime
enable ibm_realtime timer if available instead of
platform default
——enable-timer-intel_mmtimer
enable intel_mmtimer timer if available instead of
platform default
——enable-timer-papi_real_cyc
enable papi_real_cyc timer if available instead of
platform default
——enable-timer-papi_real_usec
enable papi_real_usec timer if available instead of
platform default
—-—with-pdt=<path-to-binaries>
Specifies the path to the program database toolkit
(PDT) binaries, e.g., cparse.
——with-extra-instrumentation-flags=flags
Add additional instrumentation flags.
——with-sionlib[=<sionlib-bindir>]
Use an already installed sionlib. Provide path to
sionconfig. Auto-detected if already in $PATH. This
option is not used by Score-P itself but passed to an
internal OTF2.
--with-papi-header=<path-to-papi.h>
If papi.h is not installed in the default location,
specify the dirname where it can be found.
--with-papi-lib=<path-to-libpapi.*>
If libpapi.x is not installed in the default location,
specify the dirname where it can be found.
—-with-libcudart=<Path to libcudart installation>
If you want to build scorep with libcudart but do not
have a libcudart in a standard location then you need
to explicitly specify the directory where it is
installed. On non-cross-compile systems we search the
system include and lib paths per default [yes], on
cross—compile systems however,you have to specify a
path [no]. —--with-libcudart is a shorthand for
—-with-libcudart-include=<Path/include> and
--with-libcudart-1lib=<Path/lib>. If these shorthand
assumptions are not correct, you can use the explicit
include and lib options directly.
--with-libcudart-include=<Path to libcudart headers>
——with-libcudart-1lib=<Path to libcudart libraries>
—-with-libcuda=<Path to libcuda installation>
Usually not needed, specifying —--with-libcudart should
be fine!
If you want to build scorep with libcuda but do not
have a libcuda in a standard location then you need to
explicitly specify the directory where it is
installed. On non-cross—-compile systems we search the
system include and lib paths per default [yes], on
cross—compile systems however,you have to specify a
path [no]. --with-libcuda is a shorthand for
——with-libcuda-include=<Path/include> and

77

APPENDIX A. SCORE-P INSTALL

——with-libcuda-lib=<Path/lib>. If these shorthand
assumptions are not correct, you can use the explicit
include and lib options directly.
--with-libcuda-include=<Path to libcuda headers>
——with-libcuda-1lib=<Path to libcuda libraries>
——with-libcupti=(yes|no|<Path to libcupti installation>)
If you want to build with libcupti support but do
not have a libcupti in a standard location, you need
to explicitly specify the directory where it is
installed. On non-cross-compile systems we search
the system include and lib paths per default [yes];
on cross-compile systems, however, you have to
specify a path [no]. —--with-libcupti is a shorthand
for ——with-libcupti-include=<Path/include> and
--with-libcupti-lib=<Path/lib>. If these shorthand
assumptions are not correct, you can use the
explicit include and lib options directly.
—-with-libcupti-include=<Path to libcupti headers>
—-with-libcupti-lib=<Path to libcupti libraries>
——with-libpmi=(yes|no|<Path to libpmi installation>)
If you want to build with libpmi support but do not
have a libpmi in a standard location, you need to
explicitly specify the directory where it is
installed. On non-cross—-compile systems we search
the system include and lib paths per default [yes];
on cross-compile systems, however, you have to
specify a path [no]. —--with-libpmi is a shorthand
for ——with-libpmi-include=<Path/include> and
——with-libpmi-lib=<Path/lib>. If these shorthand
assumptions are not correct, you can use the
explicit include and lib options directly.
——with-libpmi-include=<Path to libpmi headers>
——with-libpmi-lib=<Path to libpmi libraries>
——with-librca=(yes|no|<Path to librca installation>)
If you want to build with librca support but do not
have a librca in a standard location, you need to
explicitly specify the directory where it is
installed. On non-cross-compile systems we search
the system include and lib paths per default [yes];
on cross-compile systems, however, you have to
specify a path [no]. —--with-librca is a shorthand
for ——with-librca-include=<Path/include> and
—-—with-librca-lib=<Path/lib>. If these shorthand
assumptions are not correct, you can use the
explicit include and lib options directly.
—-with-librca-include=<Path to librca headers>
——with-librca-lib=<Path to librca libraries>
—-with-libbfd=<Path to libbfd installation>
If you want to build scorep with libbfd but do not have
a libbfd in a standard location then you need to
explicitly specify the directory where it is
installed. On non-cross-compile systems we search the
system include and lib paths per default [yes], on
cross—-compile systems however,you have to specify a

78

path [no]. —--with-libbfd is a shorthand for
—-with-libbfd-include=<Path/include> and
—-with-1libbfd-1ib=<Path/1lib>. If these shorthand
assumptions are not correct, you can use the explicit
include and lib options directly.
——with-libbfd-include=<Path to libbfd headers>
—-with-1libbfd-1lib=<Path to libbfd libraries>

Instead of passing command-line options to the ’'configure’ script, the package
configuration can also be influenced by setting the following environment
variables:

cc C compiler command

CFLAGS C compiler flags

LDFLAGS linker flags, e.g. -L<lib dir> if you have libraries in a
nonstandard directory <lib dir>

LIBS libraries to pass to the linker, e.g. -1l<library>

CPPFLAGS (Objective) C/C++ preprocessor flags, e.g. -I<include dir> if
you have headers in a nonstandard directory <include dir>

CPP C preprocessor

CXX C++ compiler command

CXXFLAGS C++ compiler flags

CXXCPP C++ preprocessor

CCAS assembler compiler command (defaults to CC)

CCASFLAGS assembler compiler flags (defaults to CFLAGS)

CXXCPP C++ preprocessor

E77 Fortran 77 compiler command

FFLAGS Fortran 77 compiler flags

FC Fortran compiler command

FCFLAGS Fortran compiler flags

CC_FOR_BUILD

C compiler command for the frontend build
CXX_FOR_BUILD

C++ compiler command for the frontend build
F77_FOR_BUILD

Fortran 77 compiler command for the frontend build
FC_FOR_BUILD

Fortran compiler command for the frontend build
CPPFLAGS_FOR_BUILD

(Objective) C/C++ preprocessor flags for the frontend build,

e.g. —-I<include dir> if you have headers in a nonstandard

directory <include dir>
CFLAGS_FOR_BUILD

C compiler flags for the frontend build
CXXFLAGS_FOR_BUILD

C++ compiler flags for the frontend build
FFLAGS_FOR_BUILD

Fortran 77 compiler flags for the frontend build
FCFLAGS_FOR_BUILD

Fortran compiler flags for the frontend build
LDFLAGS_FOR_BUILD

linker flags for the frontend build, e.g. -L<lib dir> if you

have libraries in a nonstandard directory <lib dir>
LIBS_FOR_BUILD

79

APPENDIX A. SCORE-P INSTALL

libraries to pass to the linker for the frontend build, e.g.

—-l<library>
MPICC MPI C compiler command
MPICXX MPI C++ compiler command
MPIF77 MPI Fortran 77 compiler command
MPIFC MPI Fortran compiler command

MPI_CPPFLAGS
MPI (Objective) C/C++ preprocessor flags, e.g. —-I<include dir>
if you have headers in a nonstandard directory <include dir>
MPI_CFLAGS MPI C compiler flags
MPI_CXXFLAGS
MPI C++ compiler flags
MPI_FFLAGS MPI Fortran 77 compiler flags
MPI_FCFLAGS MPI Fortran compiler flags
MPI_LDFLAGS
MPI linker flags, e.g. -L<lib dir> if you have libraries in a
nonstandard directory <lib dir>

MPI_LIBS MPI libraries to pass to the linker, e.g. —-1l<library>

YACC The ‘Yet Another Compiler Compiler’ implementation to use.
Defaults to the first program found out of: ‘bison -y’, ‘byacc’,
‘vacc’ .

YFLAGS The list of arguments that will be passed by default to $YACC.

This script will default YFLAGS to the empty string to avoid a

default value of ‘-d’ given by some make applications.
RUNTIME_MANAGEMENT_TIMINGS

Whether to activate time measurements for Score-P’s

SCOREP_InitMeasurement () and scorep_finalize () functions.
Activation values are ’'1’, ’'yes’, and ’'true’. For developer use.
PAPI_INC Include path to the papi.h header.
PAPI_LIB Library path to the papi library.

LIBCUDART_INCLUDE

Path to libcudart headers.
LIBCUDART_LIB

Path to libcudart libraries.
LIBCUDA_INCLUDE

Path to libcuda headers.
LIBCUDA_LIB Path to libcuda libraries.
LIBBEFD_INCLUDE

Path to libbfd headers.
LIBBFD_LIB Path to libbfd libraries.

Building & Installing

Before building Score-P, carefully check whether the configuration summary
printed by the configure script matches your expectations (i.e., whether MPI
and/or OpenMP support 1is correctly enabled/disabled, external libraries are
used, etc). If everything is OK, Score-P can be built and installed using

make
make install

Note that parallel builds (i.e., using ’'make —-3j <n>’) are fully supported.

80

Generic Installation Instructions

Copyright (C) 1994, 1995, 1996, 1999, 2000, 2001, 2002, 2004, 2005,
2006, 2007, 2008, 2009 Free Software Foundation, Inc.

Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without warranty of any kind.

Basic Installation

Briefly, the shell commands ‘./configure; make; make install’ should
configure, build, and install this package. The following more-detailed
instructions are generic; see the section above for instructions
specific to this package. Some packages provide this ‘INSTALL’ file but
do not implement all of the features documented below. The lack of an
optional feature in a given package is not necessarily a bug.

The ‘configure’ shell script attempts to guess correct values for
various system-dependent variables used during compilation. It uses
those values to create a ‘Makefile’ in each directory of the package.
It may also create one or more ‘.h’ files containing system-dependent
definitions. Finally, it creates a shell script ‘config.status’ that
you can run in the future to recreate the current configuration, and a
file ‘config.log’ containing compiler output (useful mainly for
debugging ‘configure’).

It can also use an optional file (typically called ‘config.cache’
and enabled with ‘--cache-file=config.cache’ or simply ‘-C’) that saves
the results of its tests to speed up reconfiguring. Caching is
disabled by default to prevent problems with accidental use of stale
cache files.

If you need to do unusual things to compile the package, please try
to figure out how ‘configure’ could check whether to do them, and mail
diffs or instructions to support@score-p.org so they can be considered
for the next release. If you are using the cache, and at some point
‘config.cache’ contains results you don’t want to keep, you may remove
or edit it.

The file ‘configure.ac’ (or ‘configure.in’) is used to create
‘configure’ by a program called ‘autoconf’. You need ‘configure.ac’ if
you want to change it or regenerate ‘configure’ using a newer version
of ‘autoconf’.

The simplest way to compile this package is:

81

APPENDIX A. SCORE-P INSTALL

1. ‘cd’ to the directory containing the package’s source code and type
‘./configure’ to configure the package for your system.

Running ‘configure’ might take a while. While running, it prints
some messages telling which features it is checking for.

2. Type ‘make’ to compile the package.

3. Optionally, type ‘make check’ to run any self-tests that come with
the package, generally using the just-built uninstalled binaries.

4. Type ‘make install’ to install the programs and any data files and
documentation. When installing into a prefix owned by root, it is
recommended that the package be configured and built as a regular
user, and only the ‘make install’ phase executed with root
privileges.

5. Optionally, type ‘make installcheck’ to repeat any self-tests, but
this time using the binaries in their final installed location.
This target does not install anything. Running this target as a
regular user, particularly if the prior ‘make install’ required
root privileges, verifies that the installation completed
correctly.

6. You can remove the program binaries and object files from the
source code directory by typing ‘make clean’. To also remove the
files that ‘configure’ created (so you can compile the package for
a different kind of computer), type ‘make distclean’. There is
also a ‘make maintainer-clean’ target, but that is intended mainly
for the package’s developers. If you use it, you may have to get
all sorts of other programs in order to regenerate files that came
with the distribution.

7. Often, you can also type ‘make uninstall’ to remove the installed
files again. In practice, not all packages have tested that
uninstallation works correctly, even though it is required by the
GNU Coding Standards.

8. Some packages, particularly those that use Automake, provide ‘make
distcheck’, which can by used by developers to test that all other
targets like ‘make install’ and ‘make uninstall’ work correctly.
This target is generally not run by end users.

Compilers and Options

Some systems require unusual options for compilation or linking that
the ‘configure’ script does not know about. Run ‘./configure --help’
for details on some of the pertinent environment variables.

You can give ‘configure’ initial values for configuration parameters
by setting variables in the command line or in the environment. Here
is an example:

82

./configure CC=c99 CFLAGS=-g LIBS=-lposix
*Note Defining Variables::, for more details.

Compiling For Multiple Architectures

You can compile the package for more than one kind of computer at the
same time, by placing the object files for each architecture in their

own directory. To do this, you can use GNU ‘make’. ‘cd’” to the
directory where you want the object files and executables to go and run
the ‘configure’ script. ‘configure’ automatically checks for the
source code in the directory that ‘configure’ is in and in ‘..’. This

is known as a "VPATH" build.

With a non-GNU ‘make’, it is safer to compile the package for one
architecture at a time in the source code directory. After you have
installed the package for one architecture, use ‘make distclean’ before
reconfiguring for another architecture.

On MacOS X 10.5 and later systems, you can create libraries and
executables that work on multiple system types--known as "fat" or
"universal" binaries--by specifying multiple ‘-arch’ options to the
compiler but only a single ‘-arch’ option to the preprocessor. Like
this:

./configure CC="gcc -arch 1386 -arch x86_64 —-arch ppc —-arch ppc64" \
CXX="g++ —arch 1386 —-arch x86_64 —-arch ppc —arch ppc64" \
CPP="gcc -E" CXXCPP="g++ —-E"

This is not guaranteed to produce working output in all cases, you
may have to build one architecture at a time and combine the results

using the ‘lipo’ tool if you have problems.

Installation Names

By default, ‘make install’ installs the package’s commands under
‘/usr/local/bin’, include files under ‘/usr/local/include’, etc. You
can specify an installation prefix other than ‘/usr/local’ by giving
‘configure’ the option ‘--prefix=PREFIX’, where PREFIX must be an
absolute file name.

You can specify separate installation prefixes for
architecture-specific files and architecture-independent files. If you
pass the option ‘--exec-prefix=PREFIX’ to ‘configure’, the package uses
PREFIX as the prefix for installing programs and libraries.
Documentation and other data files still use the regular prefix.

In addition, if you use an unusual directory layout you can give

options like ‘--bindir=DIR’ to specify different values for particular
kinds of files. Run ‘configure —--help’ for a list of the directories
you can set and what kinds of files go in them. In general, the

default for these options is expressed in terms of ‘${prefix}’, so that

83

APPENDIX A. SCORE-P INSTALL

specifying just ‘--prefix’ will affect all of the other directory
specifications that were not explicitly provided.

The most portable way to affect installation locations is to pass the
correct locations to ‘configure’; however, many packages provide one or
both of the following shortcuts of passing variable assignments to the
‘make install’ command line to change installation locations without
having to reconfigure or recompile.

The first method involves providing an override variable for each
affected directory. For example, ‘make install
prefix=/alternate/directory’ will choose an alternate location for all
directory configuration variables that were expressed in terms of
‘$S{prefix}’. Any directories that were specified during ‘configure’,
but not in terms of ‘${prefix}’, must each be overridden at install
time for the entire installation to be relocated. The approach of
makefile variable overrides for each directory variable is required by
the GNU Coding Standards, and ideally causes no recompilation.
However, some platforms have known limitations with the semantics of
shared libraries that end up requiring recompilation when using this
method, particularly noticeable in packages that use GNU Libtool.

The second method involves providing the ‘DESTDIR’ variable. For
example, ‘make install DESTDIR=/alternate/directory’ will prepend

‘/alternate/directory’ before all installation names. The approach of
‘DESTDIR’ overrides is not required by the GNU Coding Standards, and
does not work on platforms that have drive letters. On the other hand,

it does better at avoiding recompilation issues, and works well even
when some directory options were not specified in terms of ‘${prefix}’
at ‘configure’ time.

Optional Features

If the package supports it, you can cause programs to be installed
with an extra prefix or suffix on their names by giving ‘configure’ the
——program-prefix=PREFIX’ or ‘--program-suffix=SUFFIX’.

option

Some packages pay attention to ‘-—-enable-FEATURE’ options to
‘configure’, where FEATURE indicates an optional part of the package.
They may also pay attention to ‘--with-PACKAGE’ options, where PACKAGE
is something like ‘gnu-as’ or ‘x’ (for the X Window System).

For packages that use the X Window System, ‘configure’ can usually
find the X include and library files automatically, but if it doesn’t,
you can use the ‘configure’ options ‘--x-includes=DIR’ and
‘-—x-libraries=DIR’ to specify their locations.

Some packages offer the ability to configure how verbose the

execution of ‘make’ will be. For these packages, running ‘./configure
——enable-silent-rules’ sets the default to minimal output, which can be
overridden with ‘make V=1’; while running ‘./configure

——disable-silent-rules’ sets the default to verbose, which can be
overridden with ‘make V=0'.

84

Particular systems

On HP-UX, the default C compiler is not ANSI C compatible. TIf GNU
CC is not installed, it is recommended to use the following options in
order to use an ANSI C compiler:
./configure CC="cc -Ae -D_XOPEN_SOURCE=500"

and if that doesn’t work, install pre-built binaries of GCC for HP-UX.

On OSF/1 a.k.a. Tru64, some versions of the default C compiler cannot

parse its ‘<wchar.h>’ header file. The option ‘-nodtk’ can be used as
a workaround. If GNU CC is not installed, it is therefore recommended
to try

./configure CC="cc"
and if that doesn’t work, try

./configure CC="cc -nodtk"

On Solaris, don’t put ‘/usr/ucb’ early in your ‘PATH’. This
directory contains several dysfunctional programs; working variants of
these programs are available in ‘/usr/bin’. So, if you need ‘/usr/ucb’

in your ‘PATH’, put it _after_ ‘/usr/bin’.

On Haiku, software installed for all users goes in ‘/boot/common’,
not ‘/usr/local’. It is recommended to use the following options:

./configure --prefix=/boot/common

Specifying the System Type

There may be some features ‘configure’ cannot figure out
automatically, but needs to determine by the type of machine the package
will run on. Usually, assuming the package is built to be run on the
same architectures, ‘configure’ can figure that out, but if it prints
a message saying it cannot guess the machine type, give it the
‘--build=TYPE’ option. TYPE can either be a short name for the system
type, such as ‘sun4’, or a canonical name which has the form:

CPU-COMPANY-SYSTEM
where SYSTEM can have one of these forms:

oS
KERNEL-0S

See the file ‘config.sub’ for the possible values of each field. If
‘config.sub’ isn’t included in this package, then this package doesn’t
need to know the machine type.

85

APPENDIX A. SCORE-P INSTALL

If you are _building_ compiler tools for cross-compiling, you should
use the option ‘--target=TYPE’ to select the type of system they will
produce code for.

If you want to _use_ a cross compiler, that generates code for a
platform different from the build platform, you should specify the
"host" platform (i.e., that on which the generated programs will
eventually be run) with ‘--host=TYPE’.

Sharing Defaults

If you want to set default values for ‘configure’ scripts to share,
you can create a site shell script called ‘config.site’ that gives
default values for variables like ‘CC’, ‘cache_file’, and ‘prefix’.
‘configure’ looks for ‘PREFIX/share/config.site’ if it exists, then
‘PREFIX/etc/config.site’ if it exists. Or, you can set the
‘CONFIG_SITE’ environment variable to the location of the site script.
A warning: not all ‘configure’ scripts look for a site script.

Defining Variables

Variables not defined in a site shell script can be set in the
environment passed to ‘configure’. However, some packages may run
configure again during the build, and the customized values of these
variables may be lost. In order to avoid this problem, you should set
them in the ‘configure’ command line, using ‘VAR=value’. For example:

./configure CC=/usr/local2/bin/gcc

causes the specified ‘gcc’ to be used as the C compiler (unless it is
overridden in the site shell script).

Unfortunately, this technique does not work for ‘CONFIG_SHELL’ due to
an Autoconf bug. Until the bug is fixed you can use this workaround:

CONFIG_SHELL=/bin/bash /bin/bash ./configure CONFIG_SHELL=/bin/bash

‘configure’ Invocation

‘configure’ recognizes the following options to control how it
operates.

‘—-—help’
_hl
Print a summary of all of the options to ‘configure’, and exit.

‘-—help=short’

‘-—help=recursive’
Print a summary of the options unique to this package’s
‘configure’, and exit. The ‘short’ wvariant lists options used

86

only in the top level, while the ‘recursive’ variant lists options
also present in any nested packages.

‘-—version’

\7VI
Print the version of Autoconf used to generate the ‘configure’
script, and exit.

‘--cache-file=FILE’
Enable the cache: use and save the results of the tests in FILE,
traditionally ‘config.cache’. FILE defaults to ‘/dev/null’ to
disable caching.

‘—-—config-cache’
_C/

\

Alias for ‘--cache-file=config.cache’.

‘-—quiet’

‘--silent’

\7ql
Do not print messages saying which checks are being made. To
suppress all normal output, redirect it to ‘/dev/null’ (any error
messages will still be shown).

‘-—srcdir=DIR’
Look for the package’s source code in directory DIR. Usually
‘configure’ can determine that directory automatically.

‘--prefix=DIR’
Use DIR as the installation prefix. +note Installation Names::
for more details, including other options available for fine-tuning
the installation locations.

‘-—no-create’

\ ’

-n
Run the configure checks, but stop before creating any output
files.

‘configure’ also accepts some other, not widely useful, options. Run
‘configure --help’ for more details.

87

APPENDIX A. SCORE-P INSTALL

88

Appendix B

MPI wrapper affiliation

Some wrapper functions are affiliated with a function group that has not been de-
scribed for direct user access in section 4.5.1. These groups are subgroups that
contain function calls that are only enabled when both main groups are enabled.
The reason for this is to control the amount of events generated during measure-
ment, a user might want to turn off the measurement of non-critical function calls
before the measurement of the complete main group is turned off. Subgroups can
either be related to MISC (miscellaneous functions, e.g. handle conversion), EXT
(external interfaces, e.g. handle attributes), or ERR (error handlers).

For example, the functions in group CG_MISC will only generate events if both

groups CG and MISC are enabled at runtime.

B.1 Function to group

Function Group
MPI_Abort EXT
MPI_Accumulate RMA
MPI_Add_error_class ERR
MPI_Add_error_code ERR
MPI_Add_error_string ERR
MPI_Address MISC
MPI_Allgather COLL
MPI_Allgatherv COLL
MPI_Alloc_mem MISC
MPI_Allreduce COLL

MPI_Alltoall

COLL

APPENDIX B. MPI WRAPPER AFFILIATION

MPI_Alltoallv COLL
MPI_Alltoallw COLL
MPI_Attr_delete CG_EXT
MPI_Attr_get CG_EXT
MPI_Attr_put CG_EXT
MPI_Barrier COLL
MPI_Bcast COLL
MPI_Bsend P2P
MPI_Bsend_init P2P
MPI_Buffer_attach P2P
MPI_Buffer detach P2P
MPI_Cancel P2P
MPI_Cart_coords TOPO
MPI_Cart_create TOPO
MPI_Cart_get TOPO
MPI_Cart_map TOPO
MPI_Cart_rank TOPO
MPI_Cart_shift TOPO
MPI_Cart_sub TOPO
MPI_Cartdim_get TOPO
MPI_Close_port SPAWN
MPI_Comm_accept SPAWN
MPI_Comm_c2f CG_MISC
MPI_Comm_call_errhandler CG_ERR
MPI_Comm_compare CG
MPI_Comm_ connect SPAWN
MPI_Comm_create CG
MPI_Comm_create_errhandler CG_ERR
MPI_Comm_create_keyval CG_EXT
MPI_Comm_delete_attr CG_EXT
MPI_Comm_disconnect SPAWN
MPI_Comm_dup CG
MPI_Comm_f2c CG_MISC
MPI_Comm_free CG
MPI_Comm_free_keyval CG_EXT
MPI_Comm_get_attr CG_EXT
MPI_Comm_get_errhandler CG_ERR
MPI_Comm_get_name CG_EXT
MPI_Comm_get_parent SPAWN

90

B.1 Function to group

MPI_Comm_group CG
MPI_Comm_join SPAWN
MPI_Comm_rank CG
MPI_Comm_remote_group CG
MPI_Comm_remote_size CG
MPI_Comm_set_attr CG_EXT
MPI_Comm_set_errhandler CG_ERR
MPI_Comm_set_name CG_EXT
MPI_Comm_size CG
MPI_Comm_spawn SPAWN
MPI_Comm_spawn_multiple SPAWN
MPI_Comm_split CG
MPI_Comm_test_inter CG
MPI_Dims_create TOPO
MPI_Dist_graph_create TOPO
MPI_Dist_graph_create_adjacent TOPO
MPI_Dist_graph_neighbors TOPO
MPI_Dist_graph_neighbors_count TOPO
MPI_Errhandler_create ERR
MPI_Errhandler_free ERR
MPI_Errhandler_get ERR
MPI_Errhandler_set ERR
MPI_Error_class ERR
MPI_Error_string ERR
MPI_Exscan COLL
MPI_File_c2f 10_MISC
MPI_File_call_errhandler I0_ERR
MPI_File_close 10
MPI_File_create_errhandler I0_ERR
MPI_File_delete 10
MPI_File_f2c 10_MISC
MPI_File_get_amode 10
MPI_File_get_atomicity 10
MPI_File_get_byte_offset 10
MPI_File_get_errhandler I0_ERR
MPI_File_get_group 10
MPI_File_get_info 10
MPI_File_get_position 10
MPI_File_get_position_shared 10

91

APPENDIX B. MPI WRAPPER AFFILIATION

MPI_File_get_size 10
MPI_File_get_type_extent 10
MPI_File_get_view 10
MPI_File_iread 10
MPI_File_iread_at 10
MPI_File_iread_shared 10
MPI_File_iwrite 10
MPI_File_iwrite_at 10
MPI_File_iwrite_shared 10
MPI_File_open 10
MPI_File_preallocate 10
MPI_File_read 10
MPI_File read_all 10
MPI_File_read_all_begin 10
MPI_File read_all end 10
MPI_File_read_at 10
MPI_File_read_at_all 10
MPI_File_read_at_all_begin 10
MPI_File_read_at_all_end 10
MPI_File _read_ordered 10
MPI_File_read_ordered_begin 10
MPI_File read_ordered_end 10
MPI_File_read_shared 10
MPI_File_seek 10
MPI_File_seek_shared 10
MPI_File_set_atomicity 10
MPI_File_set_errhandler I0_ERR
MPI_File_set_info 10
MPI_File_set_size 10
MPI_File_set_view 10
MPI_File_sync 10
MPI_File_write 10
MPI_File write_all 10
MPI_File_write_all_begin 10
MPI_File write_all _end 10
MPI_File_write_at 10
MPI_File write_at_all 10
MPI_File_write_at_all_begin 10
MPI_File_write_at_all_end 10

92

B.1 Function to group

MPI_File_write_ordered 10
MPI_File_write_ordered_begin 10
MPI_File_write_ordered_end 10
MPI_File_write_shared 10
MPI_Finalize ENV
MPI_Finalized ENV
MPI_Free_mem MISC
MPI_Gather COLL
MPI_Gatherv COLL
MPI_Get RMA
MPI_Get_address MISC
MPI_Get_count EXT
MPI_Get_elements EXT
MPI_Get_processor_name EXT
MPI_Get_version MISC
MPI_Graph_create TOPO
MPI_Graph_get TOPO
MPI_Graph_map TOPO
MPI_Graph_neighbors TOPO
MPI_Graph_neighbors_count TOPO
MPI_Graphdims_get TOPO
MPI_Grequest_complete EXT
MPI_Grequest_start EXT
MPI_Group_c2f CG_MISC
MPI_Group_compare CG
MPI_Group_difference CG
MPI_Group_excl CG
MPI_Group_f2c CG_MISC
MPI_Group_free CG
MPI_Group_incl CG
MPI_Group_intersection CG
MPI_Group_range_excl CG
MPI_Group_range_incl CG
MPI_Group_rank CG
MPI_Group_size CG
MPI_Group_translate_ranks CG
MPI_Group_union CG
MPI_Ibsend P2P
MPI_Info_c2f MISC

93

APPENDIX B. MPI WRAPPER AFFILIATION

MPI_Info_create MISC
MPI _Info_delete MISC
MPI_Info_dup MISC
MPI_Info_f2c MISC
MPI_Info_free MISC
MPI_Info_get MISC
MPI_Info_get_nkeys MISC
MPI_Info_get_nthkey MISC
MPI_Info_get_valuelen MISC
MPI_Info_set MISC
MPIL_Init ENV
MPI_Init_thread ENV
MPI_Initialized ENV
MPI_Intercomm_create CG
MPI_Intercomm_merge CG
MPI_Iprobe P2p
MPI_Irecv P2P
MPI_Irsend P2P
MPI_Is_thread_main ENV
MPI_Isend P2P
MPI_Issend P2P
MPI_Keyval_create CG_EXT
MPI_Keyval_free CG_EXT
MPI_Lookup_name SPAWN
MPI_Op_c2f MISC
MPI_Op_commutative MISC
MPI_Op_create MISC
MPI_Op_f2c MISC
MPI_Op_free MISC
MPI_Open_port SPAWN
MPI_Pack TYPE
MPI_Pack_external TYPE
MPI_Pack_external_size TYPE
MPI_Pack_size TYPE
MPI_Pcontrol PERF
MPI_Probe P2P
MPI_Publish_name SPAWN
MPI_Put RMA
MPI_Query_thread ENV

94

B.1 Function to group

MPI_Recv P2P
MPI_Recv_init P2P
MPI_Reduce COLL
MPI_Reduce_local COLL
MPI_Reduce_scatter COLL
MPI_Reduce_scatter_block COLL
MPI_Register_datarep 10
MPI_Request_c2f MISC
MPI_Request_f2c MISC
MPI_Request_free P2P
MPI_Request_get_status MISC
MPI_Rsend P2P
MPI_Rsend_init P2P
MPI_Scan COLL
MPI_Scatter COLL
MPI_Scatterv COLL
MPI_Send P2P
MPI_Send_init P2P
MPI_Sendrecv P2P
MPI_Sendrecv_replace P2P
MPI_Sizeof TYPE
MPI_Ssend P2P
MPI_Ssend_init P2P
MPI_Start P2P
MPI_Startall P2P
MPI_Status_c2f MISC
MPI_Status_f2c MISC
MPI_Status_set_cancelled EXT
MPI_Status_set_elements EXT
MPI_Test P2P
MPI_Test_cancelled P2P
MPI_Testall P2P
MPI_Testany P2P
MPI_Testsome P2P
MPI_Topo_test TOPO
MPI_Type_c2f TYPE_MISC
MPI_Type_commit TYPE
MPI_Type_contiguous TYPE
MPI_Type_create_darray TYPE

95

APPENDIX B. MPI WRAPPER AFFILIATION

MPI_Type_create_f90_complex TYPE
MPI_Type_create_f90_integer TYPE
MPI_Type_create_f90_real TYPE
MPI_Type_create_hindexed TYPE
MPI_Type_create_hvector TYPE
MPI_Type_create_indexed_block TYPE
MPI_Type_create_keyval TYPE_EXT
MPI_Type_create_resized TYPE
MPI_Type_create_struct TYPE
MPI_Type_create_subarray TYPE
MPI_Type_delete_attr TYPE_EXT
MPI_Type_dup TYPE
MPI_Type_extent TYPE
MPI_Type_f2c TYPE_MISC
MPI_Type_free TYPE
MPI_Type_free_keyval TYPE_EXT
MPI_Type_get_attr TYPE_EXT
MPI_Type_get_contents TYPE
MPI_Type_get_envelope TYPE
MPI_Type_get_extent TYPE
MPI_Type_get_name TYPE_EXT
MPI_Type_get_true_extent TYPE
MPI_Type_hindexed TYPE
MPI_Type_hvector TYPE
MPI_Type_indexed TYPE
MPI_Type_lb TYPE
MPI_Type_match_size TYPE
MPI_Type_set_attr TYPE_EXT
MPI_Type_set_name TYPE_EXT
MPI_Type_size TYPE
MPI_Type_struct TYPE
MPI_Type_ub TYPE
MPI_Type_vector TYPE
MPI_Unpack TYPE
MPI_Unpack_external TYPE
MPI_Unpublish_name SPAWN
MPI_Wait P2P
MPI_Waitall P2P
MPI_Waitany P2P

96

B.2 Group to function

MPI_Waitsome P2P
MPI_Win_c2f RMA_MISC
MPI_Win_call_errhandler RMA_ERR
MPI_Win_complete RMA
MPI_Win_create RMA
MPI_Win_create_errhandler RMA_ERR
MPI_Win_create_keyval RMA_EXT
MPI_Win_delete_attr RMA_EXT
MPI_Win_f2c RMA_MISC
MPI_Win_fence RMA
MPI_Win_free RMA
MPI_Win_free_keyval RMA_EXT
MPI_Win_get_attr RMA_EXT
MPI_Win_get_errhandler RMA_ERR
MPI_Win_get_group RMA
MPI_Win_get_name RMA_EXT
MPI_Win_lock RMA
MPI_Win_post RMA
MPI_Win_set_attr RMA_EXT
MPI_Win_set_errhandler RMA_ERR
MPI_Win_set_name RMA_EXT
MPI_Win_ start RMA
MPI_Win_test RMA
MPI_Win_unlock RMA
MPI_Win_wait RMA
MPI_Wtick EXT
MPI_Wtime EXT

B.2 Group to function

CG - Communicators and Groups

MPI_Comm_compare, MPI_Comm_create, MPI_Comm_dup,
MPI_Comm_free, MPI_Comm_group, MPI_Comm_rank,
MPI_Comm_remote_group, MPI_Comm_remote_size, MPI_Comm_size,
MPI_Comm_split, MPI_Comm_test_inter, MPI_Group_compare,
MPI_Group_difference, MPI_Group_excl, MPI_Group_free,
MPI_Group_incl, MPI_Group_intersection, MPI_Group_range_excl,
MPI_Group_range_incl, MPI_Group_rank, MPI_Group_size,
MPI_Group_translate_ranks, MPI_Group_union, MPI_Intercomm_create,
MPI_Intercomm_merge,

APPENDIX B. MPI WRAPPER AFFILIATION

CG_ERR - Error handlers for Communicators and Groups

MPI_Comm_call_errhandler, MPI_Comm_create_errhandler,
MPI_Comm_get_errhandler, MPI_Comm_set_errhandler,

CG_EXT - External interfaces for Communicators and Groups

MPI_Attr_delete, MPI_Attr_get, MPI_Attr_put, MPI_Comm_create_keyval,
MPI_Comm_delete_attr, MPI_Comm_free_keyval, MPI_Comm_get_attr,
MPI_Comm_get_name, MPI_Comm_set_attr, MPI_Comm_set_name,
MPI_Keyval_create, MPI_Keyval_free,

CG_MISC - Miscellaneous functions for Communicators and Groups

MPI_Comm_c2f, MPI_Comm_f2c, MPI_Group_c2f, MPI_Group_{2c,

COLL - Collective communication

MPI_Allgather, MPI_Allgatherv, MPI_Allreduce, MPI_Alltoall,
MPI_Alltoallv, MPI_Alltoallw, MPI_Barrier, MPI_Bcast, MPI_Exscan,
MPI_Gather, MPI_Gatherv, MPI_Reduce, MPI_Reduce_local,
MPI_Reduce_scatter, MPI_Reduce_scatter_block, MPI_Scan, MPI_Scatter,
MPIL_Scatterv,

ENYV - Environmental management

MPI_Finalize, MPI_Finalized, MPI_Init, MPI_Init_thread, MPI_Initialized,
MPI_Is_thread_main, MPI_Query_thread,

ERR - Common error handlers

MPI_Add_error_class, MPI_Add_error_code, MPI_Add_error_string,
MPI_Errhandler_create, MPI_Errhandler_free, MPI_Errhandler_get,
MPI_Errhandler_set, MPI_Error_class, MPI_Error_string,

98

B.2 Group to function

10 - Parallel 1/0

MPI_File_close, MPI_File_delete, MPI_File_get_amode,
MPI_File_get_atomicity, MPI_File_get_byte_offset, MPI_File_get_group,
MPI_File_get_info, MPI_File_get_position, MPI_File_get_position_shared,
MPI_File_get_size, MPI_File_get_type_extent, MPI_File_get_view,
MPI_File_iread, MPI_File_iread_at, MPI_File_iread_shared,
MPI_File_iwrite, MPI_File_iwrite_at, MPI_File_iwrite_shared,
MPI_File_open, MPI_File_preallocate, MPI_File_read, MPI_File_read_all,
MPI_File_read_all_begin, MPI_File_read_all_end, MPI_File_read_at,
MPI_File_read_at_all, MPI_File_read_at_all_begin,
MPI_File_read_at_all_end, MPI_File_read_ordered,
MPI_File_read_ordered_begin, MPI_File_read_ordered_end,
MPI_File_read_shared, MPI_File_seck, MPI_File_seek_shared,
MPI_File_set_atomicity, MPI_File_set_info, MPI_File_set_size,
MPI_File_set_view, MPI_File_sync, MPI_File_write, MPI_File_write_all,
MPI_File_write_all_begin, MPI_File_write_all_end, MPI_File_write_at,
MPI_File_write_at_all, MPI_File_write_at_all_begin,
MPI_File_write_at_all_end, MPI_File_write_ordered,
MPI_File_write_ordered_begin, MPI_File_write_ordered_end,
MPI_File_write_shared, MPI_Register_datarep,

99

APPENDIX B. MPI WRAPPER AFFILIATION

IO_ERR - Error handlers for Parallel I/O0
MPI_File_call_errhandler, MPI_File_create_errhandler,
MPI_File_get_errhandler, MPI_File_set_errhandler,

I0_MISC - Miscellaneous functions for Parallel I/O
MPI_File_c2f, MPI_File f2c,

EXT - Common external interfaces

MPI_Abort, MPI_Get_count, MPI_Get_elements, MPI_Get_processor_name,
MPI_Grequest_complete, MPI_Grequest_start, MPI_Status_set_cancelled,
MPI_Status_set_elements, MPI_Wtick, MPI_Wtime,

MISC - Miscellaneous functions

MPI_Address, MPI_Alloc_mem, MPI_Free_mem, MPI_Get_address,
MPI_Get_version, MPI_Info_c2f, MPI_Info_create, MPI_Info_delete,
MPI_Info_dup, MPI_Info_f2c, MPI_Info_free, MPI_Info_get,
MPI_Info_get_nkeys, MPI_Info_get_nthkey, MPI_Info_get_valuelen,
MPI_Info_set, MPI_Op_c2f, MPI_Op_commutative, MPI_Op_create,
MPI_Op_f2c, MPI_Op_free, MPI_Request_c2f, MPI_Request_f2c,
MPI_Request_get_status, MPI_Status_c2f, MPI_Status_f2c,

P2P - Point-to-point communication

MPI_Bsend, MPI_Bsend_init, MPI_Buffer_attach, MPI_Buffer_detach,
MPI_Cancel, MPI_Ibsend, MPI_Iprobe, MPI_Irecv, MPI_Irsend, MPI_Isend,
MPI_Issend, MPI_Probe, MPI_Recv, MPI_Recv_init, MPI_Request_free,
MPI_Rsend, MPI_Rsend_init, MPI_Send, MPI_Send_init, MPI_Sendrecv,
MPI_Sendrecv_replace, MPI_Ssend, MPI_Ssend_init, MPI_Start,
MPI_Startall, MPI_Test, MPI_Test_cancelled, MPI_Testall, MPI_Testany,
MPI_Testsome, MPI_Wait, MPI_Waitall, MPI_Waitany, MPI_Waitsome,

PERF - Profiling Interface

MPI_Pcontrol,

RMA - One-sided communication (Remote Memory Access)

MPI_Accumulate, MPI_Get, MPI_Put, MPI_Win_complete, MPI_Win_create,
MPI_Win_fence, MPI_Win_free, MPI_Win_get_group, MPI_Win_lock,
MPI_Win_post, MPI_Win_start, MPI_Win_test, MPI_Win_unlock,
MPI_Win_wait,

RMA_ERR - Error handlers for One-sided communication (Remote
Memory Access)

MPI_Win_call_errhandler, MPI_Win_create_errhandler,
MPI_Win_get_errhandler, MPI_Win_set_errhandler,

RMA_EXT - External interfaces for One-sided communication (Remote
Memory Access)

100

B.2 Group to function

MPI_Win_create_keyval, MPI_Win_delete_attr, MPI_Win_free_keyval,
MPI_Win_get_attr, MPI_Win_get_name, MPI_Win_set_attr,
MPI_Win_set_name,

RMA_MISC - Miscellaneous functions for One-sided communication
(Remote Memory Access)

MPI_Win_c2f, MPI_Win_f2c,

SPAWN - Process spawning

MPI_Close_port, MPI_Comm_accept, MPI_Comm_connect,
MPI_Comm_disconnect, MPI_Comm_get_parent, MPI_Comm_join,
MPI_Comm_spawn, MPI_Comm_spawn_multiple, MPI_Lookup_name,
MPI_Open_port, MPI_Publish_name, MPI_Unpublish_name,

TOPO - Topology (cartesian and graph) communicators

MPI_Cart_coords, MPI_Cart_create, MPI_Cart_get, MPI_Cart_map,
MPI_Cart_rank, MPI_Cart_shift, MPI_Cart_sub, MPI_Cartdim_get,
MPI_Dims_create, MPI_Dist_graph_create, MPI_Dist_graph_create_adjacent,
MPI_Dist_graph_neighbors, MPI_Dist_graph_neighbors_count,
MPI_Graph_create, MPI_Graph_get, MPI_Graph_map,
MPI_Graph_neighbors, MPI_Graph_neighbors_count, MPI_Graphdims_get,
MPI_Topo_test,

TYPE - Datatypes

MPI_Pack, MPI_Pack_external, MPI_Pack_external_size, MPI_Pack_size,
MPI_Sizeof, MPI_Type_commit, MPI_Type_contiguous,
MPI_Type_create_darray, MPI_Type_create_f90_complex,
MPI_Type_create_f90_integer, MPI_Type_create_f90_real,
MPI_Type_create_hindexed, MPI_Type_create_hvector,
MPI_Type_create_indexed_block, MPI_Type_create_resized,
MPI_Type_create_struct, MPI_Type_create_subarray, MPI_Type_dup,
MPI_Type_extent, MPI_Type_free, MPI_Type_get_contents,
MPI_Type_get_envelope, MPI_Type_get_extent, MPI_Type_get_true_extent,
MPI_Type_hindexed, MPI_Type_hvector, MPI_Type_indexed, MPI_Type_lb,
MPI_Type_match_size, MPI_Type_size, MPI_Type_struct, MPI_Type_ub,
MPI_Type_vector, MPI_Unpack, MPI_Unpack_external,

101

APPENDIX B. MPI WRAPPER AFFILIATION

TYPE_EXT - External interfaces for datatypes

MPI_Type_create_keyval, MPI_Type_delete_attr, MPI_Type_free_keyval,
MPI_Type_get_attr, MPI_Type_get_name, MPI_Type_set_attr,
MPI_Type_set_name,

TYPE_MISC - Miscellaneous functions for datatypes

MPI_Type_c2f, MPI_Type_{2c,

102

Appendix C

Score-P Metric Plugin Example

#include <scorep/SCOREP_MetricPlugins.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

/+ Use mutex to make ID generation thread safe =/
#include <pthread.h>

/+ Maximum number of metrics =*/
#define NUMBER_RANDOM_METRICS 5

/* Guard for metric ID generation =/
static pthread_mutex_t add_metric_mutex;

/+ Number of individual metrics x/
static int32_t num _metrics = 0;

int32_t
init ()
{

return 0;

int32_t

add_counter (char * event_name)

{
/+ ID generation has to be thread save =/
int id;

pthread_mutex_lock (&add_metric_mutex);
id = num_metrics;

num_metrics++;

pthread_mutex_unlock (&add_metric_mutex);

return id;

APPENDIX C. SCORE-P METRIC PLUGIN EXAMPLE

SCOREP_Metric_Plugin_MetricPropertiesx

get_event_info(char » event_name)

{
SCOREP_Metric_Plugin_MetricProperties *return_values;
char name_buffer[255];
int 1i;

/+ If wildcard, add some random counters x/
if (strcmp(event_name, "x") == 0)
{
return_values = malloc((NUMBER_RANDOM_METRICS + 1) % sizeof(SCOREP_Me
tric_Plugin_MetricProperties));
for (i = 0; i1 < NUMBER_RANDOM_METRICS; i++)
{

sprintf (name_buffer, "random strictly sync counter #%i", i);

return_values|[1].name = strdup(name_buffer);
return_values[i].description = NULL;

return_values|[i].unit = NULL;

return_values[i].mode = SCOREP_METRIC_MODE_ABSOLUTE_LAST;
return_values[i].value_type = SCOREP_METRIC_VALUE_UINTG64;
return_values[1].base = SCOREP_METRIC_BASE_DECIMAL;
return_values|[i].exponent = 0;

}
return_values[NUMBER_RANDOM_METRICS].name = NULL;

}

else

{

/* If no wildcard is given create one random counter with the passed name

x/

return_values = malloc(2 » sizeof(SCOREP_Metric_Plugin_MetricProperties
))i

sprintf (name_buffer, "random strictly sync counter #%s", event_name);
return_values[0].name = strdup(name_buffer);

return_values|[0].description = NULL;

return_values[0].unit = NULL;

return_values[0].mode = SCOREP_METRIC_MODE_ABSOLUTE_LAST;
return_values[0].value_type = SCOREP_METRIC_VALUE_UINT64;
return_values[0].base = SCOREP_METRIC_BASE_DECIMAL;
return_values[0].exponent = 0;

return_values[1].name = NULL;

}

return return_values;

uint64d_t
get_value(int32_t counterIndex)

{

return counterIndex;

void fini ()

{

104

pthread_mutex_destroy(&add_metric_mutex);

SCOREP_Metric_Plugin_Info

get_info ()

{
/* Initialize info data (with =zero) «/
SCOREP_Metric_Plugin_Info info;
memset (&info, 0, sizeof(SCOREP_Metric_Plugin_Info));

/% Set up =/
info.scorep_metric_plugin_version = SCOREP_METRIC_PLUGIN_VERSION;

info.run_per = SCOREP_METRIC_PER_THREAD;
info.sync = SCOREP_METRIC_STRICTLY_SYNC;
info.initialize = init;

info.finalize = fini;

info.get_event_info = get_event_info;
info.add_counter = add_counter;
info.get_current_value = get_value;

return info;

105

APPENDIX C. SCORE-P METRIC PLUGIN EXAMPLE

106

Appendix D

Score-P Tools

D.1 scorep

A call to scorep has the following syntax:

This is the Score-P instrumentation tool. The usage is:
scorep <options> <original command>

Common options are:

—--help, -h Show help output. Does not execute any other command.
——config=<file> Specifies file for the instrumentation configuration.
-v, —-verbose[=<value>] Specifies the verbosity level. The following

levels are available:
0 = No output

1 = Executed commands are displayed (default if no
value is specified)
2 = Detailed information is displayed
——dry-run Only displays the executed commands. It does not
execute any command.
——keep-files Do not delete temporarily created files after successfull

instrumentation. By default, temporary files are deleted
if no error occures during instrumentation.

—--version Prints the Score-P version and exits.
-—-static Enforce static linking of the Score-P libraries.
——-dynamic Enforce dynamic linking of the Score-P libraries.

—--no—-as—-needed Adds a GNU 1ld linker flag to fix undefined references
when using shared Score-P libraries. This happens on
systems using --as-needed as linker default. It will
be handled transparently in future releases of Score-P.

——thread=<paradigm>[:<variant>]

Possible paradigms and variants are:
none
No thread support.
omp : pomp_tpd
OpenMP support using OPARI2 thread tracking
It requires and, thus, automatically enables opari instrumentation.

APPENDIX D. SCORE-P TOOLS

omp:ancestry
OpenMP support using thread tracking with ancestry functions in OpenMP 3.0
It requires and, thus, automatically enables opari instrumentation.
pthread
Pthread support using thread tracking via library wrapping
It conflicts and, thus, automatically disables opari instrumentation.
——mpp=<paradigm>[:<variant>]
Possible paradigms and variants are:
none
No multi-process support.
mpi
MPI support using library wrapping
shmem
SHMEM support using library wrapping
——-mutex=<paradigm>[:<variant>]
Possible paradigms and variants are:
none
serial case, no locking
pthread
Pthread mutex locks
pthread:spinlock
Pthread spinlocks

omp
OpenMP locks
—-nocobi Disables cobi instrumentation.
—-—compiler Enables compiler instrumentation.
By default, it disables cobi and pdt instrumentation.
—-nocompiler Disables compiler instrumentation.
—--nocuda Disables cuda instrumentation.

—--online-access Enables online-access support. It is disabled by default
—--noonline-access online-access Disables online-access support.
——pomp [=<paramter-list>]
Enables pomp user instrumentation.
You may add additional parameters that are passed to OPARI2.
By default, it enables also preprocessing
——nopomp Disables pomp user instrumentation.
——opari[=<paramter-list>]
Enables OPARI2 instrumentation of OpenMP regions.
You may add additional parameters that are passed to OPARI2
By default, it enables also preprocessing and
pomp user instrumentation.
——pdt [=<paramter-1list>]
Enables pdt instrumentation.
You may add additional parameters that are passed to pdt.
It requires and, thus, automatically enables user instrumentation.
It conflicts and, thus, automatically disables preprocess instrumentation.
By default, it disables cobi and compiler instrumentation.
——-nopdt Disables pdt instrumentation.
——preprocess Enables preprocess instrumentation.
It requires and, thus, automatically enables opari instrumentation.
It conflicts and, thus, automatically disables pdt instrumentation.
——nopreprocess Disables preprocess instrumentation.
--user Enables user instrumentation.
—--nouser Disables user instrumentation.

108

D.2 scorep-config

D.2 scorep-config

A call to scorep-config has the following syntax:

Usage:
scorep-config <command> [<options>]
Commands :
--cflags prints additional compiler flags for a C compiler. They already

contain the include flags.

-—-cxxflags prints additional compiler flags for a C++ compiler. They already
contain the include flags.

-—-fflags prints additional compiler flags for a Fortran compiler. They already
contain the include flags.

-—-cppflags prints the include flags. They are already contained in the

output of the --cflags, —--cxxflags, and —--fflags commands
-—-1ldflags prints the library path flags for the linker
——1ibs prints the required linker flags
--cc prints the C compiler name
——CXxX prints the C++ compiler name
-—fc prints the Fortran compiler name
—--mpicc prints the MPI C compiler name
—-mpicxx prints the MPI C++ compiler name
——mpifc prints the MPI Fortran compiler name
——cobi-deps prints the dependency library part for the Cobi adapter file
—-help prints this usage information

—-—version prints the version number of the Score-P package
——-scorep-revision prints the revision number of the Score-P package
——common-revision prints the revision number of the common package
—-—-remap-specfile prints the path to the remapper specification file

Options:
——nvcc Convert flags to be suitable for the nvcc compiler.
-—-static Use only static Score-P libraries 1if possible.
——dynamic Use only dynamic Score-P libraries if possible.
——online—-access|—-—noonline—access

Specifies whether online access (needed by Periscope) is enabled.

On default it is enabled.
—-—compiler|--nocompiler

Specifies whether compiler instrumentation is used.

On default compiler instrumentation is enabled.
——-user | -—-nouser

Specifies whether user instrumentation is used.

On default user instrumentation is disabled.
——pomp | ——nopomp

Specifies whether pomp instrumentation is used.

On default pomp instrumentation is disabled.
——cuda | ——nocuda

Specifies whether cuda instrumentation is used.

On default cuda instrumentation is enabled.
——preprocess|-——nopreprocess

Specifies whether preprocess instrumentation is used.

On default preprocess instrumentation is disabled.
——thread=<threading system>[:<variant>]

Available threading systems are:

109

APPENDIX D. SCORE-P TOOLS

none This is the default.

omp : pomp_tpd

omp:ancestry

pthread
If no variant is specified the first matching
threading system is used.

—-—-mutex=<locking system>[:<variant>]

Available locking systems are:

none

omp

pthread

pthread:spinlock

pthread:wrap
If no variant is specified the default for the respective
threading system is used.

—-mpp=<multi-process paradigm>

Available multi-process paradigms are:

mpi This is the default.

shmem

none

D.3 scorep-info
A call to scorep—-info has the following syntax:

Usage: scorep—-info <info command> <command options>
scorep—-info —--help
This is the Score-P info tool.

Available info commands:

config-vars:
Shows the list of all measurement config variables with a short description.

Info command options:
——full Displays a detailed description for each config variable.
--values Displays the current values for each config variable.
Warning: These values may be wrong, please consult the
manual of the batch system how to pass the values
to the measurement job.

config-summary:
Shows the configure summary of the Score-P package.

D.4 scorep-score

A call to scorep-score has the following syntax:

110

D.5 scorep-backend-info

Usage: scorep-score <profile> [options]

Options:
-r Show all regions.
-h Show this help and exit.
—-f <filter> Shows the result with the filter applied.
-c <num> Specifes the number of hardware counters that shall be measured.

By default, this value is 0, which means that only a timestamp

is measured on each event. If you plan to record hardware counters
specify the number of hardware counters. Otherwise, scorep-score
may underestimate the required space.

D.5 scorep-backend-info

Note

This tool is intended to run as a batch job. Please consult the manual of the
batch system how to submit jobs.

A call to scorep-backend-info has the following syntax:

Usage: scorep-backend-info <info command> <command options>
scorep-backend-info --help
This is the Score-P backend info tool.

Available info commands:

system—-tree:
Shows the available system tree levels, starting with the root.

config-vars:
Shows the current values of all measurement config variables.

111

APPENDIX D. SCORE-P TOOLS

112

Appendix E

Score-P Measurement Configuration
Variables

This is the list of configure variables to control a Score-P measurement.

SCOREP_ENABLE_PROFILING Enable profiling

Type: Boolean

Default: true
SCOREP_ENABLE_TRACING Enable tracing

Type: Boolean
Default: false

SCOREP_VERBOSE Be verbose

Type: Boolean
Default: false

SCOREP_TOTAL_MEMORY Total memory in bytes for the measurement system

Type: Number with size suffixes
Default: 16000k

SCOREP_PAGE_SIZE Memory page size in bytes

Type: Number with size suffixes
Default: 8k

APPENDIX E. SCORE-P MEASUREMENT CONFIGURATION
VARIABLES

TOTAL_MEMORY will be split up into pages of size PAGE_SIZE.
SCOREP_EXPERIMENT_ DIRECTORY Name of the experiment directory

Type: String
Default:

When no experiment name is given (the default)Score-P names the
experiment directory ‘scorep-measurement-tmp’ and renames this
after a successful measurement to a generated name based on the
current time.

SCOREP_OVERWRITE_EXPERIMENT DIRECTORY Overwrite an existing ex-
periment directory

Type: Boolean

Default: true

If you specified a specific experiment directory name, but this name
is already given, you can force overwriting it with this flag.

The previous experiment directory will be renamed.
SCOREP_MACHINE_ NAME The machine name used in profile and trace output.

Type: String

Default: Linux

We suggest using a unique name, e.g., the fully qualified domain name.
The default machine name was set at configure time (see the INSTALL

file for customization options).
SCOREP_EXECUTABLE Executable of the application

Type: String
Default:

File name, preferrrably with full path, of the application’s executable.
It is used for evaluating the symbol table of the application, which is

required by some compiler adapters.

SCOREP_PROFILING_TASK TABLE_SIZE Size of the task tracing table

Type: Number

114

Default: 64

Size of the task tracing table. Best performance is obtained, if the
table size matches the number of tasks that are active at once. If
your program does not use tasks, you may set this value to zero, to
save some memory.

SCOREP_PROFILING_MAX CALLPATH_DEPTH Maximum depth of the call-
tree

Type: Number
Default: 30

SCOREP_PROFILING_BASE NAME Base for construction of the profile file-
name

Type: String
Default: profile

String which is used as based to create the filenames for the profile files.

SCOREP_PROFILING_FORMAT Profile output format

Type: Set
Default: default

Sets the output format for the profile.

The following formats are supported:

none: No profile output. This does not disable profile recording.
tau_snapshot: Tau snapshot format

cube4: Stores the sum for every metric per callpath in Cube4 format.
cube_tuple: Stores an extended set of statistics in Cube4 format.
default: Default format. If Cube4 is supported, Cube4 is the default

else the Tau snapshot format is default

SCOREP_PROFILING_ENABLE_CLUSTERING Enable clustering

Type: Boolean

Default: true

SCOREP_PROFILING CLUSTER COUNT maximum cluster count for itera-
tion clustering.

115

APPENDIX E. SCORE-P MEASUREMENT CONFIGURATION
VARIABLES

Type: Number with size suffixes
Default: 64

maximum cluster count for iteration clustering.

SCOREP_PROFILING_CLUSTERING_MODE Specifies the level of strictness
when comparing call trees for equivalence.

Type: Number with size suffixes
Default: 1

Specifies the level of strictness when comparing call trees for equivalence.

SCOREP_PROFILING_CLUSTERED_REGION Name of the clustered region

Type: String
Default:

The clustering can only cluster one dynamic region. If more than one dy-
namic region are defined by the user, the region is clustered which is exited
first. If another region should be clustered instead you can specify the re-
gion name in this variable. If the variable is unset or empty, the first exited
dynamic region is clustered.

SCOREP_PROFILING ENABLE_ CORE_FILES Write .core files if an error
occured.

Type: Boolean
Default: false

If an error occures inside the profiling system, the profiling is disabled. For
dubugging reasons, it might be feasable to get the state of the local local
at these points. It is not recommended to enable this feature for large scale
measurements.

SCOREP_TRACING USE_SION Whether or not to use libsion as OTF2 sub-
strate

Type: Boolean
Default: false

SCOREP_TRACING_MAX PROCS_PER_SION_FILE Maximum number of pro-
cesses that share one sion file (must be > 0)

Type: Number

116

Default: 1024

All processes are than evenly distributed over the number of needed files to
fulfill this constraint. E.g., having 4 processes and setting the maximum to 3
would result in 2 files each holding 2 processes.

SCOREP_TRACING_COMPRESS Whether or not to compress traces with libz

Type: Boolean
Default: false

SCOREP_ONLINEACCESS ENABLE Enable online access interface

Type: Boolean
Default: false

SCOREP_ONLINEACCESS_REG_PORT Online access registry service port

Type: Number
Default: 50100

SCOREP_ONLINEACCESS_REG_HOST Online access registry service hostname

Type: String
Default: localhost

SCOREP_ONLINEACCESS_BASE_PORT Base port for online access server

Type: Number
Default: 50010

SCOREP_ONLINEACCESS_APPL_NAME Application name to be registered

Type: String
Default: appl

SCOREP_FILTERING FILE A file name which contain the filter rules

Type: String
Default:

SCOREP_METRIC_PAPI PAPI metric names to measure

Type: String

117

APPENDIX E. SCORE-P MEASUREMENT CONFIGURATION
VARIABLES

Default:

List of requested metric names that will be collected during program run.

SCOREP_METRIC_PAPI_PER PROCESS PAPI metric names to measure per-
process

Type: String
Default:

List of requested metric names that will be recorded only by first thread of a
process.

SCOREP_METRIC_PAPI_SEP Separator of metric names

Type: String
Default: |,

Character that separates metric names in SCOREP_METRIC_PAPI and SCOREP_-
METRIC_PAPI_PER_PROCESS.

SCOREP_METRIC_RUSAGE Resource usage metric names to measure

Type: String
Default:

List of requested resource usage metric names that will be collected during
program run.

SCOREP_METRIC_RUSAGE_PER PROCESS Resource usage metric names to
measure per-process

Type: String
Default:

List of requested resource usage metric names that will be recorded only by
first thread of a process.

SCOREP_METRIC_RUSAGE_SEP Separator of resource usage metric names.

Type: String
Default: ,

Character that separates metric names in SCOREP_METRIC_RUSAGE and
SCOREP_METRIC_RUSAGE_PER_PROCESS.

118

SCOREP_METRIC_PLUGINS Specify list of used plugins

Type: String
Default:
List of requested metric plugin names that will be used during program run.

SCOREP_METRIC_PLUGINS_SEP Separator of plugin names

Type: String
Default: |,

Character that separates plugin names in SCOREP_METRIC_PLUGINS.

SCOREP_SELECTIVE_CONFIG_FILE A file name which configures selec-
tive recording

Type: String
Default:

SCOREP_MPI_MAX COMMUNICATORS Determines the number of concurrently
used communicators per process

Type: Number
Default: 50

SCOREP_MPI_MAX WINDOWS Determines the number of concurrently used
windows for MPI one-sided communication per process

Type: Number
Default: 50

SCOREP_MPI_MAX ACCESS_EPOCHS Maximum amount of concurrently ac-
tive access or exposure epochs per process

Type: Number
Default: 50

SCOREP_MPI_MAX GROUPS Maximum number of concurrently used MPI groups
per process

Type: Number
Default: 50

119

APPENDIX E. SCORE-P MEASUREMENT CONFIGURATION

VARIABLES
SCOREP_MPI_ENABLE_GROUPS The names of the function groups which are
measured
Type: Set

Default: default

Other functions are not measured.
Possible groups are:

all: All MPI functions

cg: Communicator and group management
coll: Collective functions

default: Default configuration

env: Environmental management

err: MPI Error handling

ext: External interface functions

io: MPI file I/O

misc: Miscellaneous

perf: PControl

p2p: Peer-to-peer communication

rma: One sided communication

spawn: Process management

topo: Topology

type: MPI datatype functions

xnonblock: Extended non-blocking events

xreqtest: Test events for uncompleted requests

SCOREP_MPI_ONLINE_ANALYSIS Enable online mpi wait states analysis

Type: Boolean
Default: false

SCOREP_CUDA_ENABLE CUDA measurement features

Type: Set

Default: no

120

Sets the CUDA measurement mode to capture:

runtime: CUDA runtime API

driver: CUDA driver API

kernel: CUDA kernels

kernel_serial: Serialized kernel recording.

kernel_counter: Fixed CUDA kernel metrics.

idle: GPU compute idle time

pure_idle: GPU idle time (memory copies are not idle)
memcpy: CUDA memory copies

sync: Record implicit and explicit CUDA synchronization
gpumemusage: Record CUDA memory (de)allocations as a counter
references: Record references between CUDA activities
flushatexit: Flush CUDA activity buffer at program exit
default/yes/1: CUDA runtime API and GPU activities

no: Disable CUDA measurement

SCOREP_CUDA_BUFFER Total memory in bytes for the CUDA record buffer

Type: Number with size suffixes
Default: 1M

SCOREP_CUDA_ BUFFER_CHUNK Chunk size in bytes for the CUDA record
buffer (ignored for CUDA 5.5 and earlier)

Type: Number with size suffixes
Default: 8k

121

APPENDIX E. SCORE-P MEASUREMENT CONFIGURATION
VARIABLES

122

Appendix F

Module Documentation

F.1 Score-P User Adapter

Files

* file SCOREP_User.h
This file contains the interface for the manual user instrumentation.
¢ file SCOREP_User_Types.h

This file contains type definitions for manual user instrumentation.

Macros for region instrumentation

* #define SCOREP_USER_OA_PHASE_BEGIN(handle, name, type)

¢ #define SCOREP_USER_OA_PHASE_END(handle) SCOREP_User_OaPhaseEnd(
handle);

* #define SCOREP_USER_REGION_BEGIN(handle, name, type)

* #define SCOREP_USER_REGION_INIT(handle, name, type)

* #define SCOREP_USER_REGION_END(handle) SCOREP_User_RegionEnd(
handle);

* #define SCOREP_USER_REGION_ENTER (handle) SCOREP_User_RegionEnter(
handle);

¢ #define SCOREP_USER_REGION_DEFINE(handle) static SCOREP_User_-
RegionHandle handle = SCOREP_USER_INVALID_REGION;

* #define SCOREP_USER_FUNC_DEFINE()
* #define SCOREP_USER_FUNC_BEGIN()

* #define SCOREP_USER_FUNC_END() SCOREP_User_RegionEnd(scorep_-
user_func_handle);

APPENDIX F. MODULE DOCUMENTATION

#define SCOREP_USER_GLOBAL_REGION_DEFINE(handle) SCOREP_-
User_RegionHandle handle = SCOREP_USER_INVALID_REGION;
#define SCOREP_USER_GLOBAL_REGION_EXTERNAL (handle) extern
SCOREP_User_RegionHandle handle;

Macros for parameter instrumentation

#define SCOREP_USER_PARAMETER_INT64(name, value)
#define SCOREP_USER_PARAMETER_UINT64(name, value)
#define SCOREP_USER_PARAMETER_STRING(name, value)

Macros to provide user metrics

#define SCOREP_USER_METRIC_LOCAL(metricHandle)

#define SCOREP_USER_METRIC_GLOBAL(metricHandle)

#define SCOREP_USER_METRIC_EXTERNAL(metricHandle) extern SCOREP_-
SamplingSetHandle metricHandle;

#define SCOREP_USER_METRIC_INIT(metricHandle, name, unit, type,
context) SCOREP_User_InitMetric(&metricHandle, name, unit, type, con-

text);

#define SCOREP_USER_METRIC_INT64(metricHandle, value)

#define SCOREP_USER_METRIC_UINT64(metricHandle, value)

#define SCOREP_USER_METRIC_DOUBLE(metricHandle, value)

C++ specific macros for region instrumentation

#define SCOREP_USER_REGION(name, type)

Macros for measurement control

#define SCOREP_RECORDING_ON() SCOREP_User_EnableRecording();
#define SCOREP_RECORDING_OFF() SCOREP_User_DisableRecording();
#define SCOREP_RECORDING_IS_ON() SCOREP_User_RecordingEnabled()

Region types

#define SCOREP_USER_REGION_TYPE_COMMON 0
#define SCOREP_USER_REGION_TYPE_FUNCTION 1
#define SCOREP_USER_REGION_TYPE_LOOP 2
#define SCOREP_USER_REGION_TYPE_DYNAMIC 4
#define SCOREP_USER_REGION_TYPE_PHASE 8

124

F.1 Score-P User Adapter

Metric types

* #define SCOREP_USER_METRIC_TYPE_INT64 0
* #define SCOREP_USER_METRIC_TYPE_UINT64 1
* #define SCOREP_USER_METRIC_TYPE_DOUBLE 2

Metric contexts

* #define SCOREP_USER_METRIC_CONTEXT_GLOBAL 0
* #define SCOREP_USER_METRIC_CONTEXT_CALLPATH 1

F.1.1 Detailed Description

The user adapter provides a set of macros for user manual instrumentation. The
macros are inserted in the source code and call functions of the Score-P runtime
system. The user should avoid calling the Score-P runtime functions directly.

For every macro, two definitions are provided: The first one inserts calls to the
Score-P runtime system, the second definitions resolve to nothing. Which im-
plementation is used, depends on the definition of SCOREP_USER_ENABLE. If
SCOREP_USER_ENABLE is defined, the macros resolve to calls to the Score-P
runtime system. If SCOREP_USER_ENABLE is undefined, the user instrumenta-
tion is removed by the preprocessor. This flag SCOREP_USER_ENABLE should
be set through the instrumentation wrapper tool automatically if user manual in-
strumentation is enabled.

Every source file which is instrumented must include a header file with the Score-P
user instrumentation header. For C/C++ programs, the header file is "scorep/SCOREP_-
User.h’, for Fortran files, ’scorep/SCOREP_User.inc’ must be included. Because

the Fortran compilers cannot expand macros, the Fortran source code must be
preprocessed by a C or C++ preprocessor, to include the headers and expand the
macros. Which Fortran files are passed to the preprocessor depends on the suffix.
Usually, suffixes .f and .f90 are not preprocessed, .F and .F90 files are preprocessed.
However, this may depend on the used compiler.

F.1.2 Define Documentation
F.1.2.1 #define SCOREP_RECORDING_IS_.ON() SCOREP_User_RecordingEnabled()

In C/C++ it behaves like a function call which returns wether recording is enabled
or not. It returns false if the recording of events is disabled, else it returns true.

C/C++ example:

125

APPENDIX F. MODULE DOCUMENTATION

void foo()

{
if (SCOREP_RECORDING_IS_ON())

{
// do something

}

In Fortran, this macro has a different syntax. An integer variable must be specified
as parameter, which is set to non-zero if recording is enabled, else the value is set
to zero.

Fortran example:

subroutine foo
integer :: 1
SCOREP_RECORDING_IS_ON(1)
if (1 .eg. 0) then
! do something

end if

end subroutine foo

F.1.2.2 #define SCOREP_RECORDING_OFF() SCOREP_User_DisableRecording();

Disables recording of events. If already disabled, this command has no effect. The
control is not restricted to events from the user adapter, but disables the recording
of all events.

C/C++ example:

void foo()

{
SCOREP_RECORDING_OFF ()
// do something

SCOREP_RECORDING_ON ()
}

Fortran example:
subroutine foo
SCOREP_RECORDING_OFF ()
! do something

SCOREP_RECORDING_ON ()

end subroutine foo

126

F.1 Score-P User Adapter

F.1.2.3 #define SCOREP_RECORDING_ON()SCOREP_User_EnableRecording();

Enables recording of events. If already enabled, this command has no effect. The
control is not restricted to events from the user adapter, but enables the recording
of all events.

C/C++ example:

void foo ()

{
SCOREP_RECORDING_OFF ()
// do something

SCOREP_RECORDING_ON ()
}

Fortran example:

subroutine foo

SCOREP_RECORDING_OFF ()
! do something
SCOREP_RECORDING_ON ()

end subroutine foo

F.1.24 #define SCOREP_USER_FUNC_BEGIN()

Value:
static SCOREP_User_RegionHandle \
scorep_user_func_handle = SCOREP_USER_INVALID_REGION; \
SCOREP_User_RegionBegin (&scorep_user_func_handle, &SCOREP_User_LastFileName,
\
&SCOREP_User_LastFileHandle, SCOREP_USER_FUNCTION_NA
ME, \

SCOREP_USER_REGION_TYPE_FUNCTION, _ FILE_ , _ LINE_
)

This macro marks the start of a function. It should be inserted at the beginning of
the instrumented function. It will generate a region, with the function name.

The C/C++ version of this command takes no arguments. It contains a variable
declaration and a function call. Compilers that require a strict separation between
declaration block and execution block may fail if this maroc is used.

In Fortran one argument is required for the name of the function. Furthermore, the
handle must be declared explicitly in Fortran.

127

APPENDIX F. MODULE DOCUMENTATION

Parameters

‘ name | Fortan only: A string containing the name of the function.

C/C++ example:

void myfunc ()

{

// declarations
SCOREP_USER_FUNC_BEGIN ()
// do something

SCOREP_USER_FUNC_END ()
}

Fortran example:

subroutine myfunc
SCOREP_USER_FUNC_DEFINE ()
! more declarations

SCOREP_USER_FUNC_BEGIN("myfunc")
! do something
SCOREP_USER_FUNC_END ()

end subroutine myfunc

Note that in Fortran the function need to be declared using SCOREP_USER_-
FUNC_DEFINE before.

F.1.2.5 #define SCOREP_USER_FUNC_DEFINE()

This macro is for Fortran only. It declares the handle for a function. Every function
handle must be declared in the declaration part of the subroutine or function if the
SCOREP_USER_FUNC_BEGIN and SCOREP_USER_FUNC_END macros are
used.

Example:

subroutine myfunc
SCOREP_USER_FUNC_DEFINE ()
! more declarations

SCOREP_USER_FUNC_BEGIN("myfunc")
! do something

SCOREP_USER_FUNC_END ()

end subroutine myfunc

128

F.1 Score-P User Adapter

Note that in Fortran the function need to be declared using SCOREP_USER_-
FUNC_DEFINE before.

F.1.2.6 #define SCOREP_USER_FUNC_END() SCOREP_User_RegionEnd(
scorep_user_func_handle);

This macro marks the end of a function. It should be inserted at every return point
of the instrumented function.

C/C++ example:

void myfunc ()
{

// declarations
SCOREP_USER_FUNC_BEGIN ()

// do something

if (some_expression)

{
SCOREP_USER_FUNC_END ()
return;

}

SCOREP_USER_FUNC_END ()
}

Fortran example:

subroutine myfunc
SCOREP_USER_FUNC_DEFINE ()
! more declarations

SCOREP_USER_FUNC_BEGIN("myfunc")
! do something
SCOREP_USER_FUNC_END ()

end subroutine myfunc

Note that in Fortran the function need to be declared using SCOREP_USER_-
FUNC_DEFINE before.

F.1.2.7 #define SCOREP_USER_GLOBAL_REGION_DEFINE(handle
) SCOREP_User_RegionHandle handle = SCOREP_USER_INVALID_REGION;

This macro defines a region handle in a global scope for usage in more than one
code block. If a region is used in multiple source files, only one of them must
contain the definition using SCOREP_USER_GLOBAL_REGION_DEFINE. All

129

APPENDIX F. MODULE DOCUMENTATION

other files, in which the global handle is accessed, must only declare the global
handle with SCOREP_USER_GLOBAL_REGION_EXTERNAL(handle). It is
possible to use the global handle in more than one code-block. However, code-
blocks that share a handle, are handled as they were all the same region. Enter
and exit events for global regions are created with SCOREP_USER_REGION_-
BEGIN and SCOREP_USER_REGION_END, respectively. Its name and type
is determined at the first enter event and is not changed on later events, even if
other code blocks conatain a different name or type in their SCOREP_USER_-
REGION_BEGIN statement.

This macro is not available in Fortran.

Parameters

handle | A unique name for the handle must be provided. This handle is de-
clared in the macro. This handle is used in the SCOREP_USER_-
REGION_BEGIN and SCOREP_USER_REGION_END statements to
specify which region is started, or ended. If you are using a Fortran ver-
sion which has a limited length of code lines, the length of the handle
parameter must be at most 4 characters, else the declaration line exceeds
the allowed length.

C/C++ example:

// In Filel:
SCOREP_USER_GLOBAL_REGION_DEFINE (my_global_handle)

void myfunc ()

{
SCOREP_USER_REGION_BEGIN(my_global_handle, "my_global",
SCOREP_USER_REGION_TYPE_PHASE)
// do something

SCOREP_USER_REGION_END (my_global_handle)

// In File2:
SCOREP_USER_GLOBAL_EXTERNAL (my_global_handle)

void foo ()

{
SCOREP_USER_REGION_BEGIN(my_global_handle, "my_global",
SCOREP_USER_REGION_TYPE_PHASE)
// do something

SCOREP_USER_REGION_END (my_global_handle)

130

F.1 Score-P User Adapter

F.1.2.8 #define SCOREP_USER_GLOBAL_REGION_EXTERNAL(handle) extern
SCOREP_User_RegionHandle handle;

This macro declares an axternally defined global region. If a region is used in mul-
tiple source files, only one of them must contain the definition using SCOREP_-
USER_GLOBAL_REGION_DEFINE. All other files, in which the global handle
is accessed, must only declare the global handle with SCOREP_USER_GLOBAL _-
REGION_EXTERNAL(handle). It is possible to use the global handle in more
than one code-block. However, code-blocks that share a handle, are handled as
they were all the same region. Enter and exit events for global regions are created
with SCOREP_USER_REGION_BEGIN and SCOREP_USER_REGION_END,
respectively. Its name and type is determined at the first enter event and is not
changed on later events, even if other code blocks conatain a different name or
type in their SCOREP_USER_REGION_BEGIN statement.

This macro is not available in Fortran

Parameters

handle | A name for a variable must be provided. This variable name must
be the same like for the corresponding SCOREP_USER_GLOBAL_-
REGION_DEFINE statement. The handle is used in the SCOREP_-
USER_REGION_BEGIN and SCOREP_USER_REGION_END state-
ments to specify which region is started, or ended.

C/C++ example:

// In File 1
SCOREP_USER_GLOBAL_REGION_DEFINE (my_global_handle)

void myfunc ()

{
SCOREP_USER_REGION_BEGIN(my_global_handle, "my_global",
SCOREP_USER_REGION_TYPE_PHASE)

// do something

SCOREP_USER_REGION_END (my_global_handle)
}

// In File 2
SCOREP_USER_GLOBAL_EXTERNAL (my_global_handle)

void foo ()

{
SCOREP_USER_REGION_BEGIN(my_global_handle, "my_global",
SCOREP_USER_REGION_TYPE_PHASE)

// do something

131

APPENDIX F. MODULE DOCUMENTATION

SCOREP_USER_REGION_END (my_global_handle)
}

F.1.29 #define SCOREP_USER_METRIC_CONTEXT_CALLPATH 1

Indicates that a user counter is is measured for every callpath.

F.1.2.10 #define SCOREP_USER_METRIC_CONTEXT_GLOBAL 0

Indicates that a user counter is is measured for the global context.

F.1.2.11 #define SCOREP_USER_METRIC_DOUBLE(metricHandle, value)
Value:

SCOREP_User_TriggerMetricDouble (\
metricHandle, wvalue);

Triggers a new event for a user counter of a double precision floating point data
type. Each user metric must be declared with SCOREP_USER_COUNTER_-
LOCAL, SCOREP_USER_COUNTER_GLOBAL, or SCOREP_USER_COUNTER_-
EXTERNAL and initialized with SCOREP_USER_COUNTER_INIT before it is
triggered for the first time.

Parameters

metricHan- | The handle of the metric for which avalue is given in this statement.
dle
value | The value of the counter. It must be possible for implicit casts to cast it

to a double.

Example:

SCOREP_USER_METRIC_LOCAL(my_local_metric)

int main ()
{

SCOREP_USER_METRIC_INIT(my_local_metric, "My Metric", "seconds", \
SCOREP_USER_METRIC_TYPE_DOUBLE, \
SCOREP_USER_METRIC_CONTEXT_GLOBAL)

// do something

}

void foo ()

132

F.1 Score-P User Adapter

double my_double = get_some_double_value();
SCOREP_USER_METRIC_DOUBLE (my_local_metric, my_double)

Fortran example:

program myProg

SCOREP_USER_METRIC_LOCAL(my_local_metric)

real (kind=selected_int_kind(14,200)):: my_real = 24.5
! more declarations

SCOREP_USER_METRIC_INIT(my_local_metric, "My Metric", "seconds",
SCOREP_USER_METRIC_TYPE_DOUBLE, &
SCOREP_USER_METRIC_CONTEXT_GLOBAL)

! do something

SCOREP_USER_METRIC_DOUBLE (my_local_metric, my_real)
end program myProg

F.1.2.12 #define SCOREP_USER_METRIC_EXTERNAL(metricHandle) extern
SCOREP_SamplingSetHandle metricHandle;

Declares an externally defined handle for a user metric. Every global metric must

be declared only in one file using SCOREP_USER_METRIC_GLOBAL. All other
files in which this handle is accessed must declare it with SCOREP_USER_METRIC_-
EXTERNAL.

This macro is not available in Fortran.

Parameters

metricHan- The variable name of the handle. it must be the same name as used in
dle | the corresponding SCOREP_USER_METRIC_GLOBAL statement.

C/C++ example:

// In File 1
SCOREP_USER_METRIC_GLOBAL(my_global_metric)

int main ()

{

SCOREP_USER_METRIC_INIT(my_global_metric, "My Global Metric", "seconds",

SCOREP_USER_METRIC_TYPE_UINT64, \
SCOREP_USER_METRIC_CONTEXT_GLOBAL)
// do something

133

&

APPENDIX F. MODULE DOCUMENTATION

}

void foo ()
{
uint64 my_int = get_some_int_value();
SCOREP_USER_METRIC_UINT64 (my_global _metric, my_int)
}

// In File 2
SCOREP_USER_METRIC_EXTERNAL(my_global_metric)

void bar ()
{
uint64 my_int = get_some_int_value();
SCOREP_USER_METRIC_UINT64 (my_global_metric, my_int)
}

F.1.2.13 #define SCOREP_USER_METRIC_GLOBAL(metricHandle)

Value:

SCOREP_SamplingSetHandle metricHandle \
= SCOREP_INVALID_SAMPLING_SET;

Declares a handle for a user metric as a global variable. It must be used if a met-
ric handle is accessed in more than one file. Every global metric must be de-
clared only in one file using SCOREP_USER_METRIC_GLOBAL. All other files
in which this handle is accessed must declare it with SCOREP_USER_METRIC_-
EXTERNAL.

This macro is not available in Fortran.

Parameters

metricHan- | The variable name for the handle. If you are using a Fortran version

dle | which has a limited length of code lines, the length of the handle pa-
rameter must be at most 4 characters, else the declaration line exceeds
the allowed length.

C/C++ example:

// In File 1
SCOREP_USER_METRIC_GLOBAL(my_global_metric)

int main ()

{
SCOREP_USER_METRIC_INIT(my_global_metric, "My Global Metric", "seconds",

134

F.1 Score-P User Adapter

// do
}

SCOREP_USER_METRIC_TYPE_UINT64, \
SCOREP_USER_METRIC_CONTEXT_GLOBAL)
something

void foo ()

{

uint64 my_int = get_some_int_value();
SCOREP_USER_METRIC_UINT64 (my_global _metric, my_int)

}

// In File 2
SCOREP_USER_METRIC_EXTERNAL(my_global_metric)

void bar ()

{

uint64 my_int = get_some_int_value();
SCOREP_USER_METRIC_UINT64 (my_global_metric, my_int)

}

F.1.2.14 #define SCOREP_USER_METRIC_INIT(metricHandle, name, unit, type, context
) SCOREP _User_InitMetric(&metricHandle, name, unit, type, context);

Initializes a new user counter. Each counter must be initialized before it is triggered

the first time.

The handle must be declared using SCOREP_USER_METRIC._-

LOCAL, SCOREP_USER_METRIC_GLOBAL, or SCOREP_USER_METRIC_-

EXTERNAL.

Parameters

metricHan-
dle

Provides a variable name of the variable to store the metric handle. The
variable is declared by the macro.

name

A string containing a unique name for the counter.

unit

A string containing a the unit of the data.

type

Specifies the data type of the counter. It must be one of the following:
SCOREP_USER_METRIC_TYPE_INT64, SCOREP_USER_-
METRIC_TYPE_UINT64, SCOREP_USER_METRIC_TYPE_-
DOUBLE. In Fortran is SCOREP_USER_METRIC_TYPE_UINT64
not available.

context

Specifies the context for which the counter is measured. IT must be one
of the following: SCOREP_USER_METRIC_CONTEXT_GLOBAL,
or SCOREP_USER_METRIC_CONTEXT_CALLPATH.

C/C++ example:

SCOREP_USER_METRIC_LOCAL(my_local_metric)

135

APPENDIX F. MODULE DOCUMENTATION

int main ()
{

SCOREP_USER_METRIC_INIT(my_local_metric, "My Metric", "seconds", \
SCOREP_USER_METRIC_TYPE_UINT64, \
SCOREP_USER_METRIC_CONTEXT_GLOBAL)

// do something

}

void foo()

{
uint64 my_int = get_some_int_value();
SCOREP_USER_METRIC_UINT64 (my_local_metric, my_int)

}
Fortran example:

program myProg
SCOREP_USER_METRIC_LOCAL(my_local _metric)
integer (kind=selected_int_kind(8)):: my_int = 19
! more declarations

SCOREP_USER_METRIC_INIT(my_local_metric, "My Metric", "seconds", &
SCOREP_USER_METRIC_TYPE_ INT64, &
SCOREP_USER_METRIC_CONTEXT_GLOBAL)

! do something

SCOREP_USER_METRIC_INT64 (my_local_metric, my_int)
end program myProg

F.1.2.15 #define SCOREP_USER_METRIC_INT64(metricHandle, value)
Value:

SCOREP_User_TriggerMetricInt64 (\
metricHandle, value);

Triggers a new event for a user counter of a 64 bit integer data type. Each user

metric must be declared with SCOREP_USER_COUNTER_LOCAL, SCOREP_-

USER_COUNTER_GLOBAL, or SCOREP_USER_COUNTER_EXTERNAL and
initialized with SCOREP_USER_COUNTER_INIT before it is triggered for the

first time.

Parameters

metricHan- | The handle of the metric for which avalue is given in this statement.
dle
value | The value of the counter. It must be possible for implicit casts to cast it

136 to a 64 bit integer.

F.1 Score-P User Adapter

C/C++ example:

SCOREP_USER_METRIC_LOCAL(my_local_metric)

int main ()
{

SCOREP_USER_METRIC_INIT(my_local_metric, "My Metric", "seconds",
SCOREP_USER_METRIC_TYPE_INT64, \
SCOREP_USER_METRIC_CONTEXT_GLOBAL)

// do something

void foo()

{
int64 my_int = get_some_int_value();
SCOREP_USER_METRIC_INT64 (my_local_metric, my_int)

Fortran example:

program myProg
SCOREP_USER_METRIC_LOCAL(my_local_metric)
integer (kind=selected_int_kind(8)):: my_int = 19
! more declarations

SCOREP_USER_METRIC_INIT(my_local_metric, "My Metric", "seconds",
SCOREP_USER_METRIC_TYPE_INT64, &
SCOREP_USER_METRIC_CONTEXT_GLOBAL)

! do something

SCOREP_USER_METRIC_INT64 (my_local_metric, my_int)
end program myProg

F1.2.16 #define SCOREP_USER_METRIC_LOCAL(metricHandle)

Value:

static SCOREP_SamplingSetHandle \
metricHandle

= SCOREP_INVALID_SAMPLING_SET;

Declares a handle for a user metric. It defines a variable which must be in scope at
all places where the metric is used. If it is used in more than one place it need to
be a global definition.

Parameters

137

\

&

APPENDIX F. MODULE DOCUMENTATION

metricHan- The name of the variable which will be declared for storing the meric
dle | handle.

C/C++ example:

SCOREP_USER_METRIC_LOCAL(my_local_metric)

int main ()
{

SCOREP_USER_METRIC_INIT(my_local_metric, "My Metric", "seconds", \
SCOREP_USER_METRIC_TYPE_UINT64, \
SCOREP_USER_METRIC_CONTEXT_ GLOBAL)

// do something

void foo ()

{
uint64 my_int = get_some_int_value();
SCOREP_USER_METRIC_UINT64 (my_local_metric, my_int)

Fortran example:

program myProg
SCOREP_USER_METRIC_LOCAL(my_local_metric)
integer (kind=selected_int_kind(8)):: my_int = 19
! more declarations

SCOREP_USER_METRIC_INIT(my_local_metric, "My Metric", "seconds", &
SCOREP_USER_METRIC_TYPE_ INT64, &
SCOREP_USER_METRIC_CONTEXT_GLOBAL)

! do something

SCOREP_USER_METRIC_INT64 (my_local_metric, my_int)
end program myProg

F.1.2.17 #define SCOREP_USER_METRIC_TYPE_DOUBLE 2

Indicates that a user counter is of data type double.

F.1.2.18 #define SCOREP_USER_METRIC_TYPE_INT64 0

Indicates that a user counter is of data type signed 64 bit integer.

138

F.1 Score-P User Adapter

F.1.219 #define SCOREP_USER_METRIC_TYPE_UINT64 1

Indicates that a user counter is of data type unsigned 64 bit integer.

F.1.2.20 #define SCOREP_USER_METRIC_UINT64(metricHandle, value)

Value:

SCOREP_User_TriggerMetricInt64 (\
metricHandle, wvalue);

Triggers a new event for a user counter of a 64 bit unsigned integer data type.

Each user metric must be declared with SCOREP_USER_COUNTER_LOCAL,
SCOREP_USER_COUNTER_GLOBAL, or SCOREP_USER_COUNTER_EXTERNAL
and initialized with SCOREP_USER_COUNTER_INIT before it is triggered for

the first time.

In Fortran is the unsigned integer type metric not available.

Parameters

metricHan- | The handle of the metric for which avalue is given in this statement.
dle

value | The value of the counter. It must be possible for implicit casts to cast it
to a 64 bit unsigned integer.

Example:

SCOREP_USER_METRIC_LOCAL(my_local_metric)

int main ()
{

SCOREP_USER_METRIC_INIT(my_local_metric, "My Metric", "seconds", \
SCOREP_USER_METRIC_TYPE_UINT64, \
SCOREP_USER_METRIC_CONTEXT_GLOBAL)

// do something

}

void foo ()
{
uint64 my_int = get_some_int_value();
SCOREP_USER_METRIC_UINT64 (my_local _metric, my_int)
}

F.1.2.21 #define SCOREP_USER_OA _PHASE BEGIN(handle, name, type)

Value:

139

APPENDIX F. MODULE DOCUMENTATION

SCOREP_User_OaPhaseBegin (\
&handle, &SCOREP_User_ LastFileName, &SCOREP_User_ LastFileHandle, name, \

type, __FILE_ , _ LINE__);

This macro marks the start of a user defined Online Access phase region. The
SCOREP_USER_OA_PHASE_BEGIN and SCOREP_USER_OA_PHASE_END
must be correctly nested and be a potential global synchronization points, also it is
recommended to mark the body of the application’s main loop as a Online Access
phase in order to utilize main loop iterations for iterative online analisys.

Parameters

handle | The handle of the associated user region, which will become a root of
the profile call-tree. This handle must be declared using SCOREP_-
USER_REGION_DEFINE or SCOREP_USER_GLOBAL_REGION_-
DEFINE before.

name | A string containing the name of the new region. The name should be
unique.

type | Specifies the type of the region. Possible values are SCOREP_-
USER_REGION_TYPE_COMMON, SCOREP_USER_REGION_-
TYPE_FUNCTION, SCOREP_USER_REGION_TYPE_LOOP,
SCOREP_USER_REGION_TYPE_DYNAMIC, SCOREP_USER_-
REGION_TYPE_PHASE, or a combination of them.

C/C++ example:

void main ()

{ SCOREP_USER_REGION_DEFINE (my_region_handle)
// application initialization
for () // main loop of the application
{ SCOREP_USER_OA_PHASE_BEGIN(my_region_handle, "main loop",
SCOREP_USER_REGION_TYPE_COMMON)

// do something

SCOREP_USER_OA_PHASE_END (my_region_handle)
}

// application finalization

}
Fortran example:

program myProg
SCOREP_USER_REGION_DEFINE (my_region_handle)

140

F.1 Score-P User Adapter

! applications initialization

! main loop of the application
do ...

SCOREP_USER_OA_PHASE_BEGIN(my_region_handle, "main loop",
SCOREP_USER_REGION_TYPE_COMMON)

! do something

SCOREP_USER_OA_PHASE_END (my_region_handle)
enddo
lapplication finalization

end program myProg

F.1.2.22 #define SCOREP_USER_OA PHASE_END(handle) SCOREP_User_OaPhaseEnd(
handle);

This macro marks the end of a user defined Online Access phase region. The
SCOREP_USER_OA_PHASE_BEGIN and SCOREP_USER_OA_PHASE_END
must be correctly nested and be a potential global synchronization points, also it is
recommended to mark the body of the application’s main loop as a Online Access
phase in order to utilize main loop iterations for iterative online analisys.

Parameters

141

APPENDIX F. MODULE DOCUMENTATION

handle

{

The handle of the associated user region, which will become a root of
the profile call-tree. This handle must be declared using SCOREP_-
USER_REGION_DEFINE or SCOREP_USER_GLOBAL_REGION_-
DEFINE before. C/C++ example:

void main ()

SCOREP_USER_REGION_DEFINE (my_region_handle)
// application initialization
for () // main loop of the application

{ SCOREP_USER_OA_PHASE_BEGIN(my_region_han
SCOREP_USER_REGION_TYPE_COMMON)

// do something

SCOREP_USER_OA_PHASE_END (my_region_handl

// application finalization

Fortran example:

program myProg
SCOREP_USER__

REGION_DEFINE (my_region_handle)

! applications initialization

! main loop of the application

do

SCOREP_USER_OA_PHASE_BEGIN(my_region_handle, "main loop",
SCOREP_USER_REGION_TYPE_COMMON)

! do something

SCOREP_USER_OA_PHASE_END (my_region_handle)

enddo

lapplication finalization

end program myProg

F.1.223 #define SCOREP_USER_PARAMETER_INT64(name, value)

Value:

142

dle,

"main loop",

F.1 Score-P User Adapter

static SCOREP_User_ParameterHandle scorep_param =
SCOREP_USER_INVALID_PARAMETER; \
SCOREP_User_ParameterInt64 (&scorep_param, name, value); }

This statement adds a 64 bit signed integer type parameter for parameter-based
profiling to the current region. The call-tree for the region is split according to the
different values of the parameters with the same name. It is possible to add an
arbitrary number of parameters to a region. Each parameter must have a unique
name. However, it is not recommended to use more than 1 parameter per region.

Parameters

‘ name | A string containing the name of the parameter.

value | The value of the parameter. It must be possible for implicit casts to cast
it to a 64 bit integer.

C/C++ example:

void myfunc (int64 myint)

{
SCOREP_USER_REGION_DEFINE (my_region_handle)
SCOREP_USER_REGION_BEGIN (my_region_handle, "my_region",
SCOREP_USER_REGION_TYPE_COMMON)
SCOREP_USER_PARAMETER_INT64 ("A nice int",myint)

// do something

SCOREP_USER_REGION_END (my_region_handle)

F.1.2.24 #define SCOREP_USER_PARAMETER_STRING(name, value)

Value:

static SCOREP_User_ParameterHandle scorep_param =
SCOREP_USER_INVALID_PARAMETER; \
SCOREP_User_ParameterString(&scorep_param, name, value); }

This statement adds a string type parameter for parameter-based profiling to the
current region. The call-tree for the region is split according to the different values
of the parameters with the same name. It is possible to add an arbitrary number of
parameters to a region. Each parameter must have a unique name. However, it is
not recommended to use more than 1 parameter per region. During one visit it is
not allowed to use the same name twice for two different parameters.

143

APPENDIX F. MODULE DOCUMENTATION

Parameters

name | A string containing the name of the parameter.

value | The value of the parameter. It must be a pointer to a C-string (a NULL-
terminated string).

C/C++ Example:

void myfunc (char *mystring)

{
SCOREP_USER_REGION_DEFINE (my_region_handle)
SCOREP_USER_REGION_BEGIN (my_region_handle, "my_region",
SCOREP_USER_REGION_TYPE_COMMON)
SCOREP_USER_PARAMETER_STRING("A nice string",mystring)

// do something

SCOREP_USER_REGION_END (my_region_handle)

F.1.2.25 #define SCOREP_USER_PARAMETER_UINT64(name, value)

Value:

static SCOREP_User_ParameterHandle scorep_param =
SCOREP_USER_INVALID_PARAMETER; \
SCOREP_User_ParameterUint64 (&scorep_param, name, value); }

This statement adds a 64 bit unsigned integer type parameter for parameter-based
profiling to the current region. The call-tree for the region is split according to the
different values of the parameters with the same name. It is possible to add an
arbitrary number of parameters to a region. Each parameter must have a unique
name. However, it is not recommended to use more than 1 parameter per region.

Parameters

‘ name | A string containing the name of the parameter.

value | The value of the parameter. It must be possible for implicit casts to cast
it to a 64 bit unsigned integer.

C/C++ example:

void myfunc (uint64 myuint)

{
SCOREP_USER_REGION_DEFINE (my_region_handle)
SCOREP_USER_REGION_BEGIN(my_region_handle, "my_region",
SCOREP_USER_REGION_TYPE_COMMON)

144

F.1 Score-P User Adapter

SCOREP_USER_PARAMETER_UINT64 ("A nice unsigned int",myuint)
// do something

SCOREP_USER_REGION_END (my_region_handle)
}

F.1.2.26 #define SCOREP_USER_REGION(name, type)

Instruments a codeblock as a region with the given name. It inserts a local variable
of the type class SCOREP_User_Region. Its constructor generates the enter event
and its destructor generates the exit event. Thus, only one statement is necessary
to instrument the code block. This statement is only in C++ available.

Parameters

name | A string containing the name of the new region. The name should be
unique.

type | Specifies the type of the region. Possible values are SCOREP._-
USER_REGION_TYPE_COMMON, SCOREP_USER_REGION_-
TYPE_FUNCTION, SCOREP_USER_REGION_TYPE_LOOP,
SCOREP_USER_REGION_TYPE_DYNAMIC, SCOREP_USER_-
REGION_TYPE_PHASE, or a combination of them.

Example:

void myfunc ()

{
SCOREP_USER_REGION_ ("myfunc", SCOREP_USER_REGION_TYPE_FUNCTION)

// do something
}

F1.2.27 #define SCOREP_USER_REGION_BEGIN(handle, name, type)

Value:

SCOREP_User_RegionBegin (\
&handle, &SCOREP_User_LastFileName, &SCOREP_User_ LastFileHandle, name, \
type, _ FILE_ , _ LINE__);

This macro marks the start of a user defined region. The SCOREP_USER_REGION_-
BEGIN and SCOREP_USER_REGION_END calls of all regions must be cor-
rectly nested.

145

APPENDIX F. MODULE DOCUMENTATION

Parameters

handle

The handle of the region to be started. This handle must be
declared using SCOREP_USER_REGION_DEFINE or SCOREP._-
USER_GLOBAL_REGION_DEFINE before.

name

A string containing the name of the new region. The name should be
unique.

type

Specifies the type of the region. Possible values are SCOREP_-
USER_REGION_TYPE_COMMON, SCOREP_USER_REGION_-
TYPE_FUNCTION, SCOREP_USER_REGION_TYPE_LOOP,
SCOREP_USER_REGION_TYPE_DYNAMIC, SCOREP_USER_-
REGION_TYPE_PHASE, or a combination of them.

C/C++ example:

void myfunc ()

{

SCOREP_USER_REGION_DEFINE (my_region_handle)

// do something

SCOREP_USER_REGION_BEGIN(my_region_handle, "my_region",
SCOREP_USER_REGION_TYPE_COMMON)

// do something

SCOREP_USER_REGION_END (my_region_handle)

Fortran example:

program myProg
SCOREP_USER_REGION_DEFINE (my_region_handle)
! more declarations

SCOREP_USER_REGION_BEGIN(my_region_handle, "my_region",
SCOREP_USER_REGION_TYPE_COMMON)

! do something

SCOREP_USER_REGION_END (my_region_handle)

end program myProg

F.1.2.28 #define SCOREP_USER_REGION_DEFINE(handle) static
SCOREP_User_RegionHandle handle = SCOREP_USER_INVALID_REGION;

This macro defines a user region handle in a local context. Every user handle must
be defined, before it can be used.

146

F.1 Score-P User Adapter

Parameters

handle | A unique name for the handle must be provided. This handle is de-
clared in the macro. This handle is used in the SCOREP_USER_-
REGION_BEGIN and SCOREP_USER_REGION_END statements to
specify which region is started, or ended. If you are using a Fortran ver-
sion which has a limited length of code lines, the length of the handle
parameter must be at most 4 characters, else the declaration line exceeds
the allowed length.

C/C++ example:

void myfunc ()

{
SCOREP_USER_REGION_DEFINE (my_region_handle)

// do something

SCOREP_USER_REGION_BEGIN(my_region_handle, "my_region",
SCOREP_USER_REGION_TYPE_COMMON)

// do something

SCOREP_USER_REGION_END (my_region_handle)
}

Fortran example:

program myProg
SCOREP_USER_REGION_DEFINE (my_region_handle)
! more declarations

SCOREP_USER_REGION_BEGIN(my_region_handle, "my_region",
SCOREP_USER_REGION_TYPE_COMMON)

! do something

SCOREP_USER_REGION_END (my_region_handle)

end program myProg

F.1.2.29 #define SCOREP_USER_REGION_END(handle) SCOREP_User_RegionEnd(
handle);

This macro marks the end of a user defined region. The SCOREP_USER_REGION_-
BEGIN and SCOREP_USER_REGION_END calls of all regions must be cor-
rectly nested.

Parameters

handle | The handle of the region which ended here. It must be the same handle
hich Fas] » o

147

APPENDIX F. MODULE DOCUMENTATION

C/C++ example:

void myfunc ()

{

}

SCOREP_USER_REGION_DEFINE (my_region_handle)
// do something

SCOREP_USER_REGION_BEGIN(my_region_handle, "my_region",
SCOREP_USER_REGION_TYPE_COMMON)

// do something

SCOREP_USER_REGION_END (my_region_handle)

Fortran example:

program myProg

SCOREP_USER_REGION_DEFINE (my_region_handle)
! more declarations

SCOREP_USER_REGION_BEGIN (my_region_handle, "my_region",
SCOREP_USER_REGION_TYPE_COMMON)

! do something

SCOREP_USER_REGION_END (my_region_handle)

end program myProg

F.1.2.30 #define SCOREP_USER_REGION_ENTER(handle) SCOREP_User_RegionEnter(

handle);

This macro marks the beginning of a user defined and already initialized region.
The SCOREP_USER_REGION_BEGIN/SCOREP_USER_REGION_ENTER and
SCOREP_USER_REGION_END calls of all regions must be correctly nested.
To initialize the region handle, SCOREP_USER_REGION_INIT or SCOREP_-
USER_REGION_BEGIN must be called before.

Parameters

handle | The handle of the region which ended here. It must be the same handle

which is used as the start of the region.

C/C++ example:

void myfunc ()

{

SCOREP_USER_REGION_DEFINE (my_region_handle)

148

F.1 Score-P User Adapter

// do something

SCOREP_USER_REGION_INIT (my_region_handle, "my_region",
SCOREP_USER_REGION_TYPE_COMMON)
SCOREP_USER_REGION_ENTER (my_region_handle)

// do something

SCOREP_USER_REGION_END (my_region_handle)

}

Fortran example:

program myProg
SCOREP_USER_REGION_DEFINE (my_region_handle)
! more declarations

SCOREP_USER_REGION_INIT(my_region_handle, "my_region",
SCOREP_USER_REGION_TYPE_COMMON)
SCOREP_USER_REGION_ENTER (my_region_handle)

! do something

SCOREP_USER_REGION_END (my_region_handle)

end program myProg

F.1.2.31 #define SCOREP_USER_REGION_INIT(handle, name, type)

Value:

SCOREP_User_RegionInit (\

&handle, &SCOREP_User_LastFileName, &SCOREP_User_LastFileHandle, name,
type,

FILE_ , _ LINE__);

This macro initializes a user defined region. If the region handle is already initi-
tialized, no operation is executed.

Parameters

handle

The handle of the region to be started. This handle must be
declared using SCOREP_USER_REGION_DEFINE or SCOREP._-
USER_GLOBAL_REGION_DEFINE before.

name

A string containing the name of the new region. The name should be
unique.

type

Specifies the type of the region. Possible values are SCOREP._-
USER_REGION_TYPE_COMMON, SCOREP_USER_REGION_-
TYPE_FUNCTION, SCOREP_USER_REGION_TYPE_LOOP,
SCOREP_USER_REGION_TYPE_DYNAMIC, SCOREP_USER_-
REGION_TYPE_PHASE, or a combination of them.

149

\

APPENDIX F. MODULE DOCUMENTATION

C/C++ example:

void myfunc ()

{

}

SCOREP_USER_REGION_DEFINE (my_region_handle)

// do something

SCOREP_USER_REGION_INIT(my_region_handle, "my_region",
SCOREP_USER_REGION_TYPE_COMMON)
SCOREP_USER_REGION_ENTER (my_region_handle)

// do something

SCOREP_USER_REGION_END (my_region_handle)

Fortran example:

program myProg

SCOREP_USER_REGION_DEFINE (my_region_handle)
! more declarations

SCOREP_USER_REGION_INIT(my_region_handle, "my_region",
SCOREP_USER_REGION_TYPE_COMMON)
SCOREP_USER_REGION_ENTER (my_region_handle)

! do something

SCOREP_USER_REGION_END (my_region_handle)

end program myProg

F.1.2.32 #define SCOREP_USER_REGION_TYPE_COMMON 0

Region without any specific type.

F.1.2.33 #define SCOREP_USER_REGION_TYPE_DYNAMIC 4

Marks the regions as dynamic.

F.1.2.34 #define SCOREP_USER_REGION_TYPE_FUNCTION 1

Marks the region as being the codeblock of a function.

F.1.2.35 #define SCOREP_USER_REGION_TYPE_LOOP 2

Marks the region as being the codeblock of a look with the same number of itera-
tions on all processes.

150

F.1 Score-P User Adapter

F.1.2.36 #define SCOREP_USER_REGION_TYPE_PHASE 8

Marks the region as being a root node of a phase.

151

APPENDIX F. MODULE DOCUMENTATION

152

Appendix G

File

Documentation

G.1 SCOREP_User.h File Reference

This file contains the interface for the manual user instrumentation.

#include <scorep/SCOREP_User_Variables.h>

#include <scorep/SCOREP_User_Functions.h>

Defines

Macros for region instrumentation

#define SCOREP_USER_FUNC_DEFINE()

#define SCOREP_USER_OA_PHASE_BEGIN(handle, name, type)

#define SCOREP_USER_OA_PHASE_END(handle) SCOREP_User_OaPhaseEnd(
handle);

#define SCOREP_USER_REGION_DEFINE(handle) static SCOREP_-
User_RegionHandle handle = SCOREP_USER_INVALID_REGION;

#define SCOREP_USER_REGION_ENTER (handle) SCOREP_User_RegionEnter(
handle);

#define SCOREP_USER_REGION_BEGIN(handle, name, type)

#define SCOREP_USER_REGION_INIT(handle, name, type)

#define SCOREP_USER_REGION_END(handle) SCOREP_User_RegionEnd(
handle);

#define SCOREP_USER_FUNC_BEGIN()

#define SCOREP_USER_FUNC_END() SCOREP_User_RegionEnd(scorep_-
user_func_handle);

#define SCOREP_USER_GLOBAL_REGION_DEFINE(handle) SCOREP_-
User_RegionHandle handle = SCOREP_USER_INVALID_REGION;

#define SCOREP_USER_GLOBAL_REGION_EXTERNAL(handle) ex-

tern SCOREP_User_RegionHandle handle;

APPENDIX G. FILE DOCUMENTATION

Macros for parameter instrumentation

#define SCOREP_USER_PARAMETER_INT64(name, value)
#define SCOREP_USER_PARAMETER_UINT64(name, value)
#define SCOREP_USER_PARAMETER_STRING(name, value)

Macros to provide user metrics

#define SCOREP_USER_METRIC_LOCAL (metricHandle)

#define SCOREP_USER_METRIC_GLOBAL(metricHandle)

#define SCOREP_USER_METRIC_EXTERNAL(metricHandle) extern SCOREP_-
SamplingSetHandle metricHandle;

#define SCOREP_USER_METRIC_INIT(metricHandle, name, unit, type,

context) SCOREP_User_InitMetric(&metricHandle, name, unit, type, con-

text);

#define SCOREP_USER_METRIC_INT64(metricHandle, value)

#define SCOREP_USER_METRIC_UINT64(metricHandle, value)

#define SCOREP_USER_METRIC_DOUBLE(metricHandle, value)

C++ specific macros for region instrumentation

#define SCOREP_USER_REGION(name, type)

Macros for measurement control

G.1.1

#define SCOREP_RECORDING_ON() SCOREP_User_EnableRecording();
#define SCOREP_RECORDING_OFF() SCOREP_User_DisableRecording();
#define SCOREP_RECORDING_IS_ON() SCOREP_User_RecordingEnabled()

Detailed Description

This file contains the interface for the manual user instrumentation.

G.2 SCOREP_User_Types.h File Reference

This file contains type definitions for manual user instrumentation.

#include <scorep/SCOREP_PublicTypes.h>

Defines

* #define SCOREP_USER_INVALID_PARAMETER -1
¢ #define SCOREP_USER_INVALID REGION NULL

154

G.2 SCOREP_User_Types.h File Reference

Region types

¢ #define SCOREP_USER_REGION_TYPE_COMMON 0
#define SCOREP_USER_REGION_TYPE_FUNCTION 1
#define SCOREP_USER_REGION_TYPE_LOOP 2
#define SCOREP_USER_REGION_TYPE_DYNAMIC 4
#define SCOREP_USER_REGION_TYPE_PHASE 8

Metric types

* #define SCOREP_USER_METRIC_TYPE_INT64 0
¢ #define SCOREP_USER_METRIC_TYPE_UINT64 1
¢ #define SCOREP_USER_METRIC_TYPE_DOUBLE 2

Metric contexts

* #define SCOREP_USER_METRIC_CONTEXT_GLOBAL 0
* #define SCOREP_USER_METRIC_CONTEXT_CALLPATH 1

Typedefs

* typedef uint32_t SCOREP_User_MetricType

* typedef uint64_t SCOREP_User_ParameterHandle

* typedef struct SCOREP_User_Region * SCOREP_User_RegionHandle
¢ typedef uint32_t SCOREP_User_RegionType

G.2.1 Detailed Description

This file contains type definitions for manual user instrumentation.

G.2.2 Define Documentation
G.2.2.1 #define SCOREP_USER_INVALID_PARAMETER -1

Marks an parameter handle as invalid or uninitialized

G.2.2.2 #define SCOREP_USER_INVALID_REGION NULL

Value for uninitialized or invalid region handles

155

APPENDIX G. FILE DOCUMENTATION

G.2.3 Typedef Documentation
G.2.3.1 typedef uint32_ t SCOREP_User_MetricType

Type for the user metric type

G.2.3.2 typedef uint64_t SCOREP_User_ParameterHandle

Type for parameter handles

G.2.3.3 typedef struct SCOREP_User_Regionx SCOREP_User_RegionHandle

Type for region handles in the user adapter.

G.2.3.4 typedef uint32_.t SCOREP_User_RegionType

Type for the region type

156

Index

Score-P User Adapter, 123
SCOREP_RECORDING_IS_ON, 125
SCOREP_RECORDING_OFF, 126
SCOREP_RECORDING_ON, 126
SCOREP_USER_FUNC_BEGIN, 127
SCOREP_USER_FUNC_DEFINE,

128

SCOREP_USER_FUNC_END, 129
SCOREP_USER_GLOBAL_REGION_-

DEFINE, 129

139
SCOREP_USER_OA_PHASE_END,

141

142

143

144
SCOREP_USER_REGION, 145

SCOREP_USER_GLOBAL_REGION_- SCOREP_USER_REGION_BEGIN,

EXTERNAL, 130

SCOREP_USER_METRIC_

CALLPATH, 132

SCOREP_USER_METRIC_

GLOBAL, 132

SCOREP_USER_METRIC_

132

SCOREP_USER_METRIC_

133

SCOREP_USER_METRIC._

134

SCOREP_USER_METRIC_
SCOREP_USER_METRIC_

136

SCOREP_USER_METRIC_

137

SCOREP_USER_METRIC_

DOUBLE, 138

SCOREP_USER_METRIC

INT64, 138

SCOREP_USER_METRIC_

UINT64, 138

SCOREP_USER_METRIC_

139

145
CONTEXT_SCOREP_USER_REGION_DEFINE,
146
CONTEXT_SCOREP_USER_REGION_END, 147
SCOREP_USER_REGION_ENTER,
148
SCOREP_USER_REGION_INIT, 149
EXTERNALSCOREP_USER_REGION_TYPE_-

DOUBLE,

COMMON, 150
GLOBAL, SCOREP_USER_REGION_TYPE_-
DYNAMIC, 150
INIT, 135 SCOREP_USER_REGION_TYPE _-
INT64, FUNCTION, 150
SCOREP_USER_REGION_TYPE_-
LOCAL, LOOP, 150
SCOREP_USER_REGION_TYPE_-
TYPE_- PHASE, 150

SCOREP_RECORDING_IS_ON
Score-P User Adapter, 125
SCOREP_RECORDING_OFF
Score-P User Adapter, 126
SCOREP_RECORDING_ON
UINT64, Score-P User Adapter, 126
SCOREP_User.h, 153

TYPE_-

TYPE_ -

SCOREP_USER_OA_PHASE_BEGBCOREP_USER_FUNC_BEGIN

SCOREP_USER_PARAMETER_INT64,
SCOREP_USER_PARAMETER_STRING,

SCOREP_USER_PARAMETER_UINT64,

INDEX

Score-P User Adapter, 127 Score-P User Adapter, 139
SCOREP_USER_FUNC_DEFINE SCOREP_USER_OA_PHASE_END
Score-P User Adapter, 128 Score-P User Adapter, 141
SCOREP_USER_FUNC_END SCOREP_USER_PARAMETER_INT64
Score-P User Adapter, 129 Score-P User Adapter, 142
SCOREP_USER_GLOBAL_REGION_- SCOREP_USER_PARAMETER_STRING
DEFINE Score-P User Adapter, 143
Score-P User Adapter, 129 SCOREP_USER_PARAMETER_UINT64
SCOREP_USER_GLOBAL_REGION_- Score-P User Adapter, 144
EXTERNAL SCOREP_User_ParameterHandle
Score-P User Adapter, 130 SCOREP_User_Types.h, 156
SCOREP_USER_INVALID_PARAMETEXCOREP_USER_REGION
SCOREP_User_Types.h, 155 Score-P User Adapter, 145
SCOREP_USER_INVALID_REGION SCOREP_USER_REGION_BEGIN
SCOREP_User_Types.h, 155 Score-P User Adapter, 145
SCOREP_USER_METRIC_CONTEXT_SCOREP_USER_REGION_DEFINE
CALLPATH Score-P User Adapter, 146
Score-P User Adapter, 132 SCOREP_USER_REGION_END
SCOREP_USER_METRIC_CONTEXT - Score-P User Adapter, 147
GLOBAL SCOREP_USER_REGION_ENTER
Score-P User Adapter, 132 Score-P User Adapter, 148
SCOREP_USER_METRIC_DOUBLE SCOREP_USER_REGION_INIT
Score-P User Adapter, 132 Score-P User Adapter, 149
SCOREP_USER_METRIC_EXTERNALSCOREP_USER_REGION_TYPE_COMMON
Score-P User Adapter, 133 Score-P User Adapter, 150
SCOREP_USER_METRIC_GLOBAL SCOREP_USER_REGION_TYPE_DYNAMIC
Score-P User Adapter, 134 Score-P User Adapter, 150
SCOREP_USER_METRIC_INIT SCOREP_USER_REGION_TYPE_FUNCTION
Score-P User Adapter, 135 Score-P User Adapter, 150
SCOREP_USER_METRIC_INT64 SCOREP_USER_REGION_TYPE_LOOP
Score-P User Adapter, 136 Score-P User Adapter, 150
SCOREP_USER_METRIC_LOCAL SCOREP_USER_REGION_TYPE_PHASE
Score-P User Adapter, 137 Score-P User Adapter, 150
SCOREP_USER_METRIC_TYPE_DOUBCUBREP_User_RegionHandle
Score-P User Adapter, 138 SCOREP_User_Types.h, 156
SCOREP_USER_METRIC_TYPE_INT64COREP_User_RegionType
Score-P User Adapter, 138 SCOREP_User_Types.h, 156
SCOREP_USER_METRIC_TYPE_UINTS€OREP_User_Types.h, 154
Score-P User Adapter, 138 SCOREP_USER_INVALID_PARAMETER,
SCOREP_USER_METRIC_UINT64 155
Score-P User Adapter, 139 SCOREP_USER_INVALID_REGION,
SCOREP_User_MetricType 155
SCOREP_User_Types.h, 156 SCOREP_User_MetricType, 156
SCOREP_USER_OA_PHASE_BEGIN SCOREP_User_ParameterHandle, 156

158

INDEX

SCOREP_User_RegionHandle, 156
SCOREP_User_RegionType, 156

159

	Contents
	Introduction
	About this Document
	Getting Help and Support
	Basics of Performance Optimization
	Score-P Software Architecture Overview
	Acknowledgment

	Getting Started
	Score-P Quick Installation
	Prerequisites
	General Autotools Build Options
	Score-P Specific Build Options

	Instrumentation
	Measurement and Analysis
	Report Examination
	Simple Example

	Application Instrumentation
	Automatic Compiler Instrumentation
	Manual Region Instrumentation
	Instrumentation for Parameter-Based Profiling
	Measurement Control Instrumentation
	Source-Code Instrumentation Enabling Online Access
	Semi-Automatic Instrumentation of POMP2 User Regions
	Preprocessing before POMP2 and OpenMP instrumentation
	Source-Code Instrumentation Using PDT
	Limitations

	Binary Instrumentation Using Cobi
	Enforce Linking of Static/Shared Score-P Libraries

	Application Measurement
	Profiling
	Parameter-Based Profiling
	Phase Profiling
	Dynamic Region Profiling
	Clustering
	Enabling additional debug output on inconsistent profiles

	Tracing
	Filtering
	Source File Name Filter Block
	Region Name Filter Block

	Selective Recording
	Trace Buffer Rewind
	Selection of MPI Groups

	Recording MPI Communicator Names
	Recording Performance Metrics
	PAPI Hardware Performance Counters
	Resource Usage Counters
	Metric Plugins

	CUDA Performance Measurement
	Online Access Interface

	Usage of scorep-score
	Basic usage
	Additional per-region information
	Defining and testing a filter
	Calculating the effects of recording hardware counters

	Performance Analysis Workflow Using Score-P
	Program Instrumentation
	Summary Measurement Collection
	Summary report examination
	Summary experiment scoring
	Advanced summary measurement collection
	Advanced summary report examination
	Event trace collection and examination

	Appendix Score-P INSTALL
	Appendix MPI wrapper affiliation
	Function to group
	Group to function

	Appendix Score-P Metric Plugin Example
	Appendix Score-P Tools
	scorep
	scorep-config
	scorep-info
	scorep-score
	scorep-backend-info

	Appendix Score-P Measurement Configuration Variables
	Appendix Module Documentation
	Score-P User Adapter
	Detailed Description
	Define Documentation

	Appendix File Documentation
	SCOREP_User.h File Reference
	Detailed Description

	SCOREP_User_Types.h File Reference
	Detailed Description
	Define Documentation
	Typedef Documentation

