OGR

Contents

Chapter 1

OGR Simple Feature Library

The OGR Simple Features Library is a C++ open source library (and commandline tools) providing read (and
sometimes write) access to a variety of vector file formats including ESRI Shapefiles, S-57, SDTS, PostGIS, Oracle
Spatial, and Mapinfo mid/mif and TAB formats.

OGR is a part of the GDAL library.

Resources

* OGR Supported Formats : ESRI Shapefile, ESRI ArcSDE, Maplnfo (tab and mid/mif), GML, KML,
PostGIS, Oracle Spatial, ...

* OGR Utility Programs : ogrinfo, ogr2ogr, ogrtindex
* OGR Class Documentation

* OGR C++ API Read/Write Tutorial

* OGR Driver Implementation Tutorial

* ogr_api.h: OGR C API

* ogr_srs_api.h: OSR C API

* OGR Projections Tutorial

* OGR Architecture

* OGR SQL dialectand SQLITE SQL dialect

* OGR - Feature Style Specification

e Adam's 2.5 D Simple Features Proposal (OGC 99-402r2)

+ Adam's SRS WKT Clarification Proposal in htm1 or doc format.

Download
Ready to Use Executables

The best way to get OGR ut 1 1ities inready-to-use formis to download the latest FWToo1 s kit for your platform.
While large, these include builds of the OGR utilities with lots of optional components built-in. Once downloaded
follow the included instructions to setup your path and other environment variables correctly, and then you can use
the various OGR utilities from the command line. The kits also include OpenEV, a viewer that will display OGR
supported vector files.

2 OGR Simple Feature Library

Source

The source code for this effort is intended to be available as OpenSource using an X Consortium style license. The
OGR library is currently a loosely coupled subcomponent of the GDAL library, so you get all of GDAL for the "price"
of OGR. See the GDAL Download and Building pages for details on getting the source and building it.

Bug Reporting

GDAL/OGR bugs can be reported,and can be listed using Trac.

Mailing Lists

A gdal-announce mailing list subscription is a low volume way of keeping track of major developments with
the GDAL/OGR project.

The gdal-dev@lists.osgeo.org mailing list can be used for discussion of development and user issues
related to OGR and related technologies. Subscriptions can be done, and archives reviewed on the web.

Alternative Bindings for the OGR API

In addition to the C++ API primarily addressed in the online documentation, there is also a slightly less complete C
APl implemented on top of the C++ API, and access available from Python.

The C APl is primarily intended to provide a less fragile API since slight changes in the C++ API (such as const
correctness changes) can cause changes in method and class signatures that prevent use of new DLLs with older
clients. The C APl is also generally easy to call from other languages which allow call out to DLLs functions, such
as Visual Basic, or Delphi. The API can be explored in the ogr_api . h include file. The gdal/ogr/ogr_capi_test.c
is a small sample program demonstrating use of the C API.

The Python API isn't really well documented at this time, but parallels the C/C++ APIs. The interface classes can
be browsed in the pymod/ogr.py (simple features) and pymod/osr.py (coordinate systems) python modules. The
pymod/samples/assemblepoly.py sample script is one demonstration of using the python API.

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

Chapter 2

OGR API Tutorial

This document is intended to document using the OGR C++ classes to read and write data from a file. It is strongly
advised that the read first review the OGR Architecture document describing the key classes and their roles
in OGR.

It also includes code snippets for the corresponding functions in C and Python.

2.1 Reading From OGR

For purposes of demonstrating reading with OGR, we will construct a small utility for dumping point layers from an
OGR data source to stdout in comma-delimited format.

Initially it is necessary to register all the format drivers that are desired. This is normally accomplished by calling
OGRRegisterAll() (p. ??) which registers all format drivers built into GDAL/OGR.

In C++ :

#include "ogrsf_frmts.h"

int main()

{
OGRRegisterAll () ;

InC:

#include "ogr_api.h"
int main()

{
OGRRegisterAll();

Next we need to open the input OGR datasource. Datasources can be files, RDBMSes, directories full of files, or
even remote web services depending on the driver being used. However, the datasource name is always a single
string. In this case we are hardcoded to open a particular shapefile. The second argument (FALSE) tells the O«
GRSFDriverRegistrar::Open() (p. ??) method that we don't require update access. On failure NULL is returned,
and we report an error.

In C++:

OGRDataSource *poDS;

poDS = OGRSFDriverRegistrar::0pen("point.shp", FALSE);
(poDS == NULL)
{
printf("Open failed.\n");
exit(1);

4 OGR API Tutorial

InC:

OGRDataSourceH hDS;

hDS = OGROpen("point.shp", FALSE, NULL);
(hDS == NULL

{

printf("Open failed.\n");
exit(1);

An OGRDataSource (p. ??) can potentially have many layers associated with it. The number of layers available
can be queried with OGRDataSource::GetLayerCount() (p. ??) and individual layers fetched by index using OG+«+
RDataSource::GetLayer() (p. ??). However, we will just fetch the layer by name.

In C++ :

OGRLayer =xpolayer;

polayer = poDS->GetLayerByName ("point");

InC:

OGRLayerH hLlayer;

hLayer = OGR_DS_GetLayerByName (hDS, "point");

Now we want to start reading features from the layer. Before we start we could assign an attribute or spatial filter to
the layer to restrict the set of feature we get back, but for now we are interested in getting all features.

While it isn't strictly necessary in this circumstance since we are starting fresh with the layer, it is often wise to
call OGRLayer::ResetReading() (p. ??) to ensure we are starting at the beginning of the layer. We iterate through
all the features in the layer using OGRLayer::GetNextFeature() (p.??). It will return NULL when we run out of
features.

In C++ :

OGRFeature xpoFeature;

polayer—->ResetReading () ;
ile((poFeature = polLayer->GetNextFeature()) != NULL
{

InC:

OGRFeatureH hFeature;

OGR_L_ResetReading (hLayer) ;
while((hFeature = OGR_L_GetNextFeature (hLayer)) != NULL
{

In order to dump all the attribute fields of the feature, it is helpful to get the OGRFeatureDefn (p. ??). This is an
object, associated with the layer, containing the definitions of all the fields. We loop over all the fields, and fetch and
report the attributes based on their type.

In C++:

OGRFeatureDefn *poFDefn = polayer—->GetLayerDefn();
int iField;

for(iField = 0; iField < poFDefn->GetFieldCount (); iField++)
{
OGRFieldDefn #*poFieldDefn = poFDefn->GetFieldDefn(iField);

if(poFieldDefn->GetType () == OFTInteger)
printf("%d,", poFeature->GetFieldAsInteger(iField));
" (poFieldDefn->GetType () == OFTReal
printf("%$.3f,", poFeature->GetFieldAsDouble (iField));
else (poFieldDefn->GetType () == OFTString)

printf("%s,", poFeature->GetFieldAsString(iField));

printf("%s,", poFeature->GetFieldAsString(iField));

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

2.1 Reading From OGR 5

InC:

OGRFeatureDefnH hFDefn = OGR_L_GetLayerDefn (hLayer);
int iField;
for(iField =
{

0; iField < OGR_FD_GetFieldCount (hFDefn); iField++)

OGRFieldDefnH hFieldDefn = OGR_FD_GetFieldDefn(hFDefn, iField);

" (OGR_F1ld_GetType (hFieldDefn) == OFTInteger)
printf("%d,", OGR_F_GetFieldAsInteger (hFeature, iField));
else (OGR_F1ld_GetType (hFieldDefn) == OFTReal)
printf("%.3f,", OGR_F_GetFieldAsDouble(hFeature, iField));
1: 1f(OGR_F1ld_GetType (hFieldDefn) == OFTString)

printf("%s,", OGR_F_GetFieldAsString(hFeature, iField));

printf("%s,", OGR_F_GetFieldAsString(hFeature, iField));

There are a few more field types than those explicitly handled above, but a reasonable representation of them can
be fetched with the OGRFeature::GetFieldAsString() (p. ??) method. In fact we could shorten the above by using
OGRFeature::GetFieldAsString() (p. ??) for all the types.

Next we want to extract the geometry from the feature, and write out the point geometry x and y. Geometries are
returned as a generic OGRGeometry (p. ??) pointer. We then determine the specific geometry type, and if it is a
point, we cast it to point and operate on it. If it is something else we write placeholders.

In C++:

OGRGeometry xpoGeometry;

poGeometry = poFeature->GetGeometryRef ();

(poGeometry != NULL

&& wkbFlatten (poGeometry->getGeometryType ()) == wkbPoint)
{

OGRPoint #xpoPoint = (OGRPoint %) poGeometry;

printf ("%.3f,%3.f\n”, poPoint->getX (), poPoint->getY());
}
else
{

printf("no point geometry\n");
}
InC:

OGRGeometryH hGeometry;

hGeometry = OGR_F_GetGeometryRef (hFeature);
if(hGeometry != NULL
&& wkbFlatten (OGR_G_GetGeometryType (hGeometry)) == wkbPoint)
{
printf ("%.3f,%3.f\n”, OGR_G_GetX (hGeometry, 0), OGR_G_GetY (hGeometry, 0));
}
1
{
printf("no point geometry\n");

}

The wkbFlatten() macro is used above to convert the type for a wkbPoint25D (a point with a z coordinate) into the
base 2D geometry type code (wkbPoint). For each 2D geometry type there is a corresponding 2.5D type code. The
2D and 2.5D geometry cases are handled by the same C++ class, so our code will handle 2D or 3D cases properly.

Starting with OGR 1.11, several geometry fields can be associated to a feature.

In C++ :

OGRGeometry xpoGeometry;
int iGeomField;
int nGeomFieldCount;

nGeomFieldCount = poFeature->GetGeomFieldCount ();
for (iGeomField = 0; iGeomField < nGeomFieldCount; iGeomField ++)
{
poGeometry = poFeature->GetGeomFieldRef (iGeomField) ;
(poGeometry != NULL

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

6 OGR API Tutorial

&& wkbFlatten (poGeometry->getGeometryType ()) == wkbPoint
{
OGRPoint xpoPoint = (OGRPoint %) poGeometry;
printf ("%.3f,%3.f\n", poPoint->getX (), poPoint->getY());

printf("no point geometry\n");

InC:

OGRGeometryH hGeometry;
int iGeomField;
int nGeomFieldCount;

nGeomFieldCount = OGR_F_GetGeomFieldCount (hFeature);
f (iGeomField = 0; iGeomField < nGeomFieldCount; iGeomField ++)
{
hGeometry = OGR_F_GetGeomFieldRef (hFeature, iGeomField);
if(hGeometry != NULL
&& wkbFlatten (OGR_G_GetGeometryType (hGeometry)) == wkbPoint)

printf ("%.3f,%3.f\n", OGR_G_GetX (hGeometry, 0),
OGR_G_GetY (hGeometry, 0));

printf("no point geometry\n");

In Python:

nGeomFieldCount = feat.GetGeomFieldCount ()
f iGeomField in range (nGeomFieldCount) :
geom = feat.GetGeomFieldRef (iGeomField)
if geom is not None and geom.GetGeometryType () == ogr.wkbPoint:
print "$.3f, %.3f" % (geom.GetX(), geom.GetY())
else:
print "no point geometry\n"

Note that OGRFeature::GetGeometryRef() (p. ??) and OGRFeature::GetGeomFieldRef() (p. ??) return a pointer
to the internal geometry owned by the OGRFeature (p. ??). There we don't actually deleted the return geometry.
However, the OGRLayer::GetNextFeature() (p. ??) method returns a copy of the feature that is now owned by us.
So at the end of use we must free the feature. We could just "delete" it, but this can cause problems in windows
builds where the GDAL DLL has a different "heap" from the main program. To be on the safe side we use a GDAL
function to delete the feature.

In C++ :

OGRFeature: :DestroyFeature (poFeature);

InC:

OGR_F_Destroy(hFeature);

The OGRLayer (p. ??) returned by OGRDataSource::GetLayerByName() (p. ??) is also a reference to an internal
layer owned by the OGRDataSource (p. ??) so we don't need to delete it. But we do need to delete the datasource
in order to close the input file. Once again we do this with a custom delete method to avoid special win32 heap
issus.

In C++ :

OGRDataSource: :DestroyDataSource (poDS);

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

2.1 Reading From OGR

InC:

OGR_DS_Destroy (hDS);

All together our program looks like this.

In C++:

#include "ogrsf_frmts.h"

int main()

OGRRegisterAll () ;
OGRDataSource *poDS;

poDS = OGRSFDriverRegistrar::Open("point.shp", FALSE);
f(poDS == NULL)
{
printf ("Open failed.\n");
exit (1);

OGRLayer spolayer;

polayer = poDS->GetLayerByName ("point");
OGRFeature x*poFeature;
polayer—>ResetReading () ;

vhile((poFeature = polayer—>GetNextFeature()) != NULL

{
OGRFeatureDefn xpoFDefn = polayer->GetLayerDefn();
int iField;

»r(iField = 0; iField < poFDefn->GetFieldCount (); iField++

OGRFieldDefn xpoFieldDefn = poFDefn->GetFieldDefn(iField);

*(poFieldDefn->GetType () == OFTInteger)
printf("%d,", poFeature->GetFieldAsInteger(iField
else 1f(poFieldDefn->GetType () == OFTReal)
printf("%$.3f,", poFeature->GetFieldAsDouble (iField));
clse if(poFieldDefn->GetType () == OFTString)

printf("%s,", poFeature->GetFieldAsString(iField));
else
printf("%s,", poFeature->GetFieldAsString(iField));

OGRGeometry *poGeometry;

poGeometry = poFeature->GetGeometryRef ();

if(poGeometry != NULL
&& wkbFlatten (poGeometry->getGeometryType ()) == wkbPoint
{
OGRPoint xpoPoint = (OGRPoint x) poGeometry;
printf ("%.3f,%3.f\n", poPoint->getX (), poPoint->getY ());

printf("no point geometry\n")i

}

OGRFeature: :DestroyFeature (poFeature);

OGRDataSource: :DestroyDataSource (poDS);

InC:

#include "ogr_api.h"

int main()

OGRRegisterAll () ;

OGRDataSourceH hDS;
OGRLayerH hLayer;

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

OGR API Tutorial

OGRFeatureH hFeature;

hDS = OGROpen ("point.shp", FALSE, NULL);
if(hDS == NULL)
{

printf("Open failed.\n");

exit (1);

hLayer = OGR_DS_GetLayerByName (hDS, "point");

OGR_L_ResetReading (hLayer) ;

while ((hFeature = OGR_L_GetNextFeature (hLayer)) != NULL

{
OGRFeatureDefnH hFDefn;
int iField;
OGRGeometryH hGeometry;

hFDefn = OGR_IL_GetLayerDefn (hLayer);

{

OGRFieldDefnH hFieldDefn = OGR_FD_GetFieldDefn (

1f(OGR_F1ld_GetType (hFieldDefn) == OFTInteger
printf("%d,", OGR_F_GetFieldAsInteger(hFeature,
else 1f(OGR_F1ld_GetType (hFieldDefn) == OFTReal

for(iField = 0; iField < OGR_FD_GetFieldCount (hFDefn);

iField++)

hFDefn, iField);

iField));

printf("%$.3f,", OGR_F_GetFieldAsDouble(hFeature, iField));

else 1f(OGR_F1ld_GetType (hFieldDefn) == OFTString
printf("%s,", OGR_F_GetFieldAsString(hFeature,

else

printf("%s,", OGR_F_GetFieldAsString(hFeature,

hGeometry = OGR_F_GetGeometryRef (hFeature);
if(hGeometry != NULL

&& wkbFlatten (OGR_G_GetGeometryType (hGeometry))

{

iField));

iField));

wkbPoint)

printf ("%.3f,%3.f\n", OGR_G_GetX (hGeometry, 0), OGR_G_GetY (hGeometry, 0));

printf("no point geometry\n");
OGR_F_Destroy (hFeature);

OGR_DS_Destroy (hDS);

In Python:

import sys
import ogr

ds = ogr.Open("point.shp"
if ds is None:
print "Open failed.\n"
sys.exit(1)

lyr = ds.GetLayerByName ("point")
lyr.ResetReading ()
for feat in lyr:

feat_defn = lyr.GetLayerDefn ()

for i in range (feat_defn.GetFieldCount ())
field_defn = feat_defn.GetFieldDefn (i)

Tests below can be simplified with just
print feat.GetField (i)

if field defn.GetType() == ogr.OFTInteger:
print "%d" % feat.GetFieldAsInteger (i)

elif field_defn.GetType() == ogr.OFTReal:
print "%.3f" % feat.GetFieldAsDouble (i)

elif field defn.GetType() == ogr.OFTString:

print "%s" % feat.GetFieldAsString (i)

print "%$s" % feat.GetFieldAsString (i

geom = feat.GetGeometryRef ()

1f geom is not None and geom.GetGeometryType () == ogr.wkbPoint:

print "%.3f, %.3f" % (geom.GetX(), geom.GetY ()

)

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

2.2 Writing To OGR 9

print "no point geometry\n"

ds = None

2.2 Writing To OGR

As an example of writing through OGR, we will do roughly the opposite of the above. A short program that reads
comma separated values from input text will be written to a point shapefile via OGR.

As usual, we start by registering all the drivers, and then fetch the Shapefile driver as we will need it to create our
output file.

In C++:

#include "ogrsf_frmts.h"

int main ()

{
const char xpszDriverName = "ESRI Shapefile";
OGRSFDriver xpoDriver;

OGRRegisterAll();

poDriver = OGRSFDriverRegistrar::GetRegistrar () ->GetDriverByName (

pszDriverName) ;
(poDriver == NULL
{
printf("%s driver not available.\n", pszDriverName);

exit (1);

InC:

#include "ogr_api.h"

int main()

{
const char *pszDriverName = "ESRI Shapefile";
OGRSFDriverH hDriver;
OGRRegisterAll () ;

hDriver = OGRGetDriverByName (pszDriverName);

(hDriver == NULL)
{
printf("%s driver not available.\n", pszDriverName);
exit (1);

Next we create the datasource. The ESRI Shapefile driver allows us to create a directory full of shapefiles, or a
single shapefile as a datasource. In this case we will explicitly create a single file by including the extension in the
name. Other drivers behave differently. The second argument to the call is a list of option values, but we will just be
using defaults in this case. Details of the options supported are also format specific.

InC ++:

OGRDataSource xpoDS;

poDS = poDriver->CreateDataSource("point_out.shp", NULL);
1f(poDS == NULL)
{

printf("Creation of output file failed.\n");

exit(1);

InC:

OGRDataSourceH hDS;

hDS = OGR_Dr_CreateDataSource(hDriver, "point_out.shp", NULL);
(hDS == NULL

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

10 OGR API Tutorial

printf("Creation of output file failed.\n")
exit(1);

Now we create the output layer. In this case since the datasource is a single file, we can only have one layer. We
pass wkbPoint to specify the type of geometry supported by this layer. In this case we aren't passing any coordinate
system information or other special layer creation options.

In C++ :

OGRLayer xpolayer;

polayer = poDS->Createlayer("point_out", NULL, wkbPoint, NULL);
(poLayer == NULL)
{
printf("Layer creation failed.\n")
exit(1);

InC :

OGRLayerH hLlayer;

hLayer = OGR_DS_CreatelLayer(hDS, "point_out", NULL, wkbPoint, NULL);
" (hLayer == NULL)
{
printf("Layer creation failed.\n")
exit(1);

Now that the layer exists, we need to create any attribute fields that should appear on the layer. Fields must be
added to the layer before any features are written. To create a field we initialize an OGRField (p. ??) object with the
information about the field. In the case of Shapefiles, the field width and precision is significant in the creation of
the output .dbf file, so we set it specifically, though generally the defaults are OK. For this example we will just have
one attribute, a name string associated with the x,y point.

Note that the template OGRField (p. ??) we pass to CreateField() is copied internally. We retain ownership of the
object.

In C++:

OGRFieldDefn oField("Name", OFTString);
oField.SetWidth (32);

" (polayer->CreateField(&oField) != OGRERR_NONE)
{

printf("Creating Name field failed.\n")
exit(1);

In C:

OGRFieldDefnH hFieldDefn;
hFieldDefn = OGR_F1ld_Create("Name", OFTString);
OGR_F1d_SetWidth(hFieldDefn, 32);
if(OGR_L_CreateField(hLayer, hFieldDefn, TRUE) != OGRERR_NONE)
(printf("Creating Name field failed.\n");

exit(1);
}

OGR_F1d_Destroy (hFieldDefn) ;

The following snipping loops reading lines of the form "x,y,name" from stdin, and parsing them.

INnC++andinC:

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

2.2 Writing To OGR 11

double x, y;
char szName[33];

(!'feof (stdin)
&& fscanf(stdin, "$1f,%1f,%32s", &x, &y, szName) == 3)

To write a feature to disk, we must create a local OGRFeature (p. ??), set attributes and attach geometry before
trying to write it to the layer. It is imperative that this feature be instantiated from the OGRFeatureDefn (p. ??)
associated with the layer it will be written to.

In C++ :

OGRFeature xpoFeature;

poFeature = OGRFeature::CreateFeature(polayer->GetLayerDefn ());
poFeature->SetField("Name", szName);

InC:

OGRFeatureH hFeature;

hFeature = OGR_F_Create(OGR_L_GetLayerDefn(hLayer));
OGR_F_SetFieldString(hFeature, OGR_F_GetFieldIndex (hFeature, "Name"), szName);

We create a local geometry object, and assign its copy (indirectly) to the feature. The OGRFeature::Set«—
GeometryDirectly() (p. ??) differs from OGRFeature::SetGeometry() (p. ??) in that the direct method gives own-
ership of the geometry to the feature. This is generally more efficient as it avoids an extra deep object copy of the
geometry.

In C++:

OGRPoint pt;
pt.setX(x);
pt.setY(y);

poFeature->SetGeometry (&pt);

InC:

OGRGeometryH hPt;
hPt = OGR_G_CreateGeometry (wkbPoint) ;
OGR_G_SetPoint_2D (hPt, 0, x, vy);

OGR_F_SetGeometry (hFeature, hPt);
OGR_G_DestroyGeometry (hPt) ;

Now we create a feature in the file. The OGRLayer::CreateFeature() (p. ??) does not take ownership of our feature
so we clean it up when done with it.

In C++ :
1f(polayer->CreateFeature(poFeature) != OGRERR_NONE
{
printf("Failed to create feature in shapefile.\n")
exit(1);

}

OGRFeature: :DestroyFeature (poFeature);

InC:
1f(OGR_L_CreateFeature(hLayer, hFeature) != OGRERR_NONE
{
printf("Failed to create feature in shapefile.\n")
exit(1);

}

OGR_F_Destroy (hFeature);

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

12

OGR API Tutorial

Finally we need to close down the datasource in order to ensure headers are written out in an orderly way and all
resources are recovered.

In C++:

OGRDataSource: :DestroyDataSource (poDS);

InC:

OGR_DS_Destroy (hDS);

The same program all in one block looks like this:

In C++ :

#include "ogrsf_frmts.h"

int main ()

{

const char xpszDriverName = "ESRI Shapefile";
OGRSFDriver xpoDriver;

OGRRegisterAll();

poDriver = OGRSFDriverRegistrar::GetRegistrar () ->GetDriverByName (

pszDriverName) ;
(poDriver == NULL

printf("%s driver not available.\n", pszDriverName);
exit (1);
}

OGRDataSource #*poDS;

poDS = poDriver->CreateDataSource("point_out.shp", NULL);

(poDS == NULL)
{
printf("Creation of output file failed.\n");
exit(1);
}

OGRLayer x*polayer;
polayer = poDS->Createlayer("point_out", NULL, wkbPoint,
" (polayer == NULL
{
printf("Layer creation failed.\n")
exit(1);
}
OGRFieldDefn oField("Name", OFTString);
oField.SetWidth (32);

(poLayer->CreateField(&oField) != OGRERR_NONE
printf("Creating Name field failed.\n")
exit(1);

}

double x, y;
char szName[33];

vhile(!feof (stdin)
&& fscanf(stdin, "%$1f,%1f,%32s", &x, &y, szName

OGRFeature *poFeature;

poFeature = OGRFeature::CreateFeature(polayer—>GetLayerDefn ()

poFeature->SetField("Name", szName);
OGRPoint pt;

pt.setX(x);
pt.setY(vy);

poFeature->SetGeometry (&pt);

i f(poLayer—>CreateFeature(poFeature) != OGRERR_NONE

7

NULL

)

)i

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

2.2 Writing To OGR

13

printf("Failed to create feature in shapefile.\n")
exit(1);

OGRFeature: :DestroyFeature (poFeature);

OGRDataSource: :DestroyDataSource (poDS);

InC:

#include "ogr_api.h"

int main ()
{
const char xpszDriverName = "ESRI Shapefile";
OGRSFDriverH hDriver;
OGRDataSourceH hDS;
OGRLayerH hLayer;
OGRFieldDefnH hFieldDefn;
double x, y;
char szName[33];

OGRRegisterAll () ;

hDriver = OGRGetDriverByName (pszDriverName);

if(hDriver == NULL

{
printf("%s driver not available.\n", pszDriverName);
exit (1);

hDS = OGR_Dr_CreateDataSource(hDriver, "point_out.shp", NULL);
if(hDS == NULL)

printf("Creation of output file failed.\n")
exit(1);

hLayer = OGR_DS_Createlayer(hDS, "point_out", NULL, wkbPoint, NULL);

if(hLayer == NULL

{
printf("Layer creation failed.\n");
exit(1);

hFieldDefn = OGR_F1ld_Create("Name", OFTString);
OGR_F1ld_SetWidth(hFieldDefn, 32);
if(OGR_L_CreateField(hLayer, hFieldDefn, TRUE) != OGRERR_NONE
{ printf("Creating Name field failed.\n")

exit (1);
OGR_F1d_Destroy (hFieldDefn) ;

vhile (!'feof (stdin)
&& fscanf(stdin, "%$1f,%1f,%32s", &x, &y, szName) == 3)

OGRFeatureH hFeature;
OGRGeometryH hPt;

hFeature = OGR_F_Create(OGR_L_GetLayerDefn(hLayer));
OGR_F_SetFieldString(hFeature, OGR_F_GetFieldIndex (hFeature,

hPt = OGR_G_CreateGeometry (wkbPoint) ;
OGR_G_SetPoint_2D (hPt, 0, x, y);

OGR_F_SetGeometry (hFeature, hPt);
OGR_G_DestroyGeometry (hPt) ;

if(OGR_L_CreateFeature(hLayer, hFeature) != OGRERR_NONE)
{

printf("Failed to create feature in shapefile.\n")
exit(1);

OGR_F_Destroy (hFeature);

OGR_DS_Destroy(hDS);

"Name"), szName

)i

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

14 OGR API Tutorial

In Python :

import sys
import ogr
import string

driverName = "ESRI Shapefile"

drv = ogr.GetDriverByName (driverName

if drv is None:
print "%s driver not available.\n" % driverName
sys.exit(1)

ds = drv.CreateDataSource("point_out.shp")
if ds is None:
print "Creation of output file failed.\n"
sys.exit(1)

lyr = ds.Createlayer("point_out", None, ogr.wkbPoint)
if lyr is None:

print "Layer creation failed.\n"

sys.exit(1)

field_defn = ogr.FieldDefn("Name", ogr.OFTString)
field_defn.SetWidth(32)

lyr.CreateField (field_defn) != 0:
print "Creating Name field failed.\n"
sys.exit(1)

Expected format of user input: x y name
linestring = raw_input ()
linelist = string.split (linestring)

while len(linelist) ==
x = float (linelist([0])
y = float (linelist[1])
name = linelist([2]

feat = ogr.Feature(lyr.GetLayerDefn())
feat.SetField("Name", name)

pt = ogr.Geometry (ogr.wkbPoint)
pt.SetPoint_2D (0, x, y)

feat.SetGeometry (pt)

if lyr.CreateFeature(feat) != 0O:
print "Failed to create feature in shapefile.\n"
sys.exit (1)

feat.Destroy ()

linestring = raw_input ()
linelist = string.split(linestring)

ds = None

Starting with OGR 1.11, several geometry fields can be associated to a feature. This capability is just
available for a few file formats, such as PostGIS.

To create such datasources, geometry fields must be first created. Spatial reference system objects can be associ-
ated to each geometry field.

In C++:

7

OGRGeomFieldDefn oPointField("PointField", wkbPoint);
OGRSpatialReferencex poSRS = new OGRSpatialReference (
PoSRS->importFromEPSG (4326) ;
oPointField.SetSpatialRef (poSRS) ;

poSRS->Release () ;

*(poLayer->CreateGeomField(&oPointField) != OGRERR_NONE
{
printf("Creating field PointField failed.\n")
exit(1);
}

OGRGeomFieldDefn oFieldPoint2("PointField2", wkbPoint);
poSRS = new OGRSpatialReference();
PoSRS->importFromEPSG (32631) ;
oPointField2.SetSpatialRef (poSRS) ;

poSRS—->Release () ;

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

2.2 Writing To OGR 15

f (polLayer->CreateGeomField(&oPointField2) != OGRERR_NONE)
{
printf("Creating field PointField2 failed.\n")
exit(1);

InC:

OGRGeomFieldDefnH hPointField;
OGRGeomFieldDefnH hPointField2;
OGRSpatialReferenceH hSRS;

hPointField = OGR_GF1ld_Create("PointField", wkbPoint);
hSRS = OSRNewSpatialReference(NULL);
OSRImportFromEPSG (hSRS, 4326);

OGR_GF1d_SetSpatialRef (hPointField, hSRS);

OSRRelease (hSRS) ;

“(OGR_L_CreateGeomField(hLayer, hPointField) != OGRERR_NONE)
{
printf("Creating field PointField failed.\n")
exit(1);
}

OGR_GF1d_Destroy (hPointField);

hPointField2 = OGR_GF1ld_Create("PointField2", wkbPoint);
OSRImportFromEPSG (hSRS, 32631);

OGR_GF1d_SetSpatialRef (hPointField2, hSRS);

OSRRelease (hSRS) ;

if(OGR_L_CreateGeomField(hLayer, hPointField2) != OGRERR_NONE)
{

printf("Creating field PointField2 failed.\n");

exit(1);
}

OGR_GF1d_Destroy(hPointField2);

To write a feature to disk, we must create a local OGRFeature (p. ??), set attributes and attach geometries before
trying to write it to the layer. It is imperative that this feature be instantiated from the OGRFeatureDefn (p. ??)
associated with the layer it will be written to.

In C++ :

OGRFeature xpoFeature;
OGRGeometry xpoGeometry;
char* pszWKT;

poFeature = OGRFeature::CreateFeature(polLayer—->GetLayerDefn ());
pszWKT = (char=) "POINT (2 49)";

OGRGeometryFactory: :createFromWkt (&pszWKT, NULL, &poGeometry
poFeature->SetGeomFieldDirectly ("PointField", poGeometry);

pszWKT = (charx) "POINT (500000 4500000)";
OGRGeometryFactory::createFromWkt (&pszWKT, NULL, &poGeometry
poFeature->SetGeomFieldDirectly ("PointField2", poGeometry);

if(polLayer->CreateFeature(poFeature) != OGRERR_NONE
{

printf("Failed to create feature.\n");

exit(1);
}

OGRFeature::DestroyFeature (poFeature);

InC:

OGRFeatureH hFeature;
OGRGeometryH hGeometry;
char* pszWKT;

poFeature = OGR_F_Create(OGR_L_GetLayerDefn (hLayer));

pszWKT = (charx) "POINT (2 49)";
OGR_G_CreateFromWkt (&pszWKT, NULL, &hGeometry);
OGR_F_SetGeomFieldDirectly (hFeature,

OGR_F_GetGeomFieldIndex (hFeature, "PointField"), hGeometry);

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

16 OGR API Tutorial

pszWKT = (charx) "POINT (500000 4500000)";
OGR_G_CreateFromWkt (&pszWKT, NULL, &hGeometry);
OGR_F_SetGeomFieldDirectly (hFeature,

OGR_F_GetGeomFieldIndex (hFeature, "PointField2"), hGeometry);

if(OGR_L_CreateFeature(hFeature) != OGRERR_NONE)
{

printf("Failed to create feature.\n")

exit(1);
}

OGR_F_Destroy (hFeature);

In Python :

feat = ogr.Feature(lyr.GetLayerDefn())

feat.SetGeomFieldDirectly("PointField",
ogr.CreateGeometryFromwkt ("POINT (2 49)"))

feat.SetGeomFieldDirectly("PointField2",
ogr.CreateGeometryFromWkt ("POINT (500000 4500000)"))

if lyr.CreateFeature(feat) != 0)

{
print ("Failed to create feature.\n")
sys.exit (1);

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

Chapter 3

OGR Architecture

This document is intended to document the OGR classes. The OGR classes are intended to be generic (not specific
to OLE DB or COM or Windows) but are used as a foundation for implementing OLE DB Provider support, as well
as client side support for SFCOM. It is intended that these same OGR classes could be used by an implementation
of SFCORBA for instance or used directly by C++ programs wanting to use an OpenGIS simple features inspired
API.

Because OGR is modelled on the OpenGIS simple features data model, it is very helpful to review the S«
FCOM, or other simple features interface specifications which can be retrieved from the Open Geospatial
Consortium web site. Data types, and method names are modelled on those from the interface specifications.

3.1 Class Overview

* Geometry (ogr_geometry.h): The geometry classes (OGRGeometry (p.??), etc) encapsulate the
OpenGIS model vector data as well as providing some geometry operations, and translation to/from well
known binary and text format. A geometry includes a spatial reference system (projection).

+ Spatial Reference (ogr_spatialref.h): An OGRSpatialReference (p. ??) encapsulates the definition
of a projection and datum.

» Feature (ogr_feature.h): The OGRFeature (p. ??) encapsulates the definition of a whole feature, that
is a geometry and a set of attributes.

+ Feature Class Definition (ogr_feature.h): The OGRFeatureDefn (p.??) class captures the schema
(set of field definitions) for a group of related features (normally a whole layer).

» Layer (ogrsf_frmts.h): OGRLayer (p.??) is an abstract base class represent a layer of features in an
OGRDataSource (p. ??).

» Data Source (ogrsf_frmts.h): An OGRDataSource (p. ??) is an abstract base class representing a file
or database containing one or more OGRLayer (p. ??) objects.

+ Drivers (ogrsf_frmts.h): An OGRSFDriver (p. ??) represents a translator for a specific format, opening
OGRDataSource (p. ??) objects. All available drivers are managed by the OGRSFDriverRegistrar (p. ??).

3.2 Geometry

The geometry classes are represent various kinds of vector geometry. All the geometry classes derived from
OGRGeometry (p. ??) which defines the common services of all geometries. Types of geometry include OGR«
Point (p. ??), OGRLineString (p. ??), OGRPolygon (p. ??), OGRGeometryCollection (p. ??), OGRMultiPolygon
(p. ??), OGRMultiPoint (p. ??), and OGRMultiLineString (p. ??).

18 OGR Architecture

Additional intermediate abstract base classes contain functionality that could eventually be implemented by other
geometry types. These include OGRCurve (p. ??) (base class for OGRLineString (p. ??)) and OGRSurface (p. ??)
(base class for OGRPolygon (p. ??)). Some intermediate interfaces modelled in the simple features abstract model
and SFCOM are not modelled in OGR at this time. In most cases the methods are aggregated into other classes.
This may change.

The OGRGeometryFactory (p.??) is used to convert well known text, and well known binary format data into
geometries. These are predefined ASCII and binary formats for representing all the types of simple features ge-
ometries.

In 2 manner based on the geometry object in SFCOM, the OGRGeometry (p. ??) includes a reference to an O«
GRSpatialReference (p.??) object, defining the spatial reference system of that geometry. This is normally a
reference to a shared spatial reference object with reference counting for each of the OGRGeometry (p. ??) objects
using it.

Many of the spatial analysis methods (such as computing overlaps and so forth) are not implemented at this time
for OGRGeometry (p. ??).

While it is theoretically possible to derive other or more specific geometry classes from the existing OGRGeometry
(p. ??) classes, this isn't an aspect that has been well thought out. In particular, it would be possible to create
specialized classes using the OGRGeometryFactory (p. ??) without modifying it.

3.3 Spatial Reference

The OGRSpatialReference (p.??) class is intended to store an OpenGIS Spatial Reference System definition.
Currently local, geographic and projected coordinate systems are supported. Vertical coordinate systems, geocen-
tric coordinate systems, and compound (horizontal + vertical) coordinate systems are as well supported in recent
GDAL versions.

The spatial coordinate system data model is inherited from the OpenGIS Well Known Text format. A simple form
of this is defined in the Simple Features specifications. A more sophisticated form is found in the Coordinate Trans-
formation specification. The OGRSpatialReference (p. ??) is built on the features of the Coordinate Transformation
specification but is intended to be compatible with the earlier simple features form.

There is also an associated OGRCoordinateTransformation (p. ??) class that encapsulates use of PROJ.4 for
converting between different coordinate systems. There isa tutorial available describing how to use the OG+«
RSpatialReference (p. ??) class.

3.4 Feature / Feature Definition

The OGRGeometry (p. ??) captures the geometry of a vector feature ... the spatial position/region of a feature. The
OGRFeature (p. ??) contains this geometry, and adds feature attributes, feature id, and a feature class identifier.
Starting with OGR 1.11, several geometries can be associated to a OGRFeature (p. ??).

The set of attributes, their types, names and so forth is represented via the OGRFeatureDefn (p. ??) class. One O«
GRFeatureDefn (p. ??) normally exists for a layer of features. The same definition is shared in a reference counted
manner by the feature of that type (or feature class).

The feature id (FID) of a feature is intended to be a unique identifier for the feature within the layer it is a member of.
Freestanding features, or features not yet written to a layer may have a null (OGRNUIIFID) feature id. The feature
ids are modelled in OGR as a long integer; however, this is not sufficiently expressive to model the natural feature
ids in some formats. For instance, the GML feature id is a string, and the row id in Oracle is larger than 4 bytes.

The feature class also contains an indicator of the types of geometry allowed for that feature class (returned as an
OGRwkbGeometryType from OGRFeatureDefn::GetGeomType() (p. ??)). If this is wkbUnknown then any type of
geometry is allowed. This implies that features in a given layer can potentially be of different geometry types though
they will always share a common attribute schema.

Starting with OGR 1.11, several geometry fields can be associated to a feature class. Each geometry field has
its own indicator of geometry type allowed, returned by OGRGeomFieldDefn::GetType() (p. ??), and its spatial

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

3.5 Layer 19

reference system, returned by OGRGeomFieldDefn::GetSpatialRef() (p. ??).

The OGRFeatureDefn (p. ??) also contains a feature class name (normally used as a layer name).

3.5 Layer

An OGRLayer (p.??) represents a layer of features within a data source. All features in an OGRLayer (p. ??)
share a common schema and are of the same OGRFeatureDefn (p. ??). An OGRLayer (p. ??) class also contains
methods for reading features from the data source. The OGRLayer (p.??) can be thought of as a gateway for
reading and writing features from an underlying data source, normally a file format. In SFCOM and other table
based simple features implementation an OGRLayer (p. ??) represents a spatial table.

The OGRLayer (p. ??) includes methods for sequential and random reading and writing. Read access (via the O«
GRLayer::GetNextFeature() (p. ??) method) normally reads all features, one at a time sequentially; however, it can
be limited to return features intersecting a particular geographic region by installing a spatial filter on the OGRLayer
(p. ??) (via the OGRLayer::SetSpatialFilter() (p. ??) method).

One flaw in the current OGR architecture is that the spatial filter is set directly on the OGRLayer (p. ??) which is
intended to be the only representative of a given layer in a data source. This means it isn't possible to have multiple
read operations active at one time with different spatial filters on each. This aspect may be revised in the future to
introduce an OGRLayerView class or something similar.

Another question that might arise is why the OGRLayer (p. ??) and OGRFeatureDefn (p. ??) classes are distinct.
An OGRLayer (p. ??) always has a one-to-one relationship to an OGRFeatureDefn (p. ??), so why not amalgamate
the classes. There are two reasons:

1. As defined now OGRFeature (p. ??) and OGRFeatureDefn (p. ??) don't depend on OGRLayer (p.??), so
they can exist independently in memory without regard to a particular layer in a data store.

2. The SF CORBA model does not have a concept of a layer with a single fixed schema the way that the SFC+«
OM and SFSQL models do. The fact that features belong to a feature collection that is potentially not directly
related to their current feature grouping may be important to implementing SFCORBA support using OGR.

The OGRLayer (p. ??) class is an abstract base class. An implementation is expected to be subclassed for each file
format driver implemented. OGRLayers are normally owned directly by their OGRDataSource (p. ??), and aren't
instantiated or destroyed directly.

3.6 Data Source

An OGRDataSource (p. ??) represents a set of OGRLayer (p. ??) objects. This usually represents a single file, set
of files, database or gateway. An OGRDataSource (p.??) has a list of OGRLayers which it owns but can return
references to.

OGRDataSource (p.??) is an abstract base class. An implementation is expected to be subclassed for each file
format driver implemented. OGRDataSource (p. ??) objects are not normally instantiated directly but rather with
the assistance of an OGRSFDriver (p. ??). Deleting an OGRDataSource (p. ??) closes access to the underlying
persistent data source, but does not normally result in deletion of that file.

An OGRDataSource (p.??) has a name (usually a filename) that can be used to reopen the data source with an
OGRSFDriver (p. ??).

The OGRDataSource (p. ??) also has support for executing a datasource specific command, normally a form of S«
QL. This is accomplished via the OGRDataSource::ExecuteSQL() (p. ??) method. While some datasources (such
as PostGIS and Oracle) pass the SQL through to an underlying database, OGR also includes support for evaluating
a subset of the SQL SELECT statement against any datasource.

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

20 OGR Architecture

3.7 Drivers

An OGRSFDriver (p.??) object is instantiated for each file format supported. The OGRSFDriver (p. ??) objects
are registered with the OGRSFDriverRegistrar (p. ??), a singleton class that is normally used to open new data
sources.

It is intended that a new OGRSFDriver (p. ??) derived class be implemented for each file format to be supported
(along with a file format specific OGRDataSource (p. ??), and OGRLayer (p. ??) classes).

On application startup registration functions are normally called for each desired file format. These functions in-
stantiate the appropriate OGRSFDriver (p. ??) objects, and register them with the OGRSFDriverRegistrar (p. ??).
When a data source is to be opened, the registrar will normally try each OGRSFDriver (p.??) in turn, until one
succeeds, returning an OGRDataSource (p. ??) object.

It is not intended that the OGRSFDriverRegistrar (p. ??) be derived from.

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

Chapter 4

OGR Driver Implementation Tutorial

4.1 Overall Approach

In general new formats are added to OGR by implementing format specific drivers with subclasses of OGRSFDriver
(p- ??), OGRDataSource (p. ??) and OGRLayer (p. ??). The OGRSFDriver (p. ??) subclass is registered with the
OGRSFDriverRegistrar (p. ??) at runtime.

Before following this tutorial to implement an OGR driver, please review the OGR Architecture document
carefully.

The tutorial will be based on implementing a simple ascii point format.

4.2 Contents

1. Implementing OGRSFDriver (p. ??)
2. Basic Read Only Data Source (p. ??)

3. Read Only Layer (p.??)

4.3 Implementing OGRSFDriver

The format specific driver class is implemented as a subclass of OGRSFDriver (p. ??). One instance of the driver
will normally be created, and registered with the OGRSFDriverRegistrar() (p. ??). The instantiation of the driver is
normally handled by a global C callable registration function, similar to the following placed in the same file as the
driver class.

void RegisterOGRSPF ()

{
OGRSFDriverRegistrar: :GetRegistrar () ->RegisterDriver (new OGRSPFDriver);
}

The driver class declaration generally looks something like this for a format with read or read and update access
(the Open() method), creation support (the CreateDataSource() method), and the ability to delete a datasource (the
DeleteDataSource() method).

class OGRSPFDriver : public OGRSFDriver
{
public:
~OGRSPFDriver () ;

22 OGR Driver Implementation Tutorial

const char *GetName () ;
OGRDataSource *Open(const char %, int);
OGRDataSource xCreateDataSource(const char %, char =%);
OGRErr DeleteDataSource(const char *pszName);
int TestCapability (const char *);

bi

The constructor generally does nothing. The OGRSFDriver::GetName() (p. ??) method returns a static string with
the name of the driver. This name is specified on the commandline when creating datasources so it is generally
good to keep it short and without any special characters or spaces.

OGRSPFDriver: :~OGRSPFDriver ()

{
}

const char OGRSPFDriver: :GetName ()
{

return "SPF";

}

The Open() method is called by OGRSFDriverRegistrar::Open() (p. ??), or from the C API OGROpen() (p. ??).
The OGRSFDriver::Open() (p. ??) method should quietly return NULL if the passed filename is not of the format
supported by the driver. If it is the target format, then a new OGRDataSource (p. ??) object for the datasource
should be returned.

It is common for the Open() method to be delegated to an Open() method on the actual format's OGRDataSource
(p. ??) class.

OGRDataSource xOGRSPFDriver::0Open(const char % pszFilename, int bUpdate)
{
OGRSPFDataSource *poDS = new OGRSPFDataSource () ;

if(!'poDS->Open(pszFilename, bUpdate))
{

delete poDS;

return NULL;
}

else
return poDS;

In OGR the capabilities of drivers, datasources and layers are determined by calling TestCapability() on the various
objects with names strings representing specific optional capabilities. For the driver the only two capabilities cur-
rently tested for are the ability to create datasources and to delete them. In our first pass as a read only SPF driver,
these are both disabled. The default return value for unrecognised capabilities should always be FALSE, and the
symbolic #defines for capability names (defined in ogr_core.h (p. ??)) should be used instead of the literal strings
to avoid typos.

int OGRSPFDriver::TestCapability(const char » pszCap)

{
if (EQUAL (pszCap,ODrCCreateDataSource))
return FALSE;
else if(EQUAL (pszCap,ODrCDeleteDataSource))
return FALSE;
else
return FALSE;

Examples of the CreateDataSource() and DeleteDataSource() methods are left for the section on creation and
update.

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

4.4 Basic Read Only Data Source 23

4.4 Basic Read Only Data Source

We will start implementing a minimal read-only datasource. No attempt is made to optimize operations, and default
implementations of many methods inherited from OGRDataSource (p. ??) are used.

The primary responsibility of the datasource is to manage the list of layers. In the case of the SPF format a
datasource is a single file representing one layer so there is at most one layer. The "name" of a datasource should
generally be the name passed to the Open() method.

The Open() method below is not overriding a base class method, but we have it to implement the open operation
delegated by the driver class.

For this simple case we provide a stub TestCapability() that returns FALSE for all extended capabilities. The Test«
Capability() method is pure virtual, so it does need to be implemented.

class OGRSPFDataSource : public OGRDataSource
{

char *pszName;
OGRSPFLayer **papolLayers;
int nlLayers;
public:
OGRSPFDataSource () ;
~OGRSPFDataSource () ;
int Open (const char % pszFilename, int bUpdate);
const char +*GetName () { return pszName; }
int GetLayerCount () { return nlLayers; }
OGRLayer *GetLayer (int);
int TestCapability (const char %) { return FALSE; }

bi

The constructor is a simple initializer to a default state. The Open() will take care of actually attaching it to a file.
The destructor is responsible for orderly cleanup of layers.

OGRSPFDataSource: :OGRSPFDataSource ()

{
papolayers = NULL;
nLayers = 0;

pszName = NULL;
}

OGRSPFDataSource: : ~OGRSPFDataSource ()

{
for(int 1 = 0; i < nLayers; i++)
delete papolayers[i];
CPLFree(papolayers);

CPLFree(pszName);

The Open() method is the most important one on the datasource, though in this particular instance it passes most
of it's work off to the OGRSPFLayer constructor if it believes the file is of the desired format.

Note that Open() methods should try and determine that a file isn't of the identified format as efficiently as possible,
since many drivers may be invoked with files of the wrong format before the correct driver is reached. In this
particular Open() we just test the file extension but this is generally a poor way of identifying a file format. If
available, checking "magic header values" or something similar is preferrable.

In the case of the SPF format, update in place is not supported, so we always fail if bUpdate is FALSE.

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

24 OGR Driver Implementation Tutorial

int OGRSPFDataSource::0Open(const char *pszFilename, int bUpdate)

/e
// Does this appear to be an .spf file?
f
if(!'EQUAL(CPLGetExtension(pszFilename), "spf"))
return FALSE;
if (bUpdate)
{
CPLError (CE_Failure, CPLE_OpenFailed,
"Update access not supported by the SPF driver.");
return FALSE;
}
A e
// Create a corresponding layer.
A e ST
nLayers = 1;
papolayers = (OGRSPFLayer %) CPLMalloc(sizeof (voidx));
papolayers[0] = new OGRSPFLayer (pszFilename);

pszName = CPLStrdup(pszFilename);

return TRUE;

A GetLayer() method also needs to be implemented. Since the layer list is created in the Open() this is just a lookup
with some safety testing.

OGRLayer *OGRSPFDataSource::GetLayer(int iLayer)

{
if(iLayer < 0 || ilLayer >= nlLayers)
return NULL;
else
return papolayers[ilLayer];

4.5 Read Only Layer

The OGRSPFLayer is implements layer semantics for an .spf file. It provides access to a set of feature objects in a
consistent coordinate system with a particular set of attribute columns. Our class definition looks like this:

class OGRSPFLayer : public OGRLayer
{

OGRFeatureDefn xpoFeatureDefn;
FILE ~fp;
int nNextFID;
public:
OGRSPFLayer (const char xpszFilename);
~OGRSPFLayer () ;
void ResetReading () ;
OGRFeature =* GetNextFeature () ;
OGRFeatureDefn = GetLayerDefn () { return poFeatureDefn; }
int TestCapability (const char %) { return FALSE; }

bi

The layer constructor is responsible for initialization. The most important initialization is setting up the OGR+«
FeatureDefn (p. ??) for the layer. This defines the list of fields and their types, the geometry type and the coordinate

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

4.5 Read Only Layer 25

system for the layer. In the SPF format the set of fields is fixed - a single string field and we have no coordinate
system info to set.

Pay particular attention to the reference counting of the OGRFeatureDefn (p. ??). As OGRFeature (p. ??)'s for this
layer will also take a reference to this definition it is important that we also establish a reference on behalf of the
layer itself.

OGRSPFLayer: :0OGRSPFLayer (const char xpszFilename)

{
nNextFID = 0;

poFeatureDefn = new OGRFeatureDefn(CPLGetBasename (pszFilename));
poFeatureDefn->Reference () ;
poFeatureDefn->SetGeomType (wkbPoint) ;

OGRFieldDefn oFieldTemplate("Name", OFTString);
poFeatureDefn->AddFieldDefn(&oFieldTemplate);

fp = VSIFOpenL(pszFilename, "r");
if(fp == NULL)
return;

Note that the destructor uses Release() on the OGRFeatureDefn (p. ??). This will destroy the feature definition if
the reference count drops to zero, but if the application is still holding onto a feature from this layer, then that feature
will hold a reference to the feature definition and it will not be destroyed here (which is good!).

OGRSPFLayer: :~OGRSPFLayer ()

{
poFeatureDefn->Release();
if(fp != NULL)
VSIFCloseL(fp);

The GetNextFeature() method is usually the work horse of OGRLayer (p. ??) implementations. It is responsible for
reading the next feature according to the current spatial and attribute filters installed.

The while() loop is present to loop until we find a satisfactory feature. The first section of code is for parsing a single
line of the SPF text file and establishing the x, y and name for the line.

OGRFeature *OGRSPFLayer: :GetNextFeature ()

{
e

// Loop till we find a feature matching our requirements.

while (TRUE)

{
const char xpszLine;
const char xpszName;

pszLine = CPLReadLineL(fp);

// Are we at end of file (out of features)?
if(pszLine == NULL)
return NULL;

double dfX;
double dfy;

dfX = atof (pszLine);

pszLine = strstr(pszLine,"|");
if(pszLine == NULL)

continue; // we should issue an error!
else

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

26 OGR Driver Implementation Tutorial

pszLine++;

dfY = atof (pszLine);

pszLine = strstr(pszLine,"|");
if(pszLine == NULL)

continue; // we should issue an error!
else

pszName = pszLine+l;

The next section turns the x, y and name into a feature. Also note that we assign a linearly incremented feature id.
In our case we started at zero for the first feature, though some drivers start at 1.

OGRFeature *poFeature = new OGRFeature(poFeatureDefn);

poFeature->SetGeometryDirectly (new OGRPoint (dfX, dfY));
poFeature->SetField(0, pszName);
poFeature->SetFID(nNextFID++);

Next we check if the feature matches our current attribute or spatial filter if we have them. Methods on the OGR«
Layer (p. ??) base class support maintain filters in the OGRLayer (p. ??) member fields m_poFilterGeom (spatial
filter) and m_poAttrQuery (attribute filter) so we can just use these values here if they are non-NULL. The following
test is essentially "stock" and done the same in all formats. Some formats also do some spatial filtering ahead of
time using a spatial index.

If the feature meets our criteria we return it. Otherwise we destroy it, and return to the top of the loop to fetch another
to try.

if((m_poFilterGeom == NULL
|| FilterGeometry(poFeature->GetGeometryRef ()))
&& (m_poAttrQuery == NULL

| | m_poAttrQuery->Evaluate(poFeature)))
return poFeature;

delete poFeature;

While in the middle of reading a feature set from a layer, or at any other time the application can call ResetReading()
which is intended to restart reading at the beginning of the feature set. We implement this by seeking back to the
beginning of the file, and resetting our feature id counter.

void OGRSPFLayer: :ResetReading ()

{
VSIFSeekL(fp, 0, SEEK_SET);
nNextFID = 0;

In this implementation we do not provide a custom implementation for the GetFeature() method. This means an
attempt to read a particular feature by it's feature id will result in many calls to GetNextFeature() till the desired
feature is found. However, in a sequential text format like spf there is little else we could do anyway.

There! We have completed a simple read-only feature file format driver.

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

Chapter 5

OGR SQL

The OGRDataSource (p. ??) supports executing commands against a datasource via the OGRDataSource::«
ExecuteSQL() (p. ??) method. While in theory any sort of command could be handled this way, in practice the
mechanism is used to provide a subset of SQL SELECT capability to applications. This page discusses the generic
SQL implementation implemented within OGR, and issue with driver specific SQL support.

Since GDAL/OGR 1.10, an alternate "dialect", the SQLite dialect, can be used instead of the OGRSQL dialect.
Refer to the SQLite SQL dialect page for more details.

The OGRLayer (p. ??) class also supports applying an attribute query filter to features returned using the OGR«
Layer::SetAttributeFilter() (p. ??) method. The syntax for the attribute filter is the same as the WHERE clause in
the OGR SQL SELECT statement. So everything here with regard to the WHERE clause applies in the context of
the SetAttributeFilter() method.

NOTE: OGR SQL has been reimplemented for GDAL/OGR 1.8.0. Many features discussed below, notably arith-
metic expressions, and expressions in the field list, were not support in GDAL/OGR 1.7.x and earlier. See RFC 28
for details of the new features in GDAL/OGR 1.8.0.

5.1 SELECT

The SELECT statement is used to fetch layer features (analogous to table rows in an RDBMS) with the result of
the query represented as a temporary layer of features. The layers of the datasource are analogous to tables in an
RDBMS and feature attributes are analogous to column values. The simplest form of OGR SQL SELECT statement
looks like this:

SELECT * FROM polylayer

In this case all features are fetched from the layer named "polylayer”, and all attributes of those features are returned.
This is essentially equivalent to accessing the layer directly. In this example the "x" is the list of fields to fetch from
the layer, with "x" meaning that all fields should be fetched.

This slightly more sophisticated form still pulls all features from the layer but the schema will only contain the EA«
S_ID and PROP_VALUE attributes. Any other attributes would be discarded.

SELECT eas_id, prop_value FROM polylayer

A much more ambitious SELECT, restricting the features fetched with a WHERE clause, and sorting the results
might look like:

SELECT x from polylayer WHERE prop_value > 220000.0 ORDER BY prop_value DESC

This select statement will produce a table with just one feature, with one attribute (hamed something like "count_<«
eas_id") containing the number of distinct values of the eas_id attribute.

SELECT COUNT (DISTINCT eas_id) FROM polylayer

28 OGR SQL

5.1.1 Field List Operators

The field list is a comma separate list of the fields to be carried into the output features from the source layer. They
will appear on output features in the order they appear on in the field list, so the field list may be used to re-order
the fields.

A special form of the field list uses the DISTINCT keyword. This returns a list of all the distinct values of the named
attribute. When the DISTINCT keyword is used, only one attribute may appear in the field list. The DISTINC«
T keyword may be used against any type of field. Currently the distinctness test against a string value is case
insensitive in OGR SQL. The result of a SELECT with a DISTINCT keyword is a layer with one column (named the
same as the field operated on), and one feature per distinct value. Geometries are discarded. The distinct values
are assembled in memory, so alot of memory may be used for datasets with a large number of distinct values.

SELECT DISTINCT areacode FROM polylayer

There are also several summarization operators that may be applied to columns. When a summarization operator
is applied to any field, then all fields must have summarization operators applied. The summarization operators
are COUNT (a count of instances), AVG (numerical average), SUM (numerical sum), MIN (lexical or numerical
minimum), and MAX (lexical or numerical maximum). This example produces a variety of sumarization information
on parcel property values:

SELECT MIN (prop_value), MAX (prop_value), AVG(prop_value), SUM(prop_value),
COUNT (prop_value) FROM polylayer WHERE prov_name = "Ontario"

It is also possible to apply the COUNT() operator to a DISTINCT SELECT to get a count of distinct values, for
instance:

SELECT COUNT (DISTINCT areacode) FROM polylayer

Note: prior to OGR 1.9.0, null values were counted in COUNT(column_name) or COUNT(DISTINCT column_+
name), which was not conformant with the SQL standard. Since OGR 1.9.0, only non-null values are counted.

As a special case, the COUNT() operator can be given a "«" argument instead of a field name which is a short form
for count all the records.

SELECT COUNT (%) FROM polylayer

Field names can also be prefixed by a table name though this is only really meaningful when performing joins. It is
further demonstrated in the JOIN section.

Field definitions can also be complex expressions using arithmetic, and functional operators. However, the Dl
STINCT keyword, and summarization operators like MIN, MAX, AVG and SUM may not be applied to expression
fields.

SELECT cost+tax from invoice

or

SELECT CONCAT (owner_first_name,’ ’,owner_last_name) from properties

5.1.1.1 Functions

Starting with OGR 1.8.2, the SUBSTR function can be used to extract a substring from a string. Its syntax is the
following one : SUBSTR(string_expr, start_offset [, length]). It extracts a substring of string_expr, starting at offset
start_offset (1 being the first character of string_expr, 2 the second one, etc...). If start_offset is a negative value,
the substring is extracted from the end of the string (-1 is the last character of the string, -2 the character before
the last character, ...). If length is specified, up to length characters are extracted from the string. Otherwise the
remainder of the string is extracted.

Note: for the time being, the character as considered to be equivalent to bytes, which may not be appropriate for
multi-byte encodings like UTF-8.

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

5.1 SELECT 29

SELECT SUBSTR(’abcdef’,1,2) FROM xxx —-> ’ab’
SELECT SUBSTR(’abcdef’, 4) FROM xxx --> ’def’
SELECT SUBSTR(’abcdef’,-2) FROM xxx —--> ’ef’

5.1.1.2 Using the field name alias

OGR SQL supports renaming the fields following the SQL92 specification by using the AS keyword according to the
following example:

SELECT %, OGR_STYLE AS STYLE FROM polylayer

The field name alias can be used as the last operation in the column specification. Therefore we cannot rename the
fields inside an operator, but we can rename whole column expression, like these two:

SELECT COUNT (areacode) AS ’count’ FROM polylayer
SELECT dollars/100.0 AS cents FROM polylayer

5.1.1.3 Changing the type of the fields

Starting with GDAL 1.6.0, OGR SQL supports changing the type of the columns by using the SQL92 compliant
CAST operator according to the following example:

SELECT =, CAST (OGR_STYLE AS character (255)) FROM rivers
Currently casting to the following target types are supported:

1. character(field_length). By default, field_length=1.
2. float(field_length)
3. numeric(field_length, field_precision)
4. integer(field_length)
5. date(field_length)
6. time(field_length)
7. timestamp(field_length)
8. geometry, geometry(geometry_type), geometry(geometry_type,epsg_code)
Specifying the field_length and/or the field_precision is optional. An explicit value of zero can be used as the width

for character() to indicate variable width. Conversion to the 'integer list', 'double list' and 'string list' OGR data types
are not supported, which doesn't conform to the SQL92 specification.

While the CAST operator can be applied anywhere in an expression, including in a WHERE clause, the detailed
control of output field format is only supported if the CAST operator is the "outer most" operators on a field in the
field definition list. In other contexts it is still useful to convert between numeric, string and date data types.

Starting with OGR 1.11, casting a WKT string to a geometry is allowed. geometry_type can be POINT[Z], LINES«
TRING[Z], POLYGONJ[Z], MULTIPOINT[Z], MULTILINESTRING[Z], MULTIPOLYGON[Z], GEOMETRYCOLLEC+
TION[Z] or GEOMETRY/[Z].

5.1.2 WHERE

The argument to the WHERE clause is a logical expression used select records from the source layer. In addition to
its use within the WHERE statement, the WHERE clause handling is also used for OGR attribute queries on regular
layers via OGRLayer::SetAttributeFilter() (p. ??).

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

30 OGR SQL

In addition to the arithmetic and other functional operators available in expressions in the field selection clause of
the SELECT statement, in the WHERE context logical operators are also available and the evaluated value of the
expression should be logical (true or false).

The available logical operators are =, !=, <>, <, >, <=, >=, LIKE and ILIKE, BETWEEN and IN. Most of the
operators are self explanitory, but is is worth nothing that != is the same as <>, the string equality is case insensitive,
but the <, >, <= and >= operators are case sensitive. Both the LIKE and ILIKE operators are case insensitive.

The value argument to the LIKE operator is a pattern against which the value string is matched. In this pattern
percent (%) matches any number of characters, and underscore (_) matches any one character. An optional ES«
CAPE escape_char clause can be added so that the percent or underscore characters can be searched as regular
characters, by being preceded with the escape_char.

String Pattern Matches?
Alberta ALB% Yes
Alberta _lberta Yes
St. Alberta _lberta No
St. Alberta %lberta Yes
Robarts St. %Robarts$% Yes
12345 123%45 Yes
123.45 127245 No
NON 1PO $NONS% Yes
L4C 5E2 $NONS% No

The IN takes a list of values as it's argument and tests the attribute value for membership in the provided set.

Value Value Set Matches?
321 IN (456,123) No
"Ontario" IN ("Ontario","BC") Yes
"Ont" IN ("Ontario","BC") No
1 IN (0,2,4,6) No

The syntax of the BETWEEN operator is "field_name BETWEEN value1 AND value2" and it is equivalent to "field«
_name >= value1 AND field_name <= value2".

In addition to the above binary operators, there are additional operators for testing if a field is null or not. These are
the IS NULL and IS NOT NULL operators.

Basic field tests can be combined in more complicated predicates using logical operators include AND, OR, and
the unary logical NOT. Subexpressions should be bracketed to make precedence clear. Some more complicated
predicates are:

SELECT * FROM poly WHERE (prop_value >= 100000) AND (prop_value < 200000)
SELECT % FROM poly WHERE NOT (area_code LIKE "NON%")
SELECT x FROM poly WHERE (prop_value IS NOT NULL) AND (prop_value < 100000)

5.1.3 WHERE Limitations

1. Fields must all come from the primary table (the one listed in the FROM clause).

2. All string comparisons are case insensitive except for <, >, <= and >=.

5.1.4 ORDERBY

The ORDER BY clause is used force the returned features to be reordered into sorted order (ascending or descend-
ing) on one of the field values. Ascending (increasing) order is the default if neither the ASC or DESC keyword is
provided. For example:

SELECT x FROM property WHERE class_code = 7 ORDER BY prop_value DESC
SELECT x FROM property ORDER BY prop_value

SELECT * FROM property ORDER BY prop_value ASC

SELECT DISTINCT zip_code FROM property ORDER BY zip_code

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

5.1 SELECT 31

Note that ORDER BY clauses cause two passes through the feature set. One to build an in-memory table of field
values corresponded with feature ids, and a second pass to fetch the features by feature id in the sorted order. For
formats which cannot efficiently randomly read features by feature id this can be a very expensive operation.

Sorting of string field values is case sensitive, not case insensitive like in most other parts of OGR SQL.

5.1.5 JOINs

OGR SQL supports a limited form of one to one JOIN. This allows records from a secondary table to be looked up
based on a shared key between it and the primary table being queried. For instance, a table of city locations might
include a nation_id column that can be used as a reference into a secondary nation table to fetch a nation name. A
joined query might look like:

SELECT city.*, nation.name FROM city
LEFT JOIN nation ON city.nation_id = nation.id

This query would result in a table with all the fields from the city table, and an additional "nation.name" field with the
nation name pulled from the nation table by looking for the record in the nation table that has the "id" field with the
same value as the city.nation_id field.

Joins introduce a number of additional issues. One is the concept of table qualifiers on field names. For instance,
referring to city.nation_id instead of just nation_id to indicate the nation_id field from the city layer. The table name
qualifiers may only be used in the field list, and within the ON clause of the join.

Wildcards are also somewhat more involved. All fields from the primary table (city in this case) and the secondary
table (nation in this case) may be selected using the usual * wildcard. But the fields of just one of the primary or
secondary table may be selected by prefixing the asterix with the table name.

The field names in the resulting query layer will be qualified by the table name, if the table name is given as a qualifier
in the field list. In addition field names will be qualified with a table name if they would conflict with earlier fields. For
instance, the following select would result might result in a results set with a name, nation_id, nation.nation_id and
nation.name field if the city and nation tables both have the nation_id and name fieldnames.

SELECT % FROM city LEFT JOIN nation ON city.nation_id = nation.nation_id

On the other hand if the nation table had a continent _id field, but the city table did not, then that field would not need
to be qualified in the result set. However, if the selected instead looked like the following statement, all result fields
would be qualified by the table name.

SELECT city.*, nation.x FROM city
LEFT JOIN nation ON city.nation_id = nation.nation_id

In the above examples, the nation table was found in the same datasource as the city table. However, the OGR join
support includes the ability to join against a table in a different data source, potentially of a different format. This is
indicated by qualifying the secondary table name with a datasource name. In this case the secondary datasource is
opened using normal OGR semantics and utilized to access the secondary table until the query result is no longer
needed.

SELECT % FROM city
LEFT JOIN ’/usr2/data/nation.dbf’.nation ON city.nation_id = nation.nation_id

While not necessarily very useful, it is also possible to introduce table aliases to simplify some SELECT statements.
This can also be useful to disambiguate situations where tables of the same name are being used from different
data sources. For instance, if the actual tables names were messy we might want to do something like:

SELECT c.name, n.name FROM project_615_city c
LEFT JOIN ’/usr2/data/project_615_nation.dbf’.project_615_nation n
ON c.nation_id = n.nation_id

It is possible to do multiple joins in a single query.

SELECT city.name, prov.name, nation.name FROM city
LEFT JOIN province ON city.prov_id = province.id
LEFT JOIN nation ON city.nation_id = nation.id

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

32 OGR SQL

5.1.6 JOIN Limitations

1. Joins can be very expensive operations if the secondary table is not indexed on the key field being used.

2. Joined fields may not be used in WHERE clauses, or ORDER BY clauses at this time. The join is essentially
evaluated after all primary table subsetting is complete, and after the ORDER BY pass.

3. Joined fields may not be used as keys in later joins. So you could not use the province id in a city to lookup the
province record, and then use a nation id from the province id to lookup the nation record. This is a sensible
thing to want and could be implemented, but is not currently supported.

4. Datasource names for joined tables are evaluated relative to the current processes working directory, not the
path to the primary datasource.

5. These are not true LEFT or RIGHT joins in the RDBMS sense. Whether or not a secondary record exists for
the join key or not, one and only one copy of the primary record is returned in the result set. If a secondary
record cannot be found, the secondary derived fields will be NULL. If more than one matching secondary field
is found only the first will be used.

5.2 UNION ALL

(OGR >=1.10.0)

The SQL engine can deal with several SELECT combined with UNION ALL. The effect of UNION ALL is to concate-
nate the rows returned by the right SELECT statement to the rows returned by the left SELECT statement.

[(] SELECT field_list FROM first_layer [WHERE where_expr] [)]
UNION ALL [(] SELECT field list FROM second_layer [WHERE where_expr] [)]
[UNION ALL [(] SELECT field_list FROM third_layer [WHERE where_expr] [)]]~*

5.2.1 UNION ALL restrictions

The processing of UNION ALL in OGR differs from the SQL standard, in which it accepts that the columns from
the various SELECT are not identical. In that case, it will return a super-set of all the fields from each SELECT
statement.

There is also a restriction : ORDER BY can only be specified for each SELECT, and not at the level of the result of
the union.

5.3 SPECIAL FIELDS

The OGR SQL query processor treats some of the attributes of the features as built-in special fields can be used
in the SQL statements likewise the other fields. These fields can be placed in the select list, the WHERE clause
and the ORDER BY clause respectively. The special field will not be included in the result by default but it may
be explicitly included by adding it to the select list. When accessing the field values the special fields will take
precedence over the other fields with the same names in the data source.

53.1 FID

Normally the feature id is a special property of a feature and not treated as an attribute of the feature. In some
cases it is convenient to be able to utilize the feature id in queries and result sets as a regular field. To do so use
the name FID. The field wildcard expansions will not include the feature id, but it may be explicitly included using a
syntax like:

SELECT FID, * FROM nation

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

5.4 CREATE INDEX 33

53.2 OGR_GEOMETRY

Some of the data sources (like Maplinfo tab) can handle geometries of different types within the same layer. The
OGR_GEOMETRY special field represents the geometry type returned by OGRGeometry::getGeometryName()
(p- ??) and can be used to distinguish the various types. By using this field one can select particular types of the
geometries like:

SELECT % FROM nation WHERE OGR_GEOMETRY=’POINT’ OR OGR_GEOMETRY=’POLYGON’

5.3.3 OGR_GEOM_WKT

The Well Known Text representation of the geometry can also be used as a special field. To select the WKT of the
geometry OGR_GEOM_WKT might be included in the select list, like:

SELECT OGR_GEOM_WKT, x FROM nation

Using the OGR_GEOM_WKT and the LIKE operator in the WHERE clause we can get similar effect as using
OGR_GEOMETRY:

SELECT OGR_GEOM_WKT, * FROM nation WHERE OGR_GEOM_WKT
LIKE ’'POINT%’ OR OGR_GEOM_WKT LIKE ’POLYGON%’

534 OGR_GEOM_AREA

(Since GDAL 1.7.0)

The OGR_GEOM_AREA special field returns the area of the feature's geometry computed by the OGRSurface«
::get_Area() (p. ??) method. For OGRGeometryCollection (p. ??) and OGRMultiPolygon (p. ??) the value is the
sum of the areas of its members. For non-surface geometries the returned area is 0.0.

For example, to select only polygon features larger than a given area:

SELECT * FROM nation WHERE OGR_GEOM_AREA > 10000000’

5.3.5 OGR_STYLE

The OGR_STYLE special field represents the style string of the feature returned by OGRFeature::GetStyleString()
(p. ??). By using this field and the LIKE operator the result of the query can be filtered by the style. For example we
can select the annotation features as:

SELECT % FROM nation WHERE OGR_STYLE LIKE ’LABEL%’

5.4 CREATE INDEX

Some OGR SQL drivers support creating of attribute indexes. Currently this includes the Shapefile driver. An index
accelerates very simple attribute queries of the form fieldname = value, which is what is used by the JOIN capability.
To create an attribute index on the nation_id field of the nation table a command like this would be used:

CREATE INDEX ON nation USING nation_id

5.4.1 Index Limitations

1. Indexes are not maintained dynamically when new features are added to or removed from a layer.

2. Very long strings (longer than 256 characters?) cannot currently be indexed.

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

34 OGR SQL

3. To recreate an index it is necessary to drop all indexes on a layer and then recreate all the indexes.

4. Indexes are not used in any complex queries. Currently the only query the will accelerate is a simple "field =
value" query.

5.5 DROP INDEX

The OGR SQL DROP INDEX command can be used to drop all indexes on a particular table, or just the index for a
particular column.

DROP INDEX ON nation USING nation_id
DROP INDEX ON nation

5.6 ALTER TABLE

(OGR >=1.9.0)
The following OGR SQL ALTER TABLE commands can be used.

1. "ALTER TABLE tablename ADD [COLUMN] columnname columntype" to add a new field. Supported if the
layer declares the OLCCreateField capability.

2. "ALTER TABLE tablename RENAME [COLUMN] oldcolumnname TO newcolumnname" to rename an exist-
ing field. Supported if the layer declares the OLCAlterFieldDefn capability.

3. "ALTER TABLE tablename ALTER [COLUMN] columnname TYPE columntype" to change the type of an
existing field. Supported if the layer declares the OLCAlterFieldDefn capability.

4. "ALTER TABLE tablename DROP [COLUMN] columnname" to delete an existing field. Supported if the layer
declares the OLCDeleteField capability.

The columntype value follows the syntax of the types supported by the CAST operator described above.

ALTER TABLE nation ADD COLUMN myfield integer

ALTER TABLE nation RENAME COLUMN myfield TO myfield2

ALTER TABLE nation ALTER COLUMN myfield2 TYPE character (15)
ALTER TABLE nation DROP COLUMN myfield2

5.7 DROP TABLE

(OGR >=1.9.0)

The OGR SQL DROP TABLE command can be used to delete a table. This is only supported on datasources that
declare the ODsCDeleteLayer capability.

DROP TABLE nation

5.8 ExecuteSQL()

SQL is executed against an OGRDataSource (p. ??), not against a specific layer. The call looks like this:

OGRLayer x OGRDataSource::ExecuteSQL(const char xpszSQLCommand,
OGRGeometry *poSpatialFilter,
const char xpszDialect);

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

5.9 Non-OGR SQL 35

The pszDialect argument is in theory intended to allow for support of different command languages against a
provider, but for now applications should always pass an empty (not NULL) string to get the default dialect.

The poSpatialFilter argument is a geometry used to select a bounding rectangle for features to be returned in a
manner similar to the OGRLayer::SetSpatialFilter() (p. ??) method. It may be NULL for no special spatial restric-
tion.

The result of an ExecuteSQL() call is usually a temporary OGRLayer (p.??) representing the results set from
the statement. This is the case for a SELECT statement for instance. The returned temporary layer should be
released with OGRDataSource::ReleaseResultsSet() method when no longer needed. Failure to release it before
the datasource is destroyed may result in a crash.

5.9 Non-OGR SQL

All OGR drivers for database systems: MySQL, PostgreSQL and PostGIS (PG), Oracle (OCI), SQLite, ODBC,
ESRI Personal Geodatabase (PGeo) and MS SQL Spatial (MSSQLSpatial), override the OGRDataSource«
::ExecuteSQL() (p. ??) function with dedicated implementation and, by default, pass the SQL statements directly
to the underlying RDBMS. In these cases the SQL syntax varies in some particulars from OGR SQL. Also, any-
thing possible in SQL can then be accomplished for these particular databases. Only the result of SQL WHERE
statements will be returned as layers.

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

36

OGR SQL

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

Chapter 6

SQLite SQL dialect

Since GDAL/OGR 1.10, the SQLite "dialect" can be used as an alternate SQL dialect to the OGR SQL dialect.
This assumes that GDAL/OGR is built with support for SQLite (>= 3.6), and preferably with Spatialite support
too to benefit from spatial functions.

The SQLite dialect may be used with any OGR datasource, like the OGR SQL dialect. It is available through the
OGRDataSource::ExecuteSQL() (p. ??) method by specifying the pszDialect to "SQLITE". For the ogrinfo or
ogr2ogr utility, you must specify the "-dialect SQLITE" option.

This is mainly aimed to execute SELECT statements, but, for datasources that support update, INSERT/UPDAT «
E/DELETE statements can also be run.

The syntax of the SQL statements is fully the one of the SQLite SQL engine. You can refer to the following pages:

* SELECT documentation
* INSERT documentation
« UPDATE documentation

« DELETE documentation

6.1 SELECT statement

The SELECT statement is used to fetch layer features (analogous to table rows in an RDBMS) with the result of
the query represented as a temporary layer of features. The layers of the datasource are analogous to tables in
an RDBMS and feature attributes are analogous to column values. The simplest form of OGR SQLITE SELECT
statement looks like this:

SELECT x FROM polylayer

More complex statements can of course be used, including WHERE, JOIN, USING, GROUP BY, ORDER BY, sub
SELECT, ...

The table names that can be used are the layer names available in the datasource on which the ExecuteSQL()
method is called.

Similarly to OGRSAQL, it is also possible to refer to layers of other datasources with the following syntax : "other_«
datasource_name"."layer_name".

SELECT p.%, NAME FROM poly p JOIN "idlink.dbf"."idlink" il USING (eas_id)

The column names that can be used in the result column list, in WHERE, JOIN, ... clauses are the field names of
the layers. Expressions, SQLite functions can also be used, spatial functions, etc...

38 SQLite SQL dialect

The conditions on fields expressed in WHERE clauses, or in JOINs are translated, as far as possible, as attribute
filters that are applied on the underlying OGR layers. Joins can be very expensive operations if the secondary table
is not indexed on the key field being used.

6.1.1 Geometry field

The GEOMETRY special field represents the geometry of the feature returned by OGRFeature::GetGeometry«—
Ref() (p. ??). It can be explicitly specified in the result column list of a SELECT, and is automatically selected if the
wildcard is used.

For OGR layers that have a non-empty geometry column name (generally for RDBMS datasources), as returned by
OGRLayer::GetGeometryColumn() (p. ??), the name of the geometry special field in the SQL statement will be
the name of the geometry column of the underlying OGR layer.

SELECT EAS_ID, GEOMETRY FROM poly
returns:
OGRFeature (SELECT) : 0
EAS_ID (Real) = 168
POLYGON ((479819.84375 4765180.5,479690.1875 4765259.5,[...]1,479819.84375 4765180.5)
SELECT * FROM poly
returns:
OGRFeature (SELECT) : 0
AREA (Real) = 215229.266
EAS_ID (Real) = 168

PRFEDEA (String) = 35043411
POLYGON ((479819.84375 4765180.5,479690.1875 4765259.5, [...],479819.84375 4765180.5)

6.1.2 OGR_STYLE special field

The OGR_STYLE special field represents the style string of the feature returned by OGRFeature::GetStyleString()
(p- ??). By using this field and the LIKE operator the result of the query can be filtered by the style. For example we
can select the annotation features as:

SELECT % FROM nation WHERE OGR_STYLE LIKE ’LABEL%’

6.1.3 Spatialite SQL functions

When GDAL/OGR is build with support for the Spatialite library, alot of extra SQL functions, in par-
ticular spatial functions, can be used in results column fields, WHERE clauses, etc....

SELECT EAS_ID, ST_Area(GEOMETRY) AS area FROM poly WHERE
ST_Intersects (GEOMETRY, BuildCircleMbr (479750.6875,4764702.0,100))

returns:

OGRFeature (SELECT) : 0
EAS_ID (Real) = 169
area (Real) = 101429.9765625

OGRFeature (SELECT) : 1
EAS_ID (Real) = 165
area (Real) = 596610.3359375

OGRFeature (SELECT) : 2

EAS_ID (Real) = 170
area (Real) = 5268.8125

6.1.4 OGR datasource SQL functions

The ogr_datasource_load_layers(datasource_name[, update_mode|, prefix]]) function can be used to auto-
matically load all the layers of a datasource as VirtualOGR tables.

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

6.1 SELECT statement 39

sglite> SELECT load_extension(’libgdal.so’);

sglite> SELECT load_extension(’libspatialite.so’);
sglite> SELECT ogr_datasource_load_layers(’poly.shp’);
1

sglite> SELECT * FROM sqglite_master;
table|poly|poly|O0|CREATE VIRTUAL TABLE "poly" USING VirtualOGR(’poly.shp’, 0, ’poly’)

6.1.5 OGR layer SQL functions

The following SQL functions are available and operate on a layer name : ogr_layer_Extent(), ogr_layer_SRID(),
ogr_layer_GeometryType() and ogr_layer FeatureCount()

SELECT ogr_layer_Extent ('poly’), ogr_layer_SRID(’poly’) AS srid,
ogr_layer_GeometryType ('poly’) AS geomtype, ogr_layer_FeatureCount ('poly’) AS count
returns:

OGRFeature (SELECT) : 0

srid (Integer) 40004
geomtype (String) = POLYGON
count (Integer) = 10

POLYGON ((478315.53125 4762880.5,481645.3125 4762880.5,481645.3125 4765610.5,478315.53125 4765610.5,47831
5.53125 4762880.5))

6.1.6 OGR compression functions

ogr_deflate(text_or_blob[, compression_level]) returns a binary blob compressed with the ZLib deflate algo-
rithm. See CPLZLibDeflate() (p. ??)

ogr_inflate(compressed_blob) returns the decompressed binary blob, from a blob compressed with the ZLib
deflate algorithm. If the decompressed binary is a string, use CAST(ogr_inflate(compressed_blob) AS VARCHAR).
See CPLZLiblInflate() (p. ??).

6.1.7 OGR geocoding functions

The following SQL functions are available : ogr_geocode(...) and ogr_geocode_reverse(...).

ogr_geocode(name_to_geocode [, field_to_return [, option1 [, option2, ...]]]) where name_to_geocode is a
literal or a column name that must be geocoded. field_to_return if specified can be "geometry" for the geometry
(default), or a field name of the layer returned by OGRGeocode() (p. ??). The special field "raw" can also be used
to return the raw response (XML string) of the geocoding service. option1, option2, etc.. must be of the key=value
format, and are options understood by OGRGeocodeCreateSession() (p. ??) or OGRGeocode() (p. ??).

This function internally uses the OGRGeocode() (p. ??) API. Refer to it for more details.

SELECT ST_Centroid(ogr_geocode ('Paris’))
returns:
OGRFeature (SELECT) : 0
POINT (2.342878767069653 48.85661793020374)
ogrinfo cities.csv -dialect sglite -sgl "SELECT %, ogr_geocode (city, ’country’) AS country,
ST_Centroid(ogr_geocode (city)) FROM cities"
returns:

OGRFeature (SELECT) : 0

id (Real) =1
city (String) = Paris
country (String) = France métropolitaine

POINT (2.342878767069653 48.85661793020374)

OGRFeature (SELECT) : 1

id (Real) = 2
city (String) = London
country (String) = United Kingdom

POINT (-0.109369427546499 51.500506667319407)

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

40 SQLite SQL dialect

OGRFeature (SELECT) : 2

id (Real) = 3
city (String) = Rennes
country (String) = France métropolitaine

POINT (-1.68185153381778 48.111663929761093)

OGRFeature (SELECT) : 3

id (Real) = 4
city (String) = Strasbourg
country (String) = France métropolitaine

POINT (7.767762859150757 48.571233274141846)

OGRFeature (SELECT) : 4

id (Real) =5
city (String) = New York
country (String) = United States of America

POINT (-73.938140243499049 40.663799577449979

OGRFeature (SELECT) : 5

id (Real) = 6
city (String) = Berlin
country (String) = Deutschland

POINT (13.402306623451983 52.501470321410636)

OGRFeature (SELECT) : 6
id (Real) = 7
city (String) = Beijing
country (String) =
POINT (116.391195 39.9064702)

OGRFeature (SELECT) : 7

id (Real) = 8
city (String) = Brasilia
country (String) = Brasil

POINT (-52.830435216371839 -10.828214867369699

OGRFeature (SELECT) : 8
id (Real) = 9
city (String) = Moscow
country (String) =
POINT (37.367988106866868 55.556208255649558

ogr_geocode_reverse(longitude, latitude, field_to_return [, option1 [, option2, ...]]) where longitude, latitude
is the coordinate to query. field_to_return must be a field name of the layer returned by OGRGeocodeReverse()
(p. ??) (for example 'display_name'). The special field "raw" can also be used to return the raw response (X«
ML string) of the geocoding service. optioni, option2, etc.. must be of the key=value format, and are options
understood by OGRGeocodeCreateSession() (p. ??) or OGRGeocodeReverse() (p. ??).

ogr_geocode_reverse(geometry, field_to_return [, option1 [, option2, ...]]) is also accepted as an alternate
syntax where geometry is a (Spatialite) point geometry.

This function internally uses the OGRGeocodeReverse() (p. ??) API. Refer to it for more details.

6.1.8 Spatialite spatial index

Spatialite spatial index mechanism can be triggered by making sure a spatial index virtual table is mentioned in
the SQL (of the form idx_layername_geometrycolumn), or by using the more recent Spatiallndex from the Virtual«
Spatiallndex extension. In which case, a in-memory RTree will be built to be used to speed up the spatial queries.

For example, a spatial intersection between 2 layers, by using a spatial index on one of the layers to limit the number
of actual geometry intersection computations :

SELECT city_name, region_name FROM cities, regions WHERE
ST_Area (ST_Intersection(cities.geometry, regions.geometry)) > 0 AND
regions.rowid IN (
SELECT pkid FROM idx_regions_geometry WHERE
xmax >= MbrMinX(cities.geometry) AND xmin <= MbrMaxX (cities.geometry) AND
ymax >= MbrMinY (cities.geometry) AND ymin <= MbrMaxY (cities.geometry))

or more elegantly :

SELECT city_name, region_name FROM cities, regions WHERE
ST_Area (ST_Intersection(cities.geometry, regions.geometry)) > 0 AND
regions.rowid IN (

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

6.1 SELECT statement

41

SELECT rowid FROM SpatialIndex WHERE
f_table_name = ’'regions’ AND search_frame

cities.geometry)

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

42

SQLite SQL dialect

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

Chapter 7

OGR Projections Tutorial

7.1 Introduction

The OGRSpatialReference (p.??), and OGRCoordinateTransformation (p. ??) classes provide services to rep-
resent coordinate systems (projections and datums) and to transform between them. These services are loosely
modelled on the OpenGIS Coordinate Transformations specification, and use the same Well Known Text format for
describing coordinate systems.

Some background on OpenGIS coordinate systems and services can be found in the Simple Features for COM, and
Spatial Reference Systems Abstract Model documents available from the Open Geospatial Consortium.
The GeoTIFF Projections Transform List may also be of assistance in understanding formulations of
projections in WKT. The EPSG Geodesy web page is also a useful resource.

7.2 Defining a Geographic Coordinate System

Coordinate systems are encapsulated in the OGRSpatialReference (p. ??) class. There are a number of ways of
initializing an OGRSpatialReference (p. ??) object to a valid coordinate system. There are two primary kinds of
coordinate systems. The first is geographic (positions are measured in long/lat) and the second is projected (such
as UTM - positions are measured in meters or feet).

A Geographic coordinate system contains information on the datum (which implies an spheroid described by a
semi-major axis, and inverse flattening), prime meridian(normally Greenwich), and an angular units type which is
normally degrees. The following code initializes a geographic coordinate system on supplying all this information
along with a user visible name for the geographic coordinate system.

OGRSpatialReference oSRS;

OSRS.SetGeogCS("My geographic coordinate system",
"WGS_1984",
"My WGS84 Spheroid",
SRS_WGS84_SEMIMAJOR, SRS_WGS84_INVFLATTENING,
"Greenwich", 0.0,
"degree", SRS_UA_DEGREE_CONV);

Of these values, the names "My geographic coordinate system", "My WGS84 Spheroid", "Greenwich" and "degree"
are not keys, but are used for display to the user. However, the datum name "WGS_1984" is used as a key to
identify the datum, and there are rules on what values can be used. NOTE: Prepare writeup somewhere on valid
datums!

The OGRSpatialReference (p. ??) has built in support for a few well known coordinate systems, which include
"NAD27", "NAD83", "WGS72" and "WGS84" which can be defined in a single call to SetWellKnownGeogCS().

OSRS.SetWellKnownGeogCS ("WGS84");

Furthermore, any geographic coordinate system in the EPSG database can be set by it's GCS code number if the
EPSG database is available.

44 OGR Projections Tutorial

OSRS.SetWellKnownGeogCS("EPSG:4326");

For serializization, and transmission of projection definitions to other packages, the OpenGIS Well Known Text
format for coordinate systems is used. An OGRSpatialReference (p. ??) can be initialized from well known text, or
converted back into well known text.

char *pszWKT = NULL;

OSRS.SetWellKnownGeogCS ("WGS84");
OoSRS.exportToWkt (&pszWKT) ;
printf("%s\n", pszWKT);

gives something like:

GEOGCS["WGS 84",DATUM["WGS_1984", SPHEROID["WGS 84",6378137,298.257223563,
AUTHORITY["EPSG",7030]],TOwGs84(0,0,0,0,0,0,0],AUTHORITY["EPSG",6326]1,
PRIMEM["Greenwich", 0, AUTHORITY ["EPSG",8901]1],UNIT["DMSH",0.0174532925199433,
AUTHORITY["EPSG",9108]],AXIS["Lat",NORTH],AXIS["Long",EAST],AUTHORITY ["EPSG",
432611

or in more readable form:

GEOGCS ["WGS 84",
DATUM["WGS_1984™",
SPHEROID["WGS 84",6378137,298.257223563,
AUTHORITY ["EPSG", 7030]],

TOwWGS841(0,0,0,0,0,0,07,

AUTHORITY["EPSG", 6326]],
PRIMEM["Greenwich", 0, AUTHORITY ["EPSG", 890111,
UNIT["DMSH",0.0174532925199433, AUTHORITY["EPSG",9108]],
AXIS["Lat",NORTH],

AXIS["Long",EAST],
AUTHORITY["EPSG",4326]]

The OGRSpatialReference::importFromWkt() (p.??) method can be used to set an OGRSpatialReference
(p. ??) from a WKT coordinate system definition.

7.3 Defining a Projected Coordinate System

A projected coordinate system (such as UTM, Lambert Conformal Conic, etc) requires and underlying geographic
coordinate system as well as a definition for the projection transform used to translate between linear positions (in
meters or feet) and angular long/lat positions. The following code defines a UTM zone 17 projected coordinate
system with and underlying geographic coordinate system (datum) of WGS84.

OGRSpatialReference OSRS;

OSRS.SetProjCS("UTM 17 (WGS84) in northern hemisphere.");
OSRS.SetWellKnownGeogCS ("WGS84");
0SRS.SetUTM(17, TRUE);

Calling SetProjCS() sets a user name for the projected coordinate system and establishes that the system is pro-
jected. The SetWellKnownGeogCS() associates a geographic coordinate system, and the SetUTM() call sets de-
tailed projection transformation parameters. At this time the above order is important in order to create a valid
definition, but in the future the object will automatically reorder the internal representation as needed to remain
valid. For now be careful of the order of steps defining an OGRSpatialReference!

The above definition would give a WKT version that looks something like the following. Note that the UTM 17 was
expanded into the details transverse mercator definition of the UTM zone.

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

7.4 Querying Coordinate System 45

PROJCS["UTM 17 (WGS84) in northern hemisphere.",
GEOGCS["WGS 84",

DATUM["WGS_1984",

SPHEROID["WGS 84",6378137,298.257223563,

AUTHORITY["EPSG", 7030]1,

TOwGSs84(0,0,0,0,0,0,07,

AUTHORITY["EPSG", 632611,
PRIMEM["Greenwich", 0, AUTHORITY ["EPSG", 890111,
UNIT["DMSH",0.0174532925199433, AUTHORITY["EPSG",9108]1],
AXIS["Lat",NORTH],

AXIS["Long",EAST],

AUTHORITY ["EPSG",4326]1],
PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin", 0],
PARAMETER["central_meridian",-817,
PARAMETER["scale_factor",0.9996],
PARAMETER["false_easting",500000],
PARAMETER["false_northing",0]]

There are methods for many projection methods including SetTM() (Transverse Mercator), SetLCC() (Lambert Con-
formal Conic), and SetMercator().

7.4 Querying Coordinate System

Once an OGRSpatialReference (p.??) has been established, various information about it can be queried. It
can be established if it is a projected or geographic coordinate system using the OGRSpatialReference::ls«
Projected() (p. ??) and OGRSpatialReference::IsGeographic() (p. ??) methods. The OGRSpatialReference«
::GetSemiMajor() (p. ?2?), OGRSpatialReference::GetSemiMinor() (p. ??) and OGRSpatialReference::Getlnv«—
Flattening() (p. ??) methods can be used to get information about the spheroid. The OGRSpatialReference::
GetAttrValue() (p. ??) method can be used to get the PROJCS, GEOGCS, DATUM, SPHEROID, and PROJECT«+
ION names strings. The OGRSpatialReference::GetProjParm() (p. ??) method can be used to get the projection
parameters. The OGRSpatialReference::GetLinearUnits() (p. ??) method can be used to fetch the linear units
type, and translation to meters.

The following code (from ogr_srs_proj4.cpp) demonstrates use of GetAttrValue() to get the projection, and GetProj«
Parm() to get projection parameters. The GetAttrValue() method searches for the first "value" node associated with
the named entry in the WKT text representation. The #define'ed constants for projection parameters (such as S«
RS_PP_CENTRAL_MERIDIAN) should be used when fetching projection parameter with GetProjParm(). The code
for the Set methods of the various projections in ogrspatialreference.cpp can be consulted to find which parameters
apply to which projections.

const char xpszProjection = poSRS->GetAttrValue ("PROJECTION");

(pszProjection == NULL)
{
(poSRS->IsGeographic ()
sprintf (szProjd4+strlen(szProj4), "+proj=longlat ");

sprintf (szProj4+strlen(szProj4), "unknown ");
(EQUAL (pszProjection, SRS_PT_CYLINDRICAL_EQUAL_AREA))

sprintf (szProjd+strlen(szProj4),

"+proj=cea +lon_0=%.9f +lat_ts=%.9f +x_0=%.3f +y_0=%.3f ",
PoSRS->GetProjParm (SRS_PP_CENTRAL_MERIDIAN,0.0),
PoSRS—>GetProjParm(SRS_PP_STANDARD_PARALLEL_1,0.0),
POSRS->GetProjParm(SRS_PP_FALSE_EASTING,0.0),
POSRS->GetProjParm (SRS_PP_FALSE_NORTHING, 0.0));

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

46 OGR Projections Tutorial

7.5 Coordinate Transformation

The OGRCoordinateTransformation (p. ??) class is used for translating positions between different coordinate
systems. New transformation objects are created using OGRCreateCoordinateTransformation() (p. ??), and then
the OGRCoordinateTransformation::Transform() (p. ??) method can be used to convert points between coordi-
nate systems.

OGRSpatialReference oSourceSRS, oTargetSRS;
OGRCoordinateTransformation xpoCT;
double X, Vi

oSourceSRS.importFromEPSG(atoi (papszArgv([i+l]

+1)
oTargetSRS.importFromEPSG(atoi (papszArgv[i+2]

)
))

7
7

poCT = OGRCreateCoordinateTransformation(&oSourceSRS,

&oTargetSRS);
x = atof (papszArgv[i+3]);
y = atof (papszArgv[i+4]);
(poCT == NULL || !poCT->Transform(1, &x, &y))

printf("Transformation failed.\n")

printf("(%£,%f) -> (%£f,%£f)\n"
atof (papszArgv[i+3]),
atof (papszArgv[i+4]),
X, ¥)i

There are a couple of points at which transformations can fail. First, OGRCreateCoordinateTransformation()
(p. ??) may fail, generally because the internals recognise that no transformation between the indicated systems
can be established. This might be due to use of a projection not supported by the internal PROJ.4 library, differing
datums for which no relationship is known, or one of the coordinate systems being inadequately defined. If OGR+«
CreateCoordinateTransformation() (p. ??) fails it will return a NULL.

The OGRCoordinateTransformation::Transform() (p. ??) method itself can also fail. This may be as a delayed
result of one of the above problems, or as a result of an operation being numerically undefined for one or more of
the passed in points. The Transform() function will return TRUE on success, or FALSE if any of the points fail to
transform. The point array is left in an indeterminate state on error.

Though not shown above, the coordinate transformation service can take 3D points, and will adjust elevations for
elevation differents in spheroids, and datums. At some point in the future shifts between different vertical datums
may also be applied. If no Z is passed, it is assume that the point is on the geoide.

The following example shows how to conveniently create a lat/long coordinate system using the same geographic
coordinate system as a projected coordinate system, and using that to transform between projected coordinates
and lat/long.

OGRSpatialReference oUTM, =poLatLong;
OGRCoordinateTransformation *poTransform;

oUTM. SetProjCS("UTM 17 / WGS84");

oUTM. SetWellKnownGeogCS ("WGS84");

oUTM. SetUTM(17);

poLatLong = oUTM.CloneGeogCS () ;

poTransform = OGRCreateCoordinateTransformation(&oUTM, poLatLong);
(poTransform == NULL

{

}

if(!poTransform->Transform(nPoints, x, y, z))

7.6 Alternate Interfaces

A C interface to the coordinate system services is defined in ogr_srs_api.h (p. ??), and Python bindings are avail-
able via the osr.py module. Methods are close analogs of the C++ methods but C and Python bindings are missing
for some C++ methods.

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

7.6 Alternate Interfaces 47

C Bindings

typedef void xOGRSpatialReferenceH;
typedef void xOGRCoordinateTransformationH;

OGRSpatialReferenceH OSRNewSpatialReference(const char %);

void OSRDestroySpatialReference (OGRSpatialReferenceH);
int OSRReference (OGRSpatialReferenceH);
int OSRDereference (OGRSpatialReferenceH);

OGRErr OSRImportFromEPSG(OGRSpatialReferenceH, int);
OGRErr OSRImportFromWkt (OGRSpatialReferenceH, char #*x);
OGRErr OSRExportToWkt (OGRSpatialReferenceH, char *x);

OGRErr OSRSetAttrValue(OGRSpatialReferenceH hSRS, const char x pszNodePath,
const char * pszNewNodeValue);
const char xOSRGetAttrValue(OGRSpatialReferenceH hSRS,
const char x pszName, int iChild);

OGRErr OSRSetLinearUnits(OGRSpatialReferenceH, const char %, double);
double OSRGetLinearUnits(OGRSpatialReferenceH, char *x);

int OSRIsGeographic (OGRSpatialReferenceH);

int OSRIsProjected(OGRSpatialReferenceH);

int OSRIsSameGeogCS (OGRSpatialReferenceH, OGRSpatialReferenceH);
int OSRIsSame (OGRSpatialReferenceH, OGRSpatialReferenceH);

OGRErr OSRSetProjCS(OGRSpatialReferenceH hSRS, const char % pszName);
OGRErr OSRSetWellKnownGeogCS(OGRSpatialReferenceH hSRS,
const char x pszName);

OGRErr OSRSetGeogCS(OGRSpatialReferenceH hSRS,
const char x pszGeogName,
const char * pszDatumName,
const char * pszEllipsoidName,
double dfSemiMajor, double dfInvFlattening,
const char x pszPMName
double dfPMOffset ,
const char * pszUnits,
double dfConvertToRadians);

double OSRGetSemiMajor (OGRSpatialReferenceH, OGRErr x);
double OSRGetSemiMinor (OGRSpatialReferenceH, OGRErr *);
double OSRGetInvFlattening(OGRSpatialReferenceH, OGRErr x);

OGRErr OSRSetAuthority(OGRSpatialReferenceH hSRS,
const char x pszTargetKey,
const char » pszAuthority,
int nCode);
OGRErr OSRSetProjParm(OGRSpatialReferenceH, const char %, double);
double OSRGetProjParm(OGRSpatialReferenceH hSRS,
const char x pszParmName,
double dfDefault,
OGRErr =);

OGRErr OSRSetUTM(OGRSpatialReferenceH hSRS, int nZone, int bNorth);
int OSRGetUTMZone (OGRSpatialReferenceH hSRS, int xpbNorth);

OGRCoordinateTransformationH

OCTNewCoordinateTransformation(OGRSpatialReferenceH hSourceSRS,
OGRSpatialReferenceH hTargetSRS) ;

void OCTDestroyCoordinateTransformation(OGRCoordinateTransformationH);

int OCTTransform(OGRCoordinateTransformationH hCT,
int nCount, double xx, double xy, double %z);

Python Bindings

class osr.SpatialReference
def __init__ (self,obj=None):
def ImportFromWkt (self, wkt):
def ExportToWkt (self):
def ImportFromEPSG (self,code):
def IsGeographic(self):
def IsProjected(self):
def GetAttrValue(self, name, child = 0):
def SetAttrValue(self, name, value):
def SetWellKnownGeogCS (self, name):
def SetProjCS(self, name = "unnamed"):
def IsSameGeogCS (self, other):
def IsSame (self, other):
def SetLinearUnits(self, units_name, to_meters):
def SetUTM(self, zone, is_north = 1):

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

48 OGR Projections Tutorial

class CoordinateTransformation:
def __init__ (self, source,target):
def TransformPoint (self, x, y, z = 0):
def TransformPoints(self, points):

7.7 Internal Implementation

The OGRCoordinateTransformation (p. ??) service is implemented on top of the PROJ . 4 library originally written
by Gerald Evenden of the USGS.

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

Chapter 8

Deprecated List

See also
globalScope> Member OGR_G_GetArea (p. ??) (OGRGeometryH) CPL_WARN_DEPRECATED("Non stan-

dard method. Use OGR_G_Area() instead")
OGR_G_Area() (p.??)
globalScope> Member OGR_G_GetBoundary (p.??) (OGRGeometryH) CPL_WARN_DEPRECATED("Non
standard method. Use OGR_G_Boundary() instead")

globalScope> Member OGR_G_SymmetricDifference (p. ??) (OGRGeometryH, OGRGeometryH) CPL_W
ARN_DEPRECATED("Non standard method. Use OGR_G_SymbDifference() instead")

Member OGRGeometry::getBoundary (p. ??) () const CPL_WARN_DEPRECATED("Non standard method.
Use Boundary() instead™)

Member OGRGeometry::SymmetricDifference (p. ??) (const OGRGeometry (p. ??) x) const CPL_WARN_«
DEPRECATED("Non standard method. Use SymDifference() instead")

Member OGRLayer::GetInfo (p. ??) (const char x)

Member OGRSpatialReference::importFromOzi (p. ??) (const char x, const char %, const char x)
Use importFromOzi(const char * constx papszLines) (p. ??) instead

Member OGRSpatialReference::~OGRSpatialReference (p. ??) ()

50

Deprecated List

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

Chapter 9

Hierarchical Index

9.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

_CPLHashSet e e
CCPLLISt . . . e e e e
_CPLQuUAadTIEE o o e e e e
_CPLSpawnedProcess o e
_MutexLinkedElt L e e
_OGRGeocodingSessionHS L
“QuadTreeNode
_sPolyExtended L
CachedConnection e e e e
CachedDirList e e e
CachedFileProp e e
CachedRegion e e
CPLErrorContext e e e e e
CPLHTTPResUlt e e e
CPLKeywordParser e
CPLLocaleC e e e e
CPLMIimePart e e e e
CPLMutexHolder e e e e
CPLODBCDriverlnstaller e e e e e
CPLODBGCSESSION o e e e e e e e e
CPLODBCStatement e e
CPLRectObj e
CPLSharedFilelnfo e e e
CPLSharedFilelnfoExtra e e e e
CPLStdCallThreadInfo e e e
CPLStringList e e
CPLXMLNoOdE e e e e e e

curfile_info L e
DefaultCSVFileNameTLS e e e
errHandler L e e e
file_in_zip_read_info_s L
FindFileTLS e e e e e
GDALScaledProgressinfo
GZipSnapshot o e
linkedlist_data_s e e e e
linkedlist_datablock_internal_s L

??
??
??
??
??
??
??
??
??
??
??
??
??
??
?2?
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??

52

Hierarchical Index

OGR_SRSNoOde e e e ?2?
ogr_style_param L e e e ??
ogr_style_value e ??
OGRALtrindex o ??
OGRMIAttrIndex o o o e ??
OGRCoordinateTransformation e 2?
OGRProjdCT . . . e e ??
OGRDataSource e e ??
OGRMutexedDataSource o e e ??
OGRENVEIOpEe e e e ?2?
OGRENVEIOpe3D e e ??
OGRFeature ??
OGRFeatureDefn e ??
OGRFeatureQuUEery o e e e 2?
OGRField e e ?2?
OGRFieldDefn e ?2?
OGRGeometry e e ??
OGRCUIVE e ??
OGRLINeString o e ?2?
OGRLinearRing ?2?
OGRGeometryCollection e ?2?
OGRMURILINeString o ??
OGRMultiPoint e ?2?
OGRMuUltiPolygon e e ??
OGRPoINt e ?2?
OGRSUIface e e e e e ??
OGRPolygon e e ??
OGRGeometryFactory o e ??
OGRGeomFieldDefn ??
OGRGenSQLGeomFieldDefn e ?2?
OGRUnionLayerGeomFieldDefn ??
OGRLayer e e ??
OGRADbstractProxiedLayer e e e 2?
OGRProxiedLayer o e e e ??
OGRGenSQLResultsLayer e 2?
OGRLayerDecorator e e ??
OGRMutexedLayer e e ??
OGRWarpedLayer e e e e ??
OGRUNIoNLayer e e e e e ??
OGRLayerAttrindex e e e ?2?
OGRMILayerAttrindex o e ?2?
OGRLayerPool ??
OGRProjdDatum e e e e e ??
OGRProjdPM 2?
OGRRawPoint e e ?2?
OGRSFDriver e e ?2?
OGRSFDriverRegistrar o e ??
OGRSpatialReference e ??
OGRStyleMgr e e ??
OGRStyleTable e e e ?2?
OGRStyleTool e ??
OGRStyleBrush e ??
OGRStyleLabel e ?2?
OGRStylePen e ?2?
OGRStyleSymbol e ?2?

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

9.1 Class Hierarchy

oSsr_cs_wkt_parse_context e
osr_cs_WKt tokens L e e e
ParseContext L e e e e e e
PCIDatums e e e e e e
ProjUV . . e
RingBuffer e
SFRegION e e
StackContext L e e
string
CPLSHring o o e e

swg_coldef e
SWO_EXPr_NOOE o o e e e e e e e e
swqa_field _list e
swa_join_def L e
swa_op_registrar
SWO_operation e e
swg_order_defo e
SWO_PArse_CONtEXt e e e e e e e e e e e
swa_select
SWO_SUMMAIY . . o . v o v e v e e e e e e e e e e e e e e e e e
swg_table_def L e
IM_UNZ_S . . . o e e e e e
IM_ZID S . . .
unz_file_info_internal_s L e
unz_file_info_s L e e
unz_file_poS_S e e
unz_global_info_s e e e e
UNZ_S o o ot e e e e e e e
VSIArchiveContent e
VSIArchiveENtry o e
VSIArchiveEntryFileOffset e

VSITarEntryFileOffset o
VSIZipEntryFileOffset e

VSIArchiveReader e e e e e

VSITarReader e e e e e
VSIZipReader e

VSICacheChunk o e
VSIDIR e e
VSIFileManager e e
VSIFilesystemHandler e
VSIArchiveFilesystemHandler L
VSITarFilesystemHandler e
VSIZipFilesystemHandler
VSICurlFilesystemHandler
VSICurlStreamingFSHandler L
VSIGZipFilesystemHandler
VSIMemFilesystemHandler L
VSISparseFileFilesystemHandler L
VSIStdinFilesystemHandler L
VSIStdoutFilesystemHandler e
VSIStdoutRedirectFilesystemHandler
VSISubFileFilesystemHandler L
VSIUnixStdioFilesystemHandler. L

VSIMemFile e e e
VSIReadDirRecursiveTask e
VSIVirtualHandle e e e

VSIBufferedReaderHandle

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

54 Hierarchical Index
VSICachedFile ?2?
VSICurlHandle ??
VSICurlStreamingHandle e ??
VSIGZipHandle e e e ??
VSIGZipWriteHandle e ??
VSIMemHandle L e e e e ??
VSISparseFileHandle ??
VSIStdinHandle e ??
VSIStdoutHandle e e ??
VSIStdoutRedirectHandle L e 2?
VSISubFileHandle e e ?2?
VSIUnixStdioHandle e e ?2?
VSIZipWriteHandle e e e ??

WriteFuncStruct e ??
yyalloC . . . ??
zip_fileinfo ??
zip_internal L ??
zlib_filefunc_def s L e ??

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

Chapter 10

Class Index

10.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

_CPLHashSet
_CPLList
_CPLQuadTree
_CPLSpawnedProcess .
_MutexLinkedEIt

_OGRGeocodingSessionHS

_QuadTreeNode
_sPolyExtended
CachedConnection . . .
CachedDirList
CachedFileProp
CachedRegion
CPLErrorContext
CPLHTTPResult
CPLKeywordParser . . .
CPLLocaleC
CPLMimePart
CPLMutexHolder
CPLODBCDriverinstaller
CPLODBCSession
CPLODBCStatement . .
CPLRectObj
CPLSharedFilelnfo . . .
CPLSharedFilelnfoExtra

CPLStdCallThreadinfo .
CPLString

Convenient string class based on std:istringo oo

CPLStringList

String list class designed around our use of C "charsx" string lists

CPLXMLNode
CPLZip
ctb
curfile_info
DefaultCSVFileNameTLS

errHandler
file_in_zip_read_info_s .
FindFileTLS
GDALScaledProgressinfo

??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??

??

??
??
??
??
??
??
??
??
??
??

56

Class Index

GZipSnapshot
linkedlist data s

linkedlist_datablock_internal_s

OGR_SRSNode
ogr_style_param
ogr_style value
OGRADbstractProxiedLayer . . .
OGRAttrindex

OGRCoordinateTransformation

OGRCurve
OGRDataSource
OGREnvelope
OGREnvelope3D
OGRFeature
OGRFeatureDefn
OGRFeatureQuery
OGRField
OGRFieldDefn
OGRGenSQLGeomFieldDefn . .
OGRGenSQLResultsLayer . . .
OGRGeometry
OGRGeometryCollection
OGRGeometryFactory
OGRGeomFieldDefn
OGRLayer
OGRLayerAttrindex
OGRLayerDecorator
OGRLayerPool
OGRLinearRing
OGRLineString
OGRMIAttrindex
OGRMILayerAttrindex
OGRMultiLineString
OGRMultiPoint
OGRMultiPolygon
OGRMutexedDataSource
OGRMutexedLayer
OGRPoint
OGRPolygon
OGRProjdCT
OGRProj4dDatum
OGRProjdPM
OGRProxiedLayer
OGRRawPoint
OGRSFDriver
OGRSFDriverRegistrar
OGRSpatialReference
OGRStyleBrush
OGRStyleLabel
OGRStyleMgr
OGRStylePen
OGRStyleSymbol
OGRStyleTable
OGRStyleTool
OGRSurface
OGRUnionLayer

OGRUnionLayerGeomFieldDefn

OGRWarpedLayer

??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

10.1 Class List

57

osr_cs_wkt_parse_context
osr cs_wkt tokens
ParseContext
PCIDatums
projuv.
RingBuffer
SFRegion
StackContext
swqg_col_def
swqg_expr_node
swq_field list
swq_join_def
swq_op_registrar
swq_operation
swqg_order def
swq_parse_context
swq_select
swg_summary
swq_table def
tmunzs,
tm_zip.s
unz_file_info_internal_s
unz_file_info_s
unz_file pos s
unz_global_info_s
UNZ_S . . . o o e e
VSIArchiveContent
VSIArchiveEntry
VSIArchiveEntryFileOffset
VSIArchiveFilesystemHandler
VSIArchiveReader
VSIBufferedReaderHandle
VSICacheChunk
VSICachedFile
VSICurlFilesystemHandler
VSICurlHandle
VSICurlStreamingFSHandler
VSICurlStreamingHandle
VSIDIR
VSIFileManager
VSIFilesystemHandler
VSIGZipFilesystemHandler
VSIGZipHandle
VSIGZipWriteHandle
VSIMemFile
VSIMemFilesystemHandler
VSIMemHandle
VSIReadDirRecursiveTask
VSISparseFileFilesystemHandler . . .
VSISparseFileHandle
VSIStdinFilesystemHandler
VSIStdinHandle
VSIStdoutFilesystemHandler
VSIStdoutHandle
VSIStdoutRedirectFilesystemHandler
VSIStdoutRedirectHandle
VSISubFileFilesystemHandler
VSISubFileHandle

??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
?2?
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

58 Class Index
VSITarEntryFileOffset ?2?
VSITarFilesystemHandler ??
VSITarReader e e e ??
VSIUnixStdioFilesystemHandler ??
VSIUnixStdioHandle ??
VSIVirtualHandle L ??
VSIZipEntryFileOffset ??
VSIZipFilesystemHandler ??
VSIZipReader ??
VSIZipWriteHandle e ??
WriteFuncStruct ??
yyalloc e ?2?
zip_fileinfo ??
zip_internal L e ??
zlib_filefunc_def s e ??

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

Chapter 11

File Index

11.1 File List

Here is a list of all documented files with brief descriptions:

cpl_atomic_ops.h
cpl_config.h
cpl_config_extras.h
cpl_conv.h e
cpl_csv.h . . e
cpl_error.h . . . e
cpl_hash_set.h
cpl_http.h . . .
cpl_list.h
cpl_minixmLh
cpl_minizip_ioapi.h
cpl_minizip_unzip.h
cpl_minizip_zip.h
cpl_multiproc.h
cpl_odbc.h e
cpl_port.h e
cpl_progress.h L
cpl_quad_tree.h L
cplspawn.h e
cpl_string.h
cpl_time.h e
cpl_virtualmem.h e
cplovsi.h . . e e
cplvsi_virtual.h
cplvsil_curl_privh
cpl_win32ce_api.h
cpl_wince.h L
cplkeywordparser.h L L
gdal_csv.h e
ogr api.h e
ogr attrind.h
ogr_core.h . . L
ogr expat.h
ogr feature.h L
ogr_featurestyle.h
ogr_gensqgl.h
ogr_geocoding.h
ogr_geometry.h L

??
??
??
??
??
??
??
??
??
??
??
??
??
??
?2?
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??

60

File Index

ogr geos.h L e ?2?
ogr_pP.h . . e ??
ogr_spatialref.h ??
ogr_srs_api.h ??
ogr_srs_esri_names.h ?2?
ogrgeomediageometry.h L ??
ogrlayerdecorator.h ??
ogrlayerpool.h L ??
ogrmutexeddatasource.h ??
ogrmutexedlayer.h ??
ogrpgeogeometry.h L ?2?
ogrsf_frmts.h ?2?
ogrunionlayer.h L ??
ogrwarpedlayer.h ??
osr cs_wkth L ??
osr_cs_wkt_parser.h ??
SWA.h . ??

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

Chapter 12

Class Documentation

12.1 _CPLHashSet Struct Reference

The documentation for this struct was generated from the following file:

» cpl_hash_set.cpp

12.2 CPLList Struct Reference

#include <cpl_list.h>

Public Attributes

« void x pData
« struct _CPLList x psNext

12.2.1 Detailed Description

List element structure.

12.2.2 Member Data Documentation
12.2.2.1 voidx _CPLList::pData

Pointer to the data object. Should be allocated and freed by the caller.

Referenced by CPLHashSetDestroy(), CPLHashSetForeach(), CPLHashSetRemove(), CPLListAppend(), CPL+

ListGetData(), and CPLListInsert().

12.2.2.2 struct _CPLListx _CPLList::psNext

Pointer to the next element in list. NULL, if current element is the last one.

Referenced by CPLHashSetDestroy(), CPLHashSetForeach(), CPLHashSetRemove(), CPLListAppend(), CPL«
ListCount(), CPLListDestroy(), CPLListGet(), CPLListGetLast(), CPLListGetNext(), CPLListInsert(), and CPLList«

Remove().

The documentation for this struct was generated from the following file:

62

Class Documentation

» cpl_list.h

12.3 _CPLQuadTree Struct Reference

The documentation for this struct was generated from the following file:

» cpl_quad_tree.cpp

12.4 _CPLSpawnedProcess Struct Reference

The documentation for this struct was generated from the following file:

* cpl_spawn.cpp

12.5 _MutexLinkedElt Struct Reference

The documentation for this struct was generated from the following file:

» cpl_multiproc.cpp

12.6 _OGRGeocodingSessionHS Struct Reference

The documentation for this struct was generated from the following file:

* ogr_geocoding.cpp

12.7 _QuadTreeNode Struct Reference

The documentation for this struct was generated from the following file:

» cpl_quad_tree.cpp

12.8 _sPolyExtended Struct Reference

The documentation for this struct was generated from the following file:

- ogrgeometryfactory.cpp

12.9 CachedConnection Struct Reference

The documentation for this struct was generated from the following file:

« cpl_vsil_curl.cpp

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

12.10 CachedDirList Struct Reference

63

12.10 CachedDirList Struct Reference

The documentation for this struct was generated from the following file:

» cpl_vsil_curl.cpp

12.11 CachedFileProp Struct Reference

The documentation for this struct was generated from the following files:

» cpl_vsil_curl.cpp
+ cpl_vsil_curl_streaming.cpp

12.12 CachedRegion Struct Reference

The documentation for this struct was generated from the following file:

» cpl_vsil_curl.cpp

12.13 CPLErrorContext Struct Reference

The documentation for this struct was generated from the following file:

 cpl_error.cpp

12.14 CPLHTTPResult Struct Reference

#include <cpl_http.h>

Public Attributes

* int nStatus

 char x pszContentType

* char * pszErrBuf

+ int nDataLen

- GByte * pabyData

» char xx papszHeaders

+ int nMimePartCount

* CPLMimePart « pasMimePart

12.14.1 Detailed Description

Describe the result of a CPLHTTPFetch() (p. ??) call

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

64 Class Documentation

12.14.2 Member Data Documentation
12.14.2.1 int CPLHTTPResult::nDataLen

Length of the pabyData buffer
Referenced by CPLHTTPFetch(), CPLHTTPParseMultipartMime(), and OGRSpatialReference::importFromUrl().

12.14.2.2 int CPLHTTPResult::nMimePartCount

Number of parts in a multipart message

Referenced by CPLHTTPDestroyResult(), and CPLHTTPParseMultipartMime().

12.14.2.3 int CPLHTTPResult::nStatus

cURL error code : O=success, non-zero if request failed

Referenced by CPLHTTPFetch(), and OGRSpatialReference::importFromuUrl().

12.14.2.4 GBytex CPLHTTPResult::pabyData

Buffer with downloaded data

Referenced by CPLHTTPDestroyResult(), CPLHTTPParseMultipartMime(), GOA2GetAccessToken(), GOA2Get«—
RefreshToken(), and OGRSpatialReference::importFromUrl().

12.14.2.5 charxx CPLHTTPResult::papszHeaders

Headers returned

Referenced by CPLHTTPDestroyResult(), and CPLHTTPFetch().

12.14.2.6 CPLMimePartx CPLHTTPResult::pasMimePart

Array of parts (resolved by CPLHTTPParseMultipartMime() (p. ??))
Referenced by CPLHTTPDestroyResult(), and CPLHTTPParseMultipartMime().

12.14.2.7 charx CPLHTTPResult::pszContentType

Content-Type of the response

Referenced by CPLHTTPDestroyResult(), CPLHTTPFetch(), and CPLHTTPParseMultipartMime().

12.14.2.8 charx CPLHTTPResult::pszErrBuf

Error message from curl, or NULL

Referenced by CPLHTTPDestroyResult(), CPLHTTPFetch(), GOA2GetAccessToken(), GOA2GetRefreshToken(),
and OGRSpatialReference::importFromUrl().

The documentation for this struct was generated from the following file:

» cpl_http.h

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

12.15 CPLKeywordParser Class Reference

65

12.15 CPLKeywordParser Class Reference

The documentation for this class was generated from the following files:

 cplkeywordparser.h
» cplkeywordparser.cpp

12.16 CPLLocaleC Class Reference

The documentation for this class was generated from the following files:
» cpl_conv.h

« cpl_conv.cpp

12.17 CPLMimePart Struct Reference

#include <cpl_http.h>

Public Attributes

» char xx papszHeaders
+ GByte * pabyData
« int nDataLen

12.17.1 Detailed Description

Describe a part of a multipart message

12.17.2 Member Data Documentation
12.17.2.1 int CPLMimePart::nDataLen

Buffer length

Referenced by CPLHTTPParseMultipartMime().
12.17.2.2 GBytex CPLMimePart::pabyData

Buffer with data of the part

Referenced by CPLHTTPParseMultipartMime().
12.17.2.3 charxx CPLMimePart::papszHeaders

NULL terminated array of headers

Referenced by CPLHTTPDestroyResult(), and CPLHTTPParseMultipartMime().

The documentation for this struct was generated from the following file:

» cpl_http.h

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

66 Class Documentation

12.18 CPLMutexHolder Class Reference

The documentation for this class was generated from the following files:

« cpl_multiproc.h
* cpl_multiproc.cpp

12.19 CPLODBCDriverinstaller Class Reference

#include <cpl_odbc.h>

Public Member Functions
« int InstallDriver (const char xpszDriver, const char *xpszPathin, WORD fRequest=ODBC_INSTALL_COM«
PLETE)
+ int RemoveDriver (const char xpszDriverName, int fRemoveDSN=0)

12.19.1 Detailed Description

A class providing functions to install or remove ODBC driver.

12.19.2 Member Function Documentation

12.19.2.1 int CPLODBCDriverinstaller::InstallDriver (const char « pszDriver, const char x pszPathin, WORD fRequest =
ODBC_INSTALI_COMPLETE)

Installs ODBC driver or updates definition of already installed driver. Interanally, it calls ODBC's SQLInstallDriverEx
function.

Parameters

pszDriver | - The driver definition as a list of keyword-value pairs describing the driver (See ODBC API
Reference).

pszPathin | - Full path of the target directory of the installation, or a null pointer (for unixODBC, NULL is
passed).

fRequest | - The fRequest argument must contain one of the following values: ODBC_INSTALL_C+
OMPLETE - (default) complete the installation request ODBC_INSTALL_INQUIRY - inquire
about where a driver can be installed

Returns

TRUE indicates success, FALSE if it fails.

References CPLDebug(), and CPLMalloc().

12.19.2.2 int CPLODBCDriverInstaller::RemoveDriver (const char x pszDriverName, int fRemoveDSN =0)

Removes or changes information about the driver from the Odbcinst.ini entry in the system information.

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

12.20 CPLODBCSession Class Reference 67

Parameters

pszDriverName | - The name of the driver as registered in the Odbcinst.ini key of the system information.

fRemoveDSN | - TRUE: Remove DSNs associated with the driver specified in IpszDriver. FALSE: Do not
remove DSNs associated with the driver specified in IpszDriver.

Returns

The function returns TRUE if it is successful, FALSE if it fails. If no entry exists in the system information when
this function is called, the function returns FALSE. In order to obtain usage count value, call GetUsageCount().

The documentation for this class was generated from the following files:

» cpl_odbc.h
» cpl_odbc.cpp

12.20 CPLODBCSession Class Reference

#include <cpl_odbc.h>

Public Member Functions

« int EstablishSession (const char xpszDSN, const char xpszUserid, const char xpszPassword)
+ const char x GetLastError ()

12.20.1 Detailed Description

A class representing an ODBC database session.

Includes error collection services.

12.20.2 Member Function Documentation
12.20.2.1 int CPLODBCSession::EstablishSession (const char « pszDSN, const char « pszUserid, const char x pszPassword)

Connect to database and logon.

Parameters

pszDSN | The name of the DSN being used to connect. This is not optional.

pszUserid | the userid to logon as, may be NULL if not not required, or provided by the DSN.

pszPassword | the password to logon with. May be NULL if not required or provided by the DSN.

Returns

TRUE on success or FALSE on failure. Call GetLastError() (p. ??) to get details on failure.

References CPLDebug(), and GetLastError().

12.20.2.2 const char x CPLODBCSession::GetLastError ()

Returns the last ODBC error message.

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

68 Class Documentation

Returns

pointer to an internal buffer with the error message in it. Do not free or alter. Will be an empty (but not NULL)
string if there is no pending error info.

Referenced by EstablishSession(), and CPLODBCStatement::Fetch().

The documentation for this class was generated from the following files:

» cpl_odbc.h
+ cpl_odbc.cpp

12.21 CPLODBCStatement Class Reference

#include <cpl_odbc.h>

Public Member Functions

« void Clear ()

« void AppendEscaped (const char)

« void Append (const char x)

+ void Append (int)

« void Append (double)

« int Appendf (const char x,...)

« int ExecuteSQL (const char x=0)

« int Fetch (int nOrientation=SQL_FETCH_NEXT, int nOffset=0)

* int GetColCount ()

+ const char x GetColName (int)

+ short GetColType (int)

+ const char x GetColTypeName (int)

+ short GetColSize (int)

+ short GetColPrecision (int)

+ short GetColNullable (int)

« int GetColld (const char *)

» const char x GetColData (int, const char x=0)

» const char x GetColData (const char %, const char *=0)

+ int GetColumns (const char xpszTable, const char xpszCatalog=0, const char xpszSchema=0)
+ int GetPrimaryKeys (const char xpszTable, const char xpszCatalog=0, const char xpszSchema=0)
+ int GetTables (const char xpszCatalog=0, const char xpszSchema=0)
+ void DumpResult (FILE fp, int bShowSchema=0)

Static Public Member Functions
« static CPLString GetTypeName (int)
« static SQLSMALLINT GetTypeMapping (SQLSMALLINT)

12.21.1 Detailed Description

Abstraction for statement, and resultset.

Includes methods for executing an SQL statement, and for accessing the resultset from that statement. Also pro-
vides for executing other ODBC requests that produce results sets such as SQLColumns() and SQLTables() re-
quests.

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

12.21 CPLODBCStatement Class Reference

69

12.21.2 Member Function Documentation
12.21.2.1 void CPLODBCStatement::Append (const char x pszText)

Append text to internal command.
The passed text is appended to the internal SQL command text.

Parameters

pszText | text to append.

Referenced by Append(), AppendEscaped(), Appendf(), and ExecuteSQL().

12.21.2.2 void CPLODBCStatement::Append (int nValue)

Append to internal command.

The passed value is formatted and appended to the internal SQL command text.

Parameters

nValue \ value to append to the command.

References Append().

12.21.2.3 void CPLODBCStatement::Append (double dfValue)

Append to internal command.

The passed value is formatted and appended to the internal SQL command text.

Parameters

dfValue \ value to append to the command.

References Append().

12.21.2.4 void CPLODBCStatement::AppendEscaped (const char x pszText)

Append text to internal command.

The passed text is appended to the internal SQL command text after escaping any special characters so it can be

used as a character string in an SQL statement.

Parameters

pszText | text to append.

References Append().

12.21.2.5 int CPLODBCStatement::Appendf (const char x pszFormat, ...)

Append to internal command.

The passed format is used to format other arguments and the result is appended to the internal command text.

Long results may not be formatted properly, and should be appended with the direct Append() (p. ??) methods.

Parameters

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

70 Class Documentation

pszFormat \ printf() style format string.

Returns

FALSE if formatting fails dueto result being too large.

References Append().

12.21.2.6 void CPLODBCStatement::Clear ()

Clear internal command text and result set definitions.
References CSLDestroy().
Referenced by ExecuteSQL().

12.21.2.7 void CPLODBCStatement::DumpResult (FILE x fp, int bShowSchema =0)

Dump resultset to file.

The contents of the current resultset are dumped in a simply formatted form to the provided file. If requested, the
schema definition will be written first.

Parameters

fo | the file to write to. stdout or stderr are acceptable.

bShowSchema | TRUE to force writing schema information for the rowset before the rowset data itself. Default
is FALSE.

References Fetch(), GetColCount(), GetColData(), GetColName(), GetColNullable(), GetColPrecision(), GetCol«
Size(), GetColType(), and GetTypeName().

12.21.2.8 int CPLODBCStatement::ExecuteSQL (const char x pszStatement = 0)

Execute an SQL statement.

This method will execute the passed (or stored) SQL statement, and initialize information about the resultset if there
is one. If a NULL statement is passed, the internal stored statement that has been previously set via Append()
(p. ??) or Appendf() (p. ??) calls will be used.

Parameters

] pszStatement \ the SQL statement to execute, or NULL if the internally saved one should be used.

Returns
TRUE on success or FALSE if there is an error. Error details can be fetched with OGRODBCSession::Get«
LastError().

References Append(), and Clear().

12.21.2.9 int CPLODBCStatement::Fetch (int nOrientation = SQI._ FETCH_NEXT, int nOffset=0)

Fetch a new record.

Requests the next row in the current resultset using the SQLFetchScroll() call. Note that many ODBC drivers
only support the default forward fetching one record at a time. Only SQL_FETCH_NEXT (the default) should be
considered reliable on all drivers.

Currently it isn't clear how to determine whether an error or a normal out of data condition has occured if Fetch()
(p. 2?) fails.

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

12.21 CPLODBCStatement Class Reference 71

Parameters

nOrientation | One of SQL_FETCH_NEXT, SQL_FETCH_LAST, SQL_FETCH_PRIOR, SQL_FETCH_A«
BSOLUTE, or SQL_FETCH_RELATIVE (default is SQL_FETCH_NEXT).

nOffset | the offset (number of records), ignored for some orientations.

Returns

TRUE if a new row is successfully fetched, or FALSE if not.

References CPLError(), CPLMalloc(), CPLRealloc(), CPLRecodeFromWChar(), CPLODBCSession::GetLast«
Error(), and GetTypeMapping().

Referenced by DumpResult().

12.21.2.10 int CPLODBCStatement::GetColCount ()

Fetch the resultset column count.
Returns

the column count, or zero if there is no resultset.

Referenced by DumpResult().

12.21.2.11 const char x« CPLODBCStatement::GetColData (int iCol, const char pszDefault = 0)

Fetch column data.

Fetches the data contents of the requested column for the currently loaded row. The result is returned as a string
regardless of the column type. NULL is returned if an illegal column is given, or if the actual column is "NULL".

Parameters

iCol | the zero based column to fetch.

pszDefault | the value to return if the column does not exist, or is NULL. Defaults to NULL.

Returns

pointer to internal column data or NULL on failure.

Referenced by DumpResult(), and GetColData().

12.21.2.12 const char x CPLODBCStatement::GetColData (const char = pszColName, const char x pszDefault = 0)

Fetch column data.

Fetches the data contents of the requested column for the currently loaded row. The result is returned as a string
regardless of the column type. NULL is returned if an illegal column is given, or if the actual column is "NULL".

Parameters

pszColName | the name of the column requested.

pszDefault | the value to return if the column does not exist, or is NULL. Defaults to NULL.

Returns

pointer to internal column data or NULL on failure.

References GetColData(), and GetColld().

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

72 Class Documentation

12.21.2.13 int CPLODBCStatement::GetColld (const char « pszColName)

Fetch column index.
Gets the column index corresponding with the passed name. The name comparisons are case insensitive.

Parameters

] pszColName | the name to search for.

Returns

the column index, or -1 if not found.

Referenced by GetColData).

12.21.2.14 const char x CPLODBCStatement::GetColName (int iCol)

Fetch a column name.

Parameters

iCol \ the zero based column index.

Returns

NULL on failure (out of bounds column), or a pointer to an internal copy of the column name.

Referenced by DumpResult().

12.21.2.15 short CPLODBCStatement::GetColNullable (int iCol)

Fetch the column nullability.

Parameters

iCol | the zero based column index.

Returns

TRUE if the column may contains or FALSE otherwise.

Referenced by DumpResult().

12.21.2.16 short CPLODBCStatement::GetColPrecision (int iCol)

Fetch the column precision.

Parameters

iCol | the zero based column index.

Returns

column precision, may be zero or the same as column size for columns to which it does not apply.

Referenced by DumpResult().

12.21.2.17 short CPLODBCStatement::GetColSize (int iCol)

Fetch the column width.

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

12.21 CPLODBCStatement Class Reference 73

Parameters

iCol | the zero based column index.

Returns

column width, zero for unknown width columns.

Referenced by DumpResult().

12.21.2.18 short CPLODBCStatement::GetColType (int iCol)

Fetch a column data type.

The return type code is a an ODBC SQL_ code, one of SQL_UNKNOWN_TYPE, SQL_CHAR, SQL_NUMERIC,
SQL_DECIMAL, SQL_INTEGER, SQL_SMALLINT, SQL_FLOAT, SQL_REAL, SQL_DOUBLE, SQL_DATETIME,
SQL_VARCHAR, SQL_TYPE_DATE, SQL_TYPE_TIME, SQL_TYPE_TIMESTAMPT.

Parameters

] iCol \ the zero based column index.

Returns

type code or -1 if the column is illegal.

Referenced by DumpResult().

12.21.2.19 const char x CPLODBCStatement::GetColTypeName (int iCol)

Fetch a column data type name.

Returns data source-dependent data type name; for example, "CHAR", "VARCHAR", "MONEY", "LONG VARBI«+—
NAR", or "CHAR () FOR BIT DATA".

Parameters

iCol \ the zero based column index.

Returns

NULL on failure (out of bounds column), or a pointer to an internal copy of the column dat type name.

12.21.2.20 int CPLODBCStatement::GetColumns (const char x pszTable, const char x pszCatalog = O, const char x
pszSchema =0)

Fetch column definitions for a table.

The SQLColumn() method is used to fetch the definitions for the columns of a table (or other queriable object such
as a view). The column definitions are digested and used to populate the CPLODBCStatement (p. ??) column
definitions essentially as if a "SELECT x FROM tablename" had been done; however, no resultset will be available.

Parameters

pszTable | the name of the table to query information on. This should not be empty.

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

74 Class Documentation

pszCatalog | the catalog to find the table in, use NULL (the default) if no catalog is available.

pszSchema | the schema to find the table in, use NULL (the default) if no schema is available.

Returns

TRUE on success or FALSE on failure.

References CPLCalloc(), and CPLStrdup().

12.21.2.21 int CPLODBCStatement::GetPrimaryKeys (const char x pszTable, const char x pszCatalog = O, const char x
pszSchema =0)

Fetch primary keys for a table.

The SQLPrimaryKeys() function is used to fetch a list of fields forming the primary key. The result is returned as a
result set matching the SQLPrimaryKeys() function result set. The 4th column in the result set is the column name
of the key, and if the result set contains only one record then that single field will be the complete primary key.

Parameters

pszTable | the name of the table to query information on. This should not be empty.

pszCatalog | the catalog to find the table in, use NULL (the default) if no catalog is available.

pszSchema | the schema to find the table in, use NULL (the default) if no schema is available.

Returns

TRUE on success or FALSE on failure.

12.21.2.22 int CPLODBCStatement::GetTables (const char x pszCatalog = O, const char x pszSchema =0)

Fetch tables in database.

The SQLTables() function is used to fetch a list tables in the database. The result is returned as a result set matching
the SQLTables() function result set. The 3rd column in the result set is the table name. Only tables of type "TABLE"
are returned.

Parameters

pszCatalog | the catalog to find the table in, use NULL (the default) if no catalog is available.

pszSchema | the schema to find the table in, use NULL (the default) if no schema is available.

Returns

TRUE on success or FALSE on failure.

References CPLDebug().

12.21.2.23 SQLSMALLINT CPLODBCStatement::GetTypeMapping (SQLSMALLINT nTypeCode) [static]

Get appropriate C data type for SQL column type.

Returns a C data type code, corresponding to the indicated SQL data type code (as returned from CPLODBC«
Statement::GetColType() (p. ??)).

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

12.22 CPLRectObj Struct Reference 75

Parameters

nTypeCode | the SQL_ code, such as SQL_CHAR.

Returns

data type code. The valid code is always returned. If SQL code is not recognised, SQL_C_BINARY will be
returned.

Referenced by Fetch().

12.21.2.24 CPLString CPLODBCStatement::GetTypeName (int nTypeCode) [static]

Get name for SQL column type.
Returns a string name for the indicated type code (as returned from CPLODBCStatement::GetColType() (p. ??)).

Parameters

nTypeCode \ the SQL_ code, such as SQL_CHAR.

Returns

internal string, "UNKNOWN?" if code not recognised.

Referenced by DumpResult().

The documentation for this class was generated from the following files:

» cpl_odbc.h
* cpl_odbc.cpp

12.22 CPLRectODbj Struct Reference

The documentation for this struct was generated from the following file:

« cpl_quad_tree.h

12.23 CPLSharedFilelnfo Struct Reference

The documentation for this struct was generated from the following file:

» cpl_conv.h

12.24 CPLSharedFilelnfoExtra Struct Reference

The documentation for this struct was generated from the following file:

+ cpl_conv.cpp

12.25 CPLStdCallThreadinfo Struct Reference

The documentation for this struct was generated from the following file:

+ cpl_multiproc.cpp

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

76 Class Documentation

12.26 CPLString Class Reference

Convenient string class based on std::string.
#include <cpl_string.h>

Inheritance diagram for CPLString:

string

CPLString

Public Member Functions

» CPLString & FormatC (double dfValue, const char *xpszFormat=0)
+ CPLString & Trim ()

« size_tifind (const std::string &str, size_t pos=0) const

« size_tifind (const char xs, size_t pos=0) const

» CPLString & toupper (void)

» CPLString & tolower (void)

12.26.1 Detailed Description

Convenient string class based on std::string.

12.26.2 Member Function Documentation
12.26.2.1 CPLString & CPLString::FormatC (double dfValue, const char « pszFormat=0)

Format double in C locale.

The passed value is formatted using the C locale (period as decimal seperator) and appended to the target CPL«
String (p. ?2?).

Parameters

dfValue | the value to format.

pszFormat | the sprintf() style format to use or omit for default. Note that this format string should only
include one substitution argument and it must be for a double (f or g).

Returns

a reference to the CPLString (p. ??).

12.26.2.2 size_t CPLString::ifind (const std::string & str, size_t pos =0) const

Case insensitive find() alternative.

Parameters

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

12.26 CPLString Class Reference

str | substring to find.

pos | offset in the string at which the search starts.

Returns

the position of substring in the string or std::string::npos if not found.

Since

GDAL 1.9.0

Referenced by CPLURLAddKVP(), and CPLURLGetValue().

12.26.2.3 size_t CPLString::ifind (const char x s, size_t nPos = 0) const

Case insensitive find() alternative.

Parameters

S | substring to find.

nPos | offset in the string at which the search starts.

Returns

the position of the substring in the string or std::string::npos if not found.
Since

GDAL 1.9.0

References tolower().

12.26.2.4 CPLString & CPLString::tolower (void)
Convert to lower case in place.

Referenced by ifind().

12.26.2.5 CPLString & CPLString::toupper (void)

Convert to upper case in place.

12.26.2.6 CPLString & CPLString::Trim()

Trim white space.

Trims white space off the let and right of the string. White space is any of a space, a tab, a newline ('
') or a carriage control (").

Returns

a reference to the CPLString (p. 2?).
The documentation for this class was generated from the following files:

» cpl_string.h
« cplstring.cpp

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

78 Class Documentation

12.27 CPLStringList Class Reference

String list class designed around our use of C "charxx" string lists.

#include <cpl_string.h>

Public Member Functions

» CPLStringList (char sxpapszList, int bTakeOwnership=1)
« CPLStringList (const CPLStringList &oOther)

Copy constructor.

+ CPLStringList & Clear ()

+ int Count () const

» CPLStringList & AddString (const char xpszNewString)

» CPLStringList & AddStringDirectly (char xpszNewString)

» CPLStringList & InsertString (int ninsertAtLineNo, const char xpszNewLine)
Insert into the list at identified location.

» CPLStringList & InsertStringDirectly (int ninsertAtLineNo, char xpszNewLine)

« int FindName (const char xpszName) const

+ int FetchBoolean (const char xpszKey, int bDefault) const

« const char * FetchNameValue (const char xpszKey) const

» const char x FetchNameValueDef (const char xpszKey, const char xpszDefault) const

+ CPLStringList & AddNameValue (const char xpszKey, const char xpszValue)

» CPLStringList & SetNameValue (const char xpszKey, const char xpszValue)

» CPLStringList & Assign (char xxpapszList, int bTakeOwnership=1)

« char x operator[] (int i)

* char *x StealList ()

» CPLStringList & Sort ()

12.27.1 Detailed Description

String list class designed around our use of C "charxx" string lists.

12.27.2 Constructor & Destructor Documentation
12.27.2.1 CPLStringList::CPLStringList (char xx papszListin, int bTakeOwnership =1)

CPLStringList (p. ??) constructor.

Parameters

papszListin | the NULL terminated list of strings to consume.

bTakeOwnership | TRUE if the CPLStringList (p. ??) should take ownership of the list of strings which implies
responsibility to free them.

References Assign().

12.27.3 Member Function Documentation
12.27.3.1 CPLStringList & CPLStringList::AddNameValue (const char x pszKey, const char « pszValue)

A a name=value entry to the list.

A key=value string is prepared and appended to the list. There is no check for other values for the same key in the
list.

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

12.27 CPLStringList Class Reference 79

Parameters

pszKey | the key name to add.

pszValue | the key value to add.

References AddStringDirectly(), CPLMalloc(), and InsertStringDirectly().

Referenced by SetNameValue().

12.27.3.2 CPLStringList & CPLStringList::AddString (const char pszNewString)

Add a string to the list.
A copy of the passed in string is made and inserted in the list.

Parameters

pszNewString | the string to add to the list.

References AddStringDirectly(), and CPLStrdup().

Referenced by CSLTokenizeString2(), GOA2GetAccessToken(), GOA2GetRefreshToken(), and VSIReadDir«
Recursive().

12.27.3.3 CPLStringList & CPLStringList::AddStringDirectly (char x pszNewString)

Add a string to the list.

This method is similar to AddString() (p. ??), but ownership of the pszNewString is transferred to the CPLStringList
(p. ??) class.

Parameters

| pszNewString | the string to add to the list.

References Count().
Referenced by AddNameValue(), and AddString().
12.27.3.4 CPLStringList & CPLStringList::Assign (char xx papszListln, int bTakeOwnership =1)

Assign a list of strings.

Parameters

papszListin | the NULL terminated list of strings to consume.

bTakeOwnership | TRUE if the CPLStringList (p. ??) should take ownership of the list of strings which implies
responsibility to free them.

Returns

a reference to the CPLStringList (p. ??) on which it was invoked.
References Clear().
Referenced by CPLStringList(), and CSLTokenizeString2().
12.27.3.5 CPLStringList & CPLStringList::Clear ()

Clear the string list.
References CSLDestroy().
Referenced by Assign().

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

80 Class Documentation

12.27.3.6 int CPLStringList::Count () const

Returns

count of strings in the list, zero if empty.

References CSLCount().

Referenced by AddStringDirectly(), CSLTokenizeString2(), InsertStringDirectly(), operator[](), SetNameValue(), and
Sort().

12.27.3.7 int CPLStringList::FetchBoolean (const char x pszKey, int bDefault) const

Check for boolean key value.

In a CPLStringList (p. ??) of "Name=Value" pairs, look to see if there is a key with the given name, and if it can be
interpreted as being TRUE. If the key appears without any "=Value" portion it will be considered true. If the value is
NO, FALSE or 0 it will be considered FALSE otherwise if the key appears in the list it will be considered TRUE. If
the key doesn't appear at all, the indicated default value will be returned.

Parameters

pszKey | the key value to look for (case insensitive).

bDefault | the value to return if the key isn't found at all.

Returns

TRUE or FALSE

References CSLTestBoolean(), and FetchNameValue().

12.27.3.8 const char CPLStringList::FetchNameValue (const char x pszName) const

Fetch value associated with this key name.

If this list sorted, a fast binary search is done, otherwise a linear scan is done. Name lookup is case insensitive.

Parameters

pszName | the key name to search for.

Returns

the corresponding value or NULL if not found. The returned string should not be modified and points into
internal object state that may change on future calls.

References FindName().
Referenced by FetchBoolean(), and FetchNameValueDef().
12.27.3.9 const char x CPLStringList::FetchNameValueDef (const char « pszName, const char x pszDefault) const

Fetch value associated with this key name.

If this list sorted, a fast binary search is done, otherwise a linear scan is done. Name lookup is case insensitive.

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

12.27 CPLStringList Class Reference 81

Parameters

pszName | the key name to search for.

pszDefault | the default value returned if the named entry isn't found.

Returns

the corresponding value or the passed default if not found.

References FetchNameValue().
Referenced by GOA2GetAccessToken(), and GOA2GetRefreshToken().

12.27.3.10 int CPLStringList::FindName (const char x pszKey) const

Get index of given name/value keyword.

Note that this search is for a line in the form name=value or name:value. Use FindString() or PartialFindString() for
searches not based on name=value pairs.

Parameters

pszKey | the name to search for.

Returns

the string list index of this name, or -1 on failure.

References CSLFindName().

Referenced by FetchNameValue(), and SetNameValue().

12.27.3.11 CPLStringList « CPLStringList::InsertString (int ninsertAtLineNo, const char x pszNewLine) [inline]

Insert into the list at identified location.

This method will insert a string into the list at the identified location. The insertion point must be within or at the end
of the list. The following entries are pushed down to make space.

Parameters

ninsertAtLineNo | the line to insert at, zero to insert at front.

pszNewlLine | to the line to insert. This string will be copied.

References CPLStrdup().

12.27.3.12 CPLStringList & CPLStringList::InsertStringDirectly (int ninsertAtLineNo, char s pszNewLine)

Insert into the list at identified location.

This method will insert a string into the list at the identified location. The insertion point must be within or at the end
of the list. The following entries are pushed down to make space.

Parameters

ninsertAtLineNo | the line to insert at, zero to insert at front.

pszNewLine | to the line to insert, the ownership of this string will be taken over the by the object. It must
have been allocated on the heap.

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

82 Class Documentation

References Count(), and CPLError().
Referenced by AddNameValue().

12.27.3.13 char x CPLStringList::operator[] (inti)

Fetch entry "i".

Fetches the requested item in the list. Note that the returned string remains owned by the CPLStringList (p. ??). If
"i" is out of range NULL is returned.

Parameters

i | the index of the list item to return. \

Returns

selected entry in the list.

References Count().

12.27.3.14 CPLStringList & CPLStringList::SetNameValue (const char * pszKey, const char x pszValue)

Set name=value entry in the list.

Similar to AddNameValue() (p. ??), except if there is already a value for the key in the list it is replaced instead of
adding a new entry to the list. If pszValue is NULL any existing key entry is removed.

Parameters

pszKey | the key name to add.
pszValue | the key value to add.

References AddNameValue(), Count(), CPLMalloc(), and FindName().

12.27.3.15 CPLStringList & CPLStringList::Sort ()

Sort the entries in the list and mark list sorted.

Note that once put into "sorted" mode, the CPLStringList (p. ??) will attempt to keep things in sorted order through
calls to AddString() (p. ??), AddStringDirectly() (p. ??), AddNameValue() (p. ??), SetNameValue() (p. ??). Com-
plete list assignments (via Assign() (p. ??) and operator= will clear the sorting state. When in sorted order Find«
Name() (p. ??), FetchNameValue() (p. ??) and FetchNameValueDef() (p. ??) will do a binary search to find the
key, substantially improve lookup performance in large lists.

References County().

12.27.3.16 char *x CPLStringList::StealList ()

Seize ownership of underlying string array.

This method is simmilar to List(), except that the returned list is now owned by the caller and the CPLStringList
(p. ??) is emptied.

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

12.28 CPLXMLNode Struct Reference 83

Returns

the C style string list.

Referenced by CSLTokenizeString2(), and VSIReadDirRecursive().
The documentation for this class was generated from the following files:

+ cpl_string.h
* cplstringlist.cpp

12.28 CPLXMLNode Struct Reference

#include <cpl_minixml.h>

Public Attributes

* CPLXMLNodeType eType

Node type.
+ char x pszValue

Node value.
« struct CPLXMLNode * psNext

Next sibling.
+ struct CPLXMLNode * psChild

Child node.

12.28.1 Detailed Description

Document node structure.

This C structure is used to hold a single text fragment representing a component of the document when parsed.
It should be allocated with the appropriate CPL function, and freed with CPLDestroyXMLNode() (p.??). The
structure contents should not normally be altered by application code, but may be freely examined by application
code.

Using the psChild and psNext pointers, a heirarchical tree structure for a document can be represented as a tree of
CPLXMLNode (p. ??) structures.

12.28.2 Member Data Documentation
12.28.21 CPLXMLNodeType CPLXMLNode::eType

Node type.
One of CXT_Element, CXT_Text, CXT_Attribute, CXT_Comment, or CXT_Literal.

Referenced by CPLAddXMLChild(), CPLCloneXMLTree(), CPLCreateXMLNode(), CPLGetXMLNode(), CPLGet«
XMLValue(), CPLSearchXMLNode(), CPLSetXMLValue(), and CPLStripXMLNamespace().

12.28.2.2 struct CPLXMLNode+ CPLXMLNode::psChild

Child node.

Pointer to first child node, if any. Only CXT_Element and CXT_Attribute nodes should have children. For CXT_+«
Attribute it should be a single CXT_Text value node, while CXT_Element can have any kind of child. The full list of
children for a node are identified by walking the psNext's starting with the psChild node.

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

84 Class Documentation

Referenced by CPLAddXMLChild(), CPLCloneXMLTree(), CPLCreateXMLNode(), CPLDestroyXMLNode(), CP«+
LGetXMLNode(), CPLGetXMLValue(), CPLRemoveXMLChild(), CPLSearchXMLNode(), CPLSetXMLValue(), and
CPLStripXMLNamespace().

12.28.2.3 struct CPLXMLNodex CPLXMLNode::psNext

Next sibling.

Pointer to next sibling, that is the next node appearing after this one that has the same parent as this node. NULL if
this node is the last child of the parent element.

Referenced by CPLAdAXMLChild(), CPLAddXMLSibling(), CPLCloneXMLTree(), CPLCreateXMLNode(), CPL«
DestroyXMLNode(), CPLGetXMLNode(), CPLGetXMLValue(), CPLRemoveXMLChild(), CPLSearchXMLNode(),
CPLSerializeXMLTree(), CPLSetXMLValue(), CPLStripXMLNamespace(), and OGRSpatialReference::import«
FromXMLY().

12.28.2.4 charx CPLXMLNode::pszValue

Node value.

For CXT_Element this is the name of the element, without the angle brackets. Note there is a single CXT_Element
even when the document contains a start and end element tag. The node represents the pair. All text or other
elements between the start and end tag will appear as children nodes of this CXT_Element node.

For CXT_Attribute the pszValue is the attribute name. The value of the attribute will be a CXT_Text child.
For CXT_Text this is the text itself (value of an attribute, or a text fragment between an element start and end tags.

For CXT_Literal it is all the literal text. Currently this is just used for IDOCTYPE lines, and the value would be the
entire line.

For CXT_Comment the value is all the literal text within the comment, but not including the comment start/end
indicators ("<--"and "-->").

Referenced by CPLCloneXMLTree(), CPLCreateXMLNode(), CPLDestroyXMLNode(), CPLGetXMLNode(), CPL+
GetXMLValue(), CPLParseXMLString(), CPLSearchXMLNode(), CPLSetXMLValue(), CPLStripXMLNamespace(),
and OGRSpatialReference::importFromXML().

The documentation for this struct was generated from the following file:

+ cpl_minixml.h

12.29 CPLZip Struct Reference

The documentation for this struct was generated from the following file:

* cpl_minizip_zip.cpp

12.30 ctb Struct Reference

The documentation for this struct was generated from the following file:

* cpl_csv.cpp

12.31 curfile_info Struct Reference

The documentation for this struct was generated from the following file:

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

12.32 DefaultCSVFileNameTLS Struct Reference

85

* cpl_minizip_zip.cpp

12.32 DefaultCSVFileNameTLS Struct Reference

The documentation for this struct was generated from the following file:

* cpl_csv.cpp

12.33 errHandler Struct Reference

The documentation for this struct was generated from the following file:

* cpl_error.cpp

12.34 file_in_zip_read_info_s Struct Reference

The documentation for this struct was generated from the following file:

* cpl_minizip_unzip.cpp

12.35 FindFileTLS Struct Reference

The documentation for this struct was generated from the following file:

+ cpl_findfile.cpp

12.36 GDALScaledProgressinfo Struct Reference

The documentation for this struct was generated from the following file:

 cpl_progress.cpp

12.37 GZipSnapshot Struct Reference

The documentation for this struct was generated from the following file:

« cpl_vsil_gzip.cpp

12.38 linkedlist_data_s Struct Reference

The documentation for this struct was generated from the following file:

* cpl_minizip_zip.cpp

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

86 Class Documentation

12.39 linkedlist_datablock_internal_s Struct Reference

The documentation for this struct was generated from the following file:

* cpl_minizip_zip.cpp

12.40 OGR_SRSNode Class Reference

#include <ogr_spatialref.h>

Public Member Functions

+ OGR_SRSNode (const char x=NULL)

« int GetChildCount () const

+ OGR_SRSNode * GetChild (int)

+ OGR_SRSNode « GetNode (const char)

+ void InsertChild (OGR_SRSNode x, int)

+ void AddChild (OGR_SRSNode x)

« int FindChild (const char x) const

+ void DestroyChild (int)

+ void StripNodes (const char %)

 const char * GetValue () const

+ void SetValue (const char)

» void MakeValueSafe ()

* OGRErr FixupOrdering ()

* OGR_SRSNode * Clone () const

* OGRErr importFromWkt (char xx)

* OGRErr exportToWkt (char *x) const

+ OGRErr applyRemapper (const char xpszNode, char *xpapszSrcValues, char xxpapszDstValues, int n—
StepSize=1, int bChildOfHit=FALSE)

12.40.1 Detailed Description

Objects of this class are used to represent value nodes in the parsed representation of the WKT SRS format. For
instance UNIT["METER",1] would be rendered into three OGR_SRSNodes. The root node would have a value of
UNIT, and two children, the first with a value of METER, and the second with a value of 1.

Normally application code just interacts with the OGRSpatialReference (p.??) object, which uses the OGR_«
SRSNode (p.??) to implement it's data structure; however, this class is user accessable for detailed access to
components of an SRS definition.

12.40.2 Constructor & Destructor Documentation
12.40.2.1 OGR_SRSNode::OGR_SRSNode (const char x pszValueln =NULL)

Constructor.
Parameters

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

12.40 OGR_SRSNode Class Reference 87

pszValueln | this optional parameter can be used to initialize the value of the node upon creation. If omitted
the node will be created with a value of "". Newly created OGR_SRSNodes have no children.

References CPLStrdup().
Referenced by Clone().

12.40.3 Member Function Documentation
12.40.3.1 void OGR_SRSNode::AddChild (OGR_SRSNode * poNew)

Add passed node as a child of target node.

Note that ownership of the passed node is assumed by the node on which the method is invoked ... use the Clone()
(p. ??) method if the original is to be preserved. New children are always added at the end of the list.

Parameters

] poNew | the node to add as a child.

References InsertChild().

Referenced by Clone(), OGRSpatialReference::CloneGeogCS(), OGRSpatialReference::importFromCRSURL(),
OGRSpatialReference::importFromProj4(), OGRSpatialReference::importFromURN(), OGRSpatialReference«
:importFromWkt(), OGRSpatialReference::morphFromESRI(), OGRSpatialReference::morphToESRI(), OGR+«
SpatialReference::SetAngularUnits(), OGRSpatialReference::SetAuthority(), OGRSpatialReference::SetAxes(),
OGRSpatialReference::SetCompoundCS(), OGRSpatialReference::SetExtension(), OGRSpatialReference::«
SetFromUserlnput(), OGRSpatialReference::SetGeogCS(), OGRSpatialReference::SetNode(), OGRSpatial«—
Reference::SetProjParm(), OGRSpatialReference::SetTargetLinearUnits(), OGRSpatialReference::SetTOWG+«—
S84(), and OGRSpatialReference::SetVertCS().

12.40.3.2 OGRErr OGR_SRSNode::applyRemapper (const char pszNode, char xx papszSrcValues, char «x papszDstValues,
int nStepSize = 1, int bChildOfHit =FALSE)

Remap node values matching list.

Remap the value of this node or any of it's children if it matches one of the values in the source list to the corre-
sponding value from the destination list. If the pszNode value is set, only do so if the parent node matches that
value. Even if a replacement occurs, searching continues.

Parameters

pszNode | Restrict remapping to children of this type of node (eg. "PROJECTION")

papszSrcValues | a NULL terminated array of source string. If the node value matches one of these (case
insensitive) then replacement occurs.

papszDstValues | an array of destination strings. On a match, the one corresponding to a source value will be
used to replace a node.

nStepSize | increment when stepping through source and destination arrays, allowing source and desti-
nation arrays to be one interleaved array for instances. Defaults to 1.

bChildOfHit | Only TRUE if we the current node is the child of a match, and so needs to be set. Application
code would normally pass FALSE for this argument.

Returns

returns OGRERR_NONE unless something bad happens. There is no indication returned about whether any
replacement occured.

References applyRemapper(), GetChild(), GetChildCount(), and SetValue().

Referenced by applyRemapper(), OGRSpatialReference::morphFromESRI(), and OGRSpatialReference::morph+—
ToESRI().

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

88 Class Documentation

12.40.3.3 OGR_SRSNode x OGR_SRSNode::Clone () const
Make a duplicate of this node, and it's children.

Returns

a new node tree, which becomes the responsiblity of the caller.

References AddChild(), and OGR_SRSNode().

Referenced by OGRSpatialReference::Clone(), OGRSpatialReference::CloneGeogCS(), OGRSpatialReference«
::CopyGeogCSFrom(), OGRSpatialReference::importFromCRSURL(), OGRSpatialReference::importFromProj4(),
OGRSpatialReference::importFromURN(), OGRSpatialReference::morphFromESRI(), OGRSpatialReference::«
SetCompoundCS(), OGRSpatialReference::SetFromUserlnput(), OGRSpatialReference::SetGeocCS(), and OG+«
RSpatialReference::StripVertical().

12.40.3.4 void OGR_SRSNode::DestroyChild (int iChild)

Remove a child node, and it's subtree.
Note that removing a child node will result in children after it being renumbered down one.

Parameters

iChild \ the index of the child.

Referenced by OGRSpatialReference::CopyGeogCSFrom(), OGRSpatialReference::importFromESRI(), OG+«
RSpatialReference::morphFromESRI(), OGRSpatialReference::morphToESRI(), OGRSpatialReference::Set«—
Authority(), OGRSpatialReference::SetAxes(), OGRSpatialReference::SetGeogCS(), OGRSpatialReference«
::SetStatePlane(), OGRSpatialReference::SetTargetLinearUnits(), OGRSpatialReference::SetTOWGS84(), and
StripNodes().

12.40.3.5 OGRErr OGR_SRSNode::exportToWkt (char xx ppszResult) const

Convert this tree of nodes into WKT format.

Note that the returned WKT string should be freed with OGRFree() or CPLFree() when no longer needed. It is the
responsibility of the caller.

Parameters

] ppszResult | the resulting string is returned in this pointer.

Returns

currently OGRERR_NONE is always returned, but the future it is possible error conditions will develop.

References CPLCalloc(), CPLMalloc(), CSLDestroy(), and exportToWkt().
Referenced by exportToWkt(), and OGRSpatialReference::exportToWkt().
12.40.3.6 int OGR_SRSNode::FindChild (const char x pszValue) const

Find the index of the child matching the given string.

Note that the node value must match pszValue with the exception of case. The comparison is case insensitive.

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

12.40 OGR_SRSNode Class Reference 89

Parameters

pszValue | the node value being searched for.

Returns

the child index, or -1 on failure.

Referenced by OGRSpatialReference::CopyGeogCSFrom(), OGRSpatialReference::Fixup(), OGRSpatial«
Reference::GetAuthorityCode(), OGRSpatialReference::GetAuthorityName(), OGRSpatialReference::morph«
FromESRI(), OGRSpatialReference::SetAngularUnits(), OGRSpatialReference::SetAuthority(), OGRSpatial«
Reference::SetAxes(), OGRSpatialReference::SetGeogCS(), OGRSpatialReference::SetStatePlane(), OGR+«
SpatialReference::SetTargetLinearUnits(), OGRSpatialReference::SetTOWGS84(), and StripNodes().

12.40.3.7 OGRErr OGR_SRSNode::FixupOrdering ()

Correct parameter ordering to match CT Specification.

Some mechanisms to create WKT using OGRSpatialReference (p. ??), and some imported WKT fail to maintain
the order of parameters required according to the BNF definitions in the OpenGIS SF-SQL and CT Specifications.
This method attempts to massage things back into the required order.

This method will reorder the children of the node it is invoked on and then recurse to all children to fix up their
children.
Returns

OGRERR_NONE on success or an error code if something goes wrong.

References CPLCalloc(), CPLDebug(), CSLFindString(), FixupOrdering(), GetChild(), GetChildCount(), and Get«
Value().

Referenced by FixupOrdering(), and OGRSpatialReference::FixupOrdering().
12.40.3.8 OGR_SRSNode « OGR_SRSNode::GetChild (int iChild)

Fetch requested child.

Parameters

iChild \ the index of the child to fetch, from 0 to GetChildCount() (p. ??) - 1.

Returns

a pointer to the child OGR_SRSNode (p. ??), or NULL if there is no such child.

Referenced by applyRemapper(), OGRSpatialReference::EPSGTreatsAsLatLong(), OGRSpatialReference::EPS«-
GTreatsAsNorthingEasting(), OGRSpatialReference::exportToPCl(), OGRSpatialReference::exportToProj4(), O«
GRSpatialReference::FindProjParm(), FixupOrdering(), OGRSpatialReference::GetAngularUnits(), OGRSpatial«
Reference::GetAttrValue(), OGRSpatialReference::GetAuthorityCode(), OGRSpatialReference::GetAuthority«—
Name(), OGRSpatialReference::GetAxis(), OGRSpatialReference::GetExtension(), OGRSpatialReference::«
GetInvFlattening(), OGRSpatialReference::GetPrimeMeridian(), OGRSpatialReference::GetProjParm(), OG«
RSpatialReference::GetSemiMajor(), OGRSpatialReference::GetTargetLinearUnits(), OGRSpatialReference«
:GetTOWGS84(), OGRSpatialReference::iimportFromProj4(), OGRSpatialReference::importFromURN(), O+«
GRSpatialReference::IsSame(), MakeValueSafe(), OGRSpatialReference::morphFromESRI(), OGRSpatial«
Reference::morphToESRI(), OGRSpatialReference::SetAngularUnits(), OGRSpatialReference::SetExtension(),
OGRSpatialReference::SetFromUserlnput(), OGRSpatialReference::SetLinearUnitsAndUpdateParameters(), O«
GRSpatialReference::SetNode(), OGRSpatialReference::SetProjParm(), OGRSpatialReference::SetTargetLinear«
Units(), StripNodes(), and OGRSpatialReference::StripVertical().

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

90 Class Documentation

12.40.3.9 int OGR_SRSNode::GetChildCount()const [inline]

Get number of children nodes.

Returns

0 for leaf nodes, or the number of children nodes.

Referenced by applyRemapper(), OGRSpatialReference::EPSGTreatsAsLatLong(), OGRSpatialReference::EPS«
GTreatsAsNorthingEasting(), OGRSpatialReference::exportToPCl(), OGRSpatialReference::exportToProj4(), O«
GRSpatialReference::FindProjParm(), FixupOrdering(), OGRSpatialReference::GetAngularUnits(), OGRSpatial«
Reference::GetAttrValue(), OGRSpatialReference::GetAuthorityCode(), OGRSpatialReference::GetAuthority«
Name(), OGRSpatialReference::GetAxis(), OGRSpatialReference::GetExtension(), OGRSpatialReference::«
GetinvFlattening(), OGRSpatialReference::GetPrimeMeridian(), OGRSpatialReference::GetSemiMajor(), OG«
RSpatialReference::GetTargetLinearUnits(), OGRSpatialReference::GetTOWGS84(), OGRSpatialReference«
:importFromProj4(), OGRSpatialReference::IsSame(), MakeValueSafe(), OGRSpatialReference::morphToESRI(),
OGRSpatialReference::SetAngularUnits(), OGRSpatialReference::SetExtension(), OGRSpatialReference::Set«
LinearUnitsAndUpdateParameters(), OGRSpatialReference::SetNode(), OGRSpatialReference::SetProjParm(),
OGRSpatialReference::SetTargetLinearUnits(), OGRSpatialReference::SetTOWGS84(), and StripNodes().

12.40.3.10 OGR_SRSNode « OGR_SRSNode::GetNode (const char * pszName)

Find named node in tree.

This method does a pre-order traversal of the node tree searching for a node with this exact value (case insensitive),
and returns it. Leaf nodes are not considered, under the assumption that they are just attribute value nodes.

If a node appears more than once in the tree (such as UNIT for instance), the first encountered will be returned.
Use GetNode() (p. ??) on a subtree to be more specific.

Parameters

pszName \ the name of the node to search for.

Returns

a pointer to the node found, or NULL if none.

References GetNode().

Referenced by OGRSpatialReference::exportToProj4(), OGRSpatialReference::GetAttrNode(), GetNode(), and O«
GRSpatialReference::SetGeocCS().

12.40.3.11 const char x OGR_SRSNode::GetValue ()const [inline]
Fetch value string for this node.

Returns

A non-NULL string is always returned. The returned pointer is to the internal value of this node, and should
not be modified, or freed.

Referenced by OGRSpatialReference::EPSGTreatsAsLatlLong(), OGRSpatialReference::EPSGTreatsAsNorthing«
Easting(), OGRSpatialReference::exportToPCl(), OGRSpatialReference::exportToProj4(), OGRSpatialReference«
::FindProjParm(), FixupOrdering(), OGRSpatialReference::GetAngularUnits(), OGRSpatialReference::GetAttr«
Value(), OGRSpatialReference::GetAuthorityCode(), OGRSpatialReference::GetAuthorityName(), OGRSpatial«
Reference::GetAxis(), OGRSpatialReference::GetExtension(), OGRSpatialReference::GetinvFlattening(), OG+«
RSpatialReference::GetPrimeMeridian(), OGRSpatialReference::GetProjParm(), OGRSpatialReference::Get«—
SemiMajor(), OGRSpatialReference::GetTargetLinearUnits(), OGRSpatialReference::GetTOWGS84(), OGR«
SpatialReference::iimportFromCRSURL(), OGRSpatialReference::importFromProj4(), OGRSpatialReference«

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

12.40 OGR_SRSNode Class Reference 91

:importFromURN(), OGRSpatialReference::IsCompound(), OGRSpatialReference::IsGeocentric(), OGRSpatial«
Reference::IsGeographic(), OGRSpatialReference::IsProjected(), OGRSpatialReference::IsSame(), OGRSpatial«—
Reference::IsVertical(), OGRSpatialReference::morphFromESRI(), OGRSpatialReference::morphToESRI(), O«
GRSpatialReference::SetExtension(), OGRSpatialReference::SetFromUserlnput(), OGRSpatialReference::Set«
GeocCS(), OGRSpatialReference::SetLinearUnitsAndUpdateParameters(), OGRSpatialReference::SetNode(),
OGRSpatialReference::SetProjCS(), OGRSpatialReference::SetProjection(), OGRSpatialReference::SetProj«—
Parm(), OGRSpatialReference::SetVertCS(), and OGRSpatialReference::StripCTParms().

12.40.3.12 OGRErr OGR_SRSNode::importFromWkt (char «x ppszinput)

Import from WKT string.

This method will wipe the existing children and value of this node, and reassign them based on the contents of the
passed WKT string. Only as much of the input string as needed to construct this node, and it's children is consumed
from the input string, and the input string pointer is then updated to point to the remaining (unused) input.

Parameters

ppszinput | Pointer to pointer to input. The pointer is updated to point to remaining unused input text.

Returns

OGRERR_NONE if import succeeds, or OGRERR_CORRUPT_DATA if it fails for any reason.

12.40.3.13 void OGR_SRSNode::InsertChild (OGR_SRSNode * poNew, int iChild)

Insert the passed node as a child of target node, at the indicated position.

Note that ownership of the passed node is assumed by the node on which the method is invoked ... use the Clone()
(p. ??) method if the original is to be preserved. All existing children at location iChild and beyond are push down
one space to make space for the new child.

Parameters

poNew | the node to add as a child.

iChild | position to insert, use 0 to insert at the beginning.

References CPLRealloc().

Referenced by AddChild(), OGRSpatialReference::CopyGeogCSFrom(), OGRSpatialReference::morphFromESR«—
I(), OGRSpatialReference::SetGeocCS(), OGRSpatialReference::SetGeogCS(), OGRSpatialReference::SetProj«—
CS(), OGRSpatialReference::SetProjection(), and OGRSpatialReference::SetTOWGS84().

12.40.3.14 void OGR_SRSNode::MakeValueSafe ()

Massage value string, stripping special characters so it will be a database safe string.
The operation is also applies to all subnodes of the current node.

References GetChild(), GetChildCount(), and MakeValueSafe().

Referenced by MakeValueSafe().

12.40.3.15 void OGR_SRSNode::SetValue (const char x pszNewValue)

Set the node value.

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

92 Class Documentation

Parameters

pszNewValue | the new value to assign to this node. The passed string is duplicated and remains the re-
sponsibility of the caller.

References CPLStrdup().

Referenced by applyRemapper(), OGRSpatialReference::morphFromESRI(), OGRSpatialReference::morphToE+«
SRI(), OGRSpatialReference::SetAngularUnits(), OGRSpatialReference::SetExtension(), OGRSpatialReference«
::SetNode(), OGRSpatialReference::SetProjParm(), and OGRSpatialReference::SetTargetLinearUnits().

12.40.3.16 void OGR_SRSNode::StripNodes (const char x pszName)

Strip child nodes matching name.

Removes any decendent nodes of this node that match the given name. Of course children of removed nodes are
also discarded.

Parameters

pszName \ the name for nodes that should be removed.

References DestroyChild(), FindChild(), GetChild(), GetChildCount(), and StripNodes().

Referenced by OGRSpatialReference::exportToPrettyWkt(), OGRSpatialReference:iimportFromEPSG(), OGR+«
SpatialReference::StripCTParms(), and StripNodes().

The documentation for this class was generated from the following files:

+ ogr_spatialref.h
* ogr_srsnode.cpp

12.41 ogr_style_param Struct Reference

The documentation for this struct was generated from the following file:

» ogr_featurestyle.h

12.42 ogr_style_value Struct Reference

The documentation for this struct was generated from the following file:

» ogr_featurestyle.h

12.43 OGRAbstractProxiedLayer Class Reference

Inheritance diagram for OGRAbstractProxiedLayer:

| OGRLayer l

T

| OGRAbstractProxiedLayer l

T

| OGRProxiedLayer |

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

12.44 OGRAttrindex Class Reference

93

Friends

+ class OGRLayerPool

Additional Inherited Members
The documentation for this class was generated from the following files:

« ogrlayerpool.h
« ogrlayerpool.cpp

12.44 OGRAttrindex Class Reference

Inheritance diagram for OGRAttrIndex:

‘ OGRACttrIndex ‘

T

\ OGRMIAttrIndex \

The documentation for this class was generated from the following files:

+ ogr_attrind.h
 ogr_attrind.cpp

12.45 OGRCoordinateTransformation Class Reference

#include <ogr_spatialref.h>

Inheritance diagram for OGRCoordinateTransformation:

| OGRCoordinateTransformation ‘

T

| OGRProj4CT |

Public Member Functions

« virtual OGRSpatialReference « GetSourceCS ()=0

« virtual OGRSpatialReference « GetTargetCS ()=0

« virtual int Transform (int nCount, double *x, double xy, double xz=NULL)=0

« virtual int TransformEx (int nCount, double *xx, double xy, double *z=NULL, int xpabSuccess=NULL)=0

Static Public Member Functions

« static void DestroyCT (OGRCoordinateTransformation xpoCT)

OGRCoordinateTransformation (p. ??) destructor.

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

94 Class Documentation

12.45.1 Detailed Description

Interface for transforming between coordinate systems.

Currently, the only implementation within OGR is OGRProj4CT (p. ??), which requires the PROJ.4 library to be
available at run-time.

Also, see OGRCreateCoordinateTransformation() (p. ??) for creating transformations.

12.45.2 Member Function Documentation
12.45.2.1 void OGRCoordinateTransformation::DestroyCT (OGRCoordinateTransformation « poCT) [static]

OGRCoordinateTransformation (p. ??) destructor.

This function is the same as OGRCoordinateTransformation::~OGRCoordinateTransformation() and OCT«
DestroyCoordinateTransformation() (p. ??)

This static method will destroy a OGRCoordinateTransformation (p. ??). It is equivalent to calling delete on the
object, but it ensures that the deallocation is properly executed within the OGR libraries heap on platforms where
this can matter (win32).

Parameters

poCT | the object to delete

Since

GDAL 1.7.0

12.45.2.2 virtual OGRSpatialReferencex OGRCoordinateTransformation::GetSourceCS() [pure virtual]

Fetch internal source coordinate system.

Implemented in OGRProj4CT (p. ??).

12.45.2.3 virtual OGRSpatialReferencex OGRCoordinateTransformation::GetTargetCS() [pure virtual]

Fetch internal target coordinate system.
Implemented in OGRProj4CT (p. ??).

Referenced by OGRPoint::transform(), OGRLineString::transform(), OGRPolygon::transform(), and OGR+«
GeometryCollection::transform().

12.45.2.4 virtual int OGRCoordinateTransformation::Transform (int nCount, double * x, double x y, double * z=NULL)
[pure virtual]

Transform points from source to destination space.

This method is the same as the C function OCT Transform().

The method TransformEx() (p. ??) allows extended success information to be captured indicating which points
failed to transform.

Parameters

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

12.46 OGRCurve Class Reference 95

nCount | number of points to transform.

x | array of nCount X vertices, modified in place.

y | array of nCount Y vertices, modified in place.

z | array of nCount Z vertices, modified in place.

Returns

TRUE on success, or FALSE if some or all points fail to transform.

Implemented in OGRProj4CT (p. ??).
Referenced by OGRPoint::transform().

12.45.2.5 virtual int OGRCoordinateTransformation::TransformEx (int nCount, double x x, double x y, double x z=NULL, int
* pabSuccess =NULL) [pure virtuall]

Transform points from source to destination space.
This method is the same as the C function OCT TransformEx().

Parameters

nCount | number of points to transform.

x | array of nCount X vertices, modified in place.

y | array of nCount Y vertices, modified in place.

z | array of nCount Z vertices, modified in place.

pabSuccess | array of per-point flags set to TRUE if that point transforms, or FALSE if it does not.

Returns

TRUE if some or all points transform successfully, or FALSE if if none transform.

Implemented in OGRProj4CT (p. ??).
Referenced by OGRLineString::transform().

The documentation for this class was generated from the following files:

+ ogr_spatialref.h
 ogrct.cpp

12.46 OGRCurve Class Reference

#include <ogr_geometry.h>

Inheritance diagram for OGRCurve:

| OGRGeometry |

T

| OGRCurve |

T

| OGRLineString |

T

| OGRLinearRing |

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

96 Class Documentation

Public Member Functions

« virtual double get_Length () const =0

Returns the length of the curve.
« virtual void StartPoint (OGRPoint) const =0

Return the curve start point.
« virtual void EndPoint (OGRPoint x) const =0

Return the curve end point.
« virtual int get_IsClosed () const

Return TRUE if curve is closed.
« virtual void Value (double, OGRPoint x) const =0

Fetch point at given distance along curve.
12.46.1 Detailed Description

Abstract curve base class.

12.46.2 Member Function Documentation
12.46.2.1 void OGRCurve::EndPoint (OGRPoint x« poPoint) const [pure virtual]

Return the curve end point.
This method relates to the SF COM ICurve::get_EndPoint() method.

Parameters

poPoint \ the point to be assigned the end location.

Implemented in OGRLineString (p. ??).
Referenced by get_IsClosed().
12.46.2.2 int OGRCurve::get_IsClosed ()const [virtuall]

Return TRUE if curve is closed.
Tests if a curve is closed. A curve is closed if its start point is equal to its end point.

This method relates to the SFCOM ICurve::get_IsClosed() method.

Returns

TRUE if closed, else FALSE.

References EndPoint(), OGRPoint::getX(), OGRPoint::getY(), and StartPoint().

12.46.2.3 double OGRCurve::get_Length()const [pure virtual]

Returns the length of the curve.

This method relates to the SFCOM ICurve::get_Length() method.

Returns

the length of the curve, zero if the curve hasn't been initialized.

Implemented in OGRLineString (p. ??).

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

12.47 OGRDataSource Class Reference

97

12.46.2.4 void OGRCurve::StartPoint (OGRPoint x poPoint) const [pure virtual]

Return the curve start point.

This method relates to the SF COM ICurve::get_StartPoint() method.

Parameters

poPoint \ the point to be assigned the start location.

Implemented in OGRLineString (p. ??).

Referenced by get_IsClosed().

12.46.2.5 void OGRCurve::Value (double dfDistance, OGRPoint * poPoint) const [pure virtual]

Fetch point at given distance along curve.

This method relates to the SF COM ICurve::get_Value() method.

Parameters

dfDistance

distance along the curve at which to sample position. This distance should be between zero
and get_Length() (p. ??) for this curve.

poPoint

the point to be assigned the curve position.

Implemented in OGRLineString (p. ??).

The documentation for this class was generated from the following files:

+ ogr_geometry.h

* ogreurve.cpp

12.47 OGRDataSource Class Reference

#include <ogrsf_frmts.h>

Inheritance diagram for OGRDataSource:

’ OGRDataSource ‘

T

’ OGRMutexedDataSource ‘

Public Member Functions

« virtual const char « GetName ()=0

Returns the name of the data source.
« virtual int GetLayerCount ()=0

Get the number of layers in this data source.
« virtual OGRLayer * GetLayer (int)=0
Fetch a layer by index.
« virtual OGRLayer * GetLayerByName (const char)

Fetch a layer by name.
« virtual OGRErr DeleteLayer (int)

Delete the indicated layer from the datasource.

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

98 Class Documentation

« virtual int TestCapability (const char %)=0

Test if capability is available.
« virtual OGRLayer * CreateLayer (const char xpszName, OGRSpatialReference xpoSpatialRef=NULL, O«
GRwkbGeometryType eGType=wkbUnknown, char xxpapszOptions=NULL)

This method attempts to create a new layer on the data source with the indicated name, coordinate system, geometry
type.
« virtual OGRLayer x CopyLayer (OGRLayer xpoSrcLayer, const char xpszNewName, char xxpapsz«
Options=NULL)
Duplicate an existing layer.
« virtual OGRStyleTable x GetStyleTable ()

Returns data source style table.
« virtual void SetStyleTableDirectly (OGRStyleTable xpoStyleTable)

Set data source style table.
« virtual void SetStyleTable (OGRStyleTable «poStyleTable)

Set data source style table.
« virtual OGRLayer x ExecuteSQL (const char xpszStatement, OGRGeometry xpoSpatialFilter, const char
xpszDialect)

Execute an SQL statement against the data store.
« virtual void ReleaseResultSet (OGRLayer xpoResultsSet)

Release results of ExecuteSQL() (p.??).
« virtual OGRErr SyncToDisk ()

Flush pending changes to disk.
« int Reference ()

Increment datasource reference count.
« int Dereference ()

Decrement datasource reference count.
+ int GetRefCount () const

Fetch reference count.
« int GetSummaryRefCount () const

Fetch reference count of datasource and all owned layers.
* OGRErr Release ()

Drop a reference to this datasource, and if the reference count drops to zero close (destroy) the datasource.
* OGRSFDriver « GetDriver () const

Returns the driver that the dataset was opened with.
« void SetDriver (OGRSFDriver xpoDriver)

Sets the driver that the dataset was created or opened with.

Static Public Member Functions

« static void DestroyDataSource (OGRDataSource x)

Closes opened datasource and releases allocated resources.

Friends

+ class OGRSFDriverRegistrar

12.47.1 Detailed Description

This class represents a data source. A data source potentially consists of many layers (OGRLayer (p. ??)). A data
source normally consists of one, or a related set of files, though the name doesn't have to be a real item in the file
system.

When an OGRDataSource (p. ??) is destroyed, all it's associated OGRLayers objects are also destroyed.

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

12.47 OGRDataSource Class Reference 99

12.47.2 Member Function Documentation

12.47.2.1 OGRLayer x OGRDataSource::CopyLayer (OGRLayer x poSrcLayer, const char x pszNewName, char x
papszOptions =NULL) [virtual]

Duplicate an existing layer.

This method creates a new layer, duplicate the field definitions of the source layer and then duplicate each features
of the source layer. The papszOptions argument can be used to control driver specific creation options. These
options are normally documented in the format specific documentation. The source layer may come from another
dataset.

This method is the same as the C function OGR_DS_CopyLayer() (p. ??).

Parameters

poSrcLayer | source layer.

pszNewName | the name of the layer to create.

papszOptions | a StringList of name=value options. Options are driver specific.

Returns

an handle to the layer, or NULL if an error occurs.

Reimplemented in OGRMutexedDataSource (p.??).

References CPLCalloc(), CPLError(), CPLErrorReset(), CPLMalloc(), OGRLayer::CreateFeature(), OGRFeature«
::CreateFeature(), OGRLayer::CreateField(), OGRLayer::CreateGeomField(), CreateLayer(), OGRFeature::«+
DestroyFeature(), OGRFeature::GetFID(), OGRFeatureDefn::GetFieldCount(), OGRFeatureDefn::GetField«
Defn(), OGRFeatureDefn::GetFieldindex(), OGRFeatureDefn::GetGeomFieldCount(), OGRFeatureDefn::Get«—
GeomFieldDefn(), OGRFeatureDefn::GetGeomType(), OGRLayer::GetLayerDefn(), OGRFeatureDefn::GetName(),
OGRFieldDefn::GetNameRef(), OGRLayer::GetNextFeature(), OGRLayer::GetSpatialRef(), OGRLayer::Reset«
Reading(), OGRFeature::SetFID(), OGRFeature::SetFrom(), OGRLayer::TestCapability(), TestCapability(), and
wkbNone.

Referenced by OGRSFDriver::CopyDataSource(), and OGRMutexedDataSource::CopyLayer().

12.47.2.2 OGRLayer x OGRDataSource::CreateLayer (const char x pszName, OGRSpatialReference * poSpatialRef =
NULL, OGRwkbGeometryType eGType =wkbUnknown, char xx papszOptions =NULL) [virtual]

This method attempts to create a new layer on the data source with the indicated name, coordinate system, geom-
etry type.

The papszOptions argument can be used to control driver specific creation options. These options are normally
documented in the format specific documentation.

Parameters

pszName | the name for the new layer. This should ideally not match any existing layer on the datasource.

poSpatialRef | the coordinate system to use for the new layer, or NULL if no coordinate system is available.

eGType | the geometry type for the layer. Use wkbUnknown if there are no constraints on the types
geometry to be written.

papszOptions | a StringList of name=value options. Options are driver specific.

Returns

NULL is returned on failure, or a new OGRLayer (p. ??) handle on success.

Example:

#include " f_frmts.h"
#include "cpl_string.h"

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

100 Class Documentation

OGRLayer *polLayer;
char *xpapszOptions;

if(!poDS->TestCapability(ODsCCreatelayer))
{

}

papszOptions = CSLSetNameValue(papszOptions, "DIM", "2");
polayer = poDS->Createlayer("NewLayer", NULL, wkbUnknown,
papszOptions);

CSLDestroy (papszOptions);

if(poLayer == NULL)
{

}

Reimplemented in OGRMutexedDataSource (p.??).
References CPLError().

Referenced by CopyLayer(), and OGRMutexedDataSource::CreateLayer().

12.47.2.3 OGRErr OGRDataSource::DeleteLayer (int iLayer) [virtual]

Delete the indicated layer from the datasource.
If this method is supported the ODsCDeletelLayer capability will test TRUE on the OGRDataSource (p. ??).
This method is the same as the C function OGR_DS_DeleteLayer() (p. ??).

Parameters

iLayer | the index of the layer to delete.

Returns
OGRERR_NONE on success, or OGRERR_UNSUPPORTED_OPERATION if deleting layers is not sup-
ported for this datasource.

Reimplemented in OGRMutexedDataSource (p.??).

References CPLError().

Referenced by OGRMutexedDataSource::DeleteLayer().

12.47.2.4 int OGRDataSource::Dereference ()

Decrement datasource reference count.

This method is the same as the C function OGR_DS_Dereference().

Returns

the reference count after decrementing.

12.47.2.5 void OGRDataSource::DestroyDataSource (OGRDataSource « poDS) [static]

Closes opened datasource and releases allocated resources.

This static method will close and destroy a datasource. It is equivelent to calling delete on the object, but it ensures
that the deallocation is properly executed within the GDAL libraries heap on platforms where this can matter (win32).

This method is the same as the C function OGR_DS_Destroy() (p. ??).

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

12.47 OGRDataSource Class Reference 101

Parameters

poDS \ pointer to allocated datasource object.

12.47.2.6 OGRLayer x OGRDataSource::ExecuteSQL (const char x pszStatement, OGRGeometry * poSpatialFilter,
const char x pszDialect) [virtuall]

Execute an SQL statement against the data store.

The result of an SQL query is either NULL for statements that are in error, or that have no results set, or an OGR+«
Layer (p. ??) pointer representing a results set from the query. Note that this OGRLayer (p. ??) is in addition to the
layers in the data store and must be destroyed with OGRDataSource::ReleaseResultSet() (p. ??) before the data
source is closed (destroyed).

This method is the same as the C function OGR_DS_ExecuteSQL() (p. ??).

For more information on the SQL dialect supported internally by OGR review the OGR SQL document. Some
drivers (ie. Oracle and PostGIS) pass the SQL directly through to the underlying RDBMS.

Starting with OGR 1.10, the SQLITE dialect can also be used.

Parameters
pszStatement | the SQL statement to execute.
poSpatialFilter | geometry which represents a spatial filter. Can be NULL.
pszDialect | allows control of the statement dialect. If set to NULL, the OGR SQL engine will be used,
except for RDBMS drivers that will use their dedicated SQL engine, unless OGRSQL is ex-
plicitely passed as the dialect. Starting with OGR 1.10, the SQLITE dialect can also be used.
Returns

an OGRLayer (p. ??) containing the results of the query. Deallocate with ReleaseResultSet() (p. ??).

Reimplemented in OGRMutexedDataSource (p. ??).
References CPLError(), CPLRealloc(), CSLCount(), and CSLDestroy().
Referenced by OGRMutexedDataSource::ExecuteSQL().

12.47.2.7 OGRSFDriver « OGRDataSource::GetDriver () const

Returns the driver that the dataset was opened with.

This method is the same as the C function OGR_DS_GetDriver() (p. ??).

Returns

NULL if driver info is not available, or pointer to a driver owned by the OGRSFDriverManager.

Referenced by OGRSFDriver::CopyDataSource(), OGR_Dr_CopyDataSource(), OGR_Dr_CreateDataSource(),
OGR_Dr_Open(), and OGRSFDriverRegistrar::Open().

12.47.2.8 OGRLayer « OGRDataSource::GetLayer (intiLayer) [pure virtual]

Fetch a layer by index.

The returned layer remains owned by the OGRDataSource (p. ??) and should not be deleted by the application.

This method is the same as the C function OGR_DS_GetLayer() (p. ??).

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

102 Class Documentation

Parameters

iLayer | alayer number between 0 and GetLayerCount() (p. ??)-1.

Returns

the layer, or NULL if iLayer is out of range or an error occurs.

Implemented in OGRMutexedDataSource (p.?7?).

Referenced by OGRSFDriver::CopyDataSource(), OGRMutexedDataSource::GetLayer(), GetLayerByName(),
GetSummaryRefCount(), and SyncToDisk().

12.47.2.9 OGRLayer « OGRDataSource::GetLayerByName (const char x pszLayerName) [virtual]

Fetch a layer by name.
The returned layer remains owned by the OGRDataSource (p. ??) and should not be deleted by the application.
This method is the same as the C function OGR_DS_GetLayerByName() (p. ??).

Parameters

pszLayerName | the layer name of the layer to fetch.

Returns

the layer, or NULL if Layer is not found or an error occurs.

Reimplemented in OGRMutexedDataSource (p. ??).
References GetLayer(), GetLayerCount(), and OGRLayer::GetName().
Referenced by OGRMutexedDataSource::GetLayerByName().

12.47.2.10 int OGRDataSource::GetLayerCount() [pure virtual]

Get the number of layers in this data source.

This method is the same as the C function OGR_DS_GetLayerCount() (p. ??).

Returns

layer count.

Implemented in OGRMutexedDataSource (p.?7?).

Referenced by OGRSFDriver::CopyDataSource()

, GetLayerByName(), OGRMutexedDataSource::GetLayer«
Count(), GetSummaryRefCount(), and SyncToDisk().

12.47.2.11 const char « OGRDataSource::GetName () [pure virtual]

Returns the name of the data source.

This string should be sufficient to open the data source if passed to the same OGRSFDriver (p. ??) that this data
source was opened with, but it need not be exactly the same string that was used to open the data source. Normally
this is a filename.

This method is the same as the C function OGR_DS_GetName() (p. ??).

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

12.47 OGRDataSource Class Reference 103

Returns

pointer to an internal name string which should not be modified or freed by the caller.

Implemented in OGRMutexedDataSource (p.?7?).

Referenced by OGRMutexedDataSource::GetName().

12.47.2.12 int OGRDataSource::GetRefCount () const

Fetch reference count.

This method is the same as the C function OGR_DS_GetRefCount().

Returns

the current reference count for the datasource object itself.

12.47.2.13 OGRStyleTable « OGRDataSource::GetStyleTable() [virtual]

Returns data source style table.

This method is the same as the C function OGR_DS_GetStyleTable().

Returns

pointer to a style table which should not be modified or freed by the caller.

Reimplemented in OGRMutexedDataSource (p.??).

Referenced by OGRMutexedDataSource::GetStyleTable().

12.47.2.14 int OGRDataSource::GetSummaryRefCount () const

Fetch reference count of datasource and all owned layers.

This method is the same as the C function OGR_DS_GetSummaryRefCount().

Returns

the current summary reference count for the datasource and its layers.

References GetlLayer(), GetLayerCount(), and OGRLayer::GetRefCount().

12.47.2.15 int OGRDataSource::Reference ()

Increment datasource reference count.

This method is the same as the C function OGR_DS_Reference().

Returns

the reference count after incrementing.

Referenced by OGRSFDriverRegistrar::Open().

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

104 Class Documentation

12.47.2.16 OGRErr OGRDataSource::Release ()

Drop a reference to this datasource, and if the reference count drops to zero close (destroy) the datasource.

Internally this actually calls the OGRSFDriverRegistrar::ReleaseDataSource() method. This method is essentially a
convenient alias.

This method is the same as the C function OGRReleaseDataSource() (p. ??).

Returns

OGRERR_NONE on success or an error code.

References OGRSFDriverRegistrar::GetRegistrar().

12.47.2.17 void OGRDataSource::ReleaseResultSet (OGRLayer * poResulisSet) [virtual]

Release results of ExecuteSQL() (p. ??).

This method should only be used to deallocate OGRLayers resulting from an ExecuteSQL() (p.??) call on the
same OGRDataSource (p. ??). Failure to deallocate a results set before destroying the OGRDataSource (p. ??)
may cause errors.

This method is the same as the C function OGR_L_ReleaseResultSet().

Parameters

poResultsSet | the result of a previous ExecuteSQL() (p. ??) call.

Reimplemented in OGRMutexedDataSource (p.??).

Referenced by OGRMutexedDataSource::ReleaseResultSet().
12.47.2.18 void OGRDataSource::SetDriver (OGRSFDriver x poDriver)
Sets the driver that the dataset was created or opened with.

Note

This method is not exposed as the OGR C API function.

Parameters

] poDriver \ pointer to driver instance associated with the data source.

Referenced by OGRSFDriver::CopyDataSource(), OGR_Dr_CopyDataSource(), OGR_Dr_CreateDataSource(),
and OGR_Dr_Open().

12.47.2.19 void OGRDataSource::SetStyleTable (OGRStyleTable x poStyleTable) [virtuall]

Set data source style table.

This method operate exactly as OGRDataSource::SetStyleTableDirectly() (p. ??) except that it does not assume
ownership of the passed table.

This method is the same as the C function OGR_DS_SetStyleTable().

Parameters

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

12.47 OGRDataSource Class Reference 105

poStyleTable | pointer to style table to set

Reimplemented in OGRMutexedDataSource (p.??).
References OGRStyleTable::Clone().
Referenced by OGRMutexedDataSource::SetStyleTable().

12.47.2.20 void OGRDataSource::SetStyleTableDirectly (OGRStyleTable x« poStyleTable) [virtuall]

Set data source style table.

This method operate exactly as OGRDataSource::SetStyleTable() (p. ??) except that it assumes ownership of the
passed table.

This method is the same as the C function OGR_DS_SetStyleTableDirectly().

Parameters

poStyleTable | pointer to style table to set

Reimplemented in OGRMutexedDataSource (p. ??).

Referenced by OGRMutexedDataSource::SetStyleTableDirectly().

12.47.2.21 OGRErr OGRDataSource::SyncToDisk() [virtuall]

Flush pending changes to disk.

This call is intended to force the datasource to flush any pending writes to disk, and leave the disk file in a consistent
state. It would not normally have any effect on read-only datasources.

Some data sources do not implement this method, and will still return OGRERR_NONE. An error is only returned if
an error occurs while attempting to flush to disk.

The default implementation of this method just calls the SyncToDisk() (p. ??) method on each of the layers. Con-
ceptionally, calling SyncToDisk() (p. ??) on a datasource should include any work that might be accomplished by
calling SyncToDisk() (p. ??) on layers in that data source.

In any event, you should always close any opened datasource with OGRDataSource::DestroyDataSource() (p. ??)
that will ensure all data is correctly flushed.

This method is the same as the C function OGR_DS_SyncToDisk() (p. ??).

Returns

OGRERR_NONE if no error occurs (even if nothing is done) or an error code.

Reimplemented in OGRMutexedDataSource (p.??).
References GetLayer(), GetLayerCount(), and OGRLayer::SyncToDisk().
Referenced by OGRMutexedDataSource::SyncToDisk().

12.47.2.22 int OGRDataSource::TestCapability (const char x pszCapability) [pure virtual]

Test if capability is available.

One of the following data source capability names can be passed into this method, and a TRUE or FALSE value
will be returned indicating whether or not the capability is available for this object.

+ ODsCCreateLayer: True if this datasource can create new layers.

+ ODsCDeleteLayer: True if this datasource can delete existing layers.

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

106 Class Documentation

+ ODsCCreateGeomFieldAfterCreateLayer: True if the layers of this datasource support CreateGeomField()
just after layer creation.

The #define macro forms of the capability names should be used in preference to the strings themselves to avoid
mispelling.

This method is the same as the C function OGR_DS_TestCapability() (p. ??).

Parameters

pszCapability | the capability to test.

Returns

TRUE if capability available otherwise FALSE.

Implemented in OGRMutexedDataSource (p.?7?).
Referenced by CopyLayer(), and OGRMutexedDataSource::TestCapability().
The documentation for this class was generated from the following files:

» ogrsf_frmts.h

» ogrsf_frmts.dox
+ ogrdatasource.cpp

12.48 OGREnvelope Class Reference

#include <ogr_core.h>

Inheritance diagram for OGREnvelope:

’ OGREnvelope ‘

’ OGREnvelope3D ‘

12.48.1 Detailed Description

Simple container for a bounding region.

The documentation for this class was generated from the following file:

+ ogr_core.h

12.49 OGREnvelope3D Class Reference

#include <ogr_core.h>

Inheritance diagram for OGREnvelope3D:

OGREnvelope

OGREnvelope3D

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

12.50 OGRFeature Class Reference 107

12.49.1 Detailed Description

Simple container for a bounding region in 3D.

The documentation for this class was generated from the following file:

» ogr_core.h

12.50 OGRFeature Class Reference

#include <ogr_feature.h>

Public Member Functions

* OGRFeature (OGRFeatureDefn x)

Constructor.
+ OGRFeatureDefn x GetDefnRef ()
Fetch feature definition.
* OGRErr SetGeometryDirectly (OGRGeometry)
Set feature geometry.
* OGRErr SetGeometry (OGRGeometry x)
Set feature geometry.
+ OGRGeometry + GetGeometryRef ()
Fetch pointer to feature geometry.
+ OGRGeometry * StealGeometry ()
Take away ownership of geometry.
« int GetGeomFieldCount ()
Fetch number of geometry fields on this feature. This will always be the same as the geometry field count for the
OGRFeatureDefn (p.??).
+ OGRGeomFieldDefn + GetGeomFieldDefnRef (int iField)
Fetch definition for this geometry field.
+ int GetGeomFieldIndex (const char xpszName)
Fetch the geometry field index given geometry field name.
+ OGRGeometry « GetGeomFieldRef (int iField)
Fetch pointer to feature geometry.
+ OGRGeometry x GetGeomFieldRef (const char xpszFName)
Fetch pointer to feature geometry.
* OGRErr SetGeomFieldDirectly (int iField, OGRGeometry x)
Set feature geometry of a specified geometry field.
* OGRErr SetGeomField (int iField, OGRGeometry x)
Set feature geometry of a specified geometry field.
* OGRFeature * Clone ()
Duplicate feature.
« virtual OGRBoolean Equal (OGRFeature xpoFeature)
Test if two features are the same.
« int GetFieldCount ()
Fetch number of fields on this feature. This will always be the same as the field count for the OGRFeatureDefn
(p-?2).
+ OGRFieldDefn x GetFieldDefnRef (int iField)
Fetch definition for this field.
« int GetFieldIndex (const char xpszName)

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

108 Class Documentation

Fetch the field index given field name.
« int IsFieldSet (int iField)
Test if a field has ever been assigned a value or not.
« void UnsetField (int iField)
Clear a field, marking it as unset.
* OGRField « GetRawFieldRef (int i)
Fetch a pointer to the internal field value given the index.
« int GetFieldAsinteger (int i)
Fetch field value as integer.
» double GetFieldAsDouble (int i)
Fetch field value as a double.
+ const char x GetFieldAsString (int i)
Fetch field value as a string.
» const int x GetFieldAsIntegerList (int i, int «pnCount)
Fetch field value as a list of integers.
+ const double * GetFieldAsDoubleList (int i, int xpnCount)
Fetch field value as a list of doubles.
+ char *x GetFieldAsStringList (int i)
Fetch field value as a list of strings.
+ GByte * GetFieldAsBinary (int i, int xpnCount)
Fetch field value as binary data.
+ int GetFieldAsDateTime (int i, int xpnYear, int xpnMonth, int xpnDay, int xpnHour, int xpnMinute, int xpn«
Second, int xpnTZFlag)
Fetch field value as date and time.
« void SetField (int i, int nValue)
Set field to integer value.
+ void SetField (int i, double dfValue)
Set field to double value.
+ void SetField (int i, const char xpszValue)
Set field to string value.
+ void SetField (int i, int nCount, int xpanValues)
Set field to list of integers value.
« void SetField (int i, int nCount, double xpadfValues)
Set field to list of doubles value.
+ void SetField (int i, char xxpapszValues)
Set field to list of strings value.
« void SetField (int i, OGRField xpuValue)
Set field.
+ void SetField (int i, int nCount, GByte xpabyBinary)
Set field to binary data.
+ void SetField (int i, int nYear, int nMonth, int nDay, int nHour=0, int nMinute=0, int nSecond=0, int nTZFlag=0)
Set field to date.
* long GetFID ()
Get feature identifier.
« virtual OGRErr SetFID (long nFID)
Set the feature identifier.
+ void DumpReadable (FILE x*, char xxpapszOptions=NULL)
Dump this feature in a human readable form.
* OGRErr SetFrom (OGRFeature x, int=TRUE)

Set one feature from another.
* OGRErr SetFrom (OGRFeature x, int *, int=TRUE)

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

12.50 OGRFeature Class Reference 109

Set one feature from another.
* OGRErr SetFieldsFrom (OGRFeature x, int x, int=TRUE)

Set fields from another feature.
« virtual const char x GetStyleString ()

Fetch style string for this feature.
« virtual void SetStyleString (const char x)

Set feature style string. This method operate exactly as OGRFeature::SetStyleStringDirectly() (p. ??) except that
it does not assume ownership of the passed string, but instead makes a copy of it.

« virtual void SetStyleStringDirectly (char)

Set feature style string. This method operate exactly as OGRFeature::SetStyleString() (p. ??) except that it assumes
ownership of the passed string.

Static Public Member Functions

« static OGRFeature * CreateFeature (OGRFeatureDefn x)

Feature factory.
« static void DestroyFeature (OGRFeature x*)

Destroy feature.

12.50.1 Detailed Description

A simple feature, including geometry and attributes.

12.50.2 Constructor & Destructor Documentation
12.50.2.1 OGRFeature::0GRFeature (OGRFeatureDefn x poDefnin)

Constructor.

Note that the OGRFeature (p.??) will increment the reference count of it's defining OGRFeatureDefn (p. ?7?).
Destruction of the OGRFeatureDefn (p. ??) before destruction of all OGRFeatures that depend on it is likely to
result in a crash.

This method is the same as the C function OGR_F_Create() (p. ??).

Parameters

] poDefnin | feature class (layer) definition to which the feature will adhere.

References CPLCalloc(), CPLMalloc(), OGRFeatureDefn::GetFieldCount(), OGRFeatureDefn::GetGeomField«
Count(), and OGRFeatureDefn::Reference().

Referenced by Clone(), and CreateFeature().

12.50.3 Member Function Documentation
12.50.3.1 OGRFeature « OGRFeature::Clone ()

Duplicate feature.
The newly created feature is owned by the caller, and will have it's own reference to the OGRFeatureDefn (p. ?2?).

This method is the same as the C function OGR_F_Clone() (p. ??).

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

110 Class Documentation

Returns

new feature, exactly matching this feature.

References GetFID(), OGRFeatureDefn::GetFieldCount(), OGRFeatureDefn::GetGeomFieldCount(), GetStyle«
String(), OGRFeature(), SetFID(), SetField(), SetGeomPField(), and SetStyleString().

Referenced by OGRGenSQLResultsLayer::GetFeature().

12.50.3.2 OGRFeature « OGRFeature::CreateFeature (OGRFeatureDefn x poDefn) [static]

Feature factory.

This is essentially a feature factory, useful for applications creating features but wanting to ensure they are created
out of the OGR/GDAL heap.

This method is the same as the C function OGR_F_Create() (p. ??).

Parameters

poDefn | Feature definition defining schema.

Returns

new feature object with null fields and no geometry. May be deleted with delete.

References OGRFeature().

Referenced by OGRDataSource::CopyLayer().

12.50.3.3 void OGRFeature::DestroyFeature (OGRFeature * poFeature) [static]

Destroy feature.

The feature is deleted, but within the context of the GDAL/OGR heap. This is necessary when higher level applica-
tions use GDAL/OGR from a DLL and they want to delete a feature created within the DLL. If the delete is done in
the calling application the memory will be freed onto the application heap which is inappropriate.

This method is the same as the C function OGR_F_Destroy() (p. ??).

Parameters

poFeature | the feature to delete.

Referenced by OGRDataSource::CopylLayer().

12.50.3.4 void OGRFeature::DumpReadable (FILE fpOut, char xx papszOptions =NULL)

Dump this feature in a human readable form.

This dumps the attributes, and geometry; however, it doesn't definition information (other than field types and
names), nor does it report the geometry spatial reference system.

A few options can be defined to change the default dump :

DISPLAY_FIELDS=NO : to hide the dump of the attributes

DISPLAY_STYLE=NO : to hide the dump of the style string

DISPLAY_GEOMETRY=NO : to hide the dump of the geometry

DISPLAY_GEOMETRY=SUMMARY : to get only a summary of the geometry

This method is the same as the C function OGR_F_DumpReadable() (p. ??).

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

12.50 OGRFeature Class Reference 111

Parameters

foOut | the stream to write to, such as stdout. If NULL stdout will be used.

papszOptions | NULL terminated list of options (may be NULL)

References CSLTestBoolean(), OGRGeometry::dumpReadable(), GetFID(), GetFieldAsString(), GetFieldCounty(),
OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetFieldTypeName(), GetGeomFieldCount(), OGRFeature«
Defn::GetGeomFieldDefn(), OGRFeatureDefn::GetName(), OGRFieldDefn::GetNameRef(), OGRGeomField«
Defn::GetNameRef(), GetStyleString(), OGRFieldDefn::GetType(), and IsFieldSet().

12.50.3.5 OGRBoolean OGRFeature::Equal (OGRFeature * poFeature) [virtual]

Test if two features are the same.

Two features are considered equal if the share them (pointer equality) same OGRFeatureDefn (p. ??), have the
same field values, and the same geometry (as tested by OGRGeometry::Equal()) as well as the same feature id.

This method is the same as the C function OGR_F_Equal() (p. ??).

Parameters

poFeature | the other feature to test this one against.

Returns

TRUE if they are equal, otherwise FALSE.

References CSLCount(), OGRGeometry::Equals(), GetDefnRef(), GetFID(), GetFieldAsBinary(), GetFieldAs«—
DateTime(), GetFieldAsDouble(), GetFieldAsDoubleList(), GetFieldAsInteger(), GetFieldAsIntegerList(), GetField«
AsString(), GetFieldAsStringList(), OGRFeatureDefn::GetFieldCount(), OGRFeatureDefn::GetFieldDefn(), Get«
GeomFieldCount(), GetGeomFieldRef(), OGRFieldDefn::GetType(), IsFieldSet(), OF TBinary, OF TDate, OF TDate«
Time, OFTInteger, OFTIntegerList, OFTReal, OFTRealList, OF TString, OF TStringList, and OFTTime.

12.50.3.6 OGRFeatureDefn « OGRFeature::GetDefnRef() [inline]

Fetch feature definition.

This method is the same as the C function OGR_F_GetDefnRef() (p. ??).

Returns

a reference to the feature definition object.

Referenced by Equall().

12.50.3.7 long OGRFeature::GetFID() [inline]

Get feature identifier.

This method is the same as the C function OGR_F_GetFID() (p. ??).

Returns

feature id or OGRNUIIFID if none has been assigned.

Referenced by Clone(), OGRDataSource::CopyLayer(), OGRUnionLayer::CreateFeature(), DumpReadable(),
Equal(), OGRLayer::GetFeature(), GetFieldAsDouble(), GetFieldAsInteger(), GetFieldAsString(), and OGRUnion«
Layer::SetFeature().

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

112 Class Documentation

12.50.3.8 GByte x OGRFeature::GetFieldAsBinary (int iField, int x pnBytes)

Fetch field value as binary data.
Currently this method only works for OF TBinary fields.
This method is the same as the C function OGR_F_GetFieldAsBinary() (p. ??).

Parameters

iField | the field to fetch, from 0 to GetFieldCount() (p. 2?)-1.

pnBytes | location to put the number of bytes returned.

Returns

the field value. This data is internal, and should not be modified, or freed. lts lifetime may be very brief.

References OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), IsFieldSet(), and OF TBinary.
Referenced by Equall().

12.50.3.9 int OGRFeature::GetFieldAsDateTime (int iField, int « pnYear, int x pnMonth, int « pnDay, int + pnHour, int x
pnMinute, int « pnSecond, int « pnTZFlag)

Fetch field value as date and time.

Currently this method only works for OFTDate, OFTTime and OFTDateTime fields.

This method is the same as the C function OGR_F_GetFieldAsDateTime() (p. ??).

Parameters
iField | the field to fetch, from 0 to GetFieldCount() (p. ??)-1.
pnYear | (including century)
pnMonth | (1-12)
pnDay | (1-31)
pnHour | (0-23)
pnMinute | (0-59)
pnSecond | (0-59)
pnTZFlag | (O=unknown, 1=localtime, 100=GMT, see data model for details)
Returns

TRUE on success or FALSE on failure.

References OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), IsFieldSet(), OFTDate, OFTDateTime,
and OFTTime.

Referenced by Equall().

12.50.3.10 double OGRFeature::GetFieldAsDouble (int iField)

Fetch field value as a double.

OFTString features will be translated using atof(). OFTInteger fields will be cast to double. Other field types, or
errors will result in a return value of zero.

This method is the same as the C function OGR_F_GetFieldAsDouble() (p. ??).

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

12.50 OGRFeature Class Reference 113

Parameters

iField | the field to fetch, from 0 to GetFieldCount() (p. 2?)-1.

Returns

the field value.
References GetFID(), OGRFeatureDefn::GetFieldCount(), OGRFeatureDefn::GetFieldDefn(), GetGeomField«
Count(), OGRFieldDefn::GetType(), IsFieldSet(), OF Tinteger, OFTReal, OFTString, and OGR_G_Area().
Referenced by Equal(), and SetFieldsFrom().

12.50.3.11 const double « OGRFeature::GetFieldAsDoubleList (int iField, int x pnCount)

Fetch field value as a list of doubles.
Currently this method only works for OF TRealList fields.
This method is the same as the C function OGR_F_GetFieldAsDoubleList() (p. ??).

Parameters

iField | the field to fetch, from 0 to GetFieldCount() (p. 2?)-1.

pnCount | an integer to put the list count (number of doubles) into.

Returns
the field value. This list is internal, and should not be modified, or freed. lIts lifetime may be very brief. If
*«pnCount is zero on return the returned pointer may be NULL or non-NULL.
References OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), IsFieldSet(), and OF TRealList.
Referenced by Equal(), and SetFieldsFrom().

12.50.3.12 int OGRFeature::GetFieldAsInteger (int iField)

Fetch field value as integer.

OFTString features will be translated using atoi(). OF TReal fields will be cast to integer. Other field types, or errors
will result in a return value of zero.

This method is the same as the C function OGR_F_GetFieldAslinteger() (p. ??).

Parameters

iField | the field to fetch, from 0 to GetFieldCount() (p. 2?)-1.

Returns

the field value.
References GetFID(), OGRFeatureDefn::GetFieldCount(), OGRFeatureDefn::GetFieldDefn(), GetGeomField«
Count(), OGRFieldDefn::GetType(), IsFieldSet(), OF Tinteger, OFTReal, OFTString, and OGR_G_Area().
Referenced by Equal(), and SetFieldsFrom().

12.50.3.13 const int x OGRFeature::GetFieldAsIntegerList (int iField, int + pnCount)

Fetch field value as a list of integers.
Currently this method only works for OF TIntegerList fields.
This method is the same as the C function OGR_F_GetFieldAsintegerList() (p. ??).

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

114 Class Documentation

Parameters

iField | the field to fetch, from 0 to GetFieldCount() (p. 2?)-1.

pnCount | an integer to put the list count (number of integers) into.

Returns

the field value. This list is internal, and should not be modified, or freed. lts lifetime may be very brief. If
xpnCount is zero on return the returned pointer may be NULL or non-NULL.

References OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), IsFieldSet(), and OFTIntegerList.
Referenced by Equal(), and SetFieldsFrom().

12.50.3.14 const char « OGRFeature::GetFieldAsString (int iField)

Fetch field value as a string.

OFTReal and OFTInteger fields will be translated to string using sprintf(), but not necessarily using the established
formatting rules. Other field types, or errors will result in a return value of zero.

This method is the same as the C function OGR_F_GetFieldAsString() (p. ?7?).

Parameters

iField | the field to fetch, from 0 to GetFieldCount() (p. ??)-1.

Returns

the field value. This string is internal, and should not be modified, or freed. lts lifetime may be very brief.

References CPLBinaryToHex(), CPLStrdup(), GetFID(), OGRFeatureDefn::GetFieldCount(), OGRFeatureDefn«
::GetFieldDefn(), OGRGeometry::getGeometryName(), GetGeomFieldCount(), OGRFieldDefn::GetPrecision(),
GetStyleString(), OGRFieldDefn::GetType(), OGRFieldDefn::GetWidth(), IsFieldSet(), OFTBinary, OFTDate, O«
FTDateTime, OFTInteger, OFTIntegerList, OFTReal, OFTRealList, OFTString, OFTStringList, OFTTime, and
OGR_G_Area().

Referenced by OGRUnionLayer::CreateFeature(), DumpReadable(), Equal(), GetStyleString(), OGRUnionLayer«
::SetFeature(), and SetFieldsFrom().

12.50.3.15 char x* OGRFeature::GetFieldAsStringList (int iField)

Fetch field value as a list of strings.
Currently this method only works for OF TStringList fields.

The returned list is terminated by a NULL pointer. The number of elements can also be calculated using CSL+«
Count() (p. ??).

This method is the same as the C function OGR_F_GetFieldAsStringList() (p. ?7?).

Parameters

iField | the field to fetch, from 0 to GetFieldCount() (p. ??)-1.

Returns

the field value. This list is internal, and should not be modified, or freed. Its lifetime may be very brief.

References OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), IsFieldSet(), and OFTStringList.
Referenced by Equall().

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

12.50 OGRFeature Class Reference 115

12.50.3.16 int OGRFeature::GetFieldCount() [inline]

Fetch number of fields on this feature. This will always be the same as the field count for the OGRFeatureDefn
(p-??).
This method is the same as the C function OGR_F_GetFieldCount() (p. ??).

Returns

count of fields.

References OGRFeatureDefn::GetFieldCount().
Referenced by DumpReadable(), OGR_F _IsFieldSet(), SetFieldsFrom(), and SetFrom().

12.50.3.17 OGRFieldDefn «x OGRFeature::GetFieldDefnRef (int iField) [inline]

Fetch definition for this field.
This method is the same as the C function OGR_F_GetFieldDefnRef() (p. ??).

Parameters

iField \ the field to fetch, from 0 to GetFieldCount() (p. ??)-1.

Returns

the field definition (from the OGRFeatureDefn (p. ??)). This is an internal reference, and should not be deleted
or modified.

References OGRFeatureDefn::GetFieldDefn().
Referenced by SetFieldsFrom(), and SetFrom().

12.50.3.18 int OGRFeature::GetFieldindex (const char « pszName) [inline]

Fetch the field index given field name.
This is a cover for the OGRFeatureDefn::GetFieldindex() (p. ??) method.
This method is the same as the C function OGR_F_GetFieldindex() (p. ??).

Parameters

pszName | the name of the field to search for.

Returns

the field index, or -1 if no matching field is found.

References OGRFeatureDefn::GetFieldIndex().
Referenced by GetStyleString(), and SetFrom().

12.50.3.19 OGRGeometry « OGRFeature::GetGeometryRef ()

Fetch pointer to feature geometry.
This method is the same as the C function OGR_F_GetGeometryRef() (p. ??).
Starting with GDAL 1.11, this is equivalent to calling OGRFeature::GetGeomFieldRef(0).

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

116 Class Documentation

Returns

pointer to internal feature geometry. This object should not be modified.

References GetGeomFieldCount(), and GetGeomFieldRef().
Referenced by OGRLayer::Clip(), and OGRLayer::Erase().

12.50.3.20 int OGRFeature::GetGeomFieldCount() [inline]

Fetch number of geometry fields on this feature. This will always be the same as the geometry field count for the
OGRFeatureDefn (p. ?7?).

This method is the same as the C function OGR_F_GetGeomFieldCount() (p. ??).

Returns

count of geometry fields.

Since

GDAL 1.11

References OGRFeatureDefn::GetGeomFieldCounty().

Referenced by DumpReadable(), Equal(), GetFieldAsDouble(), GetFieldAsInteger(), GetFieldAsString(), Get«
GeometryRef(), GetGeomFieldRef(), IsFieldSet(), SetFrom(), SetGeometry(), SetGeometryDirectly(), SetGeom«
Field(), SetGeomFieldDirectly(), and StealGeometry().

12.50.3.21 OGRGeomFieldDefn « OGRFeature::GetGeomFieldDefnRef (int iGeomField) [inline]

Fetch definition for this geometry field.
This method is the same as the C function OGR_F_GetGeomFieldDefnRef() (p. ??).

Parameters

] iGeomField | the field to fetch, from 0 to GetGeomFieldCount() (p. 2?)-1.

Returns

the field definition (from the OGRFeatureDefn (p. ??)). This is an internal reference, and should not be deleted
or modified.

Since

GDAL 1.11

References OGRFeatureDefn::GetGeomFieldDefn().
Referenced by SetFrom().

12.50.3.22 int OGRFeature::GetGeomFieldIndex (const char x pszName) [inline]

Fetch the geometry field index given geometry field name.
This is a cover for the OGRFeatureDefn::GetGeomFieldindex() (p. ??) method.
This method is the same as the C function OGR_F_GetGeomFieldindex() (p. ??).

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

12.50 OGRFeature Class Reference 117

Parameters

pszName | the name of the geometry field to search for.

Returns

the geometry field index, or -1 if no matching geometry field is found.

Since

GDAL 1.11

References OGRFeatureDefn::GetGeomFieldIindex().
Referenced by GetGeomFieldRef(), and SetFrom().

12.50.3.23 OGRGeometry « OGRFeature::GetGeomFieldRef (int iField)

Fetch pointer to feature geometry.
This method is the same as the C function OGR_F_GetGeomFieldRef() (p. ??).

Parameters

iField | geometry field to get.

Returns

pointer to internal feature geometry. This object should not be modified.

Since

GDAL 1.11

References GetGeomFieldCount().

Referenced by Equal(), GetGeometryRef(), OGRWarpedLayer::GetNextFeature(), OGRGenSQLResultsLayer::+
GetNextFeature(), OGRUnionLayer::GetNextFeature(), and SetFrom().

12.50.3.24 OGRGeometry x OGRFeature::GetGeomFieldRef (const char « pszFName)

Fetch pointer to feature geometry.

Parameters

pszFName | name of geometry field to get.

Returns

pointer to internal feature geometry. This object should not be modified.

Since

GDAL 1.11

References GetGeomFieldIndex().

12.50.3.25 OGRField « OGRFeature::GetRawFieldRef (intiField) [inline]

Fetch a pointer to the internal field value given the index.

This method is the same as the C function OGR_F_GetRawFieldRef() (p. ??).

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

118 Class Documentation

Parameters

iField | the field to fetch, from 0 to GetFieldCount() (p. 2?)-1.

Returns

the returned pointer is to an internal data structure, and should not be freed, or modified.

Referenced by SetFieldsFrom().

12.50.3.26 const char « OGRFeature::GetStyleString() [virtual]

Fetch style string for this feature.

Set the OGR Feature Style Specification for details on the format of this string, and ogr_featurestyle.h (p. ??) for
services available to parse it.

This method is the same as the C function OGR_F_GetStyleString() (p. ??).

Returns

a reference to a representation in string format, or NULL if there isn't one.

References GetFieldAsString(), and GetFieldIindex().
Referenced by Clone(), DumpReadable(), GetFieldAsString(), OGRStyleMgr::InitFromFeature(), and SetFrom().

12.50.3.27 int OGRFeature::IsFieldSet (int iField)

Test if a field has ever been assigned a value or not.
This method is the same as the C function OGR_F_IsFieldSet() (p. ??).

Parameters

iField | the field to test.

Returns

TRUE if the field has been set, otherwise false.

References OGRFeatureDefn::GetFieldCount(), GetGeomFieldCount(), and OGR_G_Area().

Referenced by OGRUnionLayer::CreateFeature(), DumpReadable(), Equal(), GetFieldAsBinary(), GetFieldAs«—
DateTime(), GetFieldAsDouble(), GetFieldAsDoubleList(), GetFieldAsInteger(), GetFieldAsIntegerList(), GetField«
AsString(), GetFieldAsStringList(), OGR_F_IsFieldSet(), OGRUnionLayer::SetFeature(), SetField(), SetFields«
From(), and UnsetField().

12.50.3.28 OGRErr OGRFeature::SetFID (longnFID) [virtuall]

Set the feature identifier.

For specific types of features this operation may fail on illegal features ids. Generally it always succeeds. Feature
ids should be greater than or equal to zero, with the exception of OGRNUIIFID (-1) indicating that the feature id is
unknown.

This method is the same as the C function OGR_F_SetFID() (p. ??).

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

12.50 OGRFeature Class Reference 119

Parameters

nFID | the new feature identifier value to assign.

Returns

On success OGRERR_NONE, or on failure some other value.

Referenced by Clone(), OGRDataSource::CopyLayer(), OGRUnionLayer::CreateFeature(), OGRGenSQLResults«
Layer::GetFeature(), OGRUnionLayer::SetFeature(), and SetFrom().

12.50.3.29 void OGRFeature::SetField (int iField, int nValue)

Set field to integer value.

OFTInteger and OFTReal fields will be set directly. OFTString fields will be assigned a string representation of
the value, but not necessarily taking into account formatting constraints on this field. Other field types may be
unaffected.

This method is the same as the C function OGR_F_SetFieldinteger() (p. ??).

Parameters

iField | the field to fetch, from 0 to GetFieldCount() (p. 2?)-1.

nValue | the value to assign.

References CPLStrdup(), OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), IsFieldSet(), OFTInteger,
OFTIntegerList, OFTReal, OFTRealList, and OFTString.

Referenced by Clone(), OGRGenSQLResultsLayer::GetFeature(), SetField(), and SetFieldsFrom().

12.50.3.30 void OGRFeature::SetField (int iField, double dfValue)

Set field to double value.

OFTInteger and OFTReal fields will be set directly. OFTString fields will be assigned a string representation of
the value, but not necessarily taking into account formatting constraints on this field. Other field types may be
unaffected.

This method is the same as the C function OGR_F_SetFieldDouble() (p. ??).

Parameters

iField | the field to fetch, from 0 to GetFieldCount() (p. 2?)-1.

dfValue | the value to assign.

References CPLStrdup(), OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), IsFieldSet(), OFTInteger,
OFTIntegerList, OFTReal, OFTRealList, OFTString, and SetField().

12.50.3.31 void OGRFeature::SetField (int iField, const char x pszValue)

Set field to string value.

OFTInteger fields will be set based on an atoi() conversion of the string. OFTReal fields will be set based on an
atof() conversion of the string. Other field types may be unaffected.

This method is the same as the C function OGR_F_SetFieldString() (p. ??).

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

120

Class Documentation

Parameters

iField

the field to fetch, from 0 to GetFieldCount() (p. ??)-1.

pszValue

the value to assign.

References CPLError(), CPLGetConfigOption(), CPLStrdup(), CPLStrtod(), CSLCount(), CSLDestroy(), CSLTest«
Boolean(), CSLTokenizeString2(), OGRFeatureDefn::GetFieldDefn(), OGRFeatureDefn::GetName(), OGRField«
Defn::GetNameRef(), OGRFieldDefn::GetType(), IsFieldSet(), OF TDate, OF TDateTime, OF TInteger, OF TInteger«
List, OFTReal, OFTRealList, OF TString, OF TStringList, OF TTime, and SetField().

12.50.3.32 void OGRFeature::SetField (int iField, int nCount, int x panValues)

Set field to list of integers value.

This method currently on has an effect of OF TIntegerList fields.

This method is the same as the C function OGR_F_SetFieldintegerList() (p. ??).

Parameters

iField

the field to set, from 0 to GetFieldCount() (p. ??)-1.

nCount

the number of values in the list being assigned.

panValues

the values to assign.

References OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), OFTInteger, OF TintegerList, OFTReal,
OFTReallList, and SetField().

12.50.3.33 void OGRFeature::SetField (int iField, int nCount, double * padfValues)

Set field to list of doubles value.

This method currently on has an effect of OF TRealList fields.

This method is the same as the C function OGR_F_SetFieldDoubleList() (p. ??).

Parameters

iField

the field to set, from 0 to GetFieldCount() (p. ??)-1.

nCount

the number of values in the list being assigned.

padfValues

the values to assign.

References OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), OF TInteger, OF TIntegerList, OFTReal,
OFTRealList, and SetField().

12.50.3.34 void OGRFeature::SetField (int iField, char xx papszValues)

Set field to list of strings value.

This method currently on has an effect of OFTStringList fields.

This method is the same as the C function OGR_F_SetFieldStringList() (p. ??).

Parameters

iField

the field to set, from 0 to GetFieldCount() (p. ??)-1.

papszValues

the values to assign.

References CSLCount(), OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), OFTStringList, and Set«

Field().

12.50.3.35 void OGRFeature::SetField (int iField, OGRField * puValue)

Set field.

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

12.50 OGRFeature Class Reference 121

The passed value OGRField (p. ??) must be of exactly the same type as the target field, or an application crash
may occur. The passed value is copied, and will not be affected. It remains the responsibility of the caller.

This method is the same as the C function OGR_F_SetFieldRaw() (p. ??).

Parameters

iField | the field to fetch, from 0 to GetFieldCount() (p. ??)-1.

puValue | the value to assign.

References CPLMalloc(), CPLStrdup(), CSLCount(), CSLDestroy(), CSLDuplicate(), OGRFeatureDefn::GetField«
Defn(), OGRFieldDefn::GetType(), IsFieldSet(), OF TBinary, OFTDate, OFTDateTime, OF TInteger, OF TIntegerList,
OFTReal, OFTRealList, OFTString, OFTStringList, and OFTTime.

12.50.3.36 void OGRFeature::SetField (int iField, int nBytes, GByte x pabyData)

Set field to binary data.
This method currently on has an effect of OF TBinary fields.
This method is the same as the C function OGR_F_SetFieldBinary() (p. ??).

Parameters

iField | the field to set, from 0 to GetFieldCount() (p. 2?)-1.

nBytes | bytes of data being set.

pabyData | the raw data being applied.

References OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), OF TBinary, and SetField().

12.50.3.37 void OGRFeature::SetField (int iField, int nYear, int nMonth, int nDay, int nHour = O, int nMinute = 0, int nSecond
=0, int nTZFlag=0)

Set field to date.

This method currently only has an effect for OFTDate, OFTTime and OFTDateTime fields.

This method is the same as the C function OGR_F_SetFieldDateTime() (p. ??).

Parameters
iField | the field to set, from 0 to GetFieldCount() (p. ??)-1.
nYear | (including century)

nMonth | (1-12)

nDay | (1-31)

nHour | (0-23)

nMinute | (0-59)

nSecond | (0-59)
nTZFlag | (O=unknown, 1=localtime, 100=GMT, see data model for details)

References CPLError(), OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), OFTDate, OFTDateTime,
and OFTTime.

12.50.3.38 OGRErr OGRFeature::SetFieldsFrom (OGRFeature x poSrcFeature, int = panMap, int bForgiving = TRUE)

Set fields from another feature.

Overwrite the fields of this feature from the attributes of another. The FID and the style string are not set. The
poSrcFeature does not need to have the same OGRFeatureDefn (p. ??). Field values are copied according to the
provided indices map. Field types do not have to exactly match. SetField() (p. ??) method conversion rules will be
applied as needed. This is more efficient than OGR_F_SetFrom() (p. ??) in that this doesn't lookup the fields by
their names. Particularly useful when the field names don't match.

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

122 Class Documentation

Parameters

poSrcFeature | the feature from which geometry, and field values will be copied.

panMap | Array of the indices of the feature's fields stored at the corresponding index of the source
feature's fields. A value of -1 should be used to ignore the source's field. The array should
not be NULL and be as long as the number of fields in the source feature.

bForgiving | TRUE if the operation should continue despite lacking output fields matching some of the
source fields.

Returns

OGRERR_NONE if the operation succeeds, even if some values are not transferred, otherwise an error code.

References GetFieldAsDouble(), GetFieldAsDoubleList(), GetFieldAsinteger(), GetFieldAsIntegerList(), GetField«
AsString(), GetFieldCount(), GetFieldDefnRef(), GetRawFieldRef(), OGRFieldDefn::GetType(), IsFieldSet(), OF
TDate, OFTDateTime, OFTInteger, OF TintegerList, OFTReal, OFTRealList, OFTString, OFTTime, SetField(), and
UnsetField().

Referenced by OGRLayer::Clip(), OGRLayer::Erase(), OGRLayer::Identity(), OGRLayer::Intersection(), SetFrom(),
OGRLayer::SymDifference(), OGRLayer::Union(), and OGRLayer::Update().

12.50.3.39 OGRErr OGRFeature::SetFrom (OGRFeature * poSrcFeature, int bForgiving = TRUE)

Set one feature from another.

Overwrite the contents of this feature from the geometry and attributes of another. The poSrcFeature does not need
to have the same OGRFeatureDefn (p. ??). Field values are copied by corresponding field names. Field types do
not have to exactly match. SetField() (p. ??) method conversion rules will be applied as needed.

This method is the same as the C function OGR_F_SetFrom() (p. ??).

Parameters

poSrcFeature | the feature from which geometry, and field values will be copied.

bForgiving | TRUE if the operation should continue despite lacking output fields matching some of the
source fields.

Returns

OGRERR_NONE if the operation succeeds, even if some values are not transferred, otherwise an error code.

References GetFieldCount(), GetFieldDefnRef(), GetFieldindex(), and OGRFieldDefn::GetNameRef().

Referenced by OGRDataSource::CopyLayer(), OGRUnionLayer::CreateFeature(), and OGRUnionLayer::Set«
Feature().

12.50.3.40 OGRErr OGRFeature::SetFrom (OGRFeature x poSrcFeature, int « panMap, int bForgiving = TRUE)

Set one feature from another.

Overwrite the contents of this feature from the geometry and attributes of another. The poSrcFeature does not need
to have the same OGRFeatureDefn (p. ??). Field values are copied according to the provided indices map. Field
types do not have to exactly match. SetField() (p. ??) method conversion rules will be applied as needed. This
is more efficient than OGR_F_SetFrom() (p. ??) in that this doesn't lookup the fields by their names. Particularly
useful when the field names don't match.

This method is the same as the C function OGR_F_SetFromWithMap() (p. ??).

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

12.50 OGRFeature Class Reference 123

Parameters

poSrcFeature | the feature from which geometry, and field values will be copied.

panMap | Array of the indices of the feature's fields stored at the corresponding index of the source
feature's fields. A value of -1 should be used to ignore the source's field. The array should
not be NULL and be as long as the number of fields in the source feature.

bForgiving | TRUE if the operation should continue despite lacking output fields matching some of the
source fields.

Returns
OGRERR_NONE if the operation succeeds, even if some values are not transferred, otherwise an error code.
References GetGeomFieldCount(), GetGeomFieldDefnRef(), GetGeomFieldindex(), GetGeomFieldRef(), OG+«+

RGeomFieldDefn::GetNameRef(), GetStyleString(), SetFID(), SetFieldsFrom(), SetGeomField(), and SetStyle«
String().

12.50.3.41 OGRErr OGRFeature::SetGeometry (OGRGeometry *x poGeomin)

Set feature geometry.

This method updates the features geometry, and operate exactly as SetGeometryDirectly() (p. ??), except that this
method does not assume ownership of the passed geometry, but instead makes a copy of it.

This method is the same as the C function OGR_F_SetGeometry() (p. ??).

Parameters

poGeomin | new geometry to apply to feature. Passing NULL value here is correct and it will result in
deallocation of currently assigned geometry without assigning new one.

Returns
OGRERR_NONE if successful, or OGR_UNSUPPORTED_GEOMETRY_TYPE if the geometry type is illegal
for the OGRFeatureDefn (p. ??) (checking not yet implemented).

References GetGeomFieldCount(), and SetGeomField().

Referenced by OGRLayer::Update().

12.50.3.42 OGRErr OGRFeature::SetGeometryDirectly (OGRGeometry *« poGeomin)

Set feature geometry.

This method updates the features geometry, and operate exactly as SetGeometry() (p. ??), except that this method
assumes ownership of the passed geometry (even in case of failure of that function).

This method is the same as the C function OGR_F_SetGeometryDirectly() (p. ??).

Parameters

poGeomin | new geometry to apply to feature. Passing NULL value here is correct and it will result in
deallocation of currently assigned geometry without assigning new one.

Returns

OGRERR_NONE if successful, or OGR_UNSUPPORTED_GEOMETRY_TYPE if the geometry type is illegal
for the OGRFeatureDefn (p. ??) (checking not yet implemented).

References GetGeomFieldCount(), and SetGeomFieldDirectly().

Referenced by OGRLayer::Clip(), OGRLayer::Erase(), OGRLayer::Identity(), OGRLayer::Intersection(), OGR+«
Layer::SymDifference(), OGRLayer::Union(), and OGRLayer::Update().

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

124 Class Documentation

12.50.3.43 OGRErr OGRFeature::SetGeomField (int iField, OGRGeometry * poGeomin)

Set feature geometry of a specified geometry field.

This method updates the features geometry, and operate exactly as SetGeomFieldDirectly() (p. ??), except that
this method does not assume ownership of the passed geometry, but instead makes a copy of it.

This method is the same as the C function OGR_F_SetGeomField() (p. ??).

Parameters

iField | geometry field to set.

poGeomin | new geometry to apply to feature. Passing NULL value here is correct and it will result in
deallocation of currently assigned geometry without assigning new one.

Returns

OGRERR_NONE if successful, or OGRERR_FAILURE if the index is invalid, or OGR_UNSUPPORTED_+«
GEOMETRY_TYPE if the geometry type is illegal for the OGRFeatureDefn (p. ??) (checking not yet imple-
mented).

Since

GDAL 1.11

References OGRGeometry::clone(), and GetGeomFieldCount().

Referenced by Clone(), SetFrom(), and SetGeometry().

12.50.3.44 OGRErr OGRFeature::SetGeomFieldDirectly (int iField, OGRGeometry x poGeomin)

Set feature geometry of a specified geometry field.

This method updates the features geometry, and operate exactly as SetGeomField() (p. ??), except that this method
assumes ownership of the passed geometry (even in case of failure of that function).

This method is the same as the C function OGR_F_SetGeomFieldDirectly() (p. ??).

Parameters

iField | geometry field to set.

poGeomin | new geometry to apply to feature. Passing NULL value here is correct and it will result in
deallocation of currently assigned geometry without assigning new one.

Returns

OGRERR_NONE if successful, or OGRERR_FAILURE if the index is invalid, or OGR_UNSUPPORTED_+«
GEOMETRY_TYPE if the geometry type is illegal for the OGRFeatureDefn (p. ??) (checking not yet imple-
mented).

Since

GDAL 1.11

References GetGeomFieldCount().

Referenced by SetGeometryDirectly().

12.50.3.45 void OGRFeature::SetStyleString (const char « pszString) [virtual]

Set feature style string. This method operate exactly as OGRFeature::SetStyleStringDirectly() (p. ??) except that
it does not assume ownership of the passed string, but instead makes a copy of it.

This method is the same as the C function OGR_F_SetStyleString() (p. ??).

Generated on Wed Oct 21 2015 23:42:39 for OGR by Doxygen

12.51 OGRFeatureDefn Class Reference 125

Parameters

pszString \ the style string to apply to this feature, cannot be NULL.

References CPLStrdup().
Referenced by Clone(), OGRStyleMgr::SetFeatureStyleString(), and SetFrom().

12.50.3.46 void OGRFeature::SetStyleStringDirectly (char x pszString) [virtual]

Set feature style string. This method operate exactly as OGRFeature::SetStyleString() (p. ??) except that it as-
sumes ownership of the passed string.

This method is the same as the C function OGR_F_SetStyleStringDirectly() (p. ??).

Parameters

pszString | the style string to apply to this feature, cannot be NULL.

12.50.3.47 OGRGeometry « OGRFeature::StealGeometry ()

Take away ownership of geometry.

Fetch the geometry from this feature, and clear the reference to the geometry on the feature. This is a mechanis