

The Gerber File Format
Specification

A format developed by Ucamco

June 2013

Revision I3

Copyright Ucamco NV. i

Contents

Contents ... i

Figures ... v

Tables ... vi

Preface ... vii

Acknowledgement ... viii

1 Introduction .. 9

1.1 Info, Questions & Feedback .. 9

1.2 Record of Revisions .. 9

1.2.1 Revision I1 ... 9

1.2.2 Revision I2 ... 10

1.2.3 Revision I3 ... 10

1.3 About this Document ... 10

1.3.1 Scope ... 10

1.3.2 Who Should Use This Specification? .. 10

1.3.3 Conformance .. 10

1.3.4 Formatting and Syntax Rules ... 11

1.3.5 References ... 12

1.4 History of the Gerber File Format .. 12

1.5 About Ucamco ... 12

1.6 Intellectual Property and Trade Name ... 12

2 Overview ... 14

2.1 File Structure ... 14

2.2 Image Generation .. 14

2.2.1 Graphics Objects .. 14

2.2.2 Dark and Clear Polarity .. 15

2.2.3 Operation Codes .. 15

2.2.4 Stroking .. 16

2.2.5 Graphics State.. 17

2.3 Annotated Example Files ... 18

2.3.1 Example 1 .. 18

2.3.2 Example 2 .. 19

3 Syntax ... 24

Copyright Ucamco NV. ii

3.1 Character Set .. 24

3.2 Names ... 24

3.3 Data Blocks ... 24

3.4 Statements .. 25

3.5 Data Types .. 26

3.5.1 Function Codes .. 26

3.5.2 Coordinate Data Blocks .. 27

3.5.3 Parameters ... 28

4 Function Codes .. 30

4.1 Syntax ... 31

4.2 Linear Interpolation .. 33

4.2.1 Data Block Format .. 33

4.3 Circular Interpolation ... 34

4.3.1 Overview .. 34

4.3.2 Definition of arcs ... 35

4.3.3 Numerical instability in multi quadrant (G75) arcs 35

4.3.4 Single Quadrant Mode .. 36

4.3.5 Multi Quadrant Mode .. 39

4.3.6 Example ... 40

4.3.7 Using G74 or G75 can result in completely different image 41

4.4 Regions (G36/G37) ... 41

4.4.1 Overview .. 41

4.4.2 Simple contour example ... 42

4.4.3 Using levels to create holes .. 44

4.4.4 Cut-in example 1 .. 47

4.4.5 Cut-in example 2 – valid, coincident segments 49

4.4.6 Cut-in example 3 – invalid, overlapping segments 52

5 Parameters .. 55

5.1 FS – Format Specification ... 55

5.1.1 Coordinate Format ... 56

5.1.2 Zero Omission .. 56

5.1.3 Absolute or Incremental Notation ... 57

5.1.4 Data Block Format .. 57

5.1.5 Examples ... 57

5.2 MO – Mode.. 58

5.2.1 Data Block Format .. 58

5.2.2 Examples ... 58

5.3 IP – Image Polarity .. 58

5.3.1 Positive image polarity .. 58

5.3.2 Negative image polarity .. 58

5.3.3 Data Block Format .. 59

5.3.4 Examples ... 59

5.4 IN - Image Name ... 59

Copyright Ucamco NV. iii

5.4.1 Data Block Format .. 59

5.4.2 Examples ... 60

5.5 AD - Aperture Definition ... 60

5.5.1 Syntax Rules .. 60

5.5.2 Data Block Format .. 61

5.5.3 Aperture Definition with Standard Apertures ... 61

5.5.4 Examples ... 67

5.6 AM - Aperture Macro ... 67

5.6.1 Data Block Format .. 67

5.6.2 Primitives .. 69

5.6.3 Parameter Contents ... 78

5.6.4 Syntax Rules .. 78

5.6.5 Examples ... 82

5.7 SR – Step and Repeat ... 85

5.7.1 Data Block Format .. 85

5.7.2 Examples ... 86

5.8 LP – Level Polarity ... 86

5.8.1 Data Block Format .. 86

5.8.2 Examples ... 87

5.9 LN – Level Name ... 87

5.9.1 Data Block Format .. 87

5.9.2 Examples ... 87

6 Reported File Errors ... 88

7 Reported Bad Practice ... 89

8 Glossary .. 91

9 Miscellaneous Deprecated Elements .. 93

9.1 Coordinate Data Blocks without Operation Code ... 93

9.2 Open Contours in Regions .. 93

10 Deprecated Function Codes .. 94

11 Deprecated Parameters ... 95

11.1 Deprecated Graphics State Variables ... 95

11.2 AS – Axis Select .. 96

11.2.1 Data Block Format... 96

11.2.2 Examples .. 96

11.3 IR – Image Rotation .. 96

11.3.1 Data Block Format... 96

11.3.2 Examples .. 97

Copyright Ucamco NV. iv

11.4 MI – Mirror Image .. 97

11.4.1 Data Block Format... 97

11.4.2 Examples .. 98

11.5 OF - Offset .. 98

11.5.1 Data Block Format... 98

11.5.2 Examples .. 99

11.6 SF – Scale Factor ... 99

11.6.1 Data Block Format... 99

11.6.2 Examples .. 99

12 Deprecated RS-274-D or Standard Gerber .. 102

12.1 Standard Gerber must not be used ... 102

12.2 Origin and purpose of Standard Gerber .. 102

12.3 Standard Gerber is a NC format .. 103

12.4 Standard Gerber is not a standard .. 104

12.5 A fallacy .. 104

Copyright Ucamco NV. v

Figures

Linear interpolation using rectangle aperture: example 1 ... 16
Linear interpolation using rectangle aperture: example 2 ... 16
Example 1: two square boxes .. 18
Example 2: various shapes .. 19
Gerber file structure ... 25
Single quadrant mode .. 37
Single quadrant mode example: arcs and draws .. 38
Single quadrant mode example: resulting image .. 38
Multi quadrant mode example: resulting image .. 40
Simple contour example: draws ... 43
Simple contour example: resulting image ... 43
Resulting image: first level only .. 45
Resulting image: first and second levels .. 46
Resulting image: first, second and third levels ... 46
Resulting image: all four levels .. 47
Cut-in example 1: arcs and draws .. 48
Cut-in example 1: resulting image .. 48
Cut-in example 2: valid, coincident segments .. 50
Cut-in example 2: resulting image .. 51
Cut-in example 3: invalid, overlapping segments ... 53
Cut-in example 2: resulting image .. 54
Circles with different holes ... 62
Rectangles with different holes .. 63
Obrounds with different holes .. 64
Polygons with different holes ... 66
Circle primitive ... 70
Line (vector) primitive ... 71
Line (center) primitive .. 72
Line (lower left) primitive .. 73
Outline primitive ... 74
Polygon primitive ... 75
Moiré primitive ... 76
Thermal primitive ... 77
Rotated triangle ... 84

Copyright Ucamco NV. vi

Tables

Document conventions .. 12
Current codes .. 30
Quadrant modes .. 34
Current parameters .. 55
Arithmetic operators ... 79
Reported Semantic Errors.. 88
Poor/good practices ... 89
Deprecated codes .. 94
Deprecated parameters ... 95
Deprecated graphics state variables .. 96

Copyright Ucamco NV. vii

Preface

The Gerber file format is the de facto standard for printed circuit board (PCB) image data
transfer. Every PCB design system outputs Gerber files and every PCB front-end engineering
system inputs them. Implementations are thoroughly field-tested and debugged. Its widespread
availability allows PCB professionals to exchange image drill and route securely and efficiently. It
has been called “the backbone of the electronics manufacturing industry”.

The Gerber file format is simple, compact and unequivocal. It describes an image with very high
precision, up to 1 nm. It is complete: one single file describes one single image. It is portable and
easy to debug by its use of printable 7-bit ASCII characters. A well-constructed Gerber file
precisely defines the PCB image and the functions of the different image elements.

Unfortunately, some applications generate invalid or poorly constructed Gerber files. Especially
troublesome is the use of painting or stroking to create pads and copper areas. Poorly
constructed files take longer to process, require more manual work and increase the risk of
errors. Such problems are sometimes incorrectly blamed on the Gerber file format itself.

These problems may result from misunderstanding the specification or the capabilities of the
format. With more than 25 years of experience in CAM software we at Ucamco know which
areas are most often misunderstood. We developed successive revisions of the format
specification to clarify these areas and recommend proper constructions. Our aim is to make
Gerber files safer and more efficient, making fabrication more reliable, faster and cheaper.

The current Gerber file format is RS-274X or Extended Gerber. Standard Gerber or RS-274-D is
deprecated. Standard Gerber does not have a single advantage over Extended Gerber. It has
many disadvantages. It is not an image description format, but an NC format constrained by the
technology from the 1960s and 1970s. It is simply not suited for reliable automatic image data
transfer. Do not use it any longer.

Although other data transfer formats have come into the market, they have not displaced the
Gerber file format. The reason is simple. Most of the problems in data transfer are due not to
limitations in the Gerber file format but to poor practices. To quote a PCB manufacturer: “If we
would only receive proper Gerber files, it would be a perfect world.” The new formats are more
complex and less transparent to the user. New implementations inevitably have bugs. Common
poor practices in more complex formats make matters worse, not better. The industry has not
adopted new formats. Gerber remains the standard.

The emergence of Gerber as a standard for image exchange is the result of efforts by many
individuals who developed outstanding software for Gerber files. Without their dedication the
widespread acceptance of a de-facto standard could not have been achieved. Ucamco thanks
these dedicated individuals.

Karel Tavernier

Managing Director,
Ucamco

Copyright Ucamco NV. viii

Acknowledgement

This revision of the specification was developed by

Karel Tavernier

Rik Breemeersch

advised by

Ludek Brukner

Artem Kostyukovich

Jiri Martinek

Adam Newington

Denis Morin

Karel Langhout

We thank anyone who has helped us with questions, remarks or suggestions - they are too many
to mention by name. However, we wish to explicitly thank Paul Wells-Edwards who contributed
substantially with insightful comments.

Copyright Ucamco NV. 9

1 Introduction

1.1 Info, Questions & Feedback
Correspondence regarding this publication or questions about the Gerber File Format can be
mailed to gerber@ucamco.com

or sent to

Ucamco NV
Bijenstraat 19,
B-9051 Gent,
Belgium

For more information see www.ucamco.com

1.2 Record of Revisions

1.2.1 Revision I1

General. The entire specification has been reviewed for clarity. Existing warnings and notes
were clarified and new ones added. The quality of the text and the drawings has been improved.

Deprecated elements. Format elements that are rarely used and superfluous or prone to
misunderstanding have been deprecated. They are grouped together in the second part of this
document. The first part contains the current format, which is clean and frugal. We urge all
creators of Gerber files no longer to use deprecated elements of the format.

Graphics state and operation codes. The underlying concept of the graphics state and
operation codes is now explicitly described. See section 2.2.3 and 2.2.2. We urge all providers
of Gerber software to review their implementation in the light of these sections.

Defaults. In previous revisions the definitions of the default values for the modes were scattered
throughout the text, or were sometimes omitted. All default values are now unequivocally
specified in an easy-to-read table. See 2.2.2. We urge all providers of Gerber software to review
their handling of defaults.

Rotation of macro primitives. The rotation center of macro primitives was clarified. See 5.6.2.
We urge providers of Gerber software to review their handling of the rotation of macro
primitives.

G36/G37. The whole section is now much more specific. An example was added to illustrate
how to use of polarities to make holes in areas, a method superior to cut-ins. See 4.4. We urge
all providers of Gerber software to review their handling of G36/G37 and to use layers to create
holes in areas rather than using cut-ins.

Coordinate data blocks. Coordinate data without D01/D02/D03 in the same data block create
some confusion. It therefore has been deprecated. See 3.5.2. We urge all providers of Gerber
software to review their output of coordinate data in this light.

Maximum aperture number (D-code). In previous revisions the maximum aperture number
was 999. This was insufficient for current needs and numerous files in the market use higher
aperture numbers. We have therefore increased the limit to the largest number that fits in a
signed 32 bit integer.

Standard Gerber. We now define Standard Gerber in relation to the current Gerber file format.
Standard Gerber is deprecated because it has many disadvantages and not a single advantage.
We urge all users of Gerber software not to use Standard Gerber.

mailto:gerber@ucamco.com
http://www.ucamco.com/

Copyright Ucamco NV. 10

Incremental coordinates. These have been deprecated. Incremental coordinates lead to
rounding errors. Do not use incremental coordinates.

Name change: area and contour instead of polygon. Previous revisions contained an object
called a polygon. As well as creating confusion between this object and a polygon aperture, the
term is also a misnomer as the object can also contain arcs. These objects remain unchanged
but are now called areas, defined by their contours. This does not alter the Gerber files.

Name change: level instead of layer. Previous revisions of the specification contained a
construct called a layer. As these were often confused with PCB layers they have been
renamed as levels. This does not alter the Gerber files.

1.2.2 Revision I2

The “exposure on/off” modifier in macro apertures and the holes in standard apertures are
sometimes incorrectly implemented. These features were explained in more detail. Readers and
writers of Gerber files are urged to review their implementation in this light.

1.2.3 Revision I3

Questions about the order and precise effect of the deprecated parameters MI, SF, OF, IR and
AS were clarified. Coincident contour segments were explicitly defined, see 4.4.1.

1.3 About this Document

1.3.1 Scope

This specification describes a digital format for representing a bi-level image. The specification
is intended for the developers of the software that reads and writes Gerber files as well as for
user of such software.

The document does not specify the following:

 Specific physical methods of storing Gerber files

 User interface or implementation details of rendering Gerber files

 Designs of the software being created for handling Gerber files

 Required computer hardware or operating system

1.3.2 Who Should Use This Specification?

This specification is intended for:

 PCB designers preparing Gerber files

 PCB fabricators creating or using Gerber files

 Developers of software applications using Gerber files

The specification widely uses the terminology of PCB CAM industry because it is tightly related to
the semantics and interpretation of the Gerber file format. It is assumed that a reader of this
document has the basic knowledge about computer-aided manufacturing (CAM) and printed
circuit boards (PCB).

1.3.3 Conformance

A Gerber file must follow all requirements of the specification. If the interpretation of a construct
is not specified or not obvious then that construct is invalid. A file violating any requirement of
the specification or containing an invalid part is wholly invalid. An invalid Gerber file is
meaningless and does not represent an image. There is no correct or incorrect interpretation of
an invalid Gerber file.

Copyright Ucamco NV. 11

Current Gerber file writers (creators of Gerber files) must no longer use deprecated elements of
the format. However, as deprecated elements may still be present in legacy files, it is up to a
Gerber file reader (consumer of Gerber files) to implement their handling or not.

The Gerber file reader is allowed to assume that the input file is valid. There is no mandatory
behavior on reading an invalid Gerber file. Consequently, it is not mandatory to detect and
report that an input file is invalid. (Detecting that a Gerber file is invalid can be very difficult– e.g.
detecting self-intersecting contours – and we do not want to impose this burden on
implementations of Gerber input; the goal is to make this as simple as possible.) There is one
exception to this rule: as future versions of the Gerber format may include new codes or
parameters readers must warn on unknown codes and parameters.

As a consequence of the rule it is not mandatory to detect invalidities a Gerber file reader is
allowed to generate an image on an invalid file. (Furthermore, it may be convenient for the user
that an image is generated, as a diagnostic help, to have an image for the valid parts of the file,
or in an attempt to guess the intended image by „reading between the lines‟.) However, as an
invalid Gerber file is meaningless it cannot be stated that one image would be correct and
another not correct.

A Gerber file writer is allowed to use all the non-deprecated elements of the format. The writer is
not required to take into account limitations or errors in particular readers and may assume that
a valid file will be processed correctly.

The responsibilities are obvious and plain. Writers must write valid and robust files and readers
must process such files correctly. The writers are not responsible to navigate around problems
in the readers, nor are readers responsible to deal with problems in the writers.

1.3.4 Formatting and Syntax Rules

The following font formatting rules are used in this specification:

 Examples of Gerber file content are written with mono-spaced font, e.g. X0Y0D02*

 Syntax rules are written with bold font, e.g. <Elements set>: {<Elements>}

The syntax rules are described using the following conventions:

 Optional items enclosed in square brackets, e.g. [<Optional element>]

 Items repeating zero or more times are enclosed in braces, e.g.

 <Elements set>: <Element>{<Element>}

 Alternative choices are separated by the „|‟ character, e.g.

 <Option A>|<Option B>

 Grouped items are enclosed in regular parentheses, e.g. (A|B)(C|D)

The following conventions are used:

Note:

Provides essential extra information.

 Tip: Provides useful extra information.

Example:

Contains examples of file syntax and semantics.

Warning:

Contains an important warning.

Copyright Ucamco NV. 12

Document conventions

1.3.5 References

American National Standard for Information Systems — Coded Character Sets — 7-Bit
American National Standard Code for Information Interchange (7-Bit ASCII), ANSI X3.4-1986

Bible, Mark 7:35

1.4 History of the Gerber File Format
The Gerber file format derives its name from the former Gerber Systems Corp., a leading
supplier of photoplotters in its time.

Originally, Gerber used a subset of the EIA RS-274-D format as standard input format for its
photoplotters. This subset became known as Standard Gerber. Photoplotters were NC
machines at that time. Standard Gerber is not an image description format, but an NC format to
drive mechanical machine tools, where aperture shapes where physical apertures in a so-called
aperture wheel.

In subsequent years, Gerber extended the input format for its range of PCB devices and it
actually became a family of capable image description formats. In 1997 the formats were pulled
together and standardized by the publication of the first version of this document under the
name Extended Gerber Format or RS-274X. It has become the de-facto standard for PCB
image data. It is sometimes called “the backbone of the electronics industry”.

In 1998 Gerber Systems Corp. was taken over by Barco and incorporated in its PCB division
Barco ETS, now Ucamco. Several revisions of the specification were published over the years,
clarifying it and adapting it to current needs. The obsolete Standard Gerber or RS-274-D format
was deprecated.

1.5 About Ucamco
Ucamco (former Barco ETS) is a market leader in PCB CAM software and imaging systems. We
have more than 25 years of continuous experience developing and supporting leading-edge
front-end tooling solutions for the global PCB industry. We help fabricators world-wide raise
yields, increase factory productivity, and cut enterprise risks and costs.

Today we have more than 1000 laser photoplotters and 5000 CAM systems installed around the
world with local support in every major market. Our customers include the leading PCB
fabricators across the global spectrum. Many of them have been with us for more than 20 years.

Key to this success has been our uncompromising pursuit of engineering excellence in all our
products. For 25 years our product goals have been best-in-class performance, long-term
reliability, and continuous development to keep each user at the cutting-edge of his chosen
technology.

For more information see www.ucamco.com.

1.6 Intellectual Property and Trade Name
© Copyright Ucamco NV, Gent, Belgium

All rights reserved. This material, information and instructions for use contained herein are the
property of Ucamco. The material, information and instructions are provided on an AS IS basis
without warranty of any kind. There are no warranties granted or extended by this document.
Furthermore Ucamco does not warrant, guarantee or make any representations regarding the
use, or the results of the use of the information contained herein. Ucamco shall not be liable for

http://www.ucamco.com/

Copyright Ucamco NV. 13

any direct, indirect, consequential or incidental damages arising out of the use or inability to use
the information contained herein.

The information contained herein is subject to change without prior notice. Revisions may be
issued from time to time to advise of changes and/or additions.

No part of this document may be reproduced, stored in a data base or retrieval system, or
published, in any form or in any way, electronically, mechanically, by print, photo print, microfilm
or any other means without prior written permission from Ucamco.

This document supersedes all previous versions.

All product names cited are trademarks or registered trademarks of their respective owners.

Ucamco developed the Gerber file format and improves it from time to time with updates. The
Gerber file format is Ucamco intellectual property. No derivative versions, modifications or
extensions can be made without prior written approval by Ucamco. Developers of Gerber
software will make all reasonable efforts to comply with the latest specification.

Gerber Format is an Ucamco Registered Trade Mark. Users of the name Gerber Format will not
be rename it, associate it with data that does not conform to the format or modify the
interpretation of the format. Software developers using the name Gerber Format will make all
reasonable efforts to comply with the latest specification.

Copyright Ucamco NV. 14

2 Overview

2.1 File Structure
The Gerber file format is a vector format: the image is defined by resolution-independent
graphics objects.

A single Gerber file specifies a single bi-level image.

A Gerber file is complete: it does not need external files or parameters to be interpreted. One
Gerber file represents one image. One image needs only one file.

A Gerber file is a stream of statements. A statement can contain function codes, parameters
coordinate data.

The stream of statements generates a stream of graphics object which combined produce the
final image.

A Gerber file can be processed in a single pass. This imposes a certain sequence in the
statements. For example, the coordinate format and unit must be known to be able to convert
coordinate data to coordinates. They are set by the FS and MO parameters. The FS and MO
parameters must therefore before the first coordinate.

Each file must end with the end of file data block „M02*‟.

 Example

G04 Set coordinate format and units in the file header*

%FSLAX25Y25*%

%MOIN*%

G04 From here coordinate data can be interpreted*

…

M02*

2.2 Image Generation

2.2.1 Graphics Objects

A Gerber file creates an ordered stream of graphics objects. A graphics object has an image
(shape, size), a position in the plane and a polarity (dark or clear).

There are four types of graphics objects:

 A draw is a straight line segment with a given thickness and either round or square line
endings.

 An arc is circular arc segment with a given thickness, always with round endings.

 A flash is a replication of an aperture at a given location. An aperture is a basic geometric
shape defined earlier in the file. Apertures are typically flashed many times.

 A region is an area of defined by its contour. A contour is constructed with of linear and
circular segments.

In PCB copper layers, draws and arcs are typically used to create tracks, flashes to create pads
and regions to create copper areas.

Copyright Ucamco NV. 15

2.2.2 Dark and Clear Polarity

The final image of the Gerber file is created by superimposing the objects in order of the stream.
Objects can overlap. A dark object darkens (marks, paints, exposes) its image in the plane. A
clear object clears (unmarks, rubs, erases, scratches) its image in all the lower levels. In other
words, after superposing a clear object, its image is clear, whatever objects were there before.
Subsequent dark objects may again darken the cleared area.

A Gerber file consists of a sequence of levels. From a syntactic point of view a level is a set of
consecutive statements. From the image generation point of view a level is a consecutive block
of graphics object with the same polarity.

The order of the objects within a level does not affect the final image. The order of the levels,
however, typically affects the final image. A Gerber file can be viewed as a sequence of levels
that are superimposed in the order of appearance in the file.

The LP parameter starts a new level and sets its polarity, see 5.7.

2.2.3 Operation Codes

D01, D02 and D03 are called the operation codes. The operation codes create the graphics
objects by operating on a coordinate pair.

Syntactically a coordinate data block contains the coordinate data followed its operation code. A
coordinate data block must contain a single (1) operation code: each operation code is
associated with a single coordinate pair and vice versa. (Coordinate data blocks without
operation codes are deprecated.)

 Example:

X100Y100D01*

X200Y200D02*

X300Y-400D03*

The operation codes have the following effect.

 D01 plots a straight line or an arc segment from the current point to the coordinate, also
called a lights-on move

 D02 moves the current point to the coordinate, also called a lights-off move

 D03 creates a flash object by replicating the current aperture at the coordinate

The operation code D03 directly creates a flash object. Sequences of D01 and D02 create
segments that are turned in graphics by object one of two following methods:

 Stroking. The segments are stroked with the current aperture, see 2.2.4.

 Region building. The segments form contour that defines a region, see 4.4.

The region mode setting determines which object generating method is used. When region
mode is off stroking is used, when region mode is on region building is used.

The operation codes are controlled by the graphics state, see 2.2.5.

Copyright Ucamco NV. 16

2.2.4 Stroking

A draw object is created by stroking a straight line segment with a solid circle or solid rectangle
standard aperture. If stroked with a circle aperture the draw has round endings and its thickness
is equal to the diameter of the circle. The effect of stroking a line segment with a rectangle
aperture is illustrated below:

Draw Aperture Result of the interpolation

Linear interpolation using rectangle aperture: example 1

If the rectangle aperture is aligned with the draw the result is a draw with a straight line ending:

Draw Aperture Result of the interpolation

Linear interpolation using rectangle aperture: example 2

 Note: The rectangle is not automatically rotated to align with the draw.

An arc object is created by stroking an arc segment with a solid circle standard aperture. The
arc has round endings and its thickness is equal to the diameter of the circle. An arc segment
cannot be stroked with a rectangle.

The only apertures allowed for stroking are the solid circle and the solid rectangle standard
apertures (line segments only for the rectangle). Other standard apertures or special apertures,
whatever their final shape, cannot be used for stroking.

Zero size apertures can be used for stroking. They create graphic objects without image, which
can be used to transfer non-image information, e.g. reference points.

 Note: Zero-length draws and arcs are allowed. The resulting image is the same as the
flashed aperture. However, the graphic object is a draw or arc, not a flash.

 Note: Any valid aperture can be flashed.

Copyright Ucamco NV. 17

2.2.5 Graphics State

A Gerber file defines a graphics state after each statement.

The operation codes are controlled by the graphics state, see 2.2.3.

Except for the current point, all graphics state variables are set by codes or parameters. They
are modal, which means that their value does not change until explicitly set by a code of
parameter.

The value range of the current point is the points in the plane. The current point is not set
explicitly by a code or a parameter, but implicitly by the coordinate data blocks. After a
coordinate data block is processed the current point is set to the coordinate in that block.

The table below lists the graphics state variables. The column „Fixed or changeable‟ indicates
whether a variable value is fixed during the processing of a file or whether it can be changed.
The column „Value at the beginning of a file‟ describes the default value at the beginning of each
file; if it is undefined it must be set before it is first needed.

Graphics
state variable

Value range Fixed or
changeable

At the
beginning
of the file

Coordinate
format

See FS parameter Fixed Undefined

Unit Inch or mm
See MO parameter.

Fixed Undefined

Image polarity POS, NEG
See IP parameter

Fixed Positive

Step & Repeat See SR parameter Changeable 1,1,-,-

Level polarity Dark, Clear
See LP parameter.

Changeable Dark

Region mode On/Off. See 4.4. Changeable Off

Current
aperture

Standard or macro
aperture. See AD and
AM parameters.

Changeable Undefined

Quadrant mode Single-, Multi-Quadrant
See G74, G75

Changeable Undefined

Interpolation
mode

See G01, G02, G03 Changeable Undefined

Current point Point in plane Changeable (0,0)

Graphics state variables

 Note: It is safer and more robust not to rely on the defaults but to set the mode explicitly.

The graphics state determines the effect of a coordinate data block. If a state variable is
required but undefined when a coordinate data block is processed the Gerber file is invalid. If a
graphics state variable is not needed then it can remain undefined. For example, if the
interpolation mode is G01 (linear interpolation) then the quadrant mode may remain undefined
because it is not required for interpolating. However if the interpolation mode is switched to G02
or G03 (circular interpolation) the quadrant mode becomes required and thus must be defined.

Copyright Ucamco NV. 18

2.3 Annotated Example Files
These annotated samples illustrate the use of the elements of the Gerber file format. If you are
not familiar with the Gerber file format they can give you a feel for it which will make it easier to
read the specification.

2.3.1 Example 1

Example 1 is a single-level image with two square boxes.

Example 1: two square boxes

G04 Ucamco ex. 1: Two

square boxes*

A comment

%INBoxes*%
Image name set to „Boxes‟, information only

%FSLAX26Y26*%
Coordinate format specification:
Leading zeroes omitted
Absolute coordinates
2 digits in the integer part
6 digits in the fractional part

%MOIN*%
Unit set to inch

%LPD%
Start a new level with dark polarity

%ADD10C,0.010*%
Define aperture with D-code 10 as a 0.01
inch circle

D10*
Select aperture with D-code 10 as current
aperture

X0Y0D02*
Move to (0, 0)

G01X5000000Y0D01*
Draw to (5, 0) with D10

G01Y5000000D01*
Draw to (5, 5) with D10

G01X0D01*
Draw to (0, 5) with D10

G01Y0D01*
Draw to (0, 0) with D10

X6000000D02*
Move to (6, 0)

G01X11000000D01*
Draw to (11, 0) with D10

Copyright Ucamco NV. 19

G01Y5000000D01*
Draw to (11, 5) with D10

G01X6000000D01*
Draw to (6, 5) with D10

G01Y0D01*
Draw to (6, 0) with D10

M02*
End of file

2.3.2 Example 2

Example 2 illustrates the use of levels and various apertures.

Example 2: various shapes

G04 Ucamco ex. 2: Shapes*
A comment

%INShapes*%
Image name is „Shapes‟

%FSLAX23Y23*%
Format specification:
Leading zeros omitted
Absolute coordinates
Coordinates format is 2.3

%MOIN*%
Units are inches
1/1000 inch is a very low resolution, not
suited for production. It is used here to
make the file easier to read by a human.

G04 Define Apertures*
Comment

%AMTARGET125*
Aperture macro „TARGET125‟

Copyright Ucamco NV. 20

6,0,0,0.125,.01,0.01,3,0.00

3,0.150,0*%

Moiré primitive

%AMTHERMAL80*
Aperture macro „THERMAL80‟

7,0,0,0.080,0.055,0.0125,45

*%

Thermal primitive

%ADD10C,0.01*%
Aperture definition: D10 is a circle with
diameter 0.01 inch

%ADD11C,0.06*%
Aperture definition: D11 is a circle with
diameter 0.06 inch

%ADD12R,0.06X0.06*%
Aperture definition: D12 is a rectangle with
size 0.06 x 0.06 inch

%ADD13R,0.04X0.100*%
Aperture definition: D13 is a rectangle with
size 0.04 x 0.1 inch

%ADD14R,0.100X0.04*%
Aperture definition: D14 is a rectangle with
size 0.1 x 0.04 inch

%ADD15O,0.04X0.100*%
Aperture definition: D15 is an obround
with size 0.04 x 0.1 inch

%ADD16P,0.100X3*%
Aperture definition: D16 is a polygon with
3 vertices and circumscribed circle with
diameter 0.1 inch

%ADD17P,0.100X3*%
Aperture definition: D17 is a polygon with
3 vertices and circumscribed circle with
diameter 0.1 inch

%ADD18TARGET125*%
Aperture definition: D18 is the special
aperture called „TARGET125‟ defined
earlier

%ADD19THERMAL80*%
Aperture definition: D19 is the special
aperture called „THERMAL80‟ defined
earlier

%LPD*%
Start a new level with dark polarityk

%LNXTEST1*%
Level name is „XTEST1‟

%SRX1Y1I0J0*%
Set „Step and Repeat‟ to 1 for both X and
Y. This is the default value for „Step and
Repeat‟. The statement is not required but
makes the intention clear.

D10*
Select aperture with D-code 10

X0Y250D02*
Move current point to (0, 0.25) inch

G01X0Y0D01*
Linear interpolation (draw)

G01X250Y0D01*
Linear interpolation (draw)

X1000Y1000D02*
Move current point

G01X1500D01*
Linear interpolation (draw)

G01X2000Y1500D01*
Linear interpolation (draw)

Copyright Ucamco NV. 21

X2500D02*
Move current point. Since the X and Y
coordinates are modal, Y is not repeated

G01Y1000D01*
Linear interpolation. The X coordinate is
not repeated and thus its previous value of
2.5 inch is used

D11*
Select aperture with D-code 11

X1000Y1000D03*
Flash D11 at (1.0, 1.0). Y is modal.

X2000D03*
Flash D11 at (2.0, 1.0). Y is modal.

X2500D03*
Flash D11 at (2.5, 1.0). Y is modal.

Y1500D03*
Flash D11 at (2.5, 1.5). X is modal.

X2000D03*
Flash D11 at (2.0, 1.5). Y is modal.

D12*
Select aperture with D-code 12

X1000Y1500D03*
Move to (1.0, 1.5) and flash

D13*
Select new aperture with D-code 13

X3000Y1500D03*
Move to (3.0, 1.5) and flash

D14*
Select new aperture with D-code 14

Y1250D03*
Move to (3.0, 1.25) and flash

D15*
Select new aperture with D-code 15

Y1000D03*
Move to (3.0, 1.0) and flash

D10*
Select new aperture with D-code 10

X3750Y1000D02*
Move current point. This sets the start
point for the following arc interpolation

G75*
Set multi quadrant mode

G03X3750Y1000I250J0D01*
Interpolate a complete circle

D16*
Select new aperture with D-code 16

X3400Y1000D03*
Flash D16

D17*
Select new aperture with D-code 17

X3500Y900D03*
Flash D17

D10*
Select new aperture with D-code 10

G36*
Start a region

X500Y2000D02*
Move current point to (0.5, 2.0)

G01Y3750D01*
Linear interpolation (draw)

G01X3750D01*
Linear interpolation (draw)

Copyright Ucamco NV. 22

G01Y2000D01*
Linear interpolation (draw)

G01X500D01*
Linear interpolation (draw)

G37*
Create the region by filling the contour

D18*
Select new aperture with D-code 18

X0Y3875D03*
Flash D18

X3875Y3875D03*
Flash D18

%LNXTEST2*LPC*%
Statement that contains two parameters:
Level name is „XTEST2‟
Level polarity is clear

G36*
Start a region

X1000Y2500D02*
Move current point to (1.0, 2.5)

G01Y3000D01*
Linear interpolation (draw)

G74*
Set single quadrant mode

G02X1250Y3250I250J0D01*
Clockwise arc with radius 0.25

G01X3000D01*
Linear interpolation (draw)

G75*
Set multi quadrant mode

G02X3000Y2500I0J-375D01*
Clockwise arc with radius 0.375

G01X1000D01*
Linear interpolation (draw)

G37*
Create the region by filling the contour

%LPD*%
Start a new level with dark polarity

%LNXTEST3*%
Level name is „XTEST3‟

D10*
Select new aperture with D-code 10

X1500Y2875D02*
Move current point

G01X2000D01*
Linear interpolation (draw)

D11*
Select aperture with D-code 11

X1500Y2875D03*
Flash D11

X2000D03*
Flash D11

D19*
Select aperture with D-code 19

X2875Y2875D03*
Flash D19

M02*
End of file

Copyright Ucamco NV. 23

Copyright Ucamco NV. 24

3 Syntax

3.1 Character Set
A Gerber file is expressed in 7-bit ASCII characters codes 32 to 126 (i.e. the printable
characters in ANSI X3.4-1986) plus characters codes 10 (LF, Line Feed) and 13 (CR, Carriage
Return). No other characters are valid. Gerber files are therefore printable and human readable.

CR and LF can be used as line separators. Line separator style can be Windows (CRLF), Unix
(LF), Macintosh (CR) or a mix. Line separators are only allowed between data blocks and within
aperture macro definitions (see AM parameter).

The characters „*‟ and „%‟ are reserved as resp. the end-of-block character and the parameter
delimiter.

The character code 32 (SP, Space) can only be used in comments.

Tip: It is recommended to add line separators between data blocks to improve readability.
They have no effect on the image.

3.2 Names
Names are used to identify macros, variables, images and levels. Names are made up of all
valid characters except SP, CR, LF, „%‟, „*‟, and „;‟. Names cannot begin with a digit, a “+”or a “-
“. Names cannot contain be longer than 255 characters.

3.3 Data Blocks
Data blocks are building blocks for a Gerber file. Each data block ends with the mandatory end-
of-block character asterisk „*‟. Each data block can contain one or more parameters, codes or
coordinates.

 Example:

X0Y0D02*

G01X50000Y0D01*

Data blocks are lower level syntactical elements of a Gerber file. The data blocks can be
semantically interconnected so they form a group that represents a higher level element called a
statement.

Copyright Ucamco NV. 25

3.4 Statements
Statements are higher level semantic elements of a Gerber file. Each statement contains one or
more data blocks. Most statements consist of a single data block. If a statement contains
parameters then it starts and ends with a „%‟character. It is then called a parameter statement.

A Gerber file consists of a stream of statements. The structure of a Gerber file is shown in the
picture below:

Gerber file structure

A Gerber file must end with „M02*, the 'end of file' data block.

The syntax of a statement is as follows:

<Statement>: [%]<Data Block>{<Data Block>}[%]

Below are examples of statements.

Copyright Ucamco NV. 26

 Example:

G02X0Y100I-400J100D01*

In the example above the statement consists of a single data block that represents G02 and
D01 function code together with a coordinate and offset in X and Y.

 Example:

%AMDONUTFIX*1,1,0.100,0,0*1,0,0.080,0,0*%

In this example the parameter statement contains an AM parameter built of three data blocks.

There is no limitation on the number of statements that a Gerber file can contain.

3.5 Data Types
A Gerber file can contain the following data types:

 Function codes. See 3.5.1.

 Coordinate data. See 3.5.2.

 Parameters. See 3.5.3.

3.5.1 Function Codes

Function codes are either

 Operation codes operating on coordinate data, i.e. D01, D02 or D03.

 Codes that set a graphics state variable.

 Example:

G74*

If a code is located in the same data block as coordinate data, the graphics state is first
changed before the operation code operates on the coordinate data. In other words the code
applies to the

In the example below there are two data blocks. In the first block the function code 'G01' is
followed by coordinate data. The G01 function code means 'start linear interpolation' and the
coordinate data means the starting point (300, 200) for the interpolation. In the second data
block the next interpolation point (1100, 200) is specified.

 Example:

G01X300Y200D02*

G01X1100Y200D01*

Function codes are described in detail in chapter 0.

Copyright Ucamco NV. 27

3.5.2 Coordinate Data Blocks

A coordinate data block consists of coordinate data followed by a function code D01, D02 or
D03. The function code operates on the coordinate data.

A coordinate data block can be expressed using the formula:

<Coordinate data>: [X<Number>][Y<Number>][I<Number>][J<Number>](D01|D02|D03)

Syntax Comments

X, Y Characters used to indicate X, Y coordinates of a point

I, J Characters used to indicate an offset in the X, Y direction

<Number> When used with X or Y – decimal digits (possibly with a sign) defining X or Y
coordinate of a point.

When used with I or J – decimal digits (possibly with a sign) defining an offset
in the X or Y direction.

D01|D02|D03 Function codes that determine the effect of the coordinate preceding it.
Their meaning is explained below.

The FS and MO parameters specify how to interpret the digits following the X, Y, I, J characters.

Coordinate data define points in the plane using a right-handed ortho-normal coordinate system.
The plane is infinite, but implementations can have size limitations.

Coordinates are modal. If an X is omitted the X coordinate of the current point is used. The
same applies to Y.

Offsets are not modal. If I or J is omitted the default is zero (0).

Each coordinate data block must end with a one and only one instance of an operation code
(D01, D02 or D03). The operation code operates on the coordinate data.

 Examples of coordinate data blocks

X200Y200D02* point (+200, +200) and offset (0,0) operated upon by D02

Y-300D0* point (+200, -300) and offset (0,0) operated upon by D03

I300J100D01* point (+200, -300) and offset (+300, +100) operated upon by D01

X200Y200I50J50D01* point (+200, +200) and offset (+50, +50) operated upon by D01

X+100I-50D01* point (+100, +200) and offset (-50, 0) operated upon by D01

Note that X and Y are modal in a coordinate data block. Consequently, in a data block

“D0n*” (n = 1,2, or 3) without explicit X and Y, the X and Y values are supplied by modal
operation.

In the example below D03 operates on the last point, supplied by the modal action of X and Y.

 Example

D03*

Copyright Ucamco NV. 28

3.5.3 Parameters

Parameters define characteristics of the file. Most parameters affect how coordinate data is
processed.

 Note: Originally parameters were called Mass Parameters.

Parameters operating on the entire image must be placed at the beginning of the file.
Parameters generating a new level are placed at the appropriate place in the file.

Parameters consist of a two-character parameter code followed by parameter data. The
parameter code indicates which parameter is used. The parameter data depends on the
parameter code.

Parameters are enclosed into a pair of delimiter „%‟ characters. Usually a parameter consists of
a single data block ending with a „*‟. The AM parameter can include more than one data block.
The „%‟ must immediately follow the „*‟ of the last data block without intervening line separators.
This is an exception to the general rule that a data block can be followed by a line separator.

 Examples:

%FSLAX23Y23*%

%AMDONUTFIX*1,1,0.100,0,0*1,0,0.080,0,0*%

Parameters may be provided single or grouped between „%‟ delimiters, up to a maximum of
4096 characters between these delimiters.

 Example:

%SFA1.0B1.0*ASAXBY*%

Line separators are permitted between parameters to improve readability. For a set of
parameters the syntax is:

%<Parameter>{{<Line separator>}<Parameter>}%

 Example:

%SFA1.0B1.0*

ASAXBY*%

 Tip: For readability it is recommended to have one parameter per line.

Use an explicit decimal point with all numerical values associated with a parameter. If the
decimal point is omitted, an integer value is assumed.

The syntax for an individual parameter is:

%Parameter code<required modifiers>[optional modifiers]*%

Syntax Comments

Parameter code 2-character code (AD, AM, FS, etc…)

<required modifiers> Must be entered to complete definition

<optional modifiers> May be required depending on the required modifiers

Copyright Ucamco NV. 29

Copyright Ucamco NV. 30

4 Function Codes

Code Description Comments

D01 Plot operation code If region mode is off D01 creates a draw or
arc using the current aperture. Only specific
apertures can be used; see 2.2.4.

When region mode is on D01 creates a
contour segment. The current aperture is
not used.

After the object is created the current point
is moved to the coordinate

D02 Move operation code D02 does not create a graphics object but
move the current point to the coordinate.

D03 Flash operation code With region mode is off D03 flashes the
current aperture. D03 is not allowed in
region mode.

After the flash is created the current point is
moved to the coordinate

D10 and
higher

Set the current aperture‟ Sets the current aperture to a number
defined by an AD parameter.

G01 Set the interpolation mode to
linear

A modifier of the plot operation code D01.
See 4.2 and 4.3.

G02 Set the interpolation mode to
„Clockwise circular interpolation‟

G03 Set the interpolation mode to
„Counterclockwise circular
interpolation‟

G04 Ignore data block Used for comments.

G36 Set region mode on. Used to create regions. See 4.4.

G37 Set region mode off.

G74 Set quadrant mode to ‟Single
quadrant‟

A modifier of the circular interpolation mode.
See dedicated section for more details.

G75 Set quadrant mode to ‟Multi
quadrant‟

M02 Indicates the end of the file Every file must end in a M02. It can only
occur once, at the end of the file. No data is
allowed after M02.

Current codes

Copyright Ucamco NV. 31

4.1 Syntax
This section provides a general description of the syntax for current function codes. Detailed
information for each specific code can be found in subsequent sections.

A function code is identified by a code letter followed by a code number. The code letter can be
G, D or M. (These letters are historic, originating from the original EIA RS-274-D specification.)

Most of the function codes manipulate the graphics state. The G04 function code is used for
comments and the M02 function code indicates the end of the file.

The syntax for G04 is the following:

<Comment>: G(4|04)<Comment string>*

Section 3.1 gives the syntax rules for the comment string.

 Example:

G04 This is a comment*

The syntax for M02:

<End of file marker>: M02*

The data block with the M02 function code must be the last data block in the file.

Other function codes set graphics state variables.

The function codes G01, G02, G03, D01, D02 and D03 can be put together with coordinate data
in the same data block. In this case, the graphics state is modified before it operates on the
coordinate data, even if the function code trails the coordinate data.

 Example:

G01X100Y100D01*

X200Y200D01*

G01 sets the interpolation mode to linear and this used to process the coordinate data
X100Y100 from the same data block as well as the coordinate data X200Y200 from the next
data block.

The syntax for G01, G02, G02, D01 and D02 is the following:

<Interpolation>: [G(1|01|2|02|3|03)][<Coordinate data>D(1|01|2|02)]*

The following data blocks are syntactically valid:

G01*

X100Y100D01*

G01X500Y500D01*

X300Y300D01*

G01X100Y100D01*

Copyright Ucamco NV. 32

A valid data block must contain at least one of the parts.

 Warning: It is recommended always to specify G01/G02/G03 together with D01 in each
coordinate block. The block then contains all the information needed to generate the graphic
object. It makes the file easier to read for man and machine.

 Example:

G01X100Y200D01*

It is allowed to specify D02 (move) with any of G01/G02/G03. However the G01/G02/G03 are
then ignored. The recommended syntax for the D02 function code is the following:

<Move current point>: [X<Coordinate>][Y<Coordinate>]D02*

Syntax Comments

X<Coordinate> Defines the X coordinate of the new current point.

If missing then the previous X coordinate is used.

Y<Coordinate> Defines the Y coordinate of the new current point.

If missing then the previous Y coordinate is used.

D02 Move operation code.

 Example:

X200Y1000D02*

The syntax for the D03 function code („Flash‟ mode) is:

<Flash current aperture>: [X<Coordinate>][Y<Coordinate>]D03*

Syntax Comments

X<Coordinate> Defines the X coordinate of the flash point.

If missing then the previous X coordinate is used.

Y<Coordinate> Defines the Y coordinate of the flash point.

If missing then the previous Y coordinate is used.

D03 Flash operation code

 Example:

X1000Y1000D03*

Each of the remaining function codes is put into a separate data block:

Copyright Ucamco NV. 33

<Function code usage>: (G36|G37|G74|G75|D10|D11|…)*

 Example:

G36*

X200Y1000D02*

G01X1200D01*

G01Y200D01*

G01X200D01*

G01Y600D01*

G01X500D01*

G75*

G03X500Y600I300J0D01*

G74*

G01X200D01*

G01Y1000D01*

G37*

4.2 Linear Interpolation
Linear interpolation generates a straight line from the current point to the point with X, Y
coordinates specified by the data block. The current point is then set to the X, Y coordinates
specified by the data block. The resulting graphic object is called a „draw‟.

4.2.1 Data Block Format

The syntax for the linear interpolation code is:

<Linear interpolation>: G(01|1)[X<Coordinate>][Y<Coordinate>][D(01|02)]*

Syntax Comments

G(01|1) G01 or G1 – Sets interpolation mode to „Linear interpolation‟

X<Coordinate> Defines the X coordinate of the draw end point.

If missing then the previous X coordinate is used.

Y<Coordinate> Defines the Y coordinate of the draw end point.

If missing then the previous Y coordinate is used.

D(01|02) Plot/Move operation code

 Example:

G01X0Y250D01*

Copyright Ucamco NV. 34

4.3 Circular Interpolation

4.3.1 Overview

Circular interpolation generates a circular arc from the current point to the point with X, Y
coordinates specified by the data block; the center of the arc is specified by the offsets I and J.
The current point is then set to the X, Y coordinates specified by the data block.

There are two orientations:

 Clockwise, set by G02

 Counterclockwise, set by G03

The orientation is defined around the center of the arc, moving from begin to end.

There are two quadrant modes:

 Single quadrant mode (G74)

 Multi quadrant mode (G75)

Quadrant mode Comments

Single quadrant
(G74)

In single quadrant mode the arc is not allowed to extend over
more than 90°. The following relation must hold:

0° <= A <= 90°, where A is the arc angle

If the start point of the arc is equal to the end point, the arc
has length zero, i.e. it covers 0°. A data block is required for
each quadrant. A minimum of four coordinate data blocks is
required for a full circle.

Multi quadrant
(G75)

In multi quadrant mode the arc is allowed to extend over more
than 90°. To avoid ambiguity between 0° and 360° arcs the
following relation must hold:

0° < A <= 360°, where A is the arc angle

If the start point of the arc is equal to the end point, the arc is
a full circle of 360°.

Quadrant modes

The codes G74 and G75 allow switching between the two quadrant modes. A data block
containing G75 turns on multi quadrant mode. Every block following it will be interpreted as multi
quadrant, until cancelled by a G74. A data block containing G74 code turns on single quadrant
mode.

 Warning: A Gerber file containing arcs but without a preceding G74 or G75 code is invalid.

Copyright Ucamco NV. 35

4.3.2 Definition of arcs

In a circular arc the center must be at exactly the same distance - radius - from the start point
and the end point. The two radii must be exactly equal. The definition of the arc is obvious when
the radii are equal.

However, as Gerber file has a finite resolution the radii cannot be equal, except in special
cases. Furthermore the software generating the Gerber file unavoidably adds rounding errors of
its own. The two radii are different for almost all arcs, unavoidably so. We will call the difference
between the radii the arc deviation.

This raises the question which is the image represented by a “circular arc” with unequal radii. It
is defined as a continuous and monotonous curve going from the start point to the end point,
approximating the circle with the given center and a radius equal to the average of the two radii
within a few arc deviations. For the special case of zero arc deviation this reduces to a
mathematically perfect circular arc.

This definition has a fuzziness of the order magnitude of the arc deviation. The writer of the file
accepts any interpretation within the fuzziness above as valid. If the writer requires a more
precise interpretation of the arc he needs to write arcs with lower deviation by using a high
coordinate resolution and rounding carefully.

It is not allowed to put the center of the arc on the line through begin and end point.

Note that self-intersecting contours are not allowed, see 4.4. If any of the valid arc
interpretations turns the contour in a self-intersecting one, the file is invalid, with unpredictable
results.

Most real-life issues come from using a low coordinate resolution. Using high coordinate
resolution is an obvious first step to minimize the arc deviation and potential problems.

4.3.3 Numerical instability in multi quadrant (G75) arcs

In G75 mode small changes in the position of center point, start point and end point can swap
the large arc with the small one, dramatically changing the image.

This most frequently occurs with very small arcs. Start point and end point are close together. If
the end point is slightly moved it can end on top of the start point. Under G75, if the start point of
the arc is equal to the end point, the arc is a full circle of 360°, see 4.3.1. A small change in the
position of the end point has changed the very small arc to a full circle.

Under G75 rounding must be done carefully. Using high resolution is an obvious prerequisite.

The Gerber writer must also consider that the reader unavoidably has rounding errors. Perfectly
exact numerical calculation cannot be assumed. It is the responsibility of the writer to avoid
unstable arcs.

Under G74 arcs are always less than 90° and this numerical instability does not exist. G74 is
intrinsically stable. Another option is not to use very small arcs, e.g. by replacing them with
draws - the error is very small and draws are stable.

Copyright Ucamco NV. 36

4.3.4 Single Quadrant Mode

Single quadrant mode is set by a G74 code.

 Example:

G74*

4.3.4.1 Data Block Format

The syntax in single quadrant mode is:

<Circular interpolation>: G(02|2|03|3)[X<Coordinate>][Y<Coordinate>]

 [I<Distance>][J<Distance>][D(01|02)]*

Syntax Comments

G(02|2|03|3) Sets the interpolation mode‟:

G02 or G2 – „Clockwise circular interpolation‟

G03 or G3 – „Counterclockwise circular interpolation‟

X<Coordinate> Defines the X coordinate of the arc end point.

If missing then the previous X coordinate is used.

Y<Coordinate> Defines the Y coordinate of the arc end point.

If missing then the previous Y coordinate is used.

I<Distance> The distance between the arc start point and the center parallel to
the X axis. The value is always positive. A sign is not allowed. The
sign of the offset to the center is determined implicitly.

If missing then a 0 distance is used.

J<Distance> The distance between the arc start point and the center parallel to
the X axis. The value is always positive. A sign is not allowed. The
sign of the offset to the center is determined implicitly.

If missing then a 0 distance is used.

D(01|02) Plot/Move operation code

 Note: Because the sign in offsets is omitted, there are four candidates for the center:
(<Current X> +/- <X distance>, <Current Y> +/- <Y distance>). The center is the candidate that
results in an arc with the specified orientation and not greater than 90°.

 Warning: If the center is not precisely positioned, there may be none or more than one
candidate fits. In that case the arc is invalid. The creator of the file accepts any interpretation.

 Example:

G74*

G03X700Y1000I400J0D01*

Copyright Ucamco NV. 37

4.3.4.2 Image

The coordinates of an arc endpoint and the center distances are interpreted according to the
coordinate format specified by the FS parameter and the unit specified by the MO parameter.
The following image illustrates how arcs are interpolated.

B axis

0,0 A axis

X

Y

J

End point

Start point
(current
point)

Arc center

I

Single quadrant mode

4.3.4.3 Example

Syntax Comments

G74*

D10*

X1100Y600D02*

G03X700Y1000I400J0D01*

G03X300Y600I0J400D01*

G03X700Y200I400J0D01*

G03X1100Y600I0J400D01*

X300D02*

G01X1100D01*

X700Y200D02*

G01Y1000D01*

Single quadrant mode

Use aperture D10

Start from (11, 6)

Quarter arc (radius 4) to (7, 10)

Quarter arc (radius 4) to (3, 6)

Quarter arc (radius 4) to (7, 2)

Quarter arc (radius 4) to (11, 6)

Start from (3 ,6)

Draw to (11, 6)

Start from (7, 2)

Draw to (7, 10)

Copyright Ucamco NV. 38

2

4

6

8

10

12

Single quadrant mode example: arcs and draws

2

4

6

8

10

12

2 4 6 8 10 12

Single quadrant mode example: resulting image

Copyright Ucamco NV. 39

4.3.5 Multi Quadrant Mode

The multi quadrant mode is set by a G75 code.

 Example:

G75*

4.3.5.1 Data Block Format

The syntax in multi quadrant mode is:

<Circular interpolation>: G(02|2|03|3)[X<Coordinate>][Y<Coordinate>]

 [I<Offset>][J<Offset>][D(01|02)]*

Syntax Comments

G(02|2|03|3) Sets the interpolation mode:

G02 or G2 – „Clockwise circular interpolation‟

G03 or G3 – „Counterclockwise circular interpolation‟

X<Coordinate> Defines the X coordinate of the arc end point.

If missing then the previous X coordinate is used.

Y<Coordinate> Defines the Y coordinate of the arc end point.

If missing then the previous Y coordinate is used.

I<Offset> Defines the offset or signed distance between the arc start point
and the center measured parallel to the X axis.

If missing then a 0 offset is used.

J<Offset> Defines the offset or signed distance between the arc start point
and the center measured parallel to the X axis.

If missing then a 0 offset is used.

D(01|02) Operation code

 Note: In multi quadrant mode the offsets in I and J are signed. If no sign is present, the
offset is positive.

 Example:

G75*

G03X-300Y-200I-300J400D01*

Copyright Ucamco NV. 40

4.3.6 Example

Syntax Comments

X300Y-200D02*

G75*

G03X-300Y-200I-300J400D01*

G74*G01*

Move to (3, -2)

Set multi quadrant mode

Arc counterclockwise to (-3,-2); offsets from the
start point to the center point are -3 for X and 4 for
Y, i.e. the center point is (0, 2)

Back to linear interpolation mode and G74

End point (-3, -2) Start point (3, -2)

(0, 0)

Arc center (0, 2)

Multi quadrant mode example: resulting image

Copyright Ucamco NV. 41

4.3.7 Using G74 or G75 can result in completely different image

An arc statement can define a completely different image under G74 and G75. The two sample
files below differ only in G74/G75, but they define a dramatically different image.

Syntax Comments

D10*

G01X0Y600D02*

G74

G02X0Y600I500J0D01*

Use aperture D10

Start from (0, 6)

Single quadrant mode

Arc to (0, 6) with radius 5

The resulting image is small dot, an instance of the aperture at position (0, 6)

Syntax Comments

D10*

G01X0Y600D02*

G75

G02X0Y600I500J0D01*

Use aperture D10

Start from (0, 6)

Multi quadrant mode

Arc to (0, 6) with center (5,6)

The image is a full circle.

Warning: It is mandatory to always specify G74 or G75 if arcs are used.

4.4 Regions (G36/G37)

4.4.1 Overview

A region is a graphic object defined by its contour.

A contour is a sequence of connected draw or arc segments. A pair of segments is said to
connect only if they are defined consecutively, with the second segment starting where the first
one ends. Thus the order in which the segments of a contour are defined is significant.
Nonconsecutive segments that meet or intersect fortuitously are not considered to connect. A
contour is closed: the end point of the last segment of a contour must connect to the start point
of the first segment.

The G36 code set region mode on and the G37 code sets it off. With region mode on, the
operation codes D01 and D02 create contours. D02 sets the start point of a contour and D01
creates contour segments. As soon as a D02 moves the current point a contour is considered
finished. A new contour is started when a D01 is performed.

In region mode the only allowed D codes are D01 and D02; in other words D03 and Dnn with
nn>=10 are not allowed. G codes are allowed. No parameters are allowed.

When region mode is turned off the region objects are created by filling all the contours
individually. The filled area is the union of the areas filled for the individual contours. Different
contours can overlap.

Note that the segments are not graphics objects in themselves; they do not darken or clear the
image area directly. The current aperture has no effect in region mode.

Copyright Ucamco NV. 42

Self-intersecting contours are not allowed. However, coincident contour segments are allowed.
(This is to make it possible the create holes in solid regions with cut-ins.) Segments are
coincident if they overlap completely; both vertices must coincide; the start vertex of one
segment must be the end vertex of the other; for the avoidance of doubt, segments that touch
partially overlap and do not share the vertices are not coincident and therefore not allowed.

 Note: A cut-in is a brittle construction and should be used only for the simplest cases, if at
all. They are not recommended. It is recommended to create the outline without holes first and
create the holes with a subsequent level with clear polarity containing the holes; this will erase
the holes in the original plane; careful, the clear layer erases all layers beneath it. It is definitely
not recommended to create planes with holes (anti-pads) in it with cut-ins. Constructing complex
planes with cut-ins is asking for problems, and probably the most common cause of missing
clearances.

 Note: In the 1960‟s and 1970s, the era of vector plotters, a region had to be created by
painting (aka filling or stroking) it with draws. This produces the correct image, but the file size
explodes and painted regions cannot be handled in CAM. Painting must no longer be used.

 Note: In previous versions of this document “contour fill” was called “polygon fill”.

Warning: Care must be taken that rounding does not turn a proper contour into a self-
intersecting one, leading to unpredictable results. The Gerber writer must also consider that the
reader unavoidably has rounding errors. Perfectly exact numerical calculation cannot be
assumed. It is the responsibility of the writer to avoid marginal contours that become self-
intersecting under normal rounding. Low file coordinate resolution is the most frequent culprit for
rounding problems, so it is recommended to use the highest possible resolution.

Warning: An arc can be validly interpreted by any curve in a range, see 4.3. If any of these
curves results in a self-intersecting contour the file is invalid and the result is unpredictable.

4.4.2 Simple contour example

Syntax Comments

G36*

X200Y300000D02*

G01X700000D01*

G01Y100000D01*

G01X1100000Y500000D01*

G01X700000Y900000D01*

G01Y700000D01*

G01X200000D01*

G01Y300000D01*

G37*

Start a region

Move the current point to (2, 3)

Line segment to (7, 3)

Line segment to (7, 1)

Line segment to (11, 5)

Line segment to (7, 9)

Line segment to (7, 7)

Line segment to (2, 7)

Line segment to (2, 3)

Create the region by filling the contour

Copyright Ucamco NV. 43

2

4

6

8

10

12

2 4 6 8 10 12

Simple contour example: draws

2 4 6 8 10 12

2

4

6

8

10

12

Simple contour example: resulting image

Copyright Ucamco NV. 44

4.4.3 Using levels to create holes

The recommended way to create holes in regions is by using levels with alternating dark and
clear polarity, as illustrated in the following example. The file has four levels. The first level has
dark polarity and contains the big square region. The second level has clear polarity and
contains a circular disk; the disk is cleared from the image and creates a round hole in the big
square. The third level has dark polarity and contains a small square that is darkened on the
image inside the hole. The fourth level has clear polarity and contains a small disk; the disk
erases parts of the big and the small squares.

The file uses absolute notation with the leading zeros omitted. The units are millimeters.

 Example:

G04 This file illustrates how to use levels to create holes*

%FSLAX27Y27*%

%MOMM*%

G04 First level: big square - dark polarity*

%LPD*%

%LNBIGSQUARE*%

G36*

X2500000Y2500000D02*

G01X17500000D01*

G01Y17500000D01*

G01X2500000D01*

G01Y2500000D01*

G37*

G04 Second level: big circle - clear polarity*

%LPC*%

%LNBIGCIRCLE*%

G36*

G75*

X5000000Y10000000D02*

G03X5000000Y10000000I5000000J0D01*

G37*

G04 Third level: small square - dark polarity*

%LPD*%

%LNSMALLSQUARE*%

G36*

X7500000Y7500000D02*

G01X12500000D01*

G01Y12500000D01*

G01X7500000D01*

G01Y7500000D01*

G37*

Copyright Ucamco NV. 45

G04 Fourth level: small circle - clear polarity*

%LPC*%

%LNSMALLCIRCLE*%

G36*

G75*

X11500000Y10000000D02*

G03X11500000Y10000000I2500000J0D01*

G37*

M02*

Below there are pictures which show the resulting image after adding each level.

Resulting image: first level only

Copyright Ucamco NV. 46

Resulting image: first and second levels

Resulting image: first, second and third levels

Copyright Ucamco NV. 47

Resulting image: all four levels

4.4.4 Cut-in example 1

Syntax Comments

G36*

X200Y1000D02*

G01X1200D01*

G01Y200D01*

G01X200D01*

G01Y600D01*

G01X500D01*

G75*

G03X500Y600I300J0D01*

G74*

G01X200D01*

G01Y1000D01*

G37*

Initiate a region

Move the current point to (2,10)

Line segment to (12,10)

Line segment to (12, 2)

Line segment to (2, 2)

Line segment to (2, 6)

Line segment to (5, 6)

Multi quadrant mode

Full circle counterclockwise (radius is 300)

Single quadrant mode

Line segment to (2, 6)

Line segment to (2, 10)

Create the region by filling the contour

Copyright Ucamco NV. 48

2 4 6 8 10 12

2

4

6

8

10

12

Cut-in example 1: arcs and draws

2 4 6 8 10 12

2

4

6

8

10

12

Cut-in example 1: resulting image

Copyright Ucamco NV. 49

4.4.5 Cut-in example 2 – valid, coincident segments

Contours with cut-ins are susceptible to rounding problems: when the vertices move due to the
rounding the contour may become self-intersecting. This may lead to unpredictable results.
Example 2 is a cut-in with valid coincident segments, where draws which are on top of one
another have the same end vertices. When the vertices move due to rounding, the draws will
remain exactly on top of one another, and no self-intersections are created. This is a valid and
robust construction.

G36*

X1220000Y2570000D02*

G01Y2720000D01*

G01X1310000D01*

G01Y2570000D01*

G01X1250000D01*

G01Y2600000D01*

G01X1290000D01*

G01Y2640000D01*

G01X1250000D01*

G01Y2670000D01*

G01X1290000D01*

G01Y2700000D01*

G01X1250000D01*

G01Y2670000D01*

G01Y2640000D01*

G01Y2600000D01*

G01Y2570000D01*

G01X1220000D01*

G37*

Copyright Ucamco NV. 50

This results in the following contour:

Cut-in example 2: valid, coincident segments

with the following image:

Copyright Ucamco NV. 51

Cut-in example 2: resulting image

Copyright Ucamco NV. 52

4.4.6 Cut-in example 3 – invalid, overlapping segments

Example 3 attempts to creates the same image as example 2, but it is invalid due to the use of
invalid overlapping segments. The number of draws has been reduced by eliminating vertices
between collinear draws, creating invalid overlapping segments. This construction is invalide
because not robust and hard to handle: when the vertices move slightly due to rounding, the
draws that were on top of one another may become intersecting, with unpredictable results.
When a Gerber file moves from system to system, numerical rounding must be expected.

G36*

X1110000Y2570000D02*

G01Y2600000D01*

G01X1140000D01*

G01Y2640000D01*

G01X1110000D01*

G01Y2670000D01*

G01X1140000D01*

G01Y2700000D01*

G01X1110000D01*

G01Y2570000D01*

G01X1090000D01*

G01Y2720000D01*

G01X1170000D01*

G01Y2570000D01*

G01X1110000D01*

G37*

Copyright Ucamco NV. 53

This results in the following contour:

Cut-in example 3: invalid, overlapping segments

Copyright Ucamco NV. 54

This contour represents the following image:

Cut-in example 2: resulting image

Copyright Ucamco NV. 55

5 Parameters

Parameters define characteristics of the file. The table below lists the current parameters. They
are explained in detail in this chapter.

Parameter Name Description Comments

FS Format
Specification

Sets the „Coordinate format‟
graphics state variable

These parameters
are only to be used
once, at the
beginning of the
file, before object
generation starts

MO Mode
(inch or mm units)

Sets the „Unit‟ graphics state
variable

IP Image Polarity Sets the „Image polarity‟ graphics
state variable

IN Image Name Sets the name of the file image

AD Aperture Definition Assigns a D code number to an
aperture definition

These parameters
can be used
multiple times

AM Aperture Macro Defines special apertures which

can be referenced from the AD
parameter

SR Step and Repeat Sets the „Step and Repeat‟
graphics state variable

LP Level Polarity Starts a new level and sets the
„Level polarity‟ graphics state
variable

LN Level Name Sets the name of the current level

Current parameters

 Example:

G04 Beginning of the file*

%FSLAX25Y25*%

%MOIN*%

%SRX1Y1I0.00000J0.00000*%

%ADD10C,0.000070*%

%LPD*%

%LNarc*%

...

M02*

5.1 FS – Format Specification
The FS parameter specifies the format of the coordinate data. It must be used only once at the
beginning of a file. It must be specified before the first use of coordinate data.

Copyright Ucamco NV. 56

 Note: It is recommended to put the FS parameter at the very first line, maybe after some
general comments.

The FS parameter specifies the following format characteristics:

 Number of integer and decimal places in coordinate data (coordinate format)

 Zero omission (leading or trailing zeroes omitted)

 Absolute or incremental coordinate notation

 Warning: Explicit decimal points in coordinates are not allowed.

5.1.1 Coordinate Format

The coordinate format specifies the number of integer and decimal places in the coordinate
data. For example, the “23” format specifies 2 integer and 3 decimal places. A maximum of 7
integer and 7 decimal places can be specified (nnnnnnn.nnnnnnn). The same format must be
defined for X and Y. Signs are allowed. The „+‟ sign is optional.

 Note: In previous versions of the specification the implementation limit on integer and
decimal places was 6. However, some applications started to generate 7 decimal places
because they needed the accuracy. We adapted the specification to technology requirements
and raised the limit to 7. However, there are probably still a number of Gerber readers in use
that can only handle 6. Therefore it is recommended to use 7 decimal places only if the extra
accuracy is needed.

 Warning: It is strongly recommended to use 6 decimal places at least. A lower number of
decimal places lose vital precision. The option to use a lower number of decimal places is a
simplistic compression method introduced in the 1950‟s, when saving a few bytes was of
paramount importance and computers were too feeble for proper compression algorithms.
Nowadays the few bytes saved are irrelevant. Modern compression methods far outperform this
simplistic method, without any loss of accuracy. If the extra digits are not significant, they will be
compressed away. The benefits of a small number of decimal digits are long gone. The
disadvantages remain. It is a source of endless confusion. Always use 6 digits at least.

The resolution of a Gerber file is the distance expressed by the least significant digit of
coordinate data. Thus the resolution is the size of grid steps of the coordinates.

The unit in which the coordinates are expressed is set by the %MO parameter. See 5.2.

5.1.2 Zero Omission

Zero omission allows reducing the size of data by omitting either leading or trailing zeroes from
the coordinate values.

With leading zero omission some or all leading zeroes can be omitted but all trailing zeroes are
required. To interpret the coordinate string, it is first padded with zeroes in front until its length
fits the coordinate format. For example, with the “23” coordinate format, “015” is padded to
“00015” and therefore represents 0.015.

With trailing zero omission some or all trailing zeroes can be omitted but all leading zeroes are
required. To interpret the coordinate string, it is first padded with zeroes at the back until its
length fits the coordinate format. For example, with the “23” coordinate format, “15” is padded to
“15000” and therefore represents 15.000.

Leading zero omission is easier to read.

If the coordinate data in the file does not omit zeroes it is conventional to specify leading zero
omission.

Copyright Ucamco NV. 57

5.1.3 Absolute or Incremental Notation

Coordinate values can be expressed either as absolute coordinates (absolute notation) or as
incremental distances from a previous coordinate position (incremental notation).

Incremental notation is deprecated.

 Warning: It is strongly recommended to use absolute notation only. With incremental
notation rounding errors can accumulate, losing vital precision. With incremental notation
Gerber files are no longer human readable, losing a big advantage. Incremental notation is a
simplistic compression technology introduced in the 1950‟s, when saving a few bytes was of
paramount importance and computers were too feeble for proper compression algorithms.
Nowadays the few bytes saved are irrelevant. Modern compression methods far outperform this
simplistic method, without any loss of accuracy. If the size of the archives is important for you
use a strong compression algorithm rather than sacrificing precision and clarity. The advantage
of incremental notation is long gone. Its disadvantages remain. Incremental notation is a source
of endless confusion. Always use absolute notation.

5.1.4 Data Block Format

The syntax for the FS parameter is:

<FS parameter>: FS(L|T)(A|I)X<Format>Y<Format>*

Syntax Comments

FS FS for Format Specification

L|T Specifies zero omission mode:

L – omit leading zeroes

T – omit trailing zeroes

A|I Specifies coordinate values notation:

A – absolute notation

I – incremental notation

X<Format>Y<Format> Specifies the format of X and Y coordinate data. The format of X
and Y coordinates must be the same!

<Format> must be expressed as a number NM where

N - number of integer positions in coordinate data

(0 <= N <= 7)

M - number of decimal positions in coordinate data

(0 <= M <= 7)

5.1.5 Examples

Syntax Comments

%FSLAX25Y25*% Coordinate data has leading zeros omitted. Coordinates are
expressed using absolute notation with 2 integer and 5 decimal
positions for both axes.

Copyright Ucamco NV. 58

5.2 MO – Mode
The MO parameter sets the units used for coordinate data and for sizes parameters or modifiers
indicating sizes or coordinates. The units can be either inches or millimeters. This parameter
must be used only once, at the beginning of the file.

 Note: the FS parameter is used to set the format (i.e. number of integer and decimal
positions) of the coordinate data.

5.2.1 Data Block Format

The syntax for the MO parameter is:

<MO parameter>: MO(IN|MM)*

Syntax Comments

MO MO for Mode

IN|MM Units of the dimension data:

IN – inches

MM – millimeters

5.2.2 Examples

Syntax Comments

%MOIN*% Dimensions are expressed in inches

%MOMM*% Dimensions are expressed in millimeters

5.3 IP – Image Polarity
The IP parameter sets the positive or negative polarity for the entire image. It can only be used
once, at the beginning of the file.

5.3.1 Positive image polarity

Under positive image polarity, the image is generated as specified elsewhere in this document.
(In other words, the image generation has been assuming positive image polarity.)

5.3.2 Negative image polarity

Under negative image polarity, image generation is different. Its purpose is to create a negative
image, clear areas in a dark background. The entire image plane in the background is initially
dark instead of clear. The effect of dark and clear polarity is toggled. The entire image is simply
reversed, dark becomes white and vice versa.

Note that the first object encountered must have dark polarity, and therefore clears the dark
background. It is not allowed to have a clear polarity first object.

Copyright Ucamco NV. 59

Consequently, the first is object always clears the background. It determines the effect of the
polarity of all subsequent objects.

 Note: Plane layers in PCB‟s are typically solid copper areas with holes in it, called anti-
pads and thermals. For historic reasons, such layers are sometimes transferred as negative
images: the copper area is clear and the anti-pads are dark. %IPNEG is a convenient way to
create such images. It also clearly specifies the layer is transferred in negative. However, today
there is no need to transfer layers in negative. Plane layers are better described positive, using
regions (G36/G37) with clear polarity levels (%LPC) to make holes.)

5.3.3 Data Block Format

The syntax for the IP parameter is:

<IP parameter>: IP(POS|NEG)*

Syntax Comments

IP IP for Image Polarity

POS Image has positive polarity

NEG Image has negative polarity

5.3.4 Examples

Syntax Comments

%IPPOS*% Image has positive polarity

%IPNEG*% Image has negative polarity

5.4 IN - Image Name
The IN parameter assigns a name to the entire image contained in the Gerber file. The name
must comply with the syntax rules described in section 3.2.

This parameter can only be used once, at the beginning of the file.

5.4.1 Data Block Format

The syntax for the IN parameter is:

<IN parameter>: IN<Name>*

Syntax Comments

IN IN for Image Name

<Name> Image name

Copyright Ucamco NV. 60

5.4.2 Examples

Syntax Comments

%INPANEL_1*% Image name is „PANEL_1‟

5.5 AD - Aperture Definition
The AD parameter assigns a D-code number to an aperture (shape) and sets the aperture as
current aperture.

The AD parameter must precede the first use of the assigned aperture. It is recommended to
put all AD parameters in the beginning of the file.

A D-code number remains assigned to an aperture until it is re-assigned by a new AD
parameter. At any point in the file, the last assignment is valid.

An aperture has a flash point. When an aperture is flashed at a given coordinate data, the
aperture is positioned in such a way that the flash point coincided with the coordinate data.

There are two kinds of apertures: standard apertures and special apertures.

The Gerber file format contains a number of standard apertures. The AD parameter assigns a
D-code to a standard aperture and defines it parameters, typically sizes. The flash point of a
standard aperture is the geometric center of its shape.

Other apertures, called special apertures or macro apertures, can be defined with the AM
(Aperture Macro) parameter. These aperture macros are identified by their name. See section
5.6. The AD parameter is also used to assign a D-code to a special aperture and define its
parameters. The flash point of a special aperture is the origin of the coordinates used in the AM
parameter.

 Note: Zero size apertures are valid. An object created with a zero size aperture is a valid
object, but it does not affect the image. It can be used to define meta information, e.g. an outline
or a reference point.

5.5.1 Syntax Rules

The AD parameter starts with „AD‟, followed by „D‟ and D-code number, then the aperture type
and then optionally modifiers.

The allowed range of D-code is from 10 up to 2147483647 (max int32). The D-codes 1 to 9 are
reserved and cannot be used for apertures.

 Warning: In older versions of the specification the maximum D-code was 999. Gerber
readers may be severely limited in the maximum D code they support. It is therefore
recommended to use low D-codes when possible.

 Example:

%ADD10C,.025*%

 Note: For readability it is recommended to enclose each AD parameter into a separate pair
of '%' characters.

Copyright Ucamco NV. 61

5.5.2 Data Block Format

The syntax for the AD parameter is the following:

<AD parameter>: ADD<D-code number><Aperture type>[,<Modifiers set>]*

<Modifiers set>: <Modifier>{X<Modifier>}

Syntax Comments

ADD AD for Aperture Definition and D for D-code

<D-code number> The D-code number being defined (≥10)

<Aperture type>[,<Modifiers set>] The aperture type optionally followed by modifiers

The <Aperture type> can be in one of two available formats:

 For a standard aperture: one of the standard aperture codes (C,R,O or P)

 For a special aperture: an aperture macro name previously defined by an AM parameter

The required number of modifiers in <Modifiers set> depends on the <Aperture type>. Modifiers
are separated by the „X‟ character. All sizes must be ≥0. Units follow the MO parameter. The
numbers follow standard notation, optionally including a decimal point; they do not follow the FS
parameter.

Standard apertures may be solid or open. Open means there is a hole in the aperture. Holes in
apertures have no effect on the image, in other words they are transparent.

The syntax of a hole is common for all standard apertures:

<Hole>: <X-axis hole size >[X<Y-axis hole size>]

If only the <X-axis hole size> modifier is specified the hole is round, and the modifier specifies
the diameter. If both X and Y is specified the hole is rectangular and the modifiers specify the X
and Y size. If both parameters are omitted the aperture is solid.

The hole must fit within the aperture. It is centered on the aperture.



5.5.3 Aperture Definition with Standard Apertures

The standard apertures are described below.

Copyright Ucamco NV. 62

5.5.3.1 Circle

The syntax of the circle standard aperture:

C,<Diameter>[X<Hole>]

Syntax Comments

C Indicates that this is a circle aperture

<Diameter> Circle diameter, ≥0

<Hole> Optional hole

If no hole is specified the aperture is solid

 Examples:

These statements define the apertures below

%ADD10C,0.5*%

%ADD10C,0.5X0.25*%

%ADD10C,0.5X0.29X0.29*%

Circles with different holes

Copyright Ucamco NV. 63

5.5.3.2 Rectangle

The syntax of the rectangle or square standard aperture:

R,<X size>X<Y size>[X<Hole>]

Syntax Comments

R Indicates that this is a rectangle or square aperture

<X size>

<Y size>

X and Y sizes of the rectangle sides

If the <X size> equals the <Y size>, the aperture is square

<Hole> Optional hole

If no hole is specified the aperture is solid

 Examples:

These statements define the apertures below

%ADD22R,0.044X0.025*%

%ADD22R,0.044X0.025X0.019*%

%ADD22R,0.044X0.025X0.024X0.013*%

Rectangles with different holes

Copyright Ucamco NV. 64

5.5.3.3 Obround

Obround (oval) is a shape consisting of two semicircles connected by parallel lines tangent to
their endpoints. The syntax of the obround standard aperture:

O,<X size>X<Y size>[X<Hole>]

Syntax Comments

O Indicates that this is an obround aperture

<X size>

<Y size>

X and Y sizes of the obround sides

The smallest side is terminated by half a circle. If the <X size> is
larger than <Y size>, the shape is horizontal. If the <X size> is
smaller than <Y size>, the shape is vertical. If the <X size> is equal to
<Y size>, the shape is a circle

<Hole> Optional hole. If no hole is specified, the aperture is solid

 Example:

These statements define the apertures below

%ADD22O,0.046X0.026*%

%ADD22O,0.046X0.026X0.019*%

%ADD22O,0.026X0.046X0.013X0.022*%

Obrounds with different holes

Copyright Ucamco NV. 65

5.5.3.4 Regular polygon

The syntax of the polygon standard aperture:

P,<Outer diameter>X<Number of vertices>[X<Degrees of rotation>[X<Hole>]]

Syntax Comments

P Indicates that this is a polygon aperture

<Outer diameter> Diameter of the circumscribed circle, i.e. the circle through the
polygon vertices

<Number of vertices> Number of polygon vertices, ranging from 3 to 12

<Degrees of rotation> Specifies rotation of the aperture around its center.

Without rotation one vertex is on the positive X-axis through
the center. Rotation angle is expressed in decimal degrees;
positive value for counterclockwise rotation, negative value for
clockwise rotation.

<Hole> Optional hole

The hole modifiers can be specified only after a rotation angle;
set an angle of zero if no rotation is required

If no hole is specified the aperture is solid

 Note: The orientation of the hole is not affected by the rotation angle modifier.

Copyright Ucamco NV. 66

 Examples:

These statements define the apertures below

%ADD17P,.040X6*%

%ADD17P,.040X6X0.0X0.019*%

%ADD17P,.040X6X15.0X0.023 X0.013*%

Outer diameter

Outer diameter

Outer diameter

Polygons with different holes

Copyright Ucamco NV. 67

5.5.4 Examples

Syntax Comments

%ADD10C,.025*% D-code 10 is a solid circle with diameter 0.025

%ADD22R,.050X.050X.027*%
D-code 22 is a square with sides of 0.05 and with a
0.027 diameter round hole

%ADD57O,.030X.040X.015*%
D-code 57 is an obround with sizes 0.03 x 0.04
with 0.015 diameter round hole

%ADD30P,.016X6*%
D-code 30 is a solid polygon with 0.016 outer
diameter and 6 vertices

%ADD15CIRC*%
D-code 15 is a special aperture described by
aperture macro CIRC defined previously by an
aperture macro (AM) parameter

5.6 AM - Aperture Macro
The AM parameter defines special apertures consisting of building blocks called primitives.

A special aperture macros defined by the AM parameter can be referenced from AD parameter
definitions in the same way as the standard apertures. (One could view the standard apertures
as pre-defined macro apertures.) A special aperture must be defined before a D-code number
can be assigned to it.

Special apertures offer two advantages compared to standard apertures:

 Multiple shapes called primitives can be combined in a single aperture to create non-
standard aperture shapes

 Aperture macro modifiers can be variable; the actual values can be defined as:

o Values provided by an AD parameter referencing the aperture macro

o Arithmetic expressions calculating the actual value based on other variables

The AM parameter can be used multiple times in a file. It must be put at the beginning of a file
or level.

5.6.1 Data Block Format

The syntax for the AM parameter is:

<AM parameter>: AM<Aperture macro name>*<Macro content>

<Macro content>: {{<Variable definition>*}{<Primitive>*}}

<Variable definition>: $K=<Arithmetic expression>

<Primitive>: <Primitive code>,<Modifier>{,<Modifier>}|<Comment>

<Modifier>: $M|< Arithmetic expression>

<Comment>: 0 <Text>

Syntax Comments

AM AM for Aperture Macro

Copyright Ucamco NV. 68

<Aperture macro name> Name of the aperture macro. See 3.2 for the syntax rules.

<Macro content> Macro content describes primitives included into the aperture
macro. Can also contain definitions of new variables.

<Variable definition> Definition of a variable.

$K=<Arithmetic
expression>

Definition of the variable $K. An arithmetic expression may use
arithmetic operators (described later), constant numbers and
also variables $X where the definition of $X precedes $K.

<Primitive> Individual primitive that includes primitive code and modifiers
which are primitive parameters (e.g. diameter for a circle). The
modifiers depend on the primitive. All primitives are described
later in this document.

<Primitive code> A code specifying the primitive (e.g. polygon).

<Modifier> Modifier can be a decimal number (e.g. 0.050), a variable (e.g.
$1) or an arithmetic expression based on numbers and
variables. The actual value for a variable is either provided by
an AD parameter or defined within the AM by some previous
<Variable definition>.

<Comment> Comment does not affect the image.

<Text> Single-line text string

Modifiers can be classified as in the following table:

Modifier type Comments

Exposure modifier The exposure modifier that can have the following values:

0 = exposure is „off‟

1 = exposure is „on‟

Rotation modifier Modifier that specifies the rotation angle: positive value means
counterclockwise rotation, negative - clockwise.

Geometry modifier Modifier that specifies e.g. a diameter, X and Y positions,
width, etc.

Coordinates and sizes are expressed in the unit set by the MO parameter.

Exposure is set with the exposure modifier. Exposure can be „on‟ or „off‟. Exposure „on‟ creates
a solid part of the macro aperture. Exposure „off‟ clears or erases the underlying solid part to
create a hole in it. Note that the clearing action only affects the macro aperture itself and is not
passed through to affect the image that the macro aperture is used on. Exposure off only
creates a hole in the macro aperture, and a hole has no effect on the image.

 Warning: A hole is transparent. One sees the objects below it. This is not the same as
clear level polarity, where all objects below are cleared or erased.

The rotation angle is expressed in degrees, by a decimal number; a positive value means
counterclockwise rotation, a negative value means clockwise rotation. The pivot of the rotation
of a primitive is always the origin, i.e. the point (0,0). To rotate a macro composed of several

Copyright Ucamco NV. 69

primitives it is then sufficient to rotate all primitives with the same angle. Note that for the
polygon, thermal and moiré rotation is only allowed if their center is placed on the origin.

5.6.2 Primitives

5.6.2.1 Comment

The comment primitive has no image meaning. It is used to include human-readable comments
into the AM parameter. The comment primitive starts with the „0‟ code (zero) followed by a
space and then a single-line text string. The text string follows the syntax rules for comments as
described in section 3.1.

 Example:

%AMRECTROUNDCORNERS*

0 Rectangle with rounded corners. *

0 Offsets $4 and $5 are interpreted as the *

0 offset of the flash origin from the pad center. *

0 First create horizontal rectangle. *

21,1,$1,$2-$3-$3,0-$4,0-$5,0*

0 From now on, use width and height half-sizes. *

$9=$1/2*

$8=$2/2*

0 Add top and bottom rectangles. *

22,1,$1-$3-$3,$3,0-$9+$3-$4,$8-$3-$5,0*

22,1,$1-$3-$3,$3,0-$9+$3-$4,0-$8-$5,0*

0 Add circles at the corners. *

1,1,$3+$3,0-$4+$9-$3,0-$5+$8-$3*

1,1,$3+$3,0-$4-$9+$3,0-$5+$8-$3*

1,1,$3+$3,0-$4-$9+$3,0-$5-$8+$3*

1,1,$3+$3,0-$4+$9-$3,0-$5-$8+$3*%

In the example above all the lines starting with 0 are comments and do not affect the image.

Copyright Ucamco NV. 70

5.6.2.2 Circle

A circle primitive is defined by its center point and diameter. The <Primitive code> of a circle
primitive is „1‟.

Modifier number Description

1 Exposure off/on (0/1)

2 Diameter

3 X coordinate of center position

4 Y coordinate of center position

3, 4

 2

Circle primitive

 Example:
%AMCIRCLE*

1,1,1.5,0,0*%

Copyright Ucamco NV. 71

Line (vector)

A line (vector) primitive is a rectangle defined by its line width, start and end points. The line
ends are rectangular. The <Primitive code> of a line (vector) primitive is „2‟ or „20‟.

Modifier number Description

1 Exposure off/on (0/1)

2 Line width

3 X coordinate of start point

4 Y coordinate of start point

5 X coordinate of end point

6 Y coordinate of end point

7 Rotation angle around the origin (rotation is not around the center of
the object)

3, 4

 2

 5, 6

Line (vector) primitive

 Example:
%AMLINE*20,1,0.9,0,0.45,12,0.45,0*%

Copyright Ucamco NV. 72

5.6.2.3 Line (center)

A line (center) primitive is a rectangle defined by its width, height, and center point. The
<Primitive code> of a line (center) primitive is „21‟.

Modifier number Description

1 Exposure off/on (0/1))

2 Rectangle width

3 Rectangle height

4 X coordinate of center point

5 Y coordinate of center point

6 Rotation angle around the origin (rotation is not around the center of
the object)

2

 4, 5 3

Line (center) primitive

 Example:
%AMRECTANGLE*21,1,6.8,1.2,3.4,0.6,0*%

Copyright Ucamco NV. 73

5.6.2.4 Line (lower left)

A line (lower left) primitive is a rectangle defined by its width, height, and the lower left point.
The <Primitive code> of a line (lower left) primitive is „22‟.

Modifier number Description

1 Exposure off/on (0/1))

2 Rectangle width

3 Rectangle height

4 X coordinate of lower left point

5 Y coordinate of lower left point

6 Rotation angle around the origin (rotation is not around the center of
the object)

2

4, 5 3

Line (lower left) primitive

 Example:
%AMLINE2*22,1,6.8,1.2,0,0,0*%

5.6.2.5 Outline

An outline primitive is an area enclosed by an n-points polygon, defined by its start point and n
subsequent points. The outline must be closed, i.e. the last point must be equal to the start
point. The minimum number of subsequent points is 2. Self-intersecting outlines are not
allowed. The <Primitive code> of an outline primitive is „4‟.

Modifier number Description

1 Exposure off/on (0/1)

2 The number of subsequent points n

Copyright Ucamco NV. 74

3, 4 X and Y coordinates of the start point

5, 6 X and Y coordinates of subsequent point number 1

... X and Y coordinates of further subsequent points

3+2n, 4+2n X and Y coordinates of subsequent point number n. Must be equal to
coordinates of start point

5+2n Rotation angle around the origin (rotation is not around the center of
the object)

3, 4

5, 6
 7, 8

Outline primitive

The X and Y coordinates are not modal, both the X and the Y coordinate must be specified for
all points.

 Note: Older versions of the specification defined the maximum of 50 for the number of
subsequent points n. This has proven to be too restrictive, and the limit is now increased to
4000.

 Example:
%AMOUTLINE*

4,1,4,

0.1,0.1,

0.5,0.1,

0.5,0.5,

0.1,0.5,

0.1,0.1,

0*%

Copyright Ucamco NV. 75

5.6.2.6 Polygon

A polygon primitive is a regular polygon defined by the number of vertices n, the center point
and the diameter of the circumscribed circle. The <Primitive code> of a polygon primitive is „5‟.

Modifier number Description

1 Exposure off/on (0/1)

2 Number of vertices n, 3 <= n <= 12

3 X coordinate of center point

4 Y coordinate of center point

5 Diameter of the circumscribed circle

6 Rotation angle around the origin (rotation is not around the center of
the object). Rotation is only allowed if the center point is on the origin.

3, 4

5

First
vertex

Polygon primitive

Without rotation, the first vertex is on the positive X-axis through the center point.

 Example:
%AMPOLYGON*

5,1,8,0,0,8,0*%

Copyright Ucamco NV. 76

5.6.2.7 Moiré

The moiré primitive is defined as a cross hair centered on concentric rings (annuli). The
<Primitive code> of a moiré primitive is „6‟. Exposure is always on.

Modifier number Description

1 X coordinate of center point

2 Y coordinate of center point

3 Outer diameter of outer concentric ring

4 Ring thickness

5 Gap between rings

6 Maximum number of rings

7 Cross hair thickness

8 Cross hair length

9 Rotation angle around the origin (rotation is not around the center of
the object). Rotation is only allowed if the center point is on the origin.

5

1, 2

 8

3

7

4

Moiré primitive

The outer diameter of the outer ring is specified by modifier 3. The ring has the thickness
defined by modifier 4. Moving further towards the center there is a gap defined by modifier 5,
and then the second ring etc. The maximum number of rings is defined by modifier 6. The

Copyright Ucamco NV. 77

number of rings can be less if the center is reached. If there is not enough space for the last ring
it becomes a full disc centered on the origin.

 Example:
%AMMOIRE*

6,0,0,5,0.5,0.5,2,0.1,6,0*%

5.6.2.8 Thermal

The thermal primitive is defined as a ring (annulus) interrupted by four gaps. The <Primitive
code> of a thermal primitive is „7‟. Exposure is always on.

Modifier number Description

1 X coordinate of center point

2 Y coordinate of center point

3 Outer diameter

4 Inner diameter

5 Gap thickness

6 Rotation angle around the origin (rotation is not around the center of
the object). Rotation is only allowed if the center point is on the origin.

 4 3

Thermal primitive

Without rotation, the gaps are on the X and Y axes through the center.

Note: Modifier 5 must be smaller than modifier 3. The inner circle disappears when modifier
5 is greater than modifier 4.

Copyright Ucamco NV. 78

5.6.3 Parameter Contents

An aperture macro definition must contain an aperture macro name that later can be
referenced from an AD parameter. An aperture macro definition also contains one or more of
the aperture primitives described above. Each primitive (besides the special comment
primitive) includes modifiers setting exposure, position, size, rotation etc. Primitive modifiers
can use variables. To indicate variables the special character „$‟ is used. The values for such
variables must either be provided by an AD parameter or calculated using an arithmetic
expression over other variables.

5.6.4 Syntax Rules

Each AM definition must be enclosed into a separate pair of „%‟ characters.

 Warning: An AM definition cannot be grouped. This is different from the other parameters.

As an AM definition can be quite long, it can contain line separators to enhance readability. Line
separators are ignored within an AM definition.

An AM parameter can contain the following types of data blocks:

 AM declaration

 Primitive with modifiers

 Variable definition by an arithmetic expression

 Comment (special comment primitive)

Each data block must end with the end-of-block „*‟ character. Within a primitive data block
each modifier must be separated by a comma. A modifier can be one of the following:

 A decimal number, such as 0, 1, 2, or 9.05

 A variable, such as $1 or $VAR

 An arithmetic expression including numbers and other variables.

5.6.4.1 Variable values from an AD Parameter

An AM parameter can use variables, whose actual values can be provided by an AD
parameter. Such variables are identified by „$n‟ where n indicates the serial number of the
variable value in the list provided by an AD parameter. Thus $1 means the first value in the
list, $2 the second, and so on.

 Example:

%AMDONUTVAR*1,1,$1,$2,$3*1,0,$4,$2,$3*%

Here the variables $1, $2, $3 and $4 are used as modifier values. The corresponding AD
parameter should look like:

%ADD34DONUTVAR,0.100X0X0X0.080*%

In this case the value of variable $1 becomes 0.100, $2 and $3 become 0 and $4 becomes
0.080. These values are used as values of corresponding modifiers in the DONUTVAR macro.

5.6.4.2 Arithmetic expressions

A modifier value can also be defined as an arithmetic expression that includes basic
arithmetic operators such as „add‟ or „multiply‟, constant numbers (with or without decimal
point) and other variables. The following arithmetic operators can be used:

Copyright Ucamco NV. 79

Operator Function

+ Add

- Subtract

x (lowercase) Multiply

/ Divide

Arithmetic operators

The result of the divide operation is decimal; it is not rounded or truncated to an integer.

The standard arithmetic precedence rules apply. Below operators are listed in order from lowest
to highest priority. The brackets „(„ and „)‟ can be used to overrule the standard precedence
rules.

 Add and subtract: „+‟ and „-„

 Multiply and divide: „x‟ and „/‟

 Brackets: „(‟ and „)‟

There is no unary minus operator. Negative values can be expressed by subtracting from zero,
e.g. „0-$1‟.

 Example:

%AMRECT*

21,1,$1,$2-$3-$3,0-$4,0-$5,0*%

Corresponding AD parameter could look like:

%ADD146RECT,0.0807087X0.1023622X0.0118110X0.5000000X0.3000000*%

5.6.4.3 Definition of a new variable

The AM parameter allows defining new variables based on previously defined variables. A
new variable is defined as an arithmetic expression that follows the same rules as described
in previous section. A variable definition also includes „=‟ sign with the meaning „assign‟.

For example, to define variable $4 as a variable $1 multiplied by 0.75 the following arithmetic
expression can be used:

$4=$1x0.75

 Example:

%AMDONUTCAL*

1,1,$1,$2,$3*

$4=$1x0.75*

Copyright Ucamco NV. 80

1,0,$4,$2,$3*%

Local variables with symbolic names, e.g. $XSIZE, $YSIZE, are allowed. Symbolic variable
names are subject to the syntax rules described in section 3.2.

 Example:

%AMREC2*$XSIZE=$1*$YSIZE=$2*21,1,$XSIZE,$YSIZE,0,0,0*%

Here local variables $XSIZE and $YSIZE are defined and initialized to $1 and $2 values.

The values for variables in an AM parameter are determined as follows:

 All variables used in AM parameter are initialized to 0

 If an AD parameter that references the aperture macro contains N modifiers then variables
$1,$2, ..., $N get the values of these modifiers

 The remaining variables get their values from definitions in the AM parameter; if some
variable remains undefined then its value is still 0

 The values of variables $1, $2, …, $N can also be modified by definitions in AM, i.e. the
values originating from an AD parameter can be redefined

 Example:

%AMDONUTCAL*1,1,$1,$2,$3*$4=$1x0.75*1,0,$4,$2,$3*%

The variables $1, $2, $3, $4 are initially set to 0.

If the corresponding AD parameter contains only 2 modifiers then the value of $3 will remain 0.

If the corresponding AD parameter contains 4 modifiers. e.g.

%ADD35DONUTCAL,0.020X0X0X0.03*%

the variable values are calculated as follows: the AD parameter modifier values are first
assigned so variable values $1 = 0.02, $2 = 0, $3 = 0, $4 = 0.03. The value of $4 is modified by
definition in AM parameter so it becomes $4 = 0.02 x 0.75 = 0.015.

The variable definitions and primitives are handled from the left to the right in the order of AM
parameter. This means a variable can be set to a value, used in a primitive, re-set to a new
value, used in a next primitive etc.

 Example:

%AMTARGET*1,1,$1,0,0*$1=$1x0.8*1,0,$1,0,0*$1=$1x0.8*1,1,$1,0,0*$1=$

1x0.8*1,0,$1,0,0*$1=$1x0.8*1,1,$1,0,0*$1=$1x0.8*1,0,$1,0,0*%

%ADD37TARGET,0.020*%

Copyright Ucamco NV. 81

Here the value of $1 is changed by the expression „$1=$1x0.8‟ after each primitive so the value
changes like the following: 0.020, 0.016, 0.0128, 0.01024, 0.008192, 0.0065536.

 Example:

%AMREC1*$2=$1*$1=$2*21,1,$1,$2,0,0,0*%

%AMREC2*$1=$2*$2=$1*21,1,$1,$2,0,0,0*%

%ADD51REC1,0.02,0.01*%

%ADD52REC2,0.02,0.01*%

Aperture 51 is the square with side 0.02 and aperture 52 is the square with side 0.01, because
the variable values in AM parameters are calculated as follows:

For the aperture 51 initially $1 is 0.02 and $2 is 0.01. After operation „$2=$1‟ the variable values
become $2 = 0.02 and $1 = 0.02. After the next operation „$1=$2‟ they remain $2 = 0.02 and $1
= 0.02 because previous operation changed $2 to 0.02. The resulting primitive has 0.02 width
and height.

For the aperture 52 initially $1 is 0.02 and $2 is 0.01 (the same as for aperture 51). After
operation „$1=$2‟ the variable values become $1 = 0.01 and $2 = 0.01. After the next operation
„$2=$1‟ they remain $1 = 0.01 and $2 = 0.01 because previous operation changed $1 to 0.01.
The resulting primitive has 0.01 width and height.

Below are some more examples of using arithmetic expressions in AM parameter. Note that
some of these examples probably do not represent a reasonable aperture macro – they just
illustrate the syntax that can be used for defining new variables and modifier values.

 Example:

%AMTEST*

1,1,$1,$2,$3*

$4=$1x0.75*

$5=($2+100)x1.75*

1,0,$4,$5,$3*%

%AMTEST*

$4=$1x0.75*

$5=100+$3*

1,1,$1,$2,$3*

1,0,$4,$2,$5*

$6=$4x0.5*

1,0,$6,$2,$5*%

%AMRECTROUNDCORNERS*

21,1,$1,$2-$3-$3,0-$4,0-$5,0*

$9=$1/2*

$8=$2/2*

22,1,$1-$3-$3,$3,0-$9+$3-$4,$8-$3-$5,0*

22,1,$1-$3-$3,$3,0-$9+$3-$4,0-$8-$5,0*

1,1,$3+$3,0-$4+$9-$3,0-$5+$8-$3*

1,1,$3+$3,0-$4-$9+$3,0-$5+$8-$3*

1,1,$3+$3,0-$4-$9+$3,0-$5-$8+$3*

1,1,$3+$3,0-$4+$9-$3,0-$5-$8+$3*%

Copyright Ucamco NV. 82

5.6.5 Examples

5.6.5.1 Fixed Modifier Values

The following AM parameter defines an aperture macro named „DONUTFIX‟ consisting of two
concentric circles with fixed diameter sizes:

%AMDONUTFIX*1,1,0.100,0,0*1,0,0.080,0,0*%

Syntax Comments

AMDONUTFIX Aperture macro name is „DONUTFIX‟

1,1,0.100,0,0 1 – Circle

1 – Exposure on

0.100 – Diameter

0 – X coordinate of the center

0 – Y coordinate of the center

1,0,0.080,0,0 1 – Circle

0 – Exposure off

0.080 – Diameter

0 – X coordinate of the center

0 – Y coordinate of the center

The AD parameter using this aperture macro can look like the following:

%ADD33DONUTFIX*%

5.6.5.2 Variable Modifier Values

The following AM parameter defines an aperture macro named „DONUTVAR‟ consisting of two
concentric circles with variable diameter sizes:

%AMDONUTVAR*1,1,$1,$2,$3*1,0,$4,$2,$3*%

Syntax Comments

AMDONUTVAR Aperture macro name is „DONUTVAR‟

1,1,$1,$2,$3 1 – Circle

1 – Exposure on

$1 – Diameter is provided by AD parameter

$2 – X coordinate of the center is provided by AD parameter

$3 – Y coordinate of the center is provided by AD parameter

Copyright Ucamco NV. 83

1,0,$4,$2,$3 1 – Circle

0 – Exposure off

$4 – Diameter is provided by AD parameter

$2 – X coordinate of the center is provided by AD parameter (same
as in first circle)

$3 – Y coordinate of the center is provided by AD parameter (same
as in first circle)

The AD parameter using this aperture macro can look like the following:

%ADD34DONUTVAR,0.100X0X0X0.080*%

In this case the variable modifiers get the following values: $1 = 0.100, $2 = 0, $3 = 0, $4 =
0.080.

5.6.5.3 Definition of a New Variable

The following AM parameter defines an aperture macro named „DONUTCAL‟ consisting of two
concentric circles with the diameter of the second circle defined as a function of the diameter of
the first:

%AMDONUTCAL*1,1,$1,$2,$3*$4=$1x0.75*1,0,$4,$2,$3*%

Syntax Comments

AMDONUTCAL Aperture macro name is „DONUTCAL‟

1,1,$1,$2,$3 1 – Circle

1 – Exposure on

$1 – Diameter is provided by AD parameter

$2 – X coordinate of the center is provided by AD parameter

$3 – Y coordinate of the center is provided by AD parameter

$4=$1x0.75 Defines variable $4 to be used as the diameter of the inner circle;
the diameter of this circle is 0.75 times the diameter of the outer
circle

1,0,$4,$2,$3 1 – Circle

0 – Exposure off

$4 – Diameter is calculated using the previous definition of this
variable

$2 – X coordinate of the center is provided by AD parameter (same
as in first circle)

$3 – Y coordinate of the center is provided by AD parameter (same
as in first circle)

The AD parameter using this aperture macro can look like the following:

%ADD35DONUTCAL,0.020X0X0*%

This defines a donut with outer circle diameter equal to 0.02 and inner circle diameter equal to
0.015.

Copyright Ucamco NV. 84

5.6.5.4 Rotation Modifier

The following AM parameter defines an aperture macro named „TRIANGLE_30‟. The macro is a
triangle rotated 30 degrees around the origin:

%AMTRIANGLE_30*4,1,3,1,-1,1,1,2,1,1,-1,30*%

Syntax Comments

AMTRIANGLE_30 Aperture macro name is „TRIANGLE_30‟

4,1,3 4 – Outline

1 – Exposure on

3 – The outline has three subsequent points

1,-1 1 – X coordinate of the start point

-1 – Y coordinate of the start point

1,1,2,1,1,-1 Coordinates (X, Y) of the subsequent points: (1,1), (2,1), (1,-1)

30 Rotation angle is 30 degrees counterclockwise

(0, 0)

Rotation center

Rotated triangle

The AD parameter using this aperture macro can look like the following:

%ADD33AMTRIANGLE_30*%

Copyright Ucamco NV. 85

5.7 SR – Step and Repeat
The SR parameter sets the graphics state variable „Step & Repeat‟ to a number of repeats with
a step distance along the X and Y axis.

Objects generated are collected in a data set. When another SR parameter or the end of the file
is encountered, the data set is stepped and repeated (copied) in the image plane. The number
of the repeats and the step distance is determined by the values in the „Step & Repeat‟ graphics
state variable.

 Example:

%SRX3Y2I5.0J4.0*%

Data
Y teps

X teps

A step & repeat data set can contain multiple levels with different polarities.

The step must be greater than the data size (the enclosing rectangle of all objects in the data).
Consequently objects generated simultaneously under step & repeat never overlap. This is
necessary to avoid ambiguities about the order of overlapping objects, which affects image
generation.

The number of repeats and the steps can be different for the X and Y axes.

The number of repeats along an axis can be 1, which is equivalent to no repeat. The
corresponding step is then irrelevant. It is recommended to set the step to 0.

The SR parameter can be used multiple times in a file. An SR parameter remains effective till
superseded by a new SR parameter.

5.7.1 Data Block Format

The syntax for the SR parameter is:

<SR parameter>: SR[X<Repeats>][Y<Repeats>][I<Step>][J<Step>]*

Syntax Comments

SR SR for Step and Repeat

X<Repeats> Defines the number of times the data is repeated along the X axis. If
missing defaults to 1. If present must be a strictly positive integer.

Copyright Ucamco NV. 86

Y<Repeats> Defines the number of times the data is repeated along the Y axis. If
missing defaults to 1. If present must be a strictly positive integer.

I<Step> Defines the step distance along the X axis. It is mandatory if the
number of repeats along X axis is >1. The step is a non-negative
decimal number, expressed in the unit specified by %MO.

J<Step> Defines the step distance along the Y axis. It is mandatory if the
number of repeats along X axis is >1. The step is a non-negative
decimal number, expressed in the unit specified by %MO.

5.7.2 Examples

Syntax Comments

%SRX2Y3I2.0J3.0*% Repeat the data 2 times along the X axis and 3 times along the Y
axis. The step distance between X-axis repeats is 2.0 units. The
step distance between Y-axis repeats is 3.0 units.

%SRX4Y1I5.0J0*% Repeat the image 4 times along the X axis with the step distance of
5.0 units. The step distance in the J modifier is ignored because no
repeats along the Y axis are specified.

%SRX1Y1I0J0*% Repeat the data 1 time along the X and Y axes, i.e. data is not
repeated.

%SRX1Y1*% Equivalent to the above.

5.8 LP – Level Polarity
The LP parameter starts a new level and sets its polarity to either dark or clear. The level
polarity applies to all data following the LP parameter until superseded by another LP
parameter.

This parameter can be used multiple times in a file.

Starting a new level resets the current point.

 Warning: Level polarity is not the same as image polarity (see the IP parameter for the
image polarity description).

5.8.1 Data Block Format

The syntax for the LP parameter is:

<LP parameter>: LP(C|D)*

Syntax Comments

LP LP for Level Polarity

C|D Polarity:

Copyright Ucamco NV. 87

C – clear polarity

D – dark polarity

5.8.2 Examples

Syntax Comments

%LPD*% Start a new level with dark polarity

%LPC*% Start a new level with clear polarity

5.9 LN – Level Name
The LN parameter assigns a name to the current level. It has no effect on the image. It purpose
is to make the file more easy to read for humans.

The name must comply with the syntax rules in section 3.2. This parameter can be used
multiple times in a file.

5.9.1 Data Block Format

The syntax for the LN parameter is:

<LN parameter>: LN<Name>*

Syntax Comments

LN LN for Level Name

<Name> Level name

5.9.2 Examples

Syntax Comments

%LNVia_anti-pads*% The name „Via_anti-pads‟ is assigned to the current level.

Copyright Ucamco NV. 88

6 Reported File Errors

Some non-conforming Gerber implementations create invalid Gerber files, or – worse – valid
Gerber files that do not represent the intended image. The table below lists errors that were
reported.

Symptom Cause and Correct Usage

Full circles appear or disappear
unexpectedly.

The file contains arcs but no G74 or G75. This is
invalid. A G74 or G75 is mandatory if arcs are
used. See 4.3.7.

Rotating aperture macros using primitive
21 gives unexpected results..

Some CAD systems incorrectly assume that
primitive 21 rotates around its center while. This is
wrong, it rotates around the origin. See 5.6.2.3.

Unexpected image after an aperture
change or a D03.

Coordinates without explicit operation code
(D01/D02/D03) are used. This is deprecated
because it can result in confusion about which
operation code is to use. Always explicitly
include the operation code (D01/D02/D03) with
the coordinate data. See 9.1.

Objects unexpectedly appear or disappear
under holes in standard apertures.

Some CAD systems incorrectly assume the hole
in an aperture clears (erases) the underlying
objects. This is wrong, the hole is not part of the
aperture, it is transparent and has no effect on the
underlying image. See 5.5.2.

Objects unexpectedly appear or disappear
under holes in macro apertures.

Some CAD systems incorrectly assume that
exposure off in a macro definition clears (erases)
the underlying objects under the aperture flash..
This is wrong, exposure off creates a hole in the
resulting aperture, and that hole has no effect on
the image. See5.6.1.

Openings in areas disappear, this happens
typically with clearances in planes.

Use or overlapping segments to construct cut-ins.
This is not allowed, use coincident segments.
Note that cut-ins are not intended for complex
planes. Use a layer in LPC to make clearances in
a plane. See 4.4.

Polygons are smaller than expected. Some CAD systems incorrectly assume the
parameter of a Regular Polygon specifies the
inside diameter. This is wrong, it specifies the
outside diameter. See 5.5.3.4.

A single Gerber file contains more than one
image, separated by M00, M01 or M02.

This is invalid. A Gerber file can contain only one
image. One file, one image. One image, one file.

Contour fill defined in a Level Polarity Clear
(%LPC) erases a previously defined object
at that location where this is not intended.

Contour fill as any other object in an LPC section
indeed Clear does not mean transparent. See
2.2.2.

The MI parameter is used to mirror a macro
definition but the result is not as expected.

With the MI parameter mirroring is not applied to
aperture definitions. See 11.4. Do not use this
deprecated parameter. Apply the transformation
directly in the aperture definitions and object
coordinates.

Reported Semantic Errors

Copyright Ucamco NV. 89

7 Reported Bad Practice

Some Gerber files are syntactically correct but are needlessly cumbersome or error-prone. The
table below summarizes common poor practices and gives the corresponding good practice.

Bad Practice Problems Good Practice

Low resolution
(numerical precision).

Poor registration of objects between PCB
layers. Loss of accuracy. It can result in
contours that self-intersect, to invalid
arcs, zero-arcs, with unexpected results
downstream. Note that software
processing the file unavoidably adds
further numerical rounding, aggravating
the problem.

Always use at least 6
decimal digits. Do not
sacrifice precision to
save a few bytes.

Multi quadrant mode
and rounding errors.

For a very small arc the start and end
point can happen to move on top of one
another due to rounding. Under G75
mode the small arc suddenly becomes a
full circle. Under G74 it remains small.

Use G74 single quadrant
mode unless you are
very careful with
rounding on small arcs.

Imprecisely positioned
center point of arcs

An imprecisely positioned center makes
the arc fuzzy. This can lead to
unexpected results. By positioning the
center imprecisely the creator of the file
accepts any possible interpretation.

Always position the
center point precisely.

Painted or stroked pads. Painted pads produce the correct image
but are very awkward and time
consuming for CAM software, e.g. for
DRC checks, electrical test and so on.
Stroking was needed for vector
photoplotters in the 1960‟s and1970‟s,
but these devices are as outdated as the
mechanical typewriter.

Always use flashed
pads. Define pads,
including SMD pads, with
the AD and AM
parameters.

Painted or stroked
areas.

Painted areas produce the correct
image, but the files are needlessly large
and the data is very confusing for CAM
software. Stroking was needed for vector
photoplotters in the 1960‟s and1970‟s,
but these devices are as outdated as the
mechanical typewriter.

Always use contours
(G36/G37) to define
areas.

Clearances in planes
(anti-pads) constructed
with cut-ins.

Cut-ins are not intended for such a
complex construction. The result is prone
to rounding errors. Furthermore, CAM
systems cannot work with such a
construction and must first resolve the
cut-ins and recover the anti-pads.

Construct planes and
anti-pads with a LPD
layer for the plane and
an LPC layer for the
holes (anti-pads).

Standard Gerber or
RS-274-D

Standard Gerber is deprecated. It was
designed for a workflow that is as
obsolete as the mechanical typewriter. It
requires manual labor to process. It is
not suitable for today‟s image exchange.
Do not use it.

Always use Extended
Gerber.

Poor/good practices

Copyright Ucamco NV. 90

Copyright Ucamco NV. 91

8 Glossary

ABSOLUTE POSITION: Position expressed in Cartesian coordinates from the origin
(0, 0).

APERTURE: A shape that is used for stroking or flashing. (The name is historic;

vector photoplotters exposed images on lithographic film by shining light through

an opening, called aperture.)

APERTURE MACRO: A macro describing the geometry of a special aperture.

This macro is defined by an AM parameter.

ARC: A graphic object created by stroking, with a circle aperture, a curve closely
approximating a circular arc.

CIRCULAR INTERPOLATION: Creating an arc.

CLEAR: Clear (unmark, rub, erase, scratch) the shape of a graphic object on the
image.

CONTOUR: A closed curve defining a region.

CURRENT POINT: An implicitly set point in the plane that is used as a begin point for
arcs and draws.

DRAW: A graphic object created by stroking, with a circle or rectangle aperture, a
line segment from the begin point to the end point of the draw.

FILE IMAGE: The entire image, including all levels.

FLASH: A graphic object with the shape of an aperture.

GRAPHICS OBJECT: A flash, draw, arc or region. Graphics objects can be dark or

clear. The image is created by darkening or clearing a stream of graphic objects on

the image area.

INCREMENTAL POSITION: Position expressed as a distance in X and Y from the
current point.

INFORMATION LAYER. See level.

STROKE: To create a draw (linear interpolation) or an arc (circular interpolation).

LEVEL: A section of Gerber data. All objects in a level have the same polarity (dark or

clear).

LINEAR INTERPOLATION: Creating a draw.

DARKEN: Darken (mark, expose, paint) the shape of a graphic object on the image.

MULTI QUADRANT MODE: A mode defining how circular interpolation is performed.

In this mode the arc is allowed extend over more than 90°. If the start point of the arc is

Copyright Ucamco NV. 92

equal to the end point the arc is a full circle of 360°.

PARAMETERS: Instructions that specify how the data should be processed.

POLARITY: When applied to the image, positive polarity means the image is positive
black on white, and negative that it is negative. When applied to a level, dark means
that the object exposes or marks the image area in dark and clear means that the
object clears or erases everything underneath it.

POLYGON FILL: This is an old name for region fill. See region.

REGION: A graphic object with an arbitrary shape, defined by its contour.

RESOLUTION: The distance expressed by the least significant digit of coordinate data.
Thus the resolution is the step size of the grid on which all coordinates are defined.

SINGLE QUADRANT MODE: A mode defining how circular interpolation is
performed. In this mode the arc cannot extend over more than 90°. If the start point of
the arc is equal to the end point, the arc has length zero, i.e. covers 0°.

STEP AND REPEAT: A method by which successive exposures of a single

image are made to produce a multiple image.

TRANSPARENT: Part of an object that has no effect on the image, typically a hole.

Any objects under the transparent part remain visible.

Copyright Ucamco NV. 93

9 Miscellaneous Deprecated Elements

9.1 Coordinate Data Blocks without Operation Code
Previous versions of the specification allowed coordinate data without explicit operation code in
some situations. In the absence of an explicit operation code, a deprecated operation mode
operates on the coordinates.

A D01 sets the operation mode to plot. It remains in plot mode till any other D code is
encountered. (In older terminology, D01 turns the light on, and D02 turns it off.)This allows
omitting an explicit D01 after the first coordinate data block only in sequences of D01 data
blocks.

 Example:

D10*

X700Y1000D01*

X1200Y1000*

X1200Y1300*

D11*

X1700Y2000D01*

X2200Y2000*

X2200Y2300*

This saves a few bytes. However, coordinate data blocks without explicit operation code are not
intuitive and sometimes lead to errors. This risk far outweighs the meager benefit of saving a
few bytes. These data blocks have therefore been deprecated. The risk of using them lies solely
with the writer of the file.

The operation mode after any other D code than D01 or D02 is not defined.

 Warning: Avoid writing coordinates without operation code like the plague.

9.2 Open Contours in Regions
Previous versions of the specification allowed leaving contours open in a region definition.

Before the region is created all open contours are closed by connecting the last point to the first
with a straight draw. Closing the contour does not move the current point; the current remains at
the last coordinate in the file.

Open contours can be misunderstood and are therefore deprecated. Contours must be explicitly
closed.

Moves (D02) with zero length in open contours are not allowed as they are confusing.

Contours that become self-intersecting after the automatic closure are of course not allowed.

Copyright Ucamco NV. 94

10 Deprecated Function Codes

The next table lists deprecated codes.

Code Function Comments

G54 Select aperture This historic code optionally precedes an
aperture selection D-code. It has no effect. It
is superfluous and deprecated.

G55 Prepare for flash This historic code optionally precedes D03
code. It has no effect. It is superfluous and
deprecated.

G70 Set the „Unit‟ to inch These historic codes perform the same action
as the MO parameter. They are superfluous
and deprecated. G71 Set the „Unit‟ to mm

G90 Set the „Coordinate format‟ to
„Absolute notation‟

These historic codes perform as subset of the
function of the FS parameter. They are
superfluous and deprecated.

G91 Set the „Coordinate format‟ to
„Incremental notation‟

M00 Program stop This historic code has the same effect as
M02. It is superfluous and deprecated.

M01 Optional stop This historic code has no effect. It is
superfluous and deprecated.

Deprecated codes

Gerber writers can no longer use deprecated codes.

Gerber readers may implement them to support legacy applications and files. The codes G54,
G70 and G71 are still found from time to time. The other codes are very rarely, if ever, present.

Copyright Ucamco NV. 95

11 Deprecated Parameters

The table below lists the deprecated parameters. They are explained later in this chapter.

Parameter Function Description Comments

AS Axis Select Sets the „Axes correspondence‟
graphics state variable

These parameters can
only be used once, at
the beginning of the
file. MI Mirror Image Sets „Image mirroring‟ graphics

state variable

OF Offset Sets „Image offset‟ graphics state
variable

IR Image Rotation Sets „Image rotation‟ graphics
state variable

SF Scale Factor Sets „Scale factor‟ graphics state
variable

Deprecated parameters

The order of execution of these parameters is always MI, SF, OF, IR and AS, independent of
their order of appearance in the file.

Gerber writers (creators of Gerber files) must not use deprecated parameters.

Gerber readers may support deprecated parameters. There are few legacy files and
applications generating these deprecated parameters. However this it is nearly always, if not
always, to confirm the default value; in other words they have no effect. It is probably a waste of
time to implement these parameters.

11.1 Deprecated Graphics State Variables
There are a number of deprecated graphics state variables.

Graphics state
variable

Values range Fixed Value at the
beginning of
a file

Axes
correspondence

AXBY, AYBX

See AS parameter

Yes AXBY

Image mirroring See MI parameter Yes A0B0

Image offset See OF parameter Yes A0B0

Image rotation 0°, 90°, 180°, 270°

See IR parameter

Yes 0°

Scale factor See SF parameter Yes A1B1

Copyright Ucamco NV. 96

Deprecated graphics state variables

These graphic state variables have corresponding deprecated parameters, listed below.

11.2 AS – Axis Select
The AS parameter sets the correspondence between the X, Y data axes and the A, B output
device axes. Note that it only has an effect when the Gerber file is sent to an output device. It
has no effect on the image in computer to computer data exchange.

This parameter affects the entire image. It can only be used once, at the beginning of the file.

11.2.1 Data Block Format

The syntax for the AS parameter is:

<AS parameter>: AS(AXBY|AYBX)*

Syntax Comments

AS AS for Axis Select

AXBY Assign output device axis A to data axis X, output device axis B to
data axis Y

AYBX Assign output device axis A to data axis Y, output device axis B to
data axis X

11.2.2 Examples

Syntax Comments

%ASAXBY*% Assign output device axis A to data axis X and output device axis B
to data axis Y

%ASAYBX*% Assign output device axis A to data axis Y and output device axis B
to data axis X

11.3 IR – Image Rotation
The IR parameter is used to rotate the entire image counterclockwise in increments of 90°
around the image (0, 0) point. All image objects are rotated.

The IR parameter affects the entire image. It must be used only once at the beginning of the
file.

11.3.1 Data Block Format

The syntax for the IR parameter is:

<IR parameter>: IR(0|90|180|270)*

Copyright Ucamco NV. 97

Syntax Comments

IR IR for Image Rotation

0 Image rotation is 0° counterclockwise (no rotation)

90 Image rotation is 90° counterclockwise

180 Image rotation is 180° counterclockwise

270 Image rotation is 270° counterclockwise

11.3.2 Examples

Syntax Comments

%IR0*% No rotation

%IR90*% Image rotation is 90° counterclockwise

%IR270*% Image rotation is 270° counterclockwise

11.4 MI – Mirror Image
The MI parameter is used to turn axis mirroring on or off. When on, all A- and/or B-axis data is
mirrored (that is, inverted or multiplied by -1). MI does not mirror special apertures!

This parameter affects the entire image. It can only be used once, at the beginning of the file.

 Note: Mirroring A-axis data flips the image about the B axis and mirroring B-axis data flips
the image about the A axis.

 Warning: It is strongly recommended not to use the MI parameter. Avoid it like the plague.
The exception for special apertures is confusing and leads to mistakes. If an image must be
mirrored, write out the mirrored coordinates and apertures.

11.4.1 Data Block Format

The syntax for the MI parameter is:

<MI parameter>: MI[A(0|1)][B(0|1)]*

Syntax Comments

MI MI for Mirror image

A(0|1) Controls mirroring of the A-axis data:

Copyright Ucamco NV. 98

A0 – disables mirroring

A1 – enables mirroring (the image will be flipped over the B-axis)

If the A part is missing then mirroring is disabled for the A-axis data

B(0|1) Controls mirroring of the B-axis data:

B0 – disables mirroring

B1 – enables mirroring (the image will be flipped over the A-axis)

If the B part is missing then mirroring is disabled for the B-axis data

11.4.2 Examples

Syntax Comments

%MIA0B0*% No mirroring of A- or B-axis data

%MIA0B1*% No mirroring of A-axis data.

Mirror B-axis data

%MIB1*% No mirroring of A-axis data.

Mirror B-axis data

11.5 OF - Offset
The OF parameter moves the final image up to plus or minus 99999.99999 units from the
imaging device (0,0) point. The image can be moved along the imaging device A or B axis, or
both. The offset values used by OF parameter are absolute. If the A or B part is missing, the
corresponding offset is 0. The offset values are expressed in units specified by MO parameter.

This parameter affects the entire image. It can only be used once, at the beginning of the file.

11.5.1 Data Block Format

The syntax for the OF parameter is:

<OF parameter>: OF[A<Offset>][B<Offset>]*

Syntax Comments

OF OF for Offset

A<Offset> Defines the offset along the output device A axis

B<Offset> Defines the offset along the output device B axis

The <Offset> value is a decimal number n preceded by the optional sign („+‟ or „-‟) with the
following limitation:

0 <= n <= 99999.99999

Copyright Ucamco NV. 99

The decimal part of n consists of not more than 5 digits.

11.5.2 Examples

Syntax Comments

%OFA0B0*% No offset

%OFA1.0B-1.5*% Defines the offset: 1 unit along the A axis, -1.5 units along the B axis

%OFB5.0*% Defines the offset: 0 units (i.e. no offset) along the A axis, 5 units along
the B axis

11.6 SF – Scale Factor
The SF parameter sets a scale factor for the output device A- and/or B-axis data. The factor
values must be between 0.0001 and 999.99999. The scale factor can be different for A and B
axes. If no scale factor is set for an axis the default value „1‟ is used for that axis.

All the coordinate data are multiplied by the specified factor value for the corresponding axis.
Note that apertures are not scaled.

This parameter affects the entire image. It can only be used once, at the beginning of the file.

11.6.1 Data Block Format

The syntax for the SF parameter is:

<SF parameter>: SF[A<Factor>][B<Factor>]*

Syntax Comments

SF SF for Scale Factor

A<Factor> Defines the scale factor for the A-axis data

B<Factor> Defines the scale factor for the B-axis data

The <Factor> value is an unsigned decimal number n with the following limitation:

0.0001 <= n <= 999.99999

The decimal part of n consists of not more than 5 digits.

11.6.2 Examples

Syntax Comments

%SFA1B1*% Scale factor 1

Copyright Ucamco NV. 100

%SFA.5B3*% Defines the scale factor: 0.5 for the A-axis data, 3 for the B-axis data

Copyright Ucamco NV. 101

Copyright Ucamco NV. 102

12 Deprecated RS-274-D or Standard Gerber

The current Gerber file format, as specified in this document, is also known as RS-274X or
Extended Gerber. There is also a historic format called Standard Gerber or RS-274-D format. It
differs from the current Gerber file format (RS-274X), in that it:

 does not support G36 and G37 codes

 supports the deprecated codes, and

 does not support parameters; therefore coordinate format and apertures cannot be defined

12.1 Standard Gerber must not be used

Standard Gerber is obsolete and deprecated. It is not an image description standard. It is not
suited for automatic processing. It has many drawbacks over the current Gerber file format and
not a single advantage. All users of the Gerber file format are strongly advised to use the
current Gerber file format – Extended Gerber, or RS-274X. The reasons for this are given
below.

12.2 Origin and purpose of Standard Gerber
In the 1960s and 1970s, images were produced on lithographic film by a vector photoplotter, a
precision optical Numerical Control machine. Images were produced by beaming light from the
plotter's light source onto the film through an aperture on a wheel like that shown in the
photograph below. This wheel was rotated to select the appropriate aperture, or it could be
substituted by another aperture wheel if additional aperture sizes were needed.

The data for the exposure process was contained in a Standard Gerber file, which was typically
recorded onto magnetic or paper tape (see pictures), which was in turn mounted onto the vector
photoplotter by the operator.

Copyright Ucamco NV. 103

The operator consulted the accompanying notes, typed the coordinate format on a machine
console, mounted the appropriate aperture wheel, changed apertures if necessary, and started
the plotter. The Standard Gerber file then drove the plotter through the required movements,
controlled the aperture wheel and exposure light, and produced the desired image.

Standard Gerber was so well suited to this task that it became the industry standard.

That was decades ago. Vector photoplotters have not been used since, so Standard Gerber has
lost its raison d'etre. While it deserves a place of honor in the Computer History Museum,
Standard Gerber has no place at all in the 21st century's electronics industry.

And yet it is still used by some. This makes no sense at all.

12.3 Standard Gerber is a NC format
From the above, it is clear that Standard Gerber is an NC (Numerical Control) machine format,
and not an image description format. It contains neither the coordinate format definition, so the
meaning of coordinate data is undefined, nor aperture definitions, so the meaning of flashes and
interpolations is undefined.

Thus if an image is to be defined using Standard Gerber, additional information is essential.
This typically comes in the form of a so called “wheel file” consisting of notes in an informal text
format, plus drawings that define the more complex apertures. The problem is that there is no
standard for this extra information, creating enormous potential for error and misunderstandings.
This puts the onus squarely on operators' shoulders to ensure that all of the information is
assembled and checked on a workstation – manually and with the help of software tools – in
order to be sure that all the necessary image data is present.

As if this were not enough, an additional issue is that Standard Gerber renders the informal
description of complex apertures, SMD apertures and areas so difficult that designers give up,
and opt instead to paint them. This in turn creates such chaos that there is a very real risk of
losing valuable data in both CAD and CAM operations. Thus the CAM engineer must be
extremely careful to recover, and piece together, the pads in the design.

Copyright Ucamco NV. 104

All of which renders Standard Gerber totally unsuitable for current CAD to CAM data transfer.
This format, from the days of paper tape, punched cards, teletypes and electrical typewriters,
offers not one single advantage over Extended Gerber.

12.4 Standard Gerber is not a standard
So Standard Gerber, despite its name, is not an image definition standard, as it must be
supported by a whole lot of extra non-standardized information in order to define an image.
That's why Ucamco has defined the new Extended Gerber format. This, unlike its predecessor,
IS a standard, as it standardizes the additional data needed, puts it in the file header, and adds
some sorely needed extensions.

12.5 A fallacy
The following is sometimes said: “The only difference between Standard Gerber and Extended
Gerber is that in Extended Gerber the wheel file is embedded in the file. As software was
developed to extract data automatically from the wheel files, this is no big deal.”

We beg to differ:

 It is not the only difference.

 This difference is a big deal.

Firstly, the other big difference is that Extended Gerber is a richer format that has all the
constructs necessary for describing a PCB image efficiently. Pads are properly described as
pads, ensuring that no data is lost.

Secondly, this difference is a really big deal. While it is true that a lot of effort was spent on
automating the task of inputting the accompanying notes, only a fraction of all data sets can in
fact be read in automatically because they are in a free format. While this freedom was perfectly
adequate for the vector photoplotter operator of old, it flies in the face of standardization and
automation, which consequently becomes a less reliable and higher maintenance process. And
what happens if the notes arrive in another language – imagine, for example, automating the
input of a wheel file in Japanese. Or of its supporting drawings, for which again, there are no
format definitions. It becomes clear pretty quickly that it is not possible to fully and reliably
automate the transfer of such informal data, so the operator must carefully check all results for
errors. This is particularly important if we consider that a lack of standards can also mean lack
of clarity about the intentions of the designer, and where responsibility lies in case of errors.

Compare this with the clarity of the formal, standardized aperture definitions in Extended
Gerber: reading them in is straightforward, with no need to pore over the results for errors. And
as there is a standard, it is clear what was intended, and who is responsible in case of a
mistake. So yes, this difference is a big deal. It is the difference between using a published
standard format and each individual using his own unspecified format. It is the difference
between painstaking, minute manual work and inspection, and reliable, automatic data transfer.

	Contents
	Figures
	Tables
	Preface
	Acknowledgement
	Introduction
	Info, Questions & Feedback
	Record of Revisions
	Revision I1
	Revision I2
	Revision I3

	About this Document
	Scope
	Who Should Use This Specification?
	Conformance
	Formatting and Syntax Rules
	References

	History of the Gerber File Format
	About Ucamco
	Intellectual Property and Trade Name

	Overview
	File Structure
	Image Generation
	Graphics Objects
	Dark and Clear Polarity
	Operation Codes
	Stroking
	Graphics State

	Annotated Example Files
	Example 1
	Example 2

	Syntax
	Character Set
	Names
	Data Blocks
	Statements
	Data Types
	Function Codes
	Coordinate Data Blocks
	Parameters

	Function Codes
	Syntax
	Linear Interpolation
	Data Block Format

	Circular Interpolation
	Overview
	Definition of arcs
	Numerical instability in multi quadrant (G75) arcs
	Single Quadrant Mode
	Data Block Format
	Image
	Example

	Multi Quadrant Mode
	Data Block Format

	Example
	Using G74 or G75 can result in completely different image

	Regions (G36/G37)
	Overview
	Simple contour example
	Using levels to create holes
	Cut-in example 1
	Cut-in example 2 – valid, coincident segments
	Cut-in example 3 – invalid, overlapping segments

	Parameters
	FS – Format Specification
	Coordinate Format
	Zero Omission
	Absolute or Incremental Notation
	Data Block Format
	Examples

	MO – Mode
	Data Block Format
	Examples

	IP – Image Polarity
	Positive image polarity
	Negative image polarity
	Data Block Format
	Examples

	IN - Image Name
	Data Block Format
	Examples

	AD - Aperture Definition
	Syntax Rules
	Data Block Format
	Aperture Definition with Standard Apertures
	Circle
	Rectangle
	Obround
	Regular polygon

	Examples

	AM - Aperture Macro
	Data Block Format
	Primitives
	Comment
	Circle
	Line (vector)
	Line (center)
	Line (lower left)
	Outline
	Polygon
	Moiré
	Thermal

	Parameter Contents
	Syntax Rules
	Variable values from an AD Parameter
	Arithmetic expressions
	Definition of a new variable

	Examples
	Fixed Modifier Values
	Variable Modifier Values
	Definition of a New Variable
	Rotation Modifier

	SR – Step and Repeat
	Data Block Format
	Examples

	LP – Level Polarity
	Data Block Format
	Examples

	LN – Level Name
	Data Block Format
	Examples

	Reported File Errors
	Reported Bad Practice
	Glossary
	Miscellaneous Deprecated Elements
	Coordinate Data Blocks without Operation Code
	Open Contours in Regions

	Deprecated Function Codes
	Deprecated Parameters
	Deprecated Graphics State Variables
	AS – Axis Select
	Data Block Format
	Examples

	IR – Image Rotation
	Data Block Format
	Examples

	MI – Mirror Image
	Data Block Format
	Examples

	OF - Offset
	Data Block Format
	Examples

	SF – Scale Factor
	Data Block Format
	Examples

	Deprecated RS-274-D or Standard Gerber
	Standard Gerber must not be used
	Origin and purpose of Standard Gerber
	Standard Gerber is a NC format
	Standard Gerber is not a standard
	A fallacy

