next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

                        2                     2 2         2   2    2   2   2
o2 = ideal (c*q*t - x, d r - p*v, b*j*n - s, e n  - a*w, l o*x  - v , g i*w 
     ------------------------------------------------------------------------
           2 2 2    2
     - q, c m v  - i )

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             2   2 3 4       3 3 4   4   4 3 4 2    3 2 3 3   4 3 3 4 3 3  
o3 = ideal (f m*n p s v*w - b k o , d f*l u v x  - e n q r , a c f j k u  -
     ------------------------------------------------------------------------
          4 4   4 3 3 3 4 4          4
     g*i*q w , c d j o w x  - a*k*p*q )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.