next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Macaulay2Doc :: factor(Module)

factor(Module) -- factor a ZZ-module

Synopsis

Description

The ring of M must be ZZ.

In the following example we construct a module with a known (but disguised) factorization.

i1 : f = random(ZZ^6, ZZ^4)

o1 = | 5 1 0 1 |
     | 3 7 6 3 |
     | 0 9 0 3 |
     | 6 5 2 1 |
     | 9 9 8 1 |
     | 4 5 7 9 |

              6        4
o1 : Matrix ZZ  <--- ZZ
i2 : M = subquotient ( f * diagonalMatrix{2,3,8,21}, f * diagonalMatrix{2*11,3*5*13,0,21*5} )

o2 = image 0

                               6
o2 : ZZ-module, submodule of ZZ
i3 : factor M

o3 = 0

o3 : Expression of class Sum