This method returns the vector whose
i-th entry is the coefficient of
i-th torus-invariant prime divisor. The indexing of the torus-invariant prime divisors is inherited from the indexing of the rays in the associated fan. This vector can be viewed as an element of the group of torus-invariant Weil divisors.
i1 : PP2 = projectiveSpace 2;
|
i2 : D = 2*PP2_0 - 7*PP2_1 + 3*PP2_2
o2 = 2*D - 7*D + 3*D
0 1 2
o2 : ToricDivisor on PP2
|
i3 : vector D
o3 = | 2 |
| -7 |
| 3 |
3
o3 : ZZ
|
i4 : wDiv PP2
3
o4 = ZZ
o4 : ZZ-module, free
|
i5 : FF7 = hirzebruchSurface 7;
|
i6 : E = FF7_0-5*FF7_3
o6 = D - 5*D
0 3
o6 : ToricDivisor on FF7
|
i7 : vector E
o7 = | 1 |
| 0 |
| 0 |
| -5 |
4
o7 : ZZ
|
i8 : wDiv FF7
4
o8 = ZZ
o8 : ZZ-module, free
|