next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

                     2   2          2   2       2 2     2   2 2        2 2   
o2 = ideal (c*g*v - p , c v - d*q, a q*w  - h, g h r - n , c f g - a, b d e*s
     ------------------------------------------------------------------------
           2         2       2 2 2 2
     - 1, a c*d*g*q*x  - 1, a c p x  - 1)

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

                 3     2     3 3 3   3 4 2 3 3    2   3   3   3 2 4 2 2 3  
o3 = ideal (b*c*k n*q*t u - a v w , c e j l v  - h o*q u*w , c j m q r s  -
     ------------------------------------------------------------------------
      4 4 3 3   4 2 3 3 4 3 3    3 4 3
     d e g x , e f g n s t v  - k r x )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.