next
|
previous
|
forward
|
backward
| up |
top
|
index
|
toc
|
Macaulay2 web site
HyperplaneArrangements
::
CentralArrangement
CentralArrangement -- class of central hyperplane arrangements
Description
A central arrangement is a finite set of linear hyperplanes.
Functions and methods returning a central hyperplane arrangement :
cone(Arrangement,RingElement)
-- Cone of an arrangement
cone(Arrangement,Symbol)
(missing documentation)
dual(CentralArrangement)
-- the Gale dual of A
Methods that use a central hyperplane arrangement :
deCone(CentralArrangement,RingElement), see
deCone
-- produce an affine arrangement from a central one
deCone(CentralArrangement,ZZ), see
deCone
-- produce an affine arrangement from a central one
der(CentralArrangement), see
der
-- Module of logarithmic derivations
der(CentralArrangement,List), see
der
-- Module of logarithmic derivations
isDecomposable(CentralArrangement), see
isDecomposable
-- test if an arrangement is decomposable
isDecomposable(CentralArrangement,Ring), see
isDecomposable
-- test if an arrangement is decomposable
lct(CentralArrangement), see
lct
-- Compute the log-canonical threshold of an arrangement
multIdeal(Number,CentralArrangement), see
multIdeal
-- compute a multiplier ideal
multIdeal(Number,CentralArrangement,List), see
multIdeal
-- compute a multiplier ideal
multIdeal(RR,CentralArrangement), see
multIdeal
-- compute a multiplier ideal
multIdeal(RR,CentralArrangement,List), see
multIdeal
-- compute a multiplier ideal
orlikSolomon(CentralArrangement,PolynomialRing)
(missing documentation)
orlikTerao(CentralArrangement), see
orlikTerao
-- defining ideal for the Orlik-Terao algebra
orlikTerao(CentralArrangement,PolynomialRing), see
orlikTerao
-- defining ideal for the Orlik-Terao algebra
orlikTerao(CentralArrangement,Symbol), see
orlikTerao
-- defining ideal for the Orlik-Terao algebra
For the programmer
The object
CentralArrangement
is
a
type
, with ancestor classes
Arrangement
<
HashTable
<
Thing
.