Given an ideal I in a polynomial ring k[x1,...,xn], this function computes mu(d, I, J) or mu(d,f,J) recursively for d = 0,...,e. In other words, calling muList is the same as calling nuList with the option ComparisonTest set to FrobeniusPower.
i1 : R = ZZ/3[x,y]; |
i2 : I = ideal(x^2, x+y); o2 : Ideal of R |
i3 : J = ideal(x, y^2); o3 : Ideal of R |
i4 : muList(2,I,J) o4 = {1, 5, 17} o4 : List |
i5 : muList(3,I) o5 = {0, 2, 8, 26} o5 : List |
i6 : muList(3,x^3+y^3,J) o6 = {0, 1, 5, 17} o6 : List |