next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
M0nbar :: permute(List,DivisorClassRepresentativeM0nbar)

permute(List,DivisorClassRepresentativeM0nbar) -- compute the image of a divisor class representative under a permutation of the marked points

Synopsis

Description

The symmetric group Sn acts on M0,n by permuting the marked points.

This function computes the image of a divisor class representative C under a permutation σ of the marked points.

Enter σ as a list {σ(1),σ(2),...,σ(n)}. Cycle class notation is not supported for this function.

i1 : L= { {{1,3},1}, {{1,4},-3}};
i2 : D=divisorClassRepresentativeM0nbar(5,L);
i3 : permute({5,2,1,3,4}, D)

o3 = DivisorClassRepresentativeM0nbar{DivisorExpression => HashTable{{1, 5} => 1 }}
                                                                     {3, 5} => -3
                                      NumberOfMarkedPoints => 5

o3 : DivisorClassRepresentativeM0nbar