The program converts the elements f(x), where x is a generator in N, so that they will have type M=ambient(L) instead. The list of these converted elements may be looked upon by writing Q.relsLie. The Lie algebra Q is M modulo the ideal in M generated by the elements in Q.relsLie together with the induced differential on L.
i1 : M = lieAlgebra({a,b,c}) o1 = M o1 : LieAlgebra |
i2 : L = M/{a b} o2 = L o2 : LieAlgebra |
i3 : N = lieAlgebra({d}, genWeights=>{2}) o3 = N o3 : LieAlgebra |
i4 : f = mapLie(L,N,{a c}) o4 = f o4 : MapLie |
i5 : Q = L/f o5 = Q o5 : LieAlgebra |
i6 : Q.relsLie o6 = { - (b a), - (c a)} o6 : List |
i7 : Q1 = M/Q.relsLie o7 = Q1 o7 : LieAlgebra |
i8 : peekLie Q1 o8 = gensLie => {a, b, c} genWeights => {{1, 0}, {1, 0}, {1, 0}} genSigns => {0, 0, 0} relsLie => { - (b a), - (c a)} genDiffs => {0, 0, 0} field => QQ diffl => false compdeg => 1 |
i9 : peekLie Q o9 = gensLie => {a, b, c} genWeights => {{1, 0}, {1, 0}, {1, 0}} genSigns => {0, 0, 0} relsLie => { - (b a), - (c a)} genDiffs => {0, 0, 0} field => QQ diffl => false compdeg => 1 |