Macaulay2 » Documentation
Packages » MonomialIntegerPrograms :: topMinimalPrimesIP
next | previous | forward | backward | up | index | toc

topMinimalPrimesIP -- compute the minimal primes of maximum dimension using integer programming

Synopsis

Description

If a KnownDim is not provided, topMinimalPrimesIP will first call {dimensionIP}($I$) to compute the dimension.

The IP for this function is similar to the degreeIP formulation, except that rather than count the number of solutions, SCIP uses a sparse data structure to enumerate all feasible solutions.

The location of input/output files for SCIP solving is printed to the screen by default. To change this, see ScipPrintLevel.

i1 : R = QQ[x,y,z,w,v];
i2 : I = monomialIdeal(y^12, x*y^3, z*w^3, z*v*y^10, z*x^10, v*z^10, w*v^10, y*v*x*z*w);

o2 : MonomialIdeal of R
i3 : ScipPrintLevel = 0;
i4 : minimalPrimes(I)
../../../../../Macaulay2/m2/option.m2:17:19:(1):[39]: error: encountered an unknown key or option: Generic
../../../../../Macaulay2/m2/methods.m2:154:80:(1):[38]: --back trace--
../../../../../Macaulay2/m2/option.m2:40:8:(1):[37]: --back trace--
../../../../../Macaulay2/packages/MinimalPrimes.m2:231:36:(2):[36]: --back trace--
../../../../../Macaulay2/m2/option.m2:17:8:(1):[35]: --back trace--
../../../../../Macaulay2/m2/methods.m2:154:80:(1):[34]: --back trace--
../../../../../Macaulay2/m2/option.m2:40:8:(1):[33]: --back trace--
../../../../../Macaulay2/packages/MinimalPrimes.m2:231:21:(2):[31]: --back trace--
../../../../../Macaulay2/packages/MinimalPrimes.m2:244:32:(2):[30]: --back trace--
../../../../../Macaulay2/packages/MinimalPrimes.m2:193:45:(2):[29]: --back trace--
../../../../../Macaulay2/m2/methods.m2:154:80:(1):[28]: --back trace--
../../../../../Macaulay2/m2/option.m2:17:8:(1):[26]: --back trace--
i5 : -- example results terminated prematurely
i6 : -- example results terminated prematurely

Notice that if the dimension of a monomial ideal is $k$, each of the top minimal primes is generated by $n-k$ variables, where $n$ is the number of variables in the polynomial ring.

Caveat

topMinimalPrimesIP does not verify that a provided KnownDim is correct. Providing the wrong dimension will result in an incorrect answer or an error.

See also

Ways to use topMinimalPrimesIP :

For the programmer

The object topMinimalPrimesIP is a method function with options.