Point Cloud Library (PCL)  1.7.2
fpfh_omp.hpp
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2010-2011, Willow Garage, Inc.
6  * Copyright (c) 2012-, Open Perception, Inc.
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * * Redistributions of source code must retain the above copyright
15  * notice, this list of conditions and the following disclaimer.
16  * * Redistributions in binary form must reproduce the above
17  * copyright notice, this list of conditions and the following
18  * disclaimer in the documentation and/or other materials provided
19  * with the distribution.
20  * * Neither the name of the copyright holder(s) nor the names of its
21  * contributors may be used to endorse or promote products derived
22  * from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  *
37  * $Id$
38  *
39  */
40 
41 #ifndef PCL_FEATURES_IMPL_FPFH_OMP_H_
42 #define PCL_FEATURES_IMPL_FPFH_OMP_H_
43 
44 #include <pcl/features/fpfh_omp.h>
45 
46 //////////////////////////////////////////////////////////////////////////////////////////////
47 template <typename PointInT, typename PointNT, typename PointOutT> void
49 {
50  std::vector<int> spfh_indices_vec;
51  std::vector<int> spfh_hist_lookup (surface_->points.size ());
52 
53  // Build a list of (unique) indices for which we will need to compute SPFH signatures
54  // (We need an SPFH signature for every point that is a neighbor of any point in input_[indices_])
55  if (surface_ != input_ ||
56  indices_->size () != surface_->points.size ())
57  {
58  std::vector<int> nn_indices (k_); // \note These resizes are irrelevant for a radiusSearch ().
59  std::vector<float> nn_dists (k_);
60 
61  std::set<int> spfh_indices_set;
62  for (size_t idx = 0; idx < indices_->size (); ++idx)
63  {
64  int p_idx = (*indices_)[idx];
65  if (this->searchForNeighbors (p_idx, search_parameter_, nn_indices, nn_dists) == 0)
66  continue;
67 
68  spfh_indices_set.insert (nn_indices.begin (), nn_indices.end ());
69  }
70  spfh_indices_vec.resize (spfh_indices_set.size ());
71  std::copy (spfh_indices_set.begin (), spfh_indices_set.end (), spfh_indices_vec.begin ());
72  }
73  else
74  {
75  // Special case: When a feature must be computed at every point, there is no need for a neighborhood search
76  spfh_indices_vec.resize (indices_->size ());
77  for (int idx = 0; idx < static_cast<int> (indices_->size ()); ++idx)
78  spfh_indices_vec[idx] = idx;
79  }
80 
81  // Initialize the arrays that will store the SPFH signatures
82  size_t data_size = spfh_indices_vec.size ();
83  hist_f1_.setZero (data_size, nr_bins_f1_);
84  hist_f2_.setZero (data_size, nr_bins_f2_);
85  hist_f3_.setZero (data_size, nr_bins_f3_);
86 
87  std::vector<int> nn_indices (k_); // \note These resizes are irrelevant for a radiusSearch ().
88  std::vector<float> nn_dists (k_);
89 
90  // Compute SPFH signatures for every point that needs them
91 
92 #ifdef _OPENMP
93 #pragma omp parallel for shared (spfh_hist_lookup) private (nn_indices, nn_dists) num_threads(threads_)
94 #endif
95  for (int i = 0; i < static_cast<int> (spfh_indices_vec.size ()); ++i)
96  {
97  // Get the next point index
98  int p_idx = spfh_indices_vec[i];
99 
100  // Find the neighborhood around p_idx
101  if (this->searchForNeighbors (*surface_, p_idx, search_parameter_, nn_indices, nn_dists) == 0)
102  continue;
103 
104  // Estimate the SPFH signature around p_idx
105  this->computePointSPFHSignature (*surface_, *normals_, p_idx, i, nn_indices, hist_f1_, hist_f2_, hist_f3_);
106 
107  // Populate a lookup table for converting a point index to its corresponding row in the spfh_hist_* matrices
108  spfh_hist_lookup[p_idx] = i;
109  }
110 
111  // Intialize the array that will store the FPFH signature
112  int nr_bins = nr_bins_f1_ + nr_bins_f2_ + nr_bins_f3_;
113 
114  nn_indices.clear();
115  nn_dists.clear();
116 
117  // Iterate over the entire index vector
118 #ifdef _OPENMP
119 #pragma omp parallel for shared (output) private (nn_indices, nn_dists) num_threads(threads_)
120 #endif
121  for (int idx = 0; idx < static_cast<int> (indices_->size ()); ++idx)
122  {
123  // Find the indices of point idx's neighbors...
124  if (!isFinite ((*input_)[(*indices_)[idx]]) ||
125  this->searchForNeighbors ((*indices_)[idx], search_parameter_, nn_indices, nn_dists) == 0)
126  {
127  for (int d = 0; d < nr_bins; ++d)
128  output.points[idx].histogram[d] = std::numeric_limits<float>::quiet_NaN ();
129 
130  output.is_dense = false;
131  continue;
132  }
133 
134 
135  // ... and remap the nn_indices values so that they represent row indices in the spfh_hist_* matrices
136  // instead of indices into surface_->points
137  for (size_t i = 0; i < nn_indices.size (); ++i)
138  nn_indices[i] = spfh_hist_lookup[nn_indices[i]];
139 
140  // Compute the FPFH signature (i.e. compute a weighted combination of local SPFH signatures) ...
141  Eigen::VectorXf fpfh_histogram = Eigen::VectorXf::Zero (nr_bins);
142  weightPointSPFHSignature (hist_f1_, hist_f2_, hist_f3_, nn_indices, nn_dists, fpfh_histogram);
143 
144  // ...and copy it into the output cloud
145  for (int d = 0; d < nr_bins; ++d)
146  output.points[idx].histogram[d] = fpfh_histogram[d];
147  }
148 
149 }
150 
151 #define PCL_INSTANTIATE_FPFHEstimationOMP(T,NT,OutT) template class PCL_EXPORTS pcl::FPFHEstimationOMP<T,NT,OutT>;
152 
153 #endif // PCL_FEATURES_IMPL_FPFH_OMP_H_
154 
FPFHEstimationOMP estimates the Fast Point Feature Histogram (FPFH) descriptor for a given point clou...
Definition: fpfh_omp.h:75