Beta takes as argument two reals a,b.
Beta returns the value of the β function at a,b ∈
ℝ, defined by :
β(x,y)= | ∫ |
| tx−1 (1−t)y−1 = |
|
Remarkable values :
β(1,1)=1, β(n,1)= |
| , β(n,2)= |
|
Beta(x,y) is defined for x and y positive reals
(to ensure the convergence of the integral) and by
prolongation for x and y if they are not negative integers.
Input :
Output :
Input :
Output :
Input :
Output :