erfc takes as argument a number a.
erfc returns the value of the complementary error function at
x=a, this function is defined by :
erfc(x)= |
| ∫ |
| e−t2dt=1−erf(x) |
Hence erfc(0)=1, since :
∫ |
| e−t2dt= |
|
Input :
Output :
Input :
Output :
Remark
The relation between erfc and normal_cdf is :
normal_cdf(x)=1− |
| erfc ( |
| ) |
Check :
normal_cdf(1)=0.841344746069