*
(for bipartitions) 3.4 *
(for PBRs) 4.4 *
(for matrices over a semiring) 5.2 *
(for Rees (0-)matrix semigroup isomorphisms by triples) 17.2-6 <
(for bipartitions) 3.4 <
(for PBRs) 4.4 <
(for matrices over a semiring) 5.2 <
(for Rees (0-)matrix semigroup isomorphisms by triples) 17.2-6 =
(for bipartitions) 3.4 =
(for PBRs) 4.4 =
(for matrices over a semiring) 5.2 =
(for Rees (0-)matrix semigroup isomorphisms by triples) 17.2-6 \<
, for Green's classes 12.3-1 \^
, for a matrix over finite field group and matrix over finite field 5.7-8 \in
5.3-3 ^
(for Rees (0-)matrix semigroup isomorphisms by triples) 17.2-6 AnnularJonesMonoid
8.3-5 ApsisMonoid
8.3-11 AsBipartition
3.3-1 AsBlockBijection
3.3-2 AsBooleanMat
5.3-2 AsInverseSemigroupCongruenceByKernelTrace
16.7-3 AsList
5.1-10 AsListCanonical
13.1-1 AsMatrix
, for a filter and a matrix 5.1-6 AsMatrixGroup
5.7-10 AsMonoid
6.5-4 AsMutableList
5.1-10 AsPartialPerm
, for a bipartition 3.3-4 AsPBR
4.3-1 AsPermutation
, for a bipartition 3.3-5 AsRMSCongruenceByLinkedTriple
16.6-8 AsRZMSCongruenceByLinkedTriple
16.6-8 AsSemigroup
6.5-3 AsSemigroupCongruenceByGeneratingPairs
16.6-7 AsTransformation
, for a bipartition 3.3-3 BaseDomain
, for a matrix over finite field 5.4-7 Bipartition
3.2-1 BipartitionByIntRep
3.2-2 BlistNumber
5.3-7 BlocksNC
3.6-2 BooleanMat
5.3-1 BooleanMatNumber
5.3-6 BrauerMonoid
8.3-2 CanonicalBlocks
3.5-18 CanonicalBooleanMat
5.3-8 CanonicalForm
, for a free inverse semigroup element 10.3-1 CanonicalRepresentative
16.6-6 CanonicalTransformation
13.12-9 CatalanMonoid
8.1-1 CharacterTableOfInverseSemigroup
15.1-10 ClosureInverseMonoid
6.4-1 ClosureInverseSemigroup
6.4-1 ClosureMonoid
6.4-1 ClosureSemigroup
6.4-1 CodomainOfBipartition
3.5-11 ComponentRepsOfPartialPermSemigroup
13.13-1 ComponentRepsOfTransformationSemigroup
13.12-1 ComponentsOfPartialPermSemigroup
13.13-2 ComponentsOfTransformationSemigroup
13.12-2 CompositionMapping2
, for IsRMSIsoByTriple 17.2-4 CongruenceClasses
16.3-5 CongruenceClassOfElement
16.3-4 CongruencesOfPoset
16.4-7 CongruencesOfSemigroup
, for a semigroup 16.4-1 ContentOfFreeBandElement
10.4-7 ContentOfFreeBandElementCollection
10.4-7 CrossedApsisMonoid
8.3-11 CyclesOfPartialPerm
13.13-3 CyclesOfPartialPermSemigroup
13.13-4 CyclesOfTransformationSemigroup
13.12-3 DClass
12.1-2 DClasses
12.1-4 DClassNC
12.1-3 DClassOfHClass
12.1-1 DClassOfLClass
12.1-1 DClassOfRClass
12.1-1 DClassReps
12.1-5 DegreeOfBipartition
3.5-1 DegreeOfBipartitionCollection
3.5-1 DegreeOfBipartitionSemigroup
3.8-5 DegreeOfBlocks
3.6-5 DegreeOfPBR
4.5-2 DegreeOfPBRCollection
4.5-2 DegreeOfPBRSemigroup
4.6-2 DigraphOfActionOnPairs
, for a transformation semigroup 13.12-4 DigraphOfActionOnPoints
, for a transformation semigroup 13.12-5 DimensionOfMatrixOverSemiring
5.1-3 DimensionOfMatrixOverSemiringCollection
5.1-4 DirectProduct
6.4-4 DirectProductOp
6.4-4 DomainOfBipartition
3.5-10 DotSemilatticeOfIdempotents
18.1-2 DotString
18.1-1 DualSymmetricInverseMonoid
8.3-7 DualSymmetricInverseSemigroup
8.3-7 ELM_LIST
(for Rees (0-)matrix semigroup isomorphisms by triples) 17.2-6 ELM_LIST
, for IsRMSIsoByTriple 17.2-3 EmptyPBR
4.2-3 EndomorphismMonoid
, for a digraph 6.7-1 EndomorphismsPartition
8.1-2 Enumerate
13.1-3 EnumeratorCanonical
13.1-1 EquivalenceRelationCanonicalLookup
16.3-11 EquivalenceRelationCanonicalPartition
16.3-12 EquivalenceRelationLookup
16.3-10 EvaluateWord
13.5-1 ExtRepOfObj
, for a bipartition 3.5-3 FactorisableDualSymmetricInverseMonoid
8.3-8 Factorization
13.5-2 FixedPointsOfTransformationSemigroup
, for a transformation semigroup 13.12-6 FreeBand
, for a given rank 10.4-1 FreeInverseSemigroup
, for a given rank 10.1-1 FullBooleanMatMonoid
8.6-1 FullMatrixMonoid
8.5-1 FullPBRMonoid
8.4-1 FullTropicalMaxPlusMonoid
8.7-1 FullTropicalMinPlusMonoid
8.7-2 GeneralLinearMonoid
8.5-1 GeneratingPairsOfLeftSemigroupCongruence
16.2-4 GeneratingPairsOfRightSemigroupCongruence
16.2-4 GeneratingPairsOfSemigroupCongruence
16.2-4 Generators
13.6-1 GeneratorsOfSemigroupIdeal
7.2-1 GeneratorsSmallest
, for a semigroup 13.6-5 GLM
8.5-1 GossipMonoid
8.6-5 GraphInverseSemigroup
11.1-1 GraphOfGraphInverseSemigroup
11.1-5 GreensDClasses
12.1-4 GreensDClassOfElement
12.1-2 GreensDClassOfElementNC
12.1-3 GreensHClasses
12.1-4 GreensHClassOfElement
12.1-2 GreensHClassOfElementNC
12.1-3 GreensJClasses
12.1-4 GreensLClasses
12.1-4 GreensLClassOfElement
12.1-2 GreensLClassOfElementNC
12.1-3 GreensRClasses
12.1-4 GreensRClassOfElement
12.1-2 GreensRClassOfElementNC
12.1-3 GroupHClass
12.4-1 GroupOfUnits
13.8-1 HallMonoid
8.6-4 HClass
12.1-2 HClasses
12.1-4 HClassNC
12.1-3 HClassReps
12.1-5 IdempotentGeneratedSubsemigroup
13.9-3 Idempotents
13.9-1 IdentityBipartition
3.2-3 IdentityMatrixOverFiniteField
, for a finite field and a pos int 5.4-2 IdentityPBR
4.2-4 ImagesElm
, for IsRMSIsoByTriple 17.2-5 ImagesRepresentative
, for IsRMSIsoByTriple 17.2-5 IndexPeriodOfSemigroupElement
13.4-1 InfoSemigroups
2.6-1 InjectionNormalizedPrincipalFactor
12.4-7 InjectionPrincipalFactor
12.4-7 IntRepOfBipartition
3.5-4 InverseMonoidByGenerators
6.2-1 InverseOp
5.6-1 InverseSemigroupByGenerators
6.2-1 InverseSemigroupCongruenceByKernelTrace
16.7-2 InverseSubsemigroupByProperty
6.4-3 IrredundantGeneratingSubset
13.6-3 IsActingSemigroup
6.1-3 IsAntiSymmetricBooleanMat
5.3-13 IsAperiodicSemigroup
14.1-18 IsBand
14.1-1 IsBipartition
3.1-1 IsBipartitionCollColl
3.1-2 IsBipartitionCollection
3.1-2 IsBipartitionMonoid
3.8-1 IsBipartitionPBR
4.5-8 IsBipartitionSemigroup
3.8-1 IsBlockBijection
3.5-16 IsBlockBijectionMonoid
3.8-2 IsBlockBijectionPBR
4.5-8 IsBlockBijectionSemigroup
3.8-2 IsBlockGroup
14.1-2 IsBlocks
3.6-1 IsBooleanMat
5.1-8 IsBooleanMatCollColl
5.1-9 IsBooleanMatCollection
5.1-9 IsBooleanMatMonoid
5.7-2 IsBooleanMatSemigroup
5.7-1 IsBrandtSemigroup
15.2-2 IsCliffordSemigroup
15.2-1 IsColTrimBooleanMat
5.3-9 IsCombinatorialSemigroup
14.1-18 IsCommutativeSemigroup
14.1-3 IsCompletelyRegularSemigroup
14.1-4 IsCompletelySimpleSemigroup
14.1-21 IsCongruenceClass
16.3-1 IsCongruenceFreeSemigroup
14.1-5 IsCongruencePoset
16.4-4 IsConnectedTransformationSemigroup
, for a transformation semigroup 13.12-10 IsDTrivial
14.1-18 IsDualTransBipartition
3.5-13 IsDualTransformationPBR
4.5-10 IsEmptyPBR
4.5-5 IsEnumerableSemigroupRep
6.1-4 IsEquivalenceBooleanMat
5.3-16 IsEUnitaryInverseSemigroup
15.2-3 IsFactorisableInverseMonoid
15.2-4 IsFinite
5.7-3 IsFreeBand
, for a given semigroup 10.4-3 IsFreeBandCategory
10.4-2 IsFreeBandElement
10.4-4 IsFreeBandElementCollection
10.4-5 IsFreeBandSubsemigroup
10.4-6 IsFreeInverseSemigroup
10.1-3 IsFreeInverseSemigroupCategory
10.1-2 IsFreeInverseSemigroupElement
10.1-4 IsFreeInverseSemigroupElementCollection
10.1-5 IsFullMatrixMonoid
8.5-3 IsFullyEnumerated
13.1-4 IsGeneralLinearMonoid
8.5-3 IsGraphInverseSemigroup
11.1-4 IsGraphInverseSemigroupElement
11.1-4 IsGraphInverseSemigroupElementCollection
11.1-6 IsGraphInverseSubsemigroup
11.1-7 IsGreensClassNC
12.3-3 IsGreensDGreaterThanFunc
12.1-12 IsGroupAsSemigroup
14.1-6 IsHTrivial
14.1-18 IsIdempotentGenerated
14.1-7 IsIdentityPBR
4.5-6 IsIntegerMatrix
5.1-8 IsIntegerMatrixCollColl
5.1-9 IsIntegerMatrixCollection
5.1-9 IsIntegerMatrixMonoid
5.7-2 IsIntegerMatrixSemigroup
5.7-1 IsInverseSemigroupCongruenceByKernelTrace
16.7-1 IsInverseSemigroupCongruenceClassByKernelTrace
16.7-6 IsIsomorphicSemigroup
17.1-1 IsJoinIrreducible
15.2-5 IsLeftCongruenceClass
16.3-2 IsLeftSemigroupCongruence
16.1-2 IsLeftSimple
14.1-8 IsLeftZeroSemigroup
14.1-9 IsLinkedTriple
16.6-5 IsLTrivial
14.1-18 IsMajorantlyClosed
15.2-6 IsMatrixOverFiniteField
5.1-8 IsMatrixOverFiniteFieldCollColl
5.1-9 IsMatrixOverFiniteFieldCollection
5.1-9 IsMatrixOverFiniteFieldGroup
5.7-7 IsMatrixOverFiniteFieldMonoid
5.7-2 IsMatrixOverFiniteFieldSemigroup
5.7-1 IsMatrixOverSemiring
5.1-1 IsMatrixOverSemiringCollColl
5.1-2 IsMatrixOverSemiringCollection
5.1-2 IsMatrixOverSemiringMonoid
5.7-2 IsMatrixOverSemiringSemigroup
5.7-1 IsMaximalSubsemigroup
13.10-3 IsMaxPlusMatrix
5.1-8 IsMaxPlusMatrixCollColl
5.1-9 IsMaxPlusMatrixCollection
5.1-9 IsMaxPlusMatrixMonoid
5.7-2 IsMaxPlusMatrixSemigroup
5.7-1 IsMinPlusMatrix
5.1-8 IsMinPlusMatrixCollColl
5.1-9 IsMinPlusMatrixCollection
5.1-9 IsMinPlusMatrixMonoid
5.7-2 IsMinPlusMatrixSemigroup
5.7-1 IsMonogenicInverseMonoid
15.2-8 IsMonogenicInverseSemigroup
15.2-7 IsMonogenicMonoid
14.1-11 IsMonogenicSemigroup
14.1-10 IsMonoidAsSemigroup
14.1-12 IsNTPMatrix
5.1-8 IsNTPMatrixCollColl
5.1-9 IsNTPMatrixCollection
5.1-9 IsNTPMatrixMonoid
5.7-2 IsNTPMatrixSemigroup
5.7-1 IsomorphismMatrixGroup
5.7-9 IsomorphismMonoid
6.5-2 IsomorphismPermGroup
6.5-5 IsomorphismReesMatrixSemigroup
, for a D-class 12.4-7 IsomorphismReesMatrixSemigroupOverPermGroup
13.15-1 IsomorphismReesZeroMatrixSemigroup
13.15-1 IsomorphismReesZeroMatrixSemigroupOverPermGroup
13.15-1 IsomorphismSemigroup
6.5-1 IsomorphismSemigroups
17.1-3 IsOntoBooleanMat
5.3-14 IsOrthodoxSemigroup
14.1-13 IsPartialOrderBooleanMat
5.3-15 IsPartialPermBipartition
3.5-15 IsPartialPermBipartitionMonoid
3.8-3 IsPartialPermBipartitionSemigroup
3.8-3 IsPartialPermPBR
4.5-11 IsPBR
4.1-1 IsPBRCollColl
4.1-2 IsPBRCollection
4.1-2 IsPBRMonoid
4.6-1 IsPBRSemigroup
4.6-1 IsPermBipartition
3.5-14 IsPermBipartitionGroup
3.8-4 IsPermPBR
4.5-12 IsRectangularBand
14.1-14 IsRectangularGroup
14.1-15 IsReesCongruenceClass
16.8-2 IsReflexiveBooleanMat
5.3-11 IsRegularGreensClass
12.3-2 IsRegularSemigroup
14.1-16 IsRightCongruenceClass
16.3-3 IsRightSemigroupCongruence
16.1-3 IsRightSimple
14.1-8 IsRightZeroSemigroup
14.1-17 IsRMSCongruenceByLinkedTriple
16.6-1 IsRMSCongruenceClassByLinkedTriple
16.6-3 IsRMSIsoByTriple
17.2-1 IsRowTrimBooleanMat
5.3-9 IsRTrivial
14.1-18 IsRZMSCongruenceByLinkedTriple
16.6-1 IsRZMSCongruenceClassByLinkedTriple
16.6-3 IsRZMSIsoByTriple
17.2-1 IsSemiband
14.1-7 IsSemigroupCongruence
16.1-1 IsSemigroupWithAdjoinedZero
14.1-19 IsSemilattice
14.1-20 IsSimpleSemigroup
14.1-21 IsSubrelation
16.5-1 IsSuperrelation
16.5-2 IsSymmetricBooleanMat
5.3-10 IsSynchronizingSemigroup
, for a transformation semigroup 14.1-22 IsTorsion
5.7-4 IsTotalBooleanMat
5.3-14 IsTransBipartition
3.5-12 IsTransformationPBR
4.5-9 IsTransitive
, for a transformation
semigroup and a pos int 13.12-7 IsTransitiveBooleanMat
5.3-12 IsTrimBooleanMat
5.3-9 IsTropicalMatrix
5.1-8 IsTropicalMatrixCollection
5.1-9 IsTropicalMatrixMonoid
5.7-2 IsTropicalMatrixSemigroup
5.7-1 IsTropicalMaxPlusMatrix
5.1-8 IsTropicalMaxPlusMatrixCollColl
5.1-9 IsTropicalMaxPlusMatrixCollection
5.1-9 IsTropicalMaxPlusMatrixMonoid
5.7-2 IsTropicalMaxPlusMatrixSemigroup
5.7-1 IsTropicalMinPlusMatrix
5.1-8 IsTropicalMinPlusMatrixCollColl
5.1-9 IsTropicalMinPlusMatrixCollection
5.1-9 IsTropicalMinPlusMatrixMonoid
5.7-2 IsTropicalMinPlusMatrixSemigroup
5.7-1 IsUniformBlockBijection
3.5-17 IsUnitRegularMonoid
14.1-23 IsUniversalPBR
4.5-7 IsUniversalSemigroupCongruence
16.9-1 IsUniversalSemigroupCongruenceClass
16.9-2 IsVertex
, for a graph inverse semigroup element 11.1-3 IsZeroGroup
14.1-24 IsZeroRectangularBand
14.1-25 IsZeroSemigroup
14.1-26 IsZeroSimpleSemigroup
14.1-27 IteratorCanonical
13.1-1 IteratorFromOldGeneratorsFile
19.1-3 IteratorFromPickledFile
19.1-3 IteratorOfDClasses
12.2-2 IteratorOfDClassReps
12.2-1 IteratorOfHClasses
12.2-2 IteratorOfHClassReps
12.2-1 IteratorOfLClasses
12.2-2 IteratorOfLClassReps
12.2-1 IteratorOfRClasses
12.2-2 IteratorOfRClassReps
12.2-1 JClasses
12.1-4 JoinIrreducibleDClasses
15.1-2 JoinLeftSemigroupCongruences
16.5-4 JoinRightSemigroupCongruences
16.5-4 JoinSemigroupCongruences
16.5-4 JoinSemilatticeOfCongruences
, for a congruence poset and a function 16.4-10 JonesMonoid
8.3-3 KernelOfSemigroupCongruence
16.7-4 LargestElementSemigroup
13.12-8 LatticeOfCongruences
, for a semigroup 16.4-5 LatticeOfLeftCongruences
, for a semigroup 16.4-5 LatticeOfRightCongruences
, for a semigroup 16.4-5 LClass
12.1-2 LClasses
12.1-4 LClassNC
12.1-3 LClassOfHClass
12.1-1 LClassReps
12.1-5 LeftBlocks
3.5-6 LeftCayleyGraphSemigroup
13.2-1 LeftCongruenceClasses
16.3-5 LeftCongruenceClassOfElement
16.3-4 LeftCongruencesOfSemigroup
, for a semigroup 16.4-1 LeftInverse
, for a matrix over finite field 5.4-6 LeftOne
, for a bipartition 3.2-4 LeftProjection
3.2-4 LeftSemigroupCongruence
16.2-2 LeftZeroSemigroup
9.1-5 LengthOfLongestDClassChain
12.1-11 MajorantClosure
15.1-3 Matrix
, for a filter and a matrix 5.1-5 MaximalDClasses
12.1-7 MaximalSubsemigroups
, for a finite semigroup 13.10-1 MeetSemigroupCongruences
16.5-3 MinimalCongruences
, for a congruence poset 16.4-11 MinimalCongruencesOfSemigroup
, for a semigroup 16.4-2 MinimalDClass
12.1-6 MinimalFactorization
13.5-3 MinimalIdeal
13.7-1 MinimalIdealGeneratingSet
7.2-2 MinimalInverseMonoidGeneratingSet
13.6-4 MinimalInverseSemigroupGeneratingSet
13.6-4 MinimalLeftCongruencesOfSemigroup
, for a semigroup 16.4-2 MinimalMonoidGeneratingSet
13.6-4 MinimalRightCongruencesOfSemigroup
, for a semigroup 16.4-2 MinimalSemigroupGeneratingSet
13.6-4 MinimalWord
, for free inverse semigroup element 10.3-2 MinimumGroupCongruence
16.7-7 Minorants
15.1-4 ModularPartitionMonoid
8.3-10 MonogenicSemigroup
9.1-2 MotzkinMonoid
8.3-6 MultiplicativeNeutralElement
, for an H-class 12.4-5 MultiplicativeZero
13.7-3 MunnSemigroup
8.2-1 NaturalLeqBlockBijection
3.4-3 NaturalLeqInverseSemigroup
15.1-1 NaturalLeqPartialPermBipartition
3.4-2 NewIdentityMatrixOverFiniteField
5.4-3 NewMatrixOverFiniteField
, for a filter, a field, an integer, and a list 5.4-1 NewZeroMatrixOverFiniteField
5.4-3 NonTrivialCongruenceClasses
16.3-7 NonTrivialEquivalenceClasses
16.3-6 NonTrivialLeftCongruenceClasses
16.3-7 NonTrivialRightCongruenceClasses
16.3-7 NormalizedPrincipalFactor
12.4-8 Normalizer
, for a perm group, semigroup, record 13.11-1 NormalizeSemigroup
5.7-5 NrBlocks
, for a bipartition 3.5-9 NrCongruenceClasses
16.3-9 NrDClasses
12.1-9 NrEquivalenceClasses
16.3-8 NrHClasses
12.1-9 NrIdempotents
13.9-2 NrLClasses
12.1-9 NrLeftBlocks
3.5-7 NrLeftCongruenceClasses
16.3-9 NrMaximalSubsemigroups
13.10-2 NrRClasses
12.1-9 NrRegularDClasses
12.1-8 NrRightBlocks
3.5-8 NrRightCongruenceClasses
16.3-9 NrTransverseBlocks
, for a bipartition 3.5-2 NumberBlist
5.3-7 NumberBooleanMat
5.3-6 NumberPBR
4.5-4 OnBlist
5.3-4 OnLeftBlocks
3.7-2 OnLeftCongruenceClasses
16.3-13 OnRightBlocks
3.7-1 OnRightCongruenceClasses
16.3-14 Order
5.5-3 OrderAntiEndomorphisms
8.1-5 OrderEndomorphisms
, monoid of order preserving transformations 8.1-5 PartialBrauerMonoid
8.3-2 PartialDualSymmetricInverseMonoid
8.3-7 PartialJonesMonoid
8.3-4 PartialOrderAntiEndomorphisms
8.1-5 PartialOrderEndomorphisms
8.1-5 PartialOrderOfDClasses
12.1-10 PartialPermLeqBipartition
3.4-1 PartialTransformationMonoid
8.1-3 PartialUniformBlockBijectionMonoid
8.3-8 PartitionMonoid
8.3-1 PBR
4.2-1 PBRNumber
4.5-4 PeriodNTPMatrix
5.1-12 PermLeftQuoBipartition
3.4-4 PlanarModularPartitionMonoid
8.3-10 PlanarPartitionMonoid
8.3-9 PlanarUniformBlockBijectionMonoid
8.3-8 PODI
, monoid of order preserving or reversing partial perms 8.2-3 POI
, monoid of order preserving partial perms 8.2-3 POPI
, monoid of orientation preserving partial perms 8.2-3 PORI
, monoid of orientation preserving or reversing partial perms 8.2-3 PosetOfCongruences
16.4-9 PosetOfPrincipalCongruences
, for a semigroup 16.4-6 PosetOfPrincipalLeftCongruences
, for a semigroup 16.4-6 PosetOfPrincipalRightCongruences
, for a semigroup 16.4-6 PositionCanonical
13.1-2 PrimitiveIdempotents
15.1-5 PrincipalCongruencesOfSemigroup
, for a semigroup 16.4-3 PrincipalFactor
12.4-8 PrincipalLeftCongruencesOfSemigroup
, for a semigroup 16.4-3 PrincipalRightCongruencesOfSemigroup
, for a semigroup 16.4-3 ProjectionFromBlocks
3.6-6 RadialEigenvector
5.6-2 Random
, for a semigroup 13.3-1 RandomBipartition
3.2-7 RandomBlockBijection
3.2-7 RandomInverseMonoid
6.6-1 RandomInverseSemigroup
6.6-1 RandomMatrix
, for a filter and a matrix 5.1-7 RandomMonoid
6.6-1 RandomPBR
4.2-2 RandomSemigroup
6.6-1 Range
, for a graph inverse semigroup element 11.1-2 RankOfBipartition
3.5-2 RankOfBlocks
3.6-4 RClass
12.1-2 RClasses
12.1-4 RClassNC
12.1-3 RClassOfHClass
12.1-1 RClassReps
12.1-5 ReadGenerators
19.1-1 ReadOldGenerators
19.1-1 RectangularBand
9.1-3 ReflexiveBooleanMatMonoid
8.6-3 RegularBooleanMatMonoid
8.6-2 RegularDClasses
12.1-8 RepresentativeOfMinimalDClass
13.7-2 RepresentativeOfMinimalIdeal
13.7-2 RightBlocks
3.5-5 RightCayleyGraphSemigroup
13.2-1 RightCongruenceClasses
16.3-5 RightCongruenceClassOfElement
16.3-4 RightCongruencesOfSemigroup
, for a semigroup 16.4-1 RightCosetsOfInverseSemigroup
15.1-6 RightInverse
, for a matrix over finite field 5.4-6 RightOne
, for a bipartition 3.2-5 RightProjection
3.2-5 RightSemigroupCongruence
16.2-3 RightZeroSemigroup
9.1-5 RMSCongruenceByLinkedTriple
16.6-2 RMSCongruenceClassByLinkedTriple
16.6-4 RMSIsoByTriple
17.2-2 RMSNormalization
6.5-7 RookMonoid
8.2-2 RookPartitionMonoid
8.3-1 RowRank
, for a matrix over finite field 5.4-5 RowSpaceBasis
, for a matrix over finite field 5.4-4 RowSpaceTransformation
, for a matrix over finite field 5.4-4 RowSpaceTransformationInv
, for a matrix over finite field 5.4-4 RZMSCongruenceByLinkedTriple
16.6-2 RZMSCongruenceClassByLinkedTriple
16.6-4 RZMSConnectedComponents
13.14-2 RZMSDigraph
13.14-1 RZMSIsoByTriple
17.2-2 RZMSNormalization
6.5-6 SameMinorantsSubgroup
15.1-7 SchutzenbergerGroup
12.4-2 SemigroupCongruence
16.2-1 SemigroupIdeal
7.1-1 SemigroupIdealOfReesCongruence
16.8-1 SEMIGROUPS.DefaultOptionsRec
6.3-1 SemigroupsMakeDoc
2.4-1 SemigroupsTestExtreme
2.5-3 SemigroupsTestInstall
2.5-1 SemigroupsTestStandard
2.5-2 SingularApsisMonoid
8.3-11 SingularBrauerMonoid
8.3-2 SingularCrossedApsisMonoid
8.3-11 SingularDualSymmetricInverseMonoid
8.3-7 SingularFactorisableDualSymmetricInverseMonoid
8.3-8 SingularJonesMonoid
8.3-3 SingularModularPartitionMonoid
8.3-10 SingularOrderEndomorphisms
8.1-5 SingularPartitionMonoid
8.3-1 SingularPlanarModularPartitionMonoid
8.3-10 SingularPlanarPartitionMonoid
8.3-9 SingularPlanarUniformBlockBijectionMonoid
8.3-8 SingularTransformationMonoid
8.1-4 SingularTransformationSemigroup
8.1-4 SingularUniformBlockBijectionMonoid
8.3-8 SLM
8.5-2 SmallerDegreePartialPermRepresentation
15.1-8 SmallestElementSemigroup
13.12-8 SmallestIdempotentPower
13.4-2 SmallestMultiplicationTable
17.1-2 SmallGeneratingSet
13.6-2 SmallInverseMonoidGeneratingSet
13.6-2 SmallInverseSemigroupGeneratingSet
13.6-2 SmallMonoidGeneratingSet
13.6-2 SmallSemigroupGeneratingSet
13.6-2 Source
, for a graph inverse semigroup element 11.1-2 SpecialLinearMonoid
8.5-2 SpectralRadius
5.6-3 Star
, for a bipartition 3.2-6 StarOp
, for a bipartition 3.2-6 StructureDescription
, for an H-class 12.4-6 StructureDescriptionMaximalSubgroups
12.4-4 StructureDescriptionSchutzenbergerGroups
12.4-3 SubsemigroupByProperty
, for a semigroup and function 6.4-2 Successors
5.3-5 SupersemigroupOfIdeal
7.2-3 TemperleyLiebMonoid
8.3-3 TexString
18.2-1 ThresholdNTPMatrix
5.1-12 ThresholdTropicalMatrix
5.1-11 TikzString
18.3-1 TraceOfSemigroupCongruence
16.7-5 TransposedMatImmutable
, for a matrix over finite field 5.4-8 TriangularBooleanMatMonoid
8.6-6 TrivialSemigroup
9.1-1 UnderlyingSemigroupOfCongruencePoset
16.4-8 UnderlyingSemigroupOfSemigroupWithAdjoinedZero
13.7-4 UniformBlockBijectionMonoid
8.3-8 UnitriangularBooleanMatMonoid
8.6-6 UniversalPBR
4.2-5 UniversalSemigroupCongruence
16.9-3 UnweightedPrecedenceDigraph
5.6-4 VagnerPrestonRepresentation
15.1-9 WriteGenerators
19.1-2 ZeroSemigroup
9.1-4
generated by GAPDoc2HTML