This function returns a generating set of the kernel of a ring map up to a specified degree.
i1 : A = QQ{x,y,z} o1 = A o1 : NCPolynomialRing |
i2 : B = skewPolynomialRing(QQ,(-1)_QQ, {a,b,c}) --Calling Bergman for NCGB calculation. --running: bergman -i /var/folders/46/9b86vqxj4hjcngvy7kd7sb140000gn/T/M2-12277-0/0.init -on-error exit --silent > /var/folders/46/9b86vqxj4hjcngvy7kd7sb140000gn/T/M2-12277-0/3.ter ... Complete! o2 = B o2 : NCQuotientRing |
i3 : phi = ncMap(B,A,{a,b,c}) o3 = NCRingMap B <--- A o3 : NCRingMap |
i4 : gddKernel(4,phi) Computing kernel in degree 1 Computing kernel in degree 2 Computing kernel in degree 3 Computing kernel in degree 4 o4 = {yx+xy, zx+xz, zy+yz} o4 : List |