TestIdeals : Table of Contents
TestIdeals -- a package for calculations of singularities in positive characteristic
adicDigit -- digit of the non-terminating expansion of a number in [0,1] in a given base
-
-
ascendIdeal -- finds the smallest phi-stable ideal containing a given ideal in a quotient of a polynomial ring.
-
-
AssumeCM -- make assumptions about your ring
-
canonicalIdeal -- given a ring, produces an ideal isomorphic to the canonical module
-
-
-
-
-
fastExponentiation -- computes powers of elements in rings of positive characteristic quickly
-
frobenius -- computes Frobenius powers of ideals and matrices
frobeniusPower -- computes the (generalized) Frobenius power of an ideal
-
-
frobeniusRoot -- computes I^[1/p^e] in a polynomial ring over a perfect field
-
-
-
HSLGModule -- computes the submodule of the canonical module stable under the image of the trace of Frobenius
-
-
-
-
-
isFpure -- whether a ring is F-pure
-
-
isFregular -- whether a ring or pair is strongly F-regular
-
IsLocal -- an option used to specify whether to only work locally
Katzman -- a valid value for the option CanonicalStrategy
MaxCartierIndex -- an option used to specify the maximum possible Cartier index of a divisor
MonomialBasis -- a valid value for the FrobeniusRootStrategy option
MTries -- an option to pass through to embedAsIdeal
-
Naive -- a valid value for the option FrobeniusPowerStrategy
NoZeroC -- an option for decomposeFraction
-
QGorensteinGenerator -- finds an element representing the Frobenius trace map of a Q-Gorenstein ring
QGorensteinIndex -- an option used to specify the Q-Gorenstein index of the ring
Safe -- a valid value for the option FrobeniusPowerStrategy
Substitution -- a valid value for the FrobeniusRootStrategy option
-
-
testIdeal -- computes the test ideal of f^t in a Q-Gorenstein ring
-
-
-
-
testModule -- finds the parameter test module of a reduced ring