i1 : L = lieAlgebra( {a,b}, {[a,a,a,b]},genWeights => {{1,1},{1,2}}, genSigns=>{1,0}) o1 = L o1 : LieAlgebra |
i2 : b2 = basisLie 2 o2 = {[a, a], [b, a]} o2 : List |
i3 : b3 = basisLie 3 o3 = {[b, a, a], [b, b, a]} o3 : List |
i4 : multListLie(b2,b3) 1 1 o4 = {[], {{-1}, {[a, b, b, a, a]}}, {{-1}, {[a, b, b, a, a]}}, {{- -, -}, 2 4 ------------------------------------------------------------------------ {[b, a, b, b, a], [b, b, b, a, a]}}} o4 : List |
i5 : indexFormLie oo 1 1 o5 = {0, -mb , -mb , -mb - -mb } {5, 0} {5, 0} 4 {5, 1} 2 {5, 2} o5 : List |
There is an option multOnly which only multiplies those pairs (x,y) for which multOnly(x,y) is true.
i6 : apply(b2,weightLie) o6 = {{2, 2, 0}, {2, 3, 0}} o6 : List |
i7 : apply(b3,weightLie) o7 = {{3, 4, 0}, {3, 5, 0}} o7 : List |
i8 : multListLie(b2,b3,multOnly=>(x,y)-> (weightLie x)_1 === 3 and (weightLie y)_1 === 5) 1 1 o8 = {{{- -, -}, {[b, a, b, b, a], [b, b, b, a, a]}}} 2 4 o8 : List |
i9 : indexFormLie oo 1 1 o9 = {-mb - -mb } 4 {5, 1} 2 {5, 2} o9 : List |