Find the module/ideal isomorphic to the dual of the module/ideal, in other words it computes HomR(M, R).
i1 : R = QQ[x,y,z]/ideal(x^2-y*z); |
i2 : m = ideal(x,y,z); o2 : Ideal of R |
i3 : dualize(m) o3 = ideal x o3 : Ideal of R |
i4 : I = ideal(x,y); o4 : Ideal of R |
i5 : dualize(I) o5 = ideal (z, x) o5 : Ideal of R |
i6 : dualize(I^2) o6 = ideal z o6 : Ideal of R |
i7 : dualize(I^3) 2 o7 = ideal (z , x*z) o7 : Ideal of R |