
Trove: The PVFS2 Storage Interface

PVFS Development Team

February 2, 2019

1 Motivation and Goals

The Trove storage interface will be the lowest level interface used by the PVFS server for storing both file data and

metadata. It will be used by individual servers (and servers only) to keep track of locally stored information. There

are several goals and ideas that we should keep in mind when discussing this interface:

• Multiple storage instances: This interface is intended to hide the use of multiple storage instances for

storage of data. This data can be roughly categorized into two types, bytestream and keyval spaces, which

are described in further detail below.

• Contiguous and noncontiguous data access: The first cut of this interface will probably only handle con-

tiguous data access. However, we would like to also support some form of noncontiguous access. We think

that this will be done through list I/O type operations, as we don’t necessarily want anything more compli-

cated at this level.

• Metadata storage: This interface will be used as a building block for storing metadata in addition to file

data. This includes extended metadata.

• Nonblocking semantics: This interface will be completely nonblocking for both file data and metadata

operations. The usual argument for scalability and flexible interaction with other I/O devices applies here.

We should try to provide this functionality without sacrificing latency if possible. The interface will not

require interface calls to be made in order for progress to occur. This implies that threads will be used

underneath where necessary.

• Compatibility with flows: Flows will almost certainly be built on top of this interface. Both the default BMI

flow implementation and custom implementations should be able to use this interface.

• Consistency semantics: If we are going to support consistency, locking, etc, then we need to be able to en-

force consistency semantics at the storage interface level. The interface will provide the option for serializing

access to a dataspace and a vtag interface.

• Error recovery: The system must detect and report errors occurring while accessing data storage. The

system may or may not implement redundancy, journaling, etc. for recovering from errors resulting in data

loss.

Our first cut implementation of this interface will have the following restrictions:

• only one type of storage for bytestreams and one type for keyvals will be supported

1

• consistency semantics will not be implemented

• errors will be reported, but no measures will be taken to recover

• noncontiguous access will not be enabled

• only one process/thread will be accessing a given storage instance through this interface at a time

PARTIAL COMPLETION SEMANTICS NEED MUCH WORK!!!

2 Storage space concepts

A server controls one storage space.

Within this storage space are some number of collections, which are akin to file systems. Collections serve as a

mechanism for supporting multiple traditional file systems on a single server and for separating the use of various

physical resources. (Collections can span multiple underlying storage devices, and hints would be used in that case

to specify the device on which to place files. This concept might be used in systems that can migrate data from slow

storage to faster storage as well).

Two collections will be created for each file system: one collection will support the dataspaces needed for the

file system’s data and metadata objects. A second collection will be created for administrative purposes. If the

underlying implementation needs to perform disk i/o, for example, it can use bstream and keyval objects from the

administration collection.

A collection id will be used in conjunction with other parameters in order to specify a unique entity on a server to

access or modify, just as a file system ID might be used.

3 Dataspace concepts

This storage interface stores and accesses what we will call dataspaces. These are logical collections of data

organized in one of two possible ways. The first organization for a dataspace is the traditional “byte stream”.

This term refers to arbitrary binary data that can be referenced using offsets and sizes. The second organization is

“keyword/value” data. This term refers to information that is accessed in a simplified database-like manner. The

data is indexed by way of a variable length key rather than an offset and size. Both keyword and value are arbitrary

byte arrays with a length parameter (i.e. need not be readable strings). We will refer to a dataspace organized as a

byte stream as a bytestream dataspace or simply a bytestream space, and a dataspace organized by keyword/value

pairs as a keyval dataspace or keyval space. Each dataspace will have an identifier that is unique to its server, which

we will simply call a handle. Physically these dataspaces may be stored in any number of ways on underlying

storage.

Here are some potential uses of each type:

• Byte stream

– traditional file data

– binary metadata storage (as is currently done in PVFS 1)

• Key/value

2

– extended metadata attributes

– directory entries

In our design thus far (reference the system interface documents) we have defined four types of system level objects.

These are data files, metadata files, directories, and symlinks. All four of these will be implemented using a

combination of bytestream and/or keyval dataspaces. At the storage interface level there is no real distinction

between different types of system level objects.

4 Vtag concepts

Vtags are a capability that can be used to implement atomic updates in shared storage systems. In this case they

can be used to implement atomic access to a set of shared storage devices through the storage interface. To clarify,

these would be of particular use when multiple threads are using the storage interface to access local storage or

when multiple servers are accessing shared storage devices such as a MySQL database or SAN storage.

This section can be skipped if you are not interested in consistency semantics. Vtags will probably not be imple-

mented in the first cut anyway.

4.1 Phil’s poor explanation

Vtags are an approach to ensuring consistency for multiple readers and writers that avoids the use of locks and their

associated problems within a distributed environment. These problems include complexity, poor performance in

the general case, and awkward error recovery.

A vtag fundamentally provides a version number for any region of a byte stream or any individual key/value pair.

This allows the implementation of an optimistic approach to consistency. Take the example of a read-modify-write

operation. The caller first reads a data region, obtaining a version tag in the process. It then modifies it’s own copy

of the data. When it writes the data back, it gives the vtag back to the storage interface. The storage interface

compares the given vtag against the current vtag for the region. If the vtags match, it indicates that the data has

not been modified since it was read by the caller, and the operation succeeds. If the vtags do not match, then the

operation fails and the caller must retry the operation.

This is an optimistic approach in that the caller always assumes that the region has not been modified.

Many different locking primitives can be built upon the vtag concept...

4.2 Use of vtags

Layers above trove can take advantage of vtags as a way to simplify the enforcement of consistency semantics

(rather than keeping complicated lists of concurrent operations, simply use the vtag facility to ensure that operations

occur atomically). Alternatively they could be used to handle the case of trove resources shared by multiple upper

layers. Finally they might be used in conjunction with higher level consistency control in some complimentary

fashion (dunno yet...).

3

Table 1: Error values for storage interface

Value Meaning

TROVE ENOENT no such dataspace

TROVE EIO I/O error

TROVE ENOSPC no space on storage device

TROVE EVTAG vtag didn’t match

TROVE ENOMEM unable to allocate memory for operation

TROVE EINVAL invalid input parameter

5 The storage interface

In this section we describe all the functions that make up the storage interface. The storage interface functions

can be divided into four categories: dataspace management functions, bytestream access functions, keyval access

functions, and completion test functions. The access functions can be further subdivided into contiguous and

noncontiguous access capabilities.

First we describe the return values and error values for the interface. Then we describe special vtag values and the

implementation of keys. Next we describe the dataspace management functions. Next we describe the contiguous

and noncontiguous dataspace access functions. Finally we cover the completion test functions.

5.1 Return values

Unless otherwise noted, all functions return an integer with three possible values:

• 0: Success. If the operation was nonblocking, then this return value indicates the caller must test for comple-

tion later.

• 1: Success with immediate completion. No later testing is required, and no handle is returned for use in

testing.

• -errno: Failure. The error code is encoded in the negative return value.

5.2 Error values

Table 1 shows values. All values will be returned as integers in the native format (size and byte order).

Needs to be fleshed out. Need to pick a reasonable prefix.

Phil: Once this is fleshed out, can we apply the same sort of scheme to BMI? BMI doesn’t have a particularly

informative error reporting mechanism.

Rob: Definitely. I would really like to make sure that in addition to getting error values back, the error values

actually make sense :). This was (and still is in some cases) a real problem for PVFS1.

4

5.3 Flags related to vtags

As mentioned earlier, the usage of vtags is not manditory. Therefore we define two flags values that can be used to

control the behavior of the calls with respect to vtags:

TODO: pick a reasonable prefix for our flags.

• FLAG VTAG: Indicates that the vtag is valid. The caller does not have a valid vtag for input, nor does he

desire a valid vtag in response.

• FLAG VTAG RETURN: Indicates that the caller wishes to obtain a vtag from the operation. However, the

caller does not wish to use a vtag for input.

By default calls ignore vtag values on input and do not create vtag values for output.

5.4 Implementation of keys, values, and hints

TODO: sync. with code on data sz element.

struct TROVE_keyval {

void * buffer;

int32_t buffer_sz;

int32_t data_sz;

};

typedef struct TROVE_keyval TROVE_keyval_s;

Keys, values, and hints are all implemented with the same TROVE keyval structure (do we want a different name?),

shown above. Keys and values used in keyval spaces are arbitrary binary data values with an associated length.

Hint keys and values have the additional constraint of being null-terminated, readable strings. This makes them

very similar to MPI Info key/value pairs.

TODO: we should build hints out of a pair of the TROVE keyvals. We’ll call them a TROVE hint s in here for now.

5.5 Functions

Note: need to add valid error values for each function.

TODO: find a better format for function descriptions.

5.5.1 IDs

In this context, IDs are unique identifiers assigned to each storage interface operation. They are used as handles to

test for completion of operations once they have been submitted. If an operation completes immediately, then the

ID field should be ignored.

5

These IDs are only unique in the context of the storage interface, so upper layers may have to handle management

of multiple ID spaces (if working with both a storage interface and a network interface, for instance).

The type for these IDs is TROVE op id.

5.5.2 User pointers

Each function allows the user to pass in a pointer value (void *). This value is returned by the test functions, and it

allows for quick reference to user data structures associated with the completed operation.

To motivate, normally there is some data at the caller’s level that corresponds with the trove operation. Without

some help, the caller would have to map IDs for completed operations back to the caller data structures manually.

By providing a parameter that the caller can pass in, they can directly reference these structures on trove operation

completion.

5.5.3 Dataspace management

• ds create([in]coll id, [in/out]handle, [in]bitmask, [in]type, [in/out]hint, [in]user ptr, [out]id): Creates

a new storage interface object. The interface will fill any any portion of the handle that is not already filled in

and ensure that it is unique. For example, if the caller wants to specify the first 16 bits of the handle, it may

do so by setting the appropriate bits and then specifying with the bitmask that the storage interface should not

modify those bits.

The type field can be used by the caller to assign an arbitrary integer type to the object. This may, for example,

be used to distinguish between directories, symlinks, datafiles, and metadata files. The storage interface does

not assign any meaning to the type value. Do we even need this type field?

The hint field may be used to specify what type of underlying storage should be used for this dataspace in the

case where multiple potential underlying storage methods are available.

• ds remove([in]handle, [in]user ptr, [out]id): Removes an existing object from the system.

• ds verify([in]coll id, [in]handle, [out]type, [in]user ptr, [out]id): Verifies that an object exists with the

specified handle. If the object does exist, then the type of the object is also returned. Useful for verifying

sanity of handles provided by client.

• ds getattr([in]coll id, [in]handle, [out]ds attr, [in]user ptr, [out]id): Obtains statistics about the given

dataspace that aren’t actually stored within the dataspace. This may include information such as number of

key/value pairs, size of byte stream, access statistics, on what medium it is stored, etc.

• ds setattr() ???

• ds hint([in]coll id, [in]handle, [in/out]hint);: Passes a hint to the underlying trove implementation. Used

to indicate caching needs, access patterns, begin/end of use, etc.

• ds migrate([in]coll id, [in]handle, [in/out]hint, [in]user ptr, [out]id);: Used to indicate that a dataspace

should be migrated to another medium. could this be done with just the hint call? having an id in this case is

particularly useful ... so we know the operation is completed...

5.5.4 Byte stream access

Parameters in read and write at calls are ordered similarly to pread and pwrite.

6

• bstream read at([in]coll id, [in]handle, [in]buffer, [in]size, [in]offset, [in]flags, [out]vtag, [in]user ptr,

[out]id): Reads a contiguous region from bytestream. Most of the arguments are self explanatory. The

flags are not yet defined, but may include such possibilities as specifying atomic operations. The vtag

returned from this function applies to the region of the byte stream defined by the requested offset and

size. A flag can be passed in if the caller does not want a vtag returned. This allows the underlying imple-

mentation to avoid the overhead of calculating the value.

The size is [in/out] in code? Figure out semantics!!!

• bstream write at([in]coll id, [in]handle, [in]buffer, [in]size, [in]offset, [in]flags, [in/out]vtag, [in]user ptr,

[out]id):

Writes a contiguous region to the bytestream. Same arguments as read bytestream, except that the vtag is an

in/out parameter.

The size is [in/out] in code? Figure out semantics!!!

• bstream resize([in]coll id, [in]handle, [in]size, [in]flags, [in/out]vtag, [in]user ptr, [out]id): Used to

truncate or allocate storage for a bytestream. Flags are used to specify if preallocation is desired.

• bstream validate([in]handle, [in/out]vtag, [in]user ptr, [out]id): This function may be used to check for

modification of a particular bytestream.

Flags?

5.5.5 Key/value access

An important call for keyval spaces is the iterator function. The iterator function is used to obtain all keyword/value

pairs from the keyval space with a sequence of calls from the client. The iterator function returns a logical, opaque

“position” value that allows a client to continue reading pairs from the keyval space where it last left off.

• keyval read([in]coll id, [in]handle, [in]key, [out]val, [in]flags, [out]vtag, [in]user ptr, [out]id): Reads

the value corresponding to a given key. Fails if the key does not exist. A buffer is provided for the value to

be placed in (the value may be an arbitrary type).

The amount of data actually placed in the value buffer should be indicated by the data sz element of the

structure.

• keyval write([in]coll id, [in]handle, [in]key, [in]val, [in]flags, [in/out]vtag, [in]user ptr, [out]id): Writes

out a value for a given key. If the key does not exist, it is added.

• keyval remove([in]coll id, [in]handle, [in]key, [in]flags, [in/out]vtag, [in]user ptr, [out]id): Removes a

key/value pair from the keyval data space.

• keyval validate([in]coll id, [in]handle, [in/out]vtag, [in]user ptr, [out]id): Used to check for modifica-

tion of a particular key/value pair.

• keyval iterate([in]coll id, [in]handle, [in/out]position, [out]key array, [out]val array, [in/out]count,

[in]flags, [in/out]vtag, [in]user ptr, [out]id): Reads count keyword/value pairs from the provided logi-

cal position in the keyval space. Fails if the vtag doesn’t match. The position SI START POSITION is used

to start at the beginning, and a new position is returned allowing the caller to continue where they left off.

keyval iterate will always read count items, unless it hits the end of the keyval space (EOK). After hitting

EOK, count will be set to the number of pairs processed. Thus, callers must compare count after calling and

compare with the value it had before the function call: if they are different, EOK has been reached. If there

are N items left in the keyspace, and keyval iterate requests N items, there will be no indication that EOK has

been reached and only after making another call will the caller know he is at EOK. The value of position is

not meaningful after reaching EOK.

7

• keyval iterate keys([in]coll id, [in]handle, [in/out]position, [out]key array, [in]count, [in]flags, [in/out]vtag,

[in]user ptr, [out]id): Similar to above, but only returns keys, not corresponding values. need to fix param-

eters

5.5.6 Noncontiguous (list) access

These functions are used to read noncontiguous byte stream regions or multiple key/value pairs.

How do vtags work with noncontiguous calls?

The byte stream functions will implement simple listio style noncontiguous access. Any more advanced data types

should be unrolled into flat regions before reaching this interface. The process for unrolling is outside the scope of

this document, but examples are available in the ROMIO code.

TODO: SEMANTICS!!!!!

TODO: how to we report partial success for listio calls?

• bstream read list([in]coll id, [in]handle, [in]mem offset array, [in]mem size array, [in]mem count,

[in]stream offset array, [in]stream size array, [in]stream count, [in]flags, [out]vtag(?), [in]user ptr,

[out]id):

• bstream write list([in]coll id, [in]handle, [in]mem offset array, [in]mem size array, [in]mem count,

[in]stream offset array, [in]stream size array, [in]stream count, [in]flags, [in/out]vtag(?), [in]user ptr,

[out]id):

• keyval read list([in]coll id, [in]handle, [in]key array, [in]value array, [in]count, [in]flags, [out]vtag,

[in]user ptr, [out]id):

• keyval write list([in]coll id, [in]handle, [in]key array, [in]value array, [in]count, [in]flags, [in/out]vtag,

[in]user ptr, [out]id):

5.5.7 Testing for completion

Do we need coll ids here?

• test([in]coll id, [in]id, [out]count, [out]vtag, [out]user ptr, [out]state): Tests for completion of a storage

interface operation. The count field indicates how many operations completed (in this case either 1 or 0). If an

operation completes, then the final status of the operation should be checked using the state parameter. Note

the vtag output argument here; it is used to provide vtags for operations that did not complete immediately.

• testsome([in]coll id, [in/out]id array, [in/out]count, [out]vtag array, [out]user ptr array, [out]state array

): Tests for completion of one or more trove operations. The id array lists operations to test on. A value of

TROVE OP ID NULL will be ignored. Count is set to the number of completed items on return.

TODO: fix up semantics for testsome; look at MPI functions for ideas.

wait function for testing purposes if nothing else?

Note: need to discuss completion queue, internal or external?

8

Phil: See pvfs2-internal email at

http://beowulf-underground.org/pipermail/pvfs2-internal/2001-October/000010.html for my thoughts on this topic.

5.5.8 Batch operations

Batch operations are used to perform a sequence of operations possibly as an atomic whole. These will be handled

at a higher level.

6 Optimizations

This section lists some potential optimizations that might be applied at this layer or that are related to this layer.

6.1 Metadata Stuffing

In many file systems “inode stuffing” is used to store the data for small files in the space used to store pointers to

indirect blocks. The analogous approach for PVFS2 would be to store the data for small files in the bytestream

space associated with the metafile.

9

