
PVFS2 High-Availability Clustering

PVFS2 Development Team

June, 2004

1 Introduction

We designed PVFS2 with performance in mind. Software redundancy, while appealing for its cost and

reliability, has a substantial impact on performance. While we are thinking how best to design software

redundancy, there will always be a performance cost. Hardware-based failover is one way to achieve re-

sistance to failures while maintaining high performance. This document outlines how we set up a PVFS2

high-availability cluster using free software. First we will walk through setting up an active-passive system,

then show what needs to be changed for a full active-active failover configuration.

Please send updates, suggestions, corrections, and especially any notes for other Linux distributions to

pvfs2-developers@beowulf-underground.org

2 Hardware

The whole point of failover is for one computer to take over the job of another if and when it dies (component

failure, power cord unplugged, etc.). The easiest way to achieve that is to have two identical machines with

some sort of shared storage between them. Here’s the hardware we used:

• 2 Dell PowerEdge 2650s, each with a PERC (PowerEdge Raid Controller) card and 4 70 GB disks

configured in RAID-5

• 1 Dell PowerVault 220s with 7 160 GB disks configured in RAID-5

It’s conceivable that a Fibre Channel or Firewire drive would suffice for the shared storage device.

Reports of success or failure using such devices would be most welcome.

3 Software

3.1 Installing the Operating System

Some preliminary notes about installing Linux (Debian) on this hardware:

• We went with Debian on this system. We figured if the software worked on Debian, it would work on

any distribution. People who set this up on other systems and had to do anything differently, please

send updates.

1

• Debian’s “woody” boot floppies don’t recognize megaraid (PERC) hardware raid, so we used the new

debian-installer. NOTE: debian-installer test candidate 1 had a bug in base-system, so use debian-

installer beta 4 instead. By the time you read this, debian-installer will probably be fixed, but beta 4

is known to work on this hardware.

• Once Debian is installed, build a new kernel. You can use linux-2.4 or linux-2.6. The failover tools

we describe in this document are userspace applications and work equally well with 2.4 and 2.6. With

linux-2.4, make sure to compile in support for AIC 7XXX and MEGARAID2 scsi drivers. There are

both a MEGARAID and a MEGARAID2; we need megaraid2. The megaraid2 driver eventually made

its way into linux-2.6. Be sure to run linux-2.6.9-rc2 or newer, and set CONFIG MEGARAID NEWGEN

(in menuconfig, “LSI Logic New Generation RAID Device Drivers (NEW)”), CONFIG MEGARAID MM,

and CONFIG MEGARAID MAILBOX

• Put the PowerVault enclosure in cluster mode. To do so, flip the little switch on the back of the

PowerVault to the position with the linked SCSI symbols. This is different from putting the controller

into cluster mode, which you must also do and is described later on.

• Turn on the storage and the servers at about the same time or weird delays happen

• There were two SCSI cards in the back of the PowerEdge. I plugged the PowerVault into the 2nd (top)

card, channel 1.

• There are some command-line tools you can download from Dell’s site to configure storage volumes

under Linux, but they are unable to do things like enabling ”cluster mode” and changing SCSI id

numbers. Also, they don’t work so hot at configuring storage volumes, but that could have just been

because the PowerVault was in a weird state. Still, it’s probably best to set up the PowerVault from

the BIOS as outlined below and avoid the command-line tools if possible.

• Instead of using the command-line tools, configure through the bios: hit Ctrl-M when on bootup when

prompted to do so. Once in the setup program, enable cluster mode: Objects → Adapter → Cluster

Mode → Enabled. Also disable the PERC BIOS: that’s in the Objects → Adapter menu too. See the

manual for more things you can tweak. The utility lists all the important keystrokes at the bottom

of the screen. Not exactly intuitive, but at least they are documented. For more information, see

http://docs.us.dell.com/docs/storage/perc3dc/ug/en/index.htm , particularly the “BIOS Configuration

Utility” chapter.

• If toggle on the back of the PowerVault is in cluster mode, and you haven’t disabled the PERC BIOS

and put the NVRAM into cluster mode, “weird stuff” happens. I’m not really sure what i did to make

it go away, but it involved a lot of futzing around with cables and that toggle on the back and rebooting

nodes.

• The GigE chips in the PowerEdge machines don’t need a crossover cable: they’ll figure out how to

talk to each other if you plug a straight-through or crossover cable between them. I’m going to say

“crossover cable” a lot in this document out of habit. When I say “crossover” I mean “either crossover

or straight-through”.

• Node failover has one particularly sticky corner case that can really mess things up. If one node (A)

thinks the other (B) died, A will start taking over B’s operations. If B didn’t actually die, but just

got hung up for a time, it will continue as if everything is OK. Then you have both A and B thinking

they control the file system, both will write to it, and the result is a corrupted file system. A 100%

2

legitimate failover configuration would take measures so that one node can “fence” a node – ensure

that it will not attempt to access the storage until forgetting all state. The most common way to do so

is to Shoot The Other Node In The Head (STONITH), and the most common way to STONITH is via

network-addressable power supplies. You can get away without a STONITH mechanism, and we’re

going to outline just such a configuration, but just because you can do something doesn’t mean you

necessarily should do it.

• NOTE: the heartbeat software will set up IP addresses and mount file systems. The nodes will have

a private (192.168.1.x) address for heartbeat, a fixed IP address for maintenance, and one or two

’cluster’ IP addresses which heartbeat will bind to an aliased interface. Be sure that your shared file

system is not in /etc/fstab and your network configuration scripts do not bring up the shared cluster IP

addresses.

3.2 PVFS2

Partition and make a file system on the PowerVault. If you’re going to set up Active-Active, make two

partitions, else make one. Mount the filesystem somewhere, but don’t add an entry to /etc/fstab: heartbeat

will take care of mounting it once you have things set up, and we are mounting the file system just long

enough to put a PVFS2 storage space on it. Reboot the other node to make sure it sees the new partition

information on the enclosure.

Download, build, install, and configure PVFS2. PVFS2 can work in a failover environment as long as the

clients and servers are version 0.5.0 or newer (Version 0.5.0 introduced the ability to retry failed operations).

In this document, we have configured both PVFS2 server to act as both a Metadata and a Data server. Since

the config files and storage device are shared between both nodes of this cluster, it is not strictly necessary

to configure the servers for both roles. Create a storage space on the PowerVault filesystem. Now shutdown

PVFS2 and unmount the file system.

3.3 Failover Software

There are two main failover packages. I went with heartbeat from linux-ha.org. There is another package

called “kimberlite”, but it seems to have bitrotted. While it has excellent documentation, it requires a ’quo-

rum’ partition, which the two nodes will write to using raw devices. At some point, something scrambled

the main (not raw) partition, so I gave up on kimberlite.

Heartbeat seems to work pretty well, once you can wrap your head around the config file.

NOTE: There is a newer version of heartbeat that uses XML-based config files. The new version also

understands older config files, so the information in this document should still work. When using XML-

based config files, however, heartbeat can provide a lot of additional features. The older config files are left

here for historical purposes until we add XML config files at some point in the future.

3.3.1 ACTIVE-PASSIVE (A-P)

The two nodes are configured as in Figure 1. They have a private internal network for heartbeat, and a public

IP address so people can log into them and perform maintenance tasks.

There is a shared ”cluster” IP address which is assigned to whichever node is active.

Follow GettingStarted.{txt,html} to set up haresources and ha.cf. Heartbeat ships with a heavily com-

mented set of config files:

• ha.cf: configures the heartbeat infrastructure itself.

3

shared storage

pvfs2−ha1 pvfs2−ha2

crossover cable

SCSISCSI

/dev/sdb1

10.0.67.104

(cluster IP)

Figure 1: Simplified wiring diagram of a PVFS2 HA cluster

• haresources: describes the actual resources which will migrate from node to node. ’Resources’ in-

cludes IP address, file system partition, and service.

• authkeys: sets up an authentication mechanism between two nodes.

Copy the ha.cf, haresources, and authkeys files shipped with heartbeat to the /etc/ha.d directory and edit

them. The defaults are pretty reasonable to get started. For a simple active-passive system there are only a

few settings you need to adjust: see Figure 2, Figure 3, and Figure 4 for examples.

Now you’ve got heartbeat configured and you’ve described the resources. Fire up the “heartbeat” dae-

mon (/etc/init.d/heartbeat start) on one node and see if all the resources start up (you should see an aliased

interface bound to the cluster ip (see Figure 5), the file system mounted, and the pvfs2 servers running). Ping

the cluster IP from another machine. If something is broken, consult the /var/log/ha-log file or /var/log/syslog

and see if any of the scripts in /etc/ha.d/resource.d failed.

As the GettingStarted document puts it, if all goes well, you’ve got Availability (PVFS2 running on one

node). Verify by running pvfs2-ping or pvfs2-cp or mounting the PVFS2 file system from a client (not the

servers: we’re going to reboot them soon to test). Now start heartbeat on the standby server. Make sure

that the IP address, the file system, and pvfs2 did not migrate to the standby node – if you were to use the

haresources file in Figure 3, the output of ifconfig should still look like Figure 5, you would still have

/dev/sdb3 mounted on /shared, and pvfs2-server would still be running.

OK, the moment of truth. Everything is in place: node A serving PVFS2 requests, node B ready to step

in. Start a long-running process on the client (pvfs2-cp of a large file will work, as will unpacking a tarball

onto a PVFS2 file system). Kill node A somehow: you could be as brutal as pulling the power cable, or as

gentle as /etc/init.d/heartbeat stop. As the heartbeat docs note, don’t just pull the network cables out: the

heartbeat process on both nodes will assume the other process died and will attempt to recover. Remember

that “takeover” means taking over the IP address, file system, and programs, so you will have two nodes

writing to the same file system and trying to share the same ip address. When you plug the network cables

4

pretty self explanatory: send heartbeat logging to the /var/log/ha-log

file and also syslog with the ’local0’ level

logfile /var/log/ha-log

logfacility local0

we are using a network cable for our primary (and only) heartbeat

channel. It also might be a good idea to use a serial cable for a

secondary channel. Since we are aiming for high-availability, the

more heartbeat channels the better. The ha.cf and GettingStarted

files document how to set up other heartbeat channels.

bcast eth1

When a service runs on A, then A dies and B takes over, do you want A

to take it back (auto failback) from B when it recovers?

auto_failback on

here is where you tell heartbeat the names (uname -n) of the

nodes in this cluster.

node pvfs2-ha1

node pvfs2-ha2

heartbeat needs to know the difference between it’s partner node

dieing and the entire network failing up, so give it the IP address of

a stable machine (e.g. a router) in your network.

ping 10.0.67.253

the ’ipfail’ program keeps an eye on the network

respawn hacluster /usr/lib/heartbeat/ipfail

Figure 2: Minimal /etc/heartbeat/ha.cf file

this line describes resources managed by heartbeat.

pvfs2-ha1: the primary host for this service. Heartbeat will start

these resources on pvfs2-ha1 if that node is up

10.0.67.104: the ’cluster’ (or shared) IP address for these

nodes. refer to the comments in haresources for the many

many options you can use to express network settings.

Filesystem::/dev/sdb3::/shared::ext3

Describes a ’filesystem’ resource. ’::’ delimits

arguments. <device>::<mount point>::<fs type>

pvfs2: the service. heartbeat will look for, in this order

/etc/ha.d/resource.d/pvfs2

/etc/init.d/pvfs2

When starting, heartbeat will call ’pvfs2 start’

When nicely shutting down, will call ’pvfs2 stop’

so make sure the script understands those arguments.

Typical service init scripts work great.

pvfs2-ha1 10.0.67.104 Filesystem::/dev/sdb3::/shared::ext3 pvfs2

Figure 3: Minimal /etc/heartbeat/haresources file

5

you can specify multiple authentication methods, each prefixed with a

’method-id’. ’auth 1’ means use method-id 1

auth 1

and here’s the entry for method-id 1:

crc is the weakest of the hashes, and should only be used over secure

links... like a crossover cable. If you were sending heartbeat over

an insecure channel or through routers, you would use a stronger hash

to prevent man-in-the-middle attacks on the heartbeat nodes.

1 crc

Figure 4: Example /etc/heartbeat/authkeys file

eth0 Link encap:Ethernet HWaddr 00:0F:1F:6A:6F:DC

inet addr:10.0.67.105 Bcast:140.221.67.255 Mask:255.255.254.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:2893591 errors:0 dropped:0 overruns:0 frame:0

TX packets:1637691 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:1304753410 (1.2 GiB) TX bytes:189439176 (180.6 MiB)

Interrupt:28

eth0:0 Link encap:Ethernet HWaddr 00:0F:1F:6A:6F:DC

inet addr:10.0.67.104 Bcast:140.221.67.255 Mask:255.255.254.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

Interrupt:28

eth1 Link encap:Ethernet HWaddr 00:0F:1F:6A:6F:DD

inet addr:192.168.1.1 Bcast:192.168.1.255 Mask:255.255.255.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:1188003 errors:0 dropped:0 overruns:0 frame:0

TX packets:944704 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:197055953 (187.9 MiB) TX bytes:156677942 (149.4 MiB)

Interrupt:29

Figure 5: ifconfig output with an aliased interface. eth0:0 is an aliased interface for eth0. eth1 is

a heartbeat channel, over which both nodes in the cluster can communicate their status to each other

6

pvfs2−ha1 pvfs2−ha2

crossover cable

SCSISCSI

10.0.67.104

(cluster IP) (cluster IP)

10.67.107

GigE

/dev/sdb1 /dev/sdb2

shared storage

GigE

Figure 6: Simplified wiring diagram of a PVFS2 HA cluster, Active-Active configuration

back in, you will have network collisions and simultaneous writes to the filesystem. Yes this is different

from stopping heartbeat and starting it up later: when heartbeat starts, it checks to see the state of its partner

node, and will do the right thing.

If the failover works correctly, heartbeat will migrate everything to node B, and the client won’t notice

a thing. Congratulations, you’ve got High Availability. To finish, bring A back up. The resources which

were on node B will migrate back to node A (if you set auto failback to ’on’ in ha.cf), and the client

remains oblivious.

3.3.2 Active-Active (A-A)

If that wasn’t exciting enough, we can do active-active, too. It’s pretty much like active-passive, except both

nodes are pvfs2 servers. Instead of sharing one cluster IP, there will be two – one for each server. Instead of

sharing one file system, there will be two. If A dies, B will serve it’s data and A’s data, and vice versa. You

get all the benefits of Active-Passive, but you don’t have a server waiting idly for a (hopefully rare) failure.

Figure 6 depicts an Active-Active cluster.

As mentioned above, you’ll need two partitions on the shared storage and two shared IP addresses.

configure PVFS2 on the two servers as you normally would, using the shared IP address. Make sure both

servers have both server-specific config files. When one node dies, you’ll have two instances of pvfs2-server

running on a node, so you need to make some tweaks to the config file to ensure that can happen:

• delete the LogFile entry from fs.conf

• add a LogFile entry to the server-specific config file, making sure each server gets a different log file

• the StorageSpace for each server must point to its own partition on the shared device.

• the HostID for each server must point to a unique port number.

7

PVFS2_FS_CONF=/etc/pvfs2/fs.conf

PVFS2_SERVER_CONF=/etc/pvfs2/server.conf-140.221.67.104

override this if your server binary resides elsewhere

PVFS2SERVER=/usr/local/sbin/pvfs2-server

override this if you want servers to automatically pick a conf file,

but you just need to specify what directory they are in

PVFS2_CONF_PATH=/etc/pvfs2

PVFS2_PIDFILE=/var/run/pvfs2-1.pid

... # remainder of init script omitted

Figure 7: Excerpt from PVFS2 init script on one A-A node

PVFS2_FS_CONF=/etc/pvfs2/fs.conf

PVFS2_SERVER_CONF=/etc/pvfs2/server.conf-140.221.67.107

override this if your server binary resides elsewhere

PVFS2SERVER=/usr/local/sbin/pvfs2-server

override this if you want servers to automatically pick a conf file,

but you just need to specify what directory they are in

PVFS2_CONF_PATH=/etc/pvfs2

PVFS2_PIDFILE=/var/run/pvfs2-2.pid

... # remainder of init script omitted

Figure 8: Excerpt from PVFS2 init script on the other A-A node

• the Alias entry in the fs.conf must also match the HostID in the server-specific config file (make sure

the port numbers match)

Heartbeat looks for startup/shutdown scripts in /etc/init.d and /etc/ha.d/resources.d . Since we need to be

able to, in the worst case, start up two pvfs2-servers, we’ll need two scripts. No sense polluting /etc/init.d:

go ahead and create pvfs2-1 and pvfs2-2 in the resources.d directory. PVFS2 has an example script in

examples/pvfs2-server.rc you can use to start. Make sure PVFS2 FS CONF and PVFS2 SERVER CONF

point to the proper config files (it will guess the wrong ones if you don’t specify them) and PVFS2 PIDFILE

is different in both scripts. See Figure 7 and Figure 8.

The ha.cf file looks the same in A-A as it does in A-P, as does the authkeys. We only have to add an

entry to haresources indicating that heartbeat needs to manage two separate resources. See Figure 9.

Start heartbeat on both machines. See if a client can reach the servers (e.g. pvfs2-ping). Kill a machine.

The resources that were on that machine (IP address, file system, pvfs2-servers) will migrate to the machine

that is still up. Clients won’t notice a thing. Figure 10 shows node A after node B goes down. Node A now

has both of the two cluster IP addresses bound to two aliased interfaces B while continuing to manage it’s

Each server has its associated IP address and file system. pvfs2-1,

for example, is associated with 10.0.67.104 and has its data on

sdb1.

#

note that each server has its own file system. You must have a

dedicated partition for each service you run via heartbeat.

pvfs2-ha1 10.0.67.104 Filesystem::/dev/sdb1::/mnt/shared1::ext3 pvfs2-1

pvfs2-ha2 10.0.67.107 Filesystem::/dev/sdb2::/mnt/shared2::ext3 pvfs2-2

Figure 9: haresources file, Active-Active configuration

8

eth0 Link encap:Ethernet HWaddr 00:0F:1F:6A:6F:DC

inet addr:140.221.67.105 Bcast:140.221.67.255 Mask:255.255.254.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:2911950 errors:0 dropped:0 overruns:0 frame:0

TX packets:1647984 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:1306604241 (1.2 GiB) TX bytes:190743053 (181.9 MiB)

Interrupt:28

eth0:0 Link encap:Ethernet HWaddr 00:0F:1F:6A:6F:DC

inet addr:140.221.67.104 Bcast:140.221.67.255 Mask:255.255.254.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

Interrupt:28

eth0:1 Link encap:Ethernet HWaddr 00:0F:1F:6A:6F:DC

inet addr:140.221.67.107 Bcast:140.221.67.255 Mask:255.255.254.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

Interrupt:28

eth1 Link encap:Ethernet HWaddr 00:0F:1F:6A:6F:DD

inet addr:192.168.1.1 Bcast:192.168.1.255 Mask:255.255.255.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:1197984 errors:0 dropped:0 overruns:0 frame:0

TX packets:954689 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:198722216 (189.5 MiB) TX bytes:158334802 (150.9 MiB)

Interrupt:29

Figure 10: ifconfig output. This node now has both cluster IP addresses .

default resource.

4 Acknowledgments

We would like to thank Jasmina Janic for notes and technical support. The Dell Scalable Systems Group

loaned the PVFS2 development team Dell hardware. With this hardware, we were able to evaluate several

high availability solutions and verify PVFS2’s performance in that environment. This document would not

be possible without their assistance.

9

