fsl.data.dtifit
¶
This module provides the DTIFitTensor
class, which encapsulates
the diffusion tensor data generated by the FSL dtifit
tool.
The following utility functions are also defined:
getDTIFitDataPrefix
Returns the prefix (a.k,a, base name) used for the dtifit
file names in the given directory, orNone
if thedtifit
files could not be identified.isDTIFitPath
Returns True
if the given directory path looks like it containsdtifit
data,False
otherwise.looksLikeTensorImage
Returns True
if the givenImage
looks like it could contain tensor matrix data,False
otherwise.decomposeTensorMatrix
Decomposes the given numpy
array into six separate arrays, containing the eigenvectors and eigenvalues of the tensor matrix decompositions.
-
fsl.data.dtifit.
getDTIFitDataPrefix
(path)¶ Returns the prefix (a.k,a, base name) used for the
dtifit
file names in the given directory, orNone
if thedtifit
files could not be identified.
-
fsl.data.dtifit.
isDTIFitPath
(path)¶ Returns
True
if the given directory path looks like it containsdtifit
data,False
otherwise.
-
fsl.data.dtifit.
looksLikeTensorImage
(image)¶ Returns
True
if the givenImage
looks like it could contain tensor matrix data,False
otherwise.
-
fsl.data.dtifit.
decomposeTensorMatrix
(data)¶ Decomposes the given
numpy
array into six separate arrays, containing the eigenvectors and eigenvalues of the tensor matrix decompositions.Parameters: image – A 4D numpy
array with 6 volumes, which contains the unique elements of diffusion tensor matrices at every voxel.Returns: A tuple containing the principal eigenvectors and eigenvalues of the tensor matrix.
-
class
fsl.data.dtifit.
DTIFitTensor
(path)¶ Bases:
fsl.data.image.Nifti
The
DTIFitTensor
class is able to load and encapsulate the diffusion tensor data generated by the FSLdtifit
tool. TheDtiFitTensor
class supports tensor model data generated bydtifit
, where the eigenvectors and eigenvalues of the tensor matrices have been saved as six separate NIFTI images.-
V1
()¶
-
V2
()¶
-
V3
()¶
-
L1
()¶
-
L2
()¶
-
L3
()¶
-