Uranium
Application Framework
UM.SortedList.SortedListWithKey Class Reference
Inheritance diagram for UM.SortedList.SortedListWithKey:
UM.SortedList.SortedList

Public Member Functions

def __init__ (self, iterable=None, key=identity, load=1000)
 
def __new__ (cls, iterable=None, key=identity, load=1000)
 
def clear (self)
 
def add (self, val)
 
def update (self, iterable)
 
def __contains__ (self, val)
 
def discard (self, val)
 
def remove (self, val)
 
def __setitem__ (self, index, value)
 
def irange (self, minimum=None, maximum=None, inclusive=(True, True), reverse=False)
 
def irange_key (self, min_key=None, max_key=None, inclusive=(True, True), reverse=False)
 
def bisect_left (self, val)
 
def bisect_right (self, val)
 
def bisect_key_left (self, key)
 
def bisect_key_right (self, key)
 
def count (self, val)
 
def copy (self)
 
def append (self, val)
 
def extend (self, values)
 
def insert (self, idx, val)
 
def index (self, val, start=None, stop=None)
 
def __add__ (self, that)
 
def __mul__ (self, that)
 
def __imul__ (self, that)
 
def __repr__ (self)
 
- Public Member Functions inherited from UM.SortedList.SortedList
def __init__ (self, iterable=None, load=1000)
 
def __delitem__ (self, idx)
 
def __getitem__ (self, idx)
 
def __iter__ (self)
 
def __reversed__ (self)
 
def islice (self, start=None, stop=None, reverse=False)
 
def __len__ (self)
 
def pop (self, idx=-1)
 
def __iadd__ (self, that)
 

Static Public Attributes

def bisect = bisect_right
 
def bisect_key = bisect_key_right
 
- Static Public Attributes inherited from UM.SortedList.SortedList
def bisect = bisect_right
 

Detailed Description

SortedListWithKey provides most of the same methods as a list but keeps
the items in sorted order.

Constructor & Destructor Documentation

◆ __init__()

def UM.SortedList.SortedListWithKey.__init__ (   self,
  iterable = None,
  key = identity,
  load = 1000 
)
SortedListWithKey provides most of the same methods as a list but
keeps the items in sorted order.

An optional *iterable* provides an initial series of items to populate
the SortedListWithKey.

An optional *key* argument defines a callable that, like the `key`
argument to Python's `sorted` function, extracts a comparison key from
each element. The default is the identity function.

An optional *load* specifies the load-factor of the list. The default
load factor of '1000' works well for lists from tens to tens of millions
of elements.  Good practice is to use a value that is the cube root of
the list size.  With billions of elements, the best load factor depends
on your usage.  It's best to leave the load factor at the default until
you start benchmarking.

Member Function Documentation

◆ __add__()

def UM.SortedList.SortedListWithKey.__add__ (   self,
  that 
)
Return a new sorted list containing all the elements in *self* and
*that*. Elements in *that* do not need to be properly ordered with
respect to *self*.

Reimplemented from UM.SortedList.SortedList.

◆ __contains__()

def UM.SortedList.SortedListWithKey.__contains__ (   self,
  val 
)
Return True if and only if *val* is an element in the list.

Reimplemented from UM.SortedList.SortedList.

◆ __imul__()

def UM.SortedList.SortedListWithKey.__imul__ (   self,
  that 
)
Increase the length of the list by appending *that* shallow copies of
each item.

Reimplemented from UM.SortedList.SortedList.

◆ __mul__()

def UM.SortedList.SortedListWithKey.__mul__ (   self,
  that 
)
Return a new sorted list containing *that* shallow copies of each item
in SortedListWithKey.

Reimplemented from UM.SortedList.SortedList.

◆ __new__()

def UM.SortedList.SortedListWithKey.__new__ (   cls,
  iterable = None,
  key = identity,
  load = 1000 
)
SortedList provides most of the same methods as a list but keeps the
items in sorted order.

An optional *iterable* provides an initial series of items to populate
the SortedList.

An optional *key* argument will return an instance of subtype
SortedListWithKey.

An optional *load* specifies the load-factor of the list. The default
load factor of '1000' works well for lists from tens to tens of millions
of elements.  Good practice is to use a value that is the cube root of
the list size.  With billions of elements, the best load factor depends
on your usage.  It's best to leave the load factor at the default until
you start benchmarking.

Reimplemented from UM.SortedList.SortedList.

◆ __repr__()

def UM.SortedList.SortedListWithKey.__repr__ (   self)
Return string representation of sequence.

Reimplemented from UM.SortedList.SortedList.

◆ __setitem__()

def UM.SortedList.SortedListWithKey.__setitem__ (   self,
  index,
  value 
)
Replace the item at position *index* with *value*.

Supports slice notation. Raises a :exc:`ValueError` if the sort order
would be violated. When used with a slice and iterable, the
:exc:`ValueError` is raised before the list is mutated if the sort order
would be violated by the operation.

Reimplemented from UM.SortedList.SortedList.

◆ add()

def UM.SortedList.SortedListWithKey.add (   self,
  val 
)
Add the element *val* to the list.

Reimplemented from UM.SortedList.SortedList.

◆ append()

def UM.SortedList.SortedListWithKey.append (   self,
  val 
)
Append the element *val* to the list. Raises a ValueError if the *val*
would violate the sort order.

Reimplemented from UM.SortedList.SortedList.

◆ bisect_key_left()

def UM.SortedList.SortedListWithKey.bisect_key_left (   self,
  key 
)
Similar to the *bisect* module in the standard library, this returns an
appropriate index to insert a value with a given *key*. If values with
*key* are already present, the insertion point will be before (to the
left of) any existing entries.

◆ bisect_key_right()

def UM.SortedList.SortedListWithKey.bisect_key_right (   self,
  key 
)
Same as *bisect_key_left*, but if *key* is already present, the insertion
point will be after (to the right of) any existing entries.

◆ bisect_left()

def UM.SortedList.SortedListWithKey.bisect_left (   self,
  val 
)
Similar to the *bisect* module in the standard library, this returns an
appropriate index to insert *val*. If *val* is already present, the
insertion point will be before (to the left of) any existing entries.

Reimplemented from UM.SortedList.SortedList.

◆ bisect_right()

def UM.SortedList.SortedListWithKey.bisect_right (   self,
  val 
)
Same as *bisect_left*, but if *val* is already present, the insertion
point will be after (to the right of) any existing entries.

Reimplemented from UM.SortedList.SortedList.

◆ clear()

def UM.SortedList.SortedListWithKey.clear (   self)
Remove all the elements from the list.

Reimplemented from UM.SortedList.SortedList.

◆ copy()

def UM.SortedList.SortedListWithKey.copy (   self)
Return a shallow copy of the sorted list.

Reimplemented from UM.SortedList.SortedList.

◆ count()

def UM.SortedList.SortedListWithKey.count (   self,
  val 
)
Return the number of occurrences of *val* in the list.

Reimplemented from UM.SortedList.SortedList.

◆ discard()

def UM.SortedList.SortedListWithKey.discard (   self,
  val 
)
Remove the first occurrence of *val*.

If *val* is not a member, does nothing.

Reimplemented from UM.SortedList.SortedList.

◆ extend()

def UM.SortedList.SortedListWithKey.extend (   self,
  values 
)
Extend the list by appending all elements from the *values*. Raises a
ValueError if the sort order would be violated.

Reimplemented from UM.SortedList.SortedList.

◆ index()

def UM.SortedList.SortedListWithKey.index (   self,
  val,
  start = None,
  stop = None 
)
Return the smallest *k* such that L[k] == val and i <= k < j`.  Raises
ValueError if *val* is not present.  *stop* defaults to the end of the
list. *start* defaults to the beginning. Negative indices are supported,
as for slice indices.

Reimplemented from UM.SortedList.SortedList.

◆ insert()

def UM.SortedList.SortedListWithKey.insert (   self,
  idx,
  val 
)
Insert the element *val* into the list at *idx*. Raises a ValueError if
the *val* at *idx* would violate the sort order.

Reimplemented from UM.SortedList.SortedList.

◆ irange()

def UM.SortedList.SortedListWithKey.irange (   self,
  minimum = None,
  maximum = None,
  inclusive = (True, True),
  reverse = False 
)
Create an iterator of values between `minimum` and `maximum`.

`inclusive` is a pair of booleans that indicates whether the minimum
and maximum ought to be included in the range, respectively. The
default is (True, True) such that the range is inclusive of both
minimum and maximum.

Both `minimum` and `maximum` default to `None` which is automatically
inclusive of the start and end of the list, respectively.

When `reverse` is `True` the values are yielded from the iterator in
reverse order; `reverse` defaults to `False`.

Reimplemented from UM.SortedList.SortedList.

◆ irange_key()

def UM.SortedList.SortedListWithKey.irange_key (   self,
  min_key = None,
  max_key = None,
  inclusive = (True, True),
  reverse = False 
)
Create an iterator of values between `min_key` and `max_key`.

`inclusive` is a pair of booleans that indicates whether the min_key
and max_key ought to be included in the range, respectively. The
default is (True, True) such that the range is inclusive of both
`min_key` and `max_key`.

Both `min_key` and `max_key` default to `None` which is automatically
inclusive of the start and end of the list, respectively.

When `reverse` is `True` the values are yielded from the iterator in
reverse order; `reverse` defaults to `False`.

◆ remove()

def UM.SortedList.SortedListWithKey.remove (   self,
  val 
)
Remove first occurrence of *val*.

Raises ValueError if *val* is not present.

Reimplemented from UM.SortedList.SortedList.

◆ update()

def UM.SortedList.SortedListWithKey.update (   self,
  iterable 
)
Update the list by adding all elements from *iterable*.

Reimplemented from UM.SortedList.SortedList.


The documentation for this class was generated from the following file: