CENTRE FOR DISCRETE MATHEMATICS AND COMPUTING

School of Computer Science & Electrical Engineering

and Department of Mathematics,
The University of Queensland, QLD 4072

Title:

Author:
Date:
Version:

Technical Report #14

ACE for Amateurs (Version 3.001)

Colin Ramsay
April 4, 2001
draft (incomplete)

i

Contents

Contents

List of figures

1

List of tables

Introduction

1.1 Administriviao
1.2 Code e
Background

2.1 Terminology
2.2 Notation e
2.3 History

ACE Level 2:
an interactive interface

3.1 Enumeration mode & style oo oL
3.2 Predefined strategies

ACE Level 1:
a core wrapper

ACE Level 0:
the core enumerator

Examples

Al Getting startedo L
A.2 Emulating Sims oL
A3 Rowfilling
A.4 Equivalent presentations L.
A5 Deduction queues
A.6 Large enumerations
A7 Looping
A8 Useof st o

A9 Useof cy,nc,ccandrc

il

iii
vii

viii

= W w W = =

(24

B Command summary 21

B.1 add genlerators] / sg : <word list> ; 22
B.2 add rellators] / rl : <relation list> ;. 22
B3 aep : 1..7 ; . o 22
B.4 ai / alter i[nput] : [<filename>] ; 23
B.5 ao / alter ol[utput] : [<filename>] ; 23
B.6 aslis] : [0/11 ; o 23
B.7 beglin] / end / start ; 24
B.8 bye / exit / qluit] ; 24
B.9 cc / coset coincl[idence] : <int> ; 24
B.10 c[factor] / ct[factor] : [<int>] ; 24
B.11 check / redo ; e 24
B.12 com[paction] : [0..100] ; 24
B.13 cont[inuel ; e 25
B.l4d cylcles] ; o 25
B.15 ded mo[de] / dmod[e]l : [0..4] ; 25
B.16 ded silze] / dsizl[el : [0/1..] ; 26
B.17 deflault] ; 26
B.18 del gen[erators] / ds : <int 1list> ; 26
B.19 del rellators] / dr : <int list> ; 26
B.20 d[ump] : [0/1/2[,0/111 ; 26
B2leasy ; 27
B.22 echo : [0/11 ; e 27
B.23 enum[eration] / group name : <string> ; 27
B.24 fellsch]l : [0/1] ; 27
B.25 f[factor] / fi[ll factor] : [0/1..] ; 27
B.26 gen[erators] / subgroup genl[erators] :jwordlist;; 28
B.27 group generators]: [<letter list> / <int>] ; 28
B.28 group relators / rellators] : <relation list> ; 28
B.29hard ; 29

v

B30 RLELP] 5« v o oot e 29

B.31hlt ;5 . . . e 29
B.32 ho[le 1imit] : [-1/0..1001 ; 29
B.33 look[ahead] : [0/1..4] ; 29
B.34 1oop[limit] : [0/1..] ; 30
B.35 max[cosets] : [0/2..1 ; 30
B.36 mend[elsohn] : [0/1]1 ; 30
B.37 mess[ages] / mon[itor] : [<int>] ; 31
B.38 moldel ; s 32
B.39 nc / normall closurel] : [0/1] ; 32
B.40 no[relators in subgroup] : [-1/0/1..1 ; 32
B.41 oo / order[option] : <int> ; 33
B.42 optlions] ; 33
B.43 par[ameters] ; 33
B.44 path[compression] : [0/1] ; 33
B.45 pd mol[de] / pmod[e]l : [0/1..3]1 ; 34
B.46 pd silze] / psizl[el : [0/2/4/8/...1 5 34
B.47 print det[ails] / sr : [0/1..5] ; 34
B.48 prlint tablel : [[-1<int>[,<int>[,<int>]111 ; 34
B49pure clt] ; 35
B.50pure rlt] ; 35
B.51 rc¢ / random coinc[idences]: <int>[,<int>] ; 35
B.52 reclover] / contigluous] ; 35
Bbh3rep : 1..7[,<int>] ; 35
B.bd restart ;o 36
B.55 r[factor] / rt[factor]l : [<int>] ; 36
B.56 row[filling] : [0/11 ; 36
B.57 sc / stabil[ising cosets] : <int> ; 36
B.58 sims : 1/3/5/7/9 ; 37
B.59 st[andard tablel ; 37

B.60 stat[istics] / stats ;
B.61 style ;
B.62 subg[roup name] : <string> ;
B.63 sys[tem] : <string> ;
B.64 text : <string> ;
B.65 tilme limit] : [-1/0/1..1 ;
B.66 tw / tracel wordl : <int>,<word> ;
B.67 wol[rkspacel : [<int>[k/m/gll ;
B.68# ... <newline>

C State machine details

D Abbreviations

References

vi

C.1
C.2
C.3
C4
C.5
C.6
C.7

List of figures

The R/Cstyle 40
The R*style. 41
The Crstyle o o o o o 42
The Cstyle o . 43
The Restyle o 0 o 0 o oo 44
The Rstyle 0o o 45
The CRstyle o 46

vil

2.1

3.1
3.2

B.1
B.2

List of tables

The coset table for S;/S3

The styles

The predefined strategies

Possible enumeration results

Possible progress messages

viil

CHAPTER 1

Introduction

ACE is designed to work with partial tables, as well as complete tables exhibiting a
finite index. TBA: Intended user groups ...

ACE is divided into three ‘levels’. The actual enumerator, called the “core enumera-
tor”, is ACE Level 0, while the standard driver for the enumerator, the “core wrapper”,
is ACE Level 1. A stand-alone ‘example’ application, called the “interactive interface”,
is ACE Level 2. To assist those interested in the actual source code, the function and
variable names are prepended with ALO_, AL1_ & AL2_ respectively. ACE also includes
the “proof table” package (PT for short), which can be compiled into the executable
if required. The proof table cuts across the level structure, and can only be used as
part of the interactive interface. Function and variable names of the PT package are
prepended with PT_. TBA: this package ...

TBA: version history, 3.000 vs 3.001, ... TBA: default build ...

1.1 Administrivia

It is assumed that ACE is run on a Unix-box of some description. TBA: how to
compile ...

In order not to clutter-up the body of the text with examples, the bulk of these are
gathered into a separate appendix. These examples illustrate many of the features of
ACE, and can also serve as a source of interesting enumerations. Some are referred
to in the text, but they can all be read independently. ACE script input generating
these examples is available in the ex**x.1in files, as part of the documentation.

1.2 Code

You will note in the source code various sections preceded by a warning comment
containing the DTT acronym. This stands for “debug/test/trace”, and denotes code
that was added temporarily for one reason or another. None of this code should
be active; i.e., it should all be commented out. It does mot form part of the ACE
distribution. Of course, gurus will find this code intriguing, and will probably want
to uncomment it to see what happens!

TBA: The source code is heavily commented, and is considered to be part of the
documentation. Conceptually, coset enumeration is easy, but there are tricky details

and subtle performance issues — you need to read the source code, to experiment, and
to think to appreciate these.

CHAPTER 2

Background

2.1 Terminology

Although ACE can accept either letters or numbers for group generators, we generally
use letters, since these are much easier to understand. (Unless you need more than
26 generators, or are using some form of automatically generated presentation, you
should adopt the same convention.) Lower-case letters denote generators, with in-
verses being denoted by either upper-case letters or negative superscripts; e.g., ABab
and a~'b~'ab are equivalent. We use 1 to denote the identity element and/or the
subgroup (i.e., coset #1).

...scanning, applying, closing. ...dead coset(s), compact(ion).

2.2 Notation

For a subgroup H of a group G, we represent by G/H the set of right cosets of H in
G (not the quotient group of G by H which requires that H be normal in G), i.e.

G/H ={Hzx |z € G}.

Two cosets Hx, Hy € G/H are equal, i.e. coincident, if and only if xy~! € H. Also,
any two cosets of G/H are either coincident or disjoint. The cardinality of G/H is
the number of distinct cosets in G/H, and is equal to the index |G : H| of H in G,
if G is finite then |G : H| = |G|/|H]|.

Some standard groups that arise in our examples are:
Sy, the full symmetric group on n letters;

A, the full alternating group on n letters; and
Ch, the cyclic group of order n.

A group G will often be defined via a presentation of the form
(generators | relators).

In this case, the elements of G are words in the generators and the relators are a list
of words that are equivalent to the empty word (i.e. identity element) in G. Actually,
amongst the relators we will also allow relations, which are equations of the form
w; = wy (equivalent to the relator wlwgl), where wy, wy are words in the generators
of G.

TABLE 2.1: The coset table for S;/S;

Generators
coset by bo b
04 (Gs) Oy Oy O
O3 (G3b3) O3 O Oy
Oy (G3b3bsy) Oq O3 O
01 (nggbgbl) 02 01 01

2.3 History

The concept of a subgroup, and its cosets, has been known since the beginnings of
group theory. One of the earliest (practical?) uses of cosets seems to have been
by Moore [12], who gives presentations for S,, & A, and proves them correct by, in
effect, counting the n cosets of S,,/S,—1 & A, /An—1. Dickson [5, §264] presents a more
accessible account, and explicitly notes that “these sets form a rectangular table”. To
illustrate this, we paraphrase Dickson’s proof for the case ;.

Let G4 be the abstract group
<b1, bQ, b3 | b%, bg, bg, b1b3 - bgbl, b1b2b1 - bgblbg, bgbgbg - b3b2b3>.

Now Sy is generated by the transpositions s; = (12), sy = (23) & s3 = (34). Putting
s; = b;, 1 <1 < 3, we see that these transpositions satisfy the defining relations of
G4. So Sy is a quotient group of Gy, and |G4| > |S,s| = 4! = 24.

That |G4] < 24, and so G4 = Sy, is proved by induction. Let G5 be the subgroup
of G4 generated by by & by. (The actual induction is on the b;. For our purposes,
we’ll simply assume that |G3| < 6.) Now consider the cosets Oy = G3, O3 = G3bs,
Oy = G3bsby & O1 = G3b3byb. We'll show that these four cosets are merely permuted
by the b;, so that the index |Gy : G3| < 4; hence |G4| < 24, as required.

Obviously, O4b3 = O3, O3by = Oy & O2b; = 0. Since the b; are involutions, then
O3b3 = G3b3bs = G3 = Oy4. Similarly, Osb, = O3 & O1b; = Os. Since by & by generate
G3, then O4b1 = O4b2 = 04. NOW, since b1 & b3 commute, then Ogbl = G3b3b1 =
G3b1b3 = O4b1b3 = O4b3 = 03. Now consider 01b3 = G3b3b2b1b3 = G3b3b2b3b1. Since
babsbs = b3bobs, then this can be written as G3babsbab; = O4babzbaby = O4b3boby = Oy
In a similar manner, O1by = O; & O3b3 = Os. Our coset table (see Table 2.1) is now
complete, so |Gy : G3| < 4. Note that each b; gives rise to the transposition (0;0;41),
and leaves the other cosets fixed.

The construction of a coset table was systematised and popularised by Todd & Cox-
eter [16]. The first computer implementation was that of Haselgrove in 1953. This,
along with other early implementations, is described by Leech [9]. Detailed accounts
of the techniques used in coset enumeration can be found in [3, 6, 10, 13, 15]. For-
mal proofs of the correctness of various strategies for coset enumeration are given in
(11, 13, 15].

CHAPTER 3

ACE Level 2:
an interactive interface

Level 2 of ACE is a complete, standalone application for generating and manipulating
coset tables. It can be used interactively, or can take its input from a script file. It
is reasonably robust and comprehensive, but no attempt has been made to make it
‘industrial strength’ or to give it any of the features of, say, MAGMA [2] or GAP [14].
Most, of its features have been added in response to user requests, and it is assumed
that the user is ‘competent’. One of the primary goals in developing ACE was to
demonstrate how to correctly use ACE Levels 0 & 1; some care is taken to ensure that
the user cannot generate ‘invalid’ tables.

A complete description of all the Level 2 commands is given in Appendix B.

3.1 Enumeration mode & style

The core enumerator takes two arguments, which select the enumeration mode and
style. The mode determines whether or not we retain any existing table information.
Initially, we start with an empty table and use the begin mode (the beg command).
This can be followed by a series of continue and/or redo modes (the cont & redo
commands) which build on or modify the table generated by the begin mode. So
it is possible to do an enumeration in stages, altering the parameters at each stage.
Various interlocks are present to prevent a combination of choices which (potentially)
leads to an invalid table.

The enumeration style is the balance between C-style definitions (i.e., coset table
based, Felsch style) and R-style definitions (i.e., relator based, HLT style), and is
controlled by the ct & rt parameters. The absolute values of these parameters sets
the number of definitions (C-style) or coset applications (R-style) per pass through
the enumerator’s main loop. The sign of these parameters sets the style, and the
possible combinations are given in Table 3.1

In R style all the definitions are made via relator scans; i.e., this is HLT mode. In
C style all the definitions are made in the next empty table slot and are tested in
all essentially different positions in the relators; i.e., this is Felsch mode. In R/C
style we run in R style until an overflow, perform a lookahead on the entire table,
and then switch to CR style. Defaulted R/C style is the default style, and here we
use R/C style with ct:1000 and rt set to approximately 2000 divided by the total

TABLE 3.1: The styles

Rt value Ct value style name

<0 <0 R/C

<0 0 R*

<0 >0 Cr
0 <0 C
0 0 R/C (defaulted)
0 >0 C

>0 <0 Re

>0 0 R

>0 >0 CR

length of the relators, in an attempt to balance R & C definitions when we switch to
CR style. Rc & Cr styles are like R & C styles, except that a single C or R style pass
(respectively) is done after the initial R or C style pass. R* style makes definitions
the same as R style, but tests all definitions as for C style. In CR style alternate
passes of C style and R style are performed, with all definitions tested. The Ct < 0
C style is reserved for future use, and should not be used.

3.2 Predefined strategies

The versatility of ACE means that it can be difficult to select appropriate parameters
when presented with a new enumeration. The problem is compounded by the fact that
no generally applicable rules exist to predict, given a presentation, which parameter
settings are ‘good’. To help overcome this problem, ACE contains various commands
which select particular enumeration strategies. One or other of these strategies may
work and, if not, the results may indicate how the parameters can be varied to obtain
a successful enumeration. The thirteen standard strategies are listed in Table 3.2.

Note that we explicitly (re)set all of the listed enumerator parameters in all of the
predefined strategies, even although some of them have no effect. For example, the fi
value is irrelevant in HLT mode. The idea behind this is that, if you later change some
parameters individually, then the enumeration retains the ‘flavour’ of the last selected
predefined strategy. Note also that other parameters which may affect an enumeration
are left untouched by setting one of the predefined strategies; for example, the values
of max & asis. These parameters have an effect which is independent of the selected
strategy.

Note that, apart from the fel:0 & sims:9 strategies, all of the strategies are distinct,
although some are very similar. Further details of each strategy are contained in their
entry in Appendix B.

TABLE 3.2: The predefined strategies

parameter
strategy path row mend no look com ct rt i pmod psiz dmod dsiz
def n vy n -1 n 10 0 00 3 256 4 1000
easy n vy n 0 n 100 0 1000 1 0 256 0 1000
fel:0 n n n 0 n 10 1000 01 0 256 4 1000
fel:1 n n n -1 n 10 1000 00 3 256 4 1000
hard n vy n -1 n 10 1000 10 3 256 4 1000
hlt n vy n 0 1 10 0 1000 1 0 256 0 1000
pure ¢ n n n 0 n 100 1000 01 0 256 4 1000
pure r n n n 0 n 100 0 1000 1 0 256 0 1000
sims:1 n vy n 0 n 10 0 1000 1 0 256 0 1000
sims:3 n y n 0 n 10 0 -1000 1 0 256 4 1000
sims:H n vy y 0 n 10 0 1000 1 0 256 0 1000
sims:7 n vy y 0 n 10 0 -1000 1 0 256 4 1000
sims:9 n n n 0 n 10 1000 01 0 256 4 1000

CHAPTER 4

ACE Level 1:
a core wrapper

ACE Level 0 is a complete, efficient coset enumerator. However, it is ‘naked’, in the
sense that it expects all its data structures to be correctly setup and it assumes that
it is ‘sensibly’ driven. ACE Level 1 is a simple wrapper for Level 0 which processes
the presentation and the parameters, and sets up the appropriate data structures. It
contains some utility routines to help drive ACE, and it prevents some of the more
obvious errors. Although it has to be used with care, the wrapper is a great deal
easier to drive than the core enumerator, and is its recommended interface.

CHAPTER 5

ACE Level 0:
the core enumerator

TBA: ...

APPENDIX A

Examples

In this appendix we give some examples of ACE runs. A stand-alone discussion of
some of the features of these runs is included, although parts of these runs are men-
tioned in the body of the text, as illustrations of specific features of ACE’s behaviour.
The exx**.in files supplied as part of this documentation can be used to run these
examples, although an example may be presented as if it were generated interac-
tively, and the output may be edited for reasons of space or perspicuity. There may
be minor variations in the exact format of the output, since ACE is continually being
‘improved’. Unless otherwise noted, all parameters are defaulted and the default build
of ACE was used. In multipart runs, note that parameters from an earlier part may
carry across to a later one. Note that some of the examples may require a machine
with a large amount of memory.

A.1 Getting started

This example uses input file ex000.1in, and illustrates the basics of ACE. Note how
the input is generally insensitive to command synonyms, capitalisation, white space,
and : & ; characters. When ACE starts up, it prints out its version, the date & time,
and the name of the host on which it’s running. If we attempt to do an enumeration
immediately we get an error, since the lack of generators means we can’t build the
(empty) coset table.

ACE 3.001 Wed Apr 4 22:35:40 2001

Host information:
name = mango
end;
*% ERROR (continuing with next line)
can’t start (no generators?)

After defining two generators, we can do an enumeration. The default state is not to
echo the presentation or print any messages; only the result line is printed. The group
is free, since there are no relators, and the subgroup is trivial. So the enumeration
overflows.

gr:ab; # A stupid comment

Begin

OVERFLOW (a=249998 r=83333 h=83333 n=249999; 1=337 ¢=0.15; m=249998 t=249998)

10

The sr commands dumps out the presentation and the parameters for the run. All
of these are currently defaulted, apart from those dependent on there being two
(non-involutionary) generators.
sr:1;
#--— ACE 3.001: Run Parameters ---
Group Name: G;
Group Generators: ab;
Group Relators: ;
Subgroup Name: H;
Subgroup Generators: ;
Wo:1000000; Max:249998; Mess:0; Ti:-1; Ho:-1; Loop:0;
As:0; Path:0; Row:1; Mend:0; No:0; Look:0; Com:10;
C:0; R:0; Fi:7; PMod:3; PSiz:256; DMod:4; DSiz:1000;

With sr:2 only the Group Name line is printed. Similarly, sr:3, sr:4 and sr:5 print
the Group Relators, Subgroup Name and Subgroup Generators lines, respectively.
sr:2;

Group Name: G;

Next we print out the first part of the table. Note that, as there are no relators,
the table has separate columns for generator inverses. So the default workspace of
1000000 words allows a table of 249998 = 1000000/4 — 2 cosets. As row filling is on by
default, the table is simply filled with cosets in order. Note that a compaction phase
is done before printing the table, but that this does nothing here (the lower-case co
tag), since there are no dead cosets. The coset representatives are simply all possible
freely reduced words, in length plus lexicographic order.

pr:-1,12;
co: a=249998 r=83333 h=83333 n=249999; c=+0.00
coset | a A b B order rep’ve
_______ +___
1| 2 3 4 5
2 | 6 1 7 8 0 a
3 | 1 9 10 11 0 A
4 | 12 13 14 1 0 b
5 | 15 16 1 17 0O B
6 | 18 2 19 20 0 aa
7| 21 22 23 2 0 ab
8 | 24 25 2 26 0 aB
9 | 3 27 28 29 0 AA
10 | 30 31 32 3 0 Ab
11 | 33 34 3 35 0O AB
12 | 36 4 37 38 0 ba

We now set things up to do the alternating group on five letters, of order 60. We
turn messaging on, but set the interval high enough so that there will be no progress
messages.

Enum: A_5;

rel: a2, b~3, ababababab;

subgr: trivial;

mess: 1000; start;

11

The presentation and the parameters are echoed, the enumeration is performed, and
then the results of the run are printed. Note that the exponent of the ababababab
word has been correctly deduced, and that a is treated as an involution. So the table
has only three columns now. Definitions are HLT-style, and a total of 76 cosets (incl.
the subgroup) are defined.

#---— ACE 3.001: Run Parameters —--
Group Name: A_5;
Group Generators: ab;
Group Relators: (a)~2, (b)"3, (ab)“5;
Subgroup Name: trivial;
Subgroup Generators: ;
Wo:1000000; Max:333331; Mess:1000; Ti:-1; Ho:-1; Loop:0;
As:0; Path:0; Row:1; Mend:0; No:3; Look:0; Com:10;
C:0; R:0; Fi:6; PMod:3; PSiz:256; DMod:4; DSiz:1000;

INDEX = 60 (a=60 r=77 h=1 n=77; 1=3 ¢=0.01; m=66 t=76)

We now use a non-trivial subgroup, and monitor all the actions of the enumerator.

Subgroup Name: C_5 ;
gen:ab;
Monit :1
END;
#--— ACE 3.001: Run Parameters —--
Group Name: A_5;
Group Generators: ab;
Group Relators: (a)~2, (b)"3, (ab)“5;
Subgroup Name: C_5;
Subgroup Generators: ab;
Wo:1000000; Max:333331; Mess:1; Ti:-1; Ho:-1; Loop:0;
As:0; Path:0; Row:1; Mend:0; No:3; Look:0; Com:10;
C:0; R:0; Fi:6; PMod:3; PSiz:256; DMod:4; DSiz:1000;

AD: a=2 r=1 h=1 n=3; 1=1 ¢=+0.00; m=2 t=2
SG: a=2 r=1 h=1 n=3; 1=1 ¢c=+0.00; m=2 t=2
RD: a=3 r=1 h=1 n=4; 1=2 ¢c=+0.00; m=3 t=3
RD: a=4 r=2 h=1 n=5; 1=2 c¢=+0.00; m=4 t=4
RD: a=5 r=2 h=1 n=6; 1=2 c¢=+0.00; m=5 t=5
RD: a=6 r=2 h=1 n=7; 1=2 c=+0.00; m=6 t=6
RD: a=7 r=2 h=1 n=8; 1=2 ¢c=+0.00; m=7 t=7
RD: a=8 r=2 h=1 n=9; 1=2 ¢c=+0.00; m=8 t=8
RD: a=9 r=2 h=1 n=10; 1=2 ¢=+0.00; m=9 t=9
CC: a=8 r=2 h=1 n=10; 1=2 c¢=+0.00; d=0
RD: a=9 r=5 h=1 n=11; 1=2 ¢=+0.00; m=9 t=10
RD: a=10 r=5 h=1 n=12; 1=2 c=+0.00; m=10 t=11
RD: a=11 r=5 h=1 n=13; 1=2 c=+0.00; m=11 t=12
RD: a=12 r=5 h=1 n=14; 1=2 c=+0.00; m=12 t=13
RD: a=13 r=5 h=1 n=15; 1=2 c=+0.00; m=13 t=14
RD: a=14 r=5 h=1 n=16; 1=2 c=+0.00; m=14 t=15
CC: a=13 r=6 h=1 n=16; 1=2 ¢=+0.00; d=0
CC: a=12 r=6 h=1 n=16; 1=2 ¢=+0.00; d=0
INDEX = 12 (a=12 r=16 h=1 n=16; 1=3 ¢=0.00; m=14 t=15)

We now dump out the statistics accumulated during the run. The run had a=12 &
t=15, so there must have been three coincidences (qcoinc=3). Of these, two were

12

primary coincidences (rdcoinc=2). Since t=15, there must have been fourteen coset
definitions; one was during the application of coset #1 (i.e., the subgroup) to the
subgroup generator (apdefn=1), and the remainder during the application of the
cosets to the relators (rddefn=13).

STATistics;
#- ACE 3.001: Level O Statistics -
cdcoinc=0 rdcoinc=2 apcoinc=0 rlcoinc=0 clcoinc=0
xcoinc=2 xcolsl2=4 gcoinc=3
xsavel2=0 s12dup=0 s12new=0
xcrep=6 crepred=0 crepwrk=0 xcomp=0 compwrk=0
xsaved=0 sdmax=0 sdoflow=0
xapply=1 apdedn=1 apdefn=1
rldedn=0 cldedn=0
xrdefn=1 rddedn=5 rddefn=13 rdfill=0
xcdefn=0 cddproc=0 cdddedn=0 cddedn=0
cdgap=0 cdidefn=0 cdidedn=0 cdpdl=0 cdpof=0
cdpdead=0 cdpdefn=0 cddefn=0

Note how the pre-printout compaction phase now does some work (the upper-case CO
tag), since there were coincidences, and hence dead cosets. Note how b/B have been
used as the first two columns, since these must be occupied by a generator/inverse
pair or a pair of involutions. The a column is also the A column, as a is an involution.
(Using asis and inputting the a~2 relator as aa, however, stops ACE from treating
a as an involution and the columns are not reordered. We will see this later.)

print TABLE : -1, 12 ;
CO: a=12 r=13 h=1 n=13; c¢=+0.00
coset | b B a order rep’ve

ba

baB
baBa
baBaB
bab
baBab
baBaba
baBabaB
baBabab

-
OCONOOTOWPrEFL,N

WNWOTOTWOITNOTWW

(=Y
o
N
N

==

=N

If we define the generator order to be that of the columns, then the table above
is not in canonic form, and the coset representatives are not in order. We now
standardise the table; note the compaction phase before standardisation, although
it does nothing in this particular case. Note how, if we read through the table in
row-major order, new cosets are introduced using the smallest available number, and
that the representatives are now in order and are minimal.

st;
co/ST: a=12 r=13 h=1 n=13; ¢=+0.00

13

pr:-1,12;
co: a=12 r=13 h=1 n=13; ¢=+0.00
coset | b B a order rep’ve

ba

bab

baB
baba
baBa
babaB
babaBa
babaBab
babaBaB

OO NOOT P WN -
~NO OO WN
O~NO O PONRFP,W

10
11
12

[N
[N

12
12 10
10 11

= =
P NOOOOOUITOONNRFPW
NWWWOaoNOoTolww

We now exit ACE, printing out the version and the date & time again.

q

ACE 3.001 Wed Apr 4 23:09:17 2001

A.2 Emulating Sims

Here we demonstrate the various sims modes, and see if we can duplicate the m (max-
imum active cosets) and t (total cosets defined) values (see the input file ex001.1in).
The ability to do so gives our confidence in the correctness of ACE a large boost. (In
Section A.8, we show how we can use standard and one of ACE’s sims modes to ap-
proximate one of Sims’ even-numbered strategies.) We work with the formal inverses
of the relators and subgroup generators from [15], since definitions are made from the
front in Sims’ routines and from the rear in ACE. We may also have to use the asis
flag, to force the column order (by entering involutions as xx) and to preserve the
relator ordering. We match Sims’ values for R style & R* style (sims:1 & 3) and C
style (sims:9), but may not do so if we use Mendelsohn (sims:5 & 7); this makes
sense, since the order of processing cycled relators is not specified by Sims.

The input and output files for Example 5.2:

gr: r,s,t;

rel: (r"tRR)"-1, (s"rSS)~-1, (t~sTT)"-1;

text: ; ST}

text: ** Sims:1 (cf. 1502/1550) ...; sims:1; end;
text: ** Sims:3 (cf. 673/673) ...; sims:3; end;
text: ** Sims:5 (cf. 1808/1864) ...; sims:5; end;
text: ** Sims:7 (cf. 620/620) ...; sims:7; end;
text: ** Sims:9 (cf. 588/588) ...; sims:9; end;

#--- ACE 3.001: Run Parameters ---
Group Name: G;
Group Relators: rrTRt, ssRSr, ttSTs;
Subgroup Name: H;
Subgroup Generators: ;

14

** Sims:

INDEX

** Sims:

INDEX

** Sims:

INDEX

** Sims:

INDEX

** Sims:
INDEX =

The input and output files for Example 5.3, k£ = &:

gr:
rel:

text:
text:
text:
text:
text:
text:

s Y

1
1
3
1
5
1
7
1
9
1

(cf. 1502/1550)
(a=1 r=2 h=2 n=2; 1
(cf. 673/673)

(a=1 r=2 h=2 n=2; 1
(cf. 1808/1864)
(a=1 r=2 h=2 n=2; 1
(cf. 620/620)

(a=1 r=2 h=2 n=2; 1=3 ¢=0.00;

(cf. 588/588)

(a=1 r=2 h=2 n=2; 1=4 ¢=0.00;

(xx)"-1, (y~3)~-1, ((xy)"7)"-1,
**x Sims:1 (cf. 87254/128562)
*x Sims:3 (cf. 31678/32320)
*x Sims:5 (cf. 99632/178620)
*x Sims:7 (cf. 30108/31365)
*x Sims:9 (cf. 39745/39745)

#--- ACE 3.001: Run Parameters ---
Group Name: G;
Group Relators: XX, YYY, YXYXYXYXYXYXYX, yXYXyXYXyXYXyXYXyXYXyXYXyXYXyXYX;
Subgroup Name: H;
Subgroup Generators: ;

**x Sims
INDEX
**x Sims
INDEX
**x Sims
INDEX
**x Sims
INDEX
**x Sims

:1 (cf. 87254/128562)

3 ¢=0.00;
3 ¢=0.00;

3 ¢=0.01;

m=1502 t=1550)
m=673 t=673)
m=1603 t=1603)
m=615 t=615)

m=588 t=588)

((xyxY)~8)"-1;

ST
.; sims:1; end;
sims:3; end;
.; sims:5; end;
sims:7; end;

*

.
)

.
)

asis:1; sims:

9; end;

10752 (a=10752 r=128563 h=1 n=128563; 1=27 c=0.16; m=87254 t=128562)

:3 (cf. 31678/32320)

10752 (a=10752 r=8005 h=32321 n=32321; 1=10 c=0.13; m=31678 t=32320)

:5 (cf. 99632/178620)

10752 (a=10752 r=168547 h=1 n=168547; 1=24 c=0.24; m=96952 t=168546)

:7 (cf. 30108/31365)

10752 (a=10752 r=5738 h=31673 n=31673; 1=8 c=0.14; m=30420 t=31672)

:9 (cf. 39745/39745)

INDEX = 10752 (a=10752 r=1 h=39746 n=39746; 1=43 c=0.19; m=39745 t=39745)

The input and output files for Example 5.4:

gr: a,b;
(a"8)"-1, (b~7)"-1, ((ab)~2)"-1, ((Ab)~3)"-1;
(a”2)"-1, (Ab)~-1;
asis:1;

rel:
gen:

text:
text:
text:
text:
text:
text:

#--- ACE 3.001:

>

*k
*k
*k
*k
*k

Sims:1 (cf. 2174/2635)
Sims:3 (cf. 1199/1212)
Sims:5 (cf. 2213/2619)
Sims:7 (cf. 1258/1284)
Sims:9 (cf. 1302/1306)

Group Name: G;
Group Relators: AAAAAAAA, BBBBBBB, BABA, BaBaBa;
Subgroup Name: H;

Subgroup Generators: AA, Ba;

b
b
*
b
b

Run Parameters —--—-

STr;

sims:
sims:
sims:
sims:
asis:

15

O~NOTWrHF

we we we we we

end;
end;
end;
end;
sims:9;

end;

*x Sims:1 (cf. 2174/2635)

INDEX = 448 (a=448 r=2636 h=1 n=2636; 1=4 ¢=0.00; m=2174 t=2635)
*x Sims:3 (cf. 1199/1212)

INDEX = 448 (a=448 r=576 h=1213 n=1213; 1=3 ¢=0.01; m=1199 t=1212)
*x Sims:5 (cf. 2213/2619)

INDEX = 448 (a=448 r=2620 h=1 n=2620; 1=4 ¢=0.00; m=2213 t=2619)
*x Sims:7 (cf. 1258/1284)

INDEX = 448 (a=448 r=612 h=1285 n=1285; 1=3 ¢=0.01; m=1258 t=1284)
*x Sims:9 (cf. 1302/1306)

INDEX = 448 (a=448 r=1 h=1307 n=1307; 1=5 ¢=0.00; m=1302 t=1306)

A.3 Row filling

If all definitions are made by applying cosets to relators, then the coset table can
contain holes, either because the form of the relators ‘hides’ one of the generators from
one of the cosets, or because one of the generators is not present in the relators. The
row and mend parameters can be used to deal with these sorts of situations. Consider
the following examples, drawn from [17]; see the input file ex002.in. Note that,
although the row parameter is specifically intended to prevent the table containing
holes, the mend parameter actually yields better enumeration statistics. Note also the
use of the asis parameter to control whether or not the presentation is reduced.

enum:infinite cyclic group; gr:xy; rel:yxyxY;
subgr:self (index 1); gen:x;
asis:1; mess:1000000; pure r; end;

#--- ACE 3.001: Run Parameters —--
Group Name: infinite cyclic group;
Group Generators: xy;
Group Relators: yxyxY;
Subgroup Name: self (index 1);
Subgroup Generators: x;
Wo:1000000; Max:249998; Mess:1000000; Ti:-1; Ho:-1; Loop:0;
As:1; Path:0; Row:0; Mend:0; No:0; Look:0; Com:100;
C:0; R:1000; Fi:1; PMod:0; PSiz:256; DMod:0; DSiz:1000;

SG: a=1 r=1 h=1 n=2; 1=1 ¢=+0.00; m=1 t=1
OVERFLOW (a=249992 r=249996 h=1 n=249999; 1=253 ¢=0.19; m=249992 t=249998)

pr:-1,12;
CO: a=249992 r=249990 h=1 n=249993; c=+0.05
coset | X X y Y order rep’ve

_______ +___
1] 1 1 2 0
2 | 4 3 5 1 0y
3 | 2 5 6 4 0o yX
4 | 0 2 3 0 0 yx
5 | 3 6 7 2 0 yy
6 | 5 7 8 3 0 yXy
7 | 6 8 9 5 0 yyy
8 | 7 9 10 6 0 yXyy
9 | 8 10 11 7 0 yyyy
10 | 9 11 12 8 0 yXyyy
11 | 10 12 13 9 0 yyyyy
12 | 11 13 14 10 0 yXyyyy

16

mess:0;

pure r; row:1l; end;

INDEX = 1 (a=1 r=2 h=2 n=2; 1=3 ¢=0.00; m=12 t=17)
pure r; mend:1; end;

INDEX = 1 (a=1 r=2 h=2 n=2; 1=3 ¢=0.00; m=5 t=6)

mess:1000000;
asis:0; pure r; end;
#-—-- ACE 3.001: Run Parameters ---
Group Name: infinite cyclic group;
Group Generators: xy;
Group Relators: xyx;
Subgroup Name: self (index 1);
Subgroup Generators: x;
Wo:1000000; Max:249998; Mess:1000000; Ti:-1; Ho:-1; Loop:0;
As:0; Path:0; Row:0; Mend:0; No:0; Look:0; Com:100;
C:0; R:1000; Fi:1; PMod:0; PSiz:256; DMod:0; DSiz:1000;

SG: a=1 r=1 h=1 n=2; 1=1 ¢=+0.00; m=1 t=1
UH: a=1 r=2 h=2 n=2; 1=3 ¢=+0.00; m=1 t=1
INDEX = 1 (a=1 r=2 h=2 n=2; 1=3 ¢=0.00; m=1 t=1)

enum:C_3; rel:x"3yxyX~3,y"3xyxY"3; subgr:trivial (index 3); gen:;
asis:1; pure r; end;
#--- ACE 3.001: Run Parameters ---
Group Name: C_3;
Group Generators: xy;
Group Relators: xxxyxyXXX, yyyxyxYYY;
Subgroup Name: trivial (index 3);
Subgroup Generators: ;
Wo:1000000; Max:249998; Mess:1000000; Ti:-1; Ho:-1; Loop:0;
As:1; Path:0; Row:0; Mend:0; No:0; Look:0; Com:100;
C:0; R:1000; Fi:1; PMod:0; PSiz:256; DMod:0; DSiz:1000;

OVERFLOW (a=181146 r=38770 h=1 n=249999; 1=32 ¢=0.12; m=181146 t=249998)

pr:-1,16;
CO: a=181146 r=28074 h=1 n=181147; ¢=+0.03
coset | X X y Y order rep’ve

_______ +___
1 2 0 7 0
2 | 3 1 15 0 0 X
3 | 4 2 23 0 0 XX
4 | 12 3 6 5 0 xxx
5 | 35 6 4 0 0 xxxY
6 | 5 0 31 4 0 xxxy
7 | 47 0 8 1 0y
8 | 55 0 9 7 0 yy
9 | 11 10 52 8 0 yyy
10 | 9 0 72 11 0 yyyX
11 | 63 9 10 0 0 yyyx
12 | 20 4 14 13 0 xxxX
13 | 89 14 12 0 0 xxxxY
14 | 13 0 85 12 0 xxxXy
15 | 101 0 16 2 0 Xy
16 | 109 0 17 15 0 xyy

17

mess:0;

pure r; row:l; end;

INDEX = 3 (a=3 r=468 h=1 n=468; 1=3 ¢=0.00; m=343 t=467)
pure r; mend:1; end;

INDEX = 3 (a=3 r=29 h=29 n=29; 1=3 ¢=0.00; m=21 t=28)

mess:1000000;
asis:0; pure r; end;
#--— ACE 3.001: Run Parameters —--
Group Name: C_3;
Group Generators: xy;
Group Relators: yxy, xyx;
Subgroup Name: trivial (index 3);
Subgroup Generators: ;
Wo:1000000; Max:249998; Mess:1000000; Ti:-1; Ho:-1; Loop:0;
As:0; Path:0; Row:0; Mend:0; No:0; Look:0; Com:100;
C:0; R:1000; Fi:1; PMod:0; PSiz:256; DMod:0; DSiz:1000;

UH: a=3 r=6 h=6 n=6; 1=3 c
INDEX = 3 (a=3 r=6 h=6 n=6;

A.4 Equivalent presentations

TBA: F(2,7), using rep & aep ...

A.5 Deduction queues

TBA: ... (see test009)

A.6 Large enumerations

Suppose that the presentation given is such that the final coset table exceeds the
4 Gbyte limit imposed by 32-bit machines; e.g., an index of 250 x 10% with a 5-
column table and 4 byte integers. We are justified in regarding such an enumeration
as ‘big’, since it will require more than 4 Gbyte of storage no matter how efficiently it
is performed. Of course, even trivial enumerations may exceed this limit if they are
very pathological (see, e.g., [7]). However, we have no (easy) way of knowing whether
or not such enumerations can be done within the 4 Gbyte limit, so we are hesitant to
classify them as big. ACE is 64-bit ‘aware’, and can use more than 4 Gbyte of memory
if it is available. Note however that the number of cosets (i.e., the number of rows in
the coset table) is still limited by the size of a signed int. So the maximum size of a
table is 23! — n cosets, where n is probably 3; one since we can’t actually represent
42147483648, one since coset #0 is not used, and one since we need to count one
past the top of the table.

Some trivial group enumerations involving more than 1 G total cosets and 4 Gbyte
of memory were reported in [7]. However, the first big enumeration, in the above
sense, done by ACE was the Thomson simple group. This group has order TBA, and
contains TBA as an index T'BA subgroup. TBA: ...

18

A.7 Looping
TBA: ...

A.8 Use of st

The following shows how we can approximate one of the even-numbered Sims strate-
gies by repeatedly pausing ACE, standardising and continuing. Below, we use restric-
tive values of max to pause ACE, starting with max:14 and stepping max by 50 until
the enumeration completes. It is easy to create the loop necessary to do this within
some higher level programming language such as GAP that can interface with ACE.
Recall, from Section A.2, that definitions are made from the front in Sims’ routines
and from the rear in ACE; so we work with the formal inverses of the relators and sub-
group generators from [15]. As it happens we are able to generate t and m statistics
for Example 5.2 with strategy 4 that exactly match those of Sims [15, Table 5.5.3].
The example that does so is ex007.in. Here now is that input file and its output.

gr: r,s,t;

rel: (r"tRR)"-1, (s"rSS)~-1, (t~sTT)"-1;

text: ; sr;

text: ** Sims:4 (cf. 393/393) ...;

sims:3;

max:14;

Start;

standard; max:64; Continue; standard; max:114; Continue;
standard; max:164; Continue; standard; max:214; Continue;
standard; max:264; Continue; standard; max:314; Continue;
standard; max:364; Continue; standard; max:414; Continue;

#-—-- ACE 3.001: Run Parameters ---
Group Name: G;
Group Relators: rrTRt, ssRSr, ttSTs;
Subgroup Name: H;
Subgroup Generators: ;

x Sims:4 (cf. 393/393)

OVERFLOW (a=14 r=2 h=2 n=15; 1=3 ¢=0.00; m=14 t=14)
co/ST: a=14 r=2 h=2 n=15; c¢=+0.00

OVERFLOW (a=64 r=8 h=8 n=65; 1=2 ¢=0.00; m=64 t=64)
co/ST: a=64 r=8 h=8 n=65; c=+0.00

OVERFLOW (a=114 r=15 h=15 n=115; 1=2 ¢=0.00; m=114 t=114)
co/ST: a=114 r=15 h=15 n=115; c=+0.00

OVERFLOW (a=164 r=23 h=23 n=165; 1=2 ¢=0.00; m=164 t=164)
co/ST: a=164 r=23 h=23 n=165; c=+0.00

OVERFLOW (a=214 r=31 h=31 n=215; 1=2 ¢=0.00; m=214 t=214)
co/ST: a=214 r=31 h=31 n=215; c=+0.00

OVERFLOW (a=264 r=39 h=39 n=265; 1=2 ¢=0.00; m=264 t=264)
co/ST: a=264 r=39 h=39 n=265; c=+0.00

OVERFLOW (a=314 r=47 h=47 n=315; 1=2 ¢=0.00; m=314 t=314)
co/ST: a=314 r=47 h=47 n=315; c=+0.00

OVERFLOW (a=364 r=56 h=56 n=365; 1=2 ¢=0.00; m=364 t=364)
co/ST: a=364 r=56 h=56 n=365; c=+0.00

INDEX = 1 (a=1 r=2 h=2 n=2; 1=2 ¢=0.00; m=393 t=393)

19

A.9 Use of cy, nc, cc and rc

TBA: ...

20

APPENDIX B

Command summary

This appendix gives details of all the commands available when using the interactive
interface. The section headings match the help screen produced by the help com-
mand, and are in the same order. Alternative forms of a command are separated by a
/, while any optional part of a command is denoted by [...]. Case is not significant
in command names, but that part of a command actually present must be correct,

modulo white space. Appendix A contains many examples of how to correctly drive
ACE.

Parameters to a command are supplied after a colon (:). Each command is terminated
by a newline or a semicolon (;), except in some cases where the argument may be a list
of words, in which case newlines are ignored and a semicolon is the only terminator.
(E.g., the add gen, add rel, rel & gen commands.) In many cases the parameters
are optional, and entering the command without an argument prints the parameter’s
current value. If the no-argument form has a special meaning, this is noted in its
entry below. Where there is no danger of confusion, the : and/or the ; can usually
be dispensed with. The allowed parameter values are listed after a colon (:) either
explicitly (e.g. 1..7 means an integer in the range 1 to 7 inclusive) or is one of the
following:

<int> an integer;

<int list> a comma-separated list of <int>;

<string> an alphanumeric string (blanks allowed, but no semicolons);
<filename> a <string> (but must be a valid UNIX filename);

<letter 1list> a list of lower-case letters, optionally separated by blanks or commas;
<word list> a comma-separated list of <word>s;

<relator list> a comma-separated list of <word>s or <relation>s;

where a <relation> is an equals (=) separated list of <word>s, a (somewhat sketchy)
BNF for <word> is given by

<word> = <factor> { "x" | "/" <factor> }
<factor> = <element> [["""] <integer> | """ <element>]
<element> = <generator> ["’"]

| II(II <W0rd> { n ,II <W0rd> } II) n [II b II]
| n [ll <W0rd> { II,II <W0rd> } II] n [II)II]

and a <generator> is a letter or an integer (see B.27). A verbal description of a
<word list> is given in B.28.

21

NOTE: Some of the command names or synonyms might strike you as peculiar. These
names were not chosen by me, but were dictated by the need for compatibility with
previous coset enumerators (ie, tc & ce/ace).

B.1 add gen[erators] / sg : <word list> ;

Adds the words in the list to any subgroup generators already present. The enumer-
ation must be (re)started or redone, it cannot be continued.

B.2 add rellators] / rl : <relation list> ;

Adds the words in the list to any relators already present. The enumeration must be
(re)started or redone, it cannot be continued.

B.3 aep : 1..7 ;

The aep (all equivalent presentations) option runs an enumeration for each possible
combination of relator ordering, relator rotations, and relator inversions. As discussed
by Cannon, Dimino, Havas & Watson [3] and Havas & Ramsay [8] such equivalent
presentations can yield large variations in the number of cosets required in an enu-
meration. For this command, we are interested in this variation.

The aep option first performs a ‘priming run’ using the parameters as they stand.
In particular, the asis & mess parameters are honoured. It then turns asis on
and mess off, and generates and tests the requested equivalent presentations. The
maximum and minimum values attained by maxcos & totcos are tracked, and each
time a new ‘record’ is found the relators used and the summary result line is printed.
At the end, some additional status information is printed: the number of runs which
yielded a finite index; the total number of runs (excluding the priming run); and the
range of values observed for maxcos & totcos. asis & mess are now restored to their
original values, and the system is ready for further commands.

The mandatory argument is considered as a binary number. Its three bits are treated
as flags, and control relator rotations (the 2° bit), relator inversions (the 2' bit)
and relator orderings (the 22 bit); “1” means ‘active’ and “0” means ‘inactive’. The
order in which the equivalent presentations are generated and tested has no particular
significance, but note that the presentation as given (after the initial priming run) is
the last presentation to be generated and tested, so that the group’s relators are left
‘unchanged’ by running the aep option.

As an example (drawn from the discussion in [8]) consider the index 448 enumeration
of (8,7 |2,3)/(a?, Ab), where

(8,712,3) = (a,b | a® =b" = (ab)* = (Ab)* = 1).

There are 4! = 24 relator orderings and 2* = 16 combinations of relator or inverted
relator. Exponents are taken into account when rotating relators, so the relators given

22

giverise to 1, 1, 2 & 2 rotations respectively, for a total of 1.1.2.2 = 4 combinations. So
the command aep:7 would generate and test 24.16.4 = 1536 equivalent presentations,
while aep:3 would generate and test 16.4 = 64 equivalent presentations.

NoTES: There is no way to stop the aep option before it has completed, other than
killing the task. So do a reality check beforehand on the size of the search space and
the time for each enumeration. If you are interested in finding a ‘good’ enumeration,
it can be very helpful, in terms of running time, to put a tight limit on the number
of cosets via the max parameter. (You may also have to set com:100 to prevent time-
wasting attempts to recover space via compaction.) This maximises throughput by
causing the ‘bad’ enumerations, which are in the majority, to overflow quickly and
abort. If you wish to explore a very large search-space, consider firing up many copies
of ACE, and starting each with a ‘random’ equivalent presentation. Alternatively, you
could use the rep command.

B.4 ai / alter i[nput] : [<filename>] ;

By default, commands to ACE are read from the standard input file (i.e., the ‘key-
board’, stdin). The ai command closes the current input file (unless it’s stdin),
and opens <filename> as the source of commands. If <filename> can’t be opened,
input reverts to stdin.

NoTEs: If you switch to taking input from a(nother) file, remember to switch back
to the previous file before the end of the current file. If you don’t, the EOF in the
current file will cause ACE to terminate.

B.5 ao / alter olutput] : [<filename>] ;

By default, output from ACE is sent to the standard output file (i.e., the ‘terminal’,
stdout). The ao command closes the current output file, and opens <filename> for
all future output. If <filename> can’t be opened, output reverts to stdout.

B.6 as[is] : [0/1] ;

By default, ACE freely & cyclically reduces the relators, freely reduces the subgroup
generators, and sorts relators & generators in length-increasing order (a stable inser-
tion sort is used). If you do not want this, you can switch it off by asis:1.

NoTESs: As well as allowing you to process the presentation in the form given, this
is useful for forcing definitions to be made in a prespecified order, by introducing
dummy (i.e., freely trivial) subgroup generators. Note also that the exact form of the
presentation can have a significant impact on the enumeration statistics; it is not the
case that the default option always yields the best enumeration.

GURU NOTES: When asis:0, a (reduced) relator of the form aa or AA causes that
generator to be treated as an involution. In the relators and subgroup generators, the
inverses of involutionary generators are automatically replaced with the generator.

23

When asis:1, only relators of the form a~2 cause the generator to be treated as an

involution. The forms aa & a~2 are preserved in any printout, so that you can track
ACE’s behaviour.

B.7 beglin] / end / start ;

Start an enumeration. Any existing information in the table is cleared, and the
enumeration starts from coset #1 (i.e., the subgroup).

B.8 bye / exit / qluit] ;

This exits ACE nicely, printing the date and the time. An EOF (end-of-file; i.e., ~d)
has the same effect, so proper termination occurs if ACE is taking its input from a
script file.

B.9 «cc / coset coincl[idence] : <int> ;

Print out the representative of coset #<int>, and add it to the subgroup generators;
i.e., equates this coset with coset #1, the subgroup.

B.10 c[factor] / ctl[factor]l : [<int>] ;

The value of this parameter sets the ‘blocking factor’ for C-style definitions; i.e., the
number of coset definitions made by filling the next empty coset table position during
each pass through the enumerator’s main loop. The absolute value of <int> is the
value used. The enumeration style is selected by the values of the ct & rt parameters;
see Section 3.1.

B.11 check / redo ;

An extant enumeration is redone, using the current parameters. Any existing infor-
mation in the table is retained, and the enumeration is restarted from coset #1 (i.e.,
the subgroup).

NoTEs: This option is really intended for the case where additional relators and/or
subgroup generators have been introduced. The current table, which may be incom-
plete or exhibit a finite index, is still ‘valid’. However, the additional data may allow
the enumeration to complete, or cause a collapse to a smaller index.

B.12 com[paction] : [0..100] ;

The key word com controls compaction of the coset table during an enumeration.
Compaction recovers the space allocated to cosets which are flagged as dead (i.e.,
which were found to be coincident with lower-numbered cosets). It results in a ta-
ble where all the active cosets are numbered contiguously from #1, and with the
remainder of the table available for new cosets.

24

The coset table is compacted when a coset definition is required, there is no space
for a new coset available, and provided that the given percentage of the coset table
contains dead cosets. For example, com:20 means compaction will occur only if 20%
or more of the cosets in the table are dead. The argument can be any integer in the
range 0-100, and the default value is 10 or 100; see Section 3.2. An argument of 100
means that compaction is never performed, while an argument of 0 means always
compact, no matter how few dead cosets there are (provided there is at least one, of
course).

Compaction may be performed multiple times during an enumeration, and the table
that results from an enumeration may or may not be compact, depending on whether
or not there have been any coincidences since the last compaction (or from the start
of the enumeration, if there have been no compactions). If messaging is enabled (i.e.,
mess # 0), then a progress message (labelled C0) is printed each time the compaction
routine is actually called (as opposed to each time it is potentially called).

NoOTEs: In some strategies (e.g., HLT) a lookahead phase may be run before com-
paction is attempted. In other strategies (e.g., sims:3) compaction may be performed
while there are outstanding deductions; since deductions are discarded during com-
paction, a final RA phase will (automatically) be performed. Compacting a table
‘destroys’ information and history, in the sense that the table entries for any dead
cosets are deleted, along with their coincidence list data. At Level 2, it is not possi-
ble to access the ‘data’ in dead cosets; in fact, most options that require table data
compact the table automatically before they run.

B.13 cont[inue] ;

Continue the current enumeration, building upon the existing table. If a previous
run stopped without producing a finite index you can, in principle, change any of the
parameters and continue on. Of course, if you make any changes which invalidate
the current table, you won'’t be allowed to continue, although you may be allowed to
redo.

B.14 cylcles] ;

Print out the table in cycles; i.e., the permutation representation.

B.15 ded mo[de] / dmod[e] : [0..4] ;

A completed table is only valid if every table entry has been tested in all essentially
different positions in all relators. This testing can either be done directly (Felsch
strategy) or via relator scanning (HLT strategy). If it is done directly, then more
than one deduction (i.e., table entry) can be outstanding at any one time. So the
untested deductions are stored in a stack. Normally this stack is fairly small but,
during a collapse, it can become very large.

25

This command allows the user to specify how deductions should be handled. The
options are: 0, discard deductions if there is no stack space left; 1, as 0, but purge
redundant cosets off the top of the stack at every coincidence; 2, as 0, but purge all
redundant cosets from the stack at every coincidence; 3, discard the entire stack if it
overflows; 4, if the stack overflows, then double the stack size and purge all redundant
cosets from the stack.

The default deduction mode is either 0 or 4, depending on the strategy selected (see
Section 3.2), and it is recommended that you stay with the default. If you want to
know more details, read the code.

NoTEs: If deductions are discarded for any reason, then a final RA phase will be run
automatically at the end of the enumeration, if necessary, to check the result.

B.16 ded silze] / dsizlel : [0/1..1 ;

Sets the size of the (initial) allocation for the deduction stack. The size is in terms
of the number of deductions, with one deduction taking two words (i.e., 8 bytes).
The default size, of 1000, can be selected by a 0 argument. See the dmod entry for a
(brief) discussion of deduction handling.

B.17 deflault] ;

This selects the default strategy, which is based on the defaulted R/C style; see
Sections 3.1 & 3.2. The idea here is that we assume that the enumeration is ‘easy’,
and start out in R style. If it turns out not to be easy, then we regard it as ‘hard’,
and switch to CR style, after performing a lookahead on the entire table.

B.18 del genl[erators] / ds : <int 1list> ;

This command allows subgroup generators to be deleted from the presentation. If the
generators are numbered from one in the output of, say, the sr command, then the
generators listed in <int 1list> are deleted. <int 1list> must be a strictly increasing
sequence.

B.19 del rellators] / dr : <int list> ;

As del gen, but for the group’s relators.

B.20 d[ump] : [0/1/2[,0/111 ;

Dumps the internal variables of ACE. The first argument selects which of the three
levels of ACE to dump, and defaults to Level 0. The second argument selects the
level of detail, and defaults to 0 (i.e., less detail). This option is intended for gurus;
the source code should be consulted to see what the output means.

26

B.21 easy ;

If this strategy is selected, we run in R style (i.e., HLT) and turn lookahead &
compaction off. For small and/or easy enumerations, this mode is likely to be the
fastest.

B.22 echo : [0/1] ;

By default, ACE does not echo its commands. If you wish it to do so, turn this
feature on with echo:1. This feature can be used to render output files from ACE
less incomprehensible.

B.23 enum[eration] / group name : <string> ;

This command defines the name by which the current enumeration (i.e., the group
being used) will be identified in any printout. It has no effect on the actual enumer-
ation, and defaults to G. An empty name is accepted; to see what the current name
is, use the sr command.

B.24 fellsch]l : [0/1] ;

An argument of 0 or no argument selects the Felsch strategy, while an argument
of 1 selects Felsch with all relators in the subgroup and turns gap-filling on; see
Section 3.2.

B.25 f[factor] / fil[ll factor] : [0/1..] ;

If gap-filling is on, then gaps of length one found during deduction testing are pref-
erentially filled (see [6]). However, this potentially violates the formal requirement
that all rows in the table are eventually filled (and tested against the relators). The
fill factor is used to ensure that some constant proportion of the coset table is always
kept filled. Before defining a coset to fill a gap of length one, the enumerator checks
whether fi times the completed part of the table is at least the total size of the table
and, if not, fills rows in standard order instead of the gap.

An argument of 0 selects the default value of |5(n + 2)/4|, where n is the number
of columns in the table. All other things being equal, we’d expect the ratio of the
total size of the table to the completed part of the table to be n + 1, so the default
fill factor allows a moderate amount of gap-filling.

NotTEs: If £i is smaller than n, then there is generally no gap-filling, although its
processing overhead is still incurred. A large value of £i can cause infinite looping.
However, in general, a large value does work well. The effects of the various gap-
filling strategies vary widely. It is not clear which values are good general defaults
or, indeed, whether any strategy is always ‘not too bad’.

27

B.26 gen[erators] / subgroup gen[erators] : jword list; ;

By default, there are no subgroup generators and the subgroup is trivial. This com-
mand allows a list of subgroup generating words to be entered. The format is the
same as for relators, except that ‘genuine’ relations (i.e., w; = w,) are not allowed.

B.27 grloup generators]: [<letter list> / <int>] ;

This command introduces the group generators, which may be represented in one of
two ways. They may be presented as a list of lower-case letters, optionally separated
by commas. This is the usual method, and gives up to 26 generators. Subsequently,
upper-case letters can be used, if desired, to stand for the inverse of their lower-case
versions; e.g., A for a”-1, B for b™-1, etc. Alternatively, a positive integer can be used
to indicate the number of generators. For example, gr:5 indicates that there are five
generators, designated 1, 2, 3, 4 & 5, with inverses -1, etc.

NoOTES: Any use of the gr command which actually defines generators invalidates
any previous enumeration, and stays in effect until the next gr command. Any words
for the group or subgroup must be entered using the nominated generator format,
and all printout will use this format. This command is not optional, nor is there any
default. A valid set of generators is the minimum information necessary before ACE
will attempt an enumeration.

GURU NOTES: The columns of the coset table are allocated in the same order as
the generators are listed, insofar as this is possible, given that the first two columns
must be a generator/inverse pair or a pair of involutions. (This is an implementation
issue, and is not formally necessary; see [1].) The ordering of the columns can, in
some cases, affect the definition sequence of cosets and impact the statistics of an
enumeration.

B.28 group relators / rellators] : <relation list> ;

By default, or if an empty argument to this command is used, the group is free.
Otherwise, this command is used to introduce the group’s defining relators. In order
to allow ACE to accept presentations from a variety of sources, many kinds of word
representations are allowed. ACE accepts words in the nominated generators, allowing
* for multiplication, = for exponentiation and conjugation, and brackets for precedence
specification. Round or square brackets may be used for commutation. (There is no
danger of confusion between [a,b]/(a,b) and (ab), since a , implies commutation,
while no comma implies a word.) If letter generators are used, multiplication and
exponentiation signs (but not conjugation signs) may be omitted; e.g., a3 is the same
as a3 and ab is the same as axb. Also, the exponent -1 can be abbreviated to -, so a-
stands for A. Inverses can also be denoted by * or /, so wijwsy’ = wy/wy = wlwgl. The
* can also be dropped for numeric generators; but of course two numeric generators,
or a numeric exponent and a numeric generator, must be separated by whitespace.

28

Remember that A stands for a®-1, a”b for Bab and [a,b] & [a,b,c] for ABab &
[[a,b],c].

<relation list> is a comma-separated list of words (relators) or relations. A rela-
tion is a list of equated words, e.g. w; = wy = w3 (equivalent to the relators wlwgl
and wyw;).

B.29 hard ;

In many ‘hard” enumerations, a mixture of R-style and C-style definitions, all tested
in all essentially different positions, is appropriate. This option selects such a mixed
strategy; see Section 3.2. The idea here is that most of the work is done C-style (with
the relators in the subgroup and with gap-filling active), but that every 1000 C-style
definitions a further coset is applied to all relators.

GURU NOTES: The 1000/1 mix is not necessarily optimal, and some experimentation
may be needed to find an acceptable balance (see, for example, [8]). Note also that,
the longer the total length of the presentation, the more work needs to be done for
each coset application to the relators; one coset application can result in more than
1000 definitions, reversing the balance between R-style and C-style definitions.

B.30 hlelp] ;

Prints the help screen; i.e., all the headings in this appendix. Note that this list is
fairly long, so its top may disappear off the top of the screen.

B.31 hlt ;

Selects the standard HLT strategy; see Section 3.2. Note that ACE’s hlt has
lookahead on; however, the sequence hlt;lookahead:0; easily achieves an HLT
strategy with lookahead off.

B.32 holle limit] : [-1/0..100] ;

An experimental feature which allows an enumeration to be terminated when the
percentage of holes in the table exceeds a given value. In practice, calculating this is
very expensive, and it tends to remain constant or decrease throughout an enumer-
ation. So the feature doesn’t seem very useful. The default value of -1 turns this
feature off. If you want more details, read the source code.

B.33 1look[ahead] : [0/1..4] ;

Although HLT-style strategies are fast, they are local, in the sense that the impli-
cations of any definitions/deductions made while applying cosets may not become
apparent until much later. One way to alleviate this problem is to perform looka-
heads occasionally; that is, to test the information in the table, looking for deductions
or coincidences. ACE can perform a lookahead when the table overflows, before the

29

compaction routine is called. An argument of 0 disables lookahead. Lookahead can
be done using the entire table or only that part of the table above the current coset,
and it can be done R-style (scanning cosets from the beginning of relators) or C-
style (testing all definitions in all essentially different positions). An argument of 1
does a partial table, R-style lookahead; 2 does all the table, C-style; 3 does all the
table, R-style; and 4 does a partial table, C-style. The default is either 0 or 1; see
Section 3.2.

NoOTES: A lookahead can do a significant amount of work, so this phase may take a
long time. The value of mend is honoured during R-style lookaheads.

B.34 1loopl limit]l : [0/1..]1 ;

The core enumerator is organised as a state machine, with each step performing an
‘action’ (i.e., lookahead, compaction) or a block of actions (i.e., |ct| coset definitions,
|rt| coset applications). The number of passes through the main loop (i.e., steps) is
counted, and the enumerator can make an early return when this count hits the value
of loop. A value of 0, the default, turns this feature off.

GURU NOTES: You can do lots of really neat things using this feature, but you need
some understanding of the internals of ACE to get real benefit from it. Read the
code!

B.35 max[cosets] : [0/2..]1 ;

By default, all of the workspace is used, if necessary, in building the coset table. So
the table size is an upper bound on how many cosets can be active at any one time.
The max option allows a limit to be placed on how much of the physical table space
is made available to the enumerator. Enough space for at least two cosets (i.e., the
subgroup and one other) must be made available. An argument of 0 selects all of the
workspace.

B.36 mend[elsohn] : [0/1] ;

Mendelsohn style processing during relator scanning/closing is turned on by mend: 1
and off by mend: 0. Off is the default, and here coset applications are done only at the
start (and end) of a relator. Mendelsohn on means that coset applications are done at
all cyclic permutations of the (base) relator. The effect of the Mendelsohn parameter
is case-specific. It can mean the difference between success or failure, or it can impact
the number of cosets required, or it can have no effect on an enumeration’s statistics.

NoOTES: Processing all cyclic permutations of the relators can be very time-consuming,
especially if the presentation if large. So, all other things being equal, the Mendelsohn
flag should normally be left off. Note that Mendelsohn’s paper [11] discusses tracing
all cyclic shifts of both the relators and their formal inverses. ACE only process the
relators. However, since relators are scanned from both the front and the rear, we
effectively process the inverses.

30

TABLE B.1: Possible enumeration results

result level meaning

INDEX = x 0 finite index of x obtained

OVERFLOW 0 out of table space

SG PHASE OVERFLOW 0 out of space (processing subgroup generators)
ITERATION LIMIT 0 loop limit triggered

TIME LIMT 0 ti limit triggered

HOLE LIMIT 0 ho limit triggered

INCOMPLETE TABLE 0 all cosets applied, but table has holes

MEMORY PROBLEM 1 out of memory (building data structures)

B.37 mess[ages] / mon[itor] : [<int>] ;

By default, or if the argument is 0, ACE prints out only a single line of information
giving the result of each enumeration. If mess is non-zero then the presentation &
the parameters are echoed at the start of the run, and messages on the enumeration’s
status as it progresses are also printed out. The absolute value of <int> sets the
frequency of the progress messages, with a negative sign turning hole monitoring on.
The initial printout of the presentation & the parameters is the same as that produced
by the sr:1 command; see Appendix A for some examples.

The result line gives the result of the call to the enumerator and some basic statistics
(see Appendix A for some examples). The possible results are given in Table B.1; any
result not listed represents an internal error and should be reported. The statistics
given are, in order: a, number of active cosets; r, number of applied cosets; h, first
(potentially) incomplete row; n, next coset definition number; 1, number of main loop
passes; ¢, total CPU time; m, maximum active cosets; and t, total cosets defined.

The progress message lines consist of an initial tag, some fixed statistics, and some
variable statistics. The possible message tags are listed in Table B.2, along with
their meanings. The tags indicate the function just completed by the enumerator.
The tags with a ‘y’ in the ‘action’ column represent functions which are aggregated
and counted. Every time this count overflows the value of mess, a message line is
printed and the count is zeroed. Those tags flagged with a ‘y*’ are only present if
the appropriate option has been included in the build (see the opt command). Tags
with an ‘n’ in the ‘action’ column are not counted, and cause a message line to be
output every time they occur. They also cause the action count to be reset.

The fixed portion of the statistics consists of the a, r, h, n, 1 & c values, as for the
result line, except that c is the time since the previous message line. If mess < 0 then
hole monitoring is active, and an h statistic (representing the percentage of holes in
the table) is inserted between the n & 1 values. The variable portion of the statistics
can be: the m & t values, as for the result line; d, the current size of the deduction
stack; s, d & c (with DS tag), the new stack size, the non-redundant deductions
retained, and the redundant deductions discarded.

31

TABLE B.2: Possible progress messages

message action meaning

AD y coset #1 application definition (SG/RS phase)
RD y R-style definition

RF y row-filling definition

CG y immediate gap-filling definition

CcC y* coincidence processed

DD y* deduction processed

CP y preferred list gap-filling definition

CD y C-style definition

Lx n lookahead performed (type x)

co n table compacted

CL n complete lookahead (table as deduction stack)
UH n updated completed-row counter

RA n remaining cosets applied to relators

SG n subgroup generator phase

RS n relators in subgroup phase

DS n stack overflowed (compacted and doubled)

NoTES: Hole monitoring is expensive, so don’t turn it on unless you really need it.
If you wish to print out the presentation & the parameters, but not the progress
messages, then set mess non-zero, but very large. (You'll still get the SG, DS, etc.
messages, but not the RD, DD, etc. ones.) You can set mess to 1, to monitor all
enumerator actions, but be warned that this can yield very large output files.

B.38 molde] ;

Prints the possible enumeration modes, as deduced from the command history since
the last call to the enumerator; see Section 3.1.

B.39 nc / normall closure] : [0/1] ;

This option takes the current table (which may or may not be complete), and traces
g 'wg and gwg~! for all group generators g and all subgroup generator words w. The
trace starts at coset #1 (ie, the subgroup), and we note whether we get back to coset
#1 or not. If we do not, then we print out a line of output. If the argument is present
& set (ie, 1), then the offending conjugate is also added to the subgroup generators;
the default is not to do so. A single pass though the (original) subgroup generators
is made, and scans which do not complete are not processed (ie, printed/added).

NoOTES: It is the user’s responsibility to rerun the enumeration (& the nc option) as
necessary until the situation stabilises.

B.40 nol relators in subgroup] : [-1/0/1..]1 ;

It is sometimes helpful to include the relators in the subgroup, in the sense that they
are applied to coset #1 at the start of an enumeration. An argument of 0 turns this

32

feature off, and an argument of -1 includes all the relators. A positive argument
includes the appropriate number of relators, in order.

B.41 oo / order[option] : <int> ;

This option finds a coset with order a multiple of |[<int>| modulo the subgroup,
and prints out its coset representative. If <int> < 0, then all cosets meeting the
requirement are printed. If <int> = 0, then the orders of all cosets are printed. If
<int> > 0, then the first coset meeting the requirement is printed.

B.42 opt[ions] ;

This command dumps details of the options included in the version of ACE you're
running; i.e., what compiler flags were set when the executable was built. A typical
output, illustrating the default build, is:

ACE 3.001 executable built:

Fri Mar 30 14:30:59 CEST 2001
Level O options:

statistics package = on

coinc processing messages = on

dedn processing messages = on
Level 1 options:

workspace multipliers = decimal
Level 2 options:

host info = on

B.43 par[ameters] ;

An old option, which did nothing. It is included for backward comparability. Pre-ACE
3.001 scripts may contain this option, which is quietly ignored by ACE 3.001.

B.44 path[compression] : [0/1] ;

To correctly process multiple coincidences, a union-find must be performed. If both
path compression and weighted union are used, then this can be done in essentially
linear time (see, e.g., [4]). Weighted union alone, in the worst-case, is worse than lin-
ear, but is subquadratic. In practice, path compression is expensive, since it involves
many coset table accesses. So, by default, path compression is turned off; it can be
turned on by path:1. It has no effect on the result, but may affect the running time
and the internal statistics.

GURU NOTES: The whole question of the best way to handle large coincidence forests
is problematic. Formally, ACE does not do a weighted union, since it is constrained to
replace the higher-numbered of a coincident pair. In practice, this seems to amount
to much the same thing! Turning path compression on cuts down the amount of data
movement during coincidence processing at the expense of having to trace the paths
and compress them. In general, it does not seem to be worthwhile.

33

B.45 pd mol[del / pmod[e]l : [0/1..3] ;

If the argument is 0, then Felsch style definitions are made using the next empty table
slot. If the argument is non-zero, then gaps of length one found during relator scans
in Felsch style are preferentially filled (subject to the value of £i). If the argument
is 1, they are filled immediately, and if it is 2, the consequent deduction is also made
immediately (of course, these are also put on the deduction stack). If the argument
is 3, then the gaps are noted in the preferred definition queue. Provided a live such
gap survives (and no coincidence occurs, which causes the queue to be discarded) the
next coset will be defined to fill the oldest gap of length one. The default value is
either 0 or 3, depending on the strategy selected (see Section 3.2). If you want to
know more details, read the code.

B.46 pd silze]l / psizlel : [0/2/4/8/...]1 ;

The preferred definition queue is implemented as a ring, dropping earliest entries. Its
size must be 2" for some n > 0. An argument of 0 selects the default size of 256.
Each queue slot takes two words (i.e., 8 bytes), and the queue can store up to 2" — 1
entries.

B.47 print det[ails] / sr : [0/1..5] ;

This command prints out details of the current presentation and parameters. No
argument, or an argument of 0, prints out the group & subgroup name, the group’s
relators and the subgroup’s generators. If the argument is 1, then the group generators
and the current setting of the enumeration control parameters are also printed. (This
printout is the same as that produced at the start of a run when messaging is on.)
Arguments of 2 — 5 print out the current values of enum, rel, subg & gen, respectively.
See Appendix A for some examples.

NoTES: The output is printed out in a form suitable for input, so that a record of
a previous run can be used to replicate the run. Note that, due to the defaulting of
some parameters and the special meaning attached to some values, a little care has
to be taken in interpreting the parameters. If you wish to eractly duplicate a run,
you should use the output of sr after the run completes.

B.48 prlint table] : [[-]<int>[,<int>[,<int>]1]1] ;

Compact the table, and then print it out from the first to the second argument, in
steps of the third argument. If the first argument is negative, then the orders (if
available) and representatives of the cosets are printed also. The third argument
defaults to one. The one-argument form is equivalent to the two-argument form
with a first argument of 1 and the argument used as the second argument. The
no-argument form prints the entire table, without orders or representatives.

34

B.49 pure c[t] ;

Sets the strategy to basic C-style (coset table based) — no compaction, no gap-filling,
no relators in subgroup; see Section 3.2.

B.50 pure r[t] ;

Sets the strategy to basic R-style (relator based) — no Mendelsohn, no compaction,
no lookahead, no row-filling; see Section 3.2.

B.51 rc / random coinc[idences]: <int>[,<int>] ;

This option attempts to find nontrivial subgroups with index a multiple of the first
argument by repeatedly putting random cosets coincident with coset #1 and seeing
what happens. If the first argument is 0 any non-trivial finite index is accepted,
while if it’s 1 any finite index will do. The starting coset table must be non-empty,
but should not be complete. The second argument puts a limit on the number of
attempts, with a default of eight. For each attempt, we repeatedly add random coset
representatives to the subgroup and redo the enumeration. If the table becomes too
small, the attempt is aborted, the original subgroup generators restored, the CT is
recalculated, and another attempt made. If an attempt succeeds, then the new set of
subgroup generators is retained.

GURU NOTES: (i) A coset can have many different representatives. Consider running
st before rc, to canonicise the table and the representatives. This makes the reps
minimal; sadly, however, it will only do so for the first of a series of attempts. (ii) If
a series of attempts to find a subgroup fails, consider running the enumeration with
different parameters. Although rc is random, it is always working with the same
coset table; changing the parameters will give a different table and hence a different
set of reps.

B.52 reclover] / contigluous] ;

Invokes the compaction routine on the table to recover the space used by any dead
cosets. A CO message line is printed if any cosets were recovered, and a co line if none
were. This routine is called automatically if the cy, nc, pr or st options are invoked.

B.53 rep : 1..7[,<int>] ;

The rep (random equivalent presentations) option complements the aep option. Tt
generates and tests some random equivalent presentations. The mandatory argument
acts as for aep, while the optional second argument sets the number of presentations,
with a default of eight.

The routine first turns asis on and mess off, and then generates and tests the re-
quested equivalent presentations. For each presentation the relators used and the

35

summary result line is printed. asis & mess are now restored to their original values,
and the system is ready for further commands.

NoTEs: The relator inversions & rotations are ‘genuinely’ random. The relator
permuting is a little bit of a kludge, with the ‘quality’ of the permutations tending
to improve with successive presentations. When the rep command completes, the
presentation active is the last one generated.

GUrRU NOTE: It might appear that neglecting to restore the original presentation
is an error. In fact, it is a useful feature! Suppose that the space of equivalent
presentations is too large to exhaustively test. As noted in the entry for aep, we
can start up multiple copies of aep at random points in the search-space. Manually
generating ‘random’ equivalent presentations to serve as starting-points is tedious
and error-prone. The rep option provides a simple solution; simply run rep before
aep!

B.54 restart ;

An old option, included for backward compatibility. Use the check/redo option
instead. Pre-ACE 3.001 scripts may contain this option, which is quietly ignored by
ACE 3.001.

B.55 rl[factor] / rt[factor]l : [<int>] ;

The value of this parameter sets the ‘blocking factor’ for R-style definitions; i.e., the
number of cosets applied to all the relators during each pass through the enumerator’s
main loop. The absolute value of <int> is the value used. The enumeration style is
selected by the values of the ct & rt parameters; see Section 3.1.

B.56 row[filling]l : [0/1] ;

When making HLT-style definitions, it is normal to scan each row of the table af-
ter its coset has been applied to all relators, and make definitions to fill any holes
encountered. Failure to do so can cause even simple enumerations to overflow; see
Section A.3. To turn row filling off, use row:0.

B.57 sc / stabillising cosets] : <int> ;

This option takes the current table (which may or may not be complete), and looks for
(the requested number of) cosets which ‘stabilise’ the subgroup. A coset ¢ stabilises
the subgroup (wy, ..., ws) if cw; = ¢ for all 1 < j <s. If <int> > 0, the first <int>
stabilising cosets found are printed. If <int> = 0, all of the stabilising cosets, plus
their representatives, are printed. If <int> < 0, the first |<int>| stabilising cosets,
plus their representatives, are printed.

36

B.58 sims : 1/3/5/7/9 ;

In his book [15], Sims discusses ten standard enumeration strategies. These are
effectively HLT without lookahead (with or without the mend parameter, and in
R or R* style) and Felsch, all either with or without table standardisation as the
enumeration proceeds. ACE does not implement table standardisation on an ongoing
basis, although tables from an incomplete or paused enumeration can be standardised
before the enumeration is continued. The other five strategies are implemented, and
can be selected by this command. The argument matches the number given in [15,
§5.5]; see Section 3.2 for the parameter settings. With care, it is often possible to
duplicate the statistics given in [15]; some examples are given in Sections A.2 and A.8.

B.59 st[andard table] ;

This option compacts and then standardises the table (which may or may not be
complete). That is, for a given ordering of the generators in the columns of the
table, it produces the ‘canonic’ version of the current table. In such a table, a row-
major scan encounters previously unseen cosets in (contiguous) numeric order; see
Section A.1 for an example.

NoTEs: (i) In a canonic table, the coset representatives are in length plus (column
order) lexicographic order, and each is the minimum in this order. Further, they are
a Schreier set (ie, each prefix of a rep is also a rep). (ii) See Sims [15] for a discussion
of standardising tables, and what this achieves.

GURU NOTES: In half of the ten standard enumeration strategies of Sims [15], the
table is standardised repeatedly. This is expensive computationally, but can result
in fewer cosets being necessary. The effect of doing this can be investigated in ACE
by (repeatedly) halting the enumeration, standardising the table, and continuing; see
Section A.8 for an example.

B.60 stat[istics] / stats ;

If the statistics package is compiled into the code (which it is by default, see the opt
command), then dump the statistics accumulated during the most recent enumera-
tion. See Section A.l1 for an example, and the enum.c source file for the meaning of
the variables.

B.61 style ;

Prints the current enumeration style, as deduced from the current Ct & Rt parameters;
see Section 3.1.

B.62 subgl[roup name] : <string> ;

This command defines the name by which the current subgroup will be identified in
any printout. It has no effect on the actual enumeration, and defaults to H. An empty
name is accepted; to see what the current name is, use the sr command.

37

B.63 sys[tem] : <string> ;

Passes <string> to a shell, via the C library routine system().

B.64 text : <string> ;

Just echoes <string>. This allows the output from a run driven by a script to be
tarted up.

B.65 ti[me 1limit] : [-1/0/1..] ;

The ti command puts a time limit (in seconds) on the length of a run. An argument
of <0 mean there is no limit (the default). If the argument is > 0 then the total
elapsed time for this call is checked at the end of each pass through the enumerator’s
main loop, and if it’s more than the limit the run is stopped and the current table
returned. Note that a limit of 0 performs exactly one pass through the main loop,
since 0 > 0. If the enumerator is run in the continue mode, this allows a form of
‘single-stepping’. The time limit is approximate, in the sense that the enumerator
may run for a longer, but never a shorter, time. So, if there is, e.g., a big collapse
(so that the time round the loop becomes very long), then the run may run over the
limit by a large amount.

NoTEs: The time limit is CPU-time, not wall-time. As in all timing under Unix,
the clock’s granularity (usually 10 mSec) and the system load can affect the timing;
so the number of main loop iterations in a given time may vary. If you want more
precise control, use the loop option.

B.66 tw / tracel word] : <int>,<word> ;

Traces <word> through the coset table, starting at coset <int>. Prints the final coset,
if the trace completes.

B.67 wolrkspace] : [<int>[k/m/gl] ;

By default, ACE has a physical table size of 10® entries (i.e., 4 x 10° bytes in the default
32-bit environment). The number of cosets in the table is the table size divided by
the number of columns. The wo command allows the physical table size, in entries, to
be set. The argument is multiplied by 1, 103 10% or 10° depending as nothing, a k,
an m, or a g is appended to the argument. Although the number of cosets is limited
to 23! —1 (if the C <int> type is 32 bits), the table size can exceed the 4GByte 32-bit
limit if a suitable machine is used.

NoTES: If the binary option is set (see the opt command), the multipliers are 1, 2'°,
220 & 239 respectively. The actual number of cosets in the table is entries/columns—2,
rounded down to the nearest integer. The —2 is to allow for possible rounding errors
and the fact that coset #0 is not used.

38

B.68 # ... <newline>

Any input between a sharp sign (#) and the next newline is ignored. This allows
comments to be included anywhere in command scripts.

39

APPENDIX C

State machine details

FIGURE C.1: The R/C style

isave <+ F isave <+ F isave <+ F
cdapp <+ F cdapp <+ F cdapp <+ F
Redo Start Continue
—1 —1 —1
44 7]
SG

—260] —2 | —1

isave + T
46| |5 |

-2

-1

31] [6]

Chk

>0 | —256

K\J chapp « T

To state 41
of CR style

40

FIGURE C.2: The R* style

isave «+ T
isave + T cdapp < T isave + T
Redo Start Continue
-1 -1 -1

41

Ficure C.3: The Cr style

isave «+ T
isave < T cdapp <~ T isave < T
Redo Start Continue
-1 -1 -1
47] 5]
CL
-2 \ -1
cdapp «+ T
48] 7]
SG
-2 \ -1 \—260
49] 8]
RS
-2] 0 [-1

31] [6]

Chk

>0 | —256

To state 35
of C style

42

FI1GURE C.4: The C style

isave «+ T

15] -]

Continue

-1

isave <+ T
isave « T cdapp «+ T
24] [- | 6 | [-]
Redo Start
-1 -1
32] [5]
CL
-2 \ -1
cdapp + T
33] [7]
SG
-2 \ -1 \—260
34] [8]
RS
2] 0 [-1
31] 6]
Chk
>0 \ —256

43

FicUure C.5: The Rc style

isave <+ F isave <+ F isave <+ F
cdapp <+ F cdapp <+ F cdapp <+ F
Redo Start Continue
-1 -1 -1
53] 7]
SG
—260\ -2 \ -1
54] [1]
RD
2] 0 [-1
55 | \il 56| |5 |
-1
0
58] |4]
CD
2] 0 [-1
cdapp «+ F cdapp « F
ﬂ C\%‘{ To state 30 To state 28
>0 ‘ 956 of R style of R style

44

cdapp + T

FicUurE C.6: The R style

isave <+ F isave <+ F isave <+ F

cdapp <+ F cdapp <+ F cdapp <+ F

Redo Start Continue
-1 -1 -1

37] 7]

SG

—260] —2 [-1

31] [6]

Chk

>0 [—256

45

Ficure C.7: The CR style

isave «+ T

18] -]

Continue

-1

isave «+ T
isave + T cdapp < T
27] [-] 9 | [-]
Redo Start
-1 -1
38] [5]
CL
-2 \ -1
cdapp « T
39] [7]
SG
-2 \ -1 \—260
[40] [8]
RS
2] 0 [-1
31] 6]
Chk
>0 \ —256

46

APPENDIX D

Abbreviations

This appendix lists: the abbreviations and acronyms we use; the technical terms we
use; the various terms used in describing ACE, and in explicating its internals; any
terms specific to PACE or PEACE which are used. Note that this list includes both
terms used in this manual and terms commonly used in the source code.

ACE advanced coset enumerator

aka also known as

alive an active (non-pending/dead) coset

ANSI American national standards institute

arg argument

asap as soon as possible

ave average

barrier sync point at which all threads wait until all are ready
beg(in) starts an enumeration ab initio

bn between

BSD Berkeley standard distribution

C the best programming language, ever

CcC coinc coset processed (enumeration message/phase)
CD coset table definition (enumeration message/phase)
cds complete definition sequence

check synonym for redo

Chk result checking (enumeration message/phase)

CL coset table based lookahead (enumeration message/phase)
cmd command

CO table compaction (enumeration message/phase)

coinc coincidence. Primary coinc — occurs during defns/scans.

Secondary coinc — consequence of a primary one
col column
concurrent potentially at the same time, or virtual parallelism
cont (inue) continues the current enumeration

Cos coset

C(PU) aggregated CPU time for an enumeration

CPU central processor unit

CRG the PACE style — coset table, relator tables & gap filling
CcT coset table

47

DD serial deduction stack processing (enumeration message/phase)

dead a fully processed coinc coset

dedn deduction. Formally — a deduction made during relator scanning.
Loosely — any (new/altered) table entry which is stacked

defn definition

defn seq definition sequence

DG serial gap-filling (enumeration message/phase)
DOSTK dedn processing macro, calls appropriate handler
DS definition sequence

dtime total elapsed time in DOSTK macro (part of stats)
DTT special debug/test/trace code

edp essentially different position(s)

eg exempli gratio, for example

elt element

end synonym for begin (don’t blame me!)

EOF end-of-file

EOL end-of-line

Err error (enumeration message/phase)

etc et cetera

F FALSE

G the group

gen generator, either of grp or of subgrp

GNU GNU’s not Unix — quality ‘freeware’

q(p) growth function of T with p

grp group

H the subgroup

HD heuristic definition (enumeration message/phase)
ie id est, that is

inc(1) include/including

inc(r) increase/increasing

inv inverse

invol(n) involution

I/O0 input/output

IP, i/p input

item PWs are sequences of items

KISS keep it simple, stupid

(kn)h coset, table rows <knh are guaranteed to be complete
(kn)r coset, table rows <knr are guaranteed to scan at all relators
LC lower-case

len length

Ist list

LWP lightweight process — sorta like a thread, but not quite

48

m, M
mode
mutex

n

n/a
n(extdf)
nproc
NW
OP, o/p
OS

p

PACE
PAR
para
parallel
parallel
parentheses
PC

pdl
PEACE
pending
pfactor
pthread
PD

PG
pos(n)
POSIX
PPP

pri

PT

ptr

PW

RD

RA
redo
red(n)
redundant
rel

rep

RS

sec
semaphore

MaxCos, the maximum number of cosets active

start, continue or redo an enumeration

POSIX mutual exclusion lock

the number of slaves/threads (i.e., the argument of beg)
not applicable

number of next coset to be defined

global variable containing value of n

non-whitespace (ie, not space, tab, or (maybe) newline
output

operating system

the dedn stack batching factor (i.e., the argument of pf)
parallel ACE

the parallelisable portion of the running time
paragraph

actually at the same time, or real parallelism

a PACE run with n # 0

the “(” & “)” characters

proof certificate

preferred definition list

proof extraction after coset enumeration

a coset on the coinc queue but not yet processed

global variable containing value of p
POSIX thread

parallel deduction stack processing (enumeration message/phase)

parallel gap-filling (enumeration message/phase)
position

portable operating system interface

paranoia prevent problems (ie, belts'n’braces)
primary

proof table

pointer

proof word

relator table definition (enumeration message/phase)
relator application check (enumeration message/phase)
redo the current enumeration (keeping the table)
reduction

a dead coset

relator and /or relation

the (current) representative of a coincident coset
relators in subgroup (enumeration message/phase)
secondary

sync primitive allowing signalling between threads

49

seq

SER

serial

SG

SMP

spin-lock

square
brackets

src

stats

start

strategy

style

subgrp

SYNC

sync

t, T

T

TAB

TBA

thread

tuple

ucC

UH

VS

W(ALL)

wrd

WS

sequence
the serial portion of the running time

a PACE run using beg:0, or an ACE run

subgroup generator (enumeration message/phase)

shared memory multiprocessor and/or symmetric multiprocessing
sync via sitting in tight loop until a condition is met

the “[” & “]” characters

source
statistics (package)

synonym for begin

the overall enumeration method (ie, HLT, Felsch, Sims:n, etc)
which of the state machines is active (ie, R, C, CR, etc)

subgroup

the master-slave synchronisation overhead time

synchronous, synchronisation

TotCos, the total number of cosets defined

TRUE

tabulate character

to be announced/advised

an independent execution sequence within a process

4-element record of significant scan, see the D1lelt type (in al0.h)
upper-case

update hole count check (enumeration message/phase)

versus

elapsed, or wall, time for an enumeration

word

white-space; ie, blanks, tabs, & newlines (maybe)

50

1]
2]
3]

[13]

[14]

References

M.J. Beetham. Space saving in coset enumeration. In Michael D. Atkinson,
editor, Computational Group Theory, pages 19-25. Academic Press, 1984.

W. Bosma, J. Cannon, and C. Playoust. The MAGMA algebra system I: the user
language. Journal of Symbolic Computation, 24:235-265, 1997.

John J. Cannon, Lucien A. Dimino, George Havas, and Jane M. Watson. Imple-
mentation and analysis of the Todd-Coxeter algorithm. Mathematics of Compu-
tation, 27:463-490, 1973.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction
to Algorithms. The MIT Press, 1990.

L.E. Dickson. Linear Groups, with an exposition of the Galois field theory. B.G.
Teubner, Leipzig, 1901.

George Havas. Coset enumeration strategies. In Stephen M. Watt, editor, IS-
SAC’91 (Proceedings of the 1991 International Symposium on Symbolic and Al-
gebraic Computation), pages 191-199. ACM Press, 1991.

George Havas and Colin Ramsay. Proving a group trivial made easy: a case
study in coset enumeration. Bulletin of the Australian Mathematical Society,
62:105-118, 2000.

George Havas and Colin Ramsay. Experiments in coset enumeration. In W.M.
Kantor and A. Seress, editors, Groups and Computation III, number 8 in Ohio
State University Mathematical Research Institute Publications, pages 183-192.
Walter de Gruyter, 2001.

J. Leech. Coset enumeration on digital computers. Proceedings of the Cambridge
Philosophical Society, 59:257-267, 1963.

John Leech. Coset enumeration. In Michael D. Atkinson, editor, Computational
Group Theory, pages 3—-18. Academic Press, 1984.

N.S. Mendelsohn. An algorithmic solution for a word problem in group theory.
Canadian Journal of Mathematics, 16:509-516, 1964. Corrigendum: Ibid. 17:505,
1965.

E.H. Moore. Concerning the abstract groups of order k! and %k! holohedrically
isomorphic with the symmetric and the alternating substitution-groups on k&
letters. Proceedings of the London Mathematical Society (1), 28:357-366, 1897.
J. Neubiiser. An elementary introduction to coset-table methods in compu-
tational group theory. In Groups — St. Andrews 1981, LLondon Mathematical
Society Lecture Note Series 71, pages 1-45. Cambridge University Press, 1982.
M. Schonert et al. GAP — Groups, Algorithms and Programming. Lehrstuhl D
fiir Mathematik, Rheinisch-Westfalische Technische Hochschule, Aachen, 1995.

51

[15] Charles C. Sims. Computation with finitely presented groups. Cambridge Uni-
versity Press, 1994.

[16] J.A. Todd and H.S.M. Coxeter. A practical method for enumerating cosets of
finite abstract groups. Proceedings of the Edinburgh Mathematical Society, 5:26—
34, 1936.

[17] J.N. Ward. A note on the Todd-Coxeter algorithm. In R.A. Bryce, J. Cossey, and
M.F. Newman, editors, Group Theory (Canberra, 1975), number 573 in Lecture
Notes in Mathematics, pages 126—129. Springer-Verlag, 1977.

52

