
May 8, 2008
libtnc

Copyright (C) 2008
Mike McCauley

A TNC implementation for Windows and
Unix. For libtnc version 1.19
cifi-

r-
nting
. The
re is
ng
i-

es
a
nix
 and

ple
x cli-

nt
1.0 Introduction

libtnc is an open-source implementation of the Trusted Network Connect (TNC) spe
cation, developed by the Trusted Computing Group (TCG).

TNC is a specification for protocols and APIs that allows network authentication se
vices (such as RADIUS servers) to assess the security posture of a client device wa
to connect to a network (such as a wireless PC) before it gets access to the network
motivation for this is to check that the client PC is safe and secure (i.e. that softwa
up to date, the firewall is running and that the anti-virus software is installed, runni
and up-to-date. TNC implementations are typically found in 802.1X wireless suppl
cants and RADIUS servers. Details of TNC can be found at

https://www.trustedcomputinggroup.org/specs/TNC

libtnc is an open-source implementation of these TNC specifications which compil
and runs on Windows and many Unix-like systems. It also includes the sources of
generic IMC/IMV pair which can assess basic security posture for Windows and U
clients. It can be used to build TNC compliants clients, such as 802.1X supplicants
TNC compiant servers, such as RADIUS server. It can also be used to build a sim
INC/IMV pair that can be used to assess the security posture of Windows and Uni
ents from a Windows or Unix server.

This document describes the source, how to use libtnc to implement TNC complia
supplicants and servers, and how to configure the sample generic IMC/IMV pair.
1 of 19

Coverage

le

s

C/

nd

ry
2.0 Coverage

The following TNC specifications are supported by libtnc APIs:

• IF-IMC 1.2

• IF-IMV 1.2

• IF-TNCCS 1.1

In addition the following components are provided

• A fully functional OSC-IMC for Windows and Unix, which can answer some simp
postuire queries sent by the matching IMV below.

• A fully functional OSC-IMV for Windows and Unix, which can be configured to do
arbitrarily complicated posture assessment via a scriptable policy file, and work
with the IMC above.

• Sample skeleton IMC and IMVs that can serve as a starting point for your own IM
IMV pair.

• Perl bindings for IF-IMC, IF-IMV and IF-TNCCS

3.0 Building and Installing

3.1 Unix

Can be used for any Unix, Linux or Cygwin environment. Requires standard Unix
development tools, gcc, make etc. Requires GNU libxml2 and GNU libiconv.

1. Download the libtnc distribution file, typically named something like libtnc-
n.nn.tar.gz to a work directory.

2. tar zxvf libtnc-n.nn.tgz

3. cd libtnc-n.nn

4. ./configure

5. make

6. make check

7. make install

The loadable OSC-IMC module will be in src/osc/.libs/libosc_imc.so. The loadable
OSC-IMV module will be in src/osc/.libs/libosc_imv.so.

3.2 Windows

Requires Visual C++ 2005 Express or better. Requires GNU libxml2-2.6.30.win32 a
iconv-1.9.2.win32 installed in C:\gnu. Get binaries for these required libraries from
http://www.zlatkovic.com/pub/libxml

1. Download the libtnc distribution file, typically named something like libtnc-
n.nn.tar.gz to a work directory.

2. Using WinZip or similar application, unpack the distribution into the work directo
2 of 19 libtnc

IF-IMC

e

-

h

3. Using My Computer or similar, navigate to the work directory then to
libtnc-n.nn\vs2005\libtnc

4. Double-click on the libtnc.sln solution file. Visual C++ window will appear with th
libtnc solution.

5. Select Build->Build Solution. All the components, including the OSC-IMC and
OSC-IMV dlls will be created.

The loadable OSC-IMC will be in vs2005\libtnc\Release\osc_imc.dll. The loadable
OSC-IMV will be in vs2005\libtnc\Release\osc_imv.dll.

4.0 IF-IMC

libtnc implements the following C binding calls to and from IMCs as required by IF
IMC:

• TNC_IMC_Initialize

• TNC_IMC_NotifyConnectionChange

• TNC_IMC_BeginHandshake

• TNC_IMC_ReceiveMessage

• TNC_IMC_BatchEnding

• TNC_IMC_ProvideBindFunction

• TNC_IMC_Terminate

• TNC_TNCC_ReportMessageTypes

• TNC_TNCC_RequestHandshakeRetry

• TNC_TNCC_BindFunction

• TNC_TNCC_SendMessage

4.1 C Function Calls

A number of C functions are available to load a set of IMCs and to interoperate wit
them:

4.1.1 libtnc_imc_load_config

int libtnc_imc_load_config(const char* filename)

4.1.2 libtnc_imc_load_std_config

int libtnc_imc_load_std_config()

4.1.3 llibtnc_imc_load_modules

TNC_Result libtnc_imc_load_modules
(const char* filenames[],
TNC_UInt32 numfiles)
libtnc 3 of 19

IF-IMC

n-
4.1.4 libtnc_imc_unload

TNC_Result libtnc_imc_unload()

4.1.5 libtnc_imc_NotifyConnectionChange

TNC_Result libtnc_imc_NotifyConnectionChange
(TNC_ConnectionID connectionID,
TNC_ConnectionState newState)

4.1.6 libtnc_imc_BeginHandshake

TNC_Result libtnc_imc_BeginHandshake
(TNC_ConnectionID connectionID)

4.1.7 libtnc_imc_ReceiveMessage

TNC_Result libtnc_imc_ReceiveMessage
(TNC_ConnectionID connectionID,
TNC_BufferReference messageBuffer,
TNC_UInt32 messageLength,
TNC_MessageType messageType)

4.1.8 libtnc_imc_BatchEnding

TNC_Result libtnc_imc_BatchEnding
(TNC_ConnectionID connectionID)

4.1.9 libtnc_imc_Terminate

TNC_Result libtnc_imc_Terminate()

4.2 Vendor Extensions

4.2.1 TNC_9048_LogMessage
If the IMC requests a binding for this function, it will be given a pointer to a logging
function which can be supplied by the calling application:

TNC_Result libtnc_logMessage
(TNC_UInt32 severity,
const char* format,
...)

This varargs style function may be called when the IMC wishes to log a message
through the calling application’s logging system. Severity is one of the following co
stants defined in libtnc.h

• TNC_LOG_SEVERITY_ERR (0)

• TNC_LOG_SEVERITY_WARNING (1)

• TNC_LOG_SEVERITY_NOTICE (2)

• TNC_LOG_SEVERITY_INFO (3)

• TNC_LOG_SEVERITY_DEBUG (4)
4 of 19 libtnc

IF-IMV

ling
ta-

h

The default implementation of libtnc_logMessage() provided with libtnc simply logs
the message and arguments to stderr using vfprintf(). severity is ignored. If the cal
application defines it own libtnc_logMessage(), it will override the default implemen
tion.

5.0 IF-IMV

libtnc implements the following C binding calls to and from IMVs as required by IF-
IMV:

• TNC_IMV_Initialize

• TNC_IMV_NotifyConnectionChange

• TNC_IMV_ReceiveMessage

• TNC_IMV_BatchEnding

• TNC_IMV_Terminate

• TNC_IMV_ProvideBindFunction

• TNC_TNCS_ReportMessageTypes

• TNC_TNCS_BindFunction

• TNC_TNCS_RequestHandshakeRetry

• TNC_TNCS_ProvideRecommendation

• TNC_TNCS_SendMessage

• TNC_TNCS_GetAttribute

• TNC_TNCS_SetAttribute

5.1 C Function Calls

A number of C functions are available to load a set of IMVs and to interoperate wit
them:

5.1.1 libtnc_imv_load_config

int libtnc_imv_load_config(const char* filename)

5.1.2 libtnc_imv_load_std_config

int libtnc_imv_load_std_config()

5.1.3 libtnc_imv_load_modules

TNC_Result libtnc_imv_load_modules
(const char* filenames[],
TNC_UInt32 numfiles)

5.1.4 libtnc_imv_unload

TNC_Result libtnc_imv_unload()
libtnc 5 of 19

IF-TNCCS TNCC

.

e

5.1.5 libtnc_imv_NotifyConnectionChange

TNC_Result libtnc_imv_NotifyConnectionChange
(TNC_ConnectionID connectionID,
TNC_ConnectionState newState)

5.1.6 libtnc_imv_SolicitRecommendation

TNC_Result libtnc_imv_SolicitRecommendation
(TNC_ConnectionID connectionID)

5.1.7 libtnc_imv_ReceiveMessage

TNC_Result libtnc_imv_ReceiveMessage
(TNC_ConnectionID connectionID,
TNC_BufferReference messageBuffer,
TNC_UInt32 messageLength,
TNC_MessageType messageType)

5.1.8 libtnc_imv_BatchEnding

TNC_Result libtnc_imv_BatchEnding
(TNC_ConnectionID connectionID)

5.1.9 libtnc_imv_Terminate

TNC_Result libtnc_imv_Terminate()

5.2 Vendor Extensions

5.2.1 TNC_9048_LogMessage
If the IMC requests a binding for this function, it will be given a pointer to a logging
function which can be supplied by the calling application, as described in
“TNC_9048_LogMessage” on page 4

6.0 IF-TNCCS TNCC

This API implements the fuunctions required by IF-TNCCS on the TNC Client side

6.1 C Bindings for calls into TNCC

6.1.1 libtnc_tncc_Initialize

TNC_Result libtnc_tncc_Initialize(const char* filename)

Alternative to libtnc_tncc_InitializeStd. Reads the list of IMCs from the given filenam
(even on Windows)

6.1.2 libtnc_tncc_InitializeStd

TNC_Result libtnc_tncc_InitializeStd()
6 of 19 libtnc

IF-TNCCS TNCC

s

r to an
d to
own

)
y

Initialize the TNCC and IMC layers. Reads the list of IMCs from the standard place
according to IF-IMC. On Windows, reads from the Registry at HKLM\SOFT-
WARE\Trusted Computing Group\TNC\IMCs. On Unix, reads /etc/tnc_config

6.1.3 libtnc_tncc_PreferredLanguage

TNC_Result libtnc_tncc_PreferredLanguage(const char* language)

Sets the clients preferred language.

6.1.4 libtnc_tncc_Terminate

TNC_Result libtnc_tncc_Terminate()

Terminates the TNCC layer and unloads all IMCs.

6.1.5 libtnc_tncc_CreateConnection

libtnc_tncc_connection*
libtnc_tncc_CreateConnection(void* appData)

Creates a new connection. The returned pointer should be considered as a pointe
opaque structure. Returns NULL on failure. The resulting pointer should be passe
other libtnc_tncc calls. The appData may be used by the applicaiton to associate its
data with a libtnc_tncc_connection. It can be recovered with
libtnc_tncc_ConnectionAppData() and is not used by the TNCC internals.

6.1.6 libtnc_tncc_ConnectionAppData

void* libtnc_tncc_ConnectionAppData
(libtnc_tncc_connection* conn)

Recover the appData that was passed to libtnc_tncc_CreateConnection().

6.1.7 libtnc_tncc_DeleteConnection

TNC_ConnectionID libtnc_tncc_DeleteConnection
(libtnc_tncc_connection* conn)

Delete a previously established connection.

6.1.8 libtnc_tncc_BeginSession

TNC_Result libtnc_tncc_BeginSession
(libtnc_tncc_connection* conn)

Start a new session on a previously created connection. Calls
libtnc_imc_NotifyConnectionChange(TNC_CONNECTION_STATE_CREATE) and
libtnc_imc_NotifyConnectionChange(TNC_CONNECTION_STATE_HANDSHAKE
of the IMCs, which will usually trigger the transmission of the first IF-TNCC batch b
calling TNC_TNCC_SendBatch
libtnc 7 of 19

IF-TNCCS TNCC

sed to

he

m-
CS,

an

s

6.1.9 libtnc_tncc_ReceiveBatch

TNC_Result libtnc_tncc_ReceiveBatch
(libtnc_tncc_connection* conn,
const char* messageBuffer,
size_t messageLength)

Passes a message batch to the TNCC. The messages within the batch will be pas
IMCs that have registered interest in those types of message. You must call
libtnc_tncc_EndBatch() afterwards in order to trigger any messages to be sent to t
TNCS.

6.2 C Bindings for calls made out by TNCC

The following function calls will be made by TNCC in response to activities by the
IMCs and IF-IMC layer. The calling application is required to implement them:

6.2.1 TNC_TNCC_RequestHandshakeRetry

TNC_Result TNC_TNCC_RequestHandshakeRetry
(TNC_IMCID imcID,
TNC_ConnectionID connectionID,
TNC_RetryReason reason)

Called if the IMV layer determines the need to redo the TNC handshake.

6.2.2 TNC_TNCC_SendBatch

TNC_Result TNC_TNCC_SendBatch
(libtnc_tncc_connection* conn,
const char* messageBuffer,
size_t messageLength)

Called by the TNCC layer from within libtnc_tncc_EndBatch() in order to send a co
pleted batch to the TNCS server. You must implment this to pass the batch to the TN
where it would be passed to libtnc_tncs_ReceiveBatch().

6.2.3 libtnc_tncc_BindFunction

TNC_Result libtnc_tncc_BindFunction
(TNC_IMCID imcID,
char *functionName,
void **pOutfunctionPointer)

This function is called by TNC_TNCC_BindFunction when an IMC wish to discover
address of a function it wishes to call. The default implementation just returns
TNC_RESULT_INVALID_PARAMETER, but it may be overridden by the calling
application to provide its own implementations of IMC functions or to add new one
that the IMC may call.
8 of 19 libtnc

IF-TNCCS TNCS

will

n-

lica-

 layer
es
by

client

e.

e

6.2.4 libtnc_logMessage

TNC_Result libtnc_logMessage
(TNC_UInt32 severity,
const char* format, ...)

The default implementation logs the message to stderr. The default implementation
be linked if the calling application does not provide an implementation.

6.3 Coding a TNCC Client

A typical TNCC client will usually initialize the TNCC and IMC layers, loading all the
configred IMCs at startup:

libtnc_tncc_InitializeStd();
libtnc_tncc_PreferredLanguage("en");

The clinet application will usually make at the beginning of a new TNCC-TNCS co
nection:

myImcConn = libtnc_tncc_CreateConnection(NULL);
libtnc_tncc_BeginSession(myImcConn);

Note: During the call to libtnc_tncc_BeginSession, TNC_TNCC_SendBatch() will
probably be called to send the first batch of messages to the TNCS. The client app
tion must implement the transmission and delivery of the batch to the TNCS.

Whenever a messasge batch is received from the TNCS, it is passed to the TNCC
with the following code. During a TNC handshake there may be a number of batch
received. The receipt of a bacth will usually trigger the transmission of a reply batch
calling TNC_TNCC_SendBatch().

libtnc_tncc_ReceiveBatch(myImcConn,
messageBuffer, messageLength);

After the TNC handshake is complete and network access has been granted, the
application calls:

libtnc_tncc_DeleteConnection(myImcConn);

7.0 IF-TNCCS TNCS

This API implements the fuunctions required by IF-TNCCS on the TNC Server sid

7.1 C Bindings for calls into TNCS

7.1.1 libtnc_tncs_Initialize

TNC_Result libtnc_tncs_Initialize(const char* filename)

Alternative to libtnc_tncs_InitializeStd. Reads the list of IMVs from the given filenam
(even on Windows)
libtnc 9 of 19

IF-TNCCS TNCS

s

r to an
d to
own

e of:

m-

tion
7.1.2 libtnc_tncs_InitializeStd

TNC_Result libtnc_tncs_InitializeStd()

Initialize the TNCS and IMV layers. Reads the list of IMVs from the standard place
according to IF-IMC. On Windows, reads from the Registry at HKLM\SOFT-
WARE\Trusted Computing Group\TNC\IMVs. On Unix, reads /etc/tnc_config

7.1.3 libtnc_tncs_Terminate

TNC_Result libtnc_tncs_Terminate()

Terminates the TNCS layer and unloads all IMVs.

7.1.4 libtnc_tncs_CreateConnection

libtnc_tncs_connection* libtnc_tncs_CreateConnection
(void* appData)

Creates a new connection. The returned pointer should be considered as a pointe
opaque structure. Returns NULL on failure. The resulting pointer should be passe
other libtnc_tncs calls. The appData may be used by the application to associate its
data with a libtnc_tncs_connection. It can be recovered with
libtnc_tncs_ConnectionAppData() and is not used by the TNCS internals.

7.1.5 libtnc_tncs_ConnectionAppData

void* libtnc_tncs_ConnectionAppData
(libtnc_tncs_connection* conn)

Recover the appData that was passed to libtnc_tncs_CreateConnection().

7.1.6 libtnc_tncs_SetRecommendationPolicy

int libtnc_tncs_SetRecommendationPolicy
(libtnc_tncs_connection* conn, int policy)

Sets the recommendation policy to be implemented by the TNCS layer. May be on

• LIBTNC_TNCS_RECOMMENDATION_POLICY_ALL
The default. All IMVs must make the same recommendation before a final reco
mendation will be made by TNCS.

• LIBTNC_TNCS_RECOMMENDATION_POLICY_ANY
At least one IMV must make a recommendation. The least liberal recommenda
will be adopted as the final recommendation.

7.1.7 libtnc_tncs_DeleteConnection

TNC_ConnectionID libtnc_tncs_DeleteConnection
(libtnc_tncs_connection* conn)

Delete a previously established connection.
10 of 19 libtnc

IF-TNCCS TNCS

sed to

he

,

7.1.8 libtnc_tncs_BeginSession

TNC_Result libtnc_tncs_BeginSession
(libtnc_tncs_connection* conn)

Start a new session on a previously created connection.

7.1.9 libtnc_tncs_ReceiveBatch

TNC_Result libtnc_tncs_ReceiveBatch
(libtnc_tncs_connection* conn,
const char* messageBuffer,
size_t messageLength)

Passes a message batch to the TNCS. The messages within the batch will be pas
IMVs that have registered interest in those types of message. You must call
libtnc_tncs_EndBatch() afterwards in order to trigger any messages to be sent to t
TNCC.

7.1.10 libtnc_tncs_HaveRecommendation

TNC_Result libtnc_tncs_HaveRecommendation
(libtnc_tncs_connection* conn,
TNC_IMV_Action_Recommendation* recommendation,
TNC_IMV_Evaluation_Result* evaluation)

If the IMV layer has a made a recommendation, returns TNC_RESULT_SUCCESS
and (if the pointers are not NULL) sets the contents of therecommendation andevalua-
tion.

7.2 C Bindings for calls made out by TNCS

The following function calls will be made by TNCS in response to activities by the
IMVs and IF-IMV layer. The calling application is required to implement them:

7.2.1 TNC_TNCS_RequestHandshakeRetry

TNC_Result TNC_TNCS_RequestHandshakeRetry
(TNC_IMVID imvID,
TNC_ConnectionID connectionID,
TNC_RetryReason reason)

Called if the IMV layer determines the need to redo the TNC handshake.

7.2.2 TNC_TNCS_SetAttribute

TNC_Result TNC_TNCS_SetAttribute
(TNC_IMVID imvID,
TNC_ConnectionID connectionID,
TNC_AttributeID attributeID,
TNC_UInt32 bufferLength,
TNC_BufferReference buffer)
libtnc 11 of 19

IF-TNCCS TNCS

 if

 if

m-
CC,

er

s

will
Set the value of an attribute. There is a default implementation which will be linked
the application does not define this function.

7.2.3 TNC_TNCS_GetAttribute

TNC_Result TNC_TNCS_GetAttribute
(TNC_IMVID imvID,
TNC_ConnectionID connectionID,
TNC_AttributeID attributeID,
TNC_UInt32 bufferLength,
TNC_BufferReference buffer,
TNC_UInt32 *pOutValueLength)

Get the value of an attribute. There is a default implementation which will be linked
the application does not define this function.

7.2.4 TNC_TNCS_SendBatch

TNC_Result TNC_TNCS_SendBatch
(libtnc_tncs_connection* conn,
const char* messageBuffer,
size_t messageLength)

Called by the TNCS layer from within libtnc_tncs_EndBatch() in order to send a co
pleted batch to the TNCC client. You must implment this to pass the batch to the TN
where it would be passed to libtnc_tncc_ReceiveBatch().

7.2.5 libtnc_tncs_BindFunction

TNC_Result libtnc_tncc_BindFunction
(TNC_IMVID imvID,
char *functionName,
void **pOutfunctionPointer)

This function is called by TNC_TNCS_BindFunction when an IMV wishes to discov
an address of a function it wishes to call. The default implementation just returns
TNC_RESULT_INVALID_PARAMETER, but it may be overridden by the calling
application to provide its own implementations of IMV functions or to add new one
that the IMV may call.

7.2.6 libtnc_logMessage

TNC_Result libtnc_logMessage
(TNC_UInt32 severity,
const char* format, ...)

The default implementation logs the message to stderr. The default implementation
be linked if the calling application does not provide an implementation.

7.3 Coding a TNCS Server

A typical TNCC client will usually initialize the TNCC and IMC layers, loading all the
configred IMCs at startup:
12 of 19 libtnc

OSC-IMC

n-

 layer
es
by

om-

t,

 be
libtnc_tncs_InitializeStd();

The server application will usually make at the beginning of a new TNCC-TNCS co
nection:

myImvConn = libtnc_tncv_CreateConnection(NULL);
libtnc_tncv_BeginSession(myImvConn);

Whenever a messasge batch is received from the TNCS, it is passed to the TNCC
with the following code. During a TNC handshake there may be a number of batch
received. The receipt of a batch will usually trigger the transmission of a reply batch
calling TNC_TNCC_SendBatch().

libtnc_tncc_ReceiveBatch(myImcConn,
messageBuffer, messageLength);

During the call to libtnc_tncc_ReceiveBatch(), the TNCS layer may make a final rec
mendation about whether or not to grant access to the client. If so, a call to
libtnc_tncs_HaveRecommendation will return true:

if (libtnc_tncs_HaveRecommendation
 (myImvConn, recP, evalP) == TNC_RESULT_SUCCESS)
{
 // grant the type of access receommended

 // delete the connection
 libtnc_tncs_DeleteConnection(myImvConn);
}

8.0 OSC-IMC

This is a fully functional IMC for Windows and Unix. It works with OSC-IMV to
implement a simple but complete TNC posture assessment system. OSC-IMC can
answer a number of simple queries sent by OSC-IMV dueing a posture assesmen
including:

• Host Operating System name and details

• Size, mode and status of a file in the file syetem

• Value and type of registry entries (Windows only)

• Status of installed RPM packages (Unix only)

• Result of an external program (Windows only)

• Display a message to the user

9.0 OSC-IMV

This is a fully functional IMV for Windows and Unix. It works with OSC-IMC to
implement a simple but complete TNC posture assessment system. OSC-IMV can
libtnc 13 of 19

OSC-IMV

s
be
m-

T
pro-

r can

on-

ly
hat
ted

the
ther
ults

ith
ents:
configured with a policy file, allowing the system administrator to impose arbitrarily
complicated posture assesment policies for Windows and Unix clients.

9.1 Policy File

When OSC-IMC is loaded by libtnc or any other TNC compliant IF-IMV layer, it read
a file that tells it the policy to enforce on OSC-IMC equipped clients. OSC-IMC must
installed on the clinet beforehand, and the client must be configured with a TNC co
pliant supplicant.

OSC-IMV on the server then initiates a conversation with OSC-IMC on the client. I
sends queries to OSC-IMC which replies with the requested data. At the end of this
cess, OSC-IMV make arecommendationabout whether and how to permit the client to
connect to the network.

The Policy File describes what conditions must exist on the client before the serve
issue ACCEPT, ISOLATE or NO_ACCESS recommendations.

The default Policy File is:

• /etc/osc_imv_policy.cfg (Unix)

• C:\osc_imv_policy.cfg (Windows)

The name of the policy file can be altered with the OSC_IMV_POLICY_FILE envir
ment variable.

9.2 Policy File Syntax

The syntax of the policy file is described below.

A fundamental idea in the policy file is the idea of ‘Functions’. A Function gets data
from the client and allows it to be tested in Policy File in the server. A function will on
get its value from the client once, when it is first required. Thereafter, if the value of t
function is required again, it cached value will be used. The Policy File is reevalua
after each set of data is gor form the clinet until either a recommendation is made by
policy file or until the client or server has no more TNC messages to send to the o
side, in which case a ‘No Recommendation’ will be determined, which generally res
in access being denied.

The file format is generally froee form. White space is ignored and lines beginning w
a hash ‘#’ are also ignored as comments. Teh file consists of sequences of Statem

9.3 Statements

9.3.1 recommend

recommend recommendation

Whererecommendation can be one of

• ALLOW
14 of 19 libtnc

OSC-IMV

n a
 it

ts are
g or if

ren-

d, and
par-
• ISOLATE

• NO_ACCESS

• NO_RECOMMENDATION

9.3.2 usermessage

usermessage ’ message ’

Causesmessage to be displayed on the client computer if possible.

9.3.3 log

log severity ’ message ’

Causes message to be logged in the server. If the IF-IMV interface supports
TNC_9048_LogMessaage, that will be called to log the message (this may result i
logging function being called in the calling application, if so configured). Otherwise
will be printed to stderr.

Severity may be one of:

• ERR

• WARNING

• NOTICE

• INFO

• DEBUG

9.3.4 if

if (predicate) { statements }

If the predicate evaluates to true, then the statements enclosed in the curly bracke
executed. Statements may consist of any number of recommend, usermessage, lo
statements.

Predicate may be one or more function tests, joined by ‘and’ ‘or’ or enclosed in pa
theses.

9.4 Functions

A function test takes the form:

system . substem (’ arg ’) op ’ value ’

System and subsystem are predefined names of the types of data that can be retrie
arg may indicate exactly which value to get. value is a literal string, and op is a com
ison operator from the set:

• eq

• ==
libtnc 15 of 19

OSC-IMV

e as

tVer-

in-

rno
• <

• >

• contains

The following systems are supported:

9.4.1 System
This gets information about the client’s host operating system.

On Unix, the following subsystems are available. They come from the same sourc
uname() in the client machine.

• System.name()
Typically ‘Linux’ or ‘SunOS’ etc.

• System.nodename()

• System.release()

• System.version()

• System.machine()

• System.lang()

• System.user()

On Windows, the following subsystems are available. The data is retrived using Ge
sionEx().

• System.name()
Evaluates to ‘Windows’

• System.majorversion()

• System.minorversion()

• System.buildnumber()

• System.platformid()

• System.csdversion()

• System.servicepackmajor()

• System.servicepackminor()

• System.suitemask()

• System.producttype()

9.4.2 File
This gets information about a file on the client’s file system. It is available for both W
dows and Unix clients.

The following subsystems are available:

• File.status(‘filename’)
If the file exists ‘0’ (and .size and .mode will also be available. Otherwise the er
from attempting to stat the file.
16 of 19 libtnc

OSC-IMV

ts.

not

ings
A-

ly

lled.

nly

nd,
o it.

net-

nts.

nts.
• File.size(‘filename’)
The size of the file in bytes, if the file exists.

• File.mode(‘filename’)
The protection mode of the file, if the file exists.

9.4.3 Registry
This gets information from the client’s registry. It is available only for Windows clien

The following subsystems are available:

• Registry.type(‘registrykey’)
An integer representing the type of the data in the key, if it exists. If the key does
exist, set to -1.

• Registry.value(‘registrykey’)
The stringified value of the key. Integer keys are converted to integer strings. Str
are returned verbatim. Other types are not converted and result in the value ‘UN
BLETOCONVERT’.

9.4.4 Package
This gets information about RPM packages installed on the client. It is available on
for Unix clients.

The following subsystems are available:

• Package.status(‘packagename’)
The return value from the RPM query command. 0 means the package is insta
Other values indicate the package is not installed.

• Package.version(‘packagename’)
The version number of the installed version ofpackagename.

9.4.5 Extcommand
Runs an external command on the client with configurable arguments. Available o
for Windows clients.

It is not possible to control exactly which program is run on the client bythis comma
since that is hardwired into OSC-IMC, but you can control the arguments passed t

It is common to use this command with the wzccmd.exe program from Cloudpath
works to evaluate the status of the firewall.

The following subsystems are available:

• Extcommand.status(‘extcommand args’)
Runs the external program on the client with the specified command line argume
Evaluates to the return status if theexternal program.

• Extcommand.result(‘extcommand args’)
Runs the external program on the client with the specified command line argume
Evaluates to the output on stdout printed by the external program.
libtnc 17 of 19

Sample IMC/IMV

app-

nd

s for
9.5 Examples

Some simple examples of Policy Files. They illustrate the syntax only and are not
propriate for production.

9.5.1 Example 1

Always let Linux in
if (System.name() eq ‘Linux’)
{
 recommend ALLOW
}
Only let windows in if the firewall is running
if (System.name() eq ‘Windows’)
{
 if (Extcommand.result(’FIREWALL XP CHECK_ANY’) == ’1’)
 {
 recommend ALLOW
 }
}

9.5.2 Example 2

if (System.name() eq ‘Windows’
and Registry.value(‘SOFTWARE\Xyz\Version’) < 11)
{
 recommend ISOLATE
 # A comment
 log WARNING ‘they are running an old version of XYZ’
}

9.5.3 Example 3

if (File.status(‘/some/file’) == ‘0’
 or (File.status(‘/some/other/file’) == ‘0’
 and File.status(‘/yet/another/file’) == ‘0’))
{
 recommend NO_ACCESS
 usermessage ‘Looks like you have been hacked by a rootkit’
}

10.0 Sample IMC/IMV

The directory src/sample contains a skeleton IMC and IMV pair in sample_imc.c a
sample_imv.c. You may want to use these as a starting point for your own IMC/IMV
pair. AS they stand they do nothing useful except compile and provide placeholder
functions that you will be required to implement.

11.0 Perl bindings Interface-TNC

This subdirectory contains a Perl wrapper for the libtnc API.
18 of 19 libtnc

Copyright and License

i-

tion
ho
trib-
Ver-
l

re
To build it:

cd Interface-TNC
tar zxvf Interface-TNC-1.0.tar.gz
cd Interface-TNC-1.0
perl Makefile.PL
make
make install

12.0 Copyright and License

This software is Copyright (C) 2008 Mike McCauley. Use is subject to license cond
tions. The main licensing options available are GPL V2 or Commercial:

12.1 Open Source Licensing GPL V2

This is the appropriate option if you want to share the source code of your applica
with everyone you distribute it to, and you also want to give them the right to share w
uses it. If you wish to use this software under Open Source Licensing, you must con
ute all your source code to the open source community in accordance with the GPL
sion 2 when your application is distributed. See http://www.gnu.org/copyleft/gpl.htm

12.2 Commercial Licensing

This is the appropriate option if you are creating proprietary applications and you a
not prepared to distribute and share the source code of your application. Contact
info@open.com.au for details.
libtnc 19 of 19

	1.0 Introduction
	2.0 Coverage
	3.0 Building and Installing
	3.1 Unix
	3.2 Windows

	4.0 IF-IMC
	4.1 C Function Calls
	4.1.1 libtnc_imc_load_config
	4.1.2 libtnc_imc_load_std_config
	4.1.3 llibtnc_imc_load_modules
	4.1.4 libtnc_imc_unload
	4.1.5 libtnc_imc_NotifyConnectionChange
	4.1.6 libtnc_imc_BeginHandshake
	4.1.7 libtnc_imc_ReceiveMessage
	4.1.8 libtnc_imc_BatchEnding
	4.1.9 libtnc_imc_Terminate

	4.2 Vendor Extensions
	4.2.1 TNC_9048_LogMessage

	5.0 IF-IMV
	5.1 C Function Calls
	5.1.1 libtnc_imv_load_config
	5.1.2 libtnc_imv_load_std_config
	5.1.3 libtnc_imv_load_modules
	5.1.4 libtnc_imv_unload
	5.1.5 libtnc_imv_NotifyConnectionChange
	5.1.6 libtnc_imv_SolicitRecommendation
	5.1.7 libtnc_imv_ReceiveMessage
	5.1.8 libtnc_imv_BatchEnding
	5.1.9 libtnc_imv_Terminate

	5.2 Vendor Extensions
	5.2.1 TNC_9048_LogMessage

	6.0 IF-TNCCS TNCC
	6.1 C Bindings for calls into TNCC
	6.1.1 libtnc_tncc_Initialize
	6.1.2 libtnc_tncc_InitializeStd
	6.1.3 libtnc_tncc_PreferredLanguage
	6.1.4 libtnc_tncc_Terminate
	6.1.5 libtnc_tncc_CreateConnection
	6.1.6 libtnc_tncc_ConnectionAppData
	6.1.7 libtnc_tncc_DeleteConnection
	6.1.8 libtnc_tncc_BeginSession
	6.1.9 libtnc_tncc_ReceiveBatch

	6.2 C Bindings for calls made out by TNCC
	6.2.1 TNC_TNCC_RequestHandshakeRetry
	6.2.2 TNC_TNCC_SendBatch
	6.2.3 libtnc_tncc_BindFunction
	6.2.4 libtnc_logMessage

	6.3 Coding a TNCC Client

	7.0 IF-TNCCS TNCS
	7.1 C Bindings for calls into TNCS
	7.1.1 libtnc_tncs_Initialize
	7.1.2 libtnc_tncs_InitializeStd
	7.1.3 libtnc_tncs_Terminate
	7.1.4 libtnc_tncs_CreateConnection
	7.1.5 libtnc_tncs_ConnectionAppData
	7.1.6 libtnc_tncs_SetRecommendationPolicy
	7.1.7 libtnc_tncs_DeleteConnection
	7.1.8 libtnc_tncs_BeginSession
	7.1.9 libtnc_tncs_ReceiveBatch
	7.1.10 libtnc_tncs_HaveRecommendation

	7.2 C Bindings for calls made out by TNCS
	7.2.1 TNC_TNCS_RequestHandshakeRetry
	7.2.2 TNC_TNCS_SetAttribute
	7.2.3 TNC_TNCS_GetAttribute
	7.2.4 TNC_TNCS_SendBatch
	7.2.5 libtnc_tncs_BindFunction
	7.2.6 libtnc_logMessage

	7.3 Coding a TNCS Server

	8.0 OSC-IMC
	9.0 OSC-IMV
	9.1 Policy File
	9.2 Policy File Syntax
	9.3 Statements
	9.3.1 recommend
	9.3.2 usermessage
	9.3.3 log
	9.3.4 if

	9.4 Functions
	9.4.1 System
	9.4.2 File
	9.4.3 Registry
	9.4.4 Package
	9.4.5 Extcommand

	9.5 Examples
	9.5.1 Example 1
	9.5.2 Example 2
	9.5.3 Example 3

	10.0 Sample IMC/IMV
	11.0 Perl bindings Interface-TNC
	12.0 Copyright and License
	12.1 Open Source Licensing GPL V2
	12.2 Commercial Licensing

