Z3
Public Member Functions | Data Fields
ModelRef Class Reference
+ Inheritance diagram for ModelRef:

Public Member Functions

def __init__ (self, m, ctx)
 
def __del__ (self)
 
def __repr__ (self)
 
def sexpr (self)
 
def eval (self, t, model_completion=False)
 
def evaluate (self, t, model_completion=False)
 
def __len__ (self)
 
def get_interp (self, decl)
 
def num_sorts (self)
 
def get_sort (self, idx)
 
def sorts (self)
 
def get_universe (self, s)
 
def __getitem__ (self, idx)
 
def decls (self)
 
def translate (self, target)
 
def __copy__ (self)
 
def __deepcopy__ (self, memo={})
 
- Public Member Functions inherited from Z3PPObject
def use_pp (self)
 

Data Fields

 model
 
 ctx
 

Detailed Description

Model/Solution of a satisfiability problem (aka system of constraints).

Definition at line 5964 of file z3py.py.

Constructor & Destructor Documentation

◆ __init__()

def __init__ (   self,
  m,
  ctx 
)

Definition at line 5967 of file z3py.py.

5967  def __init__(self, m, ctx):
5968  assert ctx is not None
5969  self.model = m
5970  self.ctx = ctx
5971  Z3_model_inc_ref(self.ctx.ref(), self.model)
5972 
void Z3_API Z3_model_inc_ref(Z3_context c, Z3_model m)
Increment the reference counter of the given model.

◆ __del__()

def __del__ (   self)

Definition at line 5973 of file z3py.py.

5973  def __del__(self):
5974  if self.ctx.ref() is not None:
5975  Z3_model_dec_ref(self.ctx.ref(), self.model)
5976 
void Z3_API Z3_model_dec_ref(Z3_context c, Z3_model m)
Decrement the reference counter of the given model.

Member Function Documentation

◆ __copy__()

def __copy__ (   self)

Definition at line 6234 of file z3py.py.

6234  def __copy__(self):
6235  return self.translate(self.ctx)
6236 

◆ __deepcopy__()

def __deepcopy__ (   self,
  memo = {} 
)

Definition at line 6237 of file z3py.py.

6237  def __deepcopy__(self, memo={}):
6238  return self.translate(self.ctx)
6239 

◆ __getitem__()

def __getitem__ (   self,
  idx 
)
If `idx` is an integer, then the declaration at position `idx` in the model `self` is returned. If `idx` is a declaration, then the actual interpretation is returned.

The elements can be retrieved using position or the actual declaration.

>>> f = Function('f', IntSort(), IntSort())
>>> x = Int('x')
>>> s = Solver()
>>> s.add(x > 0, x < 2, f(x) == 0)
>>> s.check()
sat
>>> m = s.model()
>>> len(m)
2
>>> m[0]
x
>>> m[1]
f
>>> m[x]
1
>>> m[f]
[else -> 0]
>>> for d in m: print("%s -> %s" % (d, m[d]))
x -> 1
f -> [else -> 0]

Definition at line 6163 of file z3py.py.

6163  def __getitem__(self, idx):
6164  """If `idx` is an integer, then the declaration at position `idx` in the model `self` is returned. If `idx` is a declaration, then the actual interpretation is returned.
6165 
6166  The elements can be retrieved using position or the actual declaration.
6167 
6168  >>> f = Function('f', IntSort(), IntSort())
6169  >>> x = Int('x')
6170  >>> s = Solver()
6171  >>> s.add(x > 0, x < 2, f(x) == 0)
6172  >>> s.check()
6173  sat
6174  >>> m = s.model()
6175  >>> len(m)
6176  2
6177  >>> m[0]
6178  x
6179  >>> m[1]
6180  f
6181  >>> m[x]
6182  1
6183  >>> m[f]
6184  [else -> 0]
6185  >>> for d in m: print("%s -> %s" % (d, m[d]))
6186  x -> 1
6187  f -> [else -> 0]
6188  """
6189  if _is_int(idx):
6190  if idx >= len(self):
6191  raise IndexError
6192  num_consts = Z3_model_get_num_consts(self.ctx.ref(), self.model)
6193  if (idx < num_consts):
6194  return FuncDeclRef(Z3_model_get_const_decl(self.ctx.ref(), self.model, idx), self.ctx)
6195  else:
6196  return FuncDeclRef(Z3_model_get_func_decl(self.ctx.ref(), self.model, idx - num_consts), self.ctx)
6197  if isinstance(idx, FuncDeclRef):
6198  return self.get_interp(idx)
6199  if is_const(idx):
6200  return self.get_interp(idx.decl())
6201  if isinstance(idx, SortRef):
6202  return self.get_universe(idx)
6203  if z3_debug():
6204  _z3_assert(False, "Integer, Z3 declaration, or Z3 constant expected")
6205  return None
6206 
Z3_func_decl Z3_API Z3_model_get_func_decl(Z3_context c, Z3_model m, unsigned i)
Return the declaration of the i-th function in the given model.
Z3_func_decl Z3_API Z3_model_get_const_decl(Z3_context c, Z3_model m, unsigned i)
Return the i-th constant in the given model.
def is_const(a)
Definition: z3py.py:1164
unsigned Z3_API Z3_model_get_num_consts(Z3_context c, Z3_model m)
Return the number of constants assigned by the given model.
def z3_debug()
Definition: z3py.py:58

◆ __len__()

def __len__ (   self)
Return the number of constant and function declarations in the model `self`.

>>> f = Function('f', IntSort(), IntSort())
>>> x = Int('x')
>>> s = Solver()
>>> s.add(x > 0, f(x) != x)
>>> s.check()
sat
>>> m = s.model()
>>> len(m)
2

Definition at line 6039 of file z3py.py.

6039  def __len__(self):
6040  """Return the number of constant and function declarations in the model `self`.
6041 
6042  >>> f = Function('f', IntSort(), IntSort())
6043  >>> x = Int('x')
6044  >>> s = Solver()
6045  >>> s.add(x > 0, f(x) != x)
6046  >>> s.check()
6047  sat
6048  >>> m = s.model()
6049  >>> len(m)
6050  2
6051  """
6052  return int(Z3_model_get_num_consts(self.ctx.ref(), self.model)) + int(Z3_model_get_num_funcs(self.ctx.ref(), self.model))
6053 
unsigned Z3_API Z3_model_get_num_consts(Z3_context c, Z3_model m)
Return the number of constants assigned by the given model.
unsigned Z3_API Z3_model_get_num_funcs(Z3_context c, Z3_model m)
Return the number of function interpretations in the given model.

◆ __repr__()

def __repr__ (   self)

Definition at line 5977 of file z3py.py.

5977  def __repr__(self):
5978  return obj_to_string(self)
5979 

◆ decls()

def decls (   self)
Return a list with all symbols that have an interpretation in the model `self`.
>>> f = Function('f', IntSort(), IntSort())
>>> x = Int('x')
>>> s = Solver()
>>> s.add(x > 0, x < 2, f(x) == 0)
>>> s.check()
sat
>>> m = s.model()
>>> m.decls()
[x, f]

Definition at line 6207 of file z3py.py.

6207  def decls(self):
6208  """Return a list with all symbols that have an interpretation in the model `self`.
6209  >>> f = Function('f', IntSort(), IntSort())
6210  >>> x = Int('x')
6211  >>> s = Solver()
6212  >>> s.add(x > 0, x < 2, f(x) == 0)
6213  >>> s.check()
6214  sat
6215  >>> m = s.model()
6216  >>> m.decls()
6217  [x, f]
6218  """
6219  r = []
6220  for i in range(Z3_model_get_num_consts(self.ctx.ref(), self.model)):
6221  r.append(FuncDeclRef(Z3_model_get_const_decl(self.ctx.ref(), self.model, i), self.ctx))
6222  for i in range(Z3_model_get_num_funcs(self.ctx.ref(), self.model)):
6223  r.append(FuncDeclRef(Z3_model_get_func_decl(self.ctx.ref(), self.model, i), self.ctx))
6224  return r
6225 
expr range(expr const &lo, expr const &hi)
Definition: z3++.h:3370
Z3_func_decl Z3_API Z3_model_get_func_decl(Z3_context c, Z3_model m, unsigned i)
Return the declaration of the i-th function in the given model.
Z3_func_decl Z3_API Z3_model_get_const_decl(Z3_context c, Z3_model m, unsigned i)
Return the i-th constant in the given model.
unsigned Z3_API Z3_model_get_num_consts(Z3_context c, Z3_model m)
Return the number of constants assigned by the given model.
unsigned Z3_API Z3_model_get_num_funcs(Z3_context c, Z3_model m)
Return the number of function interpretations in the given model.

◆ eval()

def eval (   self,
  t,
  model_completion = False 
)
Evaluate the expression `t` in the model `self`. If `model_completion` is enabled, then a default interpretation is automatically added for symbols that do not have an interpretation in the model `self`.

>>> x = Int('x')
>>> s = Solver()
>>> s.add(x > 0, x < 2)
>>> s.check()
sat
>>> m = s.model()
>>> m.eval(x + 1)
2
>>> m.eval(x == 1)
True
>>> y = Int('y')
>>> m.eval(y + x)
1 + y
>>> m.eval(y)
y
>>> m.eval(y, model_completion=True)
0
>>> # Now, m contains an interpretation for y
>>> m.eval(y + x)
1

Definition at line 5984 of file z3py.py.

5984  def eval(self, t, model_completion=False):
5985  """Evaluate the expression `t` in the model `self`. If `model_completion` is enabled, then a default interpretation is automatically added for symbols that do not have an interpretation in the model `self`.
5986 
5987  >>> x = Int('x')
5988  >>> s = Solver()
5989  >>> s.add(x > 0, x < 2)
5990  >>> s.check()
5991  sat
5992  >>> m = s.model()
5993  >>> m.eval(x + 1)
5994  2
5995  >>> m.eval(x == 1)
5996  True
5997  >>> y = Int('y')
5998  >>> m.eval(y + x)
5999  1 + y
6000  >>> m.eval(y)
6001  y
6002  >>> m.eval(y, model_completion=True)
6003  0
6004  >>> # Now, m contains an interpretation for y
6005  >>> m.eval(y + x)
6006  1
6007  """
6008  r = (Ast * 1)()
6009  if Z3_model_eval(self.ctx.ref(), self.model, t.as_ast(), model_completion, r):
6010  return _to_expr_ref(r[0], self.ctx)
6011  raise Z3Exception("failed to evaluate expression in the model")
6012 
Z3_bool Z3_API Z3_model_eval(Z3_context c, Z3_model m, Z3_ast t, bool model_completion, Z3_ast *v)
Evaluate the AST node t in the given model. Return true if succeeded, and store the result in v.

Referenced by ModelRef.evaluate().

◆ evaluate()

def evaluate (   self,
  t,
  model_completion = False 
)
Alias for `eval`.

>>> x = Int('x')
>>> s = Solver()
>>> s.add(x > 0, x < 2)
>>> s.check()
sat
>>> m = s.model()
>>> m.evaluate(x + 1)
2
>>> m.evaluate(x == 1)
True
>>> y = Int('y')
>>> m.evaluate(y + x)
1 + y
>>> m.evaluate(y)
y
>>> m.evaluate(y, model_completion=True)
0
>>> # Now, m contains an interpretation for y
>>> m.evaluate(y + x)
1

Definition at line 6013 of file z3py.py.

6013  def evaluate(self, t, model_completion=False):
6014  """Alias for `eval`.
6015 
6016  >>> x = Int('x')
6017  >>> s = Solver()
6018  >>> s.add(x > 0, x < 2)
6019  >>> s.check()
6020  sat
6021  >>> m = s.model()
6022  >>> m.evaluate(x + 1)
6023  2
6024  >>> m.evaluate(x == 1)
6025  True
6026  >>> y = Int('y')
6027  >>> m.evaluate(y + x)
6028  1 + y
6029  >>> m.evaluate(y)
6030  y
6031  >>> m.evaluate(y, model_completion=True)
6032  0
6033  >>> # Now, m contains an interpretation for y
6034  >>> m.evaluate(y + x)
6035  1
6036  """
6037  return self.eval(t, model_completion)
6038 

◆ get_interp()

def get_interp (   self,
  decl 
)
Return the interpretation for a given declaration or constant.

>>> f = Function('f', IntSort(), IntSort())
>>> x = Int('x')
>>> s = Solver()
>>> s.add(x > 0, x < 2, f(x) == 0)
>>> s.check()
sat
>>> m = s.model()
>>> m[x]
1
>>> m[f]
[else -> 0]

Definition at line 6054 of file z3py.py.

6054  def get_interp(self, decl):
6055  """Return the interpretation for a given declaration or constant.
6056 
6057  >>> f = Function('f', IntSort(), IntSort())
6058  >>> x = Int('x')
6059  >>> s = Solver()
6060  >>> s.add(x > 0, x < 2, f(x) == 0)
6061  >>> s.check()
6062  sat
6063  >>> m = s.model()
6064  >>> m[x]
6065  1
6066  >>> m[f]
6067  [else -> 0]
6068  """
6069  if z3_debug():
6070  _z3_assert(isinstance(decl, FuncDeclRef) or is_const(decl), "Z3 declaration expected")
6071  if is_const(decl):
6072  decl = decl.decl()
6073  try:
6074  if decl.arity() == 0:
6075  _r = Z3_model_get_const_interp(self.ctx.ref(), self.model, decl.ast)
6076  if _r.value is None:
6077  return None
6078  r = _to_expr_ref(_r, self.ctx)
6079  if is_as_array(r):
6080  return self.get_interp(get_as_array_func(r))
6081  else:
6082  return r
6083  else:
6084  return FuncInterp(Z3_model_get_func_interp(self.ctx.ref(), self.model, decl.ast), self.ctx)
6085  except Z3Exception:
6086  return None
6087 
def is_const(a)
Definition: z3py.py:1164
def get_as_array_func(n)
Definition: z3py.py:6248
Z3_func_interp Z3_API Z3_model_get_func_interp(Z3_context c, Z3_model m, Z3_func_decl f)
Return the interpretation of the function f in the model m. Return NULL, if the model does not assign...
Z3_ast Z3_API Z3_model_get_const_interp(Z3_context c, Z3_model m, Z3_func_decl a)
Return the interpretation (i.e., assignment) of constant a in the model m. Return NULL,...
def z3_debug()
Definition: z3py.py:58
def is_as_array(n)
Definition: z3py.py:6244

Referenced by ModelRef.__getitem__(), and ModelRef.get_interp().

◆ get_sort()

def get_sort (   self,
  idx 
)
Return the uninterpreted sort at position `idx` < self.num_sorts().

>>> A = DeclareSort('A')
>>> B = DeclareSort('B')
>>> a1, a2 = Consts('a1 a2', A)
>>> b1, b2 = Consts('b1 b2', B)
>>> s = Solver()
>>> s.add(a1 != a2, b1 != b2)
>>> s.check()
sat
>>> m = s.model()
>>> m.num_sorts()
2
>>> m.get_sort(0)
A
>>> m.get_sort(1)
B

Definition at line 6103 of file z3py.py.

6103  def get_sort(self, idx):
6104  """Return the uninterpreted sort at position `idx` < self.num_sorts().
6105 
6106  >>> A = DeclareSort('A')
6107  >>> B = DeclareSort('B')
6108  >>> a1, a2 = Consts('a1 a2', A)
6109  >>> b1, b2 = Consts('b1 b2', B)
6110  >>> s = Solver()
6111  >>> s.add(a1 != a2, b1 != b2)
6112  >>> s.check()
6113  sat
6114  >>> m = s.model()
6115  >>> m.num_sorts()
6116  2
6117  >>> m.get_sort(0)
6118  A
6119  >>> m.get_sort(1)
6120  B
6121  """
6122  if idx >= self.num_sorts():
6123  raise IndexError
6124  return _to_sort_ref(Z3_model_get_sort(self.ctx.ref(), self.model, idx), self.ctx)
6125 
Z3_sort Z3_API Z3_model_get_sort(Z3_context c, Z3_model m, unsigned i)
Return a uninterpreted sort that m assigns an interpretation.

Referenced by ModelRef.sorts().

◆ get_universe()

def get_universe (   self,
  s 
)
Return the interpretation for the uninterpreted sort `s` in the model `self`.

>>> A = DeclareSort('A')
>>> a, b = Consts('a b', A)
>>> s = Solver()
>>> s.add(a != b)
>>> s.check()
sat
>>> m = s.model()
>>> m.get_universe(A)
[A!val!0, A!val!1]

Definition at line 6143 of file z3py.py.

6143  def get_universe(self, s):
6144  """Return the interpretation for the uninterpreted sort `s` in the model `self`.
6145 
6146  >>> A = DeclareSort('A')
6147  >>> a, b = Consts('a b', A)
6148  >>> s = Solver()
6149  >>> s.add(a != b)
6150  >>> s.check()
6151  sat
6152  >>> m = s.model()
6153  >>> m.get_universe(A)
6154  [A!val!0, A!val!1]
6155  """
6156  if z3_debug():
6157  _z3_assert(isinstance(s, SortRef), "Z3 sort expected")
6158  try:
6159  return AstVector(Z3_model_get_sort_universe(self.ctx.ref(), self.model, s.ast), self.ctx)
6160  except Z3Exception:
6161  return None
6162 
Z3_ast_vector Z3_API Z3_model_get_sort_universe(Z3_context c, Z3_model m, Z3_sort s)
Return the finite set of distinct values that represent the interpretation for sort s.
def z3_debug()
Definition: z3py.py:58

Referenced by ModelRef.__getitem__().

◆ num_sorts()

def num_sorts (   self)
Return the number of uninterpreted sorts that contain an interpretation in the model `self`.

>>> A = DeclareSort('A')
>>> a, b = Consts('a b', A)
>>> s = Solver()
>>> s.add(a != b)
>>> s.check()
sat
>>> m = s.model()
>>> m.num_sorts()
1

Definition at line 6088 of file z3py.py.

6088  def num_sorts(self):
6089  """Return the number of uninterpreted sorts that contain an interpretation in the model `self`.
6090 
6091  >>> A = DeclareSort('A')
6092  >>> a, b = Consts('a b', A)
6093  >>> s = Solver()
6094  >>> s.add(a != b)
6095  >>> s.check()
6096  sat
6097  >>> m = s.model()
6098  >>> m.num_sorts()
6099  1
6100  """
6101  return int(Z3_model_get_num_sorts(self.ctx.ref(), self.model))
6102 
unsigned Z3_API Z3_model_get_num_sorts(Z3_context c, Z3_model m)
Return the number of uninterpreted sorts that m assigns an interpretation to.

Referenced by ModelRef.get_sort(), and ModelRef.sorts().

◆ sexpr()

def sexpr (   self)
Return a textual representation of the s-expression representing the model.

Definition at line 5980 of file z3py.py.

5980  def sexpr(self):
5981  """Return a textual representation of the s-expression representing the model."""
5982  return Z3_model_to_string(self.ctx.ref(), self.model)
5983 
Z3_string Z3_API Z3_model_to_string(Z3_context c, Z3_model m)
Convert the given model into a string.

Referenced by Fixedpoint.__repr__(), and Optimize.__repr__().

◆ sorts()

def sorts (   self)
Return all uninterpreted sorts that have an interpretation in the model `self`.

>>> A = DeclareSort('A')
>>> B = DeclareSort('B')
>>> a1, a2 = Consts('a1 a2', A)
>>> b1, b2 = Consts('b1 b2', B)
>>> s = Solver()
>>> s.add(a1 != a2, b1 != b2)
>>> s.check()
sat
>>> m = s.model()
>>> m.sorts()
[A, B]

Definition at line 6126 of file z3py.py.

6126  def sorts(self):
6127  """Return all uninterpreted sorts that have an interpretation in the model `self`.
6128 
6129  >>> A = DeclareSort('A')
6130  >>> B = DeclareSort('B')
6131  >>> a1, a2 = Consts('a1 a2', A)
6132  >>> b1, b2 = Consts('b1 b2', B)
6133  >>> s = Solver()
6134  >>> s.add(a1 != a2, b1 != b2)
6135  >>> s.check()
6136  sat
6137  >>> m = s.model()
6138  >>> m.sorts()
6139  [A, B]
6140  """
6141  return [ self.get_sort(i) for i in range(self.num_sorts()) ]
6142 
expr range(expr const &lo, expr const &hi)
Definition: z3++.h:3370

◆ translate()

def translate (   self,
  target 
)
Translate `self` to the context `target`. That is, return a copy of `self` in the context `target`.

Definition at line 6226 of file z3py.py.

6226  def translate(self, target):
6227  """Translate `self` to the context `target`. That is, return a copy of `self` in the context `target`.
6228  """
6229  if z3_debug():
6230  _z3_assert(isinstance(target, Context), "argument must be a Z3 context")
6231  model = Z3_model_translate(self.ctx.ref(), self.model, target.ref())
6232  return Model(model, target)
6233 
def Model(ctx=None)
Definition: z3py.py:6240
Z3_model Z3_API Z3_model_translate(Z3_context c, Z3_model m, Z3_context dst)
translate model from context c to context dst.
def z3_debug()
Definition: z3py.py:58

Referenced by ModelRef.__copy__(), Solver.__copy__(), ModelRef.__deepcopy__(), and Solver.__deepcopy__().

Field Documentation

◆ ctx

ctx

Definition at line 5970 of file z3py.py.

Referenced by Probe.__call__(), ModelRef.__copy__(), Solver.__copy__(), ModelRef.__deepcopy__(), Statistics.__deepcopy__(), Solver.__deepcopy__(), Fixedpoint.__deepcopy__(), Optimize.__deepcopy__(), ApplyResult.__deepcopy__(), Tactic.__deepcopy__(), Probe.__deepcopy__(), ModelRef.__del__(), Statistics.__del__(), Solver.__del__(), Fixedpoint.__del__(), Optimize.__del__(), ApplyResult.__del__(), Tactic.__del__(), Probe.__del__(), Probe.__eq__(), Probe.__ge__(), ModelRef.__getitem__(), Statistics.__getitem__(), ApplyResult.__getitem__(), Probe.__gt__(), Probe.__le__(), ModelRef.__len__(), Statistics.__len__(), ApplyResult.__len__(), Probe.__lt__(), Probe.__ne__(), Statistics.__repr__(), Fixedpoint.add_cover(), Fixedpoint.add_rule(), Optimize.add_soft(), Tactic.apply(), ApplyResult.as_expr(), Solver.assert_and_track(), Optimize.assert_and_track(), Solver.assert_exprs(), Fixedpoint.assert_exprs(), Optimize.assert_exprs(), Solver.assertions(), Optimize.assertions(), Solver.check(), Optimize.check(), Solver.consequences(), ModelRef.decls(), Solver.dimacs(), ModelRef.eval(), Solver.from_file(), Optimize.from_file(), Solver.from_string(), Optimize.from_string(), Fixedpoint.get_answer(), Fixedpoint.get_assertions(), Fixedpoint.get_cover_delta(), Fixedpoint.get_ground_sat_answer(), ModelRef.get_interp(), Statistics.get_key_value(), Fixedpoint.get_num_levels(), Fixedpoint.get_rule_names_along_trace(), Fixedpoint.get_rules(), Fixedpoint.get_rules_along_trace(), ModelRef.get_sort(), ModelRef.get_universe(), Solver.help(), Fixedpoint.help(), Optimize.help(), Tactic.help(), Solver.import_model_converter(), Statistics.keys(), Optimize.maximize(), Optimize.minimize(), Solver.model(), Optimize.model(), Solver.non_units(), Solver.num_scopes(), ModelRef.num_sorts(), Optimize.objectives(), Solver.param_descrs(), Fixedpoint.param_descrs(), Optimize.param_descrs(), Tactic.param_descrs(), Fixedpoint.parse_file(), Fixedpoint.parse_string(), Solver.pop(), Optimize.pop(), Solver.proof(), Solver.push(), Optimize.push(), Fixedpoint.query(), Fixedpoint.query_from_lvl(), Solver.reason_unknown(), Fixedpoint.reason_unknown(), Optimize.reason_unknown(), Fixedpoint.register_relation(), Solver.reset(), Solver.set(), Fixedpoint.set(), Optimize.set(), Fixedpoint.set_predicate_representation(), ModelRef.sexpr(), Solver.sexpr(), Fixedpoint.sexpr(), Optimize.sexpr(), ApplyResult.sexpr(), Tactic.solver(), Solver.statistics(), Fixedpoint.statistics(), Optimize.statistics(), Solver.to_smt2(), Fixedpoint.to_string(), Solver.trail(), Solver.trail_levels(), ModelRef.translate(), Solver.translate(), Solver.units(), Solver.unsat_core(), Optimize.unsat_core(), and Fixedpoint.update_rule().

◆ model

model