Z3
Public Member Functions
RatNumRef Class Reference
+ Inheritance diagram for RatNumRef:

Public Member Functions

def numerator (self)
 
def denominator (self)
 
def numerator_as_long (self)
 
def denominator_as_long (self)
 
def is_int (self)
 
def is_real (self)
 
def is_int_value (self)
 
def as_long (self)
 
def as_decimal (self, prec)
 
def as_string (self)
 
def as_fraction (self)
 
- Public Member Functions inherited from ArithRef
def sort (self)
 
def __add__ (self, other)
 
def __radd__ (self, other)
 
def __mul__ (self, other)
 
def __rmul__ (self, other)
 
def __sub__ (self, other)
 
def __rsub__ (self, other)
 
def __pow__ (self, other)
 
def __rpow__ (self, other)
 
def __div__ (self, other)
 
def __truediv__ (self, other)
 
def __rdiv__ (self, other)
 
def __rtruediv__ (self, other)
 
def __mod__ (self, other)
 
def __rmod__ (self, other)
 
def __neg__ (self)
 
def __pos__ (self)
 
def __le__ (self, other)
 
def __lt__ (self, other)
 
def __gt__ (self, other)
 
def __ge__ (self, other)
 
- Public Member Functions inherited from ExprRef
def as_ast (self)
 
def get_id (self)
 
def sort_kind (self)
 
def __eq__ (self, other)
 
def __hash__ (self)
 
def __ne__ (self, other)
 
def params (self)
 
def decl (self)
 
def num_args (self)
 
def arg (self, idx)
 
def children (self)
 
- Public Member Functions inherited from AstRef
def __init__ (self, ast, ctx=None)
 
def __del__ (self)
 
def __deepcopy__ (self, memo={})
 
def __str__ (self)
 
def __repr__ (self)
 
def __nonzero__ (self)
 
def __bool__ (self)
 
def sexpr (self)
 
def ctx_ref (self)
 
def eq (self, other)
 
def translate (self, target)
 
def __copy__ (self)
 
def hash (self)
 
- Public Member Functions inherited from Z3PPObject
def use_pp (self)
 

Additional Inherited Members

- Data Fields inherited from AstRef
 ast
 
 ctx
 

Detailed Description

Rational values.

Definition at line 2778 of file z3py.py.

Member Function Documentation

◆ as_decimal()

def as_decimal (   self,
  prec 
)
Return a Z3 rational value as a string in decimal notation using at most `prec` decimal places.

>>> v = RealVal("1/5")
>>> v.as_decimal(3)
'0.2'
>>> v = RealVal("1/3")
>>> v.as_decimal(3)
'0.333?'

Definition at line 2844 of file z3py.py.

2844  def as_decimal(self, prec):
2845  """ Return a Z3 rational value as a string in decimal notation using at most `prec` decimal places.
2846 
2847  >>> v = RealVal("1/5")
2848  >>> v.as_decimal(3)
2849  '0.2'
2850  >>> v = RealVal("1/3")
2851  >>> v.as_decimal(3)
2852  '0.333?'
2853  """
2854  return Z3_get_numeral_decimal_string(self.ctx_ref(), self.as_ast(), prec)
2855 
Z3_string Z3_API Z3_get_numeral_decimal_string(Z3_context c, Z3_ast a, unsigned precision)
Return numeral as a string in decimal notation. The result has at most precision decimal places.

◆ as_fraction()

def as_fraction (   self)
Return a Z3 rational as a Python Fraction object.

>>> v = RealVal("1/5")
>>> v.as_fraction()
Fraction(1, 5)

Definition at line 2865 of file z3py.py.

2865  def as_fraction(self):
2866  """Return a Z3 rational as a Python Fraction object.
2867 
2868  >>> v = RealVal("1/5")
2869  >>> v.as_fraction()
2870  Fraction(1, 5)
2871  """
2872  return Fraction(self.numerator_as_long(), self.denominator_as_long())
2873 

◆ as_long()

def as_long (   self)

Definition at line 2840 of file z3py.py.

2840  def as_long(self):
2841  _z3_assert(self.is_int_value(), "Expected integer fraction")
2842  return self.numerator_as_long()
2843 

Referenced by BitVecNumRef.as_signed_long(), RatNumRef.denominator_as_long(), and RatNumRef.numerator_as_long().

◆ as_string()

def as_string (   self)
Return a Z3 rational numeral as a Python string.

>>> v = Q(3,6)
>>> v.as_string()
'1/2'

Definition at line 2856 of file z3py.py.

2856  def as_string(self):
2857  """Return a Z3 rational numeral as a Python string.
2858 
2859  >>> v = Q(3,6)
2860  >>> v.as_string()
2861  '1/2'
2862  """
2863  return Z3_get_numeral_string(self.ctx_ref(), self.as_ast())
2864 
Z3_string Z3_API Z3_get_numeral_string(Z3_context c, Z3_ast a)
Return numeral value, as a string of a numeric constant term.

Referenced by BitVecNumRef.as_long(), and FiniteDomainNumRef.as_long().

◆ denominator()

def denominator (   self)
Return the denominator of a Z3 rational numeral.

>>> is_rational_value(Q(3,5))
True
>>> n = Q(3,5)
>>> n.denominator()
5

Definition at line 2796 of file z3py.py.

2796  def denominator(self):
2797  """ Return the denominator of a Z3 rational numeral.
2798 
2799  >>> is_rational_value(Q(3,5))
2800  True
2801  >>> n = Q(3,5)
2802  >>> n.denominator()
2803  5
2804  """
2805  return IntNumRef(Z3_get_denominator(self.ctx_ref(), self.as_ast()), self.ctx)
2806 
Z3_ast Z3_API Z3_get_denominator(Z3_context c, Z3_ast a)
Return the denominator (as a numeral AST) of a numeral AST of sort Real.

Referenced by RatNumRef.denominator_as_long(), and RatNumRef.is_int_value().

◆ denominator_as_long()

def denominator_as_long (   self)
Return the denominator as a Python long.

>>> v = RealVal("1/3")
>>> v
1/3
>>> v.denominator_as_long()
3

Definition at line 2820 of file z3py.py.

2820  def denominator_as_long(self):
2821  """ Return the denominator as a Python long.
2822 
2823  >>> v = RealVal("1/3")
2824  >>> v
2825  1/3
2826  >>> v.denominator_as_long()
2827  3
2828  """
2829  return self.denominator().as_long()
2830 

Referenced by RatNumRef.as_fraction(), and RatNumRef.is_int_value().

◆ is_int()

def is_int (   self)
Return `True` if `self` is an integer expression.

>>> x = Int('x')
>>> x.is_int()
True
>>> (x + 1).is_int()
True
>>> y = Real('y')
>>> (x + y).is_int()
False

Reimplemented from ArithRef.

Definition at line 2831 of file z3py.py.

2831  def is_int(self):
2832  return False
2833 
def is_int(a)
Definition: z3py.py:2501

Referenced by RatNumRef.is_int_value().

◆ is_int_value()

def is_int_value (   self)

Definition at line 2837 of file z3py.py.

2837  def is_int_value(self):
2838  return self.denominator().is_int() and self.denominator_as_long() == 1
2839 
def is_int_value(a)
Definition: z3py.py:2543
def is_int(a)
Definition: z3py.py:2501

Referenced by RatNumRef.as_long().

◆ is_real()

def is_real (   self)
Return `True` if `self` is an real expression.

>>> x = Real('x')
>>> x.is_real()
True
>>> (x + 1).is_real()
True

Reimplemented from ArithRef.

Definition at line 2834 of file z3py.py.

2834  def is_real(self):
2835  return True
2836 
def is_real(a)
Definition: z3py.py:2519

◆ numerator()

def numerator (   self)
Return the numerator of a Z3 rational numeral.

>>> is_rational_value(RealVal("3/5"))
True
>>> n = RealVal("3/5")
>>> n.numerator()
3
>>> is_rational_value(Q(3,5))
True
>>> Q(3,5).numerator()
3

Definition at line 2781 of file z3py.py.

2781  def numerator(self):
2782  """ Return the numerator of a Z3 rational numeral.
2783 
2784  >>> is_rational_value(RealVal("3/5"))
2785  True
2786  >>> n = RealVal("3/5")
2787  >>> n.numerator()
2788  3
2789  >>> is_rational_value(Q(3,5))
2790  True
2791  >>> Q(3,5).numerator()
2792  3
2793  """
2794  return IntNumRef(Z3_get_numerator(self.ctx_ref(), self.as_ast()), self.ctx)
2795 
Z3_ast Z3_API Z3_get_numerator(Z3_context c, Z3_ast a)
Return the numerator (as a numeral AST) of a numeral AST of sort Real.

Referenced by RatNumRef.numerator_as_long().

◆ numerator_as_long()

def numerator_as_long (   self)
Return the numerator as a Python long.

>>> v = RealVal(10000000000)
>>> v
10000000000
>>> v + 1
10000000000 + 1
>>> v.numerator_as_long() + 1 == 10000000001
True

Definition at line 2807 of file z3py.py.

2807  def numerator_as_long(self):
2808  """ Return the numerator as a Python long.
2809 
2810  >>> v = RealVal(10000000000)
2811  >>> v
2812  10000000000
2813  >>> v + 1
2814  10000000000 + 1
2815  >>> v.numerator_as_long() + 1 == 10000000001
2816  True
2817  """
2818  return self.numerator().as_long()
2819 

Referenced by RatNumRef.as_fraction(), and RatNumRef.as_long().