Biopython Tutorial and Cookbook

Je[GQhang, Brad Chapman, Iddo Friedberg, Thomas Hamelryck, Michiel de Hoon, Peter Cock

Last Update-16 March 2007



Contents

1 Introduction
1.1 What is Biopython? . . . . . . . . . e e e
1.1.1 What can I find in the Biopython package . . . . . ... ... ... ... ........



4.3.3

Iterating over GenBank records



6 Where to go from here — contributing to Biopython 72

6.1 Maintaining a distribution for a platform . . . . ... ... ... . o o 72
6.2 Bug Reports + Feature Requests . . . . . . . . . . . . e 73
6.3 Contributing Code . . . . . . . . . 73

7 Appendix: Useful stulCabout Python 74





http://www.python.org
http://www.python.org
http://www.biopython.org



http://biopython.org/DIST/docs/install/Installation.pdf
http://biopython.org/DIST/docs/install/Installation.html

Chapter 2

Quick Start — What can you do with
Biopython?


http://www.python.org/doc/



http://www.chem.qmw.ac.uk/iupac/

>>> new_seq = my_seq[0:5]

>>> print new_seq

Seq(’GATCG”, IUPACUnambiguousDNAQ))

>>> my_seq + new_seq

Seq(”GATCGATGGGCCTATATAGGATCGAAAATCGCGATCG”, TUPACUnambiguousDNA(Q))
>>> my_seq[5]

e

>>> my_seq == new_seq

True

In all of the operations, the alphabet property is maintained. This is very useful in case you accidentally
end up trying to do something weird like add a protein sequence and a DNA sequence:

>>> protein_seq = Seq(’EVRNAK”, IUPAC.protein)
>>> dna_seq = Seq(”ACGT”, IUPAC.unambiguous_dna)
>>> protein_seq + dna_seq
Traceback (most recent call last):

File "<stdin>", line 1, in ?



>>> from Bio import Transcribe

>>> transcriber = Transcribe.unambiguous_transcriber

>>> my_rna_seq = transcriber.transcribe(my_seq)

>>> print my_rna_seq

Seq(” GAUCGAUGGGCCUAUAUAGGAUCGAAAAUCGC”, ITUPACUnambiguousRNAQ))

The alphabet of the new RNA Seq object is created for free, so again, dealing with a Seq object is no
more di Ccult then dealing with a simple string.
You can also reverse transcribe RNA sequences:

>>> transcriber.back_transcribe(my_rna_seq)
Seq(” GATCGATGGGCCTATATAGGATCGAAAATCGC”, ITUPACUnambiguousDNAQ))


ftp://ftp.ncbi.nlm.nih.gov/entrez/misc/data/gc.prt



http://www.flickr.com/search/?q=lady+slipper+orchid&s=int&z=t
http://www.flickr.com/search/?q=lady+slipper+orchid&s=int&z=t
http://images.google.com/images?q=lady%20slipper%20orchid
http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Nucleotide
http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Nucleotide
file:examples/ls_orchid.fasta
http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.fasta
file:examples/ls_orchid.gbk
http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.gbk

from Bio import SeqlO
handle = open(*ls_orchid.fasta')









Then we can give this function to the Seql0.to_dict function to use in building the dictionary:

from Bio import SeqlO

handle = open(*ls_orchid.fasta')

orchid dict = Seql0O.to_dict(SeqlO.parse(handle, "fasta'"), key function=get_accession)
handle.close()

print orchid_dict_keys()

Finally, as desired, the new dictionary keys:

>>> print orchid_dict.keys()
[7Z278484.1”, *Z78464.1", *Z78455.1", *778442.1, *778532.1”, *Z78453.1", ..., *Z78471.1"]

Not too complicated, | hope!

2.4.6 Extracting data





http://biopython.org/wiki/SeqIO

2.5 Connecting with biological databases

One of the very common things that you need to do in bioinformatics is extract information from biological
databases. It can be quite tedious to access these databases manually, especially if you have a lot of repetitive
work to do. Biopython attempts to save you time and energy by making some on-line databases available
from python scripts. Currently, Biopython has code to extract information from the following databases:

e EXPASYy - See section 4.1 in the Cookbook for more information.
e Entrez from NCBI — See below

e PubMed from NCBI


http://www.expasy.org/
http://www.ncbi.nlm.nih.gov/Entrez/
http://www.ncbi.nlm.nih.gov/PubMed/
http://scop.mrc-lmb.cam.ac.uk/scop/
http://www.ncbi.nlm.nih.gov/entrez/query/static/linking.html

result_file = open(result_file_name, "w'")
result_file.write(result_handle.read())
result_file.close()

if my _browser == "lynx":
os.system("lynx -force_html " + result_file_name)
elif my_browser == "netscape":

os.system(“'netscape file:" + result_file_name)



Chapter 3

BLAST


ftp://ftp.ncbi.nlm.nih.gov/blast/executables/
ftp://ftp.ncbi.nlm.nih.gov/toolbox/
ftp://ftp.ncbi.nlm.nih.gov/blast/documents/formatdb.html
ftp://ftp.ncbi.nlm.nih.gov/blast/documents/formatdb.html



file:examples/m_cold.fasta
http://biopython.org/DIST/docs/tutorial/examples/m_cold.fasta
http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ncbi.nlm.nih.gov/BLAST/

The gblast function also take a number of other option arguments which are basically analogous to the


http://www.ncbi.nlm.nih.gov/blast/blast.cgi?Jform=0
http://www.ncbi.nlm.nih.gov/blast/blast.cgi?Jform=0
http://www.ncbi.nlm.nih.gov/BLAST/blast_program.html
http://www.ncbi.nlm.nih.gov/BLAST/blast_databases.html










1 e . 1 7 — !
LI e B = s

-CeTelEse_

= o T B
s S T — 1 | Bl

)LL) — o
B R BT e T DT
— = —

e e o e

e e
228X _Ca il




Figure 3.2: Class diagram for the PSIBlast Record class.

25



if hsp.expect < E_VALUE_THRESH:
print “****Alignment****”
print ’sequence:’, alignment.title
print “length:”, alignment.length
print ’e value:”, hsp.expect
print hsp.query[0:75] + *...~
print hsp.match[0:75] + ...~
print hsp.sbjct[0:75] + *...”

If you also read the section 3.4 on parsing BLAST XML output, you’ll notice that the above code is
identical to what is found in that section. Once you parse something into a record class you can deal with






Right now the BlastErrorParser





http://www.expasy.org/sprot/sprot-top.html



http://www.expasy.org/cgi-bin/sprot-search-de
http://www.expasy.org/cgi-bin/sprot-search-ful
http://www.expasy.org/cgi-bin/sprot-search-ful

# handle = ExPASy.sprot_search ful ("Orchid and {Chalcone Synthase}")
html_results = handle.read()
if "Number of sequences found"” in html_results:


http://www.ncbi.nlm.nih.gov/PubMed/

The output for this looks like:


http://www.ncbi.nlm.nih.gov/



ftp://ftp.ncbi.nlm.nih.gov/genbank/genomes/Bacteria/Nanoarchaeum_equitans/AE017199.gbk



http://cvs.biopython.org/cgi-bin/viewcvs/viewcvs.cgi/*checkout*/biopython/Tests/GenBank/cor6_6.gb?rev=HEAD&cvsroot=biopython&content-type=text/plain

>>> from Bio import GenBank

>>> dict_file = “cor6_6.gb”

>>> index_file = “cor6_6.1dx”

>>> GenBank. index_file(dict_file, index file)

This will create a directory called cor6_6. idx containing the index files. Now, we can use this index to


http://www-igbmc.u-strasbg.fr/BioInfo/ClustalX/Top.html
file:examples/opuntia.fasta
http://biopython.org/DIST/docs/tutorial/examples/opuntia.fasta




4.4.2 Calculating summary information



GTATC
AT--C
CTGTC

the PSSM for this alignment is:
GATC



4.45 Information Content


http://www.lecb.ncifcrf.gov/~toms/paper/primer/
http://www.lecb.ncifcrf.gov/~toms/paper/primer/






file:examples/protein.aln
http://biopython.org/DIST/docs/tutorial/examples/protein.aln







type — This is a textual description of the type of feature (for instance, this will be something like 'CDS’
or 'gene’).

ref



position



We can access the fuzzy start and end positions using the start and end attributes of the location:

>>> my_location.start

<Bio.SeqFeature.AfterPosition instance at 0x101d7164>
>>> print my_location.start

>5






ID  CHS3_BROFI STANDARD; PRT;  37c-5625AA.












4.10.1.1 Structure

The Structure object is at the top of the hierarchy. Its id is a user given string. The Structure contains



The second field in the Residue id is the sequence identifier, an integer describing the position of the
residue in the chain.

The third field is a string, consisting of the insertion code. The insertion code is sometimes used to
preserve a certain desirable residue numbering scheme. A Ser 80 insertion mutant (inserted e.g. between a
Thr 80 and an Asn 81 residue) could e.g. have sequence identifiers and insertion codes as followed: Thr 80









for residue in chain.get list():
residue_id=residue.get_id()
hetfield=residue_id[0]

if hetfield[0]=="H":

print residue_id

Print out the coordinates of all CA atoms in a structure with B factor greater than 50.

for model in structure.get list():
for chain in model.get list():
for residue in chain.get_list():
if residue.has_id("'CA™):
ca=residue["CA"]
if ca.get bfactor()>50.0:
print ca.get_coord()

Print out all the residues that contain disordered atoms.

for model in structure.get_list()
for chain in model.get list():
for residue in chain.get_list():
if residue.is _disordered():

resseq=residue.get_id()[1]
resname=residue.get_resname()
model_id=model .get_id()
chain_id=chain.get_id()
print model id, chain_id, resname, resseq

Loop over all disordered atoms, and select all atoms with altloc A (if present). This will make sure that
the SMCRA data structure will behave as if only the atoms with altloc A are present.



4.10.5.1.1 Duplicate residues One structure contains two amino acid residues in one chain with the
same sequence identifier (resseq 3) and icode. Upon inspection it was found that this chain contains the



4.10.6 OthtaOG15Tf7st015TfeaturTf7ss



Chapter 5

Advanced

5.1 Sequence Class

5.2 Regression Testing Framework









database

posted_date
num_letters_in_database
num_sequences_in_database

num_letters_searched RESERVED.

Currently unused.

1’ve never



5.3.8 KEGG
5.3.8.1 Bio.KEGG.Enzyme

The Bio.KEGG.Enzyme module works with the ’enzyme’ file from the Ligand database, which can be
obtained from the KEGG project. (http://www.genome.ad. jp/kegq).

The Bio.KEGG.Enzyme.Record contains all the information stored in a KEGG/Enzyme record. Its
string representation also is a valid KEGG record, but it is NOT guaranteed to be equivalent to the record
from which it was produced.

The Bio.KEGG.Enzyme.Scanner produces the following events:

entry

name
classname
syshame
reaction
substrate
product
inhibitor
cofactor
effector
comment
pathway_db
pathway_id
pathway_desc
organism
gene_id


http://www.genome.ad.jp/kegg
http://www.genome.ad.jp/kegg

enzyme_role
structure_db
structure_id
dblinks_db
dblinks_id
record_end

5.3.9 Fasta


http://www.nlm.nih.gov/pubs/osrm_nlm.html
http://www.nlm.nih.gov/pubs/osrm_nlm.html

record_originator
journal _subset
subheadings
secondary_source_id
source
title_abbreviation
title
transliterated title
unique_identifier
volume_issue

year

pubmed_id



organelle
organism_classification
reference_number
reference_position
reference_comment
reference_cross_reference
reference_author
reference_title
reference_location
comment
database_cross_reference
keyword
featu3Fabitledaer


http://www-nbrf.georgetown.edu/pirwww/pirhome.shtml
http://www-nbrf.georgetown.edu/pirwww/pirhome.shtml
http://ndbserver.rutgers.edu/NDB/NDBATLAS/index.html
http://ndbserver.rutgers.edu/NDB/NDBATLAS/index.html

5.3.15 MetaTool

The MetaTool parser works with MetaTool output files. MetaTool implements algorithms to decompose a
biochemical patha
The MetaTool (a)]Teb page is


http://pinguin.biologie.uni-jena.de/bioinformatik/networks/
http://numpy.scipy.org/#older_array
http://numpy.scipy.org/#older_array

(d) self.sum_letters: a dictionary. {il: sl, i2: s2,...,in:sn} where:
i












Chapter 6

Where to go from here — contributing
to Biopython

6.1 Maintaining a distribution for a platform

We try to release Biopython to make it as easy to install as possible for users. Thus, we try to provide the
Biopython libraries in as many install formats as we can. Doing this from release to release can be a lot of
work for developers, and sometimes requires them to maintain packages they are not all that familiar with.


http://www.rpm.org

Macintosh — We would love to find someone who wants to maintain a Macintosh distribution, and make
it available in a Macintosh friendly format like bin-hex. This would basically include finding a way
to compile everything on the Mac, making sure all of the code written by us UNIX-based developers
works well on the Mac, and providing any Mac-friendly hints for us.

Once you've got a package, please test it on your system to make sure it installs everything in a good


http://bugzilla.open-bio.org/
http://bugzilla.open-bio.org/
http://biopython.org/wiki/Contributing
http://biopython.org/wiki/Scriptcentral

Chapter 7

Appendix: Useful stul_about Python

If you haven’t spent a lot of time programming in python, many questions and problems that come up in


file:examples/m_cold.fasta
http://biopython.org/DIST/docs/tutorial/examples/m_cold.fasta

with multiple lines.

>>> import cStringl0O

>>> my_info_handle = cStringl0.StringlO(my_info)
>>> first_line = my_info_handle.readline()

>>> print first_line

A string

>>> second_line = my_info_handle.readline()

>>> print second_line
with multiple lines.

75



	Introduction
	What is Biopython?
	What can I find in the Biopython package

	Installing Biopython
	FAQ

	Quick Start -- What can you do with Biopython?
	General overview of what Biopython provides
	Working with sequences
	A usage example
	Parsing sequence file formats
	Simple FASTA parsing example
	Simple GenBank parsing example
	Iterating over the records in a sequence file
	Getting a list of the records in a sequence file
	Sequence files as Dictionaries
	Extracting data
	I love parsing -- please don't stop talking about it!

	Connecting with biological databases
	What to do next

	BLAST
	Running BLAST locally
	Running BLAST over the Internet
	Saving BLAST output
	Parsing BLAST output
	The BLAST record class
	Deprecated BLAST parsers
	Parsing plain-text BLAST output
	Parsing a file full of BLAST runs
	Finding a bad record somewhere in a huge file

	Dealing with PSIBlast

	Cookbook -- Cool things to do with it
	SWISS-PROT
	Retrieving a SWISS-PROT record

	PubMed
	Sending a query to PubMed
	Retrieving a PubMed record

	GenBank
	Retrieving GenBank entries from NCBI
	Parsing GenBank records
	Iterating over GenBank records
	Making your very own GenBank database

	Dealing with alignments
	Clustalw
	Calculating summary information
	Calculating a quick consensus sequence
	Position Specific Score Matrices
	Information Content
	Translating between Alignment formats

	Substitution Matrices
	Using common substitution matrices
	Creating your own substitution matrix from an alignment

	More Advanced Sequence Classes -- Sequence IDs and Features
	Sequence ids and Descriptions -- dealing with SeqRecords
	Features and Annotations -- SeqFeatures

	BioRegistry -- automatically finding sequence sources
	Finding resources using a configuration file
	Finding resources through a biopython specific interface

	BioSQL -- storing sequences in a relational database
	BioCorba
	Going 3D: The PDB module
	Structure representation
	Disorder
	Hetero residues
	Some random usage examples
	Common problems in PDB files
	Other features

	Miscellaneous
	Translating a DNA sequence to Protein


	Advanced
	Sequence Class
	Regression Testing Framework
	Writing a Regression Test

	Parser Design
	Design Overview
	Events
	'noevent' EVENT
	Scanners
	Consumers
	BLAST
	Enzyme
	KEGG
	Fasta
	Medline
	Prosite
	SWISS-PROT
	NBRF
	Ndb
	MetaTool

	Substitution Matrices
	SubsMat
	FreqTable


	Where to go from here -- contributing to Biopython
	Maintaining a distribution for a platform
	Bug Reports + Feature Requests
	Contributing Code

	Appendix: Useful stuff about Python
	What the heck is a handle?
	Creating a handle from a string



