
RPy Reference Manual
(version 0.3.3)

Walter Moreira and Gregory R. Warnes

Copyright c© 2002-2004 Walter Moreira, c© 2004- Walter Moreira and Pfizer
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the sections entitled “Copying” and
“GNU General Public License” are included exactly as in the original, and provided that
the entire resulting derived work is distributed under the terms of a permission notice
identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.

i

Table of Contents

1 Overview . 1
1.1 To do . 1
1.2 Contact info and contributing . 1

2 Starting up . 2
2.1 Installation . 2
2.2 Invocation . 2
2.3 Small example . 3

3 Interface description . 4
3.1 R objects look up . 4
3.2 Robj type . 5

3.2.1 Calling R objects . 5
3.2.2 Methods of Robj type . 6
3.2.3 Sequence protocol . 7

3.3 R exceptions . 8
3.4 R boolean objects . 9

4 Conversion system . 10
4.1 R to Python . 10

4.1.1 Modes . 10
4.1.2 Proc conversion . 11
4.1.3 Class conversion . 12
4.1.4 Basic conversion . 12
4.1.5 Vector conversion . 14
4.1.6 No conversion . 14
4.1.7 Notes . 14

4.2 Python to R . 14
4.3 Useful examples . 14

4.3.1 Enhanced Robj . 15
4.3.2 DataFrame class . 16

5 Input/Output functions 18

6 Miscellaneous . 20

7 Caveat and bugs . 22

8 Acknowledgements. 24

Chapter 1: Overview 1

1 Overview

RPy is a very simple, yet robust, Python interface to the R Programming Language. It can
manage all kinds of R objects and can execute arbitrary R functions (including the graphic
functions). All the errors from the R language are converted to Python exceptions. Any
module that later were installed on the R system, can easily be used from within Python,
without introducing any changes. Starting from version 0.3, RPy works on any POSIX
system and Windows.

The RPy code is initially inspired in RSPython, which is part of the Omegahat project.
The main goals of RPy are:
1. It should provide a very robust Python interface to R (segfaults shouldn’t happen [tm]).
2. It should be as transparent and easy to use as possible.
3. It should be usable for real scientific and statistical computations.

Currently, RPy has a good degree of stability (in spite of the low version number). It
provides a very customizable conversion system between Python and R types (see Chapter 4
[Conversion system], page 10), user defined I/O functions and a complete handling of the
R errors via Python exceptions.

Since version 0.2, RPy uses the Numeric extension module for the conversion of arrays.
However, if it is not available, RPy converts R arrays to Python lists.

Many things are still to be done (see Section 1.1 [To do], page 1), but priority one is the
porting to Windows.

1.1 To do

• Possibility to pass Python functions to R functions (and, perhaps, to make RPy a
bidirectional Python-R interface).

• More builtin classes for conversion of R classes.
• Add real examples and applications.

1.2 Contact info and contributing

Please, submit any bug, comment or suggestion to the address below. When submitting
bugs, it would be preferable to fill the Sourceforge form, because it can be read by many
people.

If you have used RPy in a real world application or have some interesting examples of
use, please, drop me a line. They can be linked from the RPy website or included in the
distribution, in order to make easier to grasp the RPy capabilities.

Original author:
Walter Moreira

Current maintainer
Gregory Warnes

Web: http://rpy.sourceforge.net

Email: gregory.r.warnes@pfizer.com

http://www.python.org
http://www.r-project.org
http://www.omegahat.org/RSPython
http://numpy.sourceforge.net
http://rpy.sourceforge.net
mailto:gregory.r.warnes@pfizer.com

Chapter 2: Starting up 2

2 Starting up

After installation, you are able to execute, almost verbatim, most of the code from the
R manuals. This section should be enough to start playing. See Chapter 3 [Interface
description], page 4, for a detailed description; Chapter 4 [Conversion system], page 10,
for details on the conversion of types and names; and Chapter 5 [Input/Output functions],
page 18 for the customization of I/O routines.

2.1 Installation

See the installation procedure in the file ‘README’, which is provided with the RPy distri-
bution. (Should the ‘README’ instructions appear in this place?)

2.2 Invocation

Once installed, the module can be imported with:
>>> from rpy import *

If an error occurs, refer to the section TROUBLESHOOTING on the ‘README’ file.
The module rpy imports a Python object named r, from which all the R functions

and objects can be retrieved, see Section 3.1 [R objects look up], page 4. This module
also implements a new Python type: Robj, which represents an arbitrary R object, see
Section 3.2 [Robj type], page 5. For example:

>>> r.wilcox_test
<Robj object at 0x8a9e120>

is the R function wilcox.test which computes the Wilcoxon statistical test. An object of
type Robj is always callable as long as the corresponding R object is:

>>> r.wilcox_test([1,2,3], [4,5,6])
{’p.value’: 0.10000000000000001, ’statistic’: {’W’: 0.0},
’null.value’: {’mu’: 0.0}, ’data.name’: ’c(1, 2, 3) and c(4, 5, 6)’,
’alternative’: ’two.sided’, ’parameter’: None, ’method’:
’Wilcoxon rank sum test’}

The arguments are translated automatically to R objects and the return value is trans-
lated back to Python, when this is possible (see Chapter 4 [Conversion system], page 10).
This autoconversion can be customized at several levels or disabled at all.

Objects of type Robj also support keyword arguments, in the same way as normal Python
functions:

>>> r.seq(1, 3, by=0.5)
[1.0, 1.5, 2.0, 2.5, 3]

The module rpy defines a new exception type derived from the base class Exception,
called RException, see Section 3.3 [R exceptions], page 8. When any kind of error in the
R interpreter occurs, an exception of this type is raised:

>>> r.plot()
Traceback (most recent call last):
File "<stdin>", line 1, in ?

rpy.RException: Error in function (x, ...) : Argument "x" is missing,
with no default

Chapter 2: Starting up 3

2.3 Small example

Here we present a very small example. Some other bigger examples can be found in
the ‘examples’ directory of the RPy distribution. See also Section 4.3 [Useful examples],
page 14. If you want to contribute some code that you find interesting as an example of
use, please, write to me (see Section 1.2 [Contact info and contributing], page 1).

This lines of code draw the density of a chi-squared distribution:
>>> from rpy import *
>>>
>>> degrees = 4
>>> grid = r.seq(0, 10, length=100)
>>> values = [r.dchisq(x, degrees) for x in grid]
>>> r.par(ann=0)
>>> r.plot(grid, values, type=’lines’)

Chapter 3: Interface description 4

3 Interface description

In general, R functions can be accessed transparently via attributes of the r object. Pa-
rameters and return values are converted to and from R automatically. However, some R
functions, such us $ or [[, need special syntax, and sometimes objects of type Robj need
to be manipulated.

3.1 R objects look up

There are two ways of retrieving a R object via the Python r object:
• as attributes
• as keywords

The two ways are completely equivalent, the only difference is that some names cannot
be used as attributes, so in some cases you must use the second way. The first time that
a R object is required, it is looked up in the R global environment and it is cached in a
dictionary in the r object. After then, retrieving the same object is only a look up in a
Python dictionary.

The first way of retrieving a R object is as attributes of the r object. For example:
r.seq
r.as_data_frame
r.print_

refer to the R functions seq, as.data.frame and print respectively. Note that some kind
of name conversion is required in order to make the attributes valid Python identifiers.
But the rules of name conversions are pretty simple; namely, the following conversions are
applied to Python identifiers

Python name R name
—- —-
Underscore (‘_’) dot (‘.’)
Double underscore (‘__’) arrow (<-)
Final underscore (preceded by a letter) is removed

The final rule is used to allow the retrieving of R objects whose names are Python keywords.
Some additional examples:

Python name R name
—- —-
t_test t.test
attr__ attr<-
parent_env__ parent.env<-
class_ class

The second way of retrieving a R object is as keywords of the r object. In this form, no
name conversion is required. The string used as keyword must be, exactly, the R name of
the object. For example:

r[’as.data.frame’]
r[’print’]
r[’$’]

Chapter 3: Interface description 5

refer to the corresponding R functions. Note that with this syntax you can retrieve functions
such as $, $<- or [[, which are impossible to express with the attribute syntax. However,
the attributes are more appealing to the eyes.

Due to the dynamic nature of the look up, when installing additional modules in the R
system, it is not necessary to make changes in the interface. All you have to do is to load
the module in the same way as in R:

>>> r.library(’splines’)
[’splines’, ’ctest’, ’base’]

3.2 Robj type

The new type Robj represents an arbitrary R object. All the R functions retrieved via the
r object (see Section 3.1 [R objects look up], page 4) are of type Robj:

>>> type(r.seq)
<type ’Robj’>

If you use the standard conversion of types, you’ll probably never find another object of type
Robj. However, there are reasons for, sometimes, manipulating these objects (see Chapter 4
[Conversion system], page 10).

3.2.1 Calling R objects

An object of type Robj is always callable. When it represents a R function, that function
is invoked; if it is not a R function, an exception is raised (see Section 3.3 [R exceptions],
page 8):

>>> callable(r.seq)
1
>>> callable(r.pi)
1
>>> r.pi()
Traceback (most recent call last):
File "<stdin>", line 1, in ?

rpy.RException: Error: attempt to apply non-function

The arguments passed to the Robj object can be any Python object, including another
Robj object. When an object of a standard Python type is passed, it is converted to a R
type according to the rules described in Section 4.2 [Python to R], page 14. When a Robj
object is passed, the R function receives the corresponding R object unchanged. Usually,
you don’t need to think on these things, because the conversion works as one expects.

A Robj also supports keyword arguments, if the corresponding R function does it. The
names of the keyword arguments are also under the name conversion rules described in
Section 3.1 [R objects look up], page 4.

For example:
>>> r.seq(1, 3)
[1, 2, 3]
>>> r.seq(1, 3, by=0.5)
[1.0, 1.5, 2.0, 2.5, 3.0]
>>> r[’options’](show_coef_Pvalues=0)

Chapter 3: Interface description 6

{’show.coef.Pvalues’: 1}
>>> r.print_(r.seq)
function (...)
UseMethod("seq")
<Robj object at 0x8acb010>

Return values of the call to a Robj object are also converted from R to Python. When no
conversion is possible, an Robj object is returned, which holds a reference to the R object.
This behavior is completely customizable (see Section 4.1 [R to Python], page 10).

Note that python uses a python dictionary to store named arguments. As a consequence
the order named arguments will be lost in calls to R functions, and hence may not produce
what an R programmer expects:

>>> set_default_mode(NO_CONVERSION)
>>> r.print_(r.c(0,a=1,b=2,c=3))
a c b

0 1 3 2
<Robj object at 0xbc89d0>
>>> set_default_mode(BASIC_CONVERSION)

To work around this problem, RObj provides the lcall method which expects a list con-
taining 2 element (name, value) tuples instead of a list of named and unnamed arguments.
Unnamed arguments are indicated by using None or ” as for the name element of the tuple.
While this form is unwieldy, it is functional and is occasionally necessary:

>>> set_default_mode(NO_CONVERSION)
>>> r.print_(r.c.lcall(((’’,0),(’a’,1),(’b’,2),(’c’,3))))
a b c

0 1 2 3
<Robj object at 0xbc89b8>
>>> set_default_mode(BASIC_CONVERSION)

[See see Chapter 4 [Conversion system], page 10 for the meaning of set_default_mode.
It is used here to prevent python from translating the output of c into a python dictionary
(which loses element order) before print_ displays it.]

3.2.2 Methods of Robj type

An object of type Robj has three methods:

as_py([mode])
This method forces the conversion of a Robj object to a classical Python ob-
ject, whenever possible. If it is not possible, the same object is returned. The
optional parameter is the mode from which to apply the conversion, see Sec-
tion 4.1.1 [Modes], page 10. The default value for this parameter is the global
mode (see Section 4.1 [R to Python], page 10).

autoconvert([mode])
local_mode([mode])

This method sets the local conversion mode for each object, which is used
when the default mode is set to ‘NO_DEFAULT’, (see Section 4.2 [Python to
R], page 14). When no argument is passed to this method, it displays the

Chapter 3: Interface description 7

current local conversion mode of the object. (The two names are synonyms for
compatibility with version 0.1.)

lcall([argument list])
This method calls the R object (if callable) using the parameters provided as
a single list containing a 2 element (name, value) tuple for each arguments.
Unnamed arguments may have None or ” as the name element.

For example:
>>> r.seq.local_mode(NO_CONVERSION)
>>> a = r.seq(3, 5)
>>> a
<Robj object at 0x814c2e8>
>>> a.as_py()
[3, 4, 5]
>>> set_default_mode(NO_CONVERSION)
>>> r.print_(r.c.lcall(((’’,0),(’a’,1),(’b’,2),(’c’,3))))
a c b

0 1 3 2
<Robj object at 0xbc89d0>
>>> set_default_mode(BASIC_CONVERSION)

3.2.3 Sequence protocol

An object of type Robj supports (partially at the moment, slices are not supported yet) the
sequence protocol. You can retrieve or set the n-th item of a Robj object, and you can take
its length with the usual Python function len.

Every R object is a vector, so this protocol can be applied to any Robj object; although it
can raise an exception when an index is out of bounds. Note that in this case, the exception
is IndexError instead of RException; this is done to allow a for loop to iterate over a
Robj object.

The return values of the sequence functions are converted to Python according to the
default mode. If the default mode is set to ‘NO_DEFAULT’, the sequence functions use the
‘PROC_MODE’ conversion mode.

>>> r.seq.local_mode(NO_CONVERSION)
>>> a = r.seq(3, 5)
>>> a[0]
3
>>> a[2]
5
>>> a[-1]
5
>>> a[4]
Traceback (most recent call last):
File "<stdin>", line 1, in ?

IndexError: R object index out of range
>>>
>>> for i in a:

Chapter 3: Interface description 8

... print i

...
3
4
5

The behavior of the setting of items is different from that of Python, mainly, when you try
to set an item out of bounds. Remember, in these cases, that the setting is done via R
functions, which have different semantic from the Python sequence functions.

(following the previous example)
>>> b = r.seq(1, 3)
>>> dummy = r.print_(b)
[1] 1 2 3
>>> b[0] = -1
>>> dummy = r.print_(b)
[1] -1 2 3
>>> b[6] = 4
>>> dummy = r.print_(b)
[1] -1 2 3 NA NA NA 4

Also, be careful with the different index convention between Python and R: in Python,
indices start at 0; in R, they start at 1.

(following the previous example)
>>> a[0]
3
>>> r[’[’](a, 1)
3

Function len can also be applied to any Robj object:
(following the previous example)
>>> len(a)
3
>>> len(r.seq)
1
>>> len(r.pi)
1

3.3 R exceptions

RPy implements a new exception type, called RException, which is derived from the base
class of all exceptions Exception. This exception is raised when an error in the R interpreter
occurred. The error message included in the exception is the message given by the R
interpreter. For example:

>>> RException
<class rpy.RException at 0x8a72b44>
>>>
>>> r.t_test(1)
Traceback (most recent call last):
File "<stdin>", line 1, in ?

Chapter 3: Interface description 9

rpy.RException: Error in t.test.default(1) : not enough x observations

Note that not all operations with Robj objects raise this exception. When using the
sequence protocol on Robj objects, the exceptions raised are IndexError, in order to prop-
erly use the for loop (see Section 3.2.3 [Sequence protocol], page 7). Other functions, such
as mode functions, raise ValueError (see Section 4.1.1 [Modes], page 10).

3.4 R boolean objects

The RPy module provides, as a convenience, the TRUE and FALSE R objects, as attributes
to the r Python object (i.e.: r.TRUE and r.FALSE). For example:

>>> r.TRUE
<Robj object at 0x8b3a498>
>>> r.typeof(r.TRUE)
’logical’

Note that the T and F names from R are variables bounded to the logical objects; however,
they can be rebound. So, r.T and r.F may not be the objects you expect. Use r.TRUE and
r.FALSE instead.

Chapter 4: Conversion system 10

4 Conversion system

Usually, automatic conversion from and to R objects works as expected. However, the
system is very customizable; you can define your own conversion rules. Some useful examples
are shown.

4.1 R to Python

RPy has four different conversion modes. A mode can be global or local to every Robj
object. When a global mode is active, the output from every Robj is converted according to
that mode (see Section 4.1.1 [Modes], page 10). (We’ll use default as a synonym of global.)

The local mode is an attribute of the Robj objects, which can be retrieved with the
local_mode method (see Section 3.2.2 [Methods of Robj type], page 6). When the global
mode is not active, the local mode is looked up to convert the output of a given Robj object.

4.1.1 Modes

There are five different conversion modes, identified by the following constants (provided
by the rpy module) and another constant to indicate the absence of a global mode:
• PROC_CONVERSION

• CLASS_CONVERSION

• BASIC_CONVERSION

• VECTOR_CONVERSION

• NO_CONVERSION

• NO_DEFAULT

The rpy module provides three functions for manipulating the conversion modes:

get_default_mode()
Get the default conversion mode. It returns some of the previous constants
(actually, an integer from the set {-1,0,1,2}, but you should use the literal
constant rather than the numeric value).

set_default_mode(m)
Set the default conversion mode to m.

with_mode(m, fun)
Wrap the function fun in the conversion mode m. It returns a new function
which accepts the same parameters as fun but, when called, it is evaluated in
the conversion mode m. For example:

>>> set_default_mode(BASIC_CONVERSION)
>>> r.seq(1,3)
[1, 2, 3]
>>> with_mode(NO_CONVERSION, r.seq)(1,3)
<Robj object at 0x8acb2a0>

The result of a call to a Robj object is converted according to the following rules:
1. If the default mode has a value in the set {PROC_CONVERSION, CLASS_CONVERSION,

BASIC_CONVERSION, NO_CONVERSION}, that mode is used.

Chapter 4: Conversion system 11

2. If the default mode has the value NO_DEFAULT, then the object’s local mode is used.

3. When an object cannot be converted in some mode (global or local), the object fall
through to the next mode. The NO_CONVERSION mode always succeed returning a
“pure” Robj object.

At startup the default mode is set to NO_DEFAULT, which means that each object has its
own conversion mode, and every Robj object is retrieved with a local mode set to PROC_
CONVERSION.

4.1.2 Proc conversion

This mode converts a Robj object according to a Python dictionary, named proc_table,
whose keys and values are functions of one parameter. The keys are applied sequentially to
the Robj object:

• if no function returns a true value, then the conversion mode fails;

• if some function returns a true value, then the corresponding value of the dictionary is
applied to the Robj object, and the result is returned as the converted object.

For example:

>>> set_default_mode(PROC_CONVERSION)
>>> def check_str(o):
... return r.is_character(o)
...
>>> def f(o):
... o_py = o.as_py(BASIC_CONVERSION)
... if o_py == ’foo’:
... return ’cannot return "foo"’
... return o_py
...
>>> proc_table[check_str] = f
>>> r.c(’bar’)
’bar’
>>> r.c(’foo’)
’cannot return "foo"’
>>> r.c([’bar’,’foo’])
[’bar’, ’foo’]

Note that the conversion is not applied recursively. This mode is applied only before
returning the final result to Python.

This conversion mode can be used for many purposes (see Section 4.3 [Useful examples],
page 14); but, mainly, it is used to test whether a R object has some attribute, and to act
in consequence.

Note that this conversion mode is not efficient if the proc_table dictionary has many
keys, because, usually, all of them must be checked. On the other hand, with only one key
which always returns true, it can be used to completely intercept the conversion system (see
Section 4.3.1 [Enhanced Robj], page 15).

Chapter 4: Conversion system 12

4.1.3 Class conversion

This mode converts a Robj object according to a Python dictionary, named class_table,
whose keys are strings or tuples of strings and its values are functions of one parameter. If
a Robj object matches this table (see below), the corresponding value of the dictionary is
applied to the Robj object and the result is returned as the converted object. If the Robj
object has no class attribute or the class attribute does not match in class_table, then
this conversion mode fails.

In order to a Robj object match the class_table dictionary, one of the following cases
must be satisfied:
1. the class R attribute of the object is a string and it is found in the class_table

dictionary; or
2. the class R attribute of the object is a vector of strings and it is found in the class_

table dictionary; or
3. the class R attribute of the object is a tuple of strings and one of the tuple’s elements

is found in the class_table dictionary.

For example:
>>> set_default_mode(CLASS_CONVERSION)
>>> def f(o):
... return 5
...
>>> class_table[’data.frame’] = f
>>> r.as_data_frame([1,2,3])
5

This table is used, mainly, to translate R objects of some class, to Python objects of
a class which mimics the R original class behavior. See Section 4.3.2 [DataFrame class],
page 16.

Note that this mode is far more efficient than the PROC_CONVERSION mode. It only needs
a look up in a Python dictionary.

4.1.4 Basic conversion

This mode tries to convert a Robj object to a basic Python object. It can convert most of
the R types to an adequate Python type; but, sometimes, some information is lost.

The following table shows the conversion of types. When converting lists of objects, the
rules are applied recursively.

R object Python object Notes
—– —– —–
NULL None
Logical Boolean (1)(2)
Integer Plain integer (1)(2)
Real Float (1)(3)
Complex Complex (1)
String String (1)
Vector list or dictionary (1)(4)
List list or dictionary (1)(4)

Chapter 4: Conversion system 13

Array Array or list (5)
Other (fails)

Notes:

(1)

In the R system there are no true scalar types. All values are vectors, with
scalars represented by vectors of length one. In Python, however, there is
a representational and conceptual difference between scalars immutable lists
(tuples), and mutable lists. Thus, An R vector of length one could potentially
be translated into any of three Python forms :

r("as.integer(1)") --> int(1)
--> [int(1),]
--> (int(1),)

It is impossible to tell which of these is best from the R object itself. With
BASIC_CONVERSION, Rassumes that a vector of length one should be translated
as scalar, and that vectors with other lengths (including 0) should be translated
into Python [] lists.

RPy 0.4.3 introduced the new VECTOR_CONVERSION mode (see Section 4.1.5
[Vector conversion], page 14), which always returns a python list regardless of
the length of the R vector.

(2) The R programming language has an integer value represented by ‘NA’ (not
applicable) which is converted to and from Python as the minimum integer
(which is the actual value in R). Be careful, because the semantic is completely
different:

Python: NA/100 –> (-sys.maxint-1)/100 != NA

R: NA/100 –> NA

(3) The IEEE float values NaN (not a number) and Inf (infinite) are also converted
between Python and R.

(4) Vectors and lists from R may have an attribute names, which are the names
of the elements of the sequence. In those cases, the sequence is translated to
a Python dictionary whose keys are the names, and the values are the corre-
sponding values of the sequence. When there are no names, the vector or list
is translated to a normal Python list.

(5) When Numeric is installed, a R array is converted to a Numeric array. Other-
wise, a list of nested lists is returned.

When converting R arrays, the column and row names are discarded. Also, for R data
frames, row names are discarded while column names are kept. And many other R objects
with complex attribute structure may loose some of its attributes when converted to Python
objects. When it is necessary to keep all the information of an R object, it is better to use the
CLASS_CONVERSION mode with proper classes (see Section 4.3 [Useful examples], page 14),
or to use the NO_CONVERSION mode (see Section 4.1.6 [No conversion], page 14).

Chapter 4: Conversion system 14

4.1.5 Vector conversion

The VECTOR_CONVERSION differs from the BASIC_CONVERSION mode (see Section 4.1.4 [Basic
conversion], page 12) in only one way. It always returns a Python list [] object regardless
of the length of the original R vector.

4.1.6 No conversion

This mode simply returns a Robj object which is a reference to the R object under conver-
sion. See Section 3.2 [Robj type], page 5.

This mode always succeed.

4.1.7 Notes

Warning: In order to avoid infinite recursion with the user conversion functions, the value
functions in the class_table and the key and value functions in the proc_table, are
evaluated in the BASIC_CONVERSION mode (see Section 4.1.4 [Basic conversion], page 12).
This allows the R functions, called inside the conversion functions, to return Python values,
without consulting the tables again. You may force other conversion modes with the as_
py() method of the Robj type (see Section 3.2.2 [Methods of Robj type], page 6), but you
should be careful.

4.2 Python to R

The conversion from Python objects to R objects is automatic. It is done when passing
parameters in Robj objects. Normal Python objects are converted to R objects according
to the table given in Section 4.1.4 [Basic conversion], page 12. A Robj object is converted
to the R reference which it represents.

In addition, every Python object which defines a as_r() method, is converted to R as
the result of calling that method.

If none of this apply, an exception is raised.
For example:

>>> class Foo:
... def as_r(self):
... return 5
...
>>> a = Foo()
>>> dummy = r.print_(a)
[1] 5
>>>
>>> r.print_(range)
Traceback (most recent call last):
File "<stdin>", line 1, in ?

rpy.RException: cannot convert from type ’builtin_function_or_method’

4.3 Useful examples

We present two examples which can be useful in real applications. They also show the use
of the PROC_CONVERSION and CLASS_CONVERSION modes. These examples are provided with
the RPy distribution in the directory ‘examples/useful’.

Chapter 4: Conversion system 15

4.3.1 Enhanced Robj

This example shows an extended Robj type which supports R attribute look up via normal
Python attribute access. It also supports the representation given by the R interpreter, and
it implements the as_r() method for converting itself to R.

In Python 2.2 you can take advantage of the possibility to subclass types, and the
examples can be rewritten in a more powerful way. However, these examples are Python
2.1 and 2.2 compatible.

File ‘erobj.py’:

from rpy import *

class ERobj:

def __init__(self, robj):
self.robj = robj

def as_r(self):
return self.robj

def __str__(self):
a = with_mode(NO_CONVERSION,

lambda: r.textConnection(’tmpobj’, ’w’))()
r.sink(file=a, type=’output’)
r.print_(self.robj)
r.sink()
r.close_connection(a)
str = with_mode(BASIC_CONVERSION,

lambda: r(’tmpobj’))()
return ’\n’.join(as_list(str))

def __getattr__(self, attr):
e = with_mode(BASIC_CONVERSION,

lambda: r[’$’](self.robj, attr))()
if e:

return e
return self.__dict__[attr]

The __str__ method makes the R interpreter print to the tmpobj R variable. Then,
it is retrieved and returned as the string representation of the object. Note the use of the
with_mode function for not changing the mode in use. Note, also, the use of the utility
functions as_list and r (see Chapter 6 [Miscellaneous], page 20).

An example of use:

>>> from rpy import *
>>> from erobj import *
>>> proc_table[lambda o: 1] = ERobj
>>> set_default_mode(PROC_CONVERSION)
>>>

Chapter 4: Conversion system 16

>>> e = r.t_test([1,2,3])
>>> e
<erobj.ERobj instance at 0x8ad4ea4>
>>> print e

One Sample t-test

data: c(1, 2, 3)
t = 3.4641, df = 2, p-value = 0.07418
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-0.4841377 4.4841377
sample estimates:
mean of x

2

>>>
>>> e.statistic
{’t’: 3.4641016151377548}

4.3.2 DataFrame class

This example is a subclass of the Enhanced Robj (see Section 4.3.1 [Enhanced Robj],
page 15), which can be used to mimic the ‘Data Frame’ class of the R language.

It overrides the __getattr__ method for retrieving the columns of the data frame object.
It adds a method for accessing the rows and it inherits the representation and as_r method.

File ‘dataframe.py’:
from rpy import *
import erobj

class DataFrame(erobj.ERobj):
def __init__(self, robj):

erobj.ERobj.__init__(self, robj)

def rows(self):
return r.attr(self.robj, ’row.names’)

def __getattr__(self, attr):
o = self.__dict__[’robj’]
if attr in as_list(r.colnames(o)):

return r[’$’](o, attr)
return self.__dict__[attr]

An example of use:
>>> from rpy import *
>>> from dataframe import *
>>> class_table[’data.frame’] = DataFrame
>>> set_default_mode(CLASS_CONVERSION)

Chapter 4: Conversion system 17

>>>
>>> e = r.as_data_frame({’foo’: [4,5,6], ’bar’: [’X’,’Y’,’Z’]})
>>> e
<dataframe.DataFrame instance at 0x8156e34>
>>> print e
foo bar

1 4 X
2 5 Y
3 6 Z
>>>
>>> e.foo
[4, 5, 6]
>>> e.bar
[’X’, ’Y’, ’Z’]
>>> e.rows()
[’1’, ’2’, ’3’]

Chapter 5: Input/Output functions 18

5 Input/Output functions

RPy provides three functions for customizing the input and output from the R interpreter.

In versions 0.1 and 0.2, the input/output from/to R was connected to the C stdin/stdout,
which don’t necessarily coincides with the Python sys.stdin/sys.stdout. These was notice-
able if you run those versions over IDLE or other IDE (probably, you don’t see the output of
r.print_(5)). Now, the R input/output is connected, by default, to the Python streams.
But you can insert your own functions for reading, writing and displaying files.

get_rpy_input()
set_rpy_input(f)

Get/set the function used by the R interpreter to require input.

The parameter for set_rpy_input must be a function with signature
f(prompt, size). The parameter prompt is a string to be displayed and size
is an integer which denotes the maximum length of the input buffer.

get_rpy_output()
set_rpy_output(f)

Get/set the function used by the R interpreter to output data.

The parameter for set_rpy_output must be a function with signature f(s),
where s is the string to be displayed.

get_rpy_showfiles()
set_rpy_showfiles(f)

[Not available on Windows] Get/set the function used by the R interpreter to
display files, including the output from the help command.

The parameter for set_rpy_showfiles must be a function with signature
f(files, headers, title, delete). Parameters files and headers are lists
of filenames and strings, respectively, to be displayed sequentially. Parameter
title is the overall title and parameter delete signals whether the files should be
deleted after displaying.

The default values for the input/output/showfiles functions are in the ‘io’ module. That
is, when RPy is imported, the following instructions are executed:

import io
set_rpy_input(io.rpy_input)
set_rpy_output(io.rpy_output)
set_rpy_showfiles(io.rpy_showfiles)

For input and output, the functions io.rpy_input and io.rpy_output just use the
sys.stdin and sys.stdout streams of Python. For displaying files, the ‘io’ module provides
two functions: io.showfiles_common and io.showfiles_tty, and the default io.rpy_
showfiles is an alias for the former. Function io.showfiles_common displays the files
using the io.rpy_output function, while function io.showfiles_tty displays the files
using a pager (namely less, you may need to customize it).

Chapter 5: Input/Output functions 19

Notes

• When an exception is raised inside I/O functions, the exception is ignored, although it
is displayed normally.

• On Windows, the output of the help command is always displayed on a separate
window. The R event loop (see Chapter 6 [Miscellaneous], page 20) must be running
for the window to be functional.

Chapter 6: Miscellaneous 20

6 Miscellaneous

The rpy module includes some utility functions:

as_list(obj)
If obj is a list or an object which supports the list protocol, it returns obj.
Otherwise, it returns the one element list [obj].
This function is useful when testing whether a Robj has some given attribute.
For example:

>>> ’class’ in as_list(r.attributes(robj))

The reason for not doing ’class’ in r.attributes(robj) is that
r.attributes can return either None (when robj has no attributes), a string
(when robj has only one attribute) or a list of strings (when it has several
attributes). Function as_list unify these three cases to allow the in test.

r(s) Parameter s is a string containing arbitrary R code. Function r evaluates the
string s in the R interpreter and returns its result.
This function is useful when working with R constructions which have no par-
allel Python syntax, such as linear models, for example.

>>> set_default_mode(NO_CONVERSION)
>>> d = r.data_frame(x=[1,2,3], y=[4,5,6])
>>>
>>> model = r("y ~ x")
>>> fitted_model = r.lm(model, data = d)

Complete fragments of R code can also be evaluated (note that the value re-
turned by the function r is the value of the last expression):

>>> r("""
... print(5)
... x <- "foo"
... print(x)
... """)
[1] 5
[1] "foo"
’foo’

This function is useful, also, when a changing R object is required. Since the
expression r.foo is cached in a Python dictionary, later changes in the object
pointed by r.foo are not seen. In that case, the proper expression to use is
r(’foo’), which evaluates foo and returns its result every time it is called.

start_r_eventloop()
stop_r_eventloop()

(new in 0.3) [Not available on Windows] These functions start and stop the
R event loop. When RPy is imported, the start_r_eventloop function is
executed. Normally, in interactive use, you needn’t stop it.
The R event loop keeps running in a daemonic thread. In case you need finer
control over that loop, you can use the r_events function.

Chapter 6: Miscellaneous 21

r_events([usec])
(new in 0.3) [parameter usec not available on Windows] This function processes
a pending R event or blocks with a usec microseconds timeout. The default
value for usec is 10000 microseconds.
If, for some reason, you don’t want to use the threaded event loop and you want
to manually use r_events, you can do some loop like the following:

>>> r.plot([1])
>>> while ’X11’ in as_list(r(’.Devices’)):
... r_events()

The while loop will run until the graphics window is closed.

Chapter 7: Caveat and bugs 22

7 Caveat and bugs

You should be warned about some “corners”:
• In some situations, the R interpreter uses the name bound to an object for displaying

or for taking some action. For example, if you eval in R the expression:
var <- c(1,2,3)
plot(var)

you obtain a plot with the y-axis labeled by var. However, in Python there is no
standard way to know a name bound to an object, so, even when an Robj has a Python
name, the R interpreter doesn’t see that information. The practical consequence is
that the R plots made from Python are labeled with the entire vector of data, usually
cluttering up the graphic. I really don’t see an elegant way to solve this.
Of course, the immediate and pragmatic solution is to write r.par(ann=0) for disabling
the automatic label annotations, or to set the labels explicitly.
Another solution (a bit trickier) is:

>>> r.assign("var", [1,2,3])
>>> r("plot(var)")

• The conversion between the IEEE values, NaN and Inf, depends highly on the operating
system, since that is what happens with the Python interpreter (AFAIK). I have no
access to a platform other than Linux, so I may be wrong.

• At the present moment, it is not possible to pass Python functions to those R functions
which requires callables as arguments, such as integrate, for example. It would be
necessary to embed the Python interpreter in R (and only a step forward: an R package
for calling Python :-)

Now, some Windows’ specific notes. Most of these are due to my ignorance on the
Windows OS; if you have suggestions for solving some of these points, please, contact me
(see Section 1.2 [Contact info and contributing], page 1).
• The interruption from keyboard (Ctrl-C) when RPy is imported in a Python instance

running on a console, is completely non-operational. I tried to deal with the SIGINT
and SIGBREAK signals in a similar fashion than with Linux, but I failed. So, the code
you run in a console is uninterruptible.

• Running the R event loop in a separate thread doesn’t work. This point, together with
the previous one, means that if you want to use a console and you need to make a plot,
you must do something like the following:

>>> r.plot(data)
>>> while ’windows’ in r_events():
... pass

Then, the loop is unbreakable with Ctrl-C. The only way to stop it is to close the
graphic window.

• The Windows version of R always displays the output from the help command in a
separate window. This window must be refreshed by the R event loop. But, now, the

Chapter 7: Caveat and bugs 23

problem is that the device of that window doesn’t appear listed on the return value of
r_events; so, there is no way to make a loop like the previous one.

Suggestion for Windows users: the problems listed before only occur when Python runs
on a console (a MS-DOS window). I strongly suggest that, for interactive sessions, you use
the IDLE shell instead. With IDLE, the keyboard interruption works as expected and the
graphics and help windows are completely functional without the need to use the r_events
function.

Chapter 8: Acknowledgements 24

8 Acknowledgements

I want to thank to these people for their feedback and help on the RPy project:

Tim Churches
for his advocacy, suggestions and for contributing with the faithful demo.

Gregory Warnes
for his many patches and help with the compilation and testing of RPy in the
Solaris system.

Rene Hagendoorn
for his patches and help for making the Windows version of RPy. Also, for the
idea of the R event loop functions.

Duncan Temple Lang
for his work on RSPython and for detecting bugs in the initial version of RPy.

	Overview
	To do
	Contact info and contributing

	Starting up
	Installation
	Invocation
	Small example

	Interface description
	R objects look up
	Robj type
	Calling R objects
	Methods of Robj type
	Sequence protocol

	R exceptions
	R boolean objects

	Conversion system
	R to Python
	Modes
	Proc conversion
	Class conversion
	Basic conversion
	Vector conversion
	No conversion
	Notes

	Python to R
	Useful examples
	Enhanced Robj
	DataFrame class

	Input/Output functions
	Miscellaneous
	Caveat and bugs
	Acknowledgements

