The Bank[2]: More examples of SimPy Simulation

G A Vignaux
2005 Jan 4

SimPy Version: 1.5 or later

Table Of Contents
Introduction
Processes

waituntil the Bank door opens
Wait for the doorman to give a signal: waitevent

Resources

A Resource with Priority to vary the number of units
Using priorities to increase the clerks for long queues

Monitors

Plotting a Histogram of Monitor results
Monitoring a Resource
Plotting from Resource Monitors

Acknowledgments

References

Introduction

The first Bank tutorial, The Bank , developed and explained a series of simulation models of a simple
bank using SimPy. In various models, customers arrived randomly, queued up to be served at one or
several counters, modelled using the Resource class, and, in one case, could choose the shortest among
several queues. It demonstrated the use of the Monitor class to record delays and showed how a model()
mainline for the simulation was convenient to execute replications of simulation runs.

In this extension to The Bank, I provide more examples of SimPy facilities for which there was no
room before and for some that were developed since it was written. These facilities are generally more
complicated than those introduced before. They include plotting, interrupts, waituntil and waitfor. The
programs are roughly arranged in sections to do with Processes, Resources, and Monitors.

The acronym PEM stands for Process Execution Method, the method containing the yield state-
ments in the Processes.

This tutorial should be read with the SimPy Manual or Cheatsheet at your side for reference.

The programs are available without line numbers and ready to go, in directory bankprograms. Some
have trace statements for demonstration purposes, others produce graphical output to the screen. Let
me encourage you to run them and modify them for yourself

Some facilities require SimPy version 1.5 or later.


file:TheBank.html
http://sourceforge.net/projects/simpy
file:Manual.html
file:cheatsheet.html

Processes

Two new yield facilities were introduced in SimPy-1.5: waituntil and waitevent to allow processes to
wait for a condition set up by other processes.

wattuntil the Bank door opens

Customers arrive at random, some of them getting to the bank before the door is opened by a doorman.
They wait for the door to be opened and then rush in and queue to be served.

This model uses the waituntil yield command. In the program listing the door is initially closed
(line 5) and a function to test if it is open is defined at line 6.

The Doorman class is defined starting at line 9 and the single doorman is created and activated at
at lines 56 and 57. The doorman waits for an average 10 minutes (label 14) and then open the door.

The Customer class is defined at 27 and a new customer prints out “Here I am” on arrival. If the
door is still closed, he adds “but the door is shut” and settles down to wait (line 36), using the yield
waituntil command. When the door is opened by the doorman the dooropen state is changed and the
customer (and all others waiting for the door) proceed. A customer arriving when the door is open will
not be delayed.

1 """bankl4: *waituntil* the Bank door opens"""
2 from SimPy.Simulation import *
3 from random import *

4

5 door = ’Shut’

6 def dooropen():

7 return door==’0Open’

8

9 class Doorman(Process):

10 """ Doorman opens the door"""

11 def openthedoor(self):

12 """ He will open the door when he arrives"""
13 global door

14 yield hold,self,expovariate(1.0/10.0)

15 door=’0pen’

16 print "%7.4f Doorman: Ladies and "\

17 "Gentlemen! You may all enter."%(now(),)
18

19 class Source(Process):

20 """ Source generates customers randomly"""

21 def generate(self,number,rate):

22 for i in range(number) :

23 ¢ = Customer(name = "Customer?%02d"%(i,))
24 activate(c,c.visit (timeInBank=12.0))

25 yield hold,self,expovariate(rate)

26

27 class Customer (Process):

28 """ Customer arrives, is served and leaves """
29 def visit(self,timeInBank=10):

30 arrive=now()

31

32 if dooropen(): msg = ’ and the door is open.’
33 else: msg = ’ but the door is shut.’

34 print "%7.4f Ys: Here I amys"%(now(),self.name,msg)



35

36 yield waituntil,self,dooropen

37

38 print "%7.4f Ys: I can go in!"%(now(),self.name)
39 wait=now()-arrive

40 print "%7.4f %s: Waited %6.3f"% (now(),self.name,wait)
41

42 yield request,self,counter

43 tib = expovariate(1.0/timeInBank)

44 yield hold,self,tib

45 yield release,self,counter

46

a7 print "%7.4f %s: Finished "% (now() ,self .name)
48

49 counter = Resource(l,name="Clerk")

50

51 def model (SEED=393939) :

52 seed (SEED)

53

54 initialize()

55 door = ’Shut’

56 doorman=Doorman ()

57 activate(doorman,doorman.openthedoor())

58 source = Source()

59 activate(source,source.generate (number=5,rate=0.1),0.0)
60 simulate (until=400.0)

61

62 model ()

An output run for this programs shows how the first three customers have to wait until the door is
opened.

0.0000 Customer00: Here I am but the door is shut.
5.6941 Customer0l: Here I am but the door is shut.
15.8155 Customer02: Here I am but the door is shut.
22.2064 Doorman: Ladies and Gentlemen! You may all enter.
22.2064 Customer00: I can go in!

22.2064 Customer00: Waited 22.206

22.2064 CustomerOl: I can go in!

22.2064 Customer(Ol: Waited 16.512

22.2064 Customer02: I can go in!

22.2064 Customer02: Waited 6.391

22.4603 Customer03: Here I am and the door is open.
22.4603 Customer03: I can go in!

22.4603 Customer03: Waited 0.000

24.8884 Customer(00: Finished

30.8017 Customer04: Here I am and the door is open.
30.8017 Customer04: I can go in!

30.8017 Customer04: Waited 0.000

57.5367 CustomerOl: Finished

58.6695 Customer(02: Finished

91.0096 Customer03: Finished

93.5228 Customer04: Finished



Wait for the doorman to give a signal: wazitevent

Customers arrive at random, some of them getting to the bank before the door is open. This is controlled
by an automatic machine called the doorman which opens the door only at intervals of 30 minutes (it
is a very secure bank). The customers wait for the door to be opened and all those waiting enter and
proceed to the counter. The door is closed behind them.

This model uses the yield waitevent command which requuires a SimFEvent to be defined (line 5).
The Doorman class is defined at line 6 and the doorman is created and activated at at labels 51 and
52. The doorman waits for a fixed time (label 11) and then tells the customers that the door is open.
This is achieved on line 12 by signalling the dooropen event.

Tthe Customers class is defined at 23 and in its PEM, when a customer arrives, he prints out “Here
I am”. If the door is still closed, he adds “but the door is shut” and settles down to wait for the door
to be opened using the yield waitevent command (line 31). When the door is opened by the doorman
(that is, he sends the dooropen.signal() the customer and any others waiting may proceed.

1 """ bank13: Wait for the doorman to give a signal: *waiteventx"""
2 from SimPy.Simulation import *
3 from random import *

4

5 dooropen=SimEvent ("Door Open")

6 class Doorman(Process):

7 """ Doorman opens the door"""

8 def openthedoor(self):

9 """ He will opens the door at fixed intervals"""
10 for i in range(5):

11 yield hold,self, 30.0

12 dooropen.signal ()

13 print "%7.4f You may enter"%(now(),)

14

15 class Source(Process):

16 """ Source generates customers randomly"""

17 def generate(self,number,rate):

18 for i in range(number) :

19 ¢ = Customer(name = "Customer?%02d"%(i,))

20 activate(c,c.visit (timeInBank=12.0))

21 yield hold,self,expovariate(rate)

22

23 class Customer (Process):

24 """ Customer arrives, is served and leaves """

25 def visit(self,timeInBank=10):

26 arrive=now()

27

28 if dooropen.occurred: msg = ’.’

29 else: msg = ’ but the door is shut.’

30 print "%7.4f Ys: Here I amls"%(now(),self.name,msg)
31 yield waitevent,self,dooropen

32

33 print "%7.4f %s: The door is open!"%(now(),self.name)
34

35 wait=now()-arrive

36 print "%7.4f %s: Waited %6.3f"% (now(),self.name,wait)



37

request,self,counter

expovariate(1l.0/timeInBank)
hold,self,tib
release,self,counter

"%7.4f %s: Finished

Resource(1,name="Clerk")

"% (now() ,self .name)

activate(doorman,doorman.openthedoor())

Source()

activate(source,source.generate (number=5,rate=0.1),0.0)
simulate (until=400.0)

38 yield
39 tib =

40 yield

41 yield

42

43 print

44

45 counter =

46

47 def model (SEED=393939) :
48 seed (SEED)

49

50 initialize()

51 doorman=Doorman ()
52

53 source =

54

55

56

57 model ()

An output run for this programs shows how the first three customers have to wait until the door is

opened.

0
22
27
30
30
30
30
30
30
30
37
38.
40
46
60
60
60
60
60
73
4.
90

.0000
.2064
.9005
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.9738

0219

.6558
.3632
.0000
.0000
.0000
.0000
.0000
.3042

4369

.0000

Customer00:
Customer01:
Customer02:

Here I am but the
Here I am but the
Here I am but the

You may enter

Customer02:
Customer02:
CustomerO1:
CustomerO1:
Customer00:
Customer00:
Customer02:
Customer03:
CustomerO1:
Customer04:

The door is open!
Waited 2.099

The door is open!
Waited 7.794

The door is open!
Waited 30.000
Finished

Here I am but the
Finished

Here I am but the

You may enter

Customer04:
Customer04:
Customer03:
Customer03:
Customer00:
Customer04:

The door is open!
Waited 13.637
The door is open!
Waited 21.978
Finished
Finished

You may enter
106.7770 Customer03: Finished
120.0000 You may enter
150.0000 You may enter

door is shut.
door is shut.
door is shut.

door is shut.

door is shut.



Resources

Resources can defined as priority-based queue as well as the usual first-in, first-out (FIFO or LCFS).
They can also have preemptive priority.

A Resource with Priority to vary the number of units

Although we can establish a Resource with different numbers of units when the Resource is established
it is not easy to adjust the number of units as the simulation proceeds. In this Bank model we use the
Resource priority system to remove units from the counter for a short period at random times.

Much of the model is standard: a Source (line 9) generates Customers (line 17) at random. Each
Customer requests a unit of the counter (i.e. a Clerk) at line 22. For simplicity no Monitor is used
here.

The first difference from the usual model is that the counter Resource (line 55) is given 1 unit and
establish it as a Priority@ (but not one that is preemptable).

We create a clerkl, a ClerkProcess on line 61 and activate it (line 62). The ClerkProcess is defined
at line 30. It requests a counter unit after a mean time of 15 minutes with the very high priority of
100 (line 42). As the counter is not preemptable it will wait in the wait@ until the current customer in
service has finished. This has the effect of removing one of the units from the counter Resource. The
clerk1 holds it for 3 minutes (line 47) before releasing it for use by Customers.

"""bankl18: A Resource with Priority to vary the number of units"""

1

2 tracing=0

3 if tracing:

4 from SimPy.SimulationTrace import *
5 else:

6 from SimPy.Simulation import *

7 from random import x*

8
9

class Source(Process):

10 """ Source generates customers randomly"""

11 def generate(self,number,rate):

12 for i in range(number) :

13 ¢ = Customer (name = "Customer’%02d"%(i,))

14 activate(c,c.visit (timeInBank=12.0))

15 yield hold,self,expovariate(rate)

16

17 class Customer(Process):

18 """ Customer arrives, is served and leaves """

19 def visit(self,timeInBank):

20 print "%8.4f %s: Arrived "% (now() ,self .name)
21

22 yield request,self,counter

23 print "%8.4f %s: Got counter "Y,(now(),self.name)
24 tib = expovariate(1l.0/timeInBank)

25 yield hold,self,tib

26 yield release,self,counter

27

28 print "%8.4f %s: Finished "% (now() ,self .name)
29

30 class ClerkProcess(Process):

31 """ This process removes a clerk from the counter
32 after an average of 20 minutes.



33 The clerk returns after 5 minutes """

34 def serverProc(self):

35 while True:

36 # The clerk starts off working but leave after an average of 10 minutes
37 yield hold,self,expovariate(1.0/15.0)

38 print "%8.4f %s: urgent. Free:"\

39 "%d, %d waiting"%(now(),self.name,counter.n,len(counter.waitQ))
40

41 # The first free clerk is removed

42 yield request,self,counter,100

43 print "%8.4f %s: leaves. Free:"\

44 "%d, %d waiting"%(now(), self.name,counter.n,len(counter.waitQ))
45

46 #period away is 3 minutes

47 yield hold,self,3.0

48

49 #clerk returns

50 yield release,self,counter

51 print "%8.4f %s: returns. Free:"\

52 "%d, %d waiting"%(now(), self.name,counter.n,len(counter.waitQ))
53

54 # The counter is a Priority Queue but is not preemptive
55 counter = Resource(l,name="Clerk",qType=PriorityQ)

56

57 def model (SEED=393939) :

58 seed (SEED)

59

60 initialize()

61 clerkl = ClerkProcess(’Clerk’)

62 activate(clerkl, clerkl.serverProc())
63 source = Source(’Source’)

64 activate(source,source.generate (number=20,rate=0.1),0.0)
65 simulate (until=200.0)

66

67 model()

This is a simple model with only one unit in the counter Resource. We could model a number of clerks
in a several ways. The simplest would be to set up the resource with N units (these are anonymous,
of course). Then establish and activate one ClerkProcess for each unit. This does quite model the real
situation, though, because it does not handle the clerks individually. When a ClerkProcess requests a
unit it just gets the first one to finish serving.

A more complicated way would be to have N counters each with 1 unit and having a corresponding
ClerkProcess to remove its unit from the counter when it becomes free. The complication, then, is to
decide to which counter the customer goes to upon arrival.

At lines 4 and 6 there are alternative import statements. If we use SimPy.SimulationTrace instead
of SimPy.Simulation an automatic trace is added to the printed output already in place. This gives a
more detailed picture of what is happening.

Using priorities to increase the clerks for long queues

In this model we increase the number of active clerks when the queue exceeds a certain level. We start
with 2 clerks and immediately grab one with high priority thus reducing the number available for service



to customers. We wait until the number in the waiting queue rises above 2. At that point we release
the clerk to customer service. We then wait until the number in the waiting queue falls to 0 again at
which point we take it back.

This is done using a single ClerkProcess and two functions queuelong, and queueshort to control a
clerk (line 32). It is initialised and activated at lines 63 and 64. The serverProc method first removes
the clerk with high priority (line 38) and then waits until the queue is long enough to return (line 42).
At that point it releases the corresponding unit (line 44) and waits until the queue length falls to 0
using function queueshort (defined on line 56 and used on line 48). When that is satisfied the serverProc
method recyles to the top (line 36) and immediately grabs the clerk with high priority.

queuelong is defined on line 53 and returns True when the length of the counter’s wait@ rises above
2. queueshort is defined on line 56 returns “True” when the queue length falls to 0.

1 """bank19: Using priorities to increase the clerks for long queues"""

2 tracing=0
3 if tracing:

4 from SimPy.SimulationTrace import *

5 else:

6 from SimPy.Simulation import *

7

8 from random import *

9

10 class Source(Process):

11 """ Source generates customers randomly"""

12 def generate(self,number,rate):

13 for i in range(number) :

14 ¢ = Customer(name = "Customer’%02d"%(i,))

15 activate(c,c.visit (timeInBank=12.0))

16 yield hold,self,expovariate(rate)

17

18 class Customer (Process):

19 """ Customer arrives, is served and leaves """

20 def visit(self,timeInBank):

21 print "¥8.4f %s: Arrived "% (now() ,self .name)
22

23 yield request,self,counter

24 print "%8.4f %s: Got counter "Y(now(),self.name)
25 tib = expovariate(1l.0/timeInBank)

26 yield hold,self,tib

27 yield release,self,counter

28

29 print "%8.4f %s: Finished "% (now() ,self .name)
30

31

32 class ClerkProcess(Process):

33 """ This process removes a clerk from the counter
34 immediately."""

35 def serverProc(self):

36 while True:

37 # immediately grab the clerk

38 yield request,self,counter,100

39 print "%8.4f %s: leaves. Free:"\

40 "%d, %d waiting"%(now(),self.name,counter.n,len(counter.waitQ))
41



42 yield waituntil,self, queuelong

43

44 yield release,self,counter

45 print "%8.4f Ys: needed . Free:"\

46 "%d, %d waiting"%(now(),self.name,counter.n,len(counter.waitQ))
47

48 yield waituntil,self,queueshort

49

50 # The counter is a Priority Queue but is not preemptive
51 counter = Resource(2,name="Clerk",qType=PriorityQ)

52
53 def queuelong():
54 return len(counter.waitQ)> 2
55
56 def queueshort():
57 return len(counter.waitQ)==
58
59 def model (SEED=393939) :
60 seed (SEED)
61
62 initialize()
63 clerkl = ClerkProcess(’Clerk’)
64 activate(clerkl, clerkl.serverProc())
65 source = Source(’Source’)
66 activate(source,source.generate (number=20,rate=0.1),0.0)
67 simulate (until=200.0)
68
69 model()
Monitors

Monitors are used to track and record values in a simulation. They store a list of [time,value] pairs, one
being added whenever the observe method is called.

They have a set of simple statistical methods such as mean to calculate the average of the observed
values ~~ useful in estimating the mean delay, for example. They also have the timeAverage method
that calculates the time-weighted average of the recorded values. It determines the total area under the
time~value graph and divides by the total time. This is valuable for estimating the average number of
customers in the bank, for example.

There is an important caveat in using this method. To estimate the correct time average you must
certainly observe the value (say the number of customers in the system) whenever it changes (as well
as at any other time you wish) but, and this is important, observing the new value. The old value
was recorded earlier. In practice this means that if we wish to observe a changing value, n, using the
Monitor, Mon, we must keep to the the following pattern:

n = nt+l
Mon.observe(n,now())

Thus you make the change (not only increases) and then observe the new value. Of course the
simulation time now() has not changed between the two statements.

One useful characteristic of Monitors is that they continue to exist after the simulation has been
completed. Thus further analysis of the results can be carried out.



Plotting a Histogram of Monitor results

A Monitor can construct a histogram from its data using the histogram method. In this model we
monitor the time in the system for the customers. This is calculated for each customer in line 27, using
the arrival time saved in line 17. We establish the Monitor at line 31 and the times are observed at line
28. The histogram is constructed from the Monitor, after the simulation has finished, at line 43.

The SimPy.SimPlot package allows simple plotting of results from simulations. Here we use the
SimPlot plotHistogram method. The plotting routines are run after the main simulation (lines 45-49).
The plotHistogram call is in line 46.

1 """bank17: Plotting a Histogram of Monitor results"""

2 from SimPy.Simulation import *

3 from SimPy.SimPlot import *

4 from random import *

5

6 class Source(Process):

7 """ Source generates customers randomly"""

8 def generate(self,number,rate):

9 for i in range(number) :

10 ¢ = Customer(name = "Customer%02d"%(i,))

11 activate(c,c.visit(timeInBank=12.0))

12 yield hold,self,expovariate(rate)

13

14 class Customer(Process):

15 """ Customer arrives, is served and leaves """

16 def visit(self,timeInBank):

17 arrive=now()

18 #print "98.4f Ys: Arrived "% (now() ,self .name)
19
20 yield request,self,counter
21 #print "Y8.4f Ys: Got counter "Y(now(),self.name)
22 tib = expovariate(l.0/timeInBank)
23 yield hold,self,tib
24 yield release,self,counter
25
26 #print "¥8.4f Ys: Finished "% (now() ,self .name)
27 t = now()-arrive
28 Mon.observe (t)
29

30 counter = Resource(l,name="Clerk")
31 Mon=Monitor(’Time in the Bank’)

32 N=0

33 def model (SEED=393939) :

34 seed (SEED)

35

36 initialize()

37 source = Source()

38 activate(source,source.generate (number=20,rate=0.1),0.0)
39 simulate (until=400.0)

40

41 model ()

42

43 Histo = Mon.histogram(low=0.0,high=200.0,nbins=20)
44

10


file:SimPlotManual/ManualPlotting.html

45 plt=SimPlot()

46 plt.plotHistogram(Histo,xlab=’Time (min)’,
a7 title="Time in the Bank",
48 color="red",width=2)

49 plt.mainloop()

Monitoring a Resource

Now consider observing the number of customers waiting or executing in a Resource. Because of the
need to observe the value after the change but at the same simulation instant, it is impossible to use the
length of the Resource’s wait@ directly with a Monitor defined outside the Resource. Instead Resources
can be set up with built-in Monitors.

Here is an example using a Monitored Resource. We intend to observe the average number waiting
and active in the counter resource. counter is defined at line 27 and we have set monitored=True. This
establishes two Monitors: waitMon, to record changes in the numbers waiting and actMon to record
changes in the numbers active in the counter. We need make no further change to the operation of the
program as monitoring is then automatic. No observe calls are necessary.

At the end of the run in the model function, we calculate the timeAverage of both waitMon and
actMon and return them from the model call (line 37). These can then be printed at the end of the
program (line 39).

1 """bankl5: Monitoring a Resource"""
2 from SimPy.Simulation import *
3 from random import *

4

5 class Source(Process):

6 """ Source generates customers randomly"""

7 def generate(self,number,rate):

8 for i in range(number) :

9 ¢ = Customer (name = "Customer?’,02d"%(i,))

10 activate(c,c.visit (timeInBank=12.0))

11 yield hold,self,expovariate(rate)

12

13 class Customer(Process):

14 """ Customer arrives, is served and leaves """

15 def visit(self,timelInBank):

16 arrive=now()

17 print "%8.4f %s: Arrived "% (now() ,self .name)
18

19 yield request,self,counter

20 print "%8.4f Ys: Got counter "%(now(),self.name)
21 tib = expovariate(1l.0/timeInBank)

22 yield hold,self,tib

23 yield release,self,counter

24

25 print "%8.4f %s: Finished "% (now() ,self .name)
26

27 counter = Resource(l,name="Clerk",monitored=True)

28

29 def model (SEED=393939) :

30 seed (SEED)

31

11



32 initialize()

33 source = Source()

34 activate(source,source.generate (number=5,rate=0.1),0.0)

35 simulate (until=400.0)

36

37 return (counter.waitMon.timeAverage(),counter.actMon.timeAverage())
38

39 print ’Average waiting = %6.4f\nAverage active = %6.4f\n’%model()

Plotting from Resource Monitors

waitMon and actMon, the two Monitors in a monitored Resource contain information that enables us
to graph the output. Alternative plotting packages can be used; here we use the simple SimPy.SimPlot
package just to graph the number of customers waiting for the counter. The program is a simple
modification of the one that uses a monitored Resource.

The SimPlot package is imported at line 3. No major changes are made to the main part of the
program except that I commented out the print statements. The changes occure in the model routine
from lines 29 to 35. The simulation now generates and processes 20 customers (line 34). model does not
return a value but the Monitors of the counter Resource still exist when the simulation has terminated.

The additional plotting actions take place in lines 39 to 42. Line 40-41 construct a step plot and
graphs the number in the waiting queue as a function of times. waitMon is primarily a list of [time,value/
pairs which the plotStep method of the SimPlot object, plt uses without change. On running the program
the graph is plotted; the user has to terminate the plotting mainloop on the screen.

1 """bank16: Plotting from Resource Monitors"""

2 from SimPy.Simulation import *

3 from SimPy.SimPlot import *

4 from random import *

5

6 class Source(Process):

7 """ Source generates customers randomly"""

8 def generate(self,number,rate):

9 for i in range(number) :

10 ¢ = Customer(name = "Customer%02d"%(i,))

11 activate(c,c.visit(timeInBank=12.0))

12 yield hold,self,expovariate(rate)

13

14 class Customer(Process):

15 """ Customer arrives, is served and leaves """

16 def visit(self,timeInBank):

17 arrive=now()

18 #print "98.4f Ys: Arrived "% (now() ,self .name)
19
20 yield request,self,counter
21 #print "Y8.4f Ys: Got counter "Y(now(),self.name)
22 tib = expovariate(l.0/timeInBank)
23 yield hold,self,tib
24 yield release,self,counter
25
26 #print "Y8.4f Ys: Finished "% (now() ,self .name)
27

28 counter = Resource(l,name="Clerk",monitored=True)

12



29 def model (SEED=393939) :

30 seed (SEED)

31

32 initialize()

33 source = Source()

34 activate(source,source.generate (number=20,rate=0.1),0.0)
35 simulate (until=400.0)

36

37 model()

38

39 plt=SimPlot()

40 plt.plotStep(counter.waitMon,
41 color="red",width=2)
42 plt.mainloop()

Acknowledgments

I thank Klaus Muller and the other developers and users of SimPy who have improved this document
by sending their comments. I will be grateful for further corrections or suggestions. Could you send
them to me: vignauz at users.sourceforge.net.

References

e Python website: http://www.Python.org
e SimPy website: http://sourceforge.net/projects/simpy
e The Bank: The Bank

13


http://www.Python.org
http://sourceforge.net/projects/simpy
file:TheBank.html

	Table Of Contents
	Introduction
	Processes
	waituntil the Bank door opens
	Wait for the doorman to give a signal: waitevent

	Resources
	A Resource with Priority to vary the number of units
	Using priorities to increase the clerks for long queues

	Monitors
	Plotting a Histogram of Monitor results
	Monitoring a Resource
	Plotting from Resource Monitors

	Acknowledgments
	References

