Asymptote: the Vector Graphics Language

For version 1.32

symplote

This file documents Asymptote, version 1.32.
http://asymptote.sourceforge.net
Copyright (©) 2004-7 Andy Hammerlindl, John Bowman, and Tom Prince.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU General Public License (see the file LICENSE in the
top-level source directory).

http://asymptote.sourceforge.net

Table of Contents

1 Description..............oiiiiiiiinnnn.. 1
2 Installation.......................... ... 3
2.1 UNIX binary distributions 3
2.2 MacOS X binary distributions................. 3
2.3 Microsoft Windowsttt 4
2.4 Configuring 4
2.5 Search paths......... ... i 5)
2.6 Compiling from UNIX source................coiiviiiiin.. 6
2.7 Editing modes 7
2.8 SUDVEISIONttt 7
2.9 Uninstall 8

3 Tutorial............. 9
4 Drawingcommands..............co00ee... 15
A1 draw .o 15
4.2 Al 17
4.3 Clip oo 18
4.4 dabel ... 18

5 Programming..............oiiiiiiiiia.. 23
5.1 Data types. ... 23
5.2 Pathsand guides.......... i 28
5.3 Pens ... 34
5.4 Transforms 41
5.5 Frames and pictures........... ... 42
5.6 Files ..o 48
5.7 Variable initializers......... 50
D.8 SETUCLUTES .« .ot o et et e e e e e e e et 51
5.9 OPEeratorsuuoi it 55
5.9.1 Arithmetic & logical operators.......................... 55

5.9.2 Self & prefix operators ... 56

5.9.3 User-defined operatorsoviinii. ... 56

5.10 Implicit scaling i 57

5. 11 FunctionsS. i o7
5.11.1 Default arguments 59
5.11.2 Named arguments ..., 59
5.11.3 Rest arguments.............. i 60
5.11.4 Mathematical functions 62

BA2 ATTAYS « ettt 62

5.3 CaStS . e, 68

B5.14 Import ... 69

DA SEatiC ..ot 72
6 LaTeX USALEC ... vverrennenrennneneonnnnnns 74
7 Basemodules................ 79

Tl plainm ... 79

T2 simpleX 79

T3 Math ..o 79

7.4 dnterpolate 80

7D EOMELTY .ottt 80

.6 STALS ottt 80

T7 patterns..... ... 80

T8 MATKETS .ottt et e e 80

7.9 BTEe o 82

7.10 binarytree.t 82

TAL drawWwbreeo 83

712 SYZYEY oot 83

713 feynman............ ... 83

7.14 roundedpath 83

715 animateoooi 83

716 embed ... 84

TA7T 8lide ... 84

TA8 MetaPosSt ..ottt 85

7.19 unicode.o 85

720 latind ... 85

T21 babel ... 85

7.22 labelpath...........ooiiiii 85

T7.23 @nnOtateot 86

T24 CAD ..o 86

T2D graph 86

726 palette.o 112

T.27 ThTee ... 116

T28 Light ... 121

729 graph3 121

T30 grid3o 126

731 801ddS ..ot 127

7.32 surface...... ... 128

7.33 featpost3D 128

7.34 flowchart........ooniinii 128

T7.35 COMBOUT ..ottt e e e e e e e e 130

T7.36 CoOntoUT3. ... o 136

7.37 slopefielduiiiuniii 136
8 Options.......coiiiiiiiiiininnennnnn. 138

9 Interactivemodecovieieennen. 141

10 Graphical User Interface................ 143

10.1 GUI Installation 143
102 GULUSAZE - -« vveeeeee e e e e 143
11 PostScript to Asymptote 145
12 Help...ooviiiiii e 146
13 Debugger, 147
14 Acknowledgments 148

Chapter 1: Description 1

1 Description

Asymptote is a powerful descriptive vector graphics language that provides a mathematical
coordinate-based framework for technical drawings. Labels and equations are typeset with
LaTeX, for overall document consistency, yielding the same high-quality level of typesetting
that LaTeX provides for scientific text. By default it produces PostScript output, but it
can also generate any format that the ImageMagick package can produce.

A major advantage of Asymptote over other graphics packages is that it is a high-level
programming language, as opposed to just a graphics program: it can therefore exploit the
best features of the script (command-driven) and graphical-user-interface (GUI) methods
for producing figures. The rudimentary GUI xasy included with the package allows one
to move script-generated objects around. To make Asymptote accessible to the average
user, this GUI is currently being developed into a full-fledged interface that can generate
objects directly. However, the script portion of the language is now ready for general use by
users who are willing to learn a few simple Asymptote graphics commands (see Chapter 4
[Drawing commands|, page 15).

Asymptote is mathematically oriented (e.g. one can use complex multiplication to rotate
a vector) and uses LaTeX to do the typesetting of labels. This is an important feature for
scientific applications. It was inspired by an earlier drawing program (with a weaker syntax
and capabilities) called MetaPost.

The Asymptote vector graphics language provides:

e a standard for typesetting mathematical figures, just as TEX/LaTeX is the de-facto
standard for typesetting equations.

e LaTeX typesetting of labels, for overall document consistency;

e a natural coordinate-based framework for technical drawings, inspired by MetaPost,
with a much cleaner, powerful C++-like programming syntax;

e compilation of figures into virtual machine code for speed, without sacrificing portabil-
ity;

e the power of a script-based language coupled to the convenience of a GUI;

e customization using its own C++-like graphics programming language;

e sensible defaults for graphical features, with the ability to override;

e a high-level mathematically oriented interface to the PostScript language for vector
graphics, including affine transforms and complex variables;

e functions that can create new (anonymous) functions;

e deferred drawing that uses the simplex method to solve overall size constraint issues
between fixed-sized objects (labels and arrowheads) and objects that should scale with
figure size;

Many of the features of Asymptote are written in the Asymptote language itself. While
the stock version of Asymptote is designed for mathematics typesetting needs, one can write
Asymptote modules that tailor it to specific applications. A scientific graphing module has
already been written (see Section 7.25 [graph], page 86). Examples of Asymptote code and
output, including animations, are available at

http://asymptote.sourceforge.net/gallery/.

http://asymptote.sourceforge.net/gallery/

Chapter 1: Description 2

Links to many external resources, including an excellent user-written Asymptote tutorial
can be found at

http://asymptote.sourceforge.net/links.html.
p ymp g

http://asymptote.sourceforge.net/links.html

Chapter 2: Installation 3

2 Installation

After following the instructions for your specific distribution, please see also Section 2.4
[Configuring], page 4.

We recommend subscribing to new release announcements at
http://freshmeat.net/subscribe/50750

Users may also wish to monitor the Asymptote forum:
http://sourceforge.net/forum/monitor.php?forum_id=409349

and provide guidance to others by rating the Asymptote project:

http://freshmeat.net/projects/asy

2.1 UNIX binary distributions

We release both tgz and RPM binary distributions of Asymptote. The root user can install
the Linux 1386 tgz distribution of version x.xx of Asymptote with the commands:

tar -C / -zxf asymptote-x.xx.i386.tgz
texhash

The texhash command, which installs LaTeX style files, is optional. The executable
file will be /usr/local/bin/asy) and example code will be installed by default in
/usr/share/doc/asymptote/examples.

Fedora Core users can easily install Asymptote from the Fedora Extras mirrors:
yum install asymptote

To install the latest version of Asymptote on a Debian-based distribution (e.g. Ubuntu,
Mepis, Linspire) follow the instructions for compiling from UNIX source (see Section 2.6
[Compiling from UNIX source|, page 6). Alternatively, Debian users can install one of
Hubert Chan’s prebuilt Asymptote binaries from

http://ftp.debian.org/debian/pool/main/a/asymptote

2.2 MacOS X binary distributions

MacOS users can either compile the UNIX source code (see Section 2.6 [Compiling from
UNIX source|, page 6) or install the contributed Asymptote binary available at

http://www.hmug.org/pub/Mac0S_X/X/Applications/Publishing/asymptote/

Because these preconfigured binary distributions have strict architecture and library depen-
dencies that many installations do not satisfy, we recommend installing Asymptote directly
from the official source:

http://sourceforge.net/project/showfiles.php?group_id=120000

Note that many MacOS X (and FreeBSD) systems inexplicably ship with an extremely
old GNU readline version (4.1, dated 21 March 2000). For full interactive functionality,
readline version 4.2 or later (16 April 2001) is required.

http://freshmeat.net/subscribe/50750
http://sourceforge.net/forum/monitor.php?forum_id=409349
http://freshmeat.net/projects/asy
http://ftp.debian.org/debian/pool/main/a/asymptote
http://www.hmug.org/pub/MacOS_X/X/Applications/Publishing/asymptote/
http://sourceforge.net/project/showfiles.php?group_id=120000

Chapter 2: Installation 4

2.3 Microsoft Windows

Users of the Microsoft Windows operating system can install the self-extracting Asymptote
executable asymptote-x.xx-setup.exe, where x.xx denotes the latest version.

A working TeX implementation (such as the one available at http://www.miktex.org)
will be required to typeset labels. You will also need to install GPL Ghostscript
from http://sourceforge.net/projects/ghostscript/. To view the de-
fault PostScript output, you can install the program gsview available from
http://www.cs.wisc.edu/ "ghost/gsview/.

The ImageMagick package from
http://www.imagemagick.org/script/binary-releases.php

is required to support alternate output formats (see [convert], page 139), includ-
ing the graphical user interface and animations. The Python interpreter from
http://www.python.org is only required if you wish to try out the graphical user interface
(see Chapter 10 [GUI], page 143).

Example code will be installed by default in the examples subdirectory of the installation
directory (by default, C:\Program Files\Asymptote).

2.4 Configuring

In interactive mode, or when given the -V option (the default when running Asymptote on
a single file under MSDOS), Asymptote will automatically invoke the PostScript viewer gv
(under UNIX) or gsview (under MSDOS to display graphical output. These defaults may be
overridden with the configuration variable psviewer. The PostScript viewer should be
capable of automatically redrawing whenever the output file is updated. The default UNIX
PostScript viewer gv supports this (via a SIGHUP signal). Version gv-3.6.2 or later (from
http://ftp.gnu.org/gnu/gv/) is required for interactive mode to work properly. Users of
ggv will need to enable Watch file under Edit/Postscript Viewer Preferences. Users
of gsview will need to enable Options/Auto Redisplay (however, under MSDOS it is still
necessary to click on the gsview window; under UNIX one must manually redisplay by
pressing the r key).

Configuration variables are most easily set as Asymptote variables in the
configuration file (by default, .asy/config.asy in the user’s home directory or
JiUSERPROFILE%\ .asy\config.asy under MSDOS); see [configuration file], page 139. Here
are the default values of several important configuration variables:

Under UNIX:

import settings;
psviewer="gv";
pdfviewer="acroread";

gS="gS n ;
python="";

Under MSDOS:

import settings;
psviewer="gsview32.exe";
pdfviewer="AcroRd32.exe";
gs="gswin32c.exe";

http://www.miktex.org
http://sourceforge.net/projects/ghostscript/
http://www.cs.wisc.edu/~ghost/gsview/
http://www.imagemagick.org/script/binary-releases.php
http://www.python.org
http://ftp.gnu.org/gnu/gv/

Chapter 2: Installation 5)

python="python.exe";

For PDF format output, the gs setting specifies the location of the PostScript-to-PDF
processor Ghostscript, available from http://sourceforge.net/projects/ghostscript/.

The setting pdfviewer specifies the location of the PDF viewer. The graphical user
interface may also require setting the variable python if Python is installed in a nonstandard
location.

The configuration variable dir can be used to adjust the search path (see Section 2.5
[Search paths], page 5).

By default, Asymptote attempts to center the figure on the page, assuming that the paper
typeis letter. The default paper type may be changed to a4 with the configuration variable
papertype. Alignment to other paper sizes can be obtained by setting the configuration
variables paperwidth and paperheight.

The following configuration variables normally do not require adjustment:
texpath
texcommand
dvips
convert
display
animate
xasy

Configuration variables may also be set or overwritten with a command-line option:
asy -psviewer=gsview -V venn

Alternatively, system environment versions of the above configuration variables may be
set in the conventional way. The corresponding environment variable name is obtained by
converting the configuration variable name to upper case and prepending ASYMPTOTE_: for
example, to set the environment variable
ASYMPTOTE_PSVIEWER="C:\Program Files\Ghostgum\gsview\gsview32.exe";
under Microsoft Windows XP:

Click on the Start button;

Right-click on My Computer;

Choose Properties from the popup menu;
Click the Advanced tab;

Click the Environment Variables button.

CU N

2.5 Search paths
In looking for Asymptote system files, asy will search the following paths, in the order
listed:
1. The current directory;
2. The directory .asy in the user’s home directory (%USERPROFILEY\.asy under MSDOS);
3. A list of one or more directories specified by the configuration variable dir (separated
by : under UNIX and ; under MSDOS);
4. The Asymptote system directory (by default, /usr/share/asymptote under UNIX and
C:\Program Files\Asymptote under MSDOS).

http://sourceforge.net/projects/ghostscript/

Chapter 2: Installation 6

2.6 Compiling from UNIX source

To compile and install a UNIX executable from a source release x.xx, first execute the
commands:

gunzip asymptote-x.xx.src.tgz
tar -xf asymptote-x.xx.src.tar
cd asymptote-x.xx

Then put http://www.hpl.hp.com/personal/Hans_Boehm/gc/gc_source/gc-7.0alpha9.tar.gz
in the current directory and

./configure
make all
make install

Be sure to use GNU make (on non-GNU systems this command may be called gmake). To
build the documentation, you may need to install the texinfo-tex package. If you get
errors from a broken texinfo or pdftex installation, simply put

http://asymptote.sourceforge.net/asymptote.pdf
in the directory doc and repeat the command make all.

For a (default) system-wide installation, the last command should be done as the root user.
To install without root privileges, change the ./configure command to

./configure --prefix=$HOME/asymptote

The above steps will compile an optimized single-threaded static version of the Boehm
garbage collector (http://www.hpl.hp.com/personal/Hans_Boehm/gc/). Alternatively,
one can request use of a (presumably multithreaded and therefore slower) system ver-
sion of the Boehm garbage collector by configuring instead with ./configure --enable-
gc=system (provided that your system has the libgc and libgccpp libraries). One can
disable use of the garbage collector by configuring with ./configure --disable-gc. For
a list of other configuration options, say ./configure --help. For example, one can tell
configure to look for header files and libraries in nonstandard locations:

./configure CFLAGS=-I/opt/usr/include LDFLAGS=-L/opt/usr/lib

If you are compiling Asymptote with gcc, you will need a relatively recent version (e.g.
3.2 or later). For full interactive functionality, you will need version 4.2 or later of the GNU
readline library. The file gcc3.3.2curses.patch in the patches directory can be used
to patch the broken curses.h header file (or a local copy thereof in the current directory) on
some AIX and IRIX systems.

The FFTW library is only required if you want Asymptote to be able to take Fourier
transforms of data (say, to compute an audio power spectrum). The GSL library is only
required if you require the special functions that it supports.

If you don’t want to install Asymptote system wide, just make sure the compiled binary
asy and GUI script xasy are in your path and set the configuration variable dir to point
to the directory base (in the top level directory of the Asymptote source code).

A patch supplied in the patches directory fixes several bugs in the UNIX PostScript
viewer gv-3.6.2, allowing it to work properly with Asymptote. After putting gv-3.6.2
from http://ftp.gnu.org/gnu/gv/ in the Asymptote source directory, here are the steps
to install a properly working gv in /usr/bin (as the UNIX root user):

http://www.hpl.hp.com/personal/Hans_Boehm/gc/gc_source/gc-7.0alpha9.tar.gz
http://asymptote.sourceforge.net/asymptote.pdf
http://www.hpl.hp.com/personal/Hans_Boehm/gc/
http://ftp.gnu.org/gnu/gv/

Chapter 2: Installation 7

tar -zxf gv-3.6.2.tar.gz

cd gv-3.6.2

patch -pl < ../patches/gv-3.6.2.patch
./configure --prefix=/usr

make install

2.7 Editing modes

Users of emacs can edit Asymptote code with the mode asy-mode, after enabling it by
putting the following lines in their .emacs initialization file, replacing ASYDIR with the loca-
tion of the Asymptote system directory (by default, /usr/share/asymptote or C: \Program
Files\Asymptote under MSDOS):

(add-to-1list ’load-path "ASYDIR")

(autoload ’asy-mode "asy-mode.el" "Asymptote major mode." t)

(autoload ’lasy-mode "asy-mode.el" "hybrid Asymptote/Latex major mode." t)
(autoload ’asy-insinuate-latex "asy-mode.el" "Asymptote insinuate LaTeX." t)
(add-to-list ’auto-mode-alist ’("\\.asy$" . asy-mode))

Particularly useful key bindings in this mode are C-c C-c, which compiles and displays the
current buffer, and the key binding C-c ?, which shows the available function prototypes
for the command at the cursor. For full functionality you should also install the Apache
Software Foundation package two-mode-mode:

http://www.dedasys.com/freesoftware/files/two-mode-mode.el

Once installed, you can use the hybrid mode lasy-mode to edit a LaTeX file containing
embedded Asymptote code (see Chapter 6 [LaTeX usage], page 74). This mode can be en-
abled within latex-mode with the key sequence M-x lasy-mode <RET>. On UNIX systems,
additional keywords will be generated from all asy files in the space-separated list of direc-
tories specified by the environment variable ASYMPTOTE_SITEDIR. Further documentation
of asy-mode is available within emacs by pressing the sequence keys C-h £ asy-mode <RET>.

Fans of vim can customize vim for Asymptote with
cp /usr/share/asymptote/asy.vim ~/.vim/syntax/asy.vim
and add the following to their ~/.vimrc file:

augroup filetypedetect
au BufNewFile,BufRead *.asy setf asy
augroup END
filetype plugin on
If any of these directories or files don’t exist, just create them. To set vim up to run the
current asymptote script using :make just add to “/.vim/ftplugin/asy.vim:

setlocal makeprg=asy\ %
setlocal errorformat=%f:\ %l.%c:\ %m

2.8 Subversion

The following commands are needed to install the latest development version of Asymptote
using Subversion:

http://www.dedasys.com/freesoftware/files/two-mode-mode.el

Chapter 2: Installation 8

svn co https://asymptote.svn.sourceforge.net/svnroot/asymptote/trunk/asymptote

cd asymptote

./autogen.sh

wget http://www.hpl.hp.com/personal/Hans_Boehm/gc/gc_source/gc-7.0alpha9.tar.gz
./configure

make all

make install

To compile without optimization, use the command make CFLAGS=-g.

2.9 Uninstall

To uninstall an Linux 1386 binary distribution, use the commands

tar -zxvf asymptote-x.xx.i386.tgz | xargs --replace=}, rm /%
texhash

To uninstall all Asymptote files installed from a source distribution, use the command

make uninstall

Chapter 3: Tutorial 9

3 Tutorial

An excellent user-written Asymptote tutorial is also available from
http://www.artofproblemsolving.com/Wiki/index.php/Asymptote: _Basics

To draw a line from coordinate (0,0) to coordinate (100,100) using Asymptote’s interactive

mode, type at the command prompt:

asy

draw((0,0)--(100,100));

The units here are PostScript "big points" (1 bp = 1/72 inch); -- means join with a
linear segment. In Asymptote coordinates like (0,0) and (1000,100) are called pairs.

At this point you can type in further draw commands, which will be added to the
displayed figure, or type quit to exit interactive mode. You can use the arrow keys in inter-
active mode to edit previous lines (assuming that you have support for the GNU readline
library enabled). The tab key will automatically complete unambiguous words; otherwise,
hitting tab again will show the possible choices. Further commands specific to interactive
mode are described in Chapter 9 [Interactive mode], page 141.

In batch mode, Asymptote reads commands directly from a file. To try this out, type
draw((0,0)--(100,100));
into a file, say test.asy. Then execute this file with the MSDOS or UNIX command
asy -V test

MSDOS users can drag and drop the file onto the Desktop asy icon or make Asymptote the
default application for files with the extension asy.
The -V option opens up a PostScript viewer window so you can immediately view the
encapsulated PostScript output. By default the output will be written to the file test . eps;
the prefix of the output file may be changed with the —o command-line option.

One can draw a line with more than two points and create a cyclic path like this square:
draw((0,0)--(100,0)--(100,100)--(0,100)--cycle) ;

http://www.artofproblemsolving.com/Wiki/index.php/Asymptote:_Basics

Chapter 3: Tutorial 10

It is often inconvenient to work directly with PostScript coordinates. The next example
draws a unit square scaled to width 101 bp and height 101 bp. The output is identical to
that of the previous example.

size(101,101);
draw((0,0)--(1,0)--(1,1)--(0,1)--cycle);

For convenience, the path (0,0)--(1,0)--(1,1)--(0,1)--cycle may be replaced with
the predefined variable unitsquare, or equivalently, box ((0,0),(1,1)).

One can also specify the size in pt (1 pt = 1/72.27 inch), cm, mm, or inches. If 0 is
given as a size argument, no restriction is made in that direction; the overall scaling will be
determined by the other direction (see [size|, page 42):

size(0,3cm);
draw(unitsquare) ;

To make the user coordinates represent multiples of exactly 1cm:

unitsize(lcm);
draw(unitsquare) ;

One can also specify different x and y unit sizes:

unitsize(lcm,2cm);
draw(unitsquare) ;

Adding labels is easy in Asymptote; one specifies the label as a double-quoted LaTeX
string, a coordinate, and an optional alignment direction:

size(0,3cm);
draw(unitsquare) ;
label ("A", (0,0),SW);
label("B", (1,0),SE);
label("C", (1,1),NE);
label("D", (0,1) ,NW);

Chapter 3: Tutorial 11

Asymptote uses the standard compass directions E=(1,0), N=(0,1), NE=unit (N+E), and
ENE=unit (E+NE), etc., which along with the directions up, down, right, and left are
defined as pairs in the Asymptote base module plain. A user who has a local variable
named E may access the compass direction E by prefixing it with the name of the module
where it is defined: plain.E.

This example draws a path that approximates a quarter circle:

size(100,0);
draw((1,0){up}. .{left}(0,1));

In general, a path is specified as a list of pairs (or other paths) interconnected with --,
which denotes a straight line segment, or .., which denotes a cubic spline. Specifying a
final node cycle creates a cyclic path that connects smoothly back to the initial node, as
in this approximation (accurate to within 0.06%) of a unit circle:

path unitcircle=E..N..W..S..cycle;

Each interior node of a cubic spline may be given a direction prefix or suffix {dir}:
the direction of the pair dir specifies the direction of the incoming or outgoing tangent,
respectively, to the curve at that node. Exterior nodes may be given direction specifiers
only on their interior side.

A cubic spline between the node z,, with postcontrol point ¢y, and the node z;, with
precontrol point ¢, is computed as the Bezier curve

(1 —t)%20 + 3t(1 —t)%co + 32(1 —t)ey + 221 0<t< 1.

As illustrated in the diagram below, the third-order midpoint (ms) constructed from
two endpoints zg and z; and two control points ¢y and ¢y, is the point corresponding to
t = 1/2 on the Bezier curve formed by the quadruple (zo, ¢, ¢1, 21). This allows one
to recursively construct the desired curve, by using the newly extracted third-order mid-

Chapter 3: Tutorial 12

point as an endpoint and the respective second- and first-order midpoints as control points:

Here mg, m, and msy are the first-order midpoints, ms; and my4 are the second-order
midpoints, and ms is the third-order midpoint. The curve is then constructed by recursively
applying the algorithm to (zo, mo, ms, ms) and (ms, my, ma, 21).

In fact, an analogous property holds for points located at any fraction ¢ in [0, 1] of each
segment, not just for midpoints (¢t = 1/2).

The Bezier curve constructed in this manner has the following properties:
e [t is entirely contained in the convex hull of the given four points.

e [t starts heading from the first endpoint to the first control point and finishes heading
from the second control point to the second endpoint.

The user can specify explicit control points between two nodes like this:
draw((0,0)..controls (0,100) and (100,100)..(100,0));

However, it is usually more convenient to just use the .. operator, which tells Asymptote
to choose its own control points using the algorithms described in Donald Knuth’s mono-
graph, The MetaFontbook, Chapter 14. The user can still customize the guide (or path)
by specifying direction, tension, and curl values.

The higher the tension, the straighter the curve is, and the more it approximates a
straight line. One can change the spline tension from its default value of 1 to any real value
greater than or equal to 0.75 (cf. John D. Hobby, Discrete and Computational Geometry
1, 1986):

draw((100,0)..tension 2 ..(100,100)..(0,100));
draw((100,0)..tension 2 and 1 ..(100,100)..(0,100));
draw((100,0)..tension atleast 1 ..(100,100)..(0,100));

The curl parameter specifies the curvature at the endpoints of a path (0 means straight;
the default value of 1 means approximately circular):

draw((100,0){curl 0}..(100,100)..{curl 0}(0,100));

The MetaPost ... path connector, which requests, when possible, an inflection-free
curve confined to a triangle defined by the endpoints and directions, is implemented in
Asymptote as the convenient abbreviation : : for ..tension atleast 1 .. (the ellipsis ...
is used in Asymptote to indicate a variable number of arguments; see Section 5.11.3 [Rest
arguments|, page 60). For example, compare

Chapter 3: Tutorial 13

draw((0,0){up?}. . (100,25){right}. . (200,0){down}) ;
with

draw((0,0){up}::(100,25){right}:: (200,0){down});

Y

The --- connector is an abbreviation for ..tension atleast infinity.. and the &
connector concatenates two paths which meet at a common point.

An Asymptote path, being connected, is equivalent to a Postscript subpath. The =~ bi-
nary operator, which requests that the pen be moved (without drawing or affecting endpoint
curvatures) from the final point of the left-hand path to the initial point of the right-hand
path, may be used to group several Asymptote paths into a path[] array (equivalent to a
PostScript path):

size(0,100);

path unitcircle=E..N..W..S..cycle;

path g=scale(2)*unitcircle;
filldraw(unitcircle”"g,evenodd+yellow,black) ;

The PostScript even-odd fill rule here specifies that only the region bounded between
the two unit circles is filled (see [fillrule], page 37). In this example, the same effect can be
achieved by using the default zero winding number fill rule, if one is careful to alternate the
orientation of the paths:

filldraw(unitcircle”"reverse(g),yellow,black) ;

The =~ operator is used by the box3d function in three.asy to construct a two-
dimensional projection of the edges of a 3D cube, without retracing steps:

import three;

size(0,100);

Chapter 3: Tutorial 14

currentprojection=obliqueX;

draw(unitcube) ;
dot (unitcube,red);

label ("0", (0,0,0) ,NW);

label("(1,0,0)",(1,0,0),8);
label("(0,1,0)",(0,1,0),E);
label("(0,0,1)",(0,0,1),N);

(0,0,1)

0 (0,1,0)

(1,0,0)

See section Section 7.25 [graph], page 86 (or the online Asymptote gallery at
http://asymptote.sourceforge.net) for further examples, including two-dimensional
scientific graphs. Additional examples have been posted by Philippe Ivaldi at
http://piprim.tuxfamily.org/asymptote/.

http://asymptote.sourceforge.net
http://piprim.tuxfamily.org/asymptote/

Chapter 4: Drawing commands 15

4 Drawing commands

All of Asymptote’s graphical capabilities are based on four primitive commands. The three
PostScript drawing commands draw, £i11l, and clip add objects to a picture in the order
in which they are executed, with the most recently drawn object appearing on top. The
labeling command label can be used to add text labels and external EPS images, which
will appear on top of the PostScript objects (since this is normally what one wants), but
again in the relative order in which they were executed. After drawing objects on a picture,
the picture can be output with the shipout function (see [shipout], page 43).

If you wish to draw PostScript objects on top of labels (or verbatim tex commands;
see [tex], page 47), the layer command may be used to start a new PostScript/LaTeX
layer:

void layer(picture pic=currentpicture);

The layer function gives one full control over the order in which objects are drawn.
Layers are drawn sequentially, with the most recent layer appearing on top. Within each
layer, labels, images, and verbatim tex commands are always drawn after the PostScript
objects in that layer.

While some of these drawing commands take many options, they all have sensible default
values (for example, the picture argument defaults to currentpicture).

4.1 draw

void draw(picture pic=currentpicture, Label L="", path g,
align align=NoAlign, pen p=currentpen,
arrowbar arrow=None, arrowbar bar=None, margin margin=NoMargin,
Label legend="", marker marker=nomarker);

Draw the path g on the picture pic using pen p for drawing, with optional drawing attributes
(Label L, explicit label alignment align, arrows and bars arrow and bar, margins margin,
legend, and markers marker). Only one parameter, the path, is required. For convenience,
the arguments arrow and bar may be specified in either order. The argument legend is a
Label to use in constructing an optional legend entry.

Bars are useful for indicating dimensions. The possible values of bar are None, BeginBar,
EndBar (or equivalently Bar), and Bars (which draws a bar at both ends of the path). Each
of these bar specifiers (except for None) will accept an optional real argument that denotes
the length of the bar in PostScript coordinates. The default bar length is barsize (p).

The possible values of arrow are None, Blank (which draws no arrows or path),
BeginArrow, MidArrow, EndArrow (or equivalently Arrow), and Arrows (which draws an
arrow at both ends of the path). These arrow specifiers (except for None and Blank) may
be given the optional arguments real size (arrowhead size in PostScript coordinates),
real angle (arrowhead angle in degrees), FillDraw, Fill, NoFill, Draw, and (except for
MidArrow and Arrows) a relative real position along the path (an arctime) where the tip
of the arrow should be placed. The default arrowhead size is arrowheadsize(p). There
are also arrow versions with slightly modified default values of size and angle suitable for
curved arrows: BeginArcArrow, EndArcArrow (or equivalently ArcArrow), MidArcArrow,
and ArcArrows.

Chapter 4: Drawing commands 16

Margins can be used to shrink the visible portion of a path by labelmargin(p) to avoid
overlap with other drawn objects. Typical values of margin are NoMargin, BeginMargin,
EndMargin (or equivalently Margin), and Margins (which leaves a margin at both ends
of the path). One may use Margin(real begin, real end) to specify the size of the
beginning and ending margin, respectively, in multiples of the units labelmargin(p)
used for aligning labels. Alternatively, BeginPenMargin, EndPenMargin (or equivalently
PenMargin), PenMargins, PenMargin(real begin, real end) specify a margin in units of
the pen linewidth, taking account of the pen linewidth when drawing the path or arrow.
For example, use DotMargin, an abbreviation for PenMargin(-0.5,0.5*dotfactor),
to draw from the usual beginning point just up to the boundary of an end dot of
width dotfactor*linewidth(p). The qualifiers BeginDotMargin, EndDotMargin, and
DotMargins work similarly. The qualifier TrueMargin(real begin, real end) allows one
to specify a margin directly in PostScript units, independent of the pen linewidth.

The use of arrows, bars, and margins is illustrated by the examples Pythagoras.asy,
sqrtx01.asy, and triads.asy.

The legend for a picture pic can be fit and aligned to a frame with the routine (see
[filltype], page 44):
frame legend(picture pic=currentpicture, int perline=1,
real xmargin=legendmargin, real ymargin=xmargin,
real linelength=legendlinelength,
real hskip=legendhskip, real vskip=legendvskip,
real maxwidth=0, pen p=currentpen);

Here xmargin and ymargin specify the surrounding x and y margins, perline specifies
the number of entries per line (default 1; 0 means choose this number automatically),
linelength specifies the length of the path lines, hskip and vskip specify the line skip (as
a multiple of legend entry size), maxwidth specifies an optional upper limit on the width of
the resulting legend (0 means unlimited), and p specifies the pen used to draw the bounding
box. The legend frame can then be added and aligned about a point on a picture dest
using add or attach (see [add about], page 45).

To draw a dot, simply draw a path containing a single point. The dot command defined
in the module plain draws a dot having a diameter equal to an explicit pen linewidth or
the default linewidth magnified by dotfactor (6 by default):

void dot(picture pic=currentpicture, pair z, pen p=currentpen);

void dot(picture pic=currentpicture, pair[] z, pen p=currentpen);

void dot(picture pic=currentpicture, pair[] x, pair[] y, pen p=currentpen);

void dot(picture pic=currentpicture, Label L, pair z, align align=NoAlign,
string format=defaultformat, pen p=currentpen)

void dot(picture pic=currentpicture, Label L, pen p=currentpen)

The third routine draws a dot at every point of a pair array z. If the special variable
Label is given as the Label argument to the fourth routine, the format argument will be
used to format a string based on the dot location (here defaultformat is "$%.4g$"). One
can also draw a dot at every node of a path:

void dot(picture pic=currentpicture, path g, pen p=currentpen);

See [pathmarkers], page 96 and Section 7.8 [markers|, page 80 for more general methods
for marking path nodes.

Chapter 4: Drawing commands 17

To draw a fixed-sized object (in PostScript coordinates) about the user coordinate
origin, use the routine

void draw(pair origin, picture pic=currentpicture, Label L="", path g,
align align=NoAlign, pen p=currentpen, arrowbar arrow=None,
arrowbar bar=None, margin margin=NoMargin, Label legend="",
marker marker=nomarker) ;

4.2 fill

void fill(picture pic=currentpicture, path g, pen p=currentpen);
Fill the interior region bounded by the cyclic path g on the picture pic, using the pen p.

There is also a convenient filldraw command, which fills the path and then draws in
the boundary. One can specify separate pens for each operation:

void filldraw(picture pic=currentpicture, path g, pen fillpen=currentpen,
pen drawpen=currentpen) ;

This fixed-size version of £ill allows one to fill an object described in PostScript
coordinates about the user coordinate origin:

void fill(pair origin, picture pic=currentpicture, path g, pen p=currentpen);
This is just a convenient abbreviation for the commands:

picture opic;

fill(opic,g,p);

add(pic,opic,origin);

The routine
void filloutside(picture pic=currentpicture, path g, pen p=currentpen);
fills the region exterior to the path g, out to the current boundary of picture pic.

Lattice gradient shading varying smoothly over a two-dimensional array of pens p, using
fillrule £illrule, can be produced with

void latticeshade(picture pic=currentpicture, path g,
pen fillrule=currentpen, pen[][] p)

The pens in p must belong to the same color space. One can use the functions rgb (pen)
or cmyk(pen) to promote pens to a higher color space, as illustrated in the example file
latticeshading.asy.

Axial gradient shading varying smoothly from pena to penb in the direction of the line
segment a--b can be achieved with
void axialshade(picture pic=currentpicture, path g,

pen pena, pair a,
pen penb, pair b);

Radial gradient shading varying smoothly from pena on the circle with center a and
radius ra to penb on the circle with center b and radius rb is similar:
void radialshade(picture pic=currentpicture, path g,

pen pena, pair a, real ra,
pen penb, pair b, real rb);

[llustrations of radial shading are provided in the example files shade.asy and ring.asy

Chapter 4: Drawing commands 18

Gouraud shading using fillrule fillrule and the vertex colors in the pen array p on a
triangular lattice defined by the vertices z and edge flags edges is implemented with

void gouraudshade(picture pic=currentpicture, path g,
pen fillrule=currentpen, penl[] p, pair[] z,
int[] edges);

void gouraudshade(picture pic=currentpicture, path g,
pen fillrule=currentpen, penl[] p, int[] edges);

In the second form, the elements of z are taken to be successive nodes of path g. The pens
in p must belong to the same color space. Illustrations of Gouraud shading are provided
in the example file Gouraud.asy and in the solid geometry module solids.asy. The edge
flags used in Gouraud shading are documented here:

http://partners.adobe.com/public/developer/en/ps/sdk/TN5600.SmoothShading.pdf.

Tensor product shading using fillrule fillrule on patches bounded by the n cyclic paths
of length 4 in path array b, using the vertex colors specified in the n x 4 pen array p and
internal control points in the n x 4 array z, is implemented with

void tensorshade(picture pic=currentpicture, path g, pen fillrule=currentpen,
penl[][] p, path[] b=g, pair[][] z=new pair[][]);
If the array z is empty, Coons shading, in which the color control points are calculated

automatically, is used. The pens in p must belong to the same color space. A simpler
interface for the case of a single patch (n = 1) is also available:

void tensorshade(picture pic=currentpicture, path g, pen fillrule=currentpen,
penl[] p, path b=g, pair[] z=new pair[]);
Illustrations of tensor product and Coons shading are provided in the example files
tensor.asy, Coons.asy, and BezierSurface.asy.
The following routine uses evenodd clipping together with the =~ operator to unfill a
region:

void unfill(picture pic=currentpicture, path g);

4.3 clip
void clip(picture pic=currentpicture, path g, pen p=currentpen);

Clip the current contents of picture pic to the region bounded by the path g, using fillrule
p (see [fillrule], page 37). For an illustration of picture clipping, see the first example in
Chapter 6 [LaTeX usagel, page 74.

4.4 label

void label(picture pic=currentpicture, Label L, pair position,
align align=NoAlign, pen p=nullpen, filltype filltype=NoFill)

Draw Label L on picture pic using pen p. If align is NoAlign, the label will be centered at
user coordinate position; otherwise it will be aligned in the direction of align and displaced
from position by the PostScript offset align*labelmargin(p). If p is nullpen, the pen
specified within the Label, which defaults to currentpen, will be used. The Label L can
either be a string or the structure obtained by calling one of the functions

http://partners.adobe.com/public/developer/en/ps/sdk/TN5600.SmoothShading.pdf

Chapter 4: Drawing commands 19

Label Label(string s="", pair position, align align=NoAlign,

pen p=nullpen, embed embed=Rotate, filltype filltype=NoFill);
Label Label(string s="", align align=NoAlign,

pen p=nullpen, embed embed=Rotate, filltype filltype=NoFill);
Label Label(Label L, pair position, align align=NoAlign,

pen p=nullpen, embed embed=L.embed, filltype filltype=NoFill);
Label Label(Label L, align align=NoAlign,

pen p=nullpen, embed embed=L.embed, filltype filltype=NoFill);

The text of a Label can be scaled, slanted, rotated, or shifted by multiplying it on
the left by an affine transform (see Section 5.4 [Transforms|, page 41). For example,
rotate(45)*xscale(2)*L first scales L in the z direction and then rotates it counter-
clockwise by 45 degrees. The final position of a Label can also be shifted by a PostScript
coordinate translation: shift(10,0)*L. The embed argument determines how the Label
should transform with the embedding picture:

Shift only shift with embedding picture;
Rotate only shift and rotate with embedding picture (default);

Rotate(pair z)
rotate with (picture-transformed) vector z.

Slant only shift, rotate, slant, and reflect with embedding picture;
Scale shift, rotate, slant, reflect, and scale with embedding picture.

To add a label to a path, use

void label(picture pic=currentpicture, Label L, path g, align align=NoAlign,
pen p=nullpen, filltype filltype=NoFill);

By default the label will be positioned at the midpoint of the path. An alternative label
location (an arctime value between 0 and length(g) see [arctime], page 30) may be spec-
ified as real value for position in constructing the Label. The position Relative (real)
specifies a location relative to the total arclength of the path. These convenient abbrevia-
tions are predefined:

position BeginPoint=Relative(0);
position MidPoint=Relative(0.5);
position EndPoint=Relative(l);

Path labels are aligned in the direction align, which may be specified as an absolute
compass direction (pair) or a direction Relative(pair) measured relative to a north axis
in the local direction of the path. For convenience LeftSide, Center, and RightSide are
defined as Relative (W), Relative((0,0)), and Relative(E), respectively. Multiplying
LeftSide, Center, RightSide on the left by a real scaling factor will move the label further
away from or closer to the path.

A label with a fixed-size arrow of length arrowlength pointing to b from direction dir
can be produced with the routine

void arrow(picture pic=currentpicture, Label L="", pair b, pair dir,
real length=arrowlength, align align=NoAlign,
pen p=currentpen, arrowbar arrow=Arrow, margin margin=EndMargin);

Chapter 4: Drawing commands 20

If no alignment is specified (either in the Label or as an explicit argument), the optional
Label will be aligned in the direction dir, using margin margin.

The function string graphic(string name, string options="") returns a string that
can be used to include an encapsulated PostScript (EPS) file. Here, name is the name
of the file to include and options is a string containing a comma-separated list of op-
tional bounding box (bb=11x 11y urx ury), width (width=value), height (height=value),
rotation (angle=value), scaling (scale=factor), clipping (clip=bool), and draft mode
(draft=bool) parameters. The layer () function can be used to force future objects to be
drawn on top of the included image:

label(graphic("file.eps","width=1cm"), (0,0) ,NE);
layer();

The string baseline(string s, align align=S, string template="M") function
can be used to enlarge the bounding box of letters aligned below a horizontal line to match
a given template, so that their baselines lie on a horizontal line. See Pythagoras.asy for
an example.

One can prevent labels from overwriting one another with the overwrite pen attribute
(see [overwrite], page 41).

The structure object defined in plain_Label.asy allows Labels and frames to be
treated in a uniform manner. A group of objects may be packed together into single frame
with the routine

frame pack(pair align=2S ... object inset[]);

Chapter 4: Drawing commands 21

The string minipage(string s, width=100pt) function can be used to format string
s into a paragraph of width width. This example uses minipage, clip, and graphic to
produce a CD label:

usepackage ("babel", "german") ;
size(11.7cm,11.7cm) ;

asy(nativeformat(),"logo");
fill(unitcircle”"(scale(2/11.7)*unitcircle),
evenodd+rgb(124/255,205/255,124/255)) ;

label(scale(1l.1)*minipage(
"\centering\scriptsize \textbf{Nonlinear Modelling, Tutorial and
\textsc{G\"unther H. Mehring}\\
(edited by \textsc{Peter Sch\"opf} and \textsc{Jens Schwaiger})\\
with an \textbf{Appendix} written by\\
\textsc{Wolfgang Prager} and \textsc{Jens Schwaiger}",6cm), (0,0.6));
label(scale(1l.1)*minipage("\centering\scriptsize Bericht Nr. 349(2005)\\
{\bfseries Grazer Mathematische Berichte}\\
ISSN 1016--7692",4cm), (0.55,0.2));

Chapter 4: Drawing commands

label(graphic("logo."+nativeformat (), "height=7cm"),(0,-0.22));
clip(unitcircle”"(scale(2/11.7)*unitcircle),evenodd) ;

22

Chapter 5: Programming 23

5 Programming

Here is a short introductory example to the Asymptote programming language that high-
lights the similarity of its control structures with those of C, C++, and Java:

// This is a comment.

// Declaration: Declare x to be a real variable;
real x;

// Assignment: Assign the real variable x the value 1.
x=1.0;

// Conditional: Test if x equals 1 or not.
if(x == 1.0) {

write("x equals 1.0");
} else {

write("x is not equal to 1.0");

¥

// Loop: iterate 10 times
for(int i=0; i < 10; ++i) {
write(i);

¥

Asymptote also supports while, do, break, and continue statements just as in C/C++.
In addition, it supports many features beyond the ones found in those languages.

5.1 Data types
Asymptote supports the following data types (in addition to user-defined types):
void The void type is used only by functions that take or return no arguments.

bool a boolean type that can only take on the values true and false. For example:
bool b=true;
defines a boolean variable b and initializes it to the value true. If no initializer
is given:
bool b;
the value false is assumed.

int an integer type; if no initializer is given, the implicit value 0 is assumed. The
maximum integer is intMax.

real a real number; this should be set to the highest-precision native floating-point
type on the architecture. The implicit initializer for reals is 0.0. Real numbers
have precision realEpsilon, with realDigits significant digits. The smallest
positive real number is realMin and the largest positive real number is realMax.

pair complex number, that is, an ordered pair of real components (x,y). The real
and imaginary parts of a pair z can read as z.x and z.y. We say that x and y

Chapter 5: Programming 24

are virtual members of the data element pair; they cannot be directly modified,
however. The implicit initializer for pairs is (0.0,0.0).

There are a number of ways to take the complex conjugate of a pair:

pair z=(3,4);
z=(z.%,-2.y);
z=z.x-I*z.y;
z=conj(z);

Here I is the pair (0,1). A number of built-in functions are defined for pairs:

pair conj(pair z)
returns the conjugate of z;

real length(pair z)
returns the complex modulus |z| of its argument z. For example,

pair z=(3,4);
length(z);

returns the result 5. A synonym for length(pair) is abs(pair);

real angle(pair z)
returns the angle of z in radians in the interval [-pi,pil;

real degrees(pair z, bool warn=true)
returns the angle of z in degrees in the interval [0,360) or 0 if warn
is false and z.x=z.y=0 (rather than producing an error);

pair unit(pair z)
returns a unit vector in the direction of the pair z;

pair expi(real angle)
returns a unit vector in the direction angle measured in radians;

pair dir(real angle)
returns a unit vector in the direction angle measured in degrees;

real xpart(pair z)
returns z.x;

real ypart(pair z)
returns z.y;

pair realmult(pair z, pair w)
returns the element-by-element product (z.x*w.x,z.y*w.y);

real dot(pair z, pair w)
returns the dot product z.x*w.x+z.y*w.y;

pair minbound(pair z, pair w)
returns (min(z.x,w.x),min(z.y,w.y));

pair maxbound(pair z, pair w)
returns (max(z.x,w.x) ,max(z.y,w.y)).

Chapter 5: Programming 25

triple

an ordered triple of real components (x,y,z) used for three-dimensional draw-
ings. The respective components of a triple v can read as v.x, v.y, and v.z.
The implicit initializer for triples is (0.0,0.0,0.0).

Here are the built-in functions for triples:

real length(triple v)
returns the length |v| of the vector v. A synonym for
length(triple) is abs(triple);

real polar(triple v)
returns the colatitude of v measured from the z axis in radians;

real azimuth(triple v)
returns the longitude of v measured from the x axis in radians;

real colatitude(triple v)
returns the colatitude of v measured from the z axis in degrees;

real latitude(triple v)
returns the latitude of v measured from the zy plane in degrees;

real longitude(triple v, bool warn=true)
returns the longitude of v measured from the x axis in degrees; or
0 if warn is false and v.x=v.y=0 (rather than producing an error);

triple unit(triple v)
returns a unit triple in the direction of the triple v;

triple expi(real colatitude, real longitude)
returns a unit triple in the direction (colatitude,longitude)
measured in radians;

triple dir(real colatitude, real longitude)
returns a unit triple in the direction (colatitude,longitude)
measured in degrees;

real xpart(triple v)
returns v.x;

real ypart(triple v)
returns v.y;

real zpart(triple v)
returns v.z;

real dot(triple u, triple v)
returns the dot product u.x*v.x+u.y*v.y+u.z*v.z;

triple cross(triple u, triple v)
returns the cross product
(U.y*V.Z2-U.Z*%V.y,U. Z¥V.X~U.X*V.Z,U.X¥V.J-V.X*U.J);

triple minbound(triple u, triple v)
returns (min(u.x,v.x),min(u.y,v.y) ,min(u.z,v.z));

Chapter 5: Programming 26

string

triple maxbound(triple u, triple v)
returns (max(u.x,v.x),max(u.y,v.y),max(u.z,v.z)).
a character string, implemented using the STL string class.

Strings delimited by double quotes (") are subject to the following mapping to
allow the use of double quotes in TEX (e.g. for using the babel package, see
Section 7.21 [babel|, page 85):

e \" maps to "
Strings delimited by single quotes (’) have the same mappings as character
strings in ANSI C:

e \’ maps to’

e \" maps to "

e \? maps to ?

e \\ maps to backslash

e \a maps to alert

e \b maps to backspace

e \f maps to form feed

e \n maps to newline

e \r maps to carriage return

e \t maps to tab

e \v maps to vertical tab

e \0-\377 map to corresponding octal byte

e \xO-\xFF map to corresponding hexadecimal byte
The implicit initializer for strings is the empty string "". Strings may be con-

catenated with the + operator. In the following string functions, position 0
denotes the start of the string:

int length(string s)
returns the length of the string s;

int find(string s, string t, int pos=0)
returns the position of the first occurrence of string t in string s at
or after position pos, or -1 if t is not a substring of s;

int rfind(string s, string t, int pos=-1)
returns the position of the last occurrence of string t in string s at
or before position pos (if pos=-1, at the end of the string s), or -1
if t is not a substring of s;

string insert(string s, int pos, string t)
return the string formed by inserting string t at position pos in s;

string erase(string s, int pos, int n)
returns the string formed by erasing the string of length n (if n=-1,
to the end of the string s) at position pos in s;

Chapter 5: Programming 27

string substr(string s, int pos, int n=-1)
returns the substring of s starting at position pos and of length n
(if n=-1, until the end of the string s);

string reverse(string s)
return the string formed by reversing string s;

string replace(string s, string before, string after)
returns a string with all occurrences of the string before in the
string s changed to the string after;

string replace(string s, string[] [] table)
returns a string constructed by translating in string s all
occurrences of the string before in an array table of string pairs
{before,after} to the corresponding string after;

string format(string s, int n)
returns a string containing n formatted according to the C-style
format string s using the current locale;

string format(string s, real x)
returns a string containing x formatted according to the C-style
format string s using the current locale (see the documentation for
the C-function fprintf), except that only one data field is allowed,
trailing zeros are removed by default (unless # is specified) and TEX
is used to typeset scientific notation;

string time(string format="%a %b %d AT %Z %Y")
returns the current time formatted by the ANSI C routine strftime
according to the string format using the current locale. Thus

time();
time("%a %b %d KH:%M:%S %hZ %Y");

are equivalent ways of returning the current time in the default
format used by the UNIX date command.

int seconds(string t="", string format="")

returns the time measured in seconds after the Epoch (Thu Jan
01 00:00:00 UTC 1970) as determined by the ANSI C routine
strptime according to the string format using the current locale,
or the current time if t is the empty string. Note that the "%z"
extension to the POSIX strptime specification is ignored by the
current GNU C Library. If an error occurs, the value -1 is returned.
Here are some examples:

seconds("Mar 02 11:12:36 AM PST 2007","%b %d %r PST %Y");
seconds (time ("%b %d %r %z KY"),"%b %d %r %z %Y");

seconds (time ("%b %d %r %Z %Y"),"%b %d %r "+time("%Z")+" %Y");
1+(seconds()-seconds("Jan 1","%b %d"))/(24%60%60) ;

The last example returns today’s ordinal date, measured from the
beginning of the year.

Chapter 5: Programming 28

string time(int seconds, string format="%a %b %d %T %Z %Y")
returns the time corresponding to seconds seconds after the Epoch
(Thu Jan 01 00:00:00 UTC 1970) formatted by the ANSI C routine
strftime according to the string format using the current locale.
For example, to return the date corresponding to 24 hours ago:

time (seconds () -24*60%60) ;

string string(real x, int digits=realDigits)
casts x using precision digits to a string, using the C locale.

abort(string s) ;
Aborts execution. If string s is nonempty, a diagnostic message
constructed from the source file, line number, and s is printed.

As in C/C++, complicated types may be abbreviated with typedef (see the example in
Section 5.11 [Functions|, page 57).

5.2 Paths and guides

path

a cubic spline resolved into a fixed path. The implicit initializer for paths is
nullpath.

The routine circle(pair c, real r), which returns a Bezier curve approxi-
mating a circle of radius r centered on c, is based on unitcircle:

path circle(pair c, real r)

{

return shift(c)*scale(r)*unitcircle;

¥

If high accuracy is needed, a true circle may be produced with this routine,
defined in the module graph.asy:
path Circle(pair ¢, real r, int n=400);

A circular arc consistent with the above approximation centered on ¢ with
radius r from anglel to angle2 degrees, drawing counterclockwise if angle2
>= anglel, can be constructed with

path arc(pair c, real r, real anglel, real angle2);

If r < 0, the complementary arc of radius |r| is constructed. For convenience,
an arc centered at ¢ from pair z1 to z2 (assuming |z2-c|=|z1-c|) in the
direction CCW (counter-clockwise) or CW (clockwise) may also be constructed
with
path arc(pair c, explicit pair zl, explicit pair z2,

bool direction=CCW)

If high accuracy is needed, a true arc may be produced with this routine, defined
in the module graph.asy:

path Arc(pair c, real r, real anglel, real angle2,
int n=400);

An ellipse can be drawn with the routine

Chapter 5: Programming 29

path ellipse(pair c, real a, real b)

{

return shift(c)*xscale(a)*yscale(b)*unitcircle;
}

Here is an example of all five path connectors discussed in Chapter 3 [Tutorial,
page 9:

size(300,0);

pair[] z=new pair[10];

z[0]=(0,100); =z[1]1=(50,0); =z[2]=(180,0);

for(int n=3; n <= 9; ++n)
z[n]=z[n-31+(200,0);

path p=z[0]..z[1]---z[2]: :{up}z[3]
&z[3]..z[4]1--z[56]: :{up}z[6]
&z[6]::z[7]---z[8]..{up}z[9];

draw(p,grey+linewidth (4mm)) ;

dot(z);

Here are some useful functions for paths:

int length(path p);
This is the number of (linear or cubic) segments in path p. If p is
cyclic, this is the same as the number of nodes in p.

int size(path p);
This is the number of nodes in the path p. If p is cyclic, this is the
same as length(p).

bool cyclic(path p);
returns true iff path p is cyclic.

bool straight(path p, int i);
returns true iff the segment of path p between node i and node
i+1 is straight.

pair point(path p, int t);
If p is cyclic, return the coordinates of node t mod length(p).
Otherwise, return the coordinates of node t, unless t < 0 (in
which case point (0) is returned) or t > length(p) (in which case
point (length(p)) is returned).

Chapter 5: Programming 30

pair point(path p, real t);
This returns the coordinates of the point between node floor (t)
and floor(t)+1 corresponding to the cubic spline parameter
t-floor(t) (see [Bezier|, page 11). If t lies outside the range
[0,length(p)], it is first reduced modulo length(p) in the case
where p is cyclic or else converted to the corresponding endpoint
of p.

pair dir(path p, int t, int sign=0);
If sign < 0, the direction (as a pair) of the incoming tangent to path
p at node t is returned; if sign > 0, the direction of the outgoing
tangent is returned. If sign=0, the mean of these two directions is
returned. If p contains only one point, (0,0) is returned.

pair dir(path p, real t);
This returns the direction of the tangent to path p at the point be-
tween node floor(t) and floor(t)+1 corresponding to the cubic
spline parameter t-floor(t) (see [Bezier|, page 11). If p contains
only one point, (0,0) is returned.

pair precontrol(path p, int t);
returns the precontrol point of p at node t.

pair precontrol(path p, real t);
returns the effective precontrol point of p at parameter t.

pair postcontrol(path p, int t);
returns the postcontrol point of p at node t.

pair postcontrol (path p, real t);
returns the effective postcontrol point of p at parameter t.

real arclength(path p);
returns the length (in user coordinates) of the piecewise linear or
cubic curve that path p represents.

real arctime(path p, real L);
returns the path "time", a real number between 0 and the length
of the path in the sense of point(path p, real t), at which the
cumulative arclength (measured from the beginning of the path)
equals L.

real dirtime(path p, pair z);
returns the first "time", a real number between 0 and the length of
the path in the sense of point (path, real), at which the tangent
to the path has the direction of pair z, or -1 if this never happens.

real reltime(path p, real 1);
returns the time on path p at the relative fraction 1 of its arclength.

pair relpoint(path p, real 1);
returns the point on path p at the relative fraction 1 of its arclength.

Chapter 5: Programming 31

pair midpoint (path p);
returns the point on path p at half of its arclength.

path reverse(path p);
returns a path running backwards along p.

path subpath(path p, int a, int b);
returns the subpath of p running from node a to node b. If a < b,
the direction of the subpath is reversed.

path subpath(path p, real a, real b);
returns the subpath of p running from path time a to path time b,
in the sense of point(path, real). If a < b, the direction of the
subpath is reversed.

real[] intersect(path p, path q, real fuzz=0);

If p and q have at least one intersection point, return a real array of
length 2 containing the times representing the respective path times
along p and q, in the sense of point(path, real), for one such
intersection point (as chosen by the algorithm described on page 137
of The MetaFontbook). Perform the computations to the absolute
error specified by fuzz, or, if fuzz is 0, to machine precision. If
the paths do not intersect, return a real array of length 0.

pair intersectionpoint(path p, path q, real fuzz=0);
returns the intersection point point (p,intersect (p,q,fuzz) [0]).

pair[] intersectionpoints(path p, path q);
returns an array containing all intersection points of the paths p
and q.

slice firstcut(path p, path q);
returns the portions of path p before and after the first intersection
of p with path q as a structure slice (if no such intersection exists,
the entire path is considered to be ‘before’ the intersection):

struct slice {
path before,after;

¥

Note that firstcut.after plays the role of the MetaPost
cutbefore command.

slice lastcut(path p, path q);
Return the portions of path p before and after the last intersection
of p with path q as a slice (if no such intersection exists, the entire
path is considered to be ‘after’ the intersection).

Note that lastcut.before plays the role of the MetaPost
cutafter command.

path buildcycle(... path[] p);
This returns the path surrounding a region bounded by a list of
consecutively intersecting paths, following the behaviour of the
MetaPost buildcycle command.

Chapter 5: Programming 32

guide

pair min(path p);
returns the pair (left,bottom) for the path bounding box of path p.

pair max(path p);
returns the pair (right,top) for the path bounding box of path p.

int windingnumber (path p, pair z);
returns the winding number of the cyclic path g relative to the
point z. The winding number is positive if the path encircles z in
the counterclockwise direction.

bool inside(path g, pair z, pen p=currentpen) ;
returns true iff the point z is inside the region bounded by the cyclic
path g according to the fillrule of pen p (see [fillrule|, page 37).

an unresolved cubic spline (list of cubic-spline nodes and control points). The
implicit initializer for a guide is nullpath; this is useful for building up a guide
within a loop.

A guide is similar to a path except that the computation of the cubic spline is
deferred until drawing time (when it is resolved into a path); this allows two
guides with free endpoint conditions to be joined together smoothly. The solid
curve in the following example is built up incrementally as a guide, but only
resolved at drawing time; the dashed curve is incrementally resolved at each
iteration, before the entire set of nodes (shown in red) is known:

size (200);
real mexican(real x) {return (1-8x"2)*exp(-(4x72));}

int n=30;
real a=1.5;
real width=2a/n;

guide hat;
path solved;

for(int i=0; i < n; ++i) {
real t=-a+ix*width;
pair z=(t,mexican(t));
hat=hat..z;
solved=solved. .z;

draw(hat) ;
dot (hat,red);
draw(solved,dashed) ;

Chapter 5: Programming 33

We point out an efficiency distinction in the use of guides and paths:
guide g;
for(int i=0; i < 10; ++i)
g=g--(i,1);
path p=g;
runs in linear time, whereas
path p;
for(int i=0; i < 10; ++i)
p=p—-(i,1);
runs in quadratic time, as the entire path up to that point is copied at each
step of the iteration.

The following routines can be used to examine the individual elements of a
guide without actually resolving the guide to a fixed path (except for internal
cycles, which are resolved):

int size(guide g);
Analogous to size(path g).

int length(guide g);
Analogous to length(path g).

bool cyclic(path p);
Analogous to cyclic(path g).

pair point(guide g, int t);
Analogous to point (path g, int t).

guide reverse(guide g);
Analogous to reverse(path g). If g is cyclic and also contains a
secondary cycle, it is first solved to a path, then reversed. If g is
not cyclic but contains an internal cycle, only the internal cycle is
solved before reversal. If there are no internal cycles, the guide is
reversed but not solved to a path.

pair[] dirSpecifier(guide g, int i);
This returns a pair array of length 2 containing the outgoing (in el-
ement 0) and incoming (in element 1) direction specifiers (or (0,0)
if none specified) for the segment of guide g between nodes i and
i+1.

Chapter 5: Programming 34

pair[] controlSpecifier(guide g, int i);
If the segment of guide g between nodes i and i+1 has explicit
outgoing and incoming control points, they are returned as elements
0 and 1, respectively, of a two-element array. Otherwise, an empty
array is returned.

tensionSpecifier tensionSpecifier(guide g, int i);
This returns the tension specifier for the segment of guide g
between nodes i and i+1. The individual components of the
tensionSpecifier type can be accessed as the virtual members
in, out, and atLeast.

real[] curlSpecifier(guide g);
This returns an array containing the initial curl specifier (in element
0) and final curl specifier (in element 1) for guide g.

As a technical detail we note that a direction specifier given to nullpath mod-
ifies the node on the other side: the guides

a..{uptnullpath..b;
c..nullpath{up}..d;
e..{uptnullpath{down}..f;

are respectively equivalent to

a..nullpath..{up}tb;
c{up}. .nullpath. .d;
e{down}. .nullpath..{up}f;

5.3 Pens

In Asymptote, pens provide a context for the four basic drawing commands (see Chapter 4
[Drawing commands|, page 15). They are used to specify the following drawing attributes:
color, line type, line width, line cap, line join, fill rule, text alignment, font, font size,
pattern, overwrite mode, and calligraphic transforms on the pen nib. The default pen used
by the drawing routines is called currentpen. This provides the same functionality as the
MetaPost command pickup. The implicit initializer for pens is defaultpen.

Pens may be added together with the binary operator +. This will mix the colors of the
two pens. All other non-default attributes of the rightmost pen will override those of the
leftmost pen. Thus, one can obtain a yellow dashed pen by saying dashed+red+green or
red+greent+dashed or red+dashed+green. The binary operator * can be used to scale the
color of a pen by a real number, until it saturates with one or more color components equal
to 1.

e Colors are specified using one of the following colorspaces:

pen gray(real g);
This produces a grayscale color, where the intensity g lies in the interval
[0,1], with 0.0 denoting black and 1.0 denoting white.

pen rgb(real r, real g, real b);
This produces an RGB color, where each of the red, green, and blue inten-
sities r, g, b, lies in the interval [0,1].

Chapter 5: Programming 35

pen cmyk(real ¢, real m, real y, real k);
This produces a CMYK color, where each of the cyan, magenta, yellow,
and black intensities c, m, y, k, lies in the interval [0,1].

pen invisible;
This special pen writes in invisible ink, but adjusts the bounding box as if
something had been drawn (like the \phantom command in TEX).

pen colorless(pen);
The function colorless(pen); returns a copy of pen p with its color at-
tributes stripped (to avoid color mixing).

The default color is black; this may be changed with the routine defaultpen(pen).
The function colorspace(pen p) returns the colorspace of pen p as a string ("gray",
"I'gb", "cmyk", or " n)'

The function real[] colors(pen) returns the color components of a pen. The func-
tions pen gray(pen), pen rgb(pen), and pen cmyk (pen) return new pens obtained by
converting their arguments to the respective color spaces.

Various shades and mixtures of the grayscale primary colors black and white, RGB
primary colors red, green, and blue, and RGB secondary colors cyan, magenta,
and yellow are defined as named colors, along with the CMYK primary colors Cyan,
Magenta, Yellow, and Black, in the module plain:

W black
mediumred
re orange
heavyred heavycyan fuchsia
brown deepcyan
darkbrown darkcyan
purple

mediummagenta royalblue
green magenta
heavygreen heavymagenta Cyan
deepgreen deepmagenta Magenta
darkgreen darkmagenta

B Black

lightblue cmyk+red
mediumblue cmyk+blue
blue cmyk+-green
heavyblue
deepblue olive
darkblue darkolive

gray

heavygray

deepgray

darkgray

Chapter 5: Programming 36

The standard 140 RGB X11 colors can be imported with the command
import xllcolors;

and the standard 68 CMYK TEX colors can be imported with the command
import texcolors;

Note that there is some overlap between these two standards and the definitions of
some colors (e.g. Green) actually disagree.

Asymptote also comes with a asycolors.sty LaTeX package that defines to LaTeX
CMYK versions of Asymptote’s predefined colors, so that they can be used directly
within LaTeX strings. Normally, such colors are passed to LaTeX via a pen argument;
however, to change the color of only a portion of a string, say for a slide presentation,
(see Section 7.17 [slide], page 84) it may be desirable to specify the color directly to
LaTeX. This file can be passed to LaTeX with the Asymptote command

usepackage ("asycolors");

e Line types are specified with the function pen linetype(string s, real offset=0,
bool scale=true, bool adjust=true), where s is a string of integer or real numbers
separated by spaces. The optional parameter offset specifies where in the pattern
to begin. The first number specifies how far (if scale is true, in units of the pen
linewidth; otherwise in PostScript units) to draw with the pen on, the second number
specifies how far to draw with the pen off, and so on. If adjust is true, these spacings
are automatically adjusted by Asymptote to fit the arclength of the path. Here are the
predefined line types:

pen solid=linetype("");

pen dotted=linetype("0 4");

pen dashed=linetype("8 8");

pen longdashed=linetype("24 8");

pen dashdotted=linetype("8 8 0 8");

pen longdashdotted=linetype("24 8 0 8");

pen Dotted=dotted+1.0;

pen Dotted(pen p=currentpen) {return dotted+2*linewidth(p);}

The default linetype is solid; this may be changed with defaultpen(pen).

e The pen line width is specified in PostScript units with pen linewidth(real). The
default line width is 0.5 bp; this value may be changed with defaultpen(pen). The line
width of a pen is returned by real linewidth(pen p=currentpen) ;. For convenience,
in the module plain we define
static void defaultpen(real w) {defaultpen(linewidth(w));}
static pen operator +(pen p, real w) {return p+linewidth(w);}
static pen operator +(real w, pen p) {return linewidth(w)+p;}

so that one may set the linewidth like this:

Chapter 5: Programming 37

defaultpen(2);
pen p=red+0.5;

e A pen with a specific PostScript line cap is returned on calling linecap with an
integer argument:

pen squarecap=linecap(0);
pen roundcap=linecap(1);
pen extendcap=linecap(2);

The default line cap, roundcap, may be changed with defaultpen (pen).

e A pen with a specific PostScript join style is returned on calling linejoin with an
integer argument:
pen miterjoin=linejoin(0);
pen roundjoin=linejoin(1);
pen beveljoin=linejoin(2);
The default join style, roundjoin, may be changed with defaultpen(pen).

e A pen with a specific PostScript fill rule is returned on calling fillrule with an
integer argument:

pen zerowinding=fillrule(0);
pen evenodd=fillrule(1);

The fill rule, which identifies the algorithm used to determine the insideness of a path or
array of paths, only affects the clip, £il1l, and inside functions. For the zerowinding
fill rule, a point z is outside the region bounded by a path if the number of upward
intersections of the path with the horizontal line z--z+infinity minus the number
of downward intersections is zero. For the evenodd fill rule, z is considered to be
outside the region if the total number of such intersections is even. The default fill
rule, zerowinding, may be changed with defaultpen(pen).

e A pen with a specific text alignment setting is returned on calling basealign with an
integer argument:
pen nobasealign=basealign(0);
pen basealign=basealign(1);

The default setting, nobasealign,which may be changed with defaultpen(pen),
causes the label alignment routines to use the full label bounding box for alignment.
In contrast, basealign requests that the TEX baseline be respected.

e The font size is specified in TEX points (1 pt = 1/72.27 inches) with the function pen
fontsize(real size, real lineskip=1.2*size). The default font size, 12pt, may
be changed with defaultpen(pen). Nonstandard font sizes may require inserting

import fontsize;
at the beginning of the file (this requires the fix-cm package available from
http://www.ctan.org/tex-archive/help/Catalogue/entries/fix-cm

and included in recent LaTeX distributions). The font size and line skip of a pen
can be examined with the routines real fontsize(pen p=currentpen) and real
lineskip(pen p=currentpen), respectively.

e A pen using a specific LaTeX NFSS font is returned by calling the function pen
font(string encoding, string family, string series="m", string shape="n").

http://www.ctan.org/tex-archive/help/Catalogue/entries/fix-cm

Chapter 5: Programming 38

The default setting, font("OT1","cmr","m","n"), corresponds to 12pt Computer
Modern Roman; this may be changed with defaultpen(pen). Support for
standardized international characters is provided by the unicode package (see
Section 7.19 [unicode], page 85).
Alternatively, one may select a fixed-size TeX font (on which fontsize has no effect)
like "cmr12" (12pt Computer Modern Roman) or "pcrr" (Courier) using the function
pen font (string name). An optional size argument can also be given to scale the font
to the requested size: pen font (string name, real size).
A nonstandard font command can be generated with pen fontcommand(string).
A convenient interface to the following standard PostScript fonts is also provided:
pen AvantGarde(string series="m", string shape="n");
pen Bookman(string series="m", string shape="n");
pen Courier(string series="m", string shape="n");
pen Helvetica(string series="m", string shape="n");
pen NewCenturySchoolBook(string series="m", string shape="n");
pen Palatino(string series="m", string shape='"n");
pen TimesRoman(string series="m", string shape="n");
pen ZapfChancery(string series="m", string shape="n");
pen Symbol(string series="m", string shape="n");
pen ZapfDingbats(string series="m", string shape="n");

e The transparency of a pen can be changed with the command:
pen opacity(real opacity=1, string blend="Compatible");
The opacity can be varied from 0 (fully transparent) to the default value of 1 (opaque),
and blend specifies one of the following foreground—background blending operations:

"Compatible","Normal","Multiply","Screen","Overlay","SoftLight",
"HardLight","ColorDodge","ColorBurn", "Darken","Lighten","Difference",
"Exclusion","Hue","Saturation","Color","Luminosity",

as described in

http://partners.adobe.com/public/developer/en/pdf/PDFReferencel6.pdf.
Since PostScript does not support transparency, this feature is only effective with
the -f pdf output format option; other formats can be produced from the resulting
PDF file with the ImageMagick convert program. Labels are always drawn with an
opacity of 1. A simple example of transparent filling is provided in the example file
transparency.asy.

e PostScript commands within a picture may be used to create a tiling pattern, iden-
tified by the string name, for £ill and draw operations by adding it to the default
PostScript preamble frame patterns, with optional left-bottom margin 1b and right-
top margin rt.
void add(frame preamble=patterns, string name, picture pic, pair 1b=0,

pair rt=0)
To £ill or draw using pattern name, use the pen pattern("name"). For example,
rectangular tilings can be constructed using the routines picture tile(real
Hx=5mm, real Hy=0, pen p=currentpen, filltype filltype=NoFill), picture
checker (real Hx=bmm, real Hy=0, pen p=currentpen), and picture brick(real
Hx=5mm, real Hy=0, pen p=currentpen) defined in patterns.asy:

http://partners.adobe.com/public/developer/en/pdf/PDFReference16.pdf

Chapter 5: Programming 39

size(0,90);
import patterns;

add("tile",tile());
add("filledtilewithmargin",tile(6mm,4mm,red,Fill), (1mm, imm) , (1mm, 1mm)) ;
add("checker",checker());

add ("brick" ,brick());

real s=2.5;

filldraw(unitcircle,pattern("tile"));
filldraw(shift(s,0)*unitcircle,pattern("filledtilewithmargin"));
filldraw(shift(2s,0)*unitcircle,pattern("checker"));
filldraw(shift(3s,0)*unitcircle,pattern("brick"));

Hatch patterns can be generated with the routines picture hatch(real H=5mm,
pair dir=NE, pen p=currentpen), picture crosshatch(real H=bmm, pen
p=currentpen):

size(0,100);
import patterns;

add("hatch" ,hatch());
add ("hatchback" ,hatch(NW)) ;
add("crosshatch",crosshatch(3mm)) ;

real s=1.25;

filldraw(unitsquare,pattern("hatch"));
filldraw(shift(s,0)*unitsquare,pattern("hatchback"));
filldraw(shift(2s,0)*unitsquare,pattern("crosshatch"));

N
AR N

Chapter 5: Programming 40

You may need to turn off aliasing in your PostScript viewer for patterns to ap-
pear correctly. Custom patterns can easily be constructed, following the examples
in pattern.asy. The tiled pattern can even incorporate shading (see [gradient shad-
ing], page 17), as illustrated in this example (not included in the manual because not
all printers support PostScript 3):

size(0,100);

import patterns;

real d=4mm;

picture tiling;

guide square=scale(d)*unitsquare;
axialshade(tiling,square,white, (0,0),black,(d,d));
fi11(tiling,shift(d,d) *square,blue);

add ("shadedtiling",tiling);

filldraw(unitcircle,pattern("shadedtiling"));

e One can specify a custom pen nib as an arbitrary polygonal path with pen
makepen (path); this path represents the mark to be drawn for paths containing a
single point. This pen nib path can be recovered from a pen with path nib(pen).
Unlike in MetaPost, the path need not be convex:
size (200);
pen convex=makepen(scale(10)*polygon(8))+grey;
draw((1,0.4),convex) ;
draw((0,0)---(1,1)..(2,0)--cycle,convex) ;

pen nonconvex=scale(10)*

makepen ((0,0)--(0.25,-1)--(0.5,0.25)--(1,0)--(0.5,1.25)--cycle) +red;
draw((0.5,-1.5) ,nonconvex) ;
draw((0,-1.5)..(1,-0.5)..(2,-1.5) ,nonconvex) ;

Chapter 5: Programming

41

The value nullpath represents a circular pen nib (the default); an elliptical pen can
be achieved simply by multiplying the pen by a transform: yscale(2)*currentpen.

e One can prevent labels from overwriting one another by using the pen attribute

overwrite, which takes a single argument:

Allow Allow labels to overwrite one another. This is the default behaviour (unless

overridden with defaultpen(pen).

Suppress Suppress, with a warning, each label that would overwrite another label.

SuppressQuiet

Suppress, without warning, each label that would overwrite another label.

Move Move a label that would overwrite another out of the way and issue a warn-
ing. As this adjustment is during the final output phase (in PostScript

coordinates) it could result in a larger figure than requested.

MoveQuiet

Move a label that would overwrite another out of the way, without warn-
ing. As this adjustment is during the final output phase (in PostScript

coordinates) it could result in a larger figure than requested.

The routine defaultpen () returns the current default pen attributes. Calling the routine

resetdefaultpen() resets all pen default attributes to their initial values.

5.4 Transforms

Asymptote makes extensive use of affine transforms. A pair (x,y) is transformed by the

transform t=(t.x,t.y,t.xx,t.xy,t.yx,t.yy) to (x’,y’), where

x? =t.x+t.xx *xx+txyx*xy
y’ =ty +t.yx xx+ t.yy *xy

This is equivalent to the PostScript transformation [t.xx t.yx t.xy t.yy t.x t.y].

Transforms can be applied to pairs, guides, paths, pens, transforms, frames, and pictures
by multiplication (via the binary operator *) on the left (see [circle], page 28 for an example).
Transforms can be composed with one another and inverted with the function transform
inverse(transform t); they can also be raised to any integer power with the = operator.

The built-in transforms are:

transform identity();
the identity transform;

transform shift (pair z);
translates by the pair z;

transform shift(real x, real y);
translates by the pair (x,y);

transform xscale(real x);
scales by x in the z direction;

transform yscale(real y) ;
scales by y in the y direction;

Chapter 5: Programming 42

transform scale(real s);

scale by s in both z and y directions;

transform slant(real s);

maps (x,y) —> (x+s*xy,y);

transform rotate(real angle, pair z=(0,0));

rotates by angle in degrees about z;

transform reflect(pair a, pair b);

reflects about the line a—-b.

The implicit initializer for transforms is identity(). The routines shift (transform
t) and shiftless(transformt) return the transforms (t.x,t.y,0,0,0,0) and
(0,0,t.xx,t.xy,t.yx,t.yy) respectively.

5.5 Frames and pictures

frame

picture

Frames are canvases for drawing in PostScript coordinates. While working
with frames directly is occasionally necessary for constructing deferred draw-
ing routines, pictures are usually more convenient to work with. The implicit
initializer for frames is newframe. The function bool empty(frame f) returns
true only if the frame £ is empty. The functions pair min(frame f) and pair
max (frame f) return the (left,bottom) and (right,top) coordinates of the frame
bounding box, respectively. The contents of frame src may be appended to
frame dest with the command

void add(frame dest, frame src);
or prepended with
void prepend(frame dest, frame src);

A frame obtained by aligning frame f in the direction align, in a manner
analogous to the align argument of label (see Section 4.4 [label], page 18), is
returned by

frame align(frame f, pair align);
Pictures are high-level structures (see Section 5.8 [Structures|, page 51) defined
in the module plain that provide canvases for drawing in user coordinates. The
default picture is called currentpicture. A new picture can be created like
this:
picture pic;
Anonymous pictures can be made by the expression new picture.
The size routine specifies the dimensions of the desired picture:
void size(picture pic=currentpicture, real x, real y=x,

bool keepAspect=Aspect);
If the x and y sizes are both 0, user coordinates will be interpreted as
PostScript coordinates. In this case, the transform mapping pic to the final
output frame is identity().

If exactly one of x or y is 0, no size restriction is imposed in that direction; it
will be scaled the same as the other direction.

Chapter 5: Programming 43

If keepAspect is set to Aspect or true, the picture will be scaled with its aspect
ratio preserved such that the final width is no more than x and the final height
is no more than y.

If keepAspect is set to IgnoreAspect or false, the picture will be scaled in
both directions so that the final width is x and the height is y.

To make the user coordinates of picture pic represent multiples of x units in
the x direction and y units in the y direction, use

void unitsize(picture pic=currentpicture, real x, real y=x);
When nonzero, these x and y values override the corresponding size parameters
of picture pic.

The routine

void size(picture pic=currentpicture, real xsize, real ysize,
pair min, pair max);

forces the final picture scaling to map the user coordinates box (min,max) to a
region of width xsize and height ysize (when these parameters are nonzero).

Alternatively, calling the routine

transform fixedscaling(picture pic=currentpicture, pair min,

pair max, pen p=nullpen);
will cause picture pic to use a fixed scaling to map user coordinates in
box(min,max) to the (already specified) picture size, taking account of the
width of pen p. A warning will be issued if the final picture exceeds the
specified size.
A picture can be fit to a frame and converted into a PostScript image by
calling the function shipout:

void shipout(string prefix=defaultfilename, picture pic,

frame preamble=patterns,

orientation orientation=orientation,

string format="", bool wait=NoWait, bool view=true);
void shipout(string prefix=defaultfilename,

orientation orientation=orientation,

string format="", bool wait=NoWait, bool view=true);

A shipout () command is added implicitly at file exit if no previous shipout
commands have been executed.
A picture pic can be explicitly fit to a frame by calling
frame pic.fit(real xsize=pic.xsize, real ysize=pic.ysize,

bool keepAspect=pic.keepAspect);
The default size and aspect ratio settings are those given to the size command
(which default to 0, 0, and true, respectively). The transformation that would
currently be used to fit a picture pic to a frame is returned by the member
function pic.calculateTransform().
In certain cases (e.g. 2D graphs) where only an approximate size estimate for
pic is available, the picture fitting routine

frame pic.scale(real xsize=this.xsize, real ysize=this.ysize,

Chapter 5: Programming 44

bool keepAspect=this.keepAspect) ;

(which scales the resulting frame, including labels and fixed-size objects) will
enforce perfect compliance with the requested size specification, but should not
normally be required.

The default page orientation is Portrait; this may be modified by changing
the variable orientation. To output in landscape mode, simply set
orientation=Landscape or issue the command

shipout (Landscape) ;

To rotate the page by —90 degrees, use the orientation Seascape. To rotate
the page by 180 degrees, use the orientation UpsideDown.

To draw a bounding box with margins around a picture, fit the picture to a
frame using the function

frame bbox(picture pic=currentpicture, real xmargin=0,
real ymargin=xmargin, pen p=currentpen,
filltype filltype=NoFill);

Here £illtype specifies one of the following fill types:
FillDraw Fill with the pen used to draw the boundary.

FillDraw(real xmargin=0, real ymargin=xmargin, pen p=nullpen)
If p is nullpen, fill with the pen used to draw the boundary; other-
wise fill with pen p. An optional margin of xmargin and ymargin
can be specified.

Fill Fill with the drawing pen.

Fill(real xmargin=0, real ymargin=xmargin, pen p=nullpen)
If p is nullpen, fill with the drawing pen; otherwise fill with pen p.
An optional margin of xmargin and ymargin can be specified.

NoFill Do not fill.
Draw Draw only the boundary.

Draw(real xmargin=0, real ymargin=xmargin, pen p=nullpen)
If p is nullpen, draw the boundary with the drawing pen; otherwise
draw with pen p. An optional margin of xmargin and ymargin can
be specified.

UnFill Clip the region.

UnFill(real xmargin=0, real ymargin=xmargin
Clip the region and surrounding margins xmargin and ymargin.

RadialShade (pen penc, pen penr)
Fill varying radially from penc at the center of the bounding box
to penr at the edge.

For example, to draw a bounding box around a picture with a 0.25 cm margin
and output the resulting frame, use the command:

Chapter 5: Programming 45

shipout (bbox (0.25cm)) ;

A picture may be fit to a frame with the background color of pen p with the
function bbox (p,Fill).

The functions

pair min(picture pic);

pair max(picture pic);

calculate the PostScript bounds that picture pic would have if it were cur-
rently fit to a frame using its default size specification.

The function
pair point(picture pic=currentpicture, pair dir);
is a convenient way of determining the point on the boundary of the user-

coordinate bounding box of pic, ignoring the contributions from fixed-size ob-
jects (such as labels and arrowheads), in the direction dir relative to its center.

The function
pair truepoint(picture pic=currentpicture, pair dir);
is identical to point, except that it also accounts for fixed-size objects, using

the scaling transform that picture pic would have if currently fit to a frame
using its default size specification.

The function
pair framepoint(picture pic=currentpicture, pair dir);
works similarly, except the result is a point in PostScript coordinates on the

bounding box that picture pic would have if currently fit to a frame using its
default size specification.

Sometimes it is useful to draw objects on separate pictures and add one picture
to another using the add function:

void add(picture src, bool group=true,
filltype filltype=NoFill, bool put=Above) ;
void add(picture dest, picture src, bool group=true,
filltype filltype=NoFill, bool put=Above) ;

The first example adds src to currentpicture; the second one adds src to
dest. The group option specifies whether or not the graphical user interface
xasy should treat all of the elements of src as a single entity (see Chapter 10
[GUIJ, page 143), filltype requests optional background filling or clipping,
and put specifies whether to add src above or below existing objects.

There are also routines to add a picture or frame src specified in postscript
coordinates to another picture about the user coordinate position:

void add(picture dest, picture src, pair position, bool group=true,
filltype filltype=NoFill, bool put=Above);

void add(picture src, pair position, bool group=true,
filltype filltype=NoFill, bool put=Above) ;

void add(picture dest=currentpicture, frame src, pair position=0,
bool group=true, filltype filltype=NoFill,
bool put=Above);

Chapter 5: Programming 46

void add(picture dest=currentpicture, frame src, pair position,
pair align, bool group=true, filltype filltype=NoFill,
bool put=Above);

The optional align argument in the last form specifies a direction to use for

aligning the frame, in a manner analogous to the align argument of label (see

Section 4.4 [label], page 18). However, one key difference is that when align

is not specified, labels are centered, whereas frames and pictures are aligned so

that their origin is at position. Illustrations of frame alignment can be found

in the examples [errorbars|, page 97 and [image], page 113. If you want to align

3 or more subpictures, group them two at a time:

picture picl;

real size=50;

size(picl,size);

£i11(pici, (0,0)--(50,100)--(100,0) --cycle,red) ;

picture pic2;
size(pic2,size);
fill(pic2,unitcircle,green);

picture pic3;
size(pic3,size);
£i11(pic3,unitsquare,blue);

picture pic;
add(pic,picl.fit(),(0,0),N);
add (pic,pic2.£fit (), (0,0),108);

add(pic.fit(), (0,0),N);
add(pic3.£fit(), (0,0),108);

Alternatively, one can use attach to automatically increase the size of picture
dest to accommodate adding a frame src about the user coordinate position:

Chapter 5: Programming 47

void attach(picture dest=currentpicture, frame src,
pair position=0, bool group=true,
filltype filltype=NoFill, bool put=Above);
void attach(picture dest=currentpicture, frame src,
pair position=0, pair align, bool group=true,
filltype filltype=NoFill, bool put=Above);
To draw or fill a box or ellipse around a label, frame, or picture, use one of the
routines (the first two routines for convenience also return the boundary as a
guide):
path box(frame f, Label L="", real xmargin=0,
real ymargin=xmargin, pen p=currentpen,
filltype filltype=NoFill, bool put=Above);
path ellipse(frame f, Label L="", real xmargin=0,
real ymargin=xmargin, pen p=currentpen,
filltype filltype=NoFill, bool put=Above);
void box(picture pic=currentpicture, Label L,
real xmargin=0, real ymargin=xmargin, pen p=currentpen,
filltype filltype=NoFill, bool put=Above) ;

To erase the contents of a picture (but not the size specification), use the
function

void erase(picture pic=currentpicture);

To save a snapshot of currentpicture, currentpen, and currentprojection,
use the function save().

To restore a snapshot of currentpicture, currentpen, and
currentprojection, use the function restore ()

Many further examples of picture and frame operations are provided in the base
module plain.

It is possible to insert verbatim PostScript commands in a picture with one

of the routines

void postscript(picture pic=currentpicture, string s);

void postscript(picture pic=currentpicture, string s, pair min,
pair max)

Here min and max can be used to specify explicit bounds associated with the

resulting PostScript code.

Verbatim TEX commands can be inserted in the intermediate LaTeX output file
with one of the functions

void tex(picture pic=currentpicture, string s);

void tex(picture pic=currentpicture, string s, pair min, pair max)
Here min and max can be used to specify explicit bounds associated with the
resulting TeX code.

To issue a global TEX command (such as a TEX macro definition) in the TEX
preamble (valid for the remainder of the top-level module) use:

void texpreamble(string s);

Chapter 5: Programming 48

The TEX environment can be reset to its initial state, clearing all macro defini-
tions, with the function

void texreset();

The routine

void usepackage(string s, string options="");
provides a convenient abbreviation for

texpreamble ("\usepackage ["+options+"]{"+s+"}");

that can be used for importing LaTeX packages.

5.6 Files

Asymptote can read and write text files (including comma-separated value) files and
portable XDR (External Data Representation) binary files.

An input file must first be opened with input (string name, bool check=true, string
commentchar="#"); reading is then done by assignment:

file fin=input("test.txt");
real a=fin;

If the optional boolean argument check is false, no check will be made that the file
exists. If the file does not exist or is not readable, the function bool error(file) will
return true. The first character of the string commentchar specifies a comment character.
If this character is encountered in a data file, the remainder of the line is ignored. When
reading strings, a comment character followed immediately by another comment character
is treated as a single literal comment character.

If the -globalwrite (or —unsafe) option is enabled, one can change the current working
directory to the contents of the string s with the function string cd(string s), which
returns the new working directory. If string s is empty, the path is reset to the value it
had at program startup.

When reading pairs, the enclosing parenthesis are optional. Strings are also read by
assignment, by reading characters up to but not including a newline. In addition, Asymptote
provides the function string getc(file) to read the next character (treating the comment
character as an ordinary character) and return it as a string.

A file named name can be open for output with
file output(string name, bool update=false);

If update=false, any existing data in the file will be erased and only write operations can
be used on the file. If update=true, existing data will be preserved, the position will be
set to the end-of-file, and both reading and writing operations will be enabled. For security
reasons, writing to files in directories other than the current directory is allowed only if the
-globalwrite (or —unsafe) command-line option is specified.

There are two special files: stdin, which reads from the keyboard, and stdout, which
writes to the terminal. The implicit initializer for files is null.

Data of a built-in type T can be written to an output file by calling one of the functions

write(string s="", T x, suffix suffix=endl ... T[]);
write(file file, string s="", T x, suffix suffix=none ... T[]);

Chapter 5: Programming 49

write(file file=stdout, string s="", explicit T[] x ... T[[1);
write(file file=stdout, T[][]);

write(file file=stdout, T[I[]1[]);

write(suffix suffix=endl);

write(file file, suffix suffix=none);

If file is not specified, stdout is used and terminated by default with a newline. If
specified, the optional identifying string s is written before the data x. An arbitrary number
of data values may be listed when writing scalars or one-dimensional arrays. The suffix
may be one of the following: none (do nothing), endl (terminate with a newline), or tab
(terminate with a tab). Here are some simple examples of data output:

file fout=output("test.txt");

write(fout,1); // Writes "1"
write(fout); // Writes a new line
write(fout,"List: ",1,2,3); // Writes "List: 1 2 3"

A file may also be opened with xinput or xoutput, instead of input or output, to read
or write double precision values in Sun Microsystem’s XDR (External Data Representation)
portable binary format (available on all UNIX platforms). A file may also be opened with
binput or boutput to read or write double precision values in the native (nonportable)
machine binary format. The function file single(file) may be used to set a file to read
single precision XDR or binary values; calling file single(file,false) sets it back to
read doubles again.

One can test a file for end-of-file with the boolean function eof (file), end-of-line
with eol(file), and for I/O errors with error(file). One can flush the output buffers
with flush(file), clear a previous I/O error with clear(file), and close the file with
close(file). To set the number of digits of output precision, use precision(file,int).
The function int tell(file) returns the current position in a file relative to the beginning.
The function seek(file file, int pos) can be used to change this position, where a neg-
ative value for the position pos is interpreted as relative to the end-of-file. For example, one
can rewind a file file with the command seek(file,0) and position to the final character
in the file with seek(file,-1). The command seekeof (file) sets the position to the end
of the file.

Assigning settings.scroll=n for a positive integer n requests a pause after every n
output lines to stdout. One may then press Enter to continue or q followed by Enter to
quit. If n is negative, the output scrolls a page at a time (i.e. by one less than the cur-
rent number of display lines). The default value, settings.scroll=0, specifies continuous
scrolling.

The routines

string getstring(string name="", string default="", string prompt="",
bool store=true);
int getint(string name="", int default=0, string prompt="",
bool store=true);

real getreal(string name="", real default=0, string prompt="",

bool store=true);
pair getpair(string name="", pair default=0, string prompt="",

bool store=true)

Chapter 5: Programming 50

defined in the module plain may be used to prompt for a value from stdin using the GNU
readline library. If store=true, the history of values for name is stored in the file ".asy_
history"+name (see |history], page 141). The most recent value in the history will be used
to provide a default value for subsequent runs. The default value (initially default) is
displayed after prompt. These functions are based on the internal routines

string readline(string prompt="", string name="", bool tabcompletion=false);
void saveline(string name, string value, bool store=true);

Here, readline prompts the user with the default value formatted according to prompt,
while saveline is used to save the string value in a local history named name, optionally
storing the local history in a file ".asy_history_"+name.

The routine history(string name, int n=1) can be used to look up the n most recent
values (or all values up to historylines if n=0) entered for string name.

5.7 Variable initializers

A variable can be assigned a value when it is declared, as in int x=3; where the variable x
is assigned the value 3. As well as literal constants such as 3, arbitary expressions can be
used as initializers, as in real x=2*sin(pi/2) ;.

A variable is not added to the namespace until after the initializer is evaluated, so for
example, in
int x=2;
int x=b%x;

the x in the initializer on the second line refers to the variable x declared on the first line.
The second line, then, declares a variable x shadowing the original x and initializes it to
the value 10.

Variables of most types can be declared without an explicit initializer and they will be
initialized by the default initializer of that type:

e Variables of the numeric types int, real, and pair are all initialized to zero; variables
of type triple are initialized to 0=(0,0,0).

e Dboolean variables are initialized to false.

e string variables are initialized to the empty string.

e transform variables are initialized to the identity transformation.

e path and guide variables are initialized to nullpath.

e pen variables are initialized to the default pen.

e frame and picture variables are initialized to empty frames and pictures, respectively.

e file variables are initialized to null.

The default initializers for user-defined array, structure, and function types are explained

in their respective sections. Some types, such as code, do not have default initializers. When

a variable of such a type is introduced, the user must initialize it by explicitly giving it a
value.

The default initializer for any type T can be redeclared by defining the function T
operator init(). For instance, int variables are usually initialized to zero, but in

Chapter 5: Programming 51

int operator init() {

return 3;
}
int y;
the variable y is initialized to 3. This example was given for illustrative purposes; redeclaring
the initializers of built-in types is not recommended. Typically, operator init is used to
define sensible defaults for user-defined types.

5.8 Structures

Users may also define their own data types as structures, along with user-defined operators,
much as in C++. By default, structure members are public (may be read and modified
anywhere in the code), but may be optionally declared restricted (readable anywhere
but writeable only inside the structure where they are defined) or private (readable and
writable only inside the structure). In a structure definition, the keyword this can be used
as an expression to refer to the enclosing structure. Any code at the top-level scope within
the structure is executed on initialization.

Variables hold references to structures. That is, in the example:

struct T {
int x;

¥

T foo=new T;
T bar=foo;
bar.x=5;

The variable foo holds a reference to an instance of the structure T. When bar is
assigned the value of foo, it too now holds a reference to the same instance as foo does.
The assignment bar.x=5 changes the value of the field x in that instance, so that foo.x
will also be equal to 5.

The expression new T creates a new instance of the structure T and returns a reference
to that instance. In creating the new instance, any code in the body of the record definition
is executed. For example:
int Tcount=0;
struct T {

int x;

++Tcount;

b

T foo=new T;

Here, the expression new T will produce a new instance of the class, but will also cause
Tcount to be incremented, so that it keeps track of the number of instances produced.

The expression null can be cast to any structure type to yield a null reference, a reference
that does not actually refer to any instance of the structure. Trying to use a field of a null
reference will cause an error.

The function bool alias(T,T) checks to see if two structure references refer to the same
instance of the structure (or both to null). For example, in the example code at the start

Chapter 5: Programming 52

of the section, alias(foo,bar) would return true, but alias(foo,new T) would return
false, as new T creates a new instance of the structure T. The boolean operators == and !=
are by default equivalent to alias and !alias respectively, but may be overwritten for a
particular type (for example, to do a deep comparison).

After the definition of a structure T, a variable of type T is initialized to a new instance
(new T) by default. During the definition of the structure, however, variables of type T
are initialized to null by default. This special behaviour is to avoid infinite recursion of
creating new instances in code such as

struct tree {
int value;
tree left;
tree right;
}

Here is a simple example that illustrates the use of structures:

struct S {
real a=1;
real f(real a) {return a+this.a;}

}

S s; // Initializes s with new S;
write(s.f(2)); // Outputs 3

S operator + (S s1, S s2)
{
S result;
result.a=sl.a+s2.a;
return result;

}

write((s+s).£(0)); // Outputs 2

It is often convenient to have functions that construct new instances of a structure. Say
we have a Person structure:

struct Person {
string firstname;
string lastname;

¥

Person joe=new Person;
joe.firstname="Joe";
joe.lastname="Jones";

Creating a new Person is a chore; it takes three lines to create a new instance and to
initialize its fields (that’s still considerably less effort than creating a new person in real life,
though).

Chapter 5: Programming 53

We can reduce the work by defining a constructor function Person(string,string):

struct Person {
string firstname;
string lastname;

static Person Person(string firstname, string lastname) {
Person p=new Person;
p.firstname=firstname;
p-lastname=lastname;
return p;

Person joe=Person.Person("Joe", "Jones");

While it is now easier than before to create a new instance, we still have to refer to the
constructor by the qualified name Person.Person. If we add the line

from Person unravel Person;

immediately after the structure definition, then the constructor can be used without quali-
fication: Person joe=Person("Joe", "Jones") ;.

The constructor is now easy to use, but it is quite a hassle to define. If you write a lot of
constructors, you will find that you are repeating a lot of code in each of them. Fortunately,
your friendly neighbourhood Asymptote developers have devised a way to automate much
of the process.

If, in the body of a structure, Asymptote encounters the definition of a function of
the form void operator init(args), it implicitly defines a constructor function of the
arguments args that uses the void operator init function to initialize a new instance
of the structure. That is, it essentially defines the following constructor (assuming the
structure is called Foo):

static Foo Foo(args) {
Foo instance=new Foo;
instance.operator init(args);
return instance;

}

This constructor is also implicitly copied to the enclosing scope after the end of the
structure definition, so that it can used subsequently without qualifying it by the structure
name. Our Person example can thus be implemented as:

struct Person {
string firstname;
string lastname;

void operator init(string firstname, string lastname) {
this.firstname=firstname;
this.lastname=lastname;
}
}

Chapter 5: Programming 54

Person joe=Person("Joe", "Jones");

The use of operator init to implicitly define constructors should not be confused with
its use to define default values for variables (see Section 5.7 [Variable initializers|, page 50).
Indeed, in the first case, the return type of the operator init must be void while in the
second, it must be the (non-void) type of the variable.

The function cputime () returns a structure cputime with cumulative CPU times broken
down into the fields parent.user, parent.system, child.user, and child.system. For
convenience, the incremental fields change.user and change.system indicate the change
in the corresponding total parent and child CPU times since the last call to cputime (). The
function

void write(file file=stdout, string s="", cputime c,
string format=cputimeformat, suffix suffix=none);

displays the incremental user cputime followed by “u”, the incremental system cputime
followed by “s”, the total user cputime followed by “U”, and the total system cputime
followed by “S”.

Much like in C++, casting (see Section 5.13 [Casts|, page 68) provides for an elegant
implementation of structure inheritance, including virtual functions:

struct parent {
real x=1;
void virtual(int) {write (0);}
void f() {virtual(l);}

}

void write(parent p) {write(p.x);}

struct child {
parent parent;
real y=2;
void virtual(int x) {write (x);}
parent.virtual=virtual;
void f()=parent.f;

parent operator cast(child child) {return child.parent;}

parent p;
child c;
write(c); // Outputs 1;
p-£O; // Outputs 0;
c.fQ; // Outputs 1;

write(c.parent.x); // Outputs 1;

Chapter 5: Programming 55

write(c.y); // Outputs 2;

For further examples of structures, see Legend and picture in the Asymptote base
module plain.

5.9 Operators

5.9.1 Arithmetic & logical operators

Asymptote uses the standard binary arithmetic operators. However, when one integer is
divided by another, both arguments are converted to real values before dividing and a real
quotient is returned (since this is usually what is intended). The function int quotient (int
X, int y) returns the greatest integer less than or equal to x/y. In all other cases both
operands are promoted to the same type, which will also be the type of the result:

+ addition

- subtraction

* multiplication

/ division

yA modulo; the result always has the same sign as the divisor. In particular, this

makes gxquotient (p,q)+p%q == p for all integers p and nonzero integers g.

power; if the exponent (second argument) is an int, recursive multiplication is
used; otherwise, logarithms and exponentials are used (** is a synonym for 7).

The usual boolean operators are also defined:

== equals

I= not equals

< less than

<= less than or equals

>= greater than or equals

> greater than

&& and (with conditional evaluation of right-hand argument)
& and

[or (with conditional evaluation of right-hand argument)
| or
XOr
! not
Asymptote also supports the C-like conditional syntax:
bool positive=(pi >= 0) ? true : false;

The function T interp(T a, T b, real t) returns a+t*(b-a) for all built-in arithmetic
types T.

Asymptote also defines bitwise functions int AND(int,int), int OR(int,int), int
XOR(int,int), and int NOT (int).

Chapter 5: Programming 56

5.9.2 Self & prefix operators

As in C, each of the arithmetic operators +, =, *, /, %, and ~ can be used as a self operator.
The prefix operators ++ (increment by one) and -- (decrement by one) are also defined.
For example,

int i=1;

i+=2;

int j=++i;

is equivalent to the code

int i=1;

i=i+2;

int j=i=i+1;

However, postfix operators like i++ and i-- are not defined (because of the inherent
ambiguities that would arise with the -- path-joining operator). In the rare instances where
i++ and i-- are really needed, one can substitute the expressions (++i-1) and (--i+1),
respectively.

5.9.3 User-defined operators

The following symbols may be used with operator to define or redefine operators on struc-
tures and built-in types:

-tk /T N> ===k | 77 L n o oo
<< >> § $$ @ Qe

The operators on the second line have precedence one higher than the boolean operators <,
>, <=, and >=.

Guide operators like .. may be overloaded, say, to write a user function that produces
a new guide from a given guide:

guide dots(... guide[] g)=operator ..;

guide operator ..(... guide[] g) {
guide G;
if(g.length > 0) {
write(gl0]);
G=g[0];
}
for(int i=1; i < g.length; ++i) {
write(glil);
write();
G=dots(G,gl[i]);
}
return G;

}

guide g=(0,0){up}..{SW}(100,100){NE}..{curl 3}(50,50)..(10,10);
write("g=",g);

Chapter 5: Programming 57

5.10 Implicit scaling

If a numeric literal is in front of certain types of expressions, then the two are multiplied:
int x=2;

real y=2.0;

real cm=72/2.540005;

write(3x);
write(2.5x%);
write(3y);
write(-1.602e-19 y);
write(0.5(x,y));
write(2x72);
write(3x+2y);
write(3(x+2y));
write(3sin(x));
write(3(sin(x))"2);
write(10cm);

This produces the output
6
5
6
-3.204e-19
(1,1)
8
10
18
2.72789228047704

2.48046543129542
283.464008929116

5.11 Functions

Asymptote functions are treated as variables with a signature (non-function variables have
null signatures). Variables with the same name are allowed, so long as they have distinct
signatures.

Functions arguments are passed by value. To pass an argument by reference, simply
enclose it in a structure (see Section 5.8 [Structures|, page 51).

Here are some significant features of Asymptote functions:

1. Variables with signatures (functions) and without signatures (nonfunction variables)
are distinct:

int x, xO;

x=5;
x=new int() {return 17;};
x=x() ; // calls x() and puts the result, 17, in the scalar x

2. Traditional function definitions are allowed:

Chapter 5: Programming 58

int sqr(int x)
{

return x*x;

¥

sqr=null; // but the function is still just a variable.
3. Casting can be used to resolve ambiguities:

int a, a(), b, b(); // Valid: creates four variables.

a=b; // Invalid: assignment is ambiguous.

a=(int) b; // Valid: resolves ambiguity.

(int) (a=b); // Valid: resolves ambiguity.

(int) a=b; // Invalid: cast expressions cannot be L-values.
int c();

c=a; // Valid: only one possible assignment.

4. Anonymous (so-called "high-order") functions are also allowed:

typedef int intop(int);
intop adder(int m)
{

return new int(int n) {return m+n;};

}
intop addby7=adder(7);
write(addby7(1)); // Writes 8.

5. One may redefine a function f, even for calls to £ in previously declared functions, by
assigning another (anonymous or named) function to it. However, if f is overloaded
by a new function definition, previous calls will still access the original version of £, as
illustrated in this example:

void £(O) {
write("hi");
}
void g() {
£0O;
}
g(); // writes "hi"
f=new void() {write("bye");};
g(); // writes "bye"

void f() {write("overloaded");};

£f(); // writes "overloaded"
g(; // writes "bye"

6. Anonymous functions can be used to redefine a function variable that has been declared

Chapter 5: Programming 59

(and implicitly initialized to the null function) but not yet explicitly defined:
void f(bool b);

void g(bool b) {
if(b) £(b);
else write(b);

}

f=new void(bool b) {
write(b);
g(false);
};

g(true); // Writes true, then writes false.

Asymptote is the only language we know of that treats functions as variables, but allows
overloading by distinguishing variables based on their signatures.

Functions are allowed to call themselves recursively. As in C++, infinite nested recursion
will generate a stack overflow (reported as a segmentation fault, unless a fully working
version of the GNU library 1ibsigsegv (e.g. 2.4 or later) is installed at configuration time).

5.11.1 Default arguments

Asymptote supports a more flexible mechanism for default function arguments than C++:
they may appear anywhere in the function prototype. Because certain data types are
implicitly cast to more sophisticated types (see Section 5.13 [Casts], page 68) one can
often avoid ambiguities by ordering function arguments from the simplest to the most
complicated. For example, given

real f(int a=1, real b=0) {return a+b;}
then £ (1) returns 1.0, but £(1.0) returns 2.0.

The value of a default argument is determined by evaluating the given Asymptote ex-
pression in the scope where the called function is defined.

5.11.2 Named arguments

It is sometimes difficult to remember the order in which arguments appear in a function
declaration. Named (keyword) arguments make calling functions with multiple arguments
easier. Unlike in the C and C++ languages, an assignment in a function argument is inter-
preted as an assignment to a parameter of the same name in the function signature, not
within the local scope. The command-line option -d may be used to check Asymptote code
for cases where a named argument may be mistaken for a local assignment.

When matching arguments to signatures, first all of the keywords are matched, then
the arguments without names are matched against the unmatched formals as usual. For
example,
int f(int x, int y) {

return 10x+y;

}
write(f(4,x=3));

Chapter 5: Programming 60

outputs 34, as x is already matched when we try to match the unnamed argument 4, so it
gets matched to the next item, y.

For the rare occasions where it is desirable to assign a value to local variable within a
function argument (generally not a good programming practice), simply enclose the assign-
ment in parentheses. For example, given the definition of £ in the previous example,
int x;
write(f(4, (x=3)));
is equivalent to the statements
int x;
x=3;
write(£(4,3));
and outputs 43.

As a technical detail, we point out that, since variables of the same name but different
signatures are allowed in the same scope, the code

int f(int x, int x()) {
return x+x();
}

int seven() {return 7;}

is legal in Asymptote, with f£(2,seven) returning 9. A named argument matches the
first unmatched formal of the same name, so f(x=2,x=seven) is an equivalent call, but
f (x=seven,2) is not, as the first argument is matched to the first formal, and int ()
cannot be implicitly cast to int. Default arguments do not affect which formal a named
argument is matched to, so if £ were defined as
int f(int x=3, int x0) {

return x+x();

}

then f (x=seven) would be illegal, even though f (seven) obviously would be allowed.

5.11.3 Rest arguments

Rest arguments allow one to write functions that take a variable number of arguments:

// This function sums its arguments.
int sum(... int[] nums) {
int total=0;
for(int i=0; i < nums.length; ++i)
total += nums[i];
return total;

}
sum(1,2,3,4); // returns 10
sum() ; // returns 0

// This function subtracts subsequent arguments from the first.
int subtract(int start ... int[] subs) {
for(int i=0; i < subs.length; ++i)

Chapter 5: Programming 61

start -= subs[i];
return start;
}
subtract(10,1,2); // returns 7
subtract (10) ; // returns 10
subtract(); // illegal

Putting an argument into a rest array is called packing. One can give an explicit list of
arguments for the rest argument, so subtract could alternatively be implemented as
int subtract(int start ... int[] subs) {

return start - sum(... subs);

¥

One can even combine normal arguments with rest arguments:
sum(1,2,3 ... new int[] {4,5,6}); // returns 21

This builds a new six-element array that is passed to sum as nums. The opposite operation,
unpacking, is not allowed:

subtract(... new int[] {10, 1, 2});
is illegal, as the start formal is not matched.

If no arguments are packed, then a zero-length array (as opposed to null) is bound to
the rest parameter. Note that default arguments are ignored for rest formals and the rest
argument is not bound to a keyword.

The overloading resolution in Asymptote is similar to the function matching rules used
in C++. Every argument match is given a score. Exact matches score better than matches
with casting, and matches with formals (regardless of casting) score better than packing an
argument into the rest array. A candidate is maximal if all of the arguments score as well
in it as with any other candidate. If there is one unique maximal candidate, it is chosen;
otherwise, there is an ambiguity error.
int f(path g);
int f(guide g);
£((0,0)--(100,100)); // matches the second; the argument is a guide

int g(int x, real y);
int g(real x, int x);

g(3,4); // ambiguous; the first candidate is better for the first argument,
// but the second candidate is better for the second argument

int h(... int[] rest);
int h(real x ... int[] rest);

h(1,2); // the second definition matches, even though there is a cast,
// because casting is preferred over packing

int i(int x ... int[] rest);
int i(real x, real y ... int[] rest);

Chapter 5: Programming 62

i(3,4); // ambiguous; the first candidate is better for the first argument,
// but the second candidate is better for the second one

5.11.4 Mathematical functions

Asymptote has built-in versions of the standard 1libm mathematical real(real) functions
sin, cos, tan, asin, acos, atan, exp, log, powl0, 1logl0, sinh, cosh, tanh, asinh, acosh,
atanh, sqrt, cbrt, fabs, as well as the identity function identity. Asymptote also defines
the order n Bessel functions of the first kind J(int n, real) and second kind Y(int n,
real), as well as the gamma function gamma, the error function erf, and the complementary
error function erfc. The standard real(real, real) functions atan2, hypot, fmod, remainder
are also included.

The functions degrees(real radians) and radians(real degrees) can be used to
convert between radians and degrees. The function Degrees(real radians) returns the
angle in degrees in the interval [0,360). For convenience, Asymptote defines variants Sin,
Cos, Tan, aSin, aCos, and aTan of the standard trigonometric functions using degrees rather
than radians.

The functions floor, ceil, and round differ from their usual definitions in that they
all return an int value rather than a real (since that is normally what one wants). The
functions Floor, Ceil, and Round are respectively similar, except that if the result cannot
be converted to a valid int, they return intMax for positive arguments and -intMax for
negative arguments, rather than generating an integer overflow. We also define a function
sgn, which returns the sign of its real argument as an integer (-1, 0, or 1).

There is an abs(int) function, as well as an abs(real) function (equivalent to
fabs(real)) and an abs(pair) function (equivalent to length(pair)).

Random numbers can be seeded with srand(int) and generated with the int rand ()
function, which returns a random integer between 0 and the integer randMax. A Gaus-
sian random number generator Gaussrand and a collection of statistics routines, including
histogram, are provided in the base file stats.asy.

When configured with the GNU Scientific Library (GSL), available from
http://www.gnu.org/software/gsl/, Asymptote contains an internal module gsl that
defines the airy functions Ai(real), Bi(real), Ai_deriv(real), Bi_deriv(real),
zero_Ai(int), zero_Bi(int), zero_Ai_deriv(int), zero_Bi_deriv(int), the Bessel
functions I(int, real), K(int, real), j(int, real), y(int, real), i_scaled(int,
real), k_scaled(int, real), J(real, real), Y(real, real), I(real, real), K(real,
real), zero_J(real, int), the elliptic functions F(real, real), E(real, real), and
P(real, real), the exponential/trigonometric integrals Ei, Si, and Ci, the Legendre
polynomials P1(int, real), and the Riemann zeta function zeta(real). For example, to
compute the sine integral Si of 1.0:
import gsl;
write(8i(1.0));

5.12 Arrays

Appending [] to a built-in or user-defined type yields an array. The array element i of
an array A can be accessed as A[i]. By default, attempts to access or assign to an array

http://www.gnu.org/software/gsl/

Chapter 5: Programming 63

element using a negative index generates an error. Reading an array element with an index
beyond the length of the array also generates an error; however, assignment to an element
beyond the length of the array causes the array to be resized to accommodate the new
element. One can also index an array A with an integer array B: the array A[B] is formed
by indexing array A with successive elements of array B.

The declaration
reall[] A;

initializes A to be an empty (zero-length) array. Empty arrays should be distinguished from
null arrays. If we say

real[] A=null;

then A cannot be dereferenced at all (null arrays have no length and cannot be read from
or assigned to).

Arrays can be explicitly initialized like this:
real[] A={0,1,2};

Array assignment in Asymptote does a shallow copy: only the pointer is copied (if one
copy if modified, the other will be too). The copy function listed below provides a deep
copy of an array.

Every array A of type T[] has the virtual members int length, void cyclic(bool
b), bool cyclicflag, T push(T x), void append(T[] a), T pop(), void insert(int i
... Tl %), void delete(int i, int j=i), void delete(), and bool initialized(int
n). The member A.length evaluates to the length of the array. Setting A.cyclic(true)
signifies that array indices should be reduced modulo the current array length. Reading
from or writing to a nonempty cyclic array never leads to out-of-bounds errors or array
resizing. The member A.cyclicflag returns the current setting of the cyclic flag. The
functions A.push and A.append append their arguments onto the end of the array, while
A.insert(int i ... T[] x) inserts x into the array at index i. For convenience A.push
returns the pushed item. The function A.pop() pops and returns the last element, while
A.delete(int i, int j=i) deletes elements with indices in the range [i,j], shifting the
position of all higher-indexed elements down. If no arguments are given, A.delete()
provides a convenient way of deleting all elements of A. The routine A.initialized(int
n) can be used to examine whether the element at index n is initialized. Like all Asymptote
functions, cyclic, push, append, pop, insert, delete, and initialized can be "pulled
off" of the array and used on their own. For example,

int [] A={1};

A.push(2); // A now contains {1,2}.

A . append(4); // A now contains {1,2,1,2}.
int f(int)=A.push;

£(3); // A now contains {1,2,1,2,3}.
int g()=A.pop;

write(g()); // Outputs 3.

A.delete(0); // A now contains {2,1,2}.
A.delete(0,1); // A now contains {2}.
A.insert(1,3); // A now contains {2,3}.
A.insert(1 ... A); // A now contains {2,2,3,3}
A.insert(2,4,5); // A now contains {2,2,4,5,3,3}.

Chapter 5: Programming 64

The [] suffix can also appear after the variable name; this is sometimes convenient for
declaring a list of variables and arrays of the same type:

real a,A[];
This declares a to be real and implicitly declares A to be of type reall[].
In the following list of built-in array functions, T represents a generic type. Note that

the internal functions alias, copy, concat, sequence, map, and transpose, which depend
on type T[], are defined only after the first declaration of a variable of type T[].

new T[] returns a new empty array of type T[];

new T[] {list}
returns a new array of type T[] initialized with 1ist (a comma delimited list
of elements).

new T[n] returns a new array of n elements of type T[]. These n array elements are
not initialized unless they are arrays themselves (in which case they are each
initialized to empty arrays).

int[] sequence(int n)
if n >= 1 returns the array {0,1,...,n-1} (otherwise returns a null array);

int[] sequence(int n, int m)
if m >= n returns an array {n,n+1,...,m} (otherwise returns a null array);

T[] sequence(T £(int), int n)
if n >= 1 returns the sequence {f_i :i=0,1,...n-1} given a function T f (int)
and integer int n (otherwise returns a null array);

int[] reverse(int n)
if n >= 1 returns the array {n-1,n-2,...,0} (otherwise returns a null array);

int[] complement(int[] a, int n)
returns the complement of the integer array a in {1,2,...,n}, so that
b[complement (a,b.length)] yields the complement of b[a].

int find(bool[], int n=1)
returns the index of the nth true value or -1 if not found. If n is negative,
search backwards from the end of the array for the -nth value;

int search(T[] a, T key)
For built-in ordered types T, searches a sorted ordered array a of n elements to
find an interval containing key, returning -1 if key is less than the first element,
n-1 if key is greater than or equal to the last element, and otherwise the index
corresponding to the left-hand (smaller) endpoint.

T[] copy(TI[] a)
returns a deep copy of the array a;

T[] copy(TLI[] a)

returns a deep copy of the array a;

TO O] copy(TOIMI[] @)

returns a deep copy of the array a;

Chapter 5: Programming 65

T[] concat(T[] a, T[] b)

returns a new array formed by concatenating arrays a and b;
bool alias(T[] a, T[] b)

returns true if the arrays a and b are identical;

T[] sort(T[] a)
For built-in ordered types T, returns a copy of a sorted in ascending order;

T[] sort(TLI[] a)
For built-in ordered types T, returns a copy of a with the rows sorted by the
first column, breaking ties with successively higher columns. For example:
string[J[] a={{"bob","9"},{"alice","5"},{"pete"," 7"},
{"alice","4"}};
// Row sort (by column O, using column 1 to break ties):
write(stdout,sort(a));

produces

alice 4
alice 5
bob 9
pete 7

T[1[] transpose(T[1[] a)
returns the transpose of a.

T 10 transpose(T[][1[] a, int[] perm)
returns the 3D transpose of a obtained by applying the permutation perm of
new int [1{0,1,23} to the indices of each entry.

T sum(T[] a)
For arithmetic types T, returns the sum of a.

Tmin(T[] a)
Tmin(T[I1[] a)
Tmin(TO O a)

For built-in ordered types T, returns the minimum element of a.

T max (T[] a)
Tmax(T[]1[] a)
Tmax (T[] a)

For built-in ordered types T, returns the maximum element of a.

map (£ (T), T[] a)
returns the array obtained by applying the function f to each element of the
array a.

T[] min(T[] a, T[] b)

For built-in ordered types T, and arrays a and b of the same length, returns an
array composed of the minimum of the corresponding elements of a and b.

T[] max (T[] a, T[] b)
For built-in ordered types T, and arrays a and b of the same length, returns an
array composed of the maximum of the corresponding elements of a and b.

Chapter 5: Programming 66

pair[] fft(pair([] a, int sign=1)

returns the Fast Fourier Transform of a (if the optional FFTW package is in-
stalled), using the given sign. Here is a simple example:
int n=4;

pair[] f=sequence(n);

write(f);

pair[] g=fft(f,-1);

write();

write(g);

f=fft(g,1);

write();

write(f/n);

real[] tridiagonal(reall] a, reall[] b, reall] c, reall] f);

Solve the periodic tridiagonal problem Lx = f and return the solution x, where
f is an n vector and L is the n x n matrix

[b[0] c[0] a[o0]]
[al1] b[1] c[1]]
[al2] b[2] c[2]]
[e]
[c[n-1] aln-1] b[n-1]]

For Dirichlet boundary conditions (denoted here by ul[-1] and u[n]), replace
f£[0] by £[0]-al[0]Jul[-1] and f[n-1]-c[n-1]uln]; then set a[0]=c[n-1]1=0.

real[] solve(reall][] a, reall] b)

reall][]

reall][]

reall][]

reall][]

Solve the linear equation ax = b by LU decomposition and return the solution
x, where a is an n X n matrix and b is an array of length n. For example:
import math;

reall][] a={{1,-2,3,0},{4,-5,6,2},{-7,-8,10,5},{1,50,1,-2}};
reall] b={7,19,33,3};

real[] x=solve(a,b);

write(a); write();

write(b); write();

write(x); write();

write(a*x);

If the matrix a is tridiagonal, the routine tridiagonal provides a more efficient
algorithm (see [tridiagonal], page 66).

solve(real[l[] a, reall[l[] b)

Solve the linear equation ax = b and return the solution =, where a is an n X n
matrix and b is an n X m matrix.

identity(int n);

returns an n x n identity matrix.

inverse(reall][] a)

returns the inverse of an n X n matrix a.

multdiagonal(reall[][] a, reall] b)

returns axdiagonal (b).

Chapter 5: Programming 67

real[] quadraticroots(real a, real b, real c);
This numerically robust solver returns the real roots of the quadratic equation
azr?® +br +c = 0.

real[] cubicroots(real a, real b, real c, real d);
This numerically robust solver returns the real roots of the cubic equation
azr® +bx? +cx+d=0.

real newton(int iterations=100, real f(real), real fprime(real),real x,
bool verbose=false);
Use Newton-Raphson iteration to solve for a root of a real-valued differentiable
function f, given its derivative fprime and an initial guess x. Diagnostics
for each iteration are printed if verbose=true. If the iteration fails after the
maximum allowed number of loops (iterations), realMax is returned.

real newton(int iterations=100, real f(real), real fprime(real),real x1,
real x2, bool verbose=false);
Use bracketed Newton-Raphson bisection to solve for a root of a real-valued
differentiable function £ within an interval [x1,x2] (on which the endpoint values
of £ have opposite signs), given its derivative fprime. Diagnostics for each
iteration are printed if verbose=true. If the iteration fails after the maximum
allowed number of loops (iterations), realMax is returned.

Asymptote includes a full set of vectorized array instructions for arithmetic (including
self) and logical operations. These element-by-element instructions are implemented in C++
code for speed. Given

real[] a={1,2};
real[] b={3,2};

then a == b and a >= 2 both evaluate to the vector {false, true}. To test whether all
components of a and b agree, use the boolean function all(a ==b). One can also use
conditionals like (a >= 2) 7 a : b, which returns the array {3,2}, or write((a>=2) 7 a :
null, which returns the array {2}.

All of the standard built-in 1ibm functions of signature real (real) also take a real array
as an argument, effectively like an implicit call to map.

As with other built-in types, arrays of the basic data types can be read in by assignment.
In this example, the code

file fin=input("test.txt");
real[] A=fin;

reads real values into A until the end-of-file is reached (or an I/O error occurs). If line mode
is set with line(file), then reading will stop once the end of the line is reached instead
(line mode may be cleared with line(file,false)):

file fin=input("test.txt");
real[] A=line(fin);

Since string reads by default read up to the end of line anyway, line mode normally
has no effect on string array reads. However, there is a white-space delimiter mode for
reading strings, set with word(file) and cleared with word(file,false), which causes
string reads to respect white-space delimiters, instead of the default end-of-line delimiter:

Chapter 5: Programming 68

file fin=word(line(input("test.txt")));
real[] A=fin;

Another useful mode is comma-separated-value mode, set with csv(file) and cleared
with csv(file,false), which causes reads to respect comma delimiters:

file fin=csv(input("test.txt"));
real[] A=fin;

To restrict the number of values read, use the dimension(file,int) function:

file fin=input("test.txt");
real[] A=dimension(fin,10);

This reads 10 values into A, unless end-of-file (or end-of-line in line mode) occurs first.
Attempting to read beyond the end of the file will produce a runtime error message. Speci-
fying a value of 0 for the integer limit is equivalent to the previous example of reading until
end-of-file (or end-of-line in line mode) is encountered.

Two- and three-dimensional arrays of the basic data types can be read in like this:

file fin=input("test.txt");
real[] [] A=dimension(fin,2,3);
real[] []J][] B=dimension(fin,2,3,4);

Again, an integer limit of zero means no restriction.

Sometimes the array dimensions are stored with the data as integer fields at the beginning
of an array. Such arrays can be read in with the functions readl, read2, and read3,
respectively:

file fin=input("test.txt");
real[] A=readl(fin);
real[][] B=read2(fin);
real[][][] C=read3(fin);

One, two, and three-dimensional arrays of the basic data types can be output with the
functions write(file,T[]), write(file,T[1[]), write(file,T[1[][]), respectively.

5.13 Casts

Asymptote implicitly casts int to real, int to pair, real to pair, pair to path, pair to
guide, path to guide, guide to path, real to pen, pair[] to guide[], pair[] to pathl[],
path to path[], and guide to path[], along with various three-dimensional casts defined
in three.asy. Implicit casts are automatically attempted on assignment and when trying
to match function calls with possible function signatures. Implicit casting can be inhibited
by declaring individual arguments explicit in the function signature, say to avoid an
ambiguous function call in the following example, which outputs O:

int f(pair a) {return 0;}
int f(explicit real x) {return 1;}

write(£(0));
Other conversions, say real to int or real to string, require an explicit cast:

int i=(int) 2.5;
string s=(string) 2.5;

Chapter 5: Programming 69

real[] a={2.5,-3.5};
int[] b=(int [1) a;
write(stdout,b); // Outputs 2,-3
Casting to user-defined types is also possible using operator cast:

struct rpair {
real radius;
real angle;

}

pair operator cast(rpair x) {
return (x.radius*cos(x.angle),x.radius*sin(x.angle));

}

rpair x;
x.radius=1;
x.angle=pi/6;

write(x); // Outputs (0.866025403784439,0.5)

One must use care when defining new cast operators. Suppose that in some code one
wants all integers to represent multiples of 100. To convert them to reals, one would first
want to multiply them by 100. However, the straightforward implementation

real operator cast(int x) {return x*100;}

is equivalent to an infinite recursion, since the result x*100 needs itself to be cast from
an integer to a real. Instead, we want to use the standard conversion of int to real:
real convert(int x) {return x*100;}
real operator cast(int x)=convert;

Explicit casts are implemented similarly, with operator ecast.

5.14 Import

While Asymptote provides many features by default, some applications require specialized
features contained in external Asymptote modules. For instance, the lines

access graph;

graph.axes();

draw x and y axes on a two-dimensional graph. Here, the command looks up the module
under the name graph in a global dictionary of modules and puts it in a new variable named
graph. The module is a structure, and we can refer to its fields as we usually would with a
structure.

Often, one wants to use module functions without having to specify the module name.
The code
from graph access axes;

adds the axes field of graph into the local name space, so that subsequently, one can just
write axes (). If the given name is overloaded, all types and variables of that name are
added. To add more than one name, just use a comma-separated list:

Chapter 5: Programming 70

from graph access axes, xaxis, yaxis;

Wild card notation can be used to add all non-private fields and types of a module to the
local name space:

from graph access *;

Similarly, one can add the non-private fields and types of a structure to the local envi-
ronment with the unravel keyword:

struct matrix {
real a,b,c,d;

}

real det(matrix m) {
unravel m;
return axd-bx*c;

}

Alternatively, one can unravel selective fields:

real det(matrix m) {
from m unravel a,b,c as C,d;
return a*d-bxC;
}
The command
import graph;
is a convenient abbreviation for the commands

access graph;
unravel graph;

That is, import graph first loads a module into a structure called graph and then adds
its non-private fields and types to the local environment. This way, if a member variable
(or function) is overwritten with a local variable (or function of the same signature), the
original one can still be accessed by qualifying it with the module name.

Wild card importing will work fine in most cases, but one does not usually know all of the
internal types and variables of a module, which can also change as the module writer adds
or changes features of the module. As such, it is prudent to add import commands at the
start of an Asymptote file, so that imported names won’t shadow locally defined functions.
Still, imported names may shadow other imported names, depending on the order in which
they were imported, and imported functions may cause overloading resolution problems if
they have the same name as local functions defined later.

To rename modules or fields when adding them to the local environment, use as:

access graph as graph2d;
from graph access xaxis as xline, yaxis as yline;

The command
import graph as graph2d;
is a convenient abbreviation for the commands

access graph as graph2d;
unravel graph2d;

Chapter 5: Programming 71

Except for a few built-in modules, such as settings, all modules are implemented as
Asymptote files. When looking up a module that has not yet been loaded, Asymptote
searches the standard search paths (see Section 2.5 [Search paths|, page 5) for the matching
file. The file corresponding to that name is read and the code within it is interpreted as the
body of a structure defining the module.

If the file name contains nonalphanumeric characters, enclose it with quotation marks:
access "/usr/share/asymptote/graph.asy" as graph;
from "/usr/share/asymptote/graph.asy" access axes;
import "/usr/share/asymptote/graph.asy" as graph;

It is an error if modules import themselves (or each other in a cycle). The module name
to be imported must be known at compile time.

However, you can import an Asymptote module determined by the string s at runtime
like this:

eval ("import "+s,true);
To conditionally execute an array of asy files, use
void asy(string format, bool overwrite ... string[] s);

The file will only be processed, using output format format, if overwrite is true or the
output file is missing.

One can evaluate an Asymptote expression (without any return value, however) con-
tained in the string s with:

void eval(string s, bool embedded=false);

It is not necessary to terminate the string s with a semicolon. If embedded is true, the
string will be evaluated at the top level of the current environment. If embedded is false
(the default), the string will be evaluated in an independent environment, sharing the same
settings module (see [settings|, page 139).

One can evaluate arbitrary Asymptote code (which may contain unescaped quotation
marks) with the command
void eval(code s, bool embedded=false);

Here code is a special type used with quote {} to enclose Asymptote code like this:
real a=1;
code s=quote {

write(a);
s
eval (s,true); // Outputs 1

To include the contents of a file graph verbatim (as if the contents of the file were inserted
at that point), use one of the forms:

include graph;
include "/usr/share/asymptote/graph.asy";

To list all global functions and variables defined in a module named by the contents of
the string s, use the function

void list(string s, bool imports=false);

Imported global functions and variables are also listed if imports is true.

Chapter 5: Programming 72

5.15 Static

Static qualifiers allocate the memory address of a variable in a higher enclosing level.

For a function body, the variable is allocated in the block where the function is defined;
so in the code

struct s {
int count() {
static int c=0;
++C;

return c;
}
}

there is one instance of the variable c for each object s (as opposed to each call of count).
Similarly, in
int factorial(int n) {
int helper(int k) {
static int x=1;
x *= k;
return k == 1 ? x : helper(k-1);
}

return helper(n);

}

there is one instance of x for every call to factorial (and not for every call to helper), so
this is a correct, but ugly, implementation of factorial.

Similarly, a static variable declared within a structure is allocated in the block where
the structure is defined. Thus,

struct A {
struct B {
static pair z;
}
}
creates one object z for each object of type A created.
In this example,
int pow(int n, int k) {
struct A {
static int x=1;
void helper() {
X *= n;
}
}
for(int i=0; i < k; ++i) {
A a;
a.helper();
}

return A.x;

Chapter 5: Programming 73

}

there is one instance of x for each call to pow, so this is an ugly implementation of expo-
nentiation.

Loop constructs allocate a new frame in every iteration. This is so that higher-order
functions can refer to variables of a specific iteration of a loop:

void £(Q);
for(int i=0; i < 10; ++i) {

int x=1i;

if (x==5) {

f=new void () { write(x); }

}
}
£0;

Here, every iteration of the loop has its own variable x, so £ () will write 5. If a variable
in a loop is declared static, it will be allocated where the enclosing function or structure
was defined (just as if it were declared static outside of the loop). For instance, in:

void £() {
static int x;
for(int i=0; i < 10; ++i) {
static int y;
}
}

both x and y will be allocated in the same place, which is also where £ is also allocated.

Statements may also be declared static, in which case they are run at the place where
the enclosing function or structure is defined. Declarations or statements not enclosed
in a function or structure definition are already at the top level, so static modifiers are
meaningless. A warning is given in such a case.

Since structures can have static fields, it is not always clear for a qualified name whether
the qualifier is a variable or a type. For instance, in:
struct A {

static int x;

}

pair A;

int y=A.x;

does the A in A.x refer to the structure or to the pair variable. It is the convention in
Asymptote that, if there is a non-function variable with the same name as the qualifier, the
qualifier refers to that variable, and not to the type. This is regardless of what fields the
variable actually possesses.

Chapter 6: LaTeX usage 74

6 LaTeX usage

Asymptote comes with a convenient LaTeX style file asymptote.sty that makes LaTeX
Asymptote-aware. Entering Asymptote code directly into the LaTeX source file, at the point
where it is needed, keeps figures organized and avoids the need to invent new file names
for each figure. Simply add the line \usepackage{asymptote} at the beginning of your file
and enclose your Asymptote code within a \begin{asy}...\end{asy} environment. As
with the LaTeX comment environment, the \end{asy} command must appear on a line by
itself, with no leading spaces or trailing commands/comments.

The sample LaTeX file below, named latexusage.tex, can be run as follows:

latex latexusage
asy latexusage
latex latexusage

or

pdflatex latexusage
asy latexusage
pdflatex latexusage

If the inline option is given to the asymptote.sty package, inline LaTeX
code is generated instead of EPS files. This makes LaTeX symbols visible to the
\begin{asy}...\end{asy} environment. In this mode, Asymptote correctly aligns LaTeX
symbols defined outside of \begin{asy}...\end{asy}, but treats their size as zero; an
optional second string can be given to Label to provide an estimate of the unknown label
size.

Note that if latex is used with the inline option, the labels might not show up in
DVI viewers that cannot handle raw PostScript code. One can use dvips/dvipdf to
produce PostScript/PDF output (we recommend using the modified version of dvipdf in
the Asymptote patches directory, which accepts the dvips -z hyperdvi option).

An excellent tutorial by Dario Teixeira on integrating Asymptote and LaTeX is available
at http://dario.dse.nl/projects/asylatex/.

Here now is latexusage.tex:
\documentclass[12pt]{article}

% Use this form to include eps (latex) or pdf (pdflatex) files:
\usepackage{asymptote}

% Use this form with latex or pdflatex to include inline LaTeX code:
%\usepackage[inline] {asymptote}

% Enable this line to produce pdf hyperlinks with latex:
%\usepackage [hypertex] {hyperref}

% Enable this line to produce pdf hyperlinks with pdflatex:
%\usepackage [pdftex] {hyperref}

\begin{document}

http://dario.dse.nl/projects/asylatex/

Chapter 6: LaTeX usage 75

\begin{asydef}

// Global Asymptote definitions can be put here.
usepackage ("bm") ;

\end{asydef}

Here is a venn diagram produced with Asymptote, drawn to width 4cm:

\def\A{A}
\def\B{\bm{B}}

%\begin{figure}
\begin{center}
\begin{asy}
size(4cm,0);

pen colourl=red;
pen colour2=green;

pair z0=(0,0);

pair z1=(-1,0);

pair z2=(1,0);

real r=1.5;

guide cl=circle(zl,r);
guide c2=circle(z2,r);
fill(cl,colourl);
£ill(c2,colour?);

picture intersection=new picture;
fill(intersection,cl,colourl+colour?);
clip(intersection,c2);

add(intersection) ;

draw(cl);

draw(c2);

//box (Label ("\A",z1)); // Requires [inline] package option.
//box (Label ("\B","B",z2)); // Requires [inline] package option.

box(Label ("A",z1));
box (Label ("\bm{B}",z2));

pair z=(0,-2);
real m=3;
margin BigMargin=Margin(0,m*dot (unit(z1-z),unit(z0-2z)));

draw(Label ("$A\cap B$",0),conj(z)--z0,Arrow,BigMargin) ;
draw(Label ("$A\cup B$",0),z--z0,Arrow,BigMargin) ;

Chapter 6: LaTeX usage 76

draw(z--z1,Arrow,Margin(0,m)) ;
draw(z--z2,Arrow,Margin(0O,m)) ;

shipout (bbox(0.25cm)) ;

\end{asy}

%\caption{Venn diagram}\label{venn}
\end{center}

%\end{figure}

Each graph is drawn in its own environment. One can specify the width
and height to \LaTeX\ explicitly:

\begin{center}
\begin{asy}[3cm,0]
guide center = (0,1){W}..tension 0.8..(0,0){(1,-.5)}..tension 0.8..{W}(0,-1);

draw((0,1)..(-1,0)..(0,-1));
filldraw(center{E}..{N}(1,0)..{W}cycle);
£fi11(circle((0,0.5),0.125) ,white);
fill(circle((0,-0.5),0.125));

\end{asy}

\end{center}

To scale the figure to the full line width:

\begin{center}
\begin{asy}[\the\linewidth]
import graph;

real f(real x) {return sqrt(x);?}
pair F(real x) {return (x,f(x));}

real g(real x) {return -sqrt(x);}
pair G(real x) {return (x,g(x));}

guide p=(0,0)--graph(f,0,1,operator ..)--(1,0);
fill(p--cycle,lightgray) ;

draw(p) ;

draw((0,0)--graph(g,0,1,operator ..)--(1,0),dotted);

real x=0.5;
pair c=(4,0);

transform T=xscale(0.5);

draw((2.695,0) ,T*arc(0,0.30cm,20,340) ,ArcArrow) ;
fill(shift(c)*T*circle(0,-f(x)) ,red+white);
draw(F(x)--c+(0,f(x)) ,dashed+red) ;

Chapter 6: LaTeX usage

draw(G(x)--c+(0,g(x)) ,dashed+red);

dot (Label, (1,1));
arrow("$y=\sqrt{x}$",F(0.7),N);

arrow((3,0.5%f(x)),W,1cm,red);
arrow((3,-0.5*f(x)),W,1cm,red);

xaxis("x",0,c.x,dashed);
yaxis ("y") ;

draw("r", (x,0)--F(x) ,E,red,Arrows,BeginBar,PenMargins) ;
draw("r", (x,0)--G(x) ,E,red,Arrows,PenMargins) ;
draw("r",c--c+(0,f(x)) ,Arrow,PenMargin) ;

dot(c);

\end{asy}

\end{center}

\end{document}

7

Chapter 6: LaTeX usage

Here is a venn diagram produced with Asymptote, drawn to width 4cm:

ANB

AUB

Each graph is drawn in its own environment. One can specify the width
and height to BTEX explicitly:

To scale the figure to the full line width:

r —
IRRRR S sEEEEEEEEEEEEERESS G-
r —_—

78

Chapter 7: Base modules 79

7 Base modules

Asymptote currently ships with the following base modules:

7.1 plain

This is the default Asymptote base file, which defines key parts of the drawing language
(such as the picture structure).

By default, an implicit private import plain; occurs before translating a file and be-
fore the first command given in interactive mode. This also applies when translating files
for module definitions (except when translating plain, of course). This means that the
types and functions defined in plain are accessible in almost all Asymptote code. Use the
-noautoplain command-line option to disable this feature.

7.2 simplex

This package solves the two-variable linear programming problem using the simplex method.
It is used by the module plain for automatic sizing of pictures.

7.3 math

This package extends Asymptote’s mathematical capabilities with point-in-polygon and
intersection algorithms and matrix arithmetic.

Unlike MetaPost, Asymptote does not implicitly solve linear equations and therefore
does not have the notion of a whatever unknown. Use the built-in explicit linear equation
solver solve instead. The following routine provides a useful replacement for a common use
of whatever: finding the intersection point of the lines through P, Q and p, g, respectively:

pair extension(pair P, pair Q, pair p, pair q);

Here are some additional routines provided in the math package:

void drawline(picture pic=currentpicture, pair P, pair Q, pen p=currentpen);
draw the visible portion of the (infinite) line going through P and Q, without
altering the size of picture pic, using pen p.

real intersect(triple P, triple Q, triple n, triple Z);
Return the intersection time of the extension of the line segment PQ with the
plane perpendicular to n and passing through Z.

triple intersectionpoint(triple n0, triple PO, triple nl, triple P1);
Return any point on the intersection of the two planes with normals n0 and
nl passing through points PO and P1, respectively. If the planes are parallel,
return (infinity,infinity,infinity).

bool straight (path p)
returns true iff the path p is straight.

real[] [] diagonal(... reall] a)
returns a diagonal matrix with diagonal entries given by a.

Chapter 7: Base modules 80

7.4 interpolate

This module implements Lagrange, Hermite, and standard cubic spline interpolation in
Asymptote, as illustrated in the example interpolatel.asy.

7.5 geometry

This module provides the beginnings of a geometry package. It currently includes a triangle
structure and functions to draw interior arcs of triangles and perpendicular symbols.

7.6 stats

This package implements a Gaussian random number generator and a collection of statistics
routines, including histogram and leastsquares.

7.7 patterns

This package implements Postscript tiling patterns and includes several convenient pattern
generation routines.

7.8 markers

This package implements specialized routines for marking paths and angles. The principal
mark routine provided by this package is

markroutine markinterval(int n=1, frame f, bool rotated=false);

which centers n copies of frame f within uniformly space intervals in arclength along the
path, optionally rotated by the angle of the local tangent.

The marker (see [marker|, page 96) routine can be used to construct new markers from
these predefined frames:

frame stickframe(int n=1, real size=0, pair space=0, real angle=0,
pair offset=0, pen p=currentpen);

frame circlebarframe(int n=1, real barsize=0,
real radius=0,real angle=0,
pair offset=0, pen p=currentpen,
filltype filltype=NoFill, bool above=false);

frame crossframe(int n=3, real size=0, pair space=0,
real angle=0, pair offset=0, pen p=currentpen);

frame tildeframe(int n=1, real size=0, pair space=0,
real angle=0, pair offset=0, pen p=currentpen);

Chapter 7: Base modules 81

For convenience, this module also constructs the markers StickIntervalMarker,
CrossIntervalMarker, CircleBarIntervalMarker, and TildeIntervalMarker from the
above frames. The example markers1.asy illustrates the use of these markers:

! 2 | | | |
3 | | | 4 ! !

> AN o el
7 s 4

11\ \ 12 e e

13 OO0+ 000 14 ! !
R0
=}
15 16 S
QO
a
17

This package also provides a routine for marking an angle AOB:

void markangle(picture pic=currentpicture, Label L="",
int n=1, real radius=0, real space=0,
pair A, pair 0, pair B, arrowbar arrow=None,
pen p=currentpen, margin margin=NoMargin,
marker marker=nomarker) ;

Chapter 7: Base modules 82

as illustrated in the example markers2.asy.

7.9 tree

This package implements an example of a dynamic binary search tree.

7.10 binarytree

This module can be used to draw an arbitrary binary tree and includes an input routine for
the special case of a binary search tree, as illustrated in the example binarytreetest.asy

import binarytree;
picture pic,pic2;

binarytree bt=binarytree(1,2,4,nil,5,nil,nil,0,nil,nil,3,6,nil,nil,7);
draw(pic,bt);

binarytree st=searchtree(10,5,2,1,3,4,7,6,8,9,15,13,12,11,14,17,16,18,19);
draw(pic2,st,blue);

add(pic.fit (), (0,0),10N);
add(pic2.fit (), (0,0),108);

Chapter 7: Base modules 83

7.11 drawtree

This is a simple tree drawing module used by the example treetest.asy.

7.12 syzygy

This module automates the drawing of braids, relations, and syzygies, along with the cor-
responding equations, as illustrated in the example knots.asy.

7.13 feynman

This package, contributed by Martin Wiebusch, is useful for drawing Feynman diagrams,
as illustrated by the examples eetomumu.asy and fermi.asy.

7.14 roundedpath

This package, contributed by Stefan Knorr, is useful for rounding the sharp corners of paths,
as illustrated in the example file roundpath.asy.

7.15 animate

This module allows one to generate animations, as illustrated by the files wheel.asy,
wavelet.asy, and cube.asy in the animations subdirectory of the examples directory.

Chapter 7: Base modules 84

These animations use the ImageMagick convert program to merge multiple images into a
GIF or MPEG movie.

Higher-quality portable clickable PDF movies, with optional controls, can be internally
generated and embedded by Asymptote. This requires installing the package

http://www.ctan.org/tex-archive/macros/latex/contrib/animate/animate.sty

(version 2007/05/24 or later) in a new directory animate in the LaTeX source directory (for
example, in /usr/share/texmf/tex/latex/animate). On UNIX systems, one must then
execute the command texhash.

The example pdfmovie.asy in the animations directory, along with the slide presen-
tations slidemovies.asy and intro.asy illustrate the use of embedded PDF movies. The
member function

string pdf (real delay=animationdelay, string options="")
of the animate structure accepts any of the animate.sty options, as described here:

http://www.ctan.org/tex-archive/macros/latex/contrib/animate/doc/animate.pdf

7.16 embed
This module provides an interface to the LaTeX package (included with MikTeX)

http://www.tug.org/tex-archive/macros/latex/contrib/moviel5

for embedding movies, sounds, and 3D objects into a PDF document. The latest version of
the moviel5 package requires both pdflatex version 1.20 or later and the file

http://www.tug.org/tex-archive/macros/latex/contrib/oberdiek/ifdraft.dtx

which can be installed by placing it in a directory ifdraft in the LaTeX source directory (e.g.
/usr/share/texmf/tex/latex/ifdraft) and executing in that directory the commands:

tex ifdraft.dtx
texhash

An example of embedding U3D code is provided in the file embeddedu3d.asy. As of
version 7.0.8, Adobe Reader now supports the U3D format under Linux.

Unfortunately, Adobe has not yet made available an embedded movie plugin for the
Linux version of Adobe Reader. A portable method for embedding movie files, which should
work on any platform and does not require the movielb or ifdraft packages, is provided
by using the external module instead of embed. An example of these interfaces is provided
in the file embeddedmovie.asy and externalmovie.asy in the animations subdirectory
of the examples directory. For a high-quality movie generated by Asymptote, use the
animate module along with the animate.sty package to embed a portable PDF animation
(see Section 7.15 [animate], page 83).

7.17 slide

This package provides a simple yet high-quality facility for making presentation slides,
including portable embedded PDF animations (see the file slidemovies.asy). A simple
example is provided in the file slidedemo.asy.

http://www.ctan.org/tex-archive/macros/latex/contrib/animate/animate.sty
http://www.ctan.org/tex-archive/macros/latex/contrib/animate/doc/animate.pdf
http://www.tug.org/tex-archive/macros/latex/contrib/movie15
http://www.tug.org/tex-archive/macros/latex/contrib/oberdiek/ifdraft.dtx

Chapter 7: Base modules 85

7.18 MetaPost

This package provides some useful routines to help MetaPost users migrate old MetaPost
code to Asymptote. Further contributions here are welcome.

7.19 unicode

Import this package at the beginning of the file to instruct LaTeX to accept unicode (UTF-
8) standardized international characters. You will also need to set up LaTeX support for
unicode by unpacking in your LaTeX source directory (e.g. /usr/share/texmf/tex/latex)
the file

http://www.unruh.de/DniQ/latex/unicode/unicode.tgz
and then running the command
texhash
To use Cyrillic fonts, you will need to change the font encoding:

import unicode;
texpreamble ("\usepackage{mathtext}\usepackage [russian] {babel}");
defaultpen(font ("T2A","cmr"));

Support for Chinese, Japanese, and Korean fonts is provided by the CJK package:
http://www.tug.org/tex-archive/languages/chinese/CJK/

The following commands enable the CJK song family (within a label, you can also tem-
porarily switch to another family, say kai, by prepending "\CJKfamily{kai}" to the label
string):

texpreamble ("\usepackage{CJK}

\AtBeginDocument{\begin{CJK*}{GBK}{song}}
\AtEndDocument{\clearpage\end{CJK*}}");

7.20 latini

If you don’t have LaTeX support for unicode installed, you can enable support for Western
European languages (ISO 8859-1) by importing the module latinl. This module can be
used as a template for providing support for other ISO 8859 alphabets.

7.21 babel

This module implements the LaTeX babel package in Asymptote. For example:

import babel;
babel ("german") ;

7.22 labelpath

This module uses the PSTricks pstextpath macro to fit labels along a path (properly
kerned, as illustrated in the example file curvedlabel.asy), using the command

void labelpath(picture pic=currentpicture, Label L, path g,

string justify=Centered, pen p=currentpen);
Here justify is one of LeftJustified, Centered, or RightJustified. The x component
of a shift transform applied to the Label is interpreted as a shift along the curve, whereas

http://www.unruh.de/DniQ/latex/unicode/unicode.tgz
http://www.tug.org/tex-archive/languages/chinese/CJK/

Chapter 7: Base modules 86

the y component is interpreted as a shift away from the curve. All other Label transforms
are ignored. This package requires the latex tex engine and inherits the limitations of the
PSTricks \pstextpath macro.

7.23 annotate

This module supports PDF annotations for viewing with Adobe Reader, via the function

void annotate(picture pic=currentpicture, string title, string text,

pair position);
Annotations are illustrated in the example file annotation.asy. Currently, annotations are
only implemented for the latex (default) and tex TEX engines.

7.24 CAD

This package, contributed by Mark Henning, provides basic pen definitions and measure-
ment functions for simple 2D CAD drawings according to DIN 15. It is documented sepa-
rately, in the file CAD.pdf.

7.25 graph

This package implements two-dimensional linear and logarithmic graphs, including auto-
matic scale and tick selection (with the ability to override manually). A graph is a guide
(that can be drawn with the draw command, with an optional legend) constructed with one
of the following routines:

guide graph(picture pic=currentpicture, real f(real), real a, real b,
int n=ngraph, interpolate join=operator --);

Returns a graph using the scaling information for picture pic (see [automatic scaling],

page 99) of the function f on the interval [a,b], sampling at n evenly spaced points,

with one of these interpolation types:

e operator -- (linear interpolation; the abbreviation Straight is also accepted);

e operator .. (piecewise Bezier cubic spline interpolation; the abbreviation Spline
is also accepted);

e Hermite (standard cubic spline interpolation using boundary condition notaknot,
natural, periodic, clamped(real slopea, real slopeb)), or monotonic. The
abbreviation Hermite is equivalent to Hermite (notaknot) for nonperiodic data
and Hermite (periodic) for periodic data).

guide graph(picture pic=currentpicture, real x(real), real y(real),

real a, real b, int n=ngraph,

interpolate join=operator --);
Returns a graph using the scaling information for picture pic of the parametrized
function (x(t),y(t)) for t in [a,b], sampling at n evenly spaced points, with the given
interpolation type.

Chapter 7: Base modules 87

guide graph(picture pic=currentpicture, pair z(real), real a, real b,
int n=ngraph, interpolate join=operator --);

Returns a graph using the scaling information for picture pic of the parametrized func-

tion z(¢) for ¢ in [a,b], sampling at n evenly spaced points, with the given interpolation

type.

guide graph(picture pic=currentpicture, pair[] z, bool[] cond={},
interpolate join=operator --);

Returns a graph using the scaling information for picture pic of those elements of the

array z for which the corresponding elements of the boolean array cond are true, with

the given interpolation type.

guide graph(picture pic=currentpicture, reall[] x, reall] y,
bool[] cond={}, interpolate join=operator --);

Returns a graph using the scaling information for picture pic of those elements of the
arrays (x,y) for which the corresponding elements of the boolean array cond are true,
with the given interpolation type.

guide graph(picture pic=currentpicture, real f(real), real a, real D,
int n=ngraph, real T(real), interpolate join=operator --);
Returns a graph using the scaling information for picture pic of the function f on the
interval [T(a),T(b)], sampling at n points evenly spaced in [a,b], with the given inter-
polation type. These parametric versions also accept an arbitrary sampling function:
guide graph(picture pic=currentpicture, real x(real), real y(real),
real a, real b, int n=ngraph, real T(real),
interpolate join=operator --);
guide graph(picture pic=currentpicture, pair z(real), real a, real D,
int n=ngraph, real T(real), interpolate join=operator --)

guide polargraph(picture pic=currentpicture, real f(real), real a,

real b, int n=ngraph, interpolate join=operator --);
Returns a polar-coordinate graph using the scaling information for picture pic of the
function £ on the interval [a,b], sampling at n evenly spaced points, with the given
interpolation type.

An axis can be drawn on a picture with one of the following commands:
[]
void xaxis(picture pic=currentpicture, Label L="", axis axis=YZero,
real xmin=-infinity, real xmax=infinity, pen p=currentpen,
ticks ticks=NoTicks, arrowbar arrow=None, bool put=Below);

Draw an x axis on picture pic from r=xmin to x=xmax using pen p, optionally labelling
it with Label L. The relative label location along the axis (a real number from [0,1])

Chapter 7: Base modules 88

defaults to 1 (see [Label], page 18), so that the label is drawn at the end of the axis.
An infinite value of xmin or xmax specifies that the corresponding axis limit will be
automatically determined from the picture limits. The optional arrow argument takes
the same values as in the draw command (see [arrows|, page 15). If put=Below and
the extend flag for axis is false, the axis is drawn before any existing objects in the
current picture. The axis placement is determined by one of the following axis types:

YZero(bool extend=true)
Request an z axis at y=0 (or y=1 on a logarithmic axis) extending to the
full dimensions of the picture, unless extend=false.

YEquals(real Y, bool extend=true)
Request an x axis at y=Y extending to the full dimensions of the picture,
unless extend=false.

Bottom(bool extend=false)
Request a bottom axis.

Top(bool extend=false)
Request a top axis.

BottomTop(bool extend=false)
Request a bottom and top axis.

Custom axis types can be created by following the examples in graph.asy. One can
easily override the default values for the standard axis types:

import graph;

YZero=new axis(bool extend=true) {
return new void(picture pic, axisT axis) {
real y=pic.scale.x.scale.logarithmic 7 1 : O;
axis.value=I*pic.scale.y.T(y);
axis.position=1;
axis.side=right;
axis.align=2.5E;
axis.value2=Infinity;
axis.extend=extend;
+;
s
YZero=YZero() ;

The default tick option is NoTicks. The options LeftTicks, RightTicks, or Ticks
can be used to draw ticks on the left, right, or both sides of the path, relative to the
direction in which the path is drawn. These tick routines accept a number of optional
arguments:

ticks LeftTicks(Label format="", ticklabel ticklabel=null,
bool beginlabel=true, bool endlabel=true,
int N=0, int n=0, real Step=0, real step=0,
bool begin=true, bool end=true, tickmodifier modify=None,
real Size=0, real size=0, bool extend=false,

Chapter 7: Base modules 89

pen pTick=nullpen, pen ptick=nullpen);

If any of these parameters are omitted, reasonable defaults will be chosen:

Label format
override the default tick label format (defaultformat, initially
"$%.4g$"), rotation, pen, and alignment (for example, LeftSide, Center,
or RightSide) relative to the axis. To enable LaTeX math mode fonts, the
format string should begin and end with $ see [format|, page 27; if the
format string is "%", the tick label will be suppressed;

ticklabel
is a function string(real x) returning the label (by default,
format(format.s,x)) for each major tick value x;

bool beginlabel
include the first label;

bool endlabel
include the last label;

int N when automatic scaling is enabled (the default; see [automatic scaling],
page 99), divide the values evenly into this many intervals, separated by
major ticks;

int n divide each value interval into this many subintervals, separated by minor
ticks;

real Step the tick value spacing between major ticks (if N=0);
real step the tick value spacing between minor ticks (if n=0);

bool begin
include the first major tick;

bool end include the last major tick;

tickmodifier modify;
an optional function that takes and returns a tickvalue structure having
real[] members major and minor consisting of the tick values (to allow
modification of the automatically generated tick values);

real Size the size of the major ticks (in PostScript coordinates);
real size the size of the minor ticks (in PostScript coordinates);

bool extend;
extend the ticks between two axes (useful for drawing a grid on the graph);

pen pTick an optional pen used to draw the major ticks;
pen ptick an optional pen used to draw the minor ticks.

For convenience, the predefined tickmodifier OmitTick(... real[] x) tickmodifier
can be used to remove specific auto-generated ticks and their labels. The
OmitFormat (string s=defaultformat ... real[] x) ticklabel can be wused to
remove specific tick labels but not the corresponding ticks. The tickmodifier NoZero

Chapter 7: Base modules 90

is an abbreviation for OmitTick (0) and the ticklabel NoZeroFormat is an abbrevation
for OmitFormat (0).

It is also possible to specify custom tick locations with LeftTicks, RightTicks, and
Ticks by passing explicit real arrays Ticks and (optionally) ticks containing the
locations of the major and minor ticks, respectively:

ticks LeftTicks(Label format="", ticklabel ticklabel=null,
bool beginlabel=true, bool endlabel=true,
real[] Ticks, reall] ticks=new reall],
real Size=0, real size=0, bool extend=false,
pen pTick=nullpen, pen ptick=nullpen)

void yaxis(picture pic=currentpicture, Label L="", axis axis=XZero,

real ymin=-infinity, real ymax=infinity, pen p=currentpen,

ticks ticks=NoTicks, arrowbar arrow=None, bool put=Below);
Draw a y axis on picture pic from y=ymin to y=ymax using pen p, optionally labelling
it with Label L. The relative location of the label (a real number from [0,1]) defaults to 1
(see [Label], page 18). An infinite value of ymin or ymax specifies that the corresponding
axis limit will be automatically determined from the picture limits. The optional
arrow argument takes the same values as in the draw command (see [arrows|, page 15).
If put=Below and the extend flag for axis is false, the axis is drawn before any
existing objects in the current picture. The tick type is specified by ticks and the axis
placement is determined by one of the following axis types:

XZero (bool extend=true)
Request a y axis at =0 (or =1 on a logarithmic axis) extending to the
full dimensions of the picture, unless extend=false.

XEquals(real X, bool extend=true)
Request a y axis at =X extending to the full dimensions of the picture,
unless extend=false.

Left(bool extend=false)
Request a left axis.

Right (bool extend=false)
Request a right axis.

LeftRight (bool extend=false)
Request a left and right axis.

e For convenience, the functions

void xequals(picture pic=currentpicture, Label L="", real x,
bool extend=false, real ymin=-infinity, real ymax=infinity,
pen p=currentpen, ticks ticks=NoTicks, bool put=Above,
arrowbar arrow=None);

and

void yequals(picture pic=currentpicture, Label L="", real vy,
bool extend=false, real xmin=-infinity, real xmax=infinity,
pen p=currentpen, ticks ticks=NoTicks, bool put=Above,

Chapter 7: Base modules 91

arrowbar arrow=None);

can be respectively used to call yaxis and xaxis with the appropriate axis types
XEquals(x,extend) and YEquals(y,extend). This is the recommended way of draw-
ing vertical or horizontal lines and axes at arbitrary locations.

void axis(picture pic=currentpicture, Label L="", path g,
pen p=currentpen, ticks ticks, ticklocate locate,
arrowbar arrow=None, int[] divisor=new int[],
bool put=Above, bool opposite=false);

This routine can be used to draw on picture pic a general axis based on an arbitrary
path g, using pen p. One can optionally label the axis with Label L and add an arrow
arrow. The tick type is given by ticks. The optional integer array divisor specifies
what tick divisors to try in the attempt to produce uncrowded tick labels. A true value
for the flag opposite identifies an unlabelled secondary axis (typically drawn opposite
a primary axis). The axis is drawn on top of any existing objects in the current picture
only if put is Above. The tick locator ticklocate is constructed by the routine

ticklocate ticklocate(real a, real b, autoscaleT S=defaultS$S,
real tickmin=-infinity, real tickmax=infinity,
real time(real)=null, pair dir(real)=zero);
where a and b specify the respective tick values at point(g,0) and
point(g,length(g)), S specifies the autoscaling transformation, the func-
tion real time(real v) returns the time corresponding to the value v, and pair
dir(real t) returns the absolute tick direction as a function of t (zero means draw
the tick perpendicular to the axis).

e These routines are useful for manually putting ticks and labels on axes (if the special
variable Label is given as the Label argument, the format argument will be used to
format a string based on the tick location):

void xtick(picture pic=currentpicture, Label L="", explicit pair z,
pair dir=N, string format="",
real size=Ticksize, pen p=currentpen);
void xtick(picture pic=currentpicture, Label L="", real x,
pair dir=N, string format="",
real size=Ticksize, pen p=currentpen);
void ytick(picture pic=currentpicture, Label L="", explicit pair z,
pair dir=E, string format="",
real size=Ticksize, pen p=currentpen);
void ytick(picture pic=currentpicture, Label L="", real y,
pair dir=E, string format="",
real size=Ticksize, pen p=currentpen);
void tick(picture pic=currentpicture, pair z,
pair dir, real size=Ticksize, pen p=currentpen);
void labelx(picture pic=currentpicture, Label L="", explicit pair z,
align align=S, string format="", pen p=nullpen);
void labelx(picture pic=currentpicture, Label L="", real x,
align align=S, string format="", pen p=nullpen) ;

Chapter 7: Base modules 92

void labelx(picture pic=currentpicture, Label L,
string format="", explicit pen p=currentpen) ;

void labely(picture pic=currentpicture, Label L="", explicit pair z,
align align=W, string format="", pen p=nullpen);

void labely(picture pic=currentpicture, Label L="", real vy,
align align=W, string format="", pen p=nullpen);

void labely(picture pic=currentpicture, Label L,
string format="", explicit pen p=nullpen);

Here are some simple examples of two-dimensional graphs:
1. This example draws a textbook-style graph of y = exp(z), with the y axis starting at

y =0

import graph;

size(150,0);

real f(real x) {return exp(x);}
pair F(real x) {return (x,f(x));}

xaxis ("x") ;
yaxis ("y",0);

draw(graph(f,-4,2,operator ..),red);

labely(1,E);
label("$e"x$",F(1),SE);

a

2. The next example draws a scientific-style graph with a legend. The position of the
legend can be adjusted either explicitly or by using the graphical user interface xasy (see
Chapter 10 [GUI], page 143). If an UnFill(real xmargin=0, real ymargin=xmargin)
or Fill(pen) option is specified to add, the legend will obscure any underlying objects.
Here we illustrate how to clip the portion of the picture covered by a label:

Chapter 7: Base modules

import graph;
size (400,200, IgnoreAspect) ;

real Sin(real t) {return sin(2pi*t);}
real Cos(real t) {return cos(2pi*t);}

draw(graph(Sin,0,1) ,red,"$\sin(2\pi x)$");
draw(graph(Cos,0,1) ,blue,"$\cos(2\pi x)$");

xaxis ("x" ,BottomTop,LeftTicks);
yaxis("y" ,LeftRight,RightTicks);

label ("LABEL",point (0) ,UnFill(imm));
add(legend () ,point (E) ,20E,UnFill);

1
0.8
0.6
0.4
0.2

Y 0
—0.2
—-0.4
—0.6
—0.8

-1

1 I 1 1 1 I 1 1 1 1 1
0 010203040506 070809 1
x

To specify a fixed size for the graph proper, use attach:
import graph;

size (250,200, IgnoreAspect) ;

real Sin(real t) {return sin(2pix*t);}
real Cos(real t) {return cos(2pix*t);}

draw(graph(Sin,0,1) ,red,"$\sin(2\pi x)$");
draw(graph(Cos,0,1) ,blue,"$\cos(2\pi x)$");

xaxis("x",BottomTop,LeftTicks);
yaxis("y" ,LeftRight,RightTicks) ;

sin(2mx)
cos(2mx)

93

Chapter 7: Base modules 94

label ("LABEL",point (0) ,UnFill(1mm));

attach(legend() ,point (E),20E,UnFill);
A legend can have multiple entries per line:

import graph;
size(8cm,6cm, IgnoreAspect) ;

typedef real realfcn(real);
realfcn F(real p) {
return new real(real x) {return sin(p*x);};

};

for(int i=1; i < 5; ++i)
draw(graph(F (i*pi),0,1),Pen(i),
"$\sin("+(1 == 1 7 "" : (string) 1)+"\pi x)$");
xaxis("x" ,BottomTop,LeftTicks);
yaxis("y" ,LeftRight,RightTicks);

attach(legend(2), (point(S) .x,truepoint(8).y),10S,UnFill);

1 .
0.8
0.6
0.4

o
(e}
[\)
o
N
(e}
D
(@)
(0.]
—_

sin(mzx) —— sin(27x)
sin(37x)

3. This example draws a graph of one array versus another (both of the same size) using
custom tick locations and a smaller font size for the tick labels on the y axis.

import graph;

size (200,150, IgnoreAspect) ;

Chapter 7: Base modules

real[] x={0,1,2,3%};
reall] y=x"2;

draw(graph(x,y) ,red);
xaxis ("x" ,BottomTop,LeftTicks);

yaxis ("y" ,LeftRight,
RightTicks(Label (fontsize(8)) ,new real[]1{0,4,9}));

4. This example shows how to graph columns of data read from a file.
import graph;
size (200,150, IgnoreAspect) ;
file in=line(input("filegraph.dat"));
real[][] a=dimension(in,0,0);

a=transpose(a) ;

real[] x=al[0];
reall] y=alll;

draw(graph(x,y) ,red);

xaxis ("x" ,BottomTop,LeftTicks);

95

Chapter 7: Base modules 96

yaxis("y",LeftRight ,RightTicks);

2 T T T T

O 1 | 1 | 1 | 1
50 70 90 110 130

5. The next example draws two graphs of an array of coordinate pairs, using frame align-
ment and data markers. In the left-hand graph, the markers, constructed with

marker marker(path g, markroutine markroutine=marknodes,
pen p=currentpen, filltype filltype=NoFill,
bool put=Above);

using the path unitcircle (see [filltype], page 44), are drawn below each node. Any
frame can be converted to a marker, using

marker marker (frame f, markroutine markroutine=marknodes,
bool put=Above) ;

In the right-hand graph, the unit n-sided regular polygon polygon(int n) and
the unit n-point cyclic cross cross(int n, bool round=true, real r=0) (where
r is an optional “inner” radius) are used to build a custom marker frame. Here
markuniform(bool centered=false, int n, bool rotated=false) adds this frame
at n uniformly spaced points along the arclength of the path, optionally rotated by the
angle of the local tangent to the path (if centered is true, the frames will be centered
within n evenly spaced arclength intervals). These markers are predefined:

marker [] Mark={
marker (scale(circlescale)*unitcircle),
marker (polygon(3)) ,marker (polygon(4)),
marker (polygon(5)) ,marker (invert*polygon(3)),
marker (cross(4)) ,marker (cross(6))

};

marker [] MarkFill={
marker (scale(circlescale)*unitcircle,Fill) ,marker (polygon(3),Fill),
marker (polygon(4) ,Fill) ,marker (polygon(5),Fill),
marker (invert*polygon(3) ,Fill)

};

The example also illustrates the errorbar routines:

void errorbars(picture pic=currentpicture, pair[] z, pair[] dp,

Chapter 7: Base modules 97

pair[] dm={}, bool[] cond={}, pen p=currentpen,
real size=0);

void errorbars(picture pic=currentpicture, reall] x, reall] y,
real[] dpx, reall] dpy, reall]l dmx={}, reall] dmy={3,
bool[] cond={}, pen p=currentpen, real size=0);

Here, the positive and negative extents of the error are given by the absolute values of
the elements of the pair array dp and the optional pair array dm. If dm is not specified,
the positive and negative extents of the error are assumed to be equal.

import graph;

picture pic;
real xsize=200, ysize=140;
size(pic,xsize,ysize,IgnoreAspect);

pair[] £={(5,5),(50,20),(90,90)};
pair[] df={(0,0),(5,7),(0,5)};

errorbars(pic,f,df,red);
draw(pic,graph(pic,f),"legend",
marker (scale(0.8mm)*unitcircle,red,FillDraw(blue) ,Below));

xaxis(pic, "x",BottomTop,LeftTicks);
yaxis(pic,"y",LeftRight,RightTicks);
add(pic,legend(pic) ,point(pic,NW),20SE,UnFill);

picture pic2;
size(pic2,xsize,ysize,IgnoreAspect);

frame mark;
filldraw(mark,scale(0.8mm)*polygon(6) ,green,green) ;
draw(mark,scale(0.8mm)*cross(6) ,blue) ;

draw(pic2,graph(pic2,f) ,marker (mark,markuniform(5)));

xaxis(pic2,"x" ,BottomTop,LeftTicks);
yaxis(pic2,"y",LeftRight,RightTicks);

yequals(pic2,55.0,red+Dotted) ;
xequals(pic2,70.0,red+Dotted) ;

// Fit pic to W of origin:
add(pic.fit (), (0,0),W);

// Fit pic2 to E of (5mm,0):
add(pic2.fit (), (5mm,0) ,E);

Chapter 7: Base modules 98

100 T T T T T T 100 T T T T T

80 | ——e——legend /]

60 N
40 T

20 - T

6. This example shows how to label an axis with arbitrary strings.

import graph;
size (400,150, IgnoreAspect) ;

real[] x=sequence(12);
real[] y=sin(2pi*x/12);

scale(false);

string[] month={"Jan","Feb","Mar","Apr","May","Jun",
llJulll , llAugll s llSep" s IIOCt n s "NOV" , llDeC“};

draw(graph(x,y) ,red,MarkFill[0]);
xaxis(BottomTop,LeftTicks(new string(real x) {

return month[round(x % 12)]1;}));
yaxis ("y" ,LeftRight ,RightTicks(4));

1

0.5

—-0.5

_1 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | N 1 | 1
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

7. This example draws a graph of a parametrized curve.
The calls to

Chapter 7: Base modules 99

xlimits(picture pic=currentpicture, real min=-infinity,
real max=infinity, bool crop=NoCrop) ;

and the analogous function ylimits can be uncommented to set the respective axes
limits for picture pic to the specified min and max values (alternatively, the function
limits(pair, pair) can be used to limit the axes to the box having opposite vertices
at the given pairs). Existing objects in picture pic will be cropped to lie within the
given limits if crop=Crop. The function crop(picture pic) is equivalent to calling
both x1imits(Crop) and ylimits(Crop).

import graph;
size(0,200);

real x(real t) {return cos(2pix*t);}
real y(real t) {return sin(2pix*t);}

draw(graph(x,y,0,1));

//x1limits(0,1,Crop);
//ylimits(-1,0,Crop);

xaxis("x" ,BottomTop,LeftTicks ("$%#.1£$"));
yaxis("y",LeftRight ,RightTicks ("$%#.1£$"));

1.0

0.8
0.6
0.4
0.2

y 0.0
—0.2
—0.4
—0.6
—0.8

—1.0
-1.0 0.5

Axis scaling can be requested and/or automatic selection of the axis limits can be
inhibited with one of these scale routines:

void scale(picture pic=currentpicture, scaleT x, scaleT y);

void scale(picture pic=currentpicture, bool xautoscale=true,

Chapter 7: Base modules 100

bool yautoscale=xautoscale, bool zautoscale=yautoscale);

This sets the scalings for picture pic. The graph routines accept an optional picture
argument for determining the appropriate scalings to use; if none is given, it uses those
set for currentpicture.

Two frequently used scaling routines Linear and Log are predefined in graph.

All picture coordinates (including those in paths and those given to the label and
limits functions) are always treated as linear (post-scaled) coordinates. Use

pair Scale(picture pic=currentpicture, pair z);
to convert a graph coordinate into a scaled picture coordinate.

The @math{x} and O@math{y} components can be individually scaled using
the analogous routines

Qverbatim

real ScaleX(picture pic=currentpicture, real x);

real ScaleY(picture pic=currentpicture, real y);

The predefined scaling routines can be given two optional boolean arguments: automin
and automax. These default to true, but can be respectively set to false to disable
automatic selection of "nice" axis minimum and maximum values. Linear can also
take as optional final arguments a multiplicative scaling factor and intercept (e.g. for
a depth axis, Linear (-1) requests axis reversal).

For example, to draw a log/log graph of a function, use scale(Log,Log):
import graph;

size (200,200, IgnoreAspect) ;

real f(real t) {return 1/t;}

scale(Log,Log);

draw(graph(f,0.1,10));

//x1imits(1,10);
//ylimits(0.1,1);

dot (Label("(3,5)",align=S),Scale((3,5)));

xaxis("x",BottomTop,LeftTicks);
yaxis("y" ,LeftRight,RightTicks) ;

Chapter 7: Base modules 101

]_01 T T ||||||| T T T T TTTT

Yy 100

1071 1 1 IIIIIII 1 1 L1111
1071 10° 10

By extending the ticks, one can easily produce a logarithmic grid:

import graph;
size (200,200, IgnoreAspect) ;

real f(real t) {return 1/t;}

scale(Log,Log);

draw(graph(£,0.1,10) ,red);

pen thin=linewidth(0.5*linewidth());

xaxis("x",BottomTop,LeftTicks(begin=false,end=false,extend=true,
ptick=thin));

yaxis("y" ,LeftRight,RightTicks(begin=false,end=false,extend=true,
ptick=thin));

Chapter 7: Base modules 102

10

Yy o100

107}
1071 10° 10
x

One can also specify custom tick locations and formats for logarithmic axes:

import graph;

s1ze(300,175,IgnoreAspect) ;
scale(Log,Log);
draw(graph(identity,5,20));
x1imits(5,20);
ylimits(1,100);
xaxis ("M/M_\odot" ,BottomTop,LeftTicks(DefaultFormat,
new reall] {6,10,12,14,16,18}));
yaxis ("$\nu_{\rm upp}$ [Hz]",LeftRight,RightTicks(DefaultFormat));

100 ¢ :
=
= 10
&]
<]
1 | | | | | |
6 10 12 14 16 18
M/M,,

It is easy to draw logarithmic graphs with respect to other bases:

Chapter 7: Base modules 103

import graph;
size (200, IgnoreAspect) ;

// Base-2 logarithmic scale on y-axis:
scaleT yscale;

real log2(real x) {static real log2=log(2); return log(x)/log2;}
real pow2(real x) {return 2°x;}

yscale.init(log2,pow2,logarithmic=true) ;
scale(Linear,yscale);

real f(real x) {return 1+x°2;}
draw(graph(f,-4,4));

xaxis ("x" ,xmin=-5,xmax=5,LeftTicks,EndArrow) ;
yaxis ("y",ymin=1,ymax=f (5) ,RightTicks,EndArrow) ;

Yy A

24_

23_

22_

21_
I|I|I|I|I2|I|I|I|I|>I
-5—-4-3-2-10 1 2 3 4 5
i

Here is an example of "broken" linear x and logarithmic y axes that omit the segments
[3,8] and [100,1000], respectively. In the case of a logarithmic axis, the break endpoints
are automatically rounded to the nearest integral power of the base.

import graph;
size (200,150, IgnoreAspect) ;

// Break the x axis at 3; restart at 8:
real a=3, b=8;

// Break the y axis at 100; restart at 1000:

Chapter 7: Base modules 104

real ¢=100, d=1000;
scale(Broken(a,b) ,BrokenLog(c,d));

reall[] x={1,2,4,6,10};
real[] y=x"4;

draw(graph(x,y) ,red,MarkFill[0]);

xaxis("x",BottomTop,LeftTicks (Break(a,b)));
yaxis ("y" ,LeftRight ,RightTicks(Break(c,d)));

label (rotate(90)*Break, (a,point(S).y));
label(rotate(90) *Break, (a,point (N) .y));
label (Break, (point (W) .x,ScaleY(c)));
label (Break, (point (E) .x,ScaleY(c)));

10*

T |||||22 T T TTTTI
1 |||||22

10!

100 | 22 | | |
0

—_
[\
Ne}
—_
e}

8. Asymptote can draw secondary axes with the routines

picture secondaryX(picture primary=currentpicture, void f(picture));
picture secondaryY(picture primary=currentpicture, void f(picture));

In this example, secondaryY is used to draw a secondary linear y axis against a primary
logarithmic y axis:

import graph;

texpreamble ("\def\Arg{\mathop {\rm Arg}\nolimits}");

size(10cm,5cm, IgnoreAspect) ;

real ampl(real x) {return 2.5/(1+x72);}
real phas(real x) {return -atan(x)/pi;}

scale(Log,Log);
draw (graph (ampl,0.01,10));
ylimits(0.001,100);

Chapter 7: Base modules 105

xaxis ("$\omegal\tau_0$" ,BottomTop,LeftTicks) ;
yaxis ("$|G(\omega\tau_0) |$",Left,RightTicks);

picture g=secondaryY(new void(picture pic) {
scale(pic,Log,Linear);
draw(pic,graph(pic,phas,0.01,10),red);
ylimits(pic,-1.0,1.5);
yaxis(pic,"$\Arg G/\pi$",Right,red,

LeftTicks("$% #.1£f$",
begin=false,end=false));

yequals(pic,1,Dotted);

b;
label(q,"(1,0)",Scale(q, (1,0)),red);
add(q);
102 T T T TTTTT T T T TTTTT T T T TTTTT 1.5
101E
S 100
3
G 107!
1072
10—3 Lol Ll L1 710
1072 1071 10° 101
WTo

A secondary logarithmic y axis can be drawn like this:

import graph;

size(9cm,6cm, IgnoreAspect) ;
string data="secondaryaxis.csv";

file in=line(csv(input(data)));

string[] titlelabel=in;
string[] columnlabel=in;

real[][] a=dimension(in,0,0);

a=transpose(a);

real[] t=al[0], susceptible=al[l], infectious=a[2], dead=a[3], larvae=al4];
real[] susceptibleM=a[5], exposed=al[6],infectiousM=al7];

draw(graph(t,susceptible,t >= 10 & t <= 15));
draw(graph(t,dead,t >= 10 & t <= 15),dashed);

Chapter 7: Base modules 106

xaxis("Time (τ)",BottomTop,LeftTicks);
yaxis(Left,RightTicks) ;

picture secondary=secondaryY(new void(picture pic) {
scale(pic,Linear,Log);
draw(pic,graph(pic,t,infectious,t >= 10 & t <= 15),red);
yaxis(pic,Right,red,LeftTicks(begin=false,end=false));
b;

add(secondary) ;
label (shift (5mm*N) *"Proportion of crows",point(NW),E);

Proportion of crows
0.9 — T T T T 10°
0.8]
0.7F -
0.6 -7 i

0.5 107!
0.4 F L7
0.3 -7
02 _--~ |
0.1 | | | | | | L | I 1072

9. Here is a histogram example, which uses the stats module.

import graph;
import stats;

size (400,200, IgnoreAspect) ;

int n=10000;

real[] a=new realln];

for(int i=0; i < n; ++i) al[il=Gaussrand();
draw(graph (Gaussian,min(a) ,max(a)) ,blue);

histogram(a,min(a),max(a),n=100,normalize=true,low=0,lightred,black,bars=false);

xaxis("x",BottomTop,LeftTicks);
yaxis ("dP/dx" ,LeftRight,RightTicks);

Chapter 7: Base modules 107

05 T T T T T T T T T T

dP/dx
e e
[N} w
1

10. Here is an example of reading column data in from a file and a least-squares fit, using
the stats module.

size (400,200, IgnoreAspect) ;

import graph;
import stats;

file fin=line(input("leastsquares.dat"));

real[] [] a=dimension(fin,0,0);
a=transpose(a);

real[] t=al[0], rho=alll;

// Read in parameters from the keyboard:
//real first=getreal("first");

//real step=getreal("step");

//real last=getreal("last");

real first=100;
real step=50;
real last=700;

// Remove negative or zero values of rho:
t=rho > 0 7 t : null;

rho=rho > 0 ? rho : null;

scale(Log,Linear) ;

Chapter 7: Base modules

int n=step > 0 7 ceil((last-first)/step) : O;

real[] T,xi,dxi;

for(int i=0; i <= n; ++i) {
real first=first+ixstep;
real[] logrho=(t >= first & t <= last) 7 log(rho) : null;
real[] logt=(t >= first & t <= last) 7 -log(t) : null;

if (logt.length < 2) break;

// Fit to the line logt=L.m*logrho+L.b:
linefit L=leastsquares(logt,logrho);

T.push(first);

xi.push(L.m);
dxi.push(L.dm);

draw(graph(T,xi) ,blue);
errorbars(T,xi,dxi,red);
crop();

ylimits(0);

xaxis ("T" ,BottomTop,LeftTicks);
yaxis ("ξ",LeftRight ,RightTicks);

3 T T T T T T

0
102

T

11. Here is an example that illustrates the general axis routine.

103

108

Chapter 7: Base modules 109

import graph;
size(0,100);

guide g=ellipse((0,0),1,2);
axis(Label("C",align=10W),g,LeftTicks(endlabel=false,8,end=false),
ticklocate(0,360,new real(real v) {
path h=(0,0)--max (abs (max(g)) ,abs(min(g)))*dir(v);
return intersect(g,h)[0];}));

90
135 45
C 180 0
225 315
270

12. To draw a vector field along a path, first define a routine that returns a path as a
function of a relative position parameter from [0,1] and use

typedef path vector(real);

void vectorfield(picture pic=currentpicture, path g, int n,
vector vector, real arrowsize=0, real arrowlength=0,
pen p=currentpen) ;

Here is a simple example of a flow field:
import graph;
defaultpen(1.0);

size (0,150, IgnoreAspect) ;

real arrowsize=4mm;
real arrowlength=2arrowsize;

// Return a vector interpolated linearly between a and b.
vector vector(pair a, pair b) {
return new path(real x) {
return (0,0)--arrowlength*interp(a,b,x);
3
}

real alpha=1;
real f(real x) {return alpha/x;}

real epsilon=0.5;
path p=graph(f,epsilon,1/epsilon);

Chapter 7: Base modules 110

int n=2;
draw(p);
xaxis ("x");
yaxis ("y") ;

vectorfield(p,n,vector(W,W) ,arrowsize) ;
vectorfield((0,0)--(point(E).x,0) ,n,vector (NE,NW) ,arrowsize);
vectorfield((0,0)--(0,point(N).y) ,n,vector(NE,NE) ,,arrowsize);

e

R4

N

T

13. The following scientific graphs, which illustrate many features of Asymptote’s graphics
routines, were generated from the examples diatom.asy and westnile.asy, using the
comma-separated data in diatom.csv and westnile.csv.

Chapter 7: Base modules 111

(s
g {1990 1994
- 1988 1999
B ; 1986
E 1984 1982
100 £ 11980
. E 11978
E f J1972
= F 31970
< C]
= soob 1965
< C]
< E]
g E J1961
R 11950
2 a00E 1040 1942
g SE 31915 1920
- 1910
J1888
400 —1763
1 L 1 1 I | 1 1 I 1 1 I 1 1 : 1726
50 50 50 20 40 50 20 40 20 40 10 8
%
1
0.9 RRRIRRIERIEEED : | Estimate
C§ 0.8 | 3. Determine p%"oportlog 9f
R - . . birds surviving
> 0.7 - desired bird
5 U . at end of season
2 - survival for
—E 0.6 — next season
e L :
s 0.5 F—— === T T 2. Read off
'ﬁ 044 Cal(:}llate : initial
g, - requlreq : I mosquito
é 0.3~ proportional : ! abundance
3 0.2 [reduction in _: |
@ Y27 mosquitoes :
0.1+ . |
i :
| | - | 1l | |

O 1
0 10 M, 20 M; 30 40
Initial no. of mosquitoes per bird (S, /Np,)

Chapter 7: Base modules 112

7.26 palette

Asymptote can also generate color density images and palettes. The following palettes are
predefined in palette.asy:

pen[] Grayscale(int NColors=256)
a grayscale palette;

pen[] Rainbow(int NColors=65501)
a rainbow spectrum;

pen[] BWRainbow (int NColors=65485)
a rainbow spectrum tapering off to black/white at the ends;

pen[] BWRainbow2(int NColors=65485)
a double rainbow palette tapering off to black/white at the ends, with a linearly
scaled intensity.

The function cmyk(pen[] Palette) may be used to convert any of these palettes to the
CMYK colorspace.

A color density plot using palette palette can be generated from a function f(z,y) and
added to a picture pic:

bounds image(picture pic=currentpicture, real f(real,real),
range range=Full, pair initial, pair final,
int nx=ngraph, int ny=nx, pen[] palette);

The function £ will be sampled at nx and ny evenly spaced points over a rectangle defined
by the points initial and final, respecting the current graphical scaling of pic. The color
space is scaled according to the z axis scaling (see [automatic scaling], page 99). A bounds
structure for the function values is returned:

struct bounds {

real min;

real max;

// Possible tick intervals:

int[] divisor;
}
This information can be used for generating an optional palette bar. The palette color
space corresponds to a range of values specified by the argument range, which can be Full,
Automatic, or an explicit range Range (real min, real max). Here Full specifies a range
varying from the minimum to maximum values of the function over the sampling interval,
while Automatic selects "nice" limits. The example imagecontour.asy illustrates how
level sets (contour lines) can be drawn on a color density plot (see Section 7.35 [contour],
page 130).

A color density plot can also be generated from an explicit real[][] array data:
bounds image(picture pic=currentpicture, reall][] f, range range=Full,

pair initial, pair final, pen[] palette,
bool transpose=(initial.x < final.x && initial.y < final.y));

If the initial point is to the left and below the final point, by default the array indices are
interpreted according to the Cartesian convention (first index: x, second index: y) rather
than the usual matrix convention (first index: —y, second index:).

Chapter 7: Base modules 113

To construct an image from an array of irregularly spaced points and an array of values
f at these points, use one of the routines

bounds image(picture pic=currentpicture, pair[] z, reall] f,
range range=Full, pen[] palette)

bounds image(picture pic=currentpicture, reall[] x, reall] y, reall] f,
range range=Full, pen[] palette)

An optionally labelled palette bar may be generated with the routine

void palette(picture pic=currentpicture, Label L="", bounds bounds,
pair initial, pair final, axis axis=Right, pen[] palette,
pen p=currentpen, paletteticks ticks=PaletteTicks);

The color space of palette is taken to be over bounds bounds with scaling given by the
z scaling of pic. The palette orientation is specified by axis, which may be one of Right,
Left, Top, or Bottom. The bar is drawn over the rectangle from initial to final. The
argument paletteticks is a special tick type (see [ticks], page 88) that takes the following
arguments:

paletteticks PaletteTicks(Label format="", ticklabel ticklabel=null,
bool beginlabel=true, bool endlabel=true,
int N=0, int n=0, real Step=0, real step=0,
pen pTick=nullpen, pen ptick=nullpen);

The image and palette bar can be fit to a frame and added and optionally aligned to a
picture at the desired location:

size(12cm,12cm) ;

import graph;
import palette;

int n=256;
real ninv=2pi/n;
real[] [] v=new real[n][n];

for(int i=0; i < n; ++i)
for(int j=0; j < n; ++j)
v[i] [jl=sin(i*ninv)*cos(j*ninv) ;

pen[] Palette=BWRainbow();

picture bar;

bounds range=image(v, (0,0),(1,1),Palette);
palette(bar,"A" ,range, (0,0),(0.5cm,8cm) ,Right,Palette,

PaletteTicks ("$%+#.1£$"));
add(bar.fit () ,point (E),30E);

Chapter 7: Base modules

+1.0
+0.8
+0.6
+0.4
+0.2
0.0 A
—-0.2
—-0.4
—0.6
-0.8
-1.0

Here is an example that uses logarithmic scaling of the function values:

import graph;
import palette;

size(10cm,10cm, IgnoreAspect) ;
real f(real x, real y) {
return 0.9%powl0(2*sin(x/5+2*%y~0.25)) + 0.1x(1+cos(10x1log(y)));
}
scale(Linear,Log,Log);
penl[] Palette=BWRainbow() ;

bounds range=image (f,Automatic, (0,1),(100,100),nx=200,Palette);

xaxis ("x" ,BottomTop,LeftTicks,Above);
yaxis ("y" ,LeftRight,RightTicks,Above) ;

palette("$f (x,y)$",range, (0,200),(100,250) ,Top,Palette,
PaletteTicks(ptick=linewidth(0.5*1linewidth())));

114

Chapter 7: Base modules 115

0 10 20 30 40 50 60 70 80 90 100
T

One can also draw an image directly from a two-dimensional pen array:

void image(picture pic=currentpicture, pen[][] data,
pair initial, pair final,
bool transpose=(initial.x < final.x && initial.y < final.y));

as illustrated in the following example:
size(200);
import palette;
int n=256;
real ninv=2pi/n;
penl] [1 v=new pen[n] [n];
for(int i=0; i < n; ++i)

for(int j=0; j < m; ++j)

v[i] [j1=rgb(0.5%(1+sin(i*ninv)),0.5%(1+cos(j*ninv)),0);

picture bar;

image (v, (0,0),(1,1));

Chapter 7: Base modules 116

7.27 three

This module fully extends the notion of guides and paths in Asymptote to three dimensions,
introducing the new types guide3 and path3. Guides in three dimensions are specified with
the same syntax as in two dimensions but with triples (x,y,z) in place of pairs (x,y) for
the nodes and direction specifiers. This generalization of John Hobby’s spline algorithm is
shape-invariant under three-dimensional rotation, scaling, and shifting, and reduces in the
planar case to the two-dimensional algorithm used in Asymptote, MetaPost, and MetaFont.

For example, a unit circle in the XY plane may be filled and drawn like this:

import three;

size(100,0);

guide3 g=(1,0,0)..(0,1,0)..(-1,0,0)..(0,-1,0)..cycle;
filldraw(g,lightgrey);
draw(0--Z,red+dashed,BeginBar,Arrow) ;
draw(((-1,-1,0)--(1,-1,0)--(1,1,0)--(-1,1,0)--cycle));
dot(g,red);

A

<>

and then distorted into a saddle:

import three;

size(100,0);

guide3d g=(1,0,0)..(0,1,1)..(-1,0,0)..(0,-1,1)..cycle;
filldraw(g,lightgrey);

dot(g,red);

Chapter 7: Base modules 117

draw(((-1,-1,0)--(1,-1,0)--(1,1,0)--(-1,1,0)--cycle));

Here 0 is the triple (0,0,0) and X, Y, and Z are the triples (1,0,0), (0,1,0), and
(0,0,1), respectively. A general circle can be drawn perpendicular to the direction normal
with the routine

path3 circle(triple c, real r, triple normal=Z);

A circular arc centered at ¢ with radius r from c+r*dir(thetal,phil) to
ctrxdir (theta2,phi2), drawing counterclockwise relative to the normal vector
cross(dir(thetal,phil),dir(theta2,phi2)) if theta2 > thetal or if theta2 ==
thetal and phi2 >= phil, can be constructed with

path3 arc(triple c, real r, real thetal, real phil, real theta2, real phi2,
triple normal=0);

The normal must be explicitly specified if ¢ and the endpoints are colinear. If r < 0,
the complementary arc of radius |r| is constructed. For convenience, an arc centered at c
from triple v1 to v2 (assuming |v2-c|=|vi-c|) in the direction CCW (counter-clockwise)
or CW (clockwise) may also be constructed with

path3 arc(triple c, triple v1, triple v2, triple normal=0,
bool direction=CCW);

When high accuracy is needed, the routines Circle and Arc defined in graph3 may be used
instead. See [GaussianSurface|, page 125 for an example of a three-dimensional circular arc.

A representation of the plane passing through point O with normal cross(u,v) is given
by
path3 plane(triple u, triple v, triple 0=0);

A three-dimensional box with opposite vertices at triples vl and v2 may be drawn with
the function

path3[] box(triple v1, triple v2);
For example, a unit cube is predefined as
path3[] unitcube=box((0,0,0),(1,1,1));

These projections to two dimensions are predefined:
oblique

oblique(real angle)
The point (x,y,z) is projected to (x-0.5z,y-0.5z). If an optional real ar-
gument is given, the negative z axis is drawn at this angle in degrees. The
projection obliqueZ is a synonym for oblique.

obliqueX

Chapter 7: Base modules 118

obliqueX(real angle)
The point (x,y,z) is projected to (y-0.5x,z-0.5x). If an optional real argu-
ment is given, the negative x axis is drawn at this angle in degrees.

obliqueY

obliqueY(real angle)
The point (x,y,z) is projected to (x+0.5y,z+0.5y). If an optional real argu-
ment is given, the positive y axis is drawn at this angle in degrees.

orthographic(triple camera, triple up=Z)
This projects from three to two dimensions using the view as seen at a point
infinitely far away in the direction unit (camera), orienting the camera so that,
if possible, the vector up points upwards. Parallel lines are projected to parallel
lines.

orthographic(real x, real y, real z, triple up=Z)
This is equivalent to orthographic((x,y,z) ,up).

perspective(triple camera, triple up=Z, triple target=0)
This projects from three to two dimensions, taking account of perspective, as
seen from the location camera looking at target, orienting the camera so that,
if possible, the vector up points upwards.

perspective(real x, real y, real z, triple up=Z, triple target=0)
This is equivalent to perspective((x,y,2z) ,up,target).

The default projection, currentprojection, is initially set to perspective(5,4,2).

A triple or path3 can be implicitly cast to a pair or path, respectively, using
currentprojection. To use another projection, call project(triple, projection
P=currentprojection) or project(path, projection P=currentprojection).

It is occasionally useful to be able to invert a projection, sending a pair z onto the plane
perpendicular to normal and passing through point:
triple invert(pair z, triple normal, triple point,
projection P=currentprojection);

Three-dimensional objects may be transformed with one of the following built-in
transform3 types:

shift(triple v)
translates by the triple v;

xscale3(real x)
scales by x in the z direction;

yscale3(real y)
scales by y in the y direction;

zscale3(real z)
scales by z in the z direction;

scale3(real s)
scales by s in the z, y, and z directions;

Chapter 7: Base modules 119

rotate(real angle, triple v)
rotates by angle in degrees about an axis v through the origin;

rotate(real angle, triple u, triple v)
rotates by angle in degrees about the axis u--v;

reflect(triple u, triple v, triple w)
reflects about the plane through u, v, and w.

Three-dimensional versions of the path functions length, size, point, dir, precontrol,
postcontrol, arclength, arctime, reverse, subpath, intersect, intersectionpoint,
min, max, cyclic, and straight are also defined in the module three.

Planar hidden surface removal is implemented with a binary space partition and picture
clipping. A planar path is first converted to a structure face derived from picture. A
face may be given to a drawing routine in place of any picture argument. An array of
such faces may then be drawn, removing hidden surfaces:

void add(picture pic=currentpicture, face[] faces,
projection P=currentprojection);

Here is an example showing three orthogonal intersecting planes:

size(6cm,0);
import math;
import three;

real u=2.5;
real v=1;

currentprojection=oblique;

path3 y=plane((2u,0,0),(0,2v,0), (-u,-v,0));
path3 l=rotate(90,Z)*rotate(90,Y)*y;
path3 g=rotate(90,X)*rotate(90,Y)*y;

face[] faces;
filldraw(faces.push(y),y,yellow);
filldraw(faces.push(l),1,lightgrey);
filldraw(faces.push(g),g,green);

add(faces);

Chapter 7: Base modules

Here is an example showing all five 3D path connectors:

import graph3;

size(0,175);
currentprojection=orthographic(500,-500,500) ;
triple[] z=new triple[10];

z[0]=(0,100,0); z[1]1=(50,0,0); z[2]1=(180,0,0);

for(int n=3; n <= 9; ++n)
z[n]=z[n-3]+(200,0,0);

path3 p=z[0]..z[1]---z[2]::{Y}z[3]
&z[3]..z[4]--z[5]::{Y}z[6]
&z[6]::z[7]-—-=z[8]..{Y}z[9];
draw(p,grey+linewidth (4mm)) ;

bbox3 b=1limits (0, (700,200,100));
xaxis(Label("x",1),b,red,Arrow);
yaxis(Label ("y",1) ,b,red,Arrow);
zaxis(Label("z",1) ,b,red,Arrow);

dot(z);

120

Chapter 7: Base modules 121

X

A three-dimensional bounding box structure is returned by calling bbox3(triple min,
triple max) with the opposite corners min and max. This can be used to adjust the aspect
ratio (see the example helix.asy):
void aspect(picture pic=currentpicture, bbox3 b,

real x=0, real y=0, real z=0);

Further three-dimensional examples are provided in the files near_earth.asy,

conicurv.asy, and (in the animations subdirectory) cube.asy.

7.28 light

This module provides a simple implementation of three-dimensional lighting effects. An
illustration is provided in the solid geometry package solids.asy.

7.29 graph3

This module implements three-dimensional versions of the functions in graph.asy. They
work much like their two-dimensional counterparts, except that the user has to keep track
of the three-dimensional axes limits (which in two dimension are stored in the picture) in a
bbox3 bounding box. The function

bbox3 autolimits(picture pic=currentpicture, triple min, triple max);
can be used to determine “nice” values for the bounding box corners. A user-space bounding
box that takes into account of the axes scalings for picture pic is returned by
bbox3 limits(picture pic=currentpicture, triple min, triple max);
To crop a bounding box to a given interval use:
void xlimits(bbox3 b, real min, real max);
void ylimits(bbox3 b, real min, real max);
void zlimits(bbox3 b, real min, real max);
void limits(bbox3 b, triple min, triple max);
To draw an z axis in three dimensions from triple min to triple max with ticks in the
direction dir, use the routine

Chapter 7: Base modules 122

void xaxis(picture pic=currentpicture, Label L="", triple min, triple max,
pen p=currentpen, ticks ticks=NoTicks, triple dir=Y,
arrowbar arrow=None, bool put=Above,
projection P=currentprojection, bool opposite=false);

To draw an x axis in three dimensions from triple min to triple (max,min.y,min.z) with
ticks in the direction dir, use the routine

void xaxis(picture pic=currentpicture, Label L="", triple min, real max,
pen p=currentpen, ticks ticks=NoTicks, triple dir=Y,
arrowbar arrow=None, bool put=Above,
projection P=currentprojection, bool opposite=false);

To draw an z axis in three dimensions using bbox3 b with ticks in the direction dir, use

the routine
void xaxis(picture pic=currentpicture, Label L="", bool all=false,

bbox3 b, pen p=currentpen, ticks ticks=NoTicks,

triple dir=Y, arrowbar arrow=None, bool put=Above,

projection P=currentprojection);
If all=true, also draw opposing edges of the three-dimensional bounding box. Analogous
routines yaxis and zaxis can be used to draw y and z axes in three dimensions. There are
also some convenient routines for drawing all three axis:

void axes(Label xlabel="x", Label ylabel="y", Label zlabel="$z3$",
triple min, triple max, pen p=currentpen, arrowbar arrow=None,
bool put=Below, projection P=currentprojection);

void axes(Label xlabel="x", Label ylabel="y", Label zlabel="$z3$",
bbox3 b, pen p=currentpen, arrowbar arrow=None,
bool put=Below, projection P=currentprojection);

Here is an example of a helix and bounding box axes with rotated tick and axis labels,
using orthographic projection:

import graph3;

size(0,200);
currentprojection=orthographic(4,6,3);
real x(real t) {return cos(2pix*t);}
real y(real t) {return sin(2pix*t);}
real z(real t) {return t;}
defaultpen(overwrite (SuppressQuiet));
path3 p=graph(x,y,z,0,2.7,Spline);
bbox3 b=autolimits(min(p),max(p));

aspect(b,1,1,1);

xaxis(rotate (X)*"x",all=true,b,red,RightTicks(rotate(X)*Label,2,2));

Chapter 7: Base modules 123

yaxis(rotate(Y)*"y",all=true,b,red,RightTicks(rotate(Y)*Label,2,2));
zaxis ("z",all=true,b,red,RightTicks);

draw(p,Arrow) ;

The next example illustrates three-dimensional z, y, and z axes, with autoscaling of the
upper z limit disabled:

import graph3;

size (0,200, IgnoreAspect) ;
currentprojection=perspective(5,2,2);
defaultpen(overwrite (SuppressQuiet));
scale(Linear,Linear,Log(automax=false));
bbox3 b=autolimits(Z,X+Y+30Z);

xaxis ("x",b,red,RightTicks(2,2));

yaxis("y",b,red,RightTicks(2,2));
zaxis ("z",b,red,RightTicks);

Chapter 7: Base modules 124

10

NEWN

One can also place ticks along a general three-dimensional axis:

import graph3;
size(0,100);
path3 G=xscale3(1)*(yscale3(2)*unitcircle3d);

axis(Label("C",align=Relative(5E)),G,
LeftTicks(endlabel=false,8,end=false),
ticklocate(0,360,new real(real v) {
path g=G;
path h=0--max(abs(max(G)),abs(min(G)))*dir(90,v);
return intersect(g,h) [0];
},perpendicular(G,Z)));

270 295 C
180

135
315

45 90

Surface plots of matrices and functions over the region box(a,b) in the XY plane are
also implemented:

picture surface(real[][] f, pair a, pair b, bool outward=false,

Chapter 7: Base modules 125

pen surfacepen=lightgray, pen meshpen=nullpen,

light light=currentlight, projection P=currentprojection);
picture surface(triple[][] f, bool outward=false,

pen surfacepen=lightgray, pen meshpen=nullpen,

light light=currentlight, projection P=currentprojection);
picture surface(real f(pair z), pair a, pair b, int nx=nmesh,

int ny=nx, bool outward=false,

pen surfacepen=lightgray, pen meshpen=nullpen,

light light=currentlight, projection P=currentprojection);
picture surface(real f(pair z), int nsub, pair a, pair b, int nx=nmesh,

int ny=nx, bool outward=false,

pen surfacepen=lightgray, pen meshpen=nullpen,

light light=currentlight, projection P=currentprojection);
A parametric surface for a function f(u,v) over the parameter space box(a,b) may be
drawn with
picture surface(triple f(pair z), pair a, pair b, int nu=nmesh,

int nv=nu, bool outward=false,

pen surfacepen=lightgray, pen meshpen=nullpen,

light light=currentlight, projection P=currentprojection);
picture surface(triple f(pair z), int nsub, pair a, pair b, int nu=nmesh,

int nv=nu, bool outward=false,

pen surfacepen=lightgray, pen meshpen=nullpen,

light light=currentlight, projection P=currentprojection);
as illustrated in the example parametricsurface.asy. The optional argument nsub allows
one to subsample the function nsub times along the cell edges. However, smoother Gouraud
shading is used for lighting effects when this parameter is omitted. Lighting can be disabled
by setting 1ight=0, as in this example of a Gaussian surface subsampled 4 times:

import graph3;

size(200,0);

currentprojection=perspective(5,4,2);

real f(pair z) {return 0.5+exp(-abs(z)"2);}
draw((-1,-1,0)--(1,-1,0)--(1,1,0)--(-1,1,0)--cycle);
draw(arc(0.12Z,0.2,90,60,90,15) ,ArcArrow) ;

picture surface=surface(f,nsub=4,(-1,-1),(1,1),nx=10,1light=0);
bbox3 b=limits(0,1.75(1,1,1));

xaxis(Label ("x",1),b,red,Arrow);

yaxis(Label ("y",1) ,b,red,Arrow);
zaxis(Label("z",1),b,red,Arrow);

Chapter 7: Base modules 126

label("0", (0,0,0),S,red);

add(surface) ;

Surface lighting is illustrated in the example files parametricsurface.asy and sinc.asy
A mesh can be drawn without solid fills by specifying nullpen for the surfacepen. A mesh is
always drawn in the absence of lighting, unless meshpen=invisible. For closed orientable
surfaces parametrized such that df /dux df /dv points in the direction of the outward normal,
low-mesh-resolution lighting artifacts near the projected edges can be avoided by specifying
outward=true, as this forces only the outer surface to be drawn.

7.30 grid3

This module, contributed by Philippe Ivaldi, can be wused for drawing 3D
grids. Here is an example (further examples can be found in grid3.asy and at
http://piprim.tuxfamily.org/asymptote/grid3/):

import grid3;

size(8cm,0);
currentprojection=orthographic(0.5,1,0.5);

defaultpen(overwrite (SuppressQuiet));
bbox3 b=limits((-2,-2,0),(0,2,2));
aspect(b,1,1,1);

scale(Linear, Linear, Log);

grid3(b,XYZgrid) ;

xaxis(Label ("x",position=EndPoint,align=S),b,RightTicks());
yaxis(Label("y" ,position=EndPoint,align=S),b,RightTicks());
zaxis(Label ("z",position=EndPoint,align=(0,0.5)+W),b,RightTicks());

http://piprim.tuxfamily.org/asymptote/grid3/

Chapter 7: Base modules 127

Z.102
_—]
210!
L —]
29
N

)

7.31 solids

This solid geometry package defines a structure revolution that can be used to fill and
draw surfaces of revolution. The following example uses it to display the outline of a circular
cylinder of radius 1 with axis 0--1.5unit (Y+Z) with perspective projection:

import solids;
size(0,100);

revolution r=cylinder(0,1,1.5,Y+Z);
r.draw(heavygreen) ;

Further illustrations are provided in the example files cylinder.asy, sphere.asy,
cones.asy, hyperboloid.asy, and torus.asy.

The structure skeleton contains the three-dimensional wireframe used to visualize a
volume of revolution (here longitudinal refers to those segments that are parallel to the axis
of revolution; transverse segments are perpendicular to the axis of revolution):

Chapter 7: Base modules 128

struct skeleton {
// transverse skeleton
front3[] front;
front3[] back;
// longitudinal skeleton
front3[] longitudinal;

7.32 surface

This is the beginnings of a package for drawing Bezier surfaces, the natural two-dimensional
generalizations of a Bezier curve. An sample Bezier surface is contained in the example file
BezierSurface.asy.

7.33 featpost3D

To facilitate the conversion of existing MetaPost programs, this module contains a par-
tial port of the MetaPost 3D package featpost3D of L. Nobre G., C. Barbarosie, and J.
Schwaiger to Asymptote. However, much (but not all) of the functionality of this port is now
obsoleted by the package three, which fully extends the notion of a path to three dimen-
sions, together with the packages solids and graph3. The original featpost3D package is
documented at

http://matagalatlante.org/nobre/featpost/doc/featpost.html

7.34 flowchart

This package provides routines to assist in drawing flowcharts. The primary structure is
a block, which represents a single block on the flowchart. The following eight functions
return a position on the appropriate edge of the block, given picture transform t:

pair block.top(transform t=identity());

pair block.left(transform t=identity());

pair block.right(transform t=identity());

pair block.bottom(transform t=identity());

pair block.topleft(transform t=identity());
pair block.topright(transform t=identity());
pair block.bottomleft(transform t=identity());
pair block.bottomright (transform t=identity());

To obtain an arbitrary position along the boundary of the block in user coordinates, use:
pair block.position(real x, transform t=identity());

The center of the block in user coordinates is stored in block.center and the block size in
PostScript coordinates is given by block.size.

A frame containing the block is returned by
frame block.draw(pen p=currentpen);

The following block generation routines accept a Label, string, or frame for their object
argument:

http://matagalatlante.org/nobre/featpost/doc/featpost.html

Chapter 7: Base modules 129

rectangular block with an optional header (and padding dx around header and body):
block rectangle(object header, object body,
pen headerpen=mediumgray, pen bodypen=currentpen,
pair center=(0,0), real dx=3,
real minheaderwidth=0, real minheaderheight=0,
real minbodywidth=0, real minbodyheight=0) ;
block rectangle(object body, pen bodypen=currentpen,
pair center=(0,0), real dx=3,
real minwidth=0, real minheight=0);

diamond-shaped flowchart block:
block diamond(object body, pair center=(0,0), real ds=5,
real dw=1, real height=20,
real minwidth=0, real minheight=0) ;

circular flowchart block:
block circle(object body, pair center=(0,0), real dr=3,
real mindiameter=0);

rectangular flowchart block with rounded corners:
block roundrectangle(object body, pair center=(0,0),
real ds=5, real dw=0,
real minwidth=0, real minheight=0);

rectangular flowchart block with beveled edges:
block bevel(object body, pair center=(0,0), real dh=5, real dw=5,
real minwidth=0, real minheight=0);

To draw paths joining the pairs in point with right-angled lines, use the routine:
path path(pair point[] ... bool horizontall[]);

The entries in horizontal identify whether successive segments between the pairs specified
by point should be drawn horizontal (true) or vertical (false).

Here is a simple flowchart example:
size(0,300);

import flowchart;

block blockl=rectangle("Example",pack("Start:","","$A:=0%","$B:=1$"),(-0.5,3));
block block2=diamond("Choice?", (0,2));

block block3=roundrectangle("Do something",(-1,1));

block block4=bevel("Don’t do something",(1,1));

block blockb=circle("End", (0,0));

draw(blockl) ;
draw(block?2) ;
draw(block3) ;
draw(block4) ;
draw(block5) ;

Chapter 7: Base modules 130

add(new void(frame f, transform t) {
picture pic;
draw(pic,path(new pair[]{blockl.right(t),block2.top(t)},Horizontal),
Arrow,PenMargin) ;
draw(pic,Label("Yes",0.5),path(new pair[]{block2.left(t),block3.top(t)},
Horizontal) ,Arrow,PenMargin) ;
draw(pic,Label("No",0.5,N) ,path(new pair[]{block2.right(t),block4.top(t)},
Horizontal) ,Arrow,PenMargin) ;
draw(pic,path(new pair[]{block3.bottom(t),block5.left(t)},Vertical),
Arrow,PenMargin) ;
draw(pic,path(new pair[]{block4.bottom(t),block5.right(t)},Vertical),
Arrow,PenMargin) ;

add(f,pic.fit());
)

Example

Start:

Y Y
{Do something] <Don’t do something>

This package draws contour lines. To construct contours for a function £, use

7.35 contour

guide[] [] contour(real f(real, real), pair a, pair b,
real[] c, int nx=ngraph, int ny=nx,
interpolate join=operator --);

Chapter 7: Base modules 131

The contour lines ¢ for the function f are drawn on the rectangle defined by the bottom-left
and top-right points a and b. The integers nx and ny define the resolution. The default
resolution, ngraph x ngraph (here ngraph defaults to 100), can be increased for greater
accuracy. The default interpolation operator is operator -- (linear). Spline interpolation
(operator ..) generally produces more accurate pictures, but as usual, can overshoot in
certain cases.

To construct contours for an array of data values on a uniform two-dimensional lattice,
use

guide[][] contour(reall[]l[] f, reall][] midpoint=new reall][],
pair a, pair b, reall] c,
interpolate join=operator --);

To construct contours for an array of irregularly spaced points and an array of values f at
these points, use one of the routines

guide[] [] contour(pair[] z, reall] f, reall] c,
interpolate join=operator --);

guide[] [] contour(reall]l x, reall] y, realll f, reall] c,
interpolate join=operator --);

The contours themselves can be drawn with one of the routines

void draw(picture pic=currentpicture, Label[] L=new Label[],
guide[][] g, pen p=currentpen)

void draw(picture pic=currentpicture, Label[] L=new Labell],
guide[1[] g, pen[] p)
The following simple example draws the contour at value 1 for the function z = 22 + y2,
which is a unit circle:

import contour;
size(75);

real f(real a, real b) {return a"2+b"2;}
draw(contour(f, (-1,-1),(1,1) ,new real[] {1}));

The next example draws and labels multiple contours for the function z = 22 — y? with
the resolution 100 x 100, using a dashed pen for negative contours and a solid pen for
positive (and zero) contours:

import contour;

import stats;
size(200);

Chapter 7: Base modules 132

real f(real x, real y) {return x"2-y~2;}
int n=10;

real[] ¢ = new real[n];

for(int i=0; i < n; ++i) c[i]l=(i-n/2)/n;

pen[] p=sequence(new pen(int i) {
return (c[i] >= 0 ? solid : dashed)+fontsize(6);

}.n);

Label[] Labels=sequence(new Label(int i) {
return Label(c[i] != 0 7 (string) c[i] : "",Relative(unitrand()),(0,0),
UnFill(1bp));
}.n);

draw(Labels,contour(f, (-1,-1),(1,1),c),p);

The next example illustrates how contour lines can be drawn on color density images:
import graph;
import palette;
import contour;

size(10cm, 10cm, IgnoreAspect) ;

pair a=(0,0);
pair b=(2pi,2pi);

real f(real x, real y) {return cos(x)*sin(y);}

int N=200;

Chapter 7: Base modules 133

int Divs=10;
int divs=2;

defaultpen(1bp);

pen Tickpen=black;

pen tickpen=gray+0.5*linewidth(currentpen) ;
pen[] Palette=BWRainbow();

scale(false);
bounds range=image(f,Automatic,a,b,N,Palette);

// Major contours

real[] Cvals;

Cvals=sequence(Divs+1) /Divs*(range.max-range.min)+range.min;
draw(contour(f,a,b,Cvals,N,operator --),Tickpen);

// Minor contours

real[] cvals;

real[] sumarr=sequence(1,divs-1)/divs*(range.max-range.min)/Divs;

for (int ival=0; ival < Cvals.length-1; ++ival)
cvals.append(Cvals[ival]l+sumarr) ;

draw(contour(f,a,b,cvals,N,operator --),tickpen);

xaxis("x" ,BottomTop,LeftTicks,Above) ;
yaxis("y",LeftRight,RightTicks,Above);

palette("$f(x,y)$",range,point (NW)+(0,0.5) ,point (NE)+(0,1) ,Top,Palette,

Chapter 7: Base modules 134

PaletteTicks(N=Divs,n=divs,Tickpen,tickpen));

f(z,y)
—1 —0.8-06-04-02 0 02 04 06 08 1

Finally, here is an example that illustrates the construction of contours from irregularly
spaced data:

import contour;

size(200);

int n=100;

pair[] points=new pair[n];
real[] values=new reall[n];

real r() {return 1.1*(rand()/randMax*2-1);}

for(int i=0; i < n; ++i)
points[il=(xr O ,rO);

real f(real a, real b) {return a"2+b"2;%}

for(int i=0; i < n; ++i)
values[i]=f (points[i].x,points[i].y);

Chapter 7: Base modules 135

draw(contour (points,values,new real[]{0.25,0.5,1},operator ..),blue);

In the above example, the contours of irregularly spaced data are constructed by first
creating a triangular mesh from an array z of pairs, using Gilles Dumoulin’s C++ port of
Paul Bourke’s triangulation code:

int[1[] triangulate(pair([] z);
size(200);

int np=100;

pair[] points;

real r() {return 1.2*(rand()/randMax*2-1);}

for(int i=0; i < np; ++i)
points.push((x(),r()));

int[1[] trn=triangulate(points);

for(int i=0; i < trn.length; ++i) {
draw((points[trn[i] [0]])--(points[trn[i] [1]]1));
draw((points[trn[i] [1]1])--(points[trn[i] [2]]1));
draw((points[trn[i] [2]])--(points[trn[i]l [0]]));
}

for(int i=0; i < np; ++i)

Chapter 7: Base modules 136

dot (points[i],red);

The example Gouraudcontour illustrates how to produce color density images over such
irregular triangular meshes.

7.36 contour3

This package draws surfaces described as the null space of real-valued functions of (z,y, 2)
or real[][][] matrices. Its usage is illustrated in the example file magnetic.asy.

7.37 slopefield
To draw a slope field for the differential equation dy/dx = f(z,y) (or dy/dz = f(x)), use:

picture slopefield(real f(real,real), pair a, pair b,

int nx=nmesh, int ny=nx,

real tickfactor=0.5, pen p=currentpen);
Here, the points a and b are the lower left and upper right corners of the rectangle in which
the slope field is to be drawn, nx and ny are the respective number of ticks in the x and
y directions, tickfactor is the fraction of the minimum cell dimension to use for drawing
ticks, and p is the pen to use for drawing the slope fields. The return value is a picture that
can be added to currentpicture via the add(picture) command.

The function
path curve(pair c, real f(real,real), pair a, pair b);

takes a point (c) and a slope field-defining function f (real f (real) is also accepted), and
returns, as a path, the curve passing through that point. The points a and b represent the

rectangular boundaries over which the curve is interpolated. Here is an example of a slope
field:

import slopefield;

size(200);

137

Chapter 7: Base modules

real func(real x) {return 2x;}

add(slopefield(func, (-3,-3),(3,3),20));

draw(curve ((0,0),func, (-3,-3),(3,3)),red);

1
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

1
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

. — m o m— m e e — — -
o~ o mmmmmmmmm m—m— — — — -
~ <= -~ B N e N
~ ~ ~ - R T T T N N
NN N N NS O N N N N N N NN N NN
NN NN NONON X N N N N N N N N N N
NN VN AV U W N\ NV Y U U VO U O O
[[[
/7 VA Ay A A A A A A A A A A
s S S VRS A A A A S A A A
s s s s L A A S S
P i i
- == B i P
T e e e e e — -
e e e e e e e e e e e e - -
. e e e e — -
. e e e — -

Chapter 8: Options

8 Options

138

Type asy -h to see the full list of command-line options supported by Asymptote:

Usage: ../asy [options] [file ...]

Options (negate by replacing - with -no):

-V,-View
-a,-align C|B|TI|Z
—autoimport string
—autoplain
—autorotate
-batchMask
-batchView

-bw

-cd directory
-c,-clearGUI
-cmyk

—compact
-d,-debug
-x,-deconstruct X
-divisor n
-globalwrite
-gray

-h,-help
-historylines n
-i,-ignoreGUI
-inlinetex
-interactiveMask
-interactiveView
-k,-keep

-keepaux
-1,-listvariables
-localhistory
-m,-mask
-multiline
-multipleView
-0,-offset pair
-f,-outformat format
-0,-outname name
-p,-parseonly
-prompt string
-prompt2 string
-q,—quiet

-rgb

-safe

-scroll n

View output; command-line only

Center, Bottom, Top, or Zero page alignment [Center]
Module to automatically import [""]

Enable automatic importing of plain [true]

Enable automatic PDF page rotation [false]

Mask fpu exceptions in batch mode [false]

View output in batch mode [false]

Convert all colors to black and white [false]

Set current directory; command-line only

Clear GUI operations [falsel

Convert rgb colors to cmyk [false]

Conserve memory at the expense of speed [falsel
Enable debugging messages [false]

Deconstruct into transparent objects magnified by X
Free space divisor for garbage collection [2]

Allow write to other directory; command-line only [false]

Convert all colors to grayscale [falsel

Show summary of options; command-line only

Retain n lines of history [1000]

Ignore GUI operations [false]

Generate inline tex code [false]

Mask fpu exceptions in interactive mode [true]
View output in interactive mode [true]

Keep intermediate files [false]

Keep intermediate LaTeX .aux files [false]

List available global functions and variables [false]
Use a local interactive history file [false]

Mask fpu exceptions; command-line only

Input code over multiple lines at the prompt [falsel
View output from multiple batch-mode files [false]
PostScript offset [(0,0)]

Convert each output file to specified format
Alternative output name for first file

Parse file [false]

Prompt ["> "]

Continuation prompt for multiline input [".."]
Suppress welcome message [false]

Convert cmyk colors to rgb [false]

Disable system call; command-line only [true]
Scroll standard output n lines at a time [0]

Chapter 8: Options

-tabcompletion
-tex engine
-s,-translate
-twice

-unsafe
-u,-user string
-v,-verbose
-version

-wait

-where

139

Interactive prompt auto-completion [true]

TeX engine ("latex|pdflatex|tex|pdftex|none") ["latex"]
Show translated virtual machine code [false]

Run LaTeX twice (to resolve references) [false]

Enable system call (=> global); command-line only [false]
General purpose user string [""]

Increase verbosity level [0]

Show version; command-line only

Wait for child processes to finish before exiting [false]
Show where listed variables are declared [false]

-xformat format GUI deconstruction format ["gif"]

All boolean options, except for —unsafe, -safe, and -help, can be negated by prepend-
ing no to the option name.

If no arguments are given, Asymptote runs in interactive mode (see Chapter 9 [Interactive
mode], page 141). In this case, the default output file is out.eps.

If - is given as the file argument, Asymptote reads from standard input.
If multiple files are specified, they are treated as separate Asymptote runs.

If the string autoimport is nonempty, a module with this name is automatically imported
for each run as the final step in loading module plain.

Default option values may be entered as Asymptote code in a configuration file named
config.asy (or the file specified by the environment variable ASYMPTOTE_CONFIG or -config
option). Asymptote will look for this file in its usual search path. Typically the configuration
file is placed in the .asy directory in the user’s home directory (4USERPROFILEY\.asy under
MSD0S). Configuration variables are accessed using the long form of the option names:
import settings;
outformat="pdf";
batchView=false;
interactiveView=true;
batchMask=false;
interactiveMask=true;

Command-line options override these defaults. Most configuration variables may also be
changed at runtime. The advanced configuration variables dvipsOptions and gsOptions
allow specialized options to be passed as a string to dvips and gs, respectively.

If you insert
import plain;
settings.autoplain=true;
at the beginning of the configuration file, it can contain arbitrary Asymptote code

The default output format is EPS for the (default) latex tex engine and PDF for the
pdflatex tex engine. An alternative output format (without antialiasing) may be produced
by using the -f format option. This supports any format supported by the ImageMagick
convert program (version 6.2.4 or later recommended; an Invalid Parameter error mes-
sage indicates that the MSDOS utility convert is being used instead of the one that comes
with ImageMagick). To give specific options to the convert program, call convert manually.
This example enables antialiasing and produces a tiff format at double the usual size:

Chapter 8: Options 140

asy -o - venn | convert -density 288x288 -geometry 100%x eps:- venn.tiff

If the option -unsafe is given, Asymptote runs in unsafe mode. This enables the int
system(string s) call, allowing one to execute arbitrary shell commands. The default
mode, -safe, disables this call.

A PostScript offset may be specified as a pair (in bp units) with the -0 option:
asy -0 0,0 file

The default offset is zero. The default value of the page alignment setting align is
Center.

The -u option may be used to specify arbitrary Asymptote code on the command line as
a string. It is not necessary to terminate the string with a semicolon. Multiple —u options
are executed in the order they are given. Command-line code like -u x=sqrt(2) can be
executed within a module like this:

real x;
usersetting();
write(x);

When the -1 option is used with file arguments, it only lists global functions and variables
defined in the specified file(s).

Additional debugging output is produced with each additional -v option:
-v Display top-level module and final output file names.

-vv Also display imported and included module names and final LaTeX and dvips
processing information.

AT Also output LaTeX bidirectional pipe diagnostics.
SAATATS Also output knot guide solver diagnostics.

-VVVVV Also output Asymptote traceback diagnostics.

Chapter 9: Interactive mode 141

9 Interactive mode

Interactive mode is entered by executing the command asy with no file arguments. When
the -multiline option is disabled (the default), each line must be a complete Asymptote
statement (unless explicitly continued by a final backslash character \); it is not necessary
to terminate input lines with a semicolon. If one assigns settings.multiline=true, inter-
active code can be entered over multiple lines; in this mode, the automatic termination of
interactive input lines by a semicolon is inhibited. Multiline mode is useful for cutting and
pasting Asymptote code directly into the interactive input buffer.

Interactive mode can be conveniently used as a calculator: expressions entered at the
interactive prompt (for which a corresponding write function exists) are automatically
evaluated and written to stdout.

The following special commands are supported only in interactive mode and must be
entered immediately after the prompt:

help view the manual;

reset reset the Asymptote environment to its initial state, except for changes to the
settings module (see [settings|, page 139), the current path (see [cd], page 48),
and breakpoints (see Chapter 13 [Debugger|, page 147);

input FILE
does an interactive reset, followed by the commands erase(); include FILE.
If the file name FILE contains nonalphanumeric characters, enclose it with quo-
tation marks. A trailing semi-colon followed by optional Asymptote commands
may be entered on the same line.

quit exit interactive mode (exit is a synonym; the abbreviation q is also accepted
unless there exists a top-level variable named q). A history of the most recent
1000 (this number can be changed with the historylines configuration vari-
able) previous commands will be retained in the file .asy/history in the user’s
home directory (unless the command-line option -localhistory was specified,
in which case the history will be stored in the file .asy_history in the current
directory).

Typing ctrl-C interrupts the execution of Asymptote code and returns control to the
interactive prompt.

Interactive mode is implemented with the GNU readline library, with
command history and auto-completion. To customize the key bindings, see:
http://cnswww.cns.cwru.edu/php/chet/readline/readline.html

The file asymptote.py in the Asymptote system directory provides an alternative way of
entering Asymptote commands interactively, coupled with the full power of Python. Copy
this file to your Python path and then execute from within Python the commands

from asymptote import *
g=asy ()

g.size(200)
g.draw("unitcircle")
g.send("draw(unitsquare)")

http://cnswww.cns.cwru.edu/php/chet/readline/readline.html

Chapter 9: Interactive mode 142

g.fill("unitsquare, blue")
g.clip("unitcircle")
g.label("\"$0%\", (0,0), SW")

Chapter 10: Graphical User Interface 143

10 Graphical User Interface

In the event that adjustments to the final figure are required, the Graphical User Interface
(GUI) xasy included with Asymptote allows you to move graphical objects around with
mouse Button-1.

10.1 GUI Installation

As xasy is written in the interactive scripting language Python/TK, it requires that both
Python and the tkinter package (included with Python under MSDOS) be installed. Fedora
Core users can either install tkinter with the command

yum install tkinter
or manually install the tkinter, tix, and tk packages.

By default, xasy uses the GIF image format with white as the transparent color. To
overcome certain side-effects, support for an alternative transparent image format, PNG, is
also available.

To enable full alpha channel support for PNG images in the Python Imaging Library (PIL)
used by xasy, on UNIX systems place http://effbot.org/downloads/Imaging-1.1.6.tar.gz
in the Asymptote source directory, and type (as the root user):

tar -zxf Imaging-1.1.6.tar.gz

cd Imaging-1.1.6

patch -pl < ../patches/TkAlpha-Imaging-1.1.6.patch
python setup.py install

To configure Asymptote to use PNG files for picture deconstruction, these lines need to
be in the Asymptote configuration file (see [configuration file], page 139):
import settings;
xformat="png";

10.2 GUI Usage

To use xasy, one must first deconstruct Asymptote pictures into transparent GIF (or PNG)
images with the command asy -xN, where N denotes the magnification (a positive real
number, say 2). The command asy -VxN automatically invokes xasy once deconstruction
is complete. Alternatively, one may turn on the -xN option in interactive mode or from
within a module using the function gui() or gui(N). One can turn GUI mode off again
with gui(0). Deconstruction using transparent GIF files requires that ImageMagick (see
[convert|, page 139) be installed.

The modified layout can be written to disk with the w key in a form readable to
Asymptote. A wheel mouse is convenient for raising and lowering objects, to expose the
object to be moved. If a wheel mouse is not available, mouse Button-2 (lower) can be used
repeatedly instead. Here are the currently defined key mappings:

z undo
r redo

<Delete> delete

http://effbot.org/downloads/Imaging-1.1.6.tar.gz

Chapter 10: Graphical User Interface 144

W write

q quit

One can also draw connected line segments by holding down the shift key and pressing
mouse Button-1 at each desired node. Releasing the shift key ends the definition of the
path. More features will be added to this preliminary GUI soon.

Deconstruction of compound objects (such as arrows) can be prevented by enclosing
them within the commands
void begingroup(picture pic=currentpicture);
void endgroup(picture pic=currentpicture);

By default, the elements of a picture or frame will be grouped together on adding them

to a picture. However, the elements of a frame added to another frame are not grouped
together by default: their elements will be individually deconstructed (see [add], page 45).

Chapter 11: PostScript to Asymptote 145

11 PostScript to Asymptote

The excellent PostScript editor pstoedit (version 3.44 or later; available from
http://pstoedit.net) includes an Asymptote backend. Unlike virtually all other
pstoedit backends, this driver includes native clipping, even-odd fill rule, PostScript
subpath, and full image support.

For example, try:

asy -V /usr/share/doc/asymptote/examples/venn.asy

pstoedit -f asy venn.eps test.asy

asy -V test

If the line widths aren’t quite correct, try giving pstoedit the -dis option. If the fonts
aren’t typeset correctly, try giving pstoedit the -dt option.

http://pstoedit.net

Chapter 12: Help 146

12 Help

A list of frequently asked questions (FAQ) is maintained at
http://asymptote.sourceforge.net/FAQ

Questions on installing and using Asymptote that are not addressed in the FAQ should be
sent to the Asymptote forum:

http://sourceforge.net/forum/forum.php?forum_id=409349
Including an example that illustrates what you are trying to do will help you get useful
feedback. LaTeX problems can often be diagnosed with the -vv or -vvv command-line
options. Contributions in the form of patches or Asymptote modules can be posted here:
http://sourceforge.net/tracker/7atid=685685&group_id=120000
To receive announcements of upcoming releases, please subscribe to Asymptote at
http://freshmeat.net/subscribe/50750

If you find a bug in Asymptote, please check (if possible) whether the bug is still present
in the latest Subversion developmental code (see Section 2.8 [Subversion|, page 7) before
submitting a bug report. New bugs can be submitted using the Bug Tracking System at

http://sourceforge.net/projects/asymptote
To see if the bug has already been fixed, check bugs with Status Closed and recent lines in
http://asymptote.sourceforge.net/Changelog
Asymptote can be configured with the optional GNU library 1ibsigsegv, available from
http://1libsigsegv.sourceforge.net, which allows one to distinguish user-generated
Asymptote stack overflows (see [stack overflow], page 59) from true segmentation faults

(due to internal C++ programming errors; please submit the Asymptote code that generates
such segmentation faults along with your bug report).

http://asymptote.sourceforge.net/FAQ
http://sourceforge.net/forum/forum.php?forum_id=409349
http://sourceforge.net/tracker/?atid=685685&group_id=120000
http://freshmeat.net/subscribe/50750
http://sourceforge.net/projects/asymptote
http://asymptote.sourceforge.net/ChangeLog
http://libsigsegv.sourceforge.net

Chapter 13: Debugger 147

13 Debugger

Asymptote now includes a line-based (as opposed to code-based) debugger that can assist
the user in following flow control. To set a break point in file file at line line, use the
command

void stop(string file, int line, code s=quote{});

The optional argument s may be used to conditionally set the variable ignore in plain_
debugger . asy to true. For example, the first 10 instances of this breakpoint will be ignored
(the variable int count=0 is defined in plain_debugger.asy):

stop("test",2,quote{ignore=(++count <= 10);});
To set a break point in file file at the first line containing the string text, use
void stop(string file, string text, code s=quote{});
To list all breakpoints, use:
void breakpoints();
To clear a breakpoint, use:
void clear(string file, int line);
To clear all breakpoints, use:
void clear();

The following commands may be entered at the debugging prompt:

h help;

c continue execution;

i step to the next instruction;

s step to the next executable line;

n step to the next executable line in the current file;

f step to the next file;

r return to the file associated with the most recent breakpoint;
t toggle tracing (-vvvvv) mode;

q quit debugging and end execution;

X exit the debugger and run to completion.

Arbitrary Asymptote code may also be entered at the debugging prompt; however, since
the debugger is implemented with eval, currently only top-level (global) variables can be
displayed or modified.

The debugging prompt may be entered manually with the call
void breakpoint(code s=quote{});

Chapter 14: Acknowledgments 148

14 Acknowledgments

Financial support for the development of Asymptote was generously provided by the Natural
Sciences and Engineering Research Council of Canada, the Pacific Institute for Mathemat-
ical Sciences, and the University of Alberta Faculty of Science.

We also would like to acknowledge the previous work of John D. Hobby, author of the
program MetaPost that inspired the development of Asymptote, and Donald E. Knuth,
author of TEX and MetaFont (on which MetaPost is based).

The authors of Asymptote are Andy Hammerlindl, John Bowman, and Tom Prince.
Sean Healy designed the Asymptote logo. Other contributors include Radoslav Marinov,
Chris Savage, Philippe Ivaldi, Jacques Pienaar, Mark Henning, Steve Melenchuk, Martin
Wiebusch, and Stefan Knorr.

Index

Index
!
L 55
Lo 51, 55
%
/2 55
/5 56
&
B 13, 55
2. 55
%k
K 34, 55
KK 55
K 56
+
b 34, 55
2 Pt 56
e 56
P 55
e 11, 56
et 13
S 56
3t 140
L 140
SV 4,9
.. 11
Bt e 5
/2 55
/= 56
... 55
.. 12
<

149
T e 55
BT 51, 55
>
D 55
T 55
?
e 55
T 55
T 56
L 13
[55
B 55
2
2D graphs....... 86
3
3D graphs....... 121
3Dgrids ... 126
A
A 5
AbOTt ..o 28
ADS e e 24, 62
ACCES S . v vttt et 69
acknowledgments oL 148
A0S vttt e e 62
AC0S et 62
ACOSh . ..o 62
add ... 45
Ad e 62
Ai_deriv. 62
ALY o 62
alias 51
Alias . .. 65
align.........o 140
Al . 67
ALdOW . ettt 41

Index

ANd ... 12
AND ..o 55
angle 24
animate 5, 83
animation........... i i 83
annotate. ... 86
antialiasing........... 139
append 48
append. ... 63
ArcArrow. 15
ArCATIOWSo 15
arclength.............................. 30, 119
arctime il 30, 119
arguments. i 59
arithmetic operators 55
ATTAYS .« v e e ettt e 62
F= s 15, 19
ATrow. 15
AITOW KeyS . ..ot 9
ATTows 15
S e 70
ASIN . .ttt 62
aSin. ... 62
asinh....... 62
ASPECE . et 121
ASpecto 42
assignment il 23
A e 71
ASYMOAE . . oottt 7
ASY.VIM. ... 7
asymptote.sty 74
ASYMPTOTE_CONFIG.......... ..., 139
Atan . .o 62
ATall . .ot 62
atan2.......... 62
atanh....... L 62
atleast.......ooiiiiiii 12
attach........ 93
autoimport Ll 139
autolimits 121
automatic scaling.................. L 99
axial shading i . 17
XIS ¢ 106, 108, 123, 124
azimuth........ L i 25

babel....... ... 85
background color 44
Bar . . 15
Bars 15
basemodules................................ 79
basealign 37
baseline...........oiiiii 20
batchmode 9
DDOXS . oo 121
BeginArcArrow 15

BeginArrow 15

150
BeginBar............... 15
BeginDotMargin............... 15
BeginMargin 15
BeginPenMargin............................. 15
BeginPoint 19
Bessel. ... 62
bevel 129
beveljoin 37
Bi. .o 62
Bi_deriv...... ... 62
binary format o oL 49
binary operators.............. 55
binarytree i 82
binput......... 49
Blank......... i 15
block.bottom............ 128
block.bottomleft.......................... 128
block.bottomright......................... 128
block.center 128
block.draw, 128
block.left 128
block.position............................ 128
block.right 128
block.top ..o 128
block.topleft 128
block.topright............................ 128
bool . o 23
boolean operators.iii.... 55
Bottom......... ... 88
BottomTop ... 88
bounding box 44
boutput............ ... 49
DOX ot 44
BD 9
break.......... 23
breakpoints 147
brick.o 38
broken axis.iiiiiii i 103
bug reports 146
buildcycle ... 31
Button-1 143
Button-2 L 143
BWRainbow 112
BWRainbow2 i 112
C
Cstring ... 26
CAD . oo 86
calculateTransform......................... 43
casts. 68
chrt ... 62
[48
ceil .. 62
Center...... ... 19
checker 38
Chinese 85
O T 62

Index

circle 28, 129
circlebarframe................. 80
CIK .o 85
Clear ... 49, 147
Clip .. 18
3 P 10
CIMYK .o 35
colatitude 25
COlOT . vt 34
colorlessiiiiiiiiiii 35
COLOTS ..ot 35
comma-separated-value mode 68
command-line options 5, 138
comment character........................... 48
compass directions................ 11
Compiling from UNIX source.................. 6
complement, 64
COMCAT . vttt e e e 64
conditional.............. 23, 55
config....... 139
configuration file.................. 4
configuring i 4
Le]e3 + By 24
constructors............ i i 52
continue 23, 147
(o 18 o] o 130
contour3 136
controls 12, 116
controlSpecifier........................... 33
convert.............. i 5, 83, 139
Coons shading.t 18
CODY + v et e 64
O ettt e e e 62
COS t it 62
COSh .o 62
cputime............ 54
CTOD .+ e e ettt e e e e 98
cropping graphs 98
CTOSS « vttt et e et et 25, 96
crossframe 80
crosshatch. 39
o7 68
cubicroots 67
curl ... 12, 116
curlSpecifier.............. 34
CUXTENtPEeN . ..ottt 34
currentprojection............. 118
custom axis types......... L. 88
custom tick locations......................... 90
cycle 9, 11, 116
cyclic ... 29, 33, 63, 119
cyclicflag 63
Cyrillic ... 85

D

151
datatypes i 23
datet 27
Debian........ ..o 3
debugger........ 147
declaration............... oL 23
default arguments 59
defaultpen 35, 36, 37, 41
degrees . ..ot 24, 62
Degreesoviiiiii 62
delete....... ... 63
description 1
diagonal................. ..l 79
diamond............. L. 129
dimension i, 68
Air ..o 5, 24, 25, 30, 119
direction specifier............................ 11
directory 48
dirSpecifier 33
dirtime.......... 30
display........cooiiniiiii 5
Ao .t 23
Ot v e vt 16, 24, 25
DotMargin 15
DotMargins 15
dotted....... ... 36
double..........iiiiii 49
ATaw ..ot 15, 17
DraW ..ooti i 15, 44
drawing commands 15
drawline............ ..ot 79
drawtree.t 83
AVIPS ..ot 5
dvipsOptions 139
E
B 11, 62
Editing modes 7
B e 62
elliptic functions.............. 62
else . . 23
CIMACS . . ettt ettt 7
embed 84
EndArcArrow 15
EndArrow......... 15
EndBar...........o i 15
EndDotMargin, 15
endl....... ... 49
EndMargin i, 15
EndPenMargin 15
EndPoint.......... L 19
environment variables......................... 5
eof 49, 67
eol. ... 49, 67
EPS oo 20
CTASE .ottt 26, 47
erf .. 62
erfc... 62

Index

1S5 5 o 48, 49
errorbars i 96
VAL . et 71
evenodd. 13
evenoddt 37
eXAt o 141, 147
154 o X 62
@XPL ... 24, 25
explicit......... i 68
explicit casts 68
exponential integral 62
extendcapl 37
extension i 79
external............... ... 84

B oo 62
=1 o= 62
face 119
featpost3Dl 128
Fedora Core....... 3
feynman.............. ...l 83
650 2 65
FETW . oo e 6
file ..o 48, 147
i 0 O 17
Fill oot 15, 44
Filldraw. . ..o 17
FillDTaw .. ovoveeeine e e eeeean 15, 44
filloutside ..., 17
fillrule. 37
find 26, 64
firstcut....... 31
i I 43
fix-—cm. ... 37
fixedscaling 43
floor. ... 62
flowchart 128
flush....... ... 49
fmod 62
font 37
font command............., 37
fontcommand, 38
fontsize.......... 37
for . 23
format 27, 139
forum........ 146
frame...........oo i 42
from..... ... 69
function declarations......................... 58
functions 57, 62

152
getC . 48
getreal......... 49
getstring 49
GNU Scientific Library 62
Gouraud shading 17
gradient shading............................. 17
graph...... ... 86
graph3....... 121
graphic............l 20
graphical user interface...................... 143
BTAY ottt 34
grayscale......... 34
Grayscalecoiiiiiiiiiiii 112
grid........ o 38, 101
grid3. ... 126
B e 4
== 62
GSL . 6
gsOptions 139
GUL . 143
GUI installation 143
GUILUSAZE « o evvee et 143
guide.......... 32
guide3..... 116
H
hatch 39
help. ... 141
help ..o 146
help......ooiii 147
Hermite....... i 86
Hermite(splinetype splinetype 86
hidden surface removal 119
histogram 62
historylines 141
hypot 62
I
Lo 62
i_scaled. 62
identity............l 41, 62, 66
T 23
IgnoreAspectooiiiiiiiii 43
IMAGE . o oot 112
ImageMagick 5, 83, 139
implicit casts.......... ... L 68
implicit linear solver 79
implicit scaling L. 57
import...... 70
inches........ ... 10
including images............. 20
inheritance............o o il 54
initialized L. 63
initializers............... .. i 50
input 48, 141
insert i 26, 63

Index

inside 32, 119
INSt .ot 147
installation............ 3
Int ... 23
integer division oL 59
interactive mode............. o .. 141
international characters 85
interpolate 80
intersect.......... 31, 79, 119
intersectionpoint 31,79
intersectionpoints......................... 31
intersectpoint 119
intMax. ... 23
INVEerseovi i 41, 66
invert... ... 118
invisible il 35

Koo 62
RK_scaled........oiiiii 62
keywords. 59
Korean 85

labelo 18
Label....... ..o 16
Label ... oo 91
labelpath 85
labelx. 91
labely. ... o 91
Landscapec.viiiii e 44
lastcut ... 31
lasy-mode. ...ttt 7
LaTeX fonts............ 37
LaTeX USageovvniiieieieann.. 74
latinl.. ... 85
latitude......... 25
lattice shading.......... 17
layer . ..o 15
leastsquares....................oinn. 80, 107
Left ..o 90
LeftRAGNT oo 90
LeftSide............. i 19
LeftTicks 88, 90
legend L 15
legend............... 94
Legendre........ 62
length................ 24, 25, 26, 29, 33, 63, 119
letter. 5
libmroutines................ 62

libsigsegv................ 59, 146

153
Tight oo 121
limits ... 98, 121
line . .o 67
linemodeoooiiiiii. 67
Linear..........oiuiniii i 99
1ineCaAD . .ttt 37
linejoin............ 37
lineskip............oo i 37
linewidth 36
1O 62
LOg oo 99
log-log graph, 100
1ogl0. .o 62
log2graph................................. 102
logarithmic graph........................... 100
logical operators............................. 55
longdashdotted 36
longdashed 36
longitude 25
loOD o v 23
M
MacOS X binary distributions 3
MaKEPeN. ..ottt 40
11 65
Margin............. ... 15
Margins............c.iiiiiiiiiii 15
markangle i 81
MATKRET . . oottt e 96
MArKersS.ottt 80
marknodes i 96
markuniform 96
math 79
mathematical functions 62
1L 32, 65, 119
maxbound 24, 26
MELEE . ot et ettt et e e 83
MetaPost.......... i 85
MetaPoSt ... o 12
MetaPost cutafter 31
MetaPost cutbefore......................... 31
MetaPost pickup 34
MetaPost whatever 79
Microsoft Windows 4
MidArrow.......... 15
midpoint........... 30
MidPoint.ot 19
MIN 31, 65, 119
minbound Ll 24, 25
minipage.............. 20
miterjoin L. 37
IO . oottt e e e e e e e e 10
TNOUSE &« o vove et et ettt e e 143
MOVE . ottt et 41
MoveQuietcovriii 41
multdiagonal 66

Index

N o 11
named arguments. 59
TLEW . oottt et et e e e 51, 64
newframe. 42
NEWEOIL. . ..ottt 67
4<% P 147
NE S S .t 37
nobasealign 37
NOFAll ..o 15, 44
NoMargin............oiiiiiiininenan... 15
oTe3 o 1= 49
NOME . . vt 15
NOT ..o 55
NoTicKS . ..o 88
null. ... 51
nullpenoooiiiiiiiiii.. 18, 44

O

Oblique. ..ot 117
obliqueX 118
obliqueY 118
obliqueZ 117
offset ... o 140
OPACItY . ..o 38
10 0S5 & 48
OPEerator. ...ttt 56
Operator ——.......... ... 86
OPEerator 86
operatorcast L 69
operatorecast 69
operator init 50, 53
operators............ i 55
OpPtioNs 138
OR .ot 55
orientation, 44
orthographic 118
OULPUL ..ottt 48, 139
overloading functions......................... 58
OVErWIriteooonirniiin.. 41

P o 62
PACK . L 20
packing ... 61
Pair... ... 9, 23
paperheight 5
PAPETrtYPe. .ot 5
paperwidth il 5
parametrized curve 98
path 28, 129
pathll ... 13
path3. 116
patterns......... L 38
patterns...................... i 80

pdfviewer......... 4

154
=3 ¢ 34
PenMargin 15
PenMargins 15
perpendicular 80
perspective 118
picture....... 42
picture alignment 45
2 62
Plain...... 79
point......... ... 29, 33, 119
polar.......... .. 25
polargraph 87
POLYGOM. ..o 96
PO P « - ettt e 63
Portrait............ i 44
postcontrol............., 30, 119
postfix operators............................. 56
postscript 47
PostScript fonts 38
PostScript subpath 13
PowlO. ..o 62
Precisioniiiiiiii i 49
precontrol, 30, 119
prefix operators. 56
private.......... 51
Programmingooiiiiiiiii... 23
PSVIeWer.t 4
Pl 10
public...... 51
push..... 63
python....... L 4
Pythonusage............................... 141
Q
quadraticroots................ 66
QUIt .o 141, 147
QUOTE . oottt et e 71
quotient............., 55
R
radial shading 17
RadialShade, 44
radians..............c i 62
Rainbow............ 112
TaNd . ..o 62
randMaxii e 62
readl. 68
read2. 68
read3. 68
reading Ll 48
reading string arrays................ 67
readline.............. il 50
real 23
realDigits............l 23
realEpsilon................. ... 23
realMax..........oiiiiii 23

Index

realMin....... ... 23
realmult......... 24
rectangle 129
TECUTSION .« v vttt ettt e e 59
refleCt. ..o 42
Relative........ .o 19
relpoint......... i 30
reltime.......... i 30
remainder 62
replace...... ... 27
resetdefaultpen............................ 41
rest arguments i 60
TESTOT@ . .ottt 47
restricted il 51
Bt =1 s o P 147
TEVETSE ..o ooeveeeenenn... 27, 31, 33, 64, 119
rewind 49
rfind....... 26
TED . 34
Riemann zeta function 62
RAGHE - .ottt 90
RAGHESIAE oot 19
RightTicks............. 88, 90
Rotate......... i 19
Rotate(pair z) 19
TOUNA . .ottt e ettt e e e e e e 62
TOUNACAD. - oot e e 37
roundedpath 83
roundjoin 37
roundrectangle 129
RPM .. 3
runtime imports o L 71
Russian.......... i 85

S 11
SAVE .ttt 47
Scale ... 42, 99
Scale ... 19, 100
scaled. 118
scientific graph oo L 92
SCroll. ... 49
Search........ ... 64
search paths.......... 5
SEASCAPE . - e i 44
secondary axis................oiiiiiiia.... 104
secondaryX 104
secondaryY 104
SECONAS . .ottt 27
seek. ... 49
seekeof 49
segmentation fault....... oo L 146
self operators................ 56
SEQUENCEottt 64
settings........... il 4, 139
T « 62

shading 17

155
shift....... 41, 42, 118
Shift ..ot 19
shiftlessttt 42
shipout.......... ... i 43
S et 62
SImpleX. ...t 79
Sin..... 62
SIn .. 62
single........ ... 49
sinh..... 62
size............, 29, 33, 42, 43, 119, 139
slant........oiiiii 42
Slant ... 19
slice. ... 31
slide. ... 84
slopefield 136
solid........ 36
solids...... ... i 127
SOLVE . ottt 66
SOTT .t ittt 65
Spline....... 86
SATL .o 62
SQUATECAD « - v vvve vt te e 37
STANA . ottt e 62
stack overflow........... 59, 146
Static. ..o 72
STALS . ot 80
STAIN . .o 48
STAOUL . ..o 48
SteD ..o 147
stickframe 80
SEOD . e 147
straight............................ 29, 79, 119
Straight............. 86
strftime....... L 27
string ... 26, 28
strptime....... i 27
struct..... 51
structures......... .. i 51
subpath L . 31, 119
subpictures......... 43
substr...... ... 26
Subversion 7
SUM .« oev ettt et e e e e 65
superpath 13
SUPPTESS . ot ettt 41
SuppressQuiet 41
surface......... il 128
SVN L 7
SYZYEY « v e ve e 83
T
tab. .. 49
tab completion 9
tan 62
- T o 62
tanho 62

Index

tell . 49
tension.............. i 12, 116
tensionSpecifier................, 34
tensor product shading....................... 18
BeX i 47
TeXfonts......... 38
TEX string 26
texcommand 5
texpath....... 5
texpreamble, 47
texreset...... 48
textbook graph............ 92
15722 3
this... 51
three..... 116
1721 P 91
ticks. 88
TiCKS ot 88, 90
tildeframe L., 80
tile ..o 38
tlings. ..o 38
time. 27
TOP e e 88
EraCe . ot 147
transform............... 41, 118
tranSparencyouiiii i 38
TransSposSe ...t 65
tree.. 82
triangle............ 80
tridiagonal, 66
trigonometric integrals 62
triple...... 25
TrueMargin 15
tutorial 9
typedef 28, 58

unfill ... 18
UnFill. 44
unicode........... ... 85
Uninstall 8
unit ... 24, 25
unitcirclel 11
unitsize il 10, 43
UNIX binary distributions.................. ... 3
unpacking 61
unravel 70
update......... ... 48
UpSideDoWn .. .ovvviie e 44
usepackage i 48
user coordinatesiaiii.. 10
user-defined operators........................ 56

A%

variable initializers........................... 50
vector field............ i 109

156
vectorization 67
verbatim 47
VAM .o 7
virtual functions.............. 54
voild. ... 23
%%
W 11
wheel mouse L 143
while. 23
white-space string delimiter mode............. 67
windingnumber 32
WO o ottt et 67
write ... 48, 68
X
KASY + et 5, 143
XaxXisS. ... 121
Xequals. ... 90
XEquals............ooiiiiiiiiiii .. 90
Xinput....... ... 49
xlimits 98, 121
KOR e vttt e 55
Xoutput......... ... 49
XPATt oo 24, 25
XSCALe . ..t 41
xscaled. 118
XtiCK. oo 91
XZETO o oot 90
Y
Y 62
Jaxis. ... 121
yequals............ i 90
YEQUals. ...t 88
ylimits 98, 121
FPATE oo 24, 25
yscale. ... 41
yscaled. 118
VECK. . 91
YZero.o 88
Z
ZAXIS i 121
ZeTO_Ad .. 62
zero_Ai_derdiv........... 62
zero Bi...... 62
zero Bi_deriv............ L 62
ZeTO _ T 62
zerowinding L 37
zZeta. 62
zlimits. 121
ZPATL .. 25
zscaled. 118

	Description
	Installation
	UNIX binary distributions
	MacOS X binary distributions
	Microsoft Windows
	Configuring
	Search paths
	Compiling from UNIX source
	Editing modes
	Subversion
	Uninstall

	Tutorial
	Drawing commands
	draw
	fill
	clip
	label

	Programming
	Data types
	Paths and guides
	Pens
	Transforms
	Frames and pictures
	Files
	Variable initializers
	Structures
	Operators
	Arithmetic & logical operators
	Self & prefix operators
	User-defined operators

	Implicit scaling
	Functions
	Default arguments
	Named arguments
	Rest arguments
	Mathematical functions

	Arrays
	Casts
	Import
	Static

	LaTeX usage
	Base modules
	plain
	simplex
	math
	interpolate
	geometry
	stats
	patterns
	markers
	tree
	binarytree
	drawtree
	syzygy
	feynman
	roundedpath
	animate
	embed
	slide
	MetaPost
	unicode
	latin1
	babel
	labelpath
	annotate
	CAD
	graph
	palette
	three
	light
	graph3
	grid3
	solids
	surface
	featpost3D
	flowchart
	contour
	contour3
	slopefield

	Options
	Interactive mode
	Graphical User Interface
	GUI Installation
	GUI Usage

	PostScript to Asymptote
	Help
	Debugger
	Acknowledgments
	Index

